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Computation of Solution Spaces for
Optimization-Based Trajectory Planning
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Abstract—The nonlinear vehicle dynamics and the non-
convexity of collision avoidance constraints pose major challenges
for optimization-based trajectory planning of automated vehicles.
Current solutions are either tailored to specific traffic scenarios,
simplify the vehicle dynamics, are computationally demanding,
or may get stuck in local minima. This work presents a novel ap-
proach to address the aforementioned shortcomings by identify-
ing collision-free driving corridors that represent spatio-temporal
constraints for motion planning using set-based reachability
analysis. We derive a suitable formulation of collision avoidance
constraints from driving corridors that can be integrated into ar-
bitrary nonlinear programs as well as (successive) convexification
procedures. When combining our approach with existing motion
planning methods based on continuous optimization, trajectories
can be planned in arbitrary traffic situations in a computationally
efficient way. We demonstrate the efficacy of our approach using
scenarios from the CommonRoad benchmark suite.
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I. INTRODUCTION

VARIATIONAL methods for trajectory planning of auto-
mated vehicles have gained increasing interest over the

past years. While discrete motion planning methods [1]–[4]
are specifically suited for exploration, they may struggle to
find solutions in cluttered environments due to discretization
effects. In contrast, optimization-based motion planning ap-
proaches do not suffer from discretization effects as trajecto-
ries are optimized in continuous space. However, the nonlinear
vehicle dynamics and the non-convexity of the set of feasible
positions generally lead to a high computational burden. Some
approaches require additional guidance through the solution
space [5], e.g., in the form of driving corridors that represent
spatio-temporal constraints.

A. Related Work

To address the above-mentioned challenges, a variety of
problem reformulations is proposed in the literature. We
categorize them subsequently by the fidelity of their applied
vehicle model, their techniques to identify driving corridors,
and their formulation of collision avoidance constraints.
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1) Vehicle Dynamics: The fidelity of vehicle models for
optimization-based trajectory planning ranges from very sim-
ple models [6]–[9], such as double-integrator dynamics, to
rather complicated models [5], [10]–[13], such as dynamic
single-track models. While the more complicated approaches
demand excessive computational effort, less complicated ap-
proaches may fail in critical situations, because they neglect
the non-holonomicity of the vehicle or decouple the longitu-
dinal and lateral movement [6], [14]–[16].

2) Driving Corridors: Topological approaches for driving
corridor identification have been studied for some time [12],
[14], [17]–[25]. These approaches often exploit the concept of
homotopy or homology to infer different maneuver variants
[12], [22]–[25]. Basically, two trajectories are called homo-
topic if they can be continuously deformed into one another
without intersecting any obstacle [26]. Topological approaches
commonly decompose the collision-free regions in space-time
into (convex) sub-regions: for each selected combination of
sub-regions, an optimal trajectory can be planned. However,
these approaches typically neglect the vehicle dynamics, and
thus, cannot exclude non-drivable corridors prior to trajectory
planning. Moreover, the number of distinct maneuver variants
grows exponentially with the number of obstacles and some
approaches are difficult to apply in dynamic environments
[23], [24].

Another line of research finds driving corridors by inflating
solutions from discrete motion planning methods, e.g., graph-
based or sampling-based methods [27]–[33] or multi-agent
partially observable Markov decision processes [34]. However,
some approaches consider only static environments in their
experiments [30]–[32] or only a discrete set of actions for com-
putational tractability [34]. In general, these methods struggle
in detecting narrow passageways in cluttered environments due
to discretization effects.

In [35], a partitioning of the cluttered environment is
obtained by means of convex lifting. The resulting partitioning
of the space is utilized to obtain a reference path by graph
search and to generate a driving corridor. The authors state
that their algorithm can be extended to moving obstacles, but
have not yet evaluated this.

Support vector machines (SVMs) have also been applied
to identify driving corridors for path [36], [37] and trajectory
planning [38], [39]. By assigning a passing side, i.e., either
to the left or right, the SVM solver optimizes a separating
surface to construct a collision-free driving corridor. However,
deciding on the passing side is often the most crucial aspect.

3) Collision Avoidance Constraints: For optimization-
based motion planning, obstacles are usually modeled as con-
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vex shapes, e.g., polytopes [40]–[42] or ellipsoids [43]–[46],
where polytopes allow one to more freely specify shapes. More
general non-convex obstacles can be handled by applying
(semi-) convex decomposition techniques beforehand [47].

Given a proper representation of the obstacles, mixed-
integer programming is often proposed to handle non-convex
collision avoidance constraints [6], [7], [48], [49]. While
mixed-integer programs guarantee global optimality of feasible
solutions, their computational complexity is high [7]. Another
line of research uses nonlinear programming [40], [42], [44];
however, these approaches strongly rely on a suitable initial
guess and are also computationally expensive.

In contrast, convex optimization problems can be efficiently
solved to global optimality [50] and real-time capable solvers
are available, e.g., [51], [52]. To employ convex optimization
techniques, the non-convex optimization problem is typically
approximated by a single [15], [16], [53]–[56] or a sequence
of convex optimization problems [5], [46], [57]–[62]. This
usually requires extracting a convex subset from the non-
convex set of feasible positions, which we discuss next.

In [5], [11], [15], [16], [53], [63], [64], the set of admissible
(lateral) positions is described by an interval of admissible
deviations from a reference path. However, collision avoidance
can only be guaranteed for minor deviations of the longitudinal
position from the initial guess [5], [11], [53] or the vehicle
dynamics is decoupled [15], [16], [63]. This issue can be
circumvented by restricting the feasible positions to lie within
an ellipsoid [33], [35], [65], [66]. However, ellipsoidal con-
straints can result in rather conservative under-approximations
of the feasible set of positions. More flexible polyhedral under-
approximations can be obtained by linearizing signed-distance
functions [58] or potential fields [55].

The works in [42], [67], [68] propose smooth reformulations
of collision avoidance constraints for polyhedral obstacles. If
the collision avoidance constraints are differentiable, a convex
approximation can be obtained by directly linearizing the
collision avoidance constraints [31], [57], [60], [61], [69].
However, an unsuitable initial guess might cause convergence
to an infeasible local minimum [43].

To obtain a larger feasible set as compared to direct-
linearization techniques, the works [46], [70], [71] propose
projecting the current state of the system onto the boundary of
a convex keep-out zone followed by linearizing the constraint
at the projection point. The approaches in [41], [72] compute
polyhedral inner-approximations by growing a collision-free
ellipsoid and computing the tangents to the ellipsoid where
it coincides with the boundary of an obstacle. A related idea
is proposed in [54], where the edges of the polyhedron are
sampled and a limiting obstacle is assigned to each edge.
However, all these procedures have in common that they
require a collision-free initial guess.

B. Contributions

We identify collision-free driving corridors within the reach-
able set of an automated vehicle. This work significantly
differs from our previous work on motion planning with
reachable sets [63] and proposes the following innovations:

• our novel method for obtaining collision-free driving
corridors enables combined longitudinal and lateral tra-
jectory planning;

• our collision avoidance constraints are created so that
arbitrary gradient- and Hessian-based solvers as well as
(successive) convexification procedures can be used for
trajectory planning.

Our proposed approach offers the following benefits:

• generic formulation of collision avoidance, i.e., our ap-
proach can be embedded in a wide range of different
optimization-based motion planning methods, indepen-
dently of the fidelity of the vehicle model;

• simplified initialization, i.e., the driving corridors facili-
tate the search for a suitable initial guess for nonlinear
optimization problems;

• elimination of local minima induced by obstacles, i.e.,
the driving corridors guide the optimization-based motion
planner through the collision-free solution space;

• consideration of a set of goal states, i.e., driving corridors
can be constrained to end in a set of terminal states, e.g.,
a specific goal region or standstill in safe areas;

• applicability in arbitrary traffic scenarios, i.e., our ap-
proach is capable of handling arbitrarily cluttered sce-
narios involving static and dynamic obstacles;

• the computational effort of our approach typically im-
proves with the criticality of the scenario [63], i.e., with
shrinking solution space for trajectory planning.

The remainder of this paper is structured as follows: Sec. II
introduces the problem statement and the solution concept. The
computation of reachable sets is briefly reviewed in Sec. III.
Sec. IV elaborates on the identification of driving corridors,
followed by the derivation of collision avoidance constraints
in Secs. V and VI. Numerical results are provided in Sec. VII
and our conclusions are drawn in Sec. VIII.

II. PROBLEM STATEMENT AND SOLUTION CONCEPT

To precisely formulate our problem statement and for
subsequent derivations, we introduce our notation. For a
set S, let So denotes its interior, ∂S its boundary, S∁ its
complement, conv(S) its convex hull, and cl(S) its closure.
For a hyperplane H=

(a,b)
:= {x|aTx = b}, with a ∈ Rn

and b ∈ R, let H≤(a,b) denote the corresponding halfspace
{x|aTx ≤ b}; analogously, H≥(a,b) := {x|aTx ≥ b}. If a
set S is countable, its cardinality is denoted by |S|. The set
{r, r + 1, . . . , q} ⊂ N0, 0 ≤ r ≤ q, is denoted by I[r:q].
A sequence W with components Wi, i ∈ I[r:q], is denoted
by W = (Wi)

q
i=r. We introduce □ as the placeholder for a

variable where the minimum and maximum admissible values
are denoted by □ and □, respectively. We further introduce a
local curvilinear coordinate frame as FL aligned with a given
reference path Γ : R → R2. In FL, a global position (sx, sy)

T

is expressed in terms of the arc length sζ and the orthogonal
deviation sη from Γ(sζ).
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A. Problem Statement

Let us introduce the compact set of admissible states X ⊂
Rnx and the set of admissible control inputs U ⊂ Rnu of an
automated vehicle, whose motions are governed by

xk+1 = f(xk, uk), (1)

where xk ∈ X is the state, uk ∈ U the input, and k ∈ N0

is the discrete time step corresponding to the time tk = k∆t,
∆t ∈ R+. The dynamics in (1) are formulated in FL and
f(xk, uk) is continuously differentiable on X . Possible state
and input trajectories of the system are denoted by x(·) and
u(·), respectively. Next, we define a few important sets as well
as the occupancy and projection operations:

Definition 1 (Occupancy). The operator occ(x) relates the
state x ∈ X to the set of points in the position domain
occupied by the automated vehicle as occ : X → P(R2),
where P(R2) denotes the power set of R2.

Definition 2 (Set of Forbidden States). Given the set Ok ⊂ R2

of occupied positions of all obstacles (e.g., other cars and
pedestrians) including the space outside of the road, the set
of forbidden states of the automated vehicle at time step k is

Fk := {x | occ(x) ∩ Ok ̸= ∅} .

Definition 3 (One-Step Reachable Set). Let Re
0 = X0, where

X0 is the set of collision-free initial states of the automated
vehicle including measurement uncertainties. The one-step
reachable set Re

k+1 is the set of all states that can be reached
from the previous set of states Re

k ⊆ X within one time step
without intersecting Fk+1:

Re
k+1 :=

{
xk+1 ∈ X

∣∣∣∃xk ∈ Re
k, ∃uk ∈ U :

xk+1=f(xk, uk) ∧ xk+1 /∈ Fk+1

}
.

Definition 4 (Projection). The operator proj : X → R2 maps
the state x ∈ X to the (sζ , sη) plane: proj(x) := (sζ , sη)

T .
Using the same notation, we project a set of states X :
proj(X ) := {proj(x) |x ∈ X}. Similarly, we use projζ : X →
R and projη : X → R to map a state x ∈ X to the longitudinal
or lateral position domain, respectively.

Definition 5 (Drivable Area). The drivable area De
k at time

step k is defined as De
k := proj(Re

k).

Our approach provides collision avoidance constraints for
optimization-based trajectory planners. The input of our
method is the current environment model that comprises the
road network, the curvilinear coordinate system FL, and all
safety-relevant traffic participants, including their motion pre-
diction. Our method is not tailored to any particular prediction
method and only requires that Ok can be represented by the
union of closed sets containing the future occupied positions
of obstacles, including uncertainties. We aim to solve the
following non-convex optimal control problem to plan the

prediction for k ∈ I[0:N ]

⋃
k∈I[0:N−1]

De
k De

N

(a) Drivable area De
k of the automated vehicle for consecutive time steps

k ∈ I[0:N ]. The drivable area at the final time step N is colored in gray.

(b) Two possible driving corridors are shown; for simplicity, we show the
union of the driving corridors over time. The driving corridor at the final time
step N is colored in gray.

prediction at kdriving corridor at k polyhedra

(c) Approximation of the driving corridor complement with polyhedra de-
picted at a specific time step k.

vehicle at k = 0 vehicle at intermediate time steps

(d) We extract collision avoidance constraints from the approximated driving
corridor for the trajectory optimization.

Fig. 1: Illustration of the computation steps of our approach.

trajectory of the automated vehicle:

min
u(·)

N∑
k=0

J(xk, uk) (2a)

such that

x0 = x̃0, xN ∈ Xgoal, (2b)

∀k ∈ I[0:N−1] : xk+1 = f(xk, uk), (2c)

∀k ∈ I[0:N ] : proj(xk) ∈ De
k, (2d)

g(xk, uk, k) ≤ 0, (2e)

where the cost function J : Rnx × Rnu → R is continuously
differentiable. The (measured) initial state of the automated
vehicle is denoted by x̃0. Collision avoidance is encoded by
the constraint (2d), i.e., the positions of the automated vehicle
are limited to the drivable area. Additional constraints such as
actuator constrains are summarized in the set of continuously
differentiable, time-variant constraints g : Rnx ×Rnu ×N0 →
Rg in (2e).

B. Solution Concept

Our method determines a continuously differentiable ap-
proximation of the collision avoidance constraint (2d) in four
steps (see Fig. 1):

1) We compute the drivable area (see Def. 5) of the auto-
mated vehicle in the current traffic scenario to explore
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the dynamically reachable, collision-free solution space
for trajectory planning (see Fig. 1a and Sec. III).

2) We extract dynamics-aware driving corridors from the
drivable area (see Fig. 1b and Sec. IV).

3) We compute an approximation of the driving corridor
complement using a fixed number of polyhedra (see
Fig. 1c and Sec. V). This intermediate step allows us
to use state-of-the-art methods for continuous trajectory
optimization and to define the number of collision avoid-
ance constraints in advance.

4) We derive collision avoidance constraints for the (non-)
convex trajectory optimization from the approximation
of the driving corridor complement (see Fig. 1d and
Sec. VI).

These four steps are detailed in the subsequent sections.

III. REACHABLE SET COMPUTATION

Vehicle models used for motion planning usually possess
nonlinear dynamics and a rather high-dimensional state space,
which makes it difficult to calculate the reachable set [73].
We therefore aim to compute accurate approximations R of
the exact reachable set Re, i.e., R ≈ Re, for computational
efficiency. Among others, we realize this by approximating
the vehicle dynamics by two second-order integrator models
in the road-aligned coordinate system FL [63]. The state x =
(sζ , vζ , sη, vη)

T and input u = (aζ , aη)
T of the system are

composed of the position s, velocity v, and acceleration a in
the longitudinal ζ- and lateral η-directions, where both the
velocity and acceleration are bounded:

s̈ζ(t) = aζ(t), s̈η(t) = aη(t), (3a)
vζ ≤ vζ(t) ≤ vζ , vη ≤ vη(t) ≤ vη, (3b)

aζ ≤ aζ(t) ≤ aζ , aη ≤ aη(t) ≤ aη. (3c)

The approximation of the reachable set is represented as the
union of base sets R(i)

k , i ∈ N0, i.e.,

Re
k ≈ Rk := ∪iR(i)

k , (4)

where a base set R(i)
k is the Cartesian product of two con-

vex polytopes in the (sζ , vζ) and (sη, vη) plane [74]. The
projection of a base set proj(R(i)

k ) yields an axis-aligned
rectangle D(i)

k . The union of D(i)
k approximates the drivable

area: De
k ≈ Dk := ∪iD(i)

k .
We use the algorithm presented in our previous works [63],

[74] to compute the reachable set of the automated vehicle,
which is briefly summarized below. To simplify the notation,
we denote both the union and the collection of base sets R(i)

k

with Rk; this is done analogously for the drivable area Dk. The
initial base set R(0)

0 results from the initial state x̃0 to which
the set of measurement uncertainties is added. The reachable
set for consecutive time steps k is computed as follows:

1) Propagation: The polytopes of each base set R(i)
k are

propagated according to (3), which yields Rprop
k+1 and Dprop

k+1 .
At this stage, obstacles are not considered.

2) Removal of Forbidden States: We remove all colliding
states from Rprop

k+1 to obtain Rk+1. Since convex polytopes are

not closed under set difference, we under-approximate Rprop
k+1 \

Fk+1 with several base sets R(j)
k+1.

To this end, we transform the set of obstacles Ok to
the curvilinear coordinate frame FL prior to the reachable
set computation, and over-approximate the result with axis-
aligned rectangles yielding the set Õk. Efficient algorithms for
axis-aligned rectangles benefit the remaining required steps:

a) Merging: Both sets Dprop
k+1 and Õk+1 are merged using

a sweep line algorithm [75], yielding rectilinear polygons.
b) Difference: By computing the difference between the

rectilinear polygons of the propagated drivable area and the
approximated obstacles, we obtain the collision-free reachable
positions of the automated vehicle.

c) Partitioning: To cast the resulting collision-free reach-
able positions in the set representation defined in (4), we
partition the set into rectangles D(j)

k+1 along the vertical η-
direction, e.g., using a sweep line algorithm.

After we have obtained the collision-free drivable area
Dk+1, we determine the reachable velocities for Dk+1 to
obtain the reachable set Rk+1 of the next time step. It is also
possible to consider the shape of the automated vehicle for the
removal of the forbidden states assuming that the automated
vehicle is oriented along the reference path [63].

3) Update of Reachability Graph: As a consequence of the
removal of forbidden states, multiple sets R(j)

k+1 can be reached
from the same R(i)

k . For later use, we create a graph GR, in
which each node stores a base set R(i)

k and its projection D(i)
k .

An edge (R(i)
k ,R(j)

k+1) is added if and only if R(i)
k can reach

R(j)
k+1 in one time step.

IV. IDENTIFICATION OF DRIVING CORRIDORS FOR
COUPLED DYNAMICS

The obtained reachable sets are generally non-convex and
often disconnected due to the presence of obstacles. To obtain
better manageable sets, we decompose the reachable set into
driving corridors:

Definition 6 (Driving Corridor). A driving corridor C :=
(Ck)Nk=0 is a sequence of sets Ck over time steps k that satisfy:

C1) Reachability: Ck ⊆ Rk and for each R(i)
k ∈ Ck, there

exists R(j)
k+1 ∈ Ck+1 such that (R(i)

k ,R(j)
k+1) ∈ GR;

C2) Goal states: CN ⊆ Xgoal;
C3) Connectedness: proj(Ck) is connected [76];
C4) Vertical convexity: any non-empty intersection of

proj(Ck) with a vertical line is connected [77].

A driving corridor may represent several maneuver options
for each obstacle like yielding, passing, or following; neverthe-
less, the passing sides for obstacles are unique for all solutions
in a driving corridor (see Fig. 1b). The different concepts
of driving corridors and the related concept of homotopy are
usually applied to obtain unique sequences of maneuvers [14],
[22], [25], [34], [78]. In contrast, we have conceptualized
driving corridors from an optimization point of view. By using
driving corridors according to Def. 6 for trajectory planning,
we are able to eliminate
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1) the need for binary variables that encode collision avoid-
ance constraints for multiple obstacles, since Ck is a
single, connected set and already collision-free;

2) local minima due to obstacle constraints, since we assign
a unique passing side for each obstacle prior to optimiza-
tion (see Fig. 2).

Our approach to determine driving corridors C within the
reachable set R is described next. For simplicity, we drop the
projection operator when referring to C in the position domain.

1) Goal Region: We intersect the reachable set of the final
time step with Xgoal, i.e., R̂N =

⋃
i R

(i)
N ∩ Xgoal. In case

R̂N = ∅, the desired goal states cannot be reached, which can
be reported to a high-level planner. To remove states at earlier
points in time that cannot reach Xgoal, we perform a graph
search over GR backwards in time and remove base sets R(i)

k

that do not reach the set R̂N .
2) Identification and Selection: We iterate over the drivable

area backwards in time and decompose it into connected,
vertically convex sets to extract driving corridors. As shown in
Fig. 3b, the drivable area Dk is already vertically sliced (but
not yet vertically convex nor connected) due to the removal
of forbidden states. The decomposition into vertically convex
sets is performed using the adjacency graph:

Definition 7 (Adjacency Graph—adapted from [23]). The
nodes of an adjacency graph Ak are sets D(i)

k ∈ Dk and an
edge in Ak represents that D(i)

k ,D(q)
k share a border which is

not just a vertex (e.g., D(0)
k and D(1)

k in Fig. 3b). The edges
in Ak are directed in increasing longitudinal direction.

By construction, Ak is a directed acyclic graph. Since there
are no loops in Ak, any path in Ak connecting a source with
a sink node represents a connected, vertically convex set V(q)

k ,
as shown in Fig. 3b. For the identification and selection of
driving corridors, we explore the driving corridor graph GC
(see Fig. 3c):

Definition 8 (Driving Corridor Graph). The nodes of a driving
corridor graph GC are vertically convex sets V(q)

k . An edge in
GC represents that a set D(j)

k+1 ∈ V(p)
k+1 is reachable from some

D(i)
k ∈ V(q)

k within one time step, i.e., (D(i)
k ,D(j)

k+1) ∈ GR.

A path in GC represents a driving corridor C. The exploration
of GC can be performed using standard graph search algorithms
like depth-first search or breadth-first search. The vertically
convex sets V(q)

N at the final time step N are sink nodes of
GC and obtained through AN . The predecessors for a node
V(q)
k are obtained from the reachability graph GR: we extract

x0 Xgoal

x1

C1xsolution,1

sζ

sη

Fig. 2: Initialization (dashed line) in a (too) narrow gap close to an infeasible
local minimum. Moving x1 to either side will increase the violation of one of
the constraints representing the obstacles. Using a driving corridor, a feasible
solution (solid line) can be found since we rewrite the constraints as x1 ∈ C1.

GR
D(0)

k D(1)
k D(2)

k D(3)
k D(4)

k

D(0)
k+1 D(1)

k+1 D(2)
k+1 D(3)

k+1 D(4)
k+1

(a) Excerpt of the reachability graph GR.

Ak Ak+1

D(0)
k

D(1)
k

D(2)
k

D(3)
k D(4)

k

D(0)
k+1

D(1)
k+1

D(2)
k+1

D(3)
k+1 D(4)

k+1

V(2)
k

V(1)
k

V(0)
k

V(0)
k+1

V(1)
k+1

(b) A path in the adjacency graph Ak represents a connected, verti-
cally convex set V(q)

k . Ak contains the sets V(0)
k = {D(2)

k }, V(1)
k =

{D(0)
k ,D(1)

k }, and V(2)
k = {D(3)

k ,D(4)
k }. Ak+1 contains the sets V(0)

k+1 =

{D(0)
k+1,D

(2)
k+1,D

(3)
k+1,D

(4)
k+1} and V(1)

k+1={D(0)
k+1,D

(1)
k+1,D

(3)
k+1,D

(4)
k+1}.

GC

V(0)
k V(1)

k V(2)
k

V(0)
k+1 V(1)

k+1

Ck = V(1)
k

Ck+1 = V(1)
k+1

D(0)
k

D(1)
k

D(0)
k+1

D(1)
k+1

D(3)
k+1 D(4)

k+1

(c) Excerpt of the driving corridor graph GC . A path in GC represents a driving
corridor C. In our example, the selected driving corridor is Ck = V(1)

k and
Ck+1 = V(1)

k+1 at time steps k and k + 1, respectively.

Ck Ck+1

D(0)
k

D(1)
k

D(0)
k+1

D(1)
k+1

D(3)
k+1

(d) After selecting a driving corridor, the forward search removes the set
D(4)

k+1 from Ck+1, since it is not reachable from Ck according to GR.

Fig. 3: Identification of driving corridors; we only depict nodes and edges
that are relevant for our example. We explore the driving corridor graph GC
backwards in time to determine a driving corridor. After selecting a driving
corridor, a forward search from time step k = 0 to N is performed to remove
sets D(i)

k ∈ Ck that are no longer reachable.
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the union D̂k−1 of parents for all D(i)
k ∈ V(q)

k from the
reachability graph GR and group them to vertically convex
sets V(j)

k−1 by identifying paths in Ak−1. The exploration of
GC can be terminated as soon as a first driving corridor is
found. If more time is available, the exploration of GC can be
continued to determine alternative driving corridors. It is also
possible to assign weights wj,q to the edges (V(j)

k−1,V
(q)
k ) to

guide the selection of a driving corridor when using informed
search techniques.

At each time step, creating Ak takes O(|Rk|2). A path rep-
resenting a set V(q)

k in Ak can be computed within O(|Rk|+
|Ek|) [79], where |Ek| denotes the number of edges in Ak

that are at most 1
2 |Rk|(|Rk| − 1). Let r = maxk∈I[0:N]

|Rk|
and e = maxk∈I[0:N]

|Ek|. As we consider a time horizon of
length N , the complexity of computing a first driving corridor
is O(N(r + e)) when using depth-first search.

3) Forward Search: Since we partition the predecessor sets
D̂k−1 of a set V(q)

k again into vertically convex sets during the
exploration of GC , it may hold that certain sets D(i)

k ∈ V(q)
k

are not reachable when selecting a specific driving corridor in
GC . We therefore perform a forward search over the selected
driving corridor: we iterate over all time steps starting from
k = 0 and remove unreachable sets, see Fig. 3d. In the
rare event that the driving corridor Ck becomes disconnected
after the forward search due to approximation errors in the
reachable set computation, we omit the corridor.

V. POLYHEDRAL APPROXIMATION OF THE DRIVING
CORRIDOR COMPLEMENT

Formulating collision avoidance as proj(xk) ∈ Ck is in-
herently difficult since the boundary of Ck is non-smooth
and non-convex (see Fig. 4a). For example, proj(xk) ∈ Ck
can be reformulated using disjunctive inequalities, where sets
D(i)

k ∈ Ck are related by OR statements, i.e., proj(xk) ∈
D(0)

k ∨ proj(xk) ∈ D(1)
k ∨ . . . (see Fig. 4a), and thus, binary

variables are required. As an alternative, an appropriate subset
C̃k ⊂ Ck can be extracted, e.g., an ellipsoid within Ck.
However, most solutions for determining an appropriate set
C̃k require convex obstacles or convex decompositions of
obstacles in the environment see, e.g., [41], [54], [70].

To exploit methods for smooth encodings of proj(xk) ∈
Ck, see [42], [68], we approximate the complement C∁

k of
the driving corridor Ck with polyhedral keep-out zones (see
Fig. 4d). By limiting the number of polyhedral keep-out zones
to nmax,k, our approach facilitates real-time capability of
optimization-based motion planning. The resulting polyhedral
approximation C̃k of Ck follows as:

Definition 9 (Polyhedral Approximation of Ck). We define the
polyhedral approximation C̃k of Ck as the intersection of the
closures of the complement of all polyhedral keep-out zones
PC(l)k ∈ PCk , |PCk | = nmax,k:

C̃k :=

nmax,k⋂
l=1

cl(R2 \ PC(l)k ).

We say proj(xk) ∈ C̃k is a proper encoding of the col-
lision avoidance constraint proj(xk) ∈ Ck if C̃k ⊆ Ck, i.e.,

D(0)
k

D(1)
k

D(2)
k
D(3)

k
D(4)

k

D(5)
k
D(6)

k

Ck

sη

sζ

(a)

N0 N1 N2 N3 N4 N5 N6

Ck

sη

sζ

(b)
sη

sζ

conv(N (1)) conv(N (2))

false-feasible

(c)

PC(1)k PC(2)k

infeasible

sη

sζ

(d)

Fig. 4: (a) Reformulating proj(xk) ∈ Ck using OR statements, i.e.,
proj(xk) ∈ D(0)

k ∨ proj(xk) ∈ D(1)
k ∨ . . ., requires binary variables. (b)

We reformulate proj(xk) ∈ Ck without binary variables by covering the
complement of the driving corridor with polyhedral keep-out zones. An exact
cover of C∁

k can be obtained with polyhedra Nj . (c) To limit the number of
polyhedral keep-out zones, we partition N into subsequences N (1) and N (2).
By computing the convex hull of the subsequences, we obtain polyhedral
keep-out zones. However, this encoding of proj(xk) ∈ Ck is incorrect, since
all positions in the relative interior of the intersection of adjacent polyhedra
are not excluded from the solution space. (d) To prevent false-feasibles, we
modify conv(N (1)) and conv(N (2)) to obtain PC(1)k and PC(2)k .

proj(xk) ∈ C̃k =⇒ proj(xk) ∈ Ck. Below, we give an
overview of the computation of PCk .

A. Overview

Since the drivable area is computed in the road-aligned
coordinate frame FL, we compute the cover of C∁

k in the
longitudinal and lateral direction separately. The polyhedra
bounding the driving corridor in the longitudinal direction are
immediately obtained as

PC(nmax,k−1)
k := {(sζ,k, sη,k) ∈ R2 | sζ,k ≥ min

(
projζ(Ck)

)
},

PC(nmax,k)
k := {(sζ,k, sη,k) ∈ R2 | sζ,k ≤ max

(
projζ(Ck)

}
.

An exact cover of C∁
k in the lateral direction can be obtained

using a sequence N := (N1,N2, . . . ,NM ) of interiorly
disjoint, orthogonal polyhedra Nj (see Fig. 4b); for brevity, we
omit the time-dependency in the notation for N. In most cases,
this leads to the number of polyhedra being different from
nmax,k. We therefore partition N into nmax,k−2 subsequences
N (l) ⊆ N, from which we obtain the remaining polyhedral
keep-out zones in the lateral direction.

From N (l), a polyhedron can be computed using the convex
hull see, e.g., conv(N (1)) and conv(N (2)) in Fig. 4c. Since
we consider the generic formulation of inequality constraints
g(xk, uk, k) ≤ 0 and adjacent polyhedra are interiorly disjoint,
the entire boundary of every conv(N (l)) is considered as
collision-free. However, every point in the relative interior [50,
Sec. 2.1.3] of the intersection of adjacent polyhedra is outside
of Ck (see Fig. 4c). To properly encode proj(xk) ∈ Ck, we
modify adjacent conv(N (l)) so that the resulting polyhedra
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conv(N (1)) conv(N (2))

∆C̃k

Ck

N (1) N (2)

sη

sζ

(a)

box(N (1)) box(N (2))

sη

sζ

(b)

Fig. 5: (a) Approximation error ∆C̃k . (b) We estimate the value of ∆C̃k by
replacing the computation of conv(N (l)) with box(N (l)).

PC(l)k overlap without further reducing the solution space
compared to the union of conv(N (l)) (see Fig. 4d). We
have found empirically that the proposed approach facilitates
convergence. Below, we discuss the partitioning of N into
nmax,k−2 subsequences, followed by explaining the algorithm
to obtain the polyhedra PC(l)k , l ∈ I[1:nmax,k−2], for the lateral
boundary.

B. Partitioning

We wish to partition the sequence N into nmax,k−2 disjoint
subsequences N (l) ⊆ N such that the approximation error
∆C̃k, i.e, the loss of solution space of C̃k compared to Ck, is
reduced (see Fig. 5a):

∆C̃k :=

nmax,k−2∑
l=1

area
(
conv(N (l)) \ N (l)

)
. (5)

Minimizing (5) leads to a combinatorial optimization prob-
lem that can become difficult to solve with increasing cardi-
nality of N. For computational efficiency, we propose several
simplifications:

1) We use a greedy algorithm that recursively partitions N
into subsequences N (l).

2) We replace the costly computation of the convex hull in
(5) with the computation of the minimum bounding box
box(N (l)) (see Fig. 5b).

3) At each recursion, we continue partitioning the sequence
N (l) that reduces ∆C̃k the most. If this partition is
inadmissible because too many new subsequences would
have to be created, i.e., the overall number of sequences
exceeds nmax,k−2, we always consider the next best one.

4) For each sequence N (l), we consider only some of its
possible partitions to evaluate the best partition. The
heuristic used is described in Appendix A. This heuristic
can be changed and is not the main focus of this paper.

Our algorithm can be extended to ensure the connectivity of
C̃k after computing the polyhedra from N (l), l ∈ I[1:nmax,k−2]:
a partition is only admissible if box(N (l))

o
is pairwise disjoint

for all N (j), j ̸= l, which can be efficiently validated.

C. Computation of the Polyhedra for the Lateral Direction

After determining the subsequences N (l) as described
above, we compute their corresponding polyhedral keep-
out zones PC(l)k . Let us therefore introduce the polyhedron

P̃(l)
k ⊇ conv(N (l)) that is obtained by removing both halfs-

paces defining the vertical edges of conv(N (l)), e.g., compare
conv(N (2)) in Fig. 4c with P̃(2)

k in Fig. 6a. By intersecting
P̃(l)
k with halfspaces H≤,←(a1,b1)

and H≤,→(a2,b2)
that bound P̃(l)

k

in forward and backward driving direction, respectively, we
obtain PC(l)k :

PC(l)k = P̃(l)
k ∩H≤,←(a1,b1)

∩H≤,→(a2,b2)
. (6)

To ensure a proper encoding of proj(xk) ∈ Ck as discussed
in Sec. V-A, the halfspaces are created such that (a) PC(l)k ⊇
conv(N (l)) and (b) the relative interior of the intersection of
adjacent conv(N (l)) is excluded from the solution space (see
Fig. 4c and Fig. 4d). Additionally, we choose the halfspaces
so that (c) the solution space is not further reduced compared
to the union of conv(N (l)) (see Fig. 4c and Fig. 4d).

1) Algorithm: To obtain the halfspace H≤,←(a1,b1)
limiting

P̃(l)
k in backward driving direction, we apply the following

approach (the computation of H≤,→(a2,b2)
works analogously, see

Fig. 6c and Fig. 6d): we initialize H≤,←(a1,b1)
as R2 and determine

the set E← that contains the vertices of all conv(N (j)),
j ̸= l, that are encountered when traversing along ∂Ck in
backward driving direction starting from N (l) (see Fig. 6a).
To satisfy the conditions (a) and (c), we search for a halfs-
pace H≤,←(a1,b1)

, where the corresponding hyperplane H=
(a1,b1)

separates conv(N (l)) and E←. The first support point of
H=

(a1,b1)
is chosen as the most backward vertex of conv(N (l)).

The second support point is selected from E←. To this end,
we iterate over the vertices y ∈ E←: if y is contained
in P̃(l)

k ∩ H≤,←(a1,b1)
, indicating an additional reduction of the

solution space (see the left-most vertex in Fig. 6a), we update
H≤,←(a1,b1)

with y as the second support point of H=
(a1,b1)

. As

P̃(2)
k

removed
halfspace
E←

sη

sζ

(a)

PC(2)k

E←

a1

H=
(a1,b1)

sη

sζ

(b)

P̃(1)
k

removed
halfspace E→

sη

sζ

(c)

PC(1)k

E→

a2
H=

(a2,b2)

sη

sζ

(d)

Fig. 6: Computation of the lateral polyhedra PC(1)k and PC(2)k : (a), (c)
removal of the halfspaces defining the vertical edges of conv(N (2)) and
conv(N (1)) to obtain P̃(2)

k and P̃(1)
k , respectively. (b) P̃(2)

k is intersected
with H≤,←

(a1,b1)
yielding PC(2)k , where H=

(a1,b1)
separates PC(2)k from E←

(backward direction). (d) PC(1)k is obtained by intersecting P̃(1)
k with

H≤,→
(a2,b2)

, where H=
(a2,b2)

separates PC(1)k from E→ (forward direction).
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an example, compare P̃(2)
k in Fig. 6a with the polyhedron

PC(2)k in Fig. 6b. To speed up the computations, it suffices to
consider only the most backward and most forward vertex of
each conv(N (j)) due to convexity.

Let us now consider the adjacent polyhedra PC(1)k and PC(2)k

in Fig. 4d. Computing H≤,←(a1,b1)
in the case of PC(2)k , yields a

halfspace with non-vertical hyperplane H=
(a1,b1)

(see Fig. 6b).

When computing the halfspace H≤,→(a2,b2)
in the case of P̃(1)

k ,
the corresponding hyperplane H=

(a2,b2)
is vertical (see Fig. 6c

and Fig. 6d). Thus, all positions in the relative interior of
the intersection of conv(N (1)) and conv(N (2)) are excluded
from the solution space, i.e., condition (c) is satisfied. Since
Ck is connected and vertically convex (see Def. 6), the same
situation occurs for every pair of adjacent conv(N (l)), and
therefore, the polyhedral approximation C̃k of Ck ensures a
proper encoding of proj(xk) ∈ Ck.

2) Complexity: The complexity of the computation of PC(l)k

is dominated by the computation of the convex hull of N (l):
Since any Nj has two vertices, the number of vertices of any
N (l) is bounded by 2|N|. Thus, the complexity of computing
the convex hull with respect to |N| is O(|N| log(|N|)) [80]. If
the vertices of N (l) are stored in a list, removing the vertical
edges takes O(|N|). Computing H≤,←(a1,b1)

and H≤,→(a2,b2)
has

complexity O(|N|), since at most 2|N| dot and vector products
in R2 have to be evaluated. Computing the polyhedron PC(l)k

in halfspace representation can be done in O(|N|) if the list
of vertices of PC(l)k is ordered. Thus, the overall complexity
of the approach is O((nmax,k − 2)|N| log(|N|)).

VI. INTEGRATION INTO MOTION PLANNING ALGORITHMS

Our approach can be integrated into a wide range of
optimization-based motion planning algorithms, which is dis-
cussed next.

A. Duality-Based Reformulation
A state is collision-free if the signed distance with respect

to every polyhedral keep-out zone is non-negative. However,
non-convexity and non-differentiability of the signed-distance
function prevent these constraints from being directly en-
forced [42]. To tackle this problem, Zhang et al. [42] propose
a non-conservative and smooth reformulation of collision
avoidance constraints for convex keep-out zones based on
strong duality of convex optimization. Their results also enable
one to find least-intrusive solutions in the case that a collision
cannot be avoided. Below, we summarize the main results of
[42], which allow us to integrate the collision avoidance con-
straints from driving corridors into arbitrary motion planning
algorithms that rely on gradient- and Hessian-based solvers.

Consider a polyhedral keep-out zone PC(l)k = {y | y =

proj(x), A
(l)
k y− b

(l)
k ≤ 0} with matrix A

(l)
k and vector b(l)k of

appropriate dimension. Using the results from [42], we encode
the collision avoidance constraint proj(xk) /∈

(
PC(l)k

)o

as

(A
(l)
k proj(xk)− b

(l)
k )Tλ

(l)
k ≥ −ν

(l)
k (7a)

∥(A(l)
k )Tλ

(l)
k ∥2 = 1, (7b)

ν
(l)
k ≥ 0, λ

(l)
k ≥ 0, (7c)

where the slack variable ν
(l)
k ∈ R measures the penetration of

PC(l)k , and λ
(l)
k is the dual variable associated with the original

constraint. The inequalities in (7c) apply element-wise. Since
we aim to find least-intrusive solutions, the optimization prob-
lem (2) is rewritten as a soft-constrained problem by encoding
the constraint (2d) using (7) and penalizing the penetration of
all polyhedral keep-out zones, i.e.,

min
u(·)

N∑
k=0

J(xk, uk) + κ

N∑
k=1

nmax,k∑
l=1

ν
(l)
k . (8)

If the penalty weight κ ∈ R+ is chosen sufficiently large, a
collision-free solution can be found if one exists [42], [81].

B. Convexification of Collision Avoidance Constraints

Since the collision-avoidance constraint proj(xk) ∈ C̃k is
usually non-convex due to the equality constraint (7b), we
sketch a convexification procedure that is based on geometrical
insight into (7). We project proj(xk) onto each face of PC(l)k

separately and select the closest face. Subsequently, we deter-
mine a corresponding λ

(l)
k that solves the constraints (7). Any

such λ
(l)
k provides a supporting hyperplane H=

(n
(l)
k ,d

(l)
k )

, where

n
(l)
k = (A

(l)
k )Tλ

(l)
k and d

(l)
k = (λ

(l)
k )T b

(l)
k , at the associated

polyhedron PC(l)k [42] [50, Sec. 8.1]. Thus, we obtain the
convexified set of collision-free positions Pϵ

k as

Pϵ
k :=

⋂
PC(l)k ∈PCk

H≥
(n

(l)
k ,d

(l)
k )

. (9)

To obtain a λ
(l)
k solving (7), we distinguish the following three

cases:

C1) proj(xk) /∈ PC(l)k : thus, we set ν(l)k = 0 and solve the
convex optimization problem y∗ = argmin

y∈PC(l)k

∥y−
proj(xk)∥22, see [50, Sec. 8.1]. The supporting hyper-
plane at PC(l)k in y∗ with normal vector in the direction
of proj(xk)− y∗ implicitly defines a feasible λ

(l)
k .

C2) proj(xk) ∈ ∂PC(l)k : thus, we set ν(l)k = 0. If proj(xk)

is not a vertex of PC(l)k , λ(l)
k follows as the canonical

basis vector that extracts the corresponding hyperplane
from A

(l)
k , b(l)k . If proj(xk) is a vertex of PC(l)k , λ(l)

k

is chosen so that n(l)
k is contained in the normal cone

at PC(l)k in proj(xk). Moreover, the chosen λ
(l)
k has to

satisfy (7b) and (7c).
C3) proj(xk) ∈ (PC(l)k )

o
: due to convexity of PC(l)k ,

proj(xk) is not projected onto a vertex of PC(l)k . Thus,
λ
(l)
k is chosen as a canonical basis vector as in the first

case of C2.

Note that the ambiguous cases in C2 and C3 do not admit a
unique choice of λ

(l)
k and, therefore, H≥

(n
(l)
k ,d

(l)
k )

. This might

be resolved by comparing n
(l)
k with the gradient of the cost

function as for instance in [47, Sec. 3.3]. Since Pϵ
k is con-

structed from separating hyperplanes, see (9), it follows that
proj(xk) ∈ Pϵ

k ⊆ C̃k if proj(xk) ∈ C̃k. While Pϵ
k ̸= ∅ holds

if proj(xk) ∈ C̃k, Pϵ
k might be empty for proj(xk) /∈ C̃k.
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VII. NUMERICAL RESULTS

In Sec. VII-B, we demonstrate that our approach extracts
driving corridors that represent semantically meaningful ma-
neuver variants leading to a given goal region for the au-
tomated vehicle. In Sec. VII-C and VII-D, we embed our
approach into two state-of-the-art motion planning algorithms.
The results in Sec. VII-C show how our approach can enhance
state-of-the-art planning algorithms so that local minima as
in Fig. 2 are avoided. By applying our method to different
scenarios from CommonRoad1 [82] in Sec. VII-D, we demon-
strate its applicability to arbitrary traffic scenarios and how
the driving corridors can facilitate the search for a suitable
initial guess. In Sec. VII-E we analyze the computation
times of our approach, followed by a discussion on motion
safety in Sec. VII-F. Since we have already shown that the
computational effort of our approach typically improves with
the criticality of the situation in our previous work [63], we
focus on the new benefits of our approach in the evaluation.

A. Implementation Details

All computations were conducted on a laptop equipped with
an Intel Core i7-10750H and 16 GB of memory. Our scenarios
are modeled with the CommonRoad library. We consider a
planning horizon of 5 s with ∆t = 0.1 s unless otherwise
stated. Further implementation details are given below.

1) Driving Corridor Identification: Our first strategy for
driving corridor identification referred to as DC1 demonstrates
the real-time capability of our approach. Starting from the
largest goal set V(∗)

N , we explore the corridor graph GC using
a depth-first search and terminate exploration once the node
at time step k = 0 is reached. To obtain a driving corridor
with nonrestrictive collision avoidance constraints, we select
the largest V(∗)

k ∈ Ak at each time step for exploration.
Our second strategy referred to as DC2 demonstrates the

ability of our approach to explore complex scenarios in an
anytime fashion and is employed if not otherwise stated. Strat-
egy DC2 explores GC starting from every V(q)

N and terminates
as soon as at least nC driving corridors for each V(q)

N are
identified. Throughout this section, we set nC = 10. We first
explore the largest V(∗)

k ∈ Ak. All remaining V(q)
k ∈ Ak

are sorted by their dissimilarity with respect to V(∗)
k (i.e., we

compare their sets D(i)
k ) and their size. This sorting strategy

favors exploring different maneuver variants that reach the
same goal region.

In case of DC2, we add weights to the edges of GC where the
weight for an edge (V(j)

k−1,V
(q)
k ) is chosen as wj,q = 1

area(V(q)
k )

.

For each goal set V(q)
N , we determine the driving corridor C∗

with the greatest cumulative area and an alternative driving
corridor that should preferably represent a different tactical
maneuver, e.g., overtaking an obstacle to the right side instead
of overtaking to the left side. Therefore, we sufficiently
increase the weights of the edges from C∗ (thus, it is costly to
select those edges again), and subsequently repeat the search
for the driving corridor with the greatest cumulative area.

1https://commonroad.in.tum.de/

2) Polyhedral Approximation: For the experiments, we use
the following number of polyhedra nmax,k: if k ≤ 10,
nmax,k = 4; if 11 ≤ k ≤ 15, nmax,k = 5; if 16 ≤ k ≤ 20,
nmax,k = 6; if 21 ≤ k ≤ 32, nmax,k = 7; else nmax,k = 8.

3) Trajectory Optimization: The trajectory optimization
problems are modeled with CVXPY-codegen [83], which
is based on the CVXPY modeling language [84], using
ECOS [51] as the backend solver. For the evaluation, we
approximate the occupancy of the automated vehicle as a
disc. The vehicle dynamics are modeled similarly to the
kinematic bicycle model in [85], but we use jerk instead of
the longitudinal acceleration as input. The vehicle parameters
are taken from the CommonRoad library (vehicle ID: 2).

We use a weighted combination of the cost functions
proposed by CommonRoad [82] for trajectory planning:

J = wLCJLC + wV JV + wOJO + wAJA + wu(JJ + JSR),

where the (lateral) position tracking error in JLC refers to
the center of a given target lane. The desired velocity vdes
for the partial cost JV is extracted from the goal states
of the CommonRoad scenarios and set to a constant value.
The desired orientations for the partial cost function JO are
obtained by propagating the initial longitudinal position of the
automated vehicle along the center of the given target lane
using the desired velocity vdes.

For successive convexification procedures, we limit the
maximum number of iterations by 50; if no collision-free
solution can be found in time that satisfies the convergence
criteria, it is considered to be infeasible.

B. Driving Corridor Computation

We consider the scenario in Fig. 7a featuring a two-lane
road with a static and a dynamic obstacle to determine driving
corridors. The dynamic obstacle travels at a constant velocity
of 17m/s. The goal for the automated vehicle is to return to its
initial lane after 5 s. We therefore intersect the drivable area
of the automated vehicle at the final time step with the goal
region.

Fig. 7 shows the results where the driving corridors are
depicted as white boxes and the occupancies of the obstacles
as gray boxes stacked over time. In this scenario, three
semantically different maneuvers are found that lead to the
desired goal region of the automated vehicle: (a) waiting until
the dynamic obstacle has passed, and then, overtaking the
static obstacle (see Fig. 7a); (b) staying behind the static
obstacle (see Fig. 7b); and (c) passing the static obstacle before
the dynamic obstacle (see Fig. 7c).

C. Augmenting Motion Planning Algorithms

In this section, we augment two state-of-the-art trajectory
optimization algorithms with our proposed method. In the first
experiment, we demonstrate that our method eliminates local
minima occuring in optimization-based trajectory planning as
illustrated in Fig. 2. The second experiment shows that our
method facilitates the generalization of trajectory planners to
on-road traffic situations.
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driving corridor

static obstacle

dynamic obstacle
sηsζ

tk

(a) Waiting until the dynamic obstacle has passed,
and then, overtaking the static obstacle.

(b) Staying behind the static obstacle. (c) Passing the static obstacle before the dynamic
obstacle.

Fig. 7: Driving corridors corresponding to three semantically different maneuvers. The slice of the drivable area at the top is intersected with the goal region.

1) Elimination of Local Minima: We use the customized
SQP algorithm proposed by [5] for our first experiment. At the
beginning of each iteration of the successive convexification
procedure in [5], the vehicle model is simulated using the input
trajectory of the solution of the previous iteration (or the initial
guess). The nonlinear trajectory optimization problem is then
linearized around the forward-simulated trajectory to ensure
dynamic feasibility of the solution.

The approach in [5] requires the passing sides of obstacles
as input so that collision avoidance constraints can be repre-
sented as admissible intervals of lateral deviations eη,k from
a reference path:

eη,k(ŝζ,k) ≤ eη,k ≤ eη,k(ŝζ,k), (10)

where ŝζ,k denotes the longitudinal position of the forward-
simulated trajectory. In simple scenarios one may argue that
passing sides can be easily determined without driving cor-
ridors. However, the collision avoidance constraints in [5]
are typically discontinuous with respect to the longitudinal
position of the vehicle. For comparison, we therefore re-
place the original method for determining collision avoidance
constraints with our proposed method that identifies driving
corridors to obtain collision avoidance constraints, as shown in
Sec. VI-B. We use the simple traffic scenario of the previous
subsection and gradually raise the velocity of the dynamic
obstacle starting from 10m/s to 20m/s in steps of 1m/s. For
the original version of the algorithm in [5], we specify that
the static obstacle must be passed on the left side and the
dynamic obstacle on the right side. As an initial guess, we set
all control inputs of the vehicle model to zero and simulate
the dynamics forward in time.

For velocities of 10m/s to 15m/s of the dynamic obstacle,
the customized SQP algorithm in [5] can find a collision-
free trajectory. However, the method fails if the velocity of
the dynamic obstacle is between 16m/s to 20m/s because the
algorithm gets stuck in infeasible local minima. Fig. 8 shows
the initial set of position constraints for the customized SQP
algorithm as well as the set at convergence if the velocity
of the dynamic obstacle is set to 17m/s. The empty set of

time step k

s
η
in

m

constraints sη,k

(a) Constraints and lateral trajectory at the first iteration

time step k

s
η
in

m

(b) Constraints and lateral trajectory at convergence

Fig. 8: Lateral position constraints used in the algorithm in [5]. Even though
the initial guess in Fig. 8a seems to admit a collision-free trajectory, the
algorithm converges to an infeasible local minimum shown in Fig. 8b.

constraints for sη in Fig. 8b indicates infeasibility.
In contrast to the original algorithm, the combination of the

customized SQP algorithm with our computation of solution
spaces provides a feasible trajectory for every identified driv-
ing corridor in each instance of the scenario. Fig. 9 provides
a comparison of the results when the velocity of the dynamic
obstacle is set to 17m/s. The trajectories that are obtained with
our proposed method are depicted by the solid black lines
in Fig. 9; the corresponding driving corridors are depicted in
Fig. 7. Any of these found trajectories are feasible solutions
of the nonlinear motion planning problem. The solution of the
customized SQP algorithm in [5] is depicted by the dashed
black line in Fig. 9; the infeasibility of the converged solution
which was already indicated in Fig. 8b can be observed in
Fig. 9b. In contrast, augmenting the algorithm from [5] with
our approach yields collision-free trajectories as local minima
induced by obstacles are eliminated.

2) Generalization to Traffic Scenarios: To show that our
method facilitates the generalization of trajectory planners to
on-road traffic situations, we combine the zeroth order hold
discretization scheme [86] with the successive convexifica-
tion algorithm proposed in [62] that was initially developed



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. X, MONTH YEAR 11

automated vehicle static obstacle

dynamic obstacle
sη

sζ

(a) Scenario at time step k = 0

trajectory [5] [5] + driving corridors Ck overlapping Ck

(b) Trajectories at time step k = 25

(c) Trajectories at time step k = 39

Fig. 9: Comparison of the results using the customized SQP algorithm from [5] and the combination of the algorithm with our dynamics-aware solution
spaces. The circles depict the occupancy of the automated vehicle at the current time step. In Fig. 9b, it can be observed that the algorithm from [5] does
not find a collision-free solution, see the dashed line. In contrast, augmenting the algorithm with our approach yields a feasible solution for the three distinct
maneuvers shown in Fig. 7. The regions where the driving corridors corresponding to Fig. 7a and Fig. 7b overlap are indicated by the striped white boxes.

for powered descent guidance for extraterrestrial spaceflight.
Instead of simulating the vehicle dynamics forward for lin-
earization as in our previous experiment, [62] linearizes the
nonlinear trajectory planning problem directly around the
solution computed in the previous iteration of the successive
convexification procedure. The resulting error in the vehicle
dynamics constraint (2c) can be handled using slack variables
which are referred to as virtual control inputs in [62].

Using a traffic scenario featuring a roundabout (see Fig. 10),
we demonstrate that our method enables the application of the
algorithm in [62] to traffic scenarios. The automated vehicle
aims to enter the roundabout and take the second exit. There is
an oncoming vehicle in the roundabout that must be taken into
account. Since this maneuver requires longer time horizons
so that the automated vehicle is able to reach the second
exit, we use a planning horizon of 7 s. Our approach finds
a trajectory for the automated vehicle both for the entry into
the roundabout before and after the oncoming vehicle (see
Fig. 10). In Sec. VII-D, we increase the difficulty of the
planning problems and apply the planner to complex traffic
scenarios with multiple obstacles and lanes.

D. Applicability in Arbitrary Traffic Scenarios

Planning schemes for autonomous driving that iteratively
linearize the vehicle model, such as [5], [12], usually rely on
the previously computed solution as an initial guess, similar
to model predictive control. In general, this initial guess is
only close to the solution if the same maneuver is followed.
However, if new maneuvers are initiated, implying a change
to another driving corridor, the previously computed solution
may be insufficient as an initial guess.

In this section, we demonstrate that driving corridors facil-
itate the initialization of trajectory planning methods and that
our approach can be applied in arbitrary traffic scenarios with
multiple obstacles. We therefore introduce different strategies
for generating an initial guess for the optimization problems
and compare their performance on 30 highway scenarios based
on the NGSIM dataset from the CommonRoad library [82] that

Ck

dynamic obstacle

automated vehicle

(a) Driving corridors and trajectories at time step k = 21

(b) Driving corridors and trajectories at time step k = 47

(c) Driving corridors and trajectories at time step k = N = 70

Fig. 10: Roundabout scenario: (a), (b) our approach identifies a driving
corridor for the entry before and after the obstacle in the roundabout. (c)
the automated vehicle reaches the second exit using either driving corridor.

have five or six lanes and up to 57 obstacles (see Appendix B
for the identifiers of the scenarios). After introducing different
initialization strategies and the problem setup, we present the
results of our experiments in Sec. VII-D3.
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1) Initialization Strategies: We introduce the solution-
space-guided initialization that works as follows: first, the
goal state is projected onto the driving corridor CN at the
terminal time step. Afterwards, we linearly interpolate between
the projected goal state and the initial state of the automated
vehicle. The collision avoidance constraints are convexified at
each time step k ∈ I[1:N ] using the procedure in Sec. VI-B
and we solve N convex optimization problems of the form
y∗k = argminyk

∥yk−proj(xk)∥22, s.t. yk ∈ Pϵ
k. The solutions

y∗k serve as our initial guess.
For comparison, we consider the following initialization

strategies:
• Simulate: the vehicle dynamics are simulated forward in

time assuming that all control inputs are zero.
• Initial Lane: we translate the initial state along the cen-

terline of the initial lane according to the desired velocity
vdes provided by the planning problem.

• Interpolate: we linearly interpolate between the initial
state and the goal state, e.g., as in [60], [62].

2) Problem Setup: Since the considered initialization
schemes except simulate generally do not provide a dynami-
cally feasible initial guess, the motion planning algorithm of
[5] introduced in Sec. VII-C1 cannot be applied. We therefore
use the combination of [62], [86] with our approach as in
Sec. VII-C2 and exploit the virtual control inputs that handle
infeasible initializations. The goal state for the initialization
schemes solution-space-guided initialization and interpolate
are obtained by propagating the initial longitudinal position
of the automated vehicle along the center of the target lane
using the desired velocity vdes. To assess the robustness of the
initialization schemes with respect to parameter variations, we
choose the mean, lower, and upper bound from the uncertain
goal states of the CommonRoad scenarios as desired velocities.

3) Evaluation: Using our method, we obtain 138 driving
corridors for all traffic scenarios, in which we plan trajectories
for each desired velocity vdes, i.e., we obtain 414 combinations
of driving corridors and desired velocities. Tab. I summarizes
the results, which we discuss below.

In total, we are able to find a feasible trajectory in each
scenario for every initialization strategy. We further analyze
the success rates of the initialization strategies with regard to
all combinations of driving corridors and desired velocities
(see the third column in Tab. I), i.e., the success rate is
100% if for each combination of driving corridors and desired
velocities a solution is found. It can be seen that the solution-
space-guided initialization solves more instances of the motion
planning problem than any other scheme, as shown in Tab. I,
and the success rate is increased by 6% compared to the
simulate initialization strategy. Furthermore, in cases where the
initial guess leads to a feasible solution, the number of convex
programming iterations until convergence can be reduced by
an average of almost 20% with the solution-space-guided
initialization compared to simulate. Some combinations of
driving corridors and desired velocities were infeasible due
to (a) non-connectivity of the approximated driving corridor,
which might yield an initial guess that switches between
connected components, and (b) non-drivability of the driving
corridor with regard to the high-fidelity vehicle model used

for motion planning. Therefore, a possible direction for future
research is the assessment of the drivability of the driving
corridors prior to trajectory planning.

The desired velocity vdes affects the cost function J for the
trajectory optimization and the initialization schemes solution-
space-guided initialization, interpolate, and initial lane. We
therefore analyze for each driving corridor the standard devia-
tion in the required number of convex programming iterations
resulting from variations in the desired velocity. Tab. I shows
the standard deviations averaged over all scenarios for each
initialization scheme. The average standard deviation using
the solution-space-guided initialization is close to the case of
simulate where the reference velocity only affects the cost
function. In contrast, interpolate and initial lane exhibit much
larger variations in the number of iterations when changing
the desired velocity. Moreover, if interpolate or initial lane is
used for initialization, it is more likely that a variation of the
desired velocity will render the optimization task infeasible, as
shown in the last column of Tab. I, which lists the number of
driving corridors where a feasible solution could not be found
for all desired velocities.

E. Computation Times

We analyze the runtime behavior of our approach in depen-
dence of the number of obstacles in the scenarios. Fig. 11
shows boxplots of the resulting computation times for the
reachable set computation, the driving corridor identification,
and the computation of the polyhedral approximation, which
we repeated 100 times to obtain a statistically profound exam-
ple. The results shown in Fig. 11 indicate that our approach
scales favorably with the number of obstacles as the median
computation times vary only slightly; therefore, our method is
suited to be employed in cluttered environments.

One iteration of the trajectory planning problem, i.e., con-
vexifying the non-convex trajectory optimization problem (2)
and solving the convexified optimization problem, requires
56ms on average. Considering the average number of iter-
ations given in Tab. I, the solution-space-guided initialization
reduces the average computation time for motion planning to
347ms compared to 426ms for simulate. In conclusion, the
solution-space-guided initialization provides an improvement
in terms of the overall computational effort and increases
robustness with respect to parameter variations only at a
slightly increased effort to provide the initial guess.

F. Discussion on Motion Safety

To ensure motion safety, the automated vehicle must reason
over an infinite time horizon (or at least until a set of safe goal
states is reached) while considering its own dynamics and the
future motion of other traffic participants according to [87].
Driving corridors can be restricted to end in a set of safe goal
states to ensure persistent feasibility. The missing ingredients
to ensure safety are (a) that the full-dimensional vehicle shape
is considered for trajectory planning, (b) that the provided
predictions must be conservative (i.e., guaranteed to include
the real future behavior of other road users), and (c) robustness



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. X, MONTH YEAR 13

[0,27] [28,32] [33,36] [37,43] [44,49] [50,57]

# obstacles

50

100

150

200
ru

nt
im

e
[m

s]

(a) Reachable set computation

[0,27] [28,32] [33,36] [37,43] [44,49] [50,57]

# obstacles

20

40

60

ru
nt

im
e

[m
s]

(b) Driving corridor identification DC1

[0,27] [28,32] [33,36] [37,43] [44,49] [50,57]

# obstacles

100

200

300

ru
nt

im
e

[m
s]

(c) Driving corridor identification DC2
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(d) Polyhedral approximation for a single corridor

Fig. 11: Boxplots showing the runtime of our approach with respect to the
number of obstacles in the scenarios listed in Appendix B. We clustered the
scenarios with respect to the number of obstacles and repeated the computation
of reachable sets, the identification of driving corridors, and the polyhedral
approximation 100 times in each scenario.

with respect to disturbances and model uncertainties. Below,
we will further discuss points (a) to (c).

In our earlier work in [63], a mathematically rigorous model
for collision avoidance of the full-size vehicle in the special
setup of decoupled longitudinal and lateral motion planning is
given. Difficulties in generalizing the consideration of full-size
vehicles arise from the fact that our approach is formulated in
a road-aligned coordinate system and the assumption that the
vehicle is oriented along the reference path when computing
the reachable set (see Sec. III). The extension of our approach

N0 N1 N2 N3 N4 N5

box((N1,N2,N3))

Ck

sη

sζ

(a) Largest sequence (N1,N2,N3)
for N1.

N0 N1 N2 N3 N4 N5

box((N1, . . . ,N4))

Ck

sη

sζ

(b) Largest sequence (N1, . . . ,N4)
for N4.

Fig. 12: Visualization of the largest sequence N (i) for a node Nj such that
Nj limits the lateral extent of box(N (i)) towards the interior of the driving
corridor Ck .

to formally correct collision-avoidance constraints for full-size
vehicles in the road-aligned coordinate system is subject of
future research.

Regarding (b) and (c), we suggest to integrate our approach
in the online verification framework proposed in our previ-
ous works [88]–[90] to guarantee legal safety of automated
vehicles and drivability of motions despite disturbances and
model uncertainties. Moreover, as shown in [91], [92], our
method can be extended to cooperative driving with explicit
communication between groups of automated vehicles, which
offers the possibility of further enhancing road safety due to
reduced uncertainties regarding the intentions of others.

VIII. CONCLUSIONS

This paper provides a generalization of our previous results
on combining set-based reachability analysis with optimal con-
trol by enabling the usage of vehicle models that jointly con-
sider the longitudinal and lateral dynamics. Moreover, our ap-
proach can be combined with arbitrary existing optimization-
based algorithms that rely on gradient- or Hessian-based
solvers. Our results demonstrate that the proposed approach
can identify different driving maneuvers in arbitrary traffic
scenarios. Thereby, feasible solutions can be found in traffic
scenarios that are not solvable using state-of-the-art planning
algorithms. Apart from avoiding infeasible local minima, our
method facilitates the generation of initial guesses for the
trajectory planning problem such that the computational effort
is reduced while increasing the robustness of the algorithms.

APPENDIX A
HEURISTIC FOR PARTITIONING

Considering all possible partitions of a sequence N (l) ⊆ N
into subsequences can lead to a large computational over-
head. Even if we only consider partitions of N (l) into two

TABLE I: Comparison of Initialization Schemes

Initialization strategy Solutions Success
rate

Average
# iterations

Avg. STD # iterations
due to change of vdes

# Corridors that are not
feasible for all vdes

solution-space-guided 345 83% 6.2 0.55 2
interpolate 335 81% 8.6 1.44 11
simulate 317 77% 7.6 0.34 1
initial lane 326 79% 8.7 1.39 14
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Fig. 13: (a) Any partition of N into two subsequences N (0) and N (1)

cannot reduce ∆C̃k when using box(N (l)) instead of conv(N (l)) in (5).
(b) Partitioning N into three subsequences, e.g., (N0), (N1, . . . ,N4), and
(N5), resolves this issue.

or three subsequences, we must already evaluate (|N (l)| −
1) + (|N (l)|−2)(|N (l)|−1)

2 possible partitions. Under this re-
striction, computing the partitions in the scenarios listed in
Appendix B and using the number of polyhedra nmax,k given
in Sec. VII-A2 required 63ms on average and at most 248ms.

We subsequently propose a heuristic that selects only |N (l)|
possible partitions of N (l) for evaluation. These can be pre-
computed in O(|N (l)|2), whereas storing and updating after
each partitioning takes O(|N (l)|). The mean and maximum
computation times decrease to less than 10 ms and 15 ms,
respectively, in the scenarios listed in Appendix B. Compared
to considering all possible combinations for partitions into two
or three subsequences, our proposed heuristic yielded the same
or even better results in terms of ∆C̃k in 84% of the cases.

Let us introduce the approximation error of a set N ′ of
sequences N (j) as

∆(N ′) :=
∑

N (j)∈N ′
area

(
box(N (j)) \ N (j)

)
. (11)

Without loss of generality, we assume that N (l) =
(N0, . . . ,Nn). For each Nj ∈ N (l), we determine the
largest subsequence N (i) = (Ns, . . . ,Nj , . . . ,Ne), 0 ≤
s ≤ j ≤ e ≤ n, such that Nj limits the lateral extent
of box(N (i)) towards the interior of the driving corridor
Ck, as shown in Fig. 12. The resulting partition is N ′ =
{(N0, . . . ,Ns−1), (Ns, . . . ,Ne), (Ne+1, . . . ,Nn)}. Following
the reasoning in [93], we consider N ′ if the relative improve-
ment of the approximation error is above a threshold ϵ:

∆({N (l)})−∆(N ′)
area(box(clip(N (l))))

≥ ϵ, (12)

where clip(·) clips all Nj ∈ N (l) so that
area(clip(box(N (l)))) ∈ R+ has a finite value. Using
this heuristic, we can consider partitions of N (l) into two
or three subsequences. Note that we consider partitions into
three subsequences, since it is possible that no partition into
two subsequences can reduce the approximation error due to
the replacement of the convex hull in (5) with the minimum
bounding box (see Fig. 13).

APPENDIX B
SELECTED SCENARIOS FOR EVALUATION IN SEC. VII-D

The scenarios are USA US101-1 1 T-1, USA US101-
* 3 T-1 for ∗ ∈ {5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26},
USA US101-* 4 T-1 for ∗ ∈ {4, 6, 15, 17, 26, 28},
USA US101-* 5 T-1 for ∗ ∈ {7, 9, 10, 11, 12, 27}, and
USA US101-* 6 T-1 for ∗ ∈ {2, 3, 8, 13, 14}.
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cation of non-convex optimal control problems with state constraints,”
in IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 4063–4069.

[71] C. Y. Son, D. Jang, H. Seo, T. Kim, H. Lee, and H. J. Kim, “Real-time
optimal planning and model predictive control of a multi-rotor with a
suspended load,” in Proc. of the International Conference on Robotics
and Automation, 2019, pp. 5665–5671.

[72] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-D complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695, 2017.

[73] A. Platzer and E. M. Clarke, “Formal verification of curved flight
collision avoidance maneuvers: A case study,” in Formal Methods,
A. Cavalcanti and D. R. Dams, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 547–562.
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