
Provably Safe Deep Reinforcement Learning for Robotic Manipulation
in Human Environments

Jakob Thumm and Matthias Althoff

Abstract— Deep reinforcement learning (RL) has shown
promising results in the motion planning of manipulators.
However, no method guarantees the safety of highly dynamic
obstacles, such as humans, in RL-based manipulator control.
This lack of formal safety assurances prevents the application
of RL for manipulators in real-world human environments.
Therefore, we propose a shielding mechanism that ensures
ISO-verified human safety while training and deploying RL
algorithms on manipulators. We utilize a fast reachability
analysis of humans and manipulators to guarantee that the
manipulator comes to a complete stop before a human is
within its range. Our proposed method guarantees safety
and significantly improves the RL performance by preventing
episode-ending collisions. We demonstrate the performance
of our proposed method in simulation using human motion
capture data.

I. INTRODUCTION

In recent years, researchers solved many complex
manipulation tasks using deep reinforcement learning (RL),
such as operating door handles [1], playing table tennis [2],
stacking boxes [3], and controlling multiple robotic arms [4].
Furthermore, recent work [5]–[7] demonstrated that RL-
controlled manipulators could successfully maneuver in
environments with dynamic obstacles, dodging moving
obstacles, and reaching the goal state consistently. Despite
these promising results, one open challenge in RL is to
formally guarantee the safety of surrounding humans due to
their unpredictable movement and many degrees of freedom
(DoF). The lack of safety assurances makes applying
any vanilla RL method in human working environments
irresponsible.

To overcome these restrictions, we propose a safety
shield concept for RL that guarantees human safety at all
times, as shown in Fig. 1. In essence, our safety concept
is speed and separation monitoring (SSM) according to
DIN EN ISO 10218–1 2021, 5.10.3 [8] warranting that the
robot is in a completely stopped state before any collision
with a human could occur. We need to verify the robot
trajectory at a high frequency to achieve this strong safety
criterion while still being able to maneuver close to humans.
However, for the RL agent it suffices to output actions at
a low frequency to make long-term decisions like moving
around a human to reach its goal. Our safety shield combines
the low-frequency RL agent with our high-frequency formal
verification. The RL agent used in this work is a state-of-
the-art soft actor-critic (SAC) [9] with hindsight experience

The authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany. jakob.thumm@tum.de,
althoff@tum.de

Fig. 1. Structure of the proposed RL agent with safety shield.

replay (HER) [10]. However, our safety shield can be used
with any online RL agent. This work presents the first
provably safe robot manipulator control based on deep RL
in human environments.

A. Related work

Gu et al. [1] were one of the first to show that various
complex manipulation tasks can be learned using only off-
policy deep RL methods. They presented a method to train
multiple real robots in parallel to solve a challenging door-
opening task. Shortly later, [10] proposed HER to achieve
randomized manipulation goals. The combination of HER
with off-policy RL contributed to many remarkable results
in pushing, pick and place, and throwing tasks as presented
in [10]–[12]. Recently, HER was combined with state-of-the-
art RL algorithms like SAC to solve complex manipulation
tasks such as controlling multiarm manipulators [4].

There have been many approaches that introduce safety
constraints to the exploration process of RL agents. Simple
reward shaping has shown to be insufficient to guarantee
safety as it is infeasible for universally deciding between
fulfilling the safety constraints and rapidly accomplishing the
goal [13], [14]. Many recent works use constrained policy
optimization techniques [13]–[15] to reduce the number of

safety-critical interactions with the environment. Although
some of these approaches show a very low number of safety
constraint violations, none can warrant safety at all times.

In many scenarios, especially when interacting with
humans, a very low chance of collision is still unacceptable.
Therefore, recent works [6], [16]–[18] in the field of provably
safe RL (often referred to as shielding, safety layers,
sandboxing, or constraining bolts) focus on provable safety
guarantees. The core idea of these methods is to ensure
that only safe actions are sent to the environment. As a
result, unsafe actions are either replaced with safe actions,
projected to the safe action space, or entirely prevented by
limiting the action space. Many provably safe RL approaches
have been proposed for simple environments such as Atari
games [19], grid worlds [20], [21], or board games [22].
Most notably, Hunt et al. [17] exhibited how safe end-
to-end learning from image data could be achieved in
discrete action spaces. Unfortunately, these methods rely
on a deterministic environment to assure safety, so they
are not directly applicable to a complex task like human–
robot collaboration or coexistence. For the use case of RL
for manipulators, Pham et al. [6] proposed a differentiable
safety layer (OptLayer) that projects any unsafe action to
the closest safe action that satisfies the given constraints.
Despite promising results, this method comes with two
flaws. First, the OptLayer is only formally correct if the
constraints of the underlying quadratic program are precisely
fulfilled, and the optimizer finds an exact solution in the
given time. Second, it is difficult to formalize the safety
constraints for unknown and complex human motions. The
reachable set-based safety layer of [16] provides formal
safety for autonomous driving highway scenarios by masking
out all nonsafe actions. Training an RL agent with this
safety layer leads to faster convergence while all collisions
can be avoided. This method was designed for a discrete
action space and is therefore not directly transferable to
the manipulator application. The approach closest to ours
is the reachability-based trajectory safeguard of [18]. They
use reachability analysis to predict if the agent could collide
with static obstacles on the current trajectory and replan a
safe trajectory if necessary. However, this approach is only
designed and tested for static environments.

B. Contributions

We present a novel safety shield1 that replaces unsafe
actions from the agent with provably safe actions from a
high-frequency safe trajectory planner (failsafe planner). To
the best of our knowledge, our method is the first safety
measure for RL that provides provable safety for continuous
action spaces in high-dimensional state-spaces and hard-to-
predict dynamic environments. Our safety shield can easily
be applied to a large variety of manipulation tasks. Compared
to all previously mentioned provably safe RL approaches,
we sample from the entire set of actions (instead of a safe

1Our code and models are publicly available at https://github.
com/JakobThumm/safe_rl_manipulators.

Fig. 2. Simulation setup with the robot mounted on a desk and the human
performing a task. The provided observations are listed on the right hand
side.

subset) and check the safety of the current action during
execution at high frequency. This allows for quick reactions
to highly dynamic human motion. To summarize, our safety
shield guarantees that the robot stops before a collision with a
human could occur while still allowing the maximal freedom
of movement under the given safety constraints.

C. Article structure

Section II summarizes our problem and presents the RL
basics and notation used in the article. Next, Section III
presents our proposed safety shield and RL agent. We then
discuss the experimental setup and results in Section IV and
present our conclusion in Section V.

II. PRELIMINARIES

A. Problem statement

In our RL setting, a six DoF modular robot, as described
in [23], is mounted on a working table, where a human
repeatedly performs a task. In each episode, the agent has
to reach a randomized goal joint position, further referred
to as episode goal g, from a fixed initial position and
evade the human. We only consider episode goals that
are collision-free with the static environment. This paper
aims to provide formal safety guarantees for nearby humans
with unknown motion behavior while consistently reaching
the goal. Hereby, the RL agent receives the following
observations: the current joint position and velocity, episode
goal, current Cartesian end-effector position, and the relative
Cartesian positions of the human wrists and head in relation
to the end-effector. Since the only static obstacle in our scene
is the table, we do not add static obstacle information to the
observation space. Fig. 2 shows our setup and illustrates the
observations.

B. RL

For RL, we use the notation in [9] and consider the
Markov decision process defined by the tuple (S,A, p, r)
with both continuous state space S and action space A.
For simplicity, we assume the state to be fully observable.
The transition function p : S × S × A → R denotes the

https://github.com/JakobThumm/safe_rl_manipulators
https://github.com/JakobThumm/safe_rl_manipulators

Fig. 3. Illustration of intended and failsafe trajectories. In time steps t0 . . . t2, the intermediate goal for the intended trajectories is ḡi. Before time
step t0, a failsafe trajectory is calculated for time step t1. In between t0 and t1, an intended trajectory for t1 followed by a failsafe trajectory for t2 is
calculated. The intended trajectory in t1 is not safe, therefore the robot executes the failsafe trajectory. A new intended trajectory for t2 followed by a
failsafe trajectory for t3 is calculated during execution of the failsafe trajectory between t1 and t2. At t2, the intended trajectory is verified as safe and
can be followed. Before the trajectory calculation for t3, the agent outputs a new intermediate goal ḡi+1, so that the new intended trajectory is calculated
from t3 to ḡi+1. Since the intended trajectory to ḡi+1 is not verified as safe at t3, the robot follows the previous failsafe trajectory. A new intended
trajectory from t4 to ḡi+1 is calulated followed by a failsafe trajectory. This intended trajectory is safe, so that the robot switches to it.

probability density function of reaching the next state si+1

when choosing action ai in state si. After each transition,
the agent receives a reward from the environment according
to the reward function r : S × A → R. The agent learns a
stochastic policy π(ai|si) for action ai given state si.

The optimal policy is learned using the online off-
policy SAC algorithm first presented in [9]. Our specific
implementation extends the spinningup [24] version of
SAC with HER and is further described in Section III-B.
The goal of SAC is to automatically balance exploration and
exploitation by maximizing the accumulated reward and the
information content of the policy function. Therefore, the
entropy H (see e.g. [25, Eq. 4.2]) of the policy is used as
part of the optimization objective (from [9, Eq. 1])

J(π) =

T∑
t=0

E(si,ai)∼ρπ
[r (si,ai) + αH (π (· | si))] . (1)

In many robotic applications, one encounters the problem
of sparse rewards, where the agent needs to get to a
random and hard-to-reach goal. If the agent rarely reaches
the goal, almost no transitions with goal encounters are
added to the replay buffer. In order to create more of
these goal transitions, [10] proposed HER with the idea
to sample additional transitions with fictional goals, where
the goal g of an episode is added to state si, written as
si||g. The goal-conditioned transition tuples can be written
as (si||g,ai, ri, si+1||g). For each transition, additional
fictional episode goals g̃h, h = 1 . . . kHER are created from
states that were actually reached in the episode of the
transition, leading to kHER (in our case kHER = 4) new
transitions

(
si||g̃h,ai, r̃

h
i , si+1||g̃h

)
. By sampling new goals

from states that have actually been reached, many successful
goal transitions are added. This method enables us to use a
sparse reward, where ri = 0 if the goal was reached and ri =
−1 otherwise. Since we terminate an episode if a collision
occurs, e.g., the human walks into the stationary robot, a

negative reward for collisions is not strictly necessary.

III. METHODOLOGY

A. Safety shield

Our proposed safety shield is based on the provably safe
trajectory planner, called failsafe planner in [26]. The shield
functionality is illustrated in Fig. 1 and further elaborated
in this subsection. Please refer to [23], [26]–[28] for a
more detailed description of the trajectory planning and
verification process.

In our application, the actions of the RL agent are
intermediate goal joint positions ḡi. These intermediate goals
ḡi are not to be confused with the episode goal g or the
fictional episode goals for HER g̃h. In each episode, the
agent outputs multiple intermediate goals ḡi to reach the
single episode goal g. The HER goals g̃h are only relevant for
training the agent. Furthermore, we would like to emphasize
that the RL agent outputs the intermediate goals at a lower
frequency than our safety shield is operated. Each RL action
is executed for a user-defined time interval ∆T , or until all
joints are within a small ϵ-range of the intermediate goal. We
refer to this as one RL step and use the index i. The user-
defined time between two safety shield verification steps is
∆t with ∆t < ∆T and the index k is used.

a) Long-term and failsafe planning: This paragraph
describes the trajectory planning in our safety shield and
is accompanied by a simplified example in Fig. 3. To reach
the intermediate goal ḡi, we calculate an intended trajectory
from the current joint state xk to ḡi using a long-term
planner. We guarantee that a failsafe trajectory always exists,
which brings the robot to an inherently safe state, i.e., a full
stop, because a dynamic obstacle can block the robot’s path
during the execution of this intended trajectory. Formal safety
can now be guaranteed by induction, where it is assumed that
the robot starts in a safe state (stopped). The first intended
trajectory is executed starting from t0 if no collision with

a human is possible between t0 and t1 and if a collision-
free failsafe trajectory exists starting from t1. During the
execution of a trajectory between tk and tk+1, we calculate a
failsafe trajectory starting from tk+2. If this failsafe trajectory
cannot be verified as safe, we execute the previously verified
failsafe trajectory starting from tk+1. Since each failsafe
trajectory ends in a safe state, we can guarantee safety for an
infinite time horizon. Similarly, one time step of the intended
trajectory between tk and tk+1 is only executed if it is
verified as safe; otherwise, the failsafe trajectory is executed.
In each time step, a new intended and failsafe trajectory is
planned.

In our RL scenario, the agent repeatedly updates the
intermediate goal. If there is a new intermediate goal ḡi+1

at time step tk, the intended trajectory is calculated from
the state at time tk+1 to ḡi+1, and a new failsafe trajectory
is calculated from the new intended trajectory starting at
time tk+2. If the new intended and failsafe trajectories can
be verified as safe, the robot changes to the new intended
trajectory. Otherwise, it follows the last verified failsafe
trajectory at tk+1.

b) Adaption to manipulator control: In our use case,
the 3D trajectory planning can become computationally
expensive, especially in regards to the high-frequency
requirement. Therefore, we do not recompute the intended
trajectory in every time step. Instead, we only compute
intended trajectories for every new intermediate goal ḡi+1

until an executable one is found and use velocity scaling
for the failsafe trajectory as described in [26]. In short,
a failsafe trajectory is path-consistent with the intended
trajectory and ends in the complete stop of the robot. We
use the synchronous Type IV online trajectory planner of [29]
for the intended and the failsafe planner. Thus, the intended
trajectory planning adheres to velocity, acceleration, and
jerk limits (vtraj

max, atraj
max, and jtraj

max), which are gentle for the
manipulator joints. To achieve fast-braking, we increase the
acceleration and jerk limits for the failsafe planning (afailsafe

max
and jfailsafe

max) to the physical limits given by the robot
manufacturer.

c) Verification: The trajectory verification is based on
collision checking of the reachable sets of all possible human
motions and the intended robot trajectory. It is assumed
that no human joint moves faster than 2m/s as defined in
DIN EN ISO 13855:2010 [30], and all human joint positions
are reliably measurable within a specified error bound, e.g.,
by using a motion capture system. The safety verification
also works with other perception methods like light curtains,
as presented in [31], but the robot’s movement would become
more conservative. The entire space a human can occupy
within the time interval [tk, tk+b] is defined as the reachable
occupancy Γ ([tk, tk+b]), where b is the number of time steps
needed to bring the robot to a complete stop, and is calculated
using the task space approach presented in [23], [27].

The human and robot occupancies are modeled with
capsules, as shown in Fig. 4, to achieve fast computation
times. A capsule comprises a cylinder with half-spheres
at both ends and is defined by a line segment l(p1, p2)

Fig. 4. Example of a human–robot capsule pair in collision.

with endpoints p1 and p2 and a radius r. The robot
occupancy is described as a set of capsules enclosing each
robot link’s movement between time tk and tk+b. Hereby,
we follow the approach described in [26] to guarantee
over approximitaion of the link occupancies. This approach
assumes that the controller follows the desired trajectory
exactly. If additionally deviation occurring due to low-level
control should be considered, the approach presented in [31]
can be used. A robot motion is verified as safe if no robot
capsule intersects with any human capsule for all times
before reaching the resting position.

B. Safe RL

Our policy network has a tanh activation function
for the output layer and thus outputs actions ai =
[a0i , a

1
i , . . . , a

N
i], ani ∈ [−1; 1]∀n ∈ 1 . . . N with N being the

number of joints. We convert these actions to intermediate
goal joint positions with qnḡ,i+1 = qni + ani ∆qmax, where qni
is the current position of joint n and ∆qmax is the maximum
joint position difference per RL step. In recent literature, it
is more common to use the relative change in 3D position
of the robot end-effector as action space and calculate qni+1

using inverse kinematics (e.g. in [3]) since it leads to a lower
dimensional action space. However, we use joint positions
as actions to have full control over each joint. Nevertheless,
both approaches are equally compatible with our proposed
safety shield. The choice of ∆qmax depends on the maximum
velocity of the robot vtraj

max and the execution time of each RL
step ∆T . Choosing ∆qmax ≥ vtraj

max∆T allows the agent to
output a new action before the current action is finished. This
is desirable because each trajectory ends in a stopped state
and we do not want the robot to stop after each action. If the
robot collides with the static environment in its intermediate
goal, a new action is generated randomly with a uniform
distribution over the entire action space until a collision-
free intermediate goal is determined. An alternative to this
method is to project the unsafe action to the safe action
space with respect to the static environment. However, this
is nontrivial in the case of a high-dimensional manipulator.

In our training procedure, which is described
in Algorithm 1, an episode is done if the episode
goal is reached, the robot is in collision, or by timeout
when the maximum number of RL steps Tmax episode is
reached. We consider the episode goal as reached, if
|qni+1 − qng | < ϵg,∀n ∈ 1 . . . N , where qni+1 is the position
of joint n after the environment step, qng is the episode goal

Algorithm 1: Training procedure

1 Initialize:
• soft actor-critic agent A
• environment E
• replay buffer R and local buffer L
• Ttotal ← 0, Tlast update ← 0
• randomly initialize weights of πb

2 for j ← 0 to nepochs do
3 for l← 0 to nepisodes per epoch do
4 reset E and clear L ;
5 for i← 0 to tmax episode do
6 if Ttotal ≥ kstart steps then
7 ai ← πb (si||g);
8 else
9 ai ← random action;

10 (si+1, ri, done)← E.step(ai) ;
11 L [i]← (si||g, ai, ri, si+1||g);
12 Ttotal ← Ttotal + 1;
13 if done then break;
14 lepisode ← i;
15 for i← 0 to lepisode − 1 do
16 (si||g, ai, ri, si+1||g)← L [i];
17 R.store(si||g, ai, ri, si+1||g);
18 remaining ids

← (i+ 1) . . . (lepisode − 1);
19 randomly select kHER random ids from

remaining ids;
20 for id in random ids do
21 (sid||g, . . .)← L [id];
22 g̃ ← sid;
23 r̃i ← E.ComputeReward(si+1||g̃);
24 R.store(si||g̃, ai, r̃i, si+1||g̃) ;
25 if Ttotal ≥ Tupdate after and

(Ttotal − Tlast update) ≥ Tupdate every then
26 for m← 0 to Ttotal − Tlast update do
27 A.Update(R.sample batch());
28 Tlast update ← Ttotal;

position of joint n, and ϵg is a small user-defined tolerance
for reaching the goal. At the beginning of each episode, the
environment is reset (Algorithm 1 Line 4) by moving the
robot back to its initial position and resetting the human
animation. The action of a single RL step is executed
in Line 10 by the function E.step(ai). To achieve a high
exploration rate in the beginning of the training, we choose
random actions instead of the policy for the first kstart steps RL
steps (Line 6). After each episode, HER samples are added
to the replay buffer as described in Line 15 to Line 24. The
agent networks are first updated after Tupdate after RL steps to
improve exploration at the start of training and then every
Tupdate every RL steps from Line 25 to Line 27. All relevant
hyperparameters for RL training and operation are given
in Table I.

TABLE I
HYPERPARAMETERS

Parameter Value

∆t 4ms
∆T 200ms

v
traj
max 2 rad/s

a
traj
max 2 rad/s2

j
traj
max 15 rad/s3

afailsafe
max 10 rad/s2

jfailsafe
max 400 rad/s3

∆qmax 0.4 rad

Parameter Value

Hidden layers (all networks) 3
Hidden units per layer 64
Minibatch size 128
Replay buffer size 106

Discount factor γ 0.99
Entropy tradeoff α 0.2
kstart steps 5000
Tupdate after 1000
Tupdate every 200
nepochs 200
nepisodes per epoch 30

C. Software structure

Our software framework is based on Gazebo and
ROS Noetic. The robot simulation uses the Open
Dynamics Engine (ODE) solver with a step size of 1ms.
We choose the ODE QuickStep method with 10 solver
iterations. The safety shield is implemented in C++ 2 to
achieve fast calculation times with an average of 0.5ms per
verification step3. With the safety shield operating at 250Hz,
our simulation runs roughly five times faster than real-time.

IV. RESULTS

A. Experimental setup

We conduct two different experiments. In the first
randomized-goal experiment, the episode goal is randomly
and uniformly sampled over the entire joint space, and the
start state is fixed with all joints at their zero position.
Notably, the human may block the episode goal. For the
second human-evasion experiment, we manually define the
start and episode goal position so that the robot collides with
the human if it takes the shortest path. The agent must learn
to evade the human by taking a longer path or waiting until
the human moves away from the table. In this scenario, the
episode goal is only slightly randomized so that the human
never blocks the goal state. The two experiments are also
shown in our accompanying video4.

For the simulation, the human motion is taken from real-
world motion capture data provided by CMU5. Currently,
we are using animation 62 01, containing a human walking
to the working table, where they perform a wrenching
action. This motion pattern is diverse and complex and can
effectively validate our concept. To prevent overfitting to the
motion data, we randomize the x- and y-position and start
time of the human animation in each episode uniformly in
the range of −0.2m to 0.2m and 0 s to 1 s.

In all experiments, the maximum episode length is set
to 100 RL steps per episode to give the robot adequate

2Part of our code is based on the open source reachability analysis tool
SaRA (available at https://github.com/Sven-Schepp/SaRA) [32].

3Run on a ThinkPad P15 Gen 1 with an Intel(R) Core(TM) i7-10750H
CPU and 32GB DDR4 RAM.

4Available at https://youtu.be/Lzrs2HQUIOc
5Data publicly available at http://mocap.cs.cmu.edu/

Randomized-goal experiment

0 50 100 150 200
0

25

50

75

100

Epoch

C
ol

lis
io

n
ra

te
in

%

Baseline
Safe agent

(a)

0 50 100 150 200
0

25

50

75

100

Epoch

Su
cc

es
s

ra
te

in
%

Baseline
Safe agent

(b)

0 50 100 150 200
0

25

50

75

100

Epoch

E
pi

so
de

en
di

ng
in

%

Timeout
Goal reached
Safe collision

(c)

Human-evasion experiment

0 50 100 150 200
0

25

50

75

100

Epoch

C
ol

lis
io

n
ra

te
in

%

Baseline
Safe agent

(d)

0 50 100 150 200
0

25

50

75

100

Epoch
Su

cc
es

s
ra

te
in

%

Baseline
Safe agent

(e)

0 50 100 150 200
0

25

50

75

100

Epoch

E
pi

so
de

en
di

ng
in

%

Timeout
Goal reached
Safe collision

(f)

Fig. 5. Evaluation of the randomized-goal (upper row) and human-evasion (lower row) experiment. Figures (a) and (d) compare the rate of safety-critical
collisions per episode of the baseline and the safe agent. The success rate of both experiments is displayed in (b) and (e). The reason for episode endings
using the safe agent are displayed in (c) and (f). Hereby, a safe collision occurs when the human touches the stopped robot.

time to move around the human to any goal. Since an
episode may end earlier due to collisions and successful goal
achievements, the number of RL steps per episode varies.
Each training consists of 200 epochs with 30 episodes per
epoch, leading to a maximum of 600 000 RL steps.

B. Randomized-goal experiment

The following discussion refers to the agent trained
excluding and including a safety shield as baseline and
safe agent, respectively. We trained the baseline agent with
the same hyperparameters as the safe agent to achieve
good comparability. In order to improve the performance
of the baseline agent, we also tried to operate it at higher
frequencies (50Hz and 250Hz) and provide it with a high
negative reward for collisions. Unfortunately, none of the
measures lead to successful training improvements, so we
omit these results. First, we want to highlight the results
for completely randomized goal positions. The collision rate
comparison in Fig. 5a with and without a safety shield clearly
shows the advantage of our proposed method. The baseline
agent causes a safety-critical collision in approximately 20%
of all episodes. Therefore, the baseline is too dangerous
to be deployed in a real-world environment, especially
at the beginning of the training. In contrast, the safety
shield successfully prevents all safety-critical collisions. Both
agents show a similar success rate in Fig. 5b. Interestingly,
the baseline agent learns slightly faster than the safe agent
despite its high collision rate. At the end of the training, both
agents have approximately the same success rate of 65%.
Fig. 5c evaluates how the remaining 35% of episodes end
for the safe agent. Approximately 10% of episodes end in a
safe collision caused by the static human animation walking
into the stationary robot. The remaining 25% of episodes
ended by exceeding Tmax episode. A manual investigation of
the unsuccessful cases showed that most of the goals were

not reachable because humans blocked the path to the goal.

C. Human-evasion experiment

The human-evasion experiment highlights another
advantage of our proposed method. Since the human blocks
the optimal path, the baseline agent collides with the human
in almost every episode in the first half of the training as
shown in Fig. 5d. In the second half of training, the baseline
agent learned to avoid collisions with the human more
frequently, but still collides in approximately 25% of all
episodes. Again, our safety shield prevents all safety-critical
collisions. Fig. 5e shows that the baseline agent cannot
reach the goal because it does not learn how to evade the
human. However, the safe agent learns to move around the
human to reach the goal effectively.

V. CONCLUSIONS

Our results clearly show that our proposed safety shield is
an effective method to avoid collisions with humans in the
working environment. Contrary to existing RL methods for
safe manipulator control, our safety shield provides formal
safety guarantees in highly dynamic and prior unknown
human environments. The human-evasion experiment also
demonstrated that our safety shield could significantly impact
the training success in scenarios with a high likelihood of
a collision. We believe that our method enables the high-
level control of manipulators with RL agents in real-world
human environments while providing the necessary safety
guarantees to any human operator. Our subsequent goals are
to refine the RL agent further and train it on a more complex
set of real-world human motions. Finally, we plan to test our
safe RL agent on actual robots and perform tasks in a human
working environment.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support
by the Central Innovation Programme of the German
Federal Government under grant ZF4086004LP7 and the
Horizon 2020 EU Framework Project CONCERT under grant
101016007.

REFERENCES

[1] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2017, pp. 3389–3396.

[2] W. Gao, L. Graesser, K. Choromanski, X. Song, N. Lazic, P. Sanketi,
V. Sindhwani, and N. Jaitly, “Robotic table tennis with model-free
reinforcement learning,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2020, pp. 5556–5563.

[3] R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards practical multi-
object manipulation using relational reinforcement learning,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2020, pp.
4051–4058.

[4] E. Prianto, M. Kim, J.-H. Park, J.-H. Bae, and J.-S. Kim, “Path
planning for multi-arm manipulators using deep reinforcement
learning: Soft actor–critic with hindsight experience replay,” Sensors,
vol. 20, no. 20, pp. 1–22, 2020.

[5] M. El-Shamouty, X. Wu, S. Yang, M. Albus, and M. F. Huber,
“Towards safe human-robot collaboration using deep reinforcement
learning,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2020, pp. 4899–4905.

[6] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer - practical
constrained optimization for deep reinforcement learning in the real
world,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2018, pp. 6236–6243.

[7] B. Sangiovanni, G. P. Incremona, M. Piastra, and A. Ferrara, “Self-
configuring robot path planning with obstacle avoidance via deep
reinforcement learning,” IEEE Control Systems Letters, vol. 5, no. 2,
pp. 397–402, 2021.

[8] “Robotics - safety requirements - part 1: Industrial robots,”
International Organization for Standardization, Geneva, CH, Standard
DIN EN ISO 10218-1:2021-09 DC, Sep. 2021.

[9] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. of the 35th Int. Conf. on Machine Learning (ICML),
Jul. 2018, pp. 1861–1870.

[10] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Proc. of the 31st Int. Conf. on Neural
Information Processing Systems (NeurIPS), 2017, pp. 5055–5065.

[11] Z. Ren, K. Dong, Y. Zhou, Q. Liu, and J. Peng, “Exploration via
hindsight goal generation,” in Proc. of the 33rd Int. Conf. on Neural
Information Processing Systems (NeurIPS), 2019.

[12] Z. Bing, M. Brucker, F. O. Morin, R. Li, X. Su, K. Huang,
and A. Knoll, “Complex robotic manipulation via graph-based
hindsight goal generation,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–14, 2021, early access.

[13] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. of the 34th Int. Conf. on Machine Learning
(ICML), 2017, pp. 22–31.

[14] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in
deep reinforcement learning,” arXiv preprint arXiv:1910.01708, vol. 7,
2019.

[15] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[16] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
the IEEE 23rd Int. Conf. on Intelligent Transportation Systems (ITSC),
2020, pp. 1–7.

[17] N. Hunt, N. Fulton, S. Magliacane, T. N. Hoang, S. Das, and A. Solar-
Lezama, “Verifiably safe exploration for end-to-end reinforcement
learning,” in Proc. of the 24th Int. Conf. on Hybrid Systems:
Computation and Control (HSCC), 2021, article no. 14.

[18] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (RTS): A safe and fast reinforcement learning
safety layer for continuous control,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3663–3670, 2021.

[19] N. Jansen, B. Könighofer, S. Junges, A. Serban, and R. Bloem, “Safe
reinforcement learning using probabilistic shields,” in Leibniz Int.
Proc. in Informatics (LIPIcs), vol. 171, 2020, pp. 31–316.

[20] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proc. of the
32nd AAAI Conf. on Artificial Intelligence (AAAI), 2018.

[21] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,
“Online shielding for stochastic systems,” in NASA Formal Methods,
2021, pp. 231–248.

[22] G. De Giacomo, L. Iocchi, M. Favorito, and F. Patrizi, “Foundations
for restraining bolts: Reinforcement learning with LTLf/LDLf
restraining specifications,” Proc. of the 29th Int. Conf. on Automated
Planning and Scheduling (ICAPS), pp. 128–136, 2021.

[23] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira, “Effortless creation
of safe robots from modules through self-programming and self-
verification,” Science Robotics, vol. 4, no. 31, pp. 1–14, 2019.

[24] J. Achiam, “Spinning up in deep reinforcement learning,” OpenAI,
2018.

[25] B. D. Ziebart, “Modeling purposeful adaptive behavior with the
principle of maximum causal entropy,” Ph.D. dissertation, Carnegie
Mellon University, 2010.

[26] D. Beckert, A. Pereira, and M. Althoff, “Online verification of multiple
safety criteria for a robot trajectory,” in Proc. of the IEEE 56th Conf.
on Decision and Control (CDC), 2017, pp. 6454–6461.

[27] A. Pereira and M. Althoff, “Calculating human reachable occupancy
for guaranteed collision-free planning,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2017, pp. 4473–4480.

[28] ——, “Overapproximative human arm occupancy prediction for
collision avoidance,” IEEE Transactions on Automation Science and
Engineering, vol. 15, no. 2, pp. 818–831, 2018.

[29] T. Kröger and F. M. Wahl, “Online trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 94–111, 2010.

[30] “Safety of machinery - positioning of safeguards with respect to
the approach speeds of parts of the human body,” International
Organization for Standardization, Geneva, CH, Standard DIN EN ISO
13855:2010-10 ST N, 2010.

[31] A. Pereira and M. Althoff, “Safety control of robots under computed
torque control using reachable sets,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), 2015, pp. 331–338.

[32] S. Schepp, J. Thumm, S. B. Liu, and M. Althoff, “Sara: A tool for
safe human–robot coexistence and collaboration through reachability
analysis,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2022, early access.

	INTRODUCTION
	Related work
	Contributions
	Article structure

	PRELIMINARIES
	Problem statement
	RL

	METHODOLOGY
	Safety shield
	Safe RL
	Software structure

	RESULTS
	Experimental setup
	Randomized-goal experiment
	Human-evasion experiment

	CONCLUSIONS
	References

