
Sim-to-Real Transfer of Robotic Assembly with Visual Inputs
Using CycleGAN and Force Control

Chengjie Yuan1,2 †, Yunlei Shi3,2 †, Qian Feng1,2, Chunyang Chang2,
Zhaopeng Chen2, Alois Christian Knoll1, Jianwei Zhang3

CycleGAN
(Frozen Net)Real Observation

Encoder
(Frozen Net)

En
co

de
r

RL Policy Net

Real Images Sim (Fake) Images

Command
Switch

Si
m

 =
 =

 T
R

U
E

N

Y

Sim Images Actions

Position Mode

Force Mode

K

Real

Sim

Fig. 1: Sim-to-real learning-based framework for a rectangular peg-in-hole insertion task. Sim part (in blue) is used to train the encoder (Frozen Net) and
reinforcement learning (RL) policy net in a simulator. GRS : R → S is a mapping function generated using a cycle-consistent generative adversarial
networks (CycleGAN) to transfer an image from a real world style to a simulator style. A command switch is used to ensure safety in the contact-rich
operation by changing the position control mode in the simulator to a force control mode in the real world.

Abstract— Recently, deep reinforcement learning (RL) has
shown some impressive successes in robotic manipulation
applications. However, training robots in the real world is
nontrivial owing to sample efficiency and safety concerns. Sim-
to-real transfer is proposed to address the aforementioned
concerns but introduces a new issue called the reality gap.
In this work, we introduce a sim-to-real learning framework
for vision-based assembly tasks and perform training in a
simulated environment by employing inputs from a single
camera to address the aforementioned issues. We present a
domain adaptation method based on cycle-consistent generative
adversarial networks (CycleGAN) and a force control transfer
approach to bridge the reality gap. We demonstrate that the
proposed framework trained in a simulated environment can
be successfully transferred to a real peg-in-hole setup.

I. INTRODUCTION

Industrial robots are commonly used in structured envi-
ronments, such as car manufacturing factories and phone
assembly lines. The requirement to push the border of the
”Robot Zone” [1] toward the manual manufacturing domain
is increasing rapidly. Humans can execute manual manufac-
turing tasks easily using visual and force feedback, whereas
robotic conventional methods, such as position control or
visual servoing, are difficult to accomplish. Reinforcement

*This research has received funding from the German Research Foun-
dation (DFG) and the National Science Foundation of China (NSFC) in
project Crossmodal Learning, DFG TRR-169/NSFC 61621136008, partially
supported by the European Unions Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 691154
STEP2DYNA and No 778602 ULTRACEPT.

1Technische Universität München, 2Agile Robots AG, 3TAMS (Techni-
cal Aspects of Multimodal Systems), Department of Informatics, Universität
Hamburg

† The first two authors contributed equally to this work.

learning (RL) shows potential to solve complex robot ma-
nipulation problems because it allows an agent to interact
with the environment for trial-and-error learning and accepts
high-dimension feedback as the input. [2], [3], [4].

For contact-rich manipulations, it is nontrivial to establish
a robotic system that can learn a task with a safety guarantee
and avoid wear and tear problem. Thus, sim-to-real methods
are proposed [5] to address the aforementioned concerns.
Recently, style transfer methods based on generative adver-
sarial networks (GANs) [6] have been proposed recently
in the computer vision field, enabling the use of vision-
based manipulation tasks for deploying visual sim-to-real
methods; however, owing to poorly simulated dynamics, the
sim-to-real reality gap could be an issue when transferred
the simulated policies to physical setups [7].

In this work, we verify our framework using the the
most commonly used assembly task: peg-in-hole [8]. The
framework training is performed in a simulated environment
by employing only images captured using a camera as the
input. When transferring the trained policy in our framework
to a physical robot, the execution command is mapped from
the position signal to the force signal to assist the peg-in-
hole insertion task (we employ an admittance controller to
perform the compliant movement).

Our framework can be described as follow. First, we train
the RL policy net (we use soft actor-critic (SAC) algorithm
in this work) in the simulator. Then, we use the images
of insertion scenarios collected from a simulator and the
real world to train a cycle-consistent generative adversarial
networks (CycleGAN) [9]. Thereafter, the trained policy is
driven by the real-to-sim transformed image style, obtained
from the trained CycleGAN. The entire framework is shown

ar
X

iv
:2

20
8.

14
10

4v
1

 [
cs

.R
O

]
 3

0
A

ug
 2

02
2

in Figure 1.

Our primary contributions are listed:
• C1: A vision-based sim-to-real learning framework is

proposed to perform assembly tasks.
• C2: A peg-in-hole task that effectively leverages visual

information and force control using a simple reward
function for a complete insertion, including hole search-
ing, alignment, and insertion. The task performance is
compared when training using different visual observa-
tion spaces.

• C3: The robustness of the framework to perturbations
and sensor noise in real world is evaluated.

The remainder of the paper is structured as follows. In
Section II, we describe the background and development of
the deployed method. Section III introduces the problems.
In section IV, we provide an overview of our method. A
quantitative experiment of our methods and the experiment
results in Section V. Section VI presents the conclusions
and future work.

II. RELATED WORK AND BACKGROUND

A. Contact-Rich Assembly

The entire process of an assembly task can be considered
as a constrained motion with geometrical and environmen-
tal constraints. Generally, we can decompose the existing
peg-in-hole assembly strategies into two categories: contact
model-based and contact model-free strategies [10]. Model-
based strategies rely on the contact model analysis and
compliant control. Two common examples of model-free
strategies are learning from demonstration (LFD) and RL.
For contact model analysis, analytical and statistical models
are commonly used [11], [12], [13], [14], [15], [16]. An-
alytical models are based on the analysis of geometrical
and environmental constraints, whereas statistical models
rely on the estimation of the contact state by collecting
samples. Among contact model-free strategies, the LFD
approaches can be categorized into three phases: sensing,
encoding, and reproducing [17], [18]. However, the sample
efficiency of the aforementioned methods highly relies on the
human operation and these methods introduce transparency
problems in contact-rich teaching tasks [19].

B. Reinforcement Learning

The RL is a machine learning approach for teaching
agents to solve different tasks based on trials and errors
when interacting with environments. The RL agent aims
to learn a policy π(at|st), which selects the action at,
and meanwhile the agent observes the environment st. The
transition probability p(st+1|at, st) is used to connect the
state change over dynamics. The final trajectory can be
represented as τ = (s0, a0, s1, a1, ...). The discount factor γ
controls the sum of the reward. An optimal policy π∗ should
maximize the cumulative reward r(st, at) during interactions
with the environment, as shown in Equation (1).

π∗ = arg max
π

Eτ∼π
[∞∑
t=0

γt(r(st, at))

]
(1)

With the development of expressive function approxi-
mation such as neural networks (e.g., Deep RL), high-
dimensional inputs such as raw images can be handled [20],
[21]. Great success has been gained because of the advances
in RL in many fields, for instance, the development of video
games such as Atari [20], dexterous hand manipulation [22],
robot grasping [23], and robot manipulation [24].

RL algorithms can be classified into two branches: model-
based and model-free algorithms [3]. The main difference
between the two branches is whether an agent gets access
to or learns a model of the environment. Different assembly
tasks are also solved using a model-based RL called mirror
descent guided policy search (MDGPS) [25]. By combining
the force information obtained from a force-torque sensor at
the end-effector with a long short-term memory (LSTM),
a high-precision assembly task was performed [26]. An
operational space control framework was used in [27]. By
combining visual inputs with natural rewards, different con-
nector insertion tasks were demonstrated [28]. InsertionNet
[29] was proposed to solve the general insertion problem by
combining visual and force inputs, and it was trained in the
real-word environment, which has safety risks [30].

C. CycleGAN

CycleGAN is an extension of GANS [6]. GANs comprise
two submodels: generator and discriminator models. The key
idea of GANs is to train the two submodels in a zero-sum
adversarial game, until the discriminator is fooled by the gen-
erated examples half the time. In CycleGAN, except for the
original adversarial loss, a cycle consistency loss is proposed:
this loss can be used to calculate the reconstruction error of
the images. Furthermore, CycleGAN offers a considerably
more efficient approach for training than common GANs
because of using unpaired and unlabeled dataset.

D. Sim-to-Real Transfer

Training in a simulator can assuredly provide an infinite
amount of data and alleviate certain safety concerns during
training. However, a reality gap exists that often separates a
simulated task and its real-world analog, leading to failure
when working with physical robots. To bridge the reality
gap, three main options for solving this problem: system
identification (SI), domain adaptation (DA) and domain ran-
domization (DR) [31]. Using SI, we can remove inaccessible
states and apply state estimation during the training [32]. DR
helps the trained policy to adapt to different dynamics and
generalize to dynamics of the real world [5], allowing the
randomization of parameters for visual or pixel-based inputs
such as lighting and textures [33].

For dexterous hand manipulation, a trained policy combing
both dynamic and visual randomization is deployed [22]. The
DA approach aims to map the source domain to the target
domain; in the robotic context, this approach usually exploits

Sim Camera View Real Camera View

(a) Simulated setting (b) Real setting(a) Simulator

Sim Camera View Real Camera View

(a) Simulated setting (b) Real setting(b) Real-world setup

Fig. 2: Simulator and real-world setup: The blue area represents the view
of the camera and the scene in camera can be seen in the insets of the two
images (a) and (b).

the recent advances in visual domain adaptation [34], [35],
[36].

III. PROBLEM STATEMENT

Owing to unknown contact mechanics, designing a feed-
back control mechanism for contact-rich tasks is challenging.
RL has shown some progress in robotic contact-rich tasks in
unstructured environments; however, sample efficiency and
safety concerns are two main problems when performing
policy training. Many RL algorithms require millions of
steps to train policies for performing complex tasks [37],
[2]. In other words, human supervision is always needed in
resetting experiments, hardware status monitoring, and safety
assurance, which is quite time-consuming and tedious [31].

The sim-to-real approach shows potential to solve the
aforementioned problems; however, one significant difficulty
associated with this approach is bridging the reality gap to
address the mismatch in distinct distributions of rendered
images and real-world counterparts. Another challenge is
ascribed to force modeling in simulation as the force inter-
actions will inevitably occur between the target object and
environments when performing contact-rich tasks. Moreover,
it is expensive to apply the system calibration due to the
limitation of the simulation domain expert’s ability [29] and
accurate requirements [30].

IV. FRAMEWORK DESIGN

In this section, we present the overview of our sim-to-
real framework proposed to solve the problems stated in
Section III. We built our system in a Bullet simulator [38] and
modeled the robot and task environment based on OpenAI
Gym [39]. Figure 2(a) and Figure 2(b) shows the setup in
the simulator and real world, respectively.

A. Learning Framework in Simulation

1) Policy: The soft actor-critic (SAC) algorithm [40] was
employed in our framework. SAC introduces an entropy H
in its objective function (Equation (2)), which is a significant
characteristic, where α denotes a temperature parameter that
determines the importance of the entropy term. The entropy

(a) (b)

Encoder

(c)

Fig. 3: Three different observation spaces: (a) a raw RGB image, (b)
grayscale image, and (c) latent representation generated by an encoder.

is used to measure the randomness of a given policy. In this
study, the policy is trained to maximize a value that relies on
the expected return value as well as the entropy. It helps to
reach a good trade–off between exploration and exploitation.

π∗ = arg max
π

Eτ∼π
[∞∑
t=0

γt(r(st, at) +αH(π(·|st)))
]

(2)

2) States: For a vision-based learning policy, the com-
monly used observation states are the RGB, grayscale, and
latent representation [2], [28]. In this work, we select obser-
vation spaces as follow:
• RGB observation space: 3× 64× 64 tensor
• Grayscale observation space : 1× 64× 64 tensor
• Latent representation observation space: 128×1 vector.
For the RGB and grayscale observation spaces, the net-

work conducts end-to-end learning; in other words, raw
images are inputted to the network and the output command
is obtained. For the latent representation observation space,
an autoencoder is employed as a part of the network. This
autoencoder comprises an encoder and a decoder, we exploit
the encoder to compress the input image and generate the
latent representation observation space.

3) Actions: Inspired by the literature [41], the necessary
translation movement along the X-, Y-, and Z axes are
considered and the orientation of the end-effector is fixed.
We define a three-dimensional (3D) vector that contains the
translation movement information of the robot. We use a
position controller in the simulation, and the robot will move
along a relative distance with respect to the current pose. The
continuous 3D displacement action space ∆P

∆P = [∆x, ∆y, ∆z], (3)

which considers translation movement along the X-, Y-, and
Z-axes. The value in each axis is strictly in the interval of
[−0.02, 0.02] m.

4) Rewards: Some researchers set reward functions based
on the different insertion phases such as reaching, alignment
and insertion [41], [26], making the reward function hard to
design; and need to distinguish the different phases. We only
design one normal reward function that combines L1 and L2
distances for reaching, alignment and insertion phases and
one reward for successfully insertion:

R(s) =

50, (Success)
−(flag ∗ 10 + 0.4 ∗ (‖pobj − pgoal‖)
+0.6 ∗ (|pobj − pgoal|)) (Otherwise),

where pobj and pgoal represent the positions of the peg
and hole, respectively, and flag is set to 1 if the robot moves
to a distance exceeding a certain threshold (i.e., 15 cm away
from the hole center); otherwise, it is set to 0. Here, flag
works as a punishment when the robot makes unexpected
movements.

B. Transfer Framework to Real-world Environment

1) Observation Space Transfer: To transfer our policy
from the simulator to the real world, we must transfer the
images from the domain of the real world to its counterparts
in the simulator. Conventionally, training an image-to-image
translation model requires a paired dataset. The requirement
for paired examples is a limitation, it is challenging and
expensive to prepare these datasets.

A successful approach for unpaired image-to-image trans-
lation is the CycleGAN. We commanded the robot to move
randomly in the view of the camera and captured its random
state each time. Approximately 200-300 images can be
effortlessly obtained for training the model. Using the style
transfer based on the CycleGAN, we map the view of the
camera in the real-world environment to its counterpart,
which we use to train our policy.

2) Action Space Transfer: In a study [29], researchers
incorporated force augmentations by multiplying a random
constant α with the force and the moment because they
arrived at the conclusion that the direction of the vectors
(F,M), but not the magnitude, is the most important factor
in insertion operations. We extended this conclusion to our
sim-to-real transfer process using a new method: we multiply
gain K and the original position action output ∆P and then
use the product Creal as the control command for the real
robot force controller:

Creal = [Fx, Fy, Fz]

= K∆P

= K[∆x, ∆y, ∆z],

(4)

where K = 100 N/m; thus, the force command values along
the X-, Y-, and Z-axes are in the range [−2, 2] N.

V. EXPERIMENTS

In this section, we introduce the peg-in-hole insertion
task to validate our framework and explain the experimental
results for both the simulated and real-world environments,
in which we address the following questions:

1) Will all observation spaces work well in our frame-
work?

2) Can our trained policy be transferred to a real-world
environment successfully?

3) How does our framework perform compared with other
insertion methods in terms of the success rate?

E
n
co

d
er

L
at

en
t

S
p
ac

e

D
ec

o
d
er

Original

Images

Reconstructed

Images

Fig. 4: Results obtained using an autoencoder: where the left panels show
the original images and the right panels show the reconstructed images.

TABLE I: SUCCESS RATES OF 3 OBSERVATION SPACES

Total episodes Observation space Success rate

Gray 1× 64× 64 0%

RGB 3× 64× 64 0%
3000

Latent 128× 1 96%

Gray 1× 64× 64 0%

RGB 3× 64× 64 0%
10000

Latent 128× 1 96%

4) What is the robustness of our framework under external
perturbations and target uncertainties?

A. Simulation Experiment

1) Observation Space Comparison: To compare the per-
formances of the policy with different observation spaces,
we test the scene of a white block with a metallic texture.
We use the success rate of a complete insertion task in the
simulation as a criterion to evaluate the performance of the
learned policy.

A convolutional neural network is utilized as a part of the
SAC network for training using the inputs from the RGB
and grayscale observation spaces. An autoencoder is used to
obtain a latent representation of the input image. The encoder
part allows the compression of the original image to a lower-
dimension vector that contains the important information.

Fig. 5: Four environmental scenes. From left to right: a red block with a
wooden texture, a white block with a wooden texture, a red block with a
metallic texture, and a white block with a metallic texture.

In the simulation, we first generate a series of images of

(a)

(b)

Fig. 6: (a) Execution phases of a scene of a white block with a metallic
texture scene and (b) scene of a white block with a wooden texture from
the initial pose to the target hole.

Fig. 7: Successful insertion trajectories starting from 8 different initial
positions in the simulation. Eventually, the blocks are all moved into the
target hole.

the robot state by executing random actions in the simulator
as the training dataset and then train the autoencoder using
this dataset. Thereafter, we extract the encoder as a part of
the SAC network. We use the generate simulated images of
the RGB observation space (size=3 × 64 × 64) to train the
autoencoder.

We train the agent using cumulative episodes, and the
results are shown in Table I. With the latent representation
as policy input, the policy converged and the success rate
could reach 96% at checkpoints 3000 and 10000 episodes.
However, the raw RGB and grayscale observation spaces
cannot train a feasible policy, which is consistent with the
results reported in a study [28].

We can achieve the answer to question 1 from Table I.
We conclude that end-to-end learning is not as efficient as
the approach that uses the latent representation observation
space. Hence, we perform the remaining experiments using
the latent representation observation space.

2) Different Scene Evaluation: Although we demonstrate
the policy performance before using a latent representation
observation space in the scene of a white block with a
metallic texture, it is unclear whether the difference in the
scene will influence the performance. A high success rate
must be achieved in the simulation environment to perform

TABLE II: SUCCESS RATES OF DIFFERENT SCENES (SIMULATION)

Evaluate Trials Scene Success Rate

500

red block with wooden texture 96%

red block with metal texture 70.5%

white block with wooden texture 99%

white block with metal texture 96%

Camera

Pegs

Hole

Fig. 8: Hardware settings for real environment experiment. The realsense
D415 camera was installed manually without calibration, because we
deliberately introduce uncertainties for the sim-to-real transfer to test it’s
robustness.

further real experiments. Additionally, to verify the gener-
alization of the framework, we consider the permutation of
four environmental scenes with two blocks and two textures:
a red block with a wooden texture, a white block with a
wooden texture, a red block with a metallic texture, and a
white block with a metallic texture (Figure 5). Every scene
is trained 3000 episodes in the simulation environment with
a Dell Precision 5510 laptop CPU.

We compare the performance of this approach in different
scenes, and the execution phase is presented in Figure 6.
Additionally, a visualization of successful insertion trajecto-
ries is shown in Figure 7. Table II shows the success rate of
the framework obtained under different scenes. Three scenes
achieved a success rate higher than 96%. The white block
with a wooden texture reached a 99% success rate.

B. Real-World Environment Experiment

Although we perform training and evaluate the success
rate in the simulation environment, our goal is to transfer
the trained policy to the physical environment.

In our real-world environment setup (Figure 8), a UR5e
robot1 is used to perform a peg-in-hole insertion task. This
6-axis robot features a 5 kg payload and a working radius
of 850 mm. It is equipped with a 6 degrees of freedom
force/torque sensor on the end effector. The robot uses an

1https://www.universal-robots.com/products/ur5-robot/

Real Images Fake Images Reconstructed Images

Fig. 9: Domain adaptation by CycleGAN: Mapping function GSR, which
maps the simulated distribution to a real world distribution. Mapping func-
tion FRS , which maps the real world distribution to simulated distribution.

operational space admittance controller [42] with 500 Hz
control rate. The blocks are mounted behind the force/torque
sensor to ensure the detection of the contact force with the
environment.

An Intel RealSense D415 camera2 is fixed on the platform
to observe the operation. The position and orientation of
the camera are selected to ensure the block and hole are
visible during most of the training time. Figure 8 shows our
hardware setup in the experiment. In our experiment, we use
a white and a red block with same dimensions of 65×30×25
mm, and a white block with a hole size of 70× 35× 30mm.
The clearance in each direction (i.e., length and width) is
5 mm. We select this setup because we aim to establish a
potential scenario in which a packed data cable is inserted
into a phone box in the mobile phone assembly line [43].

As described in Section IV-B, the CycleGAN is introduced
to perform the domain adaptation process to transfer the
image distribution from the real world to the simulation. We
capture 200 images of the robot state in the real world and
then generated a training dataset along with 3000 simulated
images to train the CycleGAN. We train the CycleGAN
model on four Nvidia 1080 Ti GPUs. The domain adaptation
results of the trained CycleGAN with our setup inputs is
shown in Figure 9.

Based on the previous results listed in Table II, we can
conclude that the scene with wooden texture achieve the
highest success rate with our policy. Hence, we transfer
the real-world image to a scene of a block with a wooden
texture using the DA method to evaluate our framework in
a real-world setup. We define three situations when testing
the policy in the real world as [2].

TABLE III: PERFORMANCES IN REAL ENVIRONMENT SETUPS

Scene Complete insertion Touched the box Failed

Red block 86/100 10/100 4/100

White block 88/100 12/100 0/100

2https://www.intelrealsense.com/zh-hans/depth-camera-d415/

Fig. 10: White block with metal texture scene real setup execution phases
from initial pose to target hole.

Complete Insertion means that the robot accomplishes the
insertion task completely. Touched the box implies that the
the peg was moved in the right direction, but the insertion
is not completed. Failed indicates a situation in witch the
robot moves far away from the target in the wrong direction
or performs unexpected movements.

During the execution (Figure 10), we randomly occlude
the camera’s field of view for several seconds and push the
robot in the wrong direction to the target hole to evaluate the
system robustness to external perturbations. The performance
of the physical robot in the real-world setup is summarized
in Table III. We obtain an average success rate equal to
method reported in the literature [2] with a safer sim-to-real
framework because we limit the force command amplitude
during the control.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we proved that our sim-to-real framework
is a valid approach to solving the peg-in-hole task both in
simulated and real-world environments. By employing DA
and force controller, we can directly transfer the policy that
was trained in a simulator to a real-world setup. Moreover,
we evaluated different observation spaces and proved that the
latent representation (i.e., low dimension) can accelerate the
convergence of policy learning and afford a higher success
rate for the task than end-to-end learning using raw image
input. The importance of force control is shown by the fact
that in real-world experiments, the blocks often needs to
contact the environment and “slide” into the hole.

However, our method can be optimized further in terms of
the performance and generalization ability. For example, the
scene of a red block with a metallic texture in the simulation
achieves a success rate of only 70.5% considerably worse
than those achieved using the other three scenes; hence,
further research is needed. Moreover, in the experiment
setup, we assumed that the target orientation is known for
the insertion task, which simplifies the task. For more general
tasks, for example, when a robot starts with a random pose,
our method must be improved to output the orientation of
the end-effector. A more complex action space with both
translation and rotation, [∆x, ∆y, ∆z,∆rx,∆ry,∆rz], can
be designed for training. In our future roadmap, investigating
the application of our sim-to-real approach to more industrial
robotic tasks will be interesting.

REFERENCES

[1] S. Zei, “Manipulation skill for robotic assembly,” Master’s thesis,
Technischen Universität Darmstadt, 2014.

[2] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei,
A. Garg, and J. Bohg, “Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-rich
tasks,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8943–8950.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[4] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[5] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[7] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 11 157–11 166.

[8] H. Park, J.-H. Bae, J.-H. Park, M.-H. Baeg, and J. Park, “Intuitive
peg-in-hole assembly strategy with a compliant manipulator,” in IEEE
ISR 2013. IEEE, 2013, pp. 1–5.

[9] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2223–2232.

[10] J. Xu, Z. Hou, Z. Liu, and H. Qiao, “Compare contact model-based
control and contact model-free learning: A survey of robotic peg-in-
hole assembly strategies,” arXiv preprint arXiv:1904.05240, 2019.

[11] D. E. Whitney, “Quasi-static assembly of compliantly supported rigid
parts,” Trans. ASME, J. Dyn. Sys., Mes. Cont, vol. 104, 1982.

[12] Z. Jakovljevic, P. B. Petrovic, and J. Hodolic, “Contact states recog-
nition in robotic part mating based on support vector machines,”
International Journal of Advanced Manufacturing Technology, vol. 59,
no. 1-4, pp. 377–395, 2012.

[13] J. Xiao and L. Liu, “Contact states: Representation and recognizability
in the presence of uncertainties,” in Intelligent Robots and Systems,
1998. Proceedings., 1998 IEEE/RSJ International Conference on,
1998.

[14] L. M. Brignone and M. Howarth, “A geometrically validated approach
to autonomous robotic assembly,” Nottingham Trent University, vol. 2,
pp. 1626–1631, 2002.

[15] I. F. Jasim and P. W. Plapper, “Contact-state monitoring of force-
guided robotic assembly tasks using expectation maximization-based
gaussian mixtures models,” International Journal of Advanced Manu-
facturing Technology, vol. 73, no. 5-8, pp. 623–633, 2014.

[16] G. E. Hovland and B. J. McCarragher, “Hidden markov models as
a process monitor in robotic assembly,” The International Journal of
Robotics Research, vol. 17, no. 2, pp. 153–168, 1998.

[17] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic
assembly: A survey,” Robotics, vol. 7, no. 2, p. 17, 2018.

[18] M. Kyrarini, M. A. Haseeb, D. Ristić-Durrant, and A. Gräser, “Robot
learning of industrial assembly task via human demonstrations,” Au-
tonomous Robots, vol. 43, no. 1, pp. 239–257, 2019.

[19] Y. Shi, Z. Chen, Y. Wu, D. Henkel, S. Riedel, H. Liu, Q. Feng,
and J. Zhang, “Combining learning from demonstration with learning
by exploration to facilitate contact-rich tasks,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 1062–1069.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[21] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford et al., “The limits and
potentials of deep learning for robotics,” The International Journal of
Robotics Research, vol. 37, no. 4-5, pp. 405–420, 2018.

[22] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[23] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Qt-

opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” arXiv preprint arXiv:1806.10293, 2018.

[24] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[25] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, “Deep
reinforcement learning for robotic assembly of mixed deformable
and rigid objects,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 2062–2069.

[26] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana,
“Deep reinforcement learning for high precision assembly tasks,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 819–825.

[27] M. Kaspar, J. D. M. Osorio, and J. Bock, “Sim2real transfer for
reinforcement learning without dynamics randomization,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 4383–4388.

[28] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E. Solowjow,
and S. Levine, “Deep reinforcement learning for industrial inser-
tion tasks with visual inputs and natural rewards,” arXiv preprint
arXiv:1906.05841, 2019.

[29] O. Spector and D. Di Castro, “Insertionnet-a scalable solution for
insertion,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
5509–5516, 2021.

[30] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, F. Golemo, M. Mozifian,
C. Atkeson, D. Fox, K. Goldberg, J. Leonard et al., “Perspectives on
sim2real transfer for robotics: A summary of the r: Ss 2020 workshop,”
arXiv preprint arXiv:2012.03806, 2020.

[31] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, no. 4-5, pp. 698–721, 2021.

[32] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[33] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[34] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adver-
sarial networks,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[35] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta rein-
forcement learning for sim-to-real domain adaptation,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 2725–2731.

[36] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[37] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics
Research, vol. 37, no. 4-5, pp. 421–436, 2018.

[38] “Bullet physics engine,” https://pybullet.org/wordpress/.
[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-

man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[40] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning. PMLR,
2018, pp. 1861–1870.

[41] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei,
A. Garg, and J. Bohg, “Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-rich
tasks,” arXiv preprint arXiv:1810.10191, 2018.

[42] N. Hogan, “Impedance control: An approach to manipulation: Part
itheory,” 1985.

[43] R. Song, F. Li, T. Fu, and J. Zhao, “A robotic automatic assembly
system based on vision,” Applied Sciences, vol. 10, no. 3, p. 1157,
2020.

https://pybullet.org/wordpress/

	I INTRODUCTION
	II RELATED WORK AND BACKGROUND
	II-A Contact-Rich Assembly
	II-B Reinforcement Learning
	II-C CycleGAN
	II-D Sim-to-Real Transfer

	III PROBLEM STATEMENT
	IV FRAMEWORK DESIGN
	IV-A Learning Framework in Simulation
	IV-A.1 Policy
	IV-A.2 States
	IV-A.3 Actions
	IV-A.4 Rewards

	IV-B Transfer Framework to Real-world Environment
	IV-B.1 Observation Space Transfer
	IV-B.2 Action Space Transfer

	V EXPERIMENTS
	V-A Simulation Experiment
	V-A.1 Observation Space Comparison
	V-A.2 Different Scene Evaluation

	V-B Real-World Environment Experiment

	VI CONCLUSIONS AND DISCUSSIONS
	References

