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Motivation, history and background

Motivations for vines

Many multivariate data structures exhibit
◮ different marginal distributions
◮ nonsymmetric dependencies between some pairs of variables
◮ heavy tail dependencies between some pairs of variables

These cannot be modeled with standard parametric distributions such
as the Gaussian ormultivariate t distribution

The copula approach allows to model dependencies and marginal
distributions separately.

However standard multivariate copula models such as the elliptical
and Archimedean copulas do not allow for different dependency
models between pairs of variables.

Vine models can overcome all these shortcomings.
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Motivation, history and background

Some history of vine models

Joe (1996) gave a probabilistic construction of multivariate
distributions functions based on simple building blocks called
pair-copulas.

Bedford and Cooke (2001) and Bedford and Cooke (2002) organized
these constructions in a graphical way called regular vines and gave
expression for the joint density.

Estimation for the Gaussian case was considered in the book by
Kurowicka and Cooke (2006).

Aas et al. (2009) used the PCC construction to construct flexible
multivariate copulas based on pair-copulas such as bivariate Gaussian,
t-, Gumbel and Clayton copulas and provided likelihood expressions.

First and second vine workshops took place in Delft in Nov. 2007 and
Dec. 2008, a third one took place in Oslo in Dec. 2009. Workshop
results are published in Kurowicka and Joe (2011).

A recent survey about PCC models is Czado (2010).
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Motivation, history and background

Copula approach
Consider n random variables X = (X1, . . . ,Xn) with

joint pdf f (x1, . . . , xn) and marginal pdf’s fi (xi ), i = 1, . . . , n

joint cdf F (x1, . . . , xn) and marginal cdf’s Fi(xi ), i = 1, . . . , n

f (·|·) denote corresponding conditional pdf’s.

F (·|·) denote corresponding conditional cdf’s.

Copula

A copula with C (u1, . . . , un) and copula density c(u1, . . . , un) is a
multivariate distribution on [0, 1]n with uniformly distributed marginals.

Sklar’s Theorem (1959) for n=2

f (x1, x2) = c12(F1(x1),F2(x2)) · f1(x1) · f2(x2) (1)

f (x2|x1) = c12(F1(x1),F2(x2)) · f2(x2)

for some bivariate copula density c12(·).
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Motivation, history and background

Common bivariate copula distributions

Elliptical copulas
According to Sklar copulas can be created using multivariate
distributions F , i.e.

C (u1, u2) = F (F−1
1 (u1),F

−1
2 (u2)), u1, u2 ∈ (0, 1)

◮ Normal copulas (derived from bivariate normal with zero means, unit
variances and correlation ρ)

◮ t-copulas (derived from bivariate t-distribution with zero mean, degree
of freedom ν and association ρ)

Archimedean copulas
◮ Clayton C (u1, u2) = (u−δ

1 + u−δ
2 − 1)−1/δ, δ > 0

◮ Gumbel C (u1, u2) = exp
[

−
{

(− log u1)
δ + (− log u1)

δ)
}−1/δ

]

, δ > 1

Reference books: Joe (1997) and Nelsen (2006)
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Pair-copula constructions (PCC) of vine distributions

Pair-copula constructions in 3 dimensions

f (x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1)

Using Sklar for f (x1, x2), f13|2(x1, x3|x2) and f (x2, x3) implies

f2|1(x2|x1) = c12(F1(x1),F2(x2))f2(x2)

f13|2(x1, x3|x2) = c13|2(F1|2(x1|x2),F3|2(x3|x2))f1|2(x1|x2)f3|2(x3|x2)

f3|12(x3|x1, x2) = c13|2(F1|2(x1|x2),F3|2(x3|x2))f3|2(x3|x2)

f3|2(x3|x2) = c23(F2(x2),F3(x3))f3(x3)

f3|12(x3|x1, x2) = c13|2(F1|2(x1|x2),F3|2(x3|x2))c23(F2(x2),F3(x3))f3(x3)

f (x1, x2, x3) = c13|2(F1|2(x1|x2),F3|2(x3|x2))c23(F2(x2),F3(x3))

× c12(F1(x1),F2(x2))

× f3(x3)f2(x2)f1(x1)
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Pair-copula constructions (PCC) of vine distributions

Pair-copula constructions (PCC) in n dimensions

Factorization

f (x1, . . . , xn) = [

n
∏

t=2

f (xt |x1, . . . , xt−1)] · f1(x1) (2)

For distinct i , j , i1, · · · , ik with i < j and i1 < · · · < ik let

ci ,j |i1,··· ,ik := ci ,j |i1,··· ,ik (F (xi |xi1 , · · · , xik ), (F (xj |xi1, · · · , xik ))

Reexpress f (xt |x1, · · · , xt−1) as

f (xt |x1, · · · , xt−1) = c1,t|2,··· ,t−1 × f (xt |x2, · · · , xt−1)

= [
t−2
∏

s=1

cs,t|s+1,··· ,t−1]× c(t−1),t × ft(xt)

8 / 34



Pair-copula constructions (PCC) of vine distributions

PCC decomposition

Using (2) and s = i , t = i + j it follows that

f (x1, . . . , xn) = [

n−1
∏

j=1

n−j
∏

i=1

ci ,(i+j)|(i+1),··· ,(i+j−1)] · [

n
∏

k=1

fk(xk)] (3)

A decomposition such as (3) is called a pair copula decomposition
(PCC). There are many.

Bedford and Cooke (2001) introduced a graphical structure called
regular vine tree structure to help organize them.
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Pair-copula constructions (PCC) of vine distributions

Regular vine distribution

An n-dimensional vine tree structure is a sequence of n-1 trees

Tree j has n + 1− j nodes and n − j edges.

Edges in tree j become nodes in tree j + 1.

Proximity condition: Two nodes in tree j + 1 are joined by an edge
if the corresponding edges in tree j share a node.

A regular vine distribution is defined by

A regular vine tree structure

Each edge corresponds to a pair-copula density.

The density of a regular vine distribution is defined by the product of
pair copula densities over the n(n−1)

2 edges identified by the regular
vine tree structure and the product of the marginal densities.
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Examples and illustration of regular vine distributions

Canonical vine distributions
are regular vine distribution for which each tree has a unique node that is
connected to n− j edges.

f12345 = f1 · f2 · f3 · f4 · f5 · c12 · c13 · c14 · c15 · c23|1 · c24|1 · c25|1 · c34|12 · c35|12 · c45|123
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T
4
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Examples and illustration of regular vine distributions

D-vine distributions
are regular vine distributions for which no node in any tree is connected to
more than two edges

f12345 = f1 · f2 · f3 · f4 · f5 · c12 · c23 · c34 · c45 · c13|2 · c24|3 · c35|4 · c14|23 · c25|34 · c15|234

1      2              3                4                5

12    23                 34               45

12             23             34              45
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Examples and illustration of regular vine distributions

A seven dimensional regular vine tree structure

1 2 3 4

5 6 7

1, 2 2, 3 3, 4

2, 5 3, 6 6, 7
(T1)

1, 2 2, 3 3, 6 6, 7

2, 5 3, 4

1, 3|2 2, 6|3 3, 7|6

2, 4|33, 5|2

(T2)

1, 3|2 2, 6|3 3, 7|6

2, 4|3 3, 5|2

1, 6|23 2, 7|36

1, 5|231, 4|23

(T3)

1, 4|23 1, 5|23 1, 6|23 2, 7|36
5, 6|1234, 5|123 1, 7|236

(T4)

4, 5|123 5, 6|123 1, 7|236
4, 6|1235 5, 7|1236

(T5)

4, 6|1235 5, 7|1236
4, 7|12356

(T6)
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Examples and illustration of regular vine distributions

Storing regular vines specifications in matrices
R-vine matrix

(Morales-Napoles (2008),Dissmann (2010)):

M =





















4
7 5
6 7 1
5 6 7 7
1 1 6 2 6
2 3 3 3 2 2
3 2 2 6 3 3 3





















Indices for pair-copulas in corresponding R-vine distribution:

col 1 col 2 col 3 col 4 col 5 col 6
4, 7|6, 5, 1, 2, 3 5, 7|6, 1, 3, 2 1, 7|6, 2, 3 7, 2|3, 6 6, 2|3 2, 3
4, 6|5, 1, 2, 3 5, 6|1, 3, 2 1, 6|3, 2 7, 3|6 6, 3
4, 5|1, 2, 3 5, 1|3, 2 1, 3|2 7, 6
4, 1|2, 3 5, 3|2 1, 2
4, 2|3 5, 2
4, 3
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Examples and illustration of regular vine distributions

Conditional cdf’s
For v = (v1, . . . , vd ) and v−j = (v1, . . . , vj−1, vj+1, . . . , vd ) j = 1, . . . , d

f (x |v) = cxvj |v−j
(F (x |v−j),F (vj |v−j)) · f (x |v−j)

Univariate v :

Since f (x |v) = cxv (Fx(x),Fv (v))fx(x) we have

F (x |v) =

∫ x

−∞
cxv (Fx(u),Fv (v))fx(u)du

=

∫ x

−∞

∂ Cxv (Fx(u),Fv (v))

∂Fx(u) ∂Fv (v)
fx(u)du

=
∂ Cxv (Fx(x),Fv (v))

∂Fv (v)

General v :

Under regularity conditions Joe (1996) showed that

F (x |v) =
∂ Cx ,vj |v−j

(F (x |v−j),F (vj |v−j))

∂F (vj |v−j)
.
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Examples and illustration of regular vine distributions

Illustration of 3 dim. D/C vine
Contours of bivariate 13 margins with standard normal margins after
integration (C=Clayton, G=Gumbel, t=Student, F=Frank, J=Joe)

DV(G( 1 ),C( −7 ),C( −7 ))
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DV(t( 0.8 , 1.2 ),G( 1.75 ),t( −0.95 , 2.5 ))
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DV(F( −40 ),C( 20 ),F( 100 ))
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DV(J( −4 ),J( 24 ),J( 7 ))
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−
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Examples and illustration of regular vine distributions

Scope of the vine models

For simplicity the parameters of the pair-copulas are chosen to be
independent of conditioning values. The arguments however depend
on the conditioning values.

Haff et al. (2010) and Stöber and Czado (2011) give some examples
where the pair copula parameters depend on the specific conditioning
values

Haff et al. (2010) show that this restriction is not severe in examples.

The following copula classes are vine copulas
◮ multivariate Gaussian copula
◮ multivariate t copula
◮ multivariate Clayton copula (Takahashi (1965),

Stöber and Czado (2011))

The number of different vine tree structures is huge, see
Morales-Nápoles et al. (2010)

Flexibility is added by allowing for different pair copula families.

Efficient estimation and model selection methods are vital
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Estimation methods for PCC’s

Estimation methods for PCC’s
Sequential estimation:

◮ Here the parameters are sequentially estimated starting from the top
tree structure.

◮ Asymptotic theory is available (Haff (2010)), however analytical
standard errors are difficult to compute.

◮ Sequential estimates can be used as starting values for maximum
likelihood

Maximum likelihood estimation:
◮ Asymptotically efficient under regularity conditions.
◮ Estimates of standard errors can be based on inverse Hessian matrix
◮ Numerical problems for large dimensions, i.e. negative variance

estimates might occur
◮ Uncertainty in value-at-risk (high quantiles) is difficult to assess

Bayesian estimation:
◮ Bayesian estimation is facilitated used Markov Chain Monte Carlo

(MCMC) methods based on Metroplis-Hastings steps.
◮ Credible interval estimates provide uncertainty assessment for

parameter estimates, dependence estimates and value-at-risk estimates.
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Estimation methods for PCC’s

Sequential and ML estimation for PCC’s (n=3)
Parameters: Θ = (Θ12,Θ23,Θ13|2)
Observations: {(x1t , x2t , x3t), t = 1, · · · ,T}

Sequential estimates:

Estimate

Estimate Θ12 from {(x1,t , x2,t), t = 1, · · · ,T}

Estimate Θ23 from {(x2,t , x3,t), t = 1, · · · ,T}.

Define pseudo observations

v̂1|2t := F (x1t |x2t , Θ̂12) and v̂3|2t := F (x2t |x3t , Θ̂23)

Finally estimate Θ13|2 from {(v̂1|2t , v̂3|2t), t = 1, · · · ,T}.

Maximum likelihood

L(Θ|x) =

T
∑

t=1

[log c12(x1t , x2t |Θ12) + log c23(x2t , x3t |Θ23)

+ log c13|2(F (x1t |x2t ,Θ12),F (x2t |x3t ,Θ23)|Θ13|2)]
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Model selection

Model selection: early approaches

For data components ordered sequentially (e.g. time) use D-vine with
same order

For n ≤ 4 and single pair copula type all models are fitted

Restrict to either D vines or C vines and single pair copula type

Select D order such that all or most of the strongest pair wise
dependencies are contained in the first tree (Aas et al. (2009))

Brechmann (2010) showed in simulation that AIC works well for pair
copula type selection
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Model selection

Model selection: more advanced approaches

Bayesian model selection strategies were used in D-vines with single
pair copula type by Min and Czado (2009) and Smith et al. (2010).

Select tree structure, pair copula types and their parameters for
R-vines sequentially using maximal spanning tree algorithms with
Kendall’s τ as weights and sequential estimation from top tree until
the last tree (see later example from Dißmann et al. (2011)).

For D-vines a Hamiltonian path has be to found, i.e. a traveling
salesman problem has to be solved.

For C-vines a root node in each tree which maximizes the sum of
absolute Kendall’s τ is found (Czado et al. 2011).

Kurowicka (2011) starts building trees from last tree to top tree by
using empirical partial correlations as approximate measure of
pairwise dependence

Brechmann et al. (2010) searches for truncated vines (independent
pair-copulas for later trees) by using Vuong (1989) tests to select
truncation level
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Special vine models

Special vine models

vine copulas with time varying parameters

regime switching vine models

vine copulas with non parametric pair copulas

Non Gaussian directed acyclic graphical (DAG) models based on
PCC’s

discrete vine copulas

truncated and simplified R-vines

spatial vines
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Applications

Applications

Application dimensions:
◮ Gaussian vines in arbitrary dimensions (Kurowicka and Cooke 2006)
◮ First non Gaussian D-vine models using joint ML were in 4 dimensions
◮ Bayesian D-vine applications in 7 and 12 dimensions with credible

intervals
◮ Joint ML now feasible in 50 dimensions for R-vines
◮ Sequential and joint ML estimation in truncated R-vines and regular

vine market sector models in 50 dim. (Brechmann and Czado (2011))
◮ Heinen and Valdesogo (2009) propose and sequentially fit a canonical

vine autoregressive model in 100 dimensions

Application areas:
◮ finance: indices, exchange rates, multivariate options,order books
◮ insurance: number of claims, claim size in different categories
◮ genetics: gene interactions
◮ health: severity of headaches
◮ hydrology:
◮ images: radar polarimetric data estimates land use
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Applications

Building R-vine based models for financial Stock

Indices

Investigated 16 indices including 5 equity, 9 fixed income and 2
commodity indices recorded daily between Dec 29, 2001 and Dec 14,
2009

Data is not an i.i.d. sample, therefore marginal and copula
parameters have to be estimated.

Two-step estimation of marginal and copula parameters

Estimate margins using ARMA(1,1)-GARCH(1,1) model with
Gaussian, t and skewed t-innovation for some currencies to form
standardized residuals

We use ranks of standardized residuals to transform to copula data

Reference: Dissmann (2010) and Dißmann et al. (2011)
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Applications

Pairs plots and Kendall’s τ for representatives

Kendall’s τ := 4

∫ 1

0

∫ 1

0
C (u1, u2)dC (u1, u2)− 1
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Applications

Finding Regular Vine Tree Structures

1 Using the maximal spanning tree algorithm of Prim
Dißmann et al. (2011) find the first regular vine tree with maximal
sum of empirical Kendall’s τ values based on pairs.

2 The copula family types (Gauss, t, Gumbel and rotated versions,
Frank) for each selected pair in the first tree will be determined by
using AIC (see Brechmann (2010))

3 For next tree consider all edges which do not violate the proximity
condition. Generate all necessary pseudo observations corresponding
to a possible edge and estimate the corresponding Kendall’s τ .

4 A test for independence based on Kendall’s τ can be used to replace
pair copulas by the independence copula.

5 Apply the first step again until all trees and their pair copulas are
determined. This will also provide sequential estimates.

Dißmann et al. (2011) provide algorithmic expressions for the joint
likelihood of an R-vine and use them for ML estimation.
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Applications

Investigated vine models

mixed R-vine: R-vine with pair-copula terms chosen individually
from 7 bivariate copula types (Gauss, Student-t, Gumbel, survival
Gumbel, rotated Gumbel (90 and 270 degrees), Frank).

R-vine indep: Same as mixed R-vine but pair copulas replaced by
independence copula, when indicated by independence test based on
Kendall’s τ .

mixed C-vine: C-vine with pair-copula terms chosen individually
from 7 bivariate copula types (see above).

mixed D-vine: D-vine with pair-copula terms chosen individually
from 7 bivariate copula types (see above).

all t R-vine: R-vine with each pair-copula term chosen as bivariate
Student-t copula (If the df > 30, then replaced with Gaussian.)

multivariate Gauss: R-vine with each pair-copula term chosen as
bivariate Gaussian copula,
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Applications

First regular vine tree for financial indices data
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Comm

Gold
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Applications

Results

R-vine R-vine R-vine R-vine C-vine D-vine
mixed all t all Gauss indep. mixed mixed

Seq. log likelihood 36431.22 36417.35 30445.47 36331.86 36366.89 36300.51
Log likelihood 36514.03 36513.44 31784.07 36396.80 36476.36 36422.53
# Parameters 171 179 120 108 178 176

Indep. 0 0 0 55 0 0
Gauss 16 61 120 8 19 18

Student-t 51 59 0 43 58 56
Gumbel 4 0 0 1 8 7

Surv. Gumbel 7 0 0 1 8 6
Rot. Gumbel 12 0 0 2 11 9

Frank 30 0 0 10 16 24

Using Vuong (1989) tests with Schwartz correction show that mixed
R-vine is preferred over all other vine models. A further improvement is
visible when independence pair copulas are allowed.

Mixed R-vines are needed
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Summary and outlook

Summary and extensions

PCC’s such as C-, D- and R-vines allow for very flexible class of
multivariate distributions

Efficient parameter estimation methods are available for dimensions
up to 50

Model selection of vine tree structures and pair copula types for
regular vines still needs further work

Efficient distance measures between vine distributions would be useful

Fast forecasting methods are needed for non Gaussian vine
distributions

Use of Non Gaussian vine models in data mining

Substantial applications
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Summary and outlook

Thank you for your attention and I hope you enjoyed your
visit to the world of vines

Thanks to my collaborators (K. Aas, A. Frigessi, A. Min, E.
Brechmann, C. Almeida, M. Smith, A. Panagiotelis, A. Bauer, T.
Klein, M. Hofmann, J. Dißmann, H. Joe, J. Stöber, U. Schepsmeier,
D. Kurowicka ...)
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