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Motivation and background

Why are vine copulas useful?

Multivariate data has often complex dependency patterns, such as
asymmetry and dependence in the extremes

Cannot be captured by the multivariate normal distribution.

The copula approach allows for these dependency patterns

Current classes of multivariate copulas such as Gaussian, Student t
and Archimedean copulas are too restrictive

They require often exchangeability and that the distribution of pairs
are of same kind

Vine copulas allow for flexible modeling of (conditional) pairs
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Copulas

What are copulas and how it all started ...

Consider d random variables X = (X1, ...,Xd ) with

density function distribution function

marginal fi (xi ), i = 1, ..., d Fi (xi ), i = 1, ..., d

joint f (x1, ..., xd ) F (x1, ..., xd )

conditional fi |j (xi |xj ), i 6= j Fi |j (xi |xj ), i 6= j

Copula

A d-dimensional copula C is a multivariate distribution on [0, 1]d with
uniformly distributed marginals.

Copula density function: c(u1, ..., ud ) := ∂d

∂u1...∂ud
C (u1, ..., ud )
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Copulas

Sklar’s Theorem

Theorem (Sklar 1959)

F (x1, ..., xd ) = C (F1(x1), ...,Fd (xd ))

f (x1, ..., xd ) = c(F1(x1), ...,Fd (xd ))f1(x1)...fd (xd )

for some d-dimensional copula C .

d = 2 :
f (x1, x2) = c12(F1(x1),F2(x2))f1(x1)f2(x2)

f2|1(x2|x1) = c12(F1(x1),F2(x2))f2(x2)
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Copulas

What are these vine copulas?

Multivariate vine copulas are copulas built out of bivariate copulas.

A pair copula construction (PCC) is possible through conditioning.
Joe (1996) gave a first example.

Many PCC’s are feasible. Bedford and Cooke (2002) introduced a
graphical structure to organize them.

Gaussian vines were analyzed in Kurowicka and Cooke (2006) while
ML estimation for Non Gaussian ones started with Aas et al. (2009).

See also vine-copula.org
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Pair-copula constructions (PCC) of vine distributions

How does this work in 3 dimensions?

f (x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1)

Using Sklar for f (x1, x2), f (x2, x3) and f13|2(x1, x3|x2) implies

f2|1(x2|x1) = c12(F1(x1),F2(x2))f2(x2)

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2),F3|2(x3|x2))f3|2(x3|x2)

= c13;2(F1|2(x1|x2),F3|2(x3|x2))c23(F2(x2),F3(x3))f3(x3)

f (x1, x2, x3) = c13;2(F1|2(x1|x2),F3|2(x3|x2))c23(F2(x2),F3(x3))

× c12(F1(x1),F2(x2))

× f3(x3)f2(x2)f1(x1)

The copula corresponding to the distribution of (X1,X3) given X2 = x2 is
denoted by c13;2. Only bivariate copulas and univariate conditional cdf’s
are used. This can be easily generalized to d dimensions.
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Pair-copula constructions (PCC) of vine distributions

What bivariate copula families are available?

Elliptical: Construction by inversion

C (u1, u2) = F (F−1
1 (u1),F−1

2 (u2)), u1, u2 ∈ (0, 1),

where F is elliptical.

Examples: Gaussian, Student’s t

Archemedean: Construction through generator ϕ

C (u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)), u1, u2 ∈ (0, 1).

(McNeil and Nešlehová 2009)

Examples: Clayton, Gumbel, Frank, Joe ...

Books: Joe (1997) and Nelsen (2006)
Extensions: Rotations by 90, 180 (survival) and 270 degree
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Pair-copula constructions (PCC) of vine distributions

Bivariate elliptical copula families

Gaussian copula
(left τ = .25, right: τ = .75)

symmetric dependence
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t-copula with df = 3
(left τ = .25, right: τ = .75)

symmetric dependence
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Pair-copula constructions (PCC) of vine distributions

Bivariate Archimedean copula families

Gumbel copula
(left τ = .25, right: τ = .75)

upper tail dependent
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(left τ = .25, right: τ = .75)

lower tail dependent
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Pair-copula constructions (PCC) of vine distributions

How do vines work in higher dimensions?

Which pairs of variables are needed?

What are the conditioning variables?

Components of a regular vine R(V , C,θ) distribution

1 Tree structure V of linked trees identifies the pairs of variables and
conditioning variables.

2 Parametric bivariate copulas C = C(V) for each edge in the tree structure

3 Corresponding parameter value θ = θ(C(V))

Joe (1996) showed that conditional distribution functions can be
computed recursively. For v = (vj , v−j ) we have

F (x |v) =
∂Cxvj ;v−j (F (x |v−j ),F (vj |v−j ))

∂F (vj |v−j )
.
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Pair-copula constructions (PCC) of vine distributions

Can we see an example of a tree structure?

2

5 1 4

3

1,5 1,4

2,4

3,4 T1

2,4

1,5 1,4

3,4

4,5|1

1,2|4

1,3|4 T2

4,5|1 1,3|4 1,2|4
3,5|14 2,3|14

T3

3,5|14 2,3|14
2,5|134

T4

Density

f = f1 · f2 · f3 · f4 · f5
· c14 · c15 · c24 · c34

· c12;4 · c13;4 · c45;1

· c23;14 · c35;14

· c25;134
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Pair-copula constructions (PCC) of vine distributions

How is a regular vine tree structure defined?

An d-dimensional vine tree structure V = {T1, . . . ,Td−1} is a sequence of
d − 1 linked trees with

Vine tree structure (Bedford and Cooke (2002))

Tree T1 is a tree on nodes 1 to d .

Tree Tj has d + 1− j nodes and d − j edges.

Edges in tree Tj become nodes in tree Tj+1.

Proximity condition: Two nodes in tree Tj+1 can be joined by an
edge only if the corresponding edges in tree Tj share a node.

Are there special cases?

D-vines use only path like trees

canonical (C)-vines use only star like tree

13 / 49



Pair-copula constructions (PCC) of vine distributions

How do these C and D-vines look like?

C-vine: each tree has a unique
node connected to d − j edges

f1234 = [
4∏

i=1

fi ] · c12 · c13 · c14

·c23;1 · c24;1 · c34;12

useful for ordering by importance

2 3

1 4

12

13

14
tree 1

13

12 14

23|1

24|1
tree 2

23|1 24|1
34|12

tree 3

D-vine: no node is connected to
more than 2 edges

f1234 = [
4∏

i=1

fi ] · c12 · c23 · c34

·c13;2 · c24;3 · c14;23

useful for temporal ordering of variables

1 2 3 4
12 23 34

tree 1

12 23 34
13|2 24|3

tree 2

13|2 24|3
14|23

tree 3
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Pair-copula constructions (PCC) of vine distributions

General density expressions

C-vine (Aas et al. 2009)

f (x1, . . . xd ) =

[
d∏

k=1

f (xk )

]
×

d−1∏
j=1

d−j∏
i=1

cj,j+i ;1,...,j−1



D-vine (Aas et al. 2009)

f (x1, . . . xd ) =

[
d∏

k=1

f (xk )

]
×

d−1∏
j=1

d−j∏
i=1

ci,i+j ;i+1,...,i+j−1



Regular vine (Dißmann et al. 2013)

f (x1, ..., xd ) =

[
d∏

k=1

fk (xk )

]
×

 1∏
j=d−1

j+1∏
i=d

cmj,j ,mi,j ;mi+1,j ,...,mn,j


Here, mi,j refers to element (i , j) in the matrix representation of the R-vine. 15 / 49



Pair-copula constructions (PCC) of vine distributions

What is the scope of the vine models?

Vine copula classes
(Stöber et al. (2013))

multivariate Gaussian copula
(pair copulas are Gauss and
parameters are partial
correlations)

multivariate t copula (pair
copulas are t and df
increases by ` for trees
` ≥ 2)

multivariate Clayton copula
(Takahasi (1965))

Contours of bivariate (1,3) mar-
gins with standard normal margins

DV(G( 1 ),C( −7 ),C( −7 ))

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

DV(t( 0.8 , 1.2 ),G( 1.75 ),t( −0.95 , 2.5 ))

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

DV(F( −40 ),C( 20 ),F( 100 ))

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

DV(J( −4 ),J( 24 ),J( 7 ))

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(C=Clayton, G=Gumbel, t=Student,

F=Frank, J=Joe)
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Pair-copula constructions (PCC) of vine distributions

Number of R-vine tree structures and copulas

Dimension n #R-vine tree structure 1 #R-vine copulas 2

2 1 7
3 3 1,029
4 24 2,823,576
5 480 1.3559e+11
6 23,040 1.0938e+17
7 2,580,480 1.4413e+24
8 660,602,880 3.0387e+32
9 3.8051e+11 1.0090e+42

10 4.8705e+14 5.2118e+52

Efficient estimation and model selection are crucial

1see Morales-Nápoles et al. (2010) for details.
2This assumes 7 candidate pair copula families.
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How can we estimate and select PCCs?

How can we estimate and select PCCs?
Three problems: (Czado et al. (2013))

1 How to estimate the pair copula parameters for a given vine tree
structure and pair copula families for each edge?

2 How to choose the pair copula families and estimate the
corresponding parameters for a given vine tree structure?

3 How to select and estimate all components of a regular vine?

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

tau = 0.3

 

 

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

tau = 0.5

 

 

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

tau = 0.7

 

 

tau = 0.3

 0.01 

 0.05 

 0.1 

 0.15 

−3 −1 0 1 2 3
−

3
−

2
−

1
0

1
2

3

tau = 0.5

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

tau = 0.7

 0.01 

 0.05 

 0.
1 

 0
.1

5 

 0.2 

−3 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

18 / 49



How can we estimate and select PCCs?

Problem 1: Parameter estimation for given tree
structure and copula families

Sequential estimation:
I Parameters are sequentially estimated starting from top tree until last

(Aas et al. (2009), Czado et al. (2012)).
I Asymptotic theory developed by Hobæk Haff (2013), Hobæk Haff

(2012), however standard error estimates can only be bootstrapped.
I starting values for maximum likelihood.

Maximum likelihood estimation:
I Asymptotically efficient and standard errors have been directly

estimated in Stoeber and Schepsmeier (2013)
I Uncertainty in value-at-risk (high quantiles) is difficult to assess.

Bayesian estimation:
I Posterior is tractable using Markov Chain Monte Carlo (Min and Czado

(2011) for D-vines and Gruber (2011) for R-vines)
I Prior beliefs can be incorporated and credible intervals allow to assess

uncertainty.
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How can we estimate and select PCCs?

How does sequential and ML estimation work?
Parameters: Θ = (θ12, θ23, θ13;2)
Observations: {(x1t , x2t , x3t), t = 1, · · · ,T}
Sequential estimates:

Estimate θ12 from {(x1,t , x2,t), t = 1, · · · ,T}
Estimate θ23 from {(x2,t , x3,t), t = 1, · · · ,T}.
Define pseudo observations

v̂1|2t := F (x1t |x2t , θ̂12) and v̂3|2t := F (x3t |x2t , θ̂23)

Finally estimate θ13;2 from {(v̂1|2t , v̂3|2t), t = 1, · · · ,T}.

Maximum likelihood

L(Θ|x) =
T∑

t=1

[log c12(x1t , x2t |θ12) + log c23(x2t , x3t |θ23)

+ log c13;2(F (x1t |x2t , θ12),F (x3t |x2t , θ23)|θ13;2)]
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How can we estimate and select PCCs?

Problem 2: Joint estimation of pair copula families
and parameters

Classical approach:
I Restrict to a set of bivariate pair copula families and use AIC or Vuong

test to select family
I Check for truncation possibilities (Brechmann et al. (2012)) by using

independence copulas in higher trees
Bayesian approach:

I Reversible jump (RJ) MCMC (Min and Czado (2011))
I MCMC with model indicators (Smith et al. (2010)) choosing between

an independence copula and a fixed copula family.

Only one more problem to go ...
sequential treewise approach
(see Dißmann et al. (2013))

Bayesian sequential and
joint approaches (see Gruber
and Czado (2012), Gruber and
Czado (2013))
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How can we estimate and select PCCs?

Problem 3: How does this treewise selection work?

Idea: Capture strong pairwise dependencies first

For Tree ` = 1, . . . , d − 1

1 Calculate an empirical dependence measure δ̂jk|D for all variable pairs
{jk|D} (→ edge weights: Kendall’s τ , tail dependence coefficients)
allowed by proximity (D is empty for Tree 1).

2 Select the tree on all nodes that maximizes the sum of absolute
empirical dependencies (→ maximum spanning tree). Choose
independence copula if possible.

3 For each selected edge {j , k} ({j , k}|D ) in Tree 1 (in Tree ` > 1),
select copula family and estimate the corresponding parameter(s).

4 Transform to pseudo observations: Fj |k∪D(uij |ui ,k∪D , θ̂j ,k;D) and

Fk|j∪D(uik |ui ,j∪D , θ̂j ,k;D), i = 1, ..., n.
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How can we estimate and select PCCs?

What does this look like for Tree 1?

(1) Pairwise dependencies. (2) Maximum dependence tree.

Czado, Jeske, and Hofmann (2013) compare sequential selection strategies
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How can we estimate and select PCCs?

Problem 3: Three approaches to full R-vine selection

dV number of parameters in R-vine (V,B(V),θ(B(V)))

T` tree ` of vine tree structure V
B` set of pair copula families for all edges in T`

d` number of parameters in Tree T`

Dissmann et. al Gruber/Czado Gruber/Czado

2013 2012 2013

Appr. Frequentist Bayesian Bayesian

level-by-level level-by-level all levels jointly

Priors T` ∼ Unif (·)
B` | T` ∼ exp(−λd`)

θ` | T`,B` ∼ Unif (·)

V ∼ Unif (·)
BV | V ∼ exp(−λdV)

θV | V,BV ∼ Unif (·)

Method Select MST RJ MCMC RJ MCMC

with weights
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How can we estimate and select PCCs?

Proposal strategies (Gruber and Czado 2012;
Gruber and Czado 2013)

Use a mixture of two mutually exclusive, collectively exhaustive
algorithms for the between models move:

I FAM only updates the pair copula families;
I TREE updates the tree structure and the pair copula families and

guarantees that the current tree is not proposed.

Draw proposal trees from a uniform distribution over all trees allowed
by the proximity condition (only TREE).

Compute the MLEs of the parameters for all candidate pair copula
families.

Draw the proposal pair copulas from a discrete distribution with
weights proportional to the copulas’ maximum likelihoods.

Draw the proposal parameters from a mixture of truncated normal
distributions with varying variances, centered at the MLE.
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How can we estimate and select PCCs?

Simulation study for R-vine copula selection

4 R-vine copula models in 6 dimensions were chosen.

Model 1 and 2 have the same R-vine tree structure and pair copula
families but different parameter values, stronger dependencies in
Model 2

Model 3 is a C-vine and Model 4 is Gauss copula

Model 1:

21 3 5

6

4

G(0.6) C(2) G(-0.5)

C180(2)

T(0.7, 5)

1,2 2,3

3,4

3,5

3,6
G(0.35)

C270(1)

G(-0.3)

G(1.8)

1,3|2

2,4|3

2,5|3

2,6|3

T(0.3, 10)

G(-0.35)

C90(0.8)

1,4|2,3 1,5|2,31,6|2,3G(0.1) C(0.5)

4,6|1,2,3 5,6|1,2,3G180(1.1)
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How can we estimate and select PCCs?

Average percentage of true likelihood recovered

Procedure Model 1 Model 2 Model 3 Model 4 Mean
Gruber/Czado 2013 98.4 98.6 96.5 99.2 98.2
Gruber/Czado 2012 88.6 80.9 84.9 99.9 88.6
Dißmann et.al. 2013 86.6 75.1 78.9 99.7 85.1

Results are from Gruber and Czado (2013) based on 10 data sets of
size 500

The joint Bayesian procedure performs best

Model 4 is the multivariate Gaussian copula, which can be expressed
as any Gaussian vine

Because the selection of the regular vine tree structure does not
matter for Model 4, all model selection procedures perform uniformly
well.
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Applications

How does copula based estimation work?

Original scale: xi = (xi1, ..., xid ) ∈ Rd i.i.d. sample

Copula scale:
I Known margins: ui := (F1(xi1), ...,Fd (xid )) ∈ [0, 1]d (Probability

integral transform)
I Unknown margins: Estimate margins Fj either parametrically or

non-parametrically and then transform (two step procedure)

Marginal structures: If each margin has time series or regression
structure, then a copula model will be applied to the fitted
standardized residuals.
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Applications Risk management with vine models: Euro Stoxx 50

Application: Euro Stoxx 50:

50 large Eurozone companies.

Major market indicator for the Eurozone.

Brechmann and Czado (2013) consider 46 members from 5 countries
(Germany, France, Italy, Spain and the Netherlands) together with
their national indices.

Daily log returns: May 2006 to April 2010 (985 obs.)

Questions

How do stock returns depend on the European and the national
indices? Is dependence on the national index dominant?

Which dependencies are most important? Are they asymmetric
and/or heavy-tailed?
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Applications Risk management with vine models: Euro Stoxx 50

Copula based models for Euro Stoxx 50 returns:

Fit appropriate (ARMA-)GARCH models for each return time series.

Fit copula model such as R- and C-vine copulas as well as
multivariate Student-t copula for comparison to copula data based on
standardized residuals

Results

Copula Log No. of BIC
likelihood param.

R-vine 30879.60 596 -57651.19
C-vine 30839.68 685 -56957.90

Student-t 30691.36 1327 -52236.18

R-vine > C-vine > Student-t
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Applications Risk management with vine models: Euro Stoxx 50

First tree of R-vine and C-vine order
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Applications Dependencies among stock and volatility indices

Application: Stock and volatility indices (Beil 2013)

DAX: German stock index

VDAX: volatility index to the DAX

STOXX: Dow Jones Euro Stoxx 50

VSTOXX: volatility index to the STOXX

SP500: Standard and Poor’s 500 index

VIX: volatility index to SP500

DJ: Dow Jones UBS commodity index ex-agriculture and live stock

NKY: Nikkei -225 stock average

VNKY: volatility index to NKY

HSI: Hong Kong Hang Seng index

VHSI: volatility index to HSI

Daily values from June 2006 until June 2013 considered (1786 obs)
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Applications Dependencies among stock and volatility indices

Marginal models

Value of volatility index is the implied volatility of a 30 day option on
its underlying asset by the Black Scholes model

ARMA-(e)GARCH models with generalized hyperbolic innovation
distribution are to each time series

original time series residual time series
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Applications Dependencies among stock and volatility indices

Copula data and normalized contour plots
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Applications Dependencies among stock and volatility indices

Using AIC/BIC to compare models not reduced by
independence tests

loglik par AIC BIC

R-vine 8663.53 71 -17185.05 -16795.42
D-vine 8652.68 70 -17165.35 -16781.21
C-vine 8541.96 73 -16937.91 -16537.31

Gauss-copula 8033.01 55 -15956.03 -15654.20
T-copula 8308.15 56 -15755.92 -15448.60

T-vine 8525.14 80 -16890.28 -16451.26
If df > 30 for pair in T-vine then Gauss copula is used

R-vines are selected using the Dissmann algorithm with Gauss, T,
Gumbel, Clayton, Frank, Joe pair copulas and rotations are allowed

For T-vine only pair t-copulas are allowed

R-vine performs best compared to Gauss and T-copula
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Applications Dependencies among stock and volatility indices

Using AIC/BIC to compare models reduced by
independence tests comparison
More parsimonious models can be achieved by independence tests using
asymptotic theory of τ̂ .

loglik par AIC BIC

R-vine-ind 8606.27 51 -17110.54 -16830.67
D-vine-ind 8692.77 71 -17235.54 -16823.96
C-vine-ind 8524.54 58 -16933.07 -16614.78

Gauss-vine-ind 8013.50 41 -15945.00 -15720.01
T-vine-ind 8454.55 68 -16773.10 -16399.93

T-vine-fixed-ind 8470.37 59 -16822.74 -16498.96

T-vine-fixed-ind has the same tree structure as R-vine-ind but only T-
pair copulas are allowed

T-vine-ind might not have the same tree structure as R-vine-ind and
only T- pair copulas are allowed
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Applications Dependencies among stock and volatility indices

Model comparison using the Vuong test

statistic p.value decision alpha

0.16 0.87 R-vine equivalent D-vine 0.10
4.54 < 0.01 R-vine better C-vine 0.10
4.05 < 0.01 D-vine better C-vine 0.10
7.79 < 0.01 R-vine better T-vine 0.10
7.50 < 0.01 R-vine better T-vine-fixed 0.10

Test of Vuong (1989) is suited for comparing non nested models

BIC correction is used to obtain parsimony

R-vine and T-vine-fixed have same tree structure, while this is not
true for R-vine and T-vine

Everywhere models are reduced by independence tests
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Applications Dependencies among stock and volatility indices

First tree of R-vine and D-vine model

tree structures are quite different

asymmetry between volatility and asset indices

geographic clusters
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Applications Dependencies among stock and volatility indices

Unconditional fitted contours of R-vine and T-vine
with same R-vine structure

T-vine versus R-vine: Different fit especially for dependencies between
VIX-SP500, VNKY-NKY and VHSI-HSI
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Recent advances for vines

Recent advances for vines

Simplified and non simplified vines: Acar et al. (2012)

Time varying/regime switching regular vines: Almeida et al. (2012),
Stöber and Czado (2013)

Discrete and discrete/continuous vines: Panagiotelis et al. (2012),
Stöber (2013)

Non Gaussian DAG’s using pair copula constructions: Hanea et al.
(2006), Bauer and Czado (2012)

Vines with non parametric pair copulas: Kauermann and Schellhase
(2013), Lopez-Paz et al. (2013), Hobaek Haff and Segers (2012)

Acceleration of MCMC algorithms: Schmidl et al. (2013)

40 / 49



Recent advances for vines

Selected Applications

Financial risk management:
I Systemic risk simulation: Brechmann, Hendrich, and Czado (2013)
I Operational risk: Brechmann, Czado, and Paterlini (2013)
I Multivariate options: Bernard and Czado (2013)
I Realized volatility: Vaz de Melo Mendes and Accioly (2013)
I Insurance: Erhardt and Czado (2012)
I Portfolio management: Low, Alcock, Faff, and Brailsford (2013)

Hydrology: Gräler, van den Berg, Vandenberghe, Petroselli,
Grimaldi, De Baets, and Verhoest (2013)

Machine learning: Lopez-Paz, Hernández-Lobato, and Ghahramani
(2013),

Health: comorbidity Stöber, Czado, Hong, and Ghosh (2012)

Environmental Science: Gräler and Pebesma (2011), Pachali
(2011), Erhardt (2013)

41 / 49



Summary and outlook

What have we learned?

Standard multivariate copulas are less flexible, while PCCs such as C-,
D- and R-vines are much more flexible.

Sequential and MLE parameter estimation of C-, D- and R-vines are
available in R packages CDVine and VineCopula.

The vine tree and the pair copula familes matter in the selection of
good fitting PCCs.

The catalog of possible pair copula families should also include
nonsymmetric pair copulas such as the Tawn copula (Eschenburg
(2013))

Sequential and full Bayesian estimation and Bayesian model selection
of vine trees and copula families for regular vines available, but need
further testing and development
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Summary and outlook

What needs to be done?
non parametric pair copulas, spatial vines, large non Gaussian
Bayesian belief networks, vines for data mining, high dimensional GoF
for vines (Schepsmeier 2013)

more applications in finance, insurance, health, genetics ...

Vine resource page: vine-copula.org

Vine workshop book: Kurowicka and Joe (2011)

Spatial Copula Workshop

Host: Institute for Geoinformatics, Münster, Germany
Dates: 22nd and 23rd September 2014
Organizers: C. Czado and B. Gräler

Thanks to my collaborators
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