

Technische Universität München
TUM School of Computation, Information and Technology

Observation Petri Nets

Chana Yvonne Marie Weil-Kennedy

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung einer

 Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Prof. Dr. Francisco Javier Esparza Estaun

2. Prof. Serge Haddad

Die Dissertation wurde am 15.11.2022 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 23.02.2023

angenommen.

Department of Informatics
Technical University of Munich

Dissertation in Informatics

Observation Petri Nets

Chana Weil-Kennedy

Acknowledgments

First and foremost, I would like to thank my advisor Javier Esparza. He is an excellent
researcher, professor and communicator, and a prime illustration of leading by example.
He is also very generous with his time, and precise in his always-constructive criticism – I
feel lucky to have had him as an advisor.

I want to thank my co-authors Mikhail and Bala. Mikhail was an invaluable help at
the beginning of my doctorate, always patient with me as I worked through his ideas and
slowly added my own. I will not forget his kind words when I was feeling down. It was a
pleasure to collaborate with Bala on later papers, and it hardly felt like work because of his
calm confidence and contagious humor. Thanks to Christoph, who I started with and who
remained my o�ce mate in spirit throughout. And thanks to the other people of the chair
who made my life here nicer, whether through shared tutorials, bouldering, co�ee breaks
or Wordle support – special thanks to Pascal, Marijana and Onkel Luu. I feel fortunate to
have met a kind and welcoming academic community, from the very beginning. Thanks
to Pierre Ganty for providing a wonderful internship opportunity, at IMDEA Software
Institute in Madrid, which led directly to this thesis. Thanks to Miguel for his friendship
as I took my first steps in academic life, and thanks to everyone else with whom I’ve had
the pleasure of crossing paths during my internship, at conferences and at summer schools.

As always, I am grateful to my friends who keep me sane, in Munich and abroad. Loving
thoughts go to Julie and Kyvèli, and a heartfelt thank you to Lucas. Finally, I am grateful
to my parents and brother who mean the world to me.

On a related but less emotional note, I am thankful for the financial support I received
during this doctorate from the European Research Council project PaVeS (No. 787367).

Abstract

Petri nets are a classic formal model for concurrent systems, extensively studied and
used since the 1970s. They model fundamental features of concurrent systems such as
synchronization, process creation, and choice. Many subclasses of Petri nets have been
defined by forbidding one or more of these features (e.g. T-systems, free-choice nets,
communication-free nets). In this thesis, we introduce a feature of Petri nets called
observation, which is a restricted form of synchronization. We develop the theory of
observation Petri nets, which we define to be the class of nets in which the only allowed
form of synchronization is observation. We study the complexity of analysis problems
for this class, and in particular we consider verification problems parameterized by the
number of processes (or tokens) in the Petri net. Our class is further divided into two
objects of study: immediate observation nets, in which process creation is also prohibited,
and branching immediate observation nets, in which process creation is allowed. We
also consider an application of our theory to population protocols, a prominent model
in distributed computing, and study some extensions to our two main formalisms. Our
complexity results support the relevance of studying the observation feature.

Contents

1 Introduction 1
1.1 Petri Nets . 1
1.2 Observation Petri Nets . 4
1.3 Outline and Publications . 7

2 Preliminaries 11
2.1 Multisets . 11
2.2 Petri Nets . 11
2.3 Cubes and Counting Sets . 13
2.4 Generalized Reachability Problems . 16
2.5 Complexity . 16

3 Immediate Observation Nets 19
3.1 Definition and Examples . 19
3.2 Lower Bound . 23
3.3 Pruning and Boosting . 27
3.4 Results . 32

3.4.1 Shortening and Flatness . 32
3.4.2 Closure under Reachability . 34
3.4.3 IO Generalized Reachability Theorem 39

3.5 Summary and Discussion . 41

4 Application to Population Protocols 45
4.1 Primer on Population Protocols . 45
4.2 Correctness of Immediate Observation Population Protocols 48
4.3 Summary and Discussion . 52

5 Branching Immediate Observation Nets 53
5.1 Definition and Examples . 53
5.2 Branching Histories . 56

5.2.1 Decorated Histories . 59
5.2.2 Fuel-e�cient Histories . 60
5.2.3 Smoke Irrelevance and Unique Footprint 66

5.3 Results . 68
5.3.1 Shortening and Local Flatness . 68
5.3.2 Closure under Backwards Reachability 70

v

Contents

5.3.3 BIO Generalized Reachability Theorem 72
5.4 Summary and Discussion . 75

6 Extensions 79
6.1 Multiple Observation Nets . 79

6.1.1 Immediate Multiple Observation Nets 79
6.1.2 Branching Immediate Multiple Observation Nets 83

6.2 Reconfigurable Broadcast Networks . 88
6.2.1 Definition . 88
6.2.2 Simulation of IO nets by RBN . 90
6.2.3 RBN are more complex than IO nets 93
6.2.4 Branching Reconfigurable Broadcast Networks 96

6.3 Model Checking . 103
6.4 Summary and Discussion . 104

7 Conclusion 107

Bibliography 111

vi

1 Introduction

Concurrent systems are systems in which several entities interact. An entity can perform
actions independently from the other entities, or it can interact with them and perform
actions together. These entities can be agents, processes or resources, and the actions
and interactions are specified by some common protocol. Some examples are wireless
mobile networks, industrial control systems, or information processing in biological systems.
The theoretical study of concurrent systems is used to develop distributed (or parallel)
computing techniques, but also to analyze such systems and verify their correctness.
Possible correctness problems are whether resources are distributed in such a way that
every agent can perform their task, or whether a safety-critical system never enters a faulty
state. In this thesis, we focus on the analysis and verification of concurrent systems as
modelled by Petri nets.

Petri nets are a classic formal model for concurrent systems. They have been extensively
used for modelling, design and formal analysis since their introduction in the 1960s by Carl
Adam Petri (see [73] for a good introduction). They have applications in many domains,
like communication protocols, business process modelling or biology (see e.g. surveys [15,
22, 32, 70, 87]). Petri nets model fundamental features of concurrent systems such as
synchronization, concurrency, choice, and process creation or destruction.

1.1 Petri Nets

A Petri net is made up of places (graphically represented by circles), of transitions (graphi-
cally represented by squares) and of arcs between places and transitions. Tokens (graphically
represented by black dots) can be in a place of the net. A marking of a given Petri net
is a distribution of tokens on the places of the net. A transition is enabled at a marking
if there is at least one token in each place that has an arc to this transition. An enabled
transition can fire, resulting in a new marking which has one less token in each input place
of the transition (places with an arc to the transition), and one more token in each output
place of the transition (places with an arc from the transition). Intuitively, the places,
transitions and arcs model the static structure of a concurrent system, while the tokens
and the firing rule model the dynamic behaviour of a concurrent system.

Consider the Petri net of Figure 1.1, which has three places p1, p2, p3 and three transitions
t1, t2, t3. Transitions t1 and t2 are enabled at the marking represented in Figure 1.1a. Firing
t1 leads to the marking represented in Figure 1.1b. Transition t2 is enabled at that marking,
and firing it leads to the marking represented in Figure 1.1c.

1

1 Introduction

p1

p2

t1

t2

p3

(a) Initial marking.

p1

p2

t1

t2

p3

(b) After firing t1.

p1

p2

t1

t2

p3

(c) After firing t2.

Figure 1.1: A Petri net.

There are di�erent ways of seeing what tokens, places and transitions represent. In
one of the earlier models of Petri nets, called C/E nets [78] or elementary nets [79, 80],
places could hold either one token or no token. In this model, transitions were events,
their input places were pre-conditions, and their output places were post-conditions. The
presence of a token in a place indicated whether the associated condition held. In the
model we consider, which used to be called P/T nets [35] and that is now called Petri
nets, places may contain more than one token. Interpretations suited to this model include
seeing transitions as tasks which require resources to be executed and which re-allocate or
produce new resources upon completion. Places are then resource types, and a token is
one unit of a resource. Another interpretation is that transitions are computation steps,
input places are input data and output places are output data. In this thesis, we follow
the mental image of tokens as identical agents. A token in a place is seen as an agent
being in a certain state, and transitions model agents interacting, resulting in a change
of states. This agent view makes sense for example in the distributed-processing setting:
processes (or programs or threads) are in di�erent states, like waiting, or reading from
some shared memory, and they may communicate with each other to change states or
spawn new processes according to some shared protocol.

Petri nets model fundamental features of the behaviour of concurrent systems (see e.g.
[80] for early formalization of features, in particular choice and concurrency). We illustrate
some of these features on the Petri net of Figure 1.1. Transition t1 synchronizes the actions
of a token in p1 and a token in p2: there must be a token in both places at the same time
for t1 to fire. Consider the marking which places one token in p1 and one token in p2. At
this marking, the token in p1 faces a choice. It can either contribute to firing transition t1
or contribute to firing transition t2. This feature is also called conflict in the literature,
since transitions t1 and t2 are in conflict at the marking: both are enabled but only one
may fire. On the other hand, at our first example marking in Figure 1.1a, there are enough
tokens for both t1 and t2 to fire without hindering each other, they can occur concurrently.
Transition t1 models process destruction, and transition t2 models process creation: firing
t1 from a given marking yields a marking with two less tokens, while firing t2 adds an extra

2

1.1 Petri Nets

token. In the agent view of tokens, an agent in p1 and an agent in p2 are destroyed by t1,
while t2 can be seen as an agent in p1 moving to p2 and creating a new agent in p3.

A key feature of Petri net theory is that syntactic restrictions on the structure of a Petri
net can guarantee behavioural properties of the Petri net. T-nets (or T-graphs, or marked
graphs [28, 51]) are Petri nets in which places have exactly one input transition and one
output transition. No marking of a T-net can exhibit a situation of choice since a token
in a place only enables one transition. S-nets (or S-graphs, or state machines [35]) are
Petri nets in which transitions have exactly one input place and one output place. In these
nets, there is no synchronization of the actions of di�erent tokens since transitions are
enabled by just one token. Additionally, there is no process creation or destruction since
each transition “consumes” one token and “produces” one token. Basic Parallel Processes
(or communication-free nets [27, 39, 72]) are Petri nets in which every transition has a
unique input place. In these nets, the absence of synchronization is still guaranteed and
process creation or destruction is allowed. Communication-free nets, the other name of
BPP nets, emphasizes the agent view of tokens: the agents cannot communicate with each
other through shared transitions.

A main motivation for studying subclasses of Petri nets, like those above, is the in-
tractability of analysis in the full model. Petri nets are very expressive but the trade-o�
is that the analysis of Petri nets is of high complexity. In particular, the problem of
reachability was recently shown to be ACKERMANN-complete [31, 66, 67], a complexity
class with non-primitive recursive runtime. The reachability problem is the central problem
for the analysis of Petri nets. It asks, given an initial marking and a target marking,
whether the initial marking can reach the target marking by firing a sequence of transitions
in a given Petri net. The application of reachability in Petri net analysis is most direct
for safety problems: we check whether some bad marking, or set of bad markings, is not
reachable. It is also useful for liveness problems where we are interested in the repeated
reachability of some good markings. Additionally, the reachability problem is important
because of its inter-reducibility with many problems in diverse domains of theoretical
computer science. Some examples are the non-emptiness problem for data automata
[20], the validity in the !-Horn fragment of linear logic [58], or the correctness problem
for population protocols [42] (see Section 5 of [82] for more examples). A relaxation of
reachability, called coverability, is also widely used and studied. Coverability asks, given
an initial marking and a target marking, whether the initial marking can reach a marking
with at least as many tokens on each place as the target marking. The complexity of
the reachability problem is ACKERMANN-complete, as mentioned above, while that of
coverability is EXPSPACE-complete [69, 74]. For T-nets and S-nets, it is well-known that
the reachability problem is P-complete (straightforward consequence of [28, 51]). For BPP
nets, the reachability problem is NP-complete [39].

3

1 Introduction

In this thesis, we introduce a new feature called observation. We syntactically define a
class of Petri nets whose behaviour enforces this feature, and we study this class of nets,
called observation Petri nets.

1.2 Observation Petri Nets

We introduce a new feature called observation. It is a restricted form of synchronization in
which, informally, a token moves from one place to another after observing the presence
of tokens in other places; these observed tokens do not move. For example, consider the
Petri net in Figure 1.2a. Firing transition t can be seen as the token in p observing that
there is a token in q and moving to r. A transition is an observation transition if it has
at most one input place which is not also an output place. This input place is called the
source place. Places which are both input and output places of the transition are called
observed places. Places which are just output places of the transition are called destination
places. The transitions in Figures 1.2a and 1.2b are observation transitions. In Figure
1.2a, p is the source place of t, q is an observed place of t and r is a destination place of t.
In Figure 1.2b, p is the source place, q is an observed place and r1, r2, r3 are destination
places of t. It is clear that observation transitions model the observation feature. They also
model synchronization, but in a restricted form: an observation transition synchronizes
the actions of the token in the source place and the tokens in the observed places (they
must all be there for the transition to be enabled), but only the token in the source place
can change its place. This passiveness of the tokens in the observed places means that if
there are several tokens in the source place of some transition, it can be fired again and
again without a�ecting the tokens in the observed places. This intuition will be important
for understanding the properties of observation Petri nets.

p

q

t
r

(a) An immediate observation net.

p

q

t
r2

r1

r3

(b) A branching immediate observation net.

Figure 1.2: Observation Petri nets.

We study observation Petri nets, a class syntactically defined as the Petri nets in which
every transition is an observation transition. This restriction on their structure ensures
that the only allowed form of synchronization is observation. We look at two classes of

4

1.2 Observation Petri Nets

observation Petri nets. We start by studying immediate observation nets, in which process
creation and destruction are prohibited. Then we study branching immediate observation
nets, in which process creation and destruction are allowed.

An immediate observation (IO) net is a Petri net such that every transition is an
observation transition with one source place, one destination place and at most one
observed place. These places do not necessarily need to be distinct. Figure 1.2a is an
example of an IO net with one transition. The results we will show for IO nets still hold if
there is more than one observed place. For simplicity, we only consider this case in the last
chapter of the thesis. IO nets restrict all synchronization to observation, and do not allow
process creation or destruction. They are conservative: firing a transition preserves the
number of tokens in the net.

For conservative Petri nets, the reachability problem and the coverability problem are
PSPACE-complete [37]. We show that this is still the case for IO nets, i.e. this restriction
does not improve on the complexity of its more general class, at least in the marking to
marking case. We turn our attention to generalized reachability problems, a generalization
of reachability queries to possibly infinite sets of markings. These problems are expressed
using boolean combinations (union, intersection, negation), forward reachability (postú),
backward reachability (preú) and a class of sets of markings called cubes. In particular,
one can express the cube-reachability problem, which asks whether there exists a marking
in a given cube which can reach some marking in another given cube. For these problems,
IO nets have much better complexity than conservative Petri nets: we show that all such
problems can be solved in polynomial space. In comparison, we show that cube-reachability
for conservative Petri nets is as hard as reachability in general Petri nets, i.e. ACKERMANN-
hard [31, 66]. In essence, this result for generalized reachability problems expresses that
in IO nets, it is not harder to verify reachability problems for single markings than it is
to verify them for (infinite) sets of markings. This allows us to consider parameterized
verification problems with ease – problems in which the numbers of tokens in given places
are parameters, which we express using our cubes.

Our second type of observation Petri net is branching immediate observation (BIO)
nets. This class of nets restricts all synchronization to observation and does not forbid
process creation or destruction. BIO nets are the Petri nets such that each transition is an
observation transition with one source place, multiple destination places and at most one
observed place. Figure 1.2b is an example of a BIO net. Like for IO nets, the results we
will show for BIO nets still hold if there are several observed places, and they also hold if
we allow transitions to have no source place. This most general case corresponds to the
full class of observation Petri nets. It is treated in the last chapter for simplicity. Notice
that BIO nets are a generalization of both IO nets and BPP nets (the nets in which each
transition has a unique input place).

5

1 Introduction

We show that for BIO nets, the classic analysis problems of reachability and coverability
are much easier than for general Petri nets (we do not compare with conservative nets
since BIO nets are not conservative). The problems are in PSPACE, as opposed to
ACKERMANN and EXPSPACE respectively in the general case. Moreover, we examine
generalized reachability problems for this BIO class as well. Many of the problems remain
solvable in PSPACE, allowing us to conclude like for the IO class: the complexity of the
reachability problem does not change whether we check it on single markings or on sets of
markings. This is even more remarkable for BIO nets, since it is a much more expressive
class than IO nets.

These complexity results encourage the study of observation Petri nets, and in this thesis
we establish a picture of the properties and complexity results for our two observation
classes.

A motivation for studying the observation feature is its relevance in the field of distributed
computing. In 2004, Angluin et al. [6] introduced population protocols, a formalism for the
study of ad hoc networks of tiny computing devices without any infrastructure. Since then
they have been intensely studied, in particular in recent years (for example [1–3, 30, 36, 40]).
In [7], Angluin et al. define subclasses of population protocols corresponding to di�erent
communication primitives between devices, one of which is immediate observation protocols.
In these, the communication is only one-way; an example is a network of passively mobile
sensors. IO nets were introduced to model these immediate observation protocols (thus
the name), and we apply our results to verifying the correctness of such protocols.

The observation feature also appears in the field of chemical reaction networks [9, 48],
where Petri net modelling is sometimes used [5, 59, 60, 86]. Chemical reaction networks
are a discrete model of chemistry in which molecules change their state due to collisions.
IO nets model networks of enzymatic chemical reactions, of the form A + C æ C + B,
in which an enzyme C catalyzes the formation of product B from substrate A [12, 71].
An example of application of Petri net techniques to such a network is presented in [4].1

We expect that BIO nets can find a similar application, as they are a natural model for
enzymatic catalytic reactions of the form A + C æ C + B1 + · · · + Bn with more than
one product. For example, catalase degrades hydrogen peroxide into water and oxygen, a
reaction of the form A + C æ C + B1 + B2 [23].

Additionally, BIO nets (actually, reverse BIO nets) appear in the field of type-directed
program synthesis [49, 53]. In [49], the authors use Petri nets to automatically generate
program sketches, which they then complete using SAT solvers. The Petri nets represent
relationships between API components: the places are types, the transitions are methods
and the tokens represent the number of program variables of a certain type. The transitions
either “output” a single type depending on some multiset of “input” types, or are cloning

1
The Petri nets of [4] are in fact slightly more general than IO nets, but equivalent to them for properties

that depend only on the reachability graph, as are the net properties studied in [4].

6

1.3 Outline and Publications

transitions, which upon observing a token produce a new one so as to reuse program
variables.

1.3 Outline and Publications

We first give the outline of the thesis, then list our publications.

Outline. Chapter 2 introduces mathematical notations, recalls the basics of Petri nets and
defines cubes and generalized reachability problems. The main content is then structured
into four chapters as follows.

1. Chapter 3 introduces our first main object of study: immediate observation (IO) nets.
After definitions, examples and basic properties, we turn our attention to studying
reachability problems, first simple then parameterized by possibly infinite sets of
markings called cubes. We first give a complexity lower bound for these problems
by simulating a bounded-tape Turing machine using IO nets. To give complexity
upper bounds, we set up a framework where tokens are “de-anonymized”, i.e. given
identities. Reasoning in this framework, we prove properties on firing sequences and
reachability sets of IO nets. We derive results for IO nets, in particular that a host of
cube-parameterized problems, called generalized reachability problems, can be solved
in polynomial space. This is an interesting property because the complexity is not
higher than in the non-parameterized single marking setting. This contrasts with
the situation for conservative Petri nets, of which IO nets are a subclass: in the
single marking setting reachability problems are solvable in polynomial space, but in
the parameterized setting we show they are as hard as the reachability problem for
general Petri nets. Other properties are shown, for example that the reachability set
of a cube is itself a finite union of cubes.

2. Chapter 4 applies the results of the previous chapter to immediate observation
population protocols. This model was introduced in [7]. Population protocols are an
extensively studied [3, 36, 40] model of distributed computation in which anonymous
finite-state agents interact together to change their states, following a common
protocol. In a correct population protocol, the agents compute a predicate: the input
is the initial configuration of the agents’ states, and the agents interact in pairs to
eventually reach a consensus which provides the output. Petri nets can and have
been used to model population protocols [42]. Checking correctness is the main
verification question for population protocols. In [42], it is shown that this problem
is decidable but at least as hard as Petri net reachability. This means there is a
non-primitive recursive lower bound [31]. We use IO nets to study IO population

7

1 Introduction

protocols (and this is where their name comes from). For IO population protocols,
we show that the correctness problem is significantly easier than in the general case:
it is PSPACE-complete.

3. Chapter 5 introduces our second main object of study: branching immediate obser-
vation (BIO) nets. BIO nets are a natural generalization of IO nets and BPP nets,
also called communication-free nets. BPP nets are a well studied subclass of Petri
nets (e.g. [27, 39, 72]) which models branching processes, but where processes cannot
synchronize with each other. In a BIO net, a token (or process) observes another
token and then branches into a certain number of tokens in di�erent places. We
study the complexity for BIO nets of the same generalized reachability problems as in
Chapter 3 for IO nets. We again set up a framework for this study by giving tokens
identities. This time the trajectories are more complex than for IO nets. In particular,
the reachability set from a cube is no longer guaranteed to be “simple” (i.e., here,
semilinear). However, we show that many of the same complexity bounds hold. In
particular, reachability, even parameterized by cubes, remains a PSPACE-complete
problem.

4. Chapter 6 contains additional material connected to IO and BIO nets. First, we show
that the results continue to hold when we allow multiple observations as conditions
for a transition to fire, instead of just one. For BIO nets, we also show that having no
source place does not change the results. Next, we look at reconfigurable broadcast
networks (RBN) [33, 34], an existing model for networks of identical finite-state
agents which communicate by broadcasts. One agent broadcasts and changes its
state, and the neighboring agents receive this broadcast and change their state. In
RBN, the neighborhood topology can reconfigure during an execution. We show
that IO nets can be seen as a subclass of RBN in which the broadcaster does not
change states. We then investigate a new model at the intersection of RBN and BIO
nets, called branching reconfigurable broadcast networks (BRBN). We give some
complexity results for this model. Finally, we take a look at temporal logic for IO
and BIO nets, and state some model checking results.

We describe which publications contributed to each chapter. The publications are listed
below for the reader’s convenience. Most of the results in Chapter 3 are published in [47]
and [77]. The results of Chapter 4 come from [47]. Some of the results of Chapter 5 are
published in [77], and many are not yet published. Finally, Chapter 6 contains mostly
unpublished results, except for those on RBN which were published in [11]. More details
about which results come from which papers can be found in the discussion sections at the
end of each chapter.

8

1.3 Outline and Publications

Publications. We list our papers published during the doctorate in chronological order.

Verification of Immediate Observation Population Protocols. J. Esparza, P. Ganty,
R. Majumdar, C. Weil-Kennedy. In conference proceedings of CONCUR 2018.

[44]

Parameterized Analysis of Immediate Observation Petri Nets. J. Esparza, M.
Raskin, C. Weil-Kennedy. In conference proceedings of Petri Nets 2019.

[47]

The Complexity of Verifying Population Protocols. J. Esparza, S. Jaax, M. Raskin,
C. Weil-Kennedy. In Distributed Computing journal.

[46]

Flatness and Complexity of Immediate Observation Petri Nets. J. Esparza, M.
Raskin, C. Weil-Kennedy. In conference proceedings of CONCUR 2020.

[77]

E�cient Restrictions of Immediate Observation Petri Nets. M. Raskin, C. Weil-
Kennedy. In conference proceedings of Reachability Problems 2020.

[75]

Reconfigurable Broadcast Networks and Asynchronous Shared-Memory Systems are
Equivalent. A. R. Balasubramanian, C. Weil-Kennedy. In conference proceedings
of GandALF 2021.

[11]

Parameterized Analysis of Reconfigurable Broadcast Networks. A. R. Balasub-
ramanian, L. Guillou, C. Weil-Kennedy. In conference proceedings of FoSSaCS
2022.

[10]

As mentioned above, [47], [77], [46] and [11] contribute to the results of this thesis. The
results of [44] are not included as they are subsumed by the results of [47]. However,
[44] was the first step in the direction of studying observation Petri nets and generalized
reachability problems, and it introduced cubes for a model close to IO nets. Article [75]
contains additional results on IO nets which have not been included in the thesis. Article
[10] focuses on the Reconfigurable Broadcast Network (RBN) formalism. Though we
mention some links between RBN and IO nets in this thesis, the results of this article are
out of scope and not included.

9

2 Preliminaries

In this chapter, we introduce some definitions and notations which will be useful in the
rest of the thesis.

2.1 Multisets

A multiset on a finite set E is a mapping C : E æ N, i.e. for any e œ E, C(e) denotes the
number of occurrences of element e in C. We let M(E) denote the set of all multisets on
E. Let He1, . . . , enI denote the multiset C such that C(e) = |{j | ej = e}|. We sometimes
write multisets using set-like notation. For example, H2 · a, bI and Ha, a, bI denote the same
multiset. Given e œ E, we denote by e the multiset consisting of one occurrence of element
e, that is HeI. Operations on N like addition or comparison are extended to multisets by
defining them component-wise on each element of E. Subtraction is allowed in the following
way: if C, D are multisets on set E then for all e œ E, (C ≠ D)(e) = max(C(e) ≠ D(e), 0).
We call |C|

def=
q

eœE
C(e) the size of C.

2.2 Petri Nets

We recall the model of Petri nets and give notation. In the introduction we presented
Petri nets without weights on the arcs for simplicity, but in the rest we use Petri nets with
weighted arcs. A Petri net N is a triple (P, T, F) consisting of a finite set of places P , a
finite set of transitions T and a flow function F : (P ◊ T) fi (T ◊ P) æ N. A marking M is
a multiset on P , and we say that a marking M puts M(p) tokens in place p of P . The size
of M , denoted by |M |, is the total number of tokens in M . The preset •t and postset t• of a
transition t are the multisets on P given by •t(p) = F (p, t) and t•(p) = F (t, p). A transition
t is enabled at a marking M if •t Æ M , i.e. •t is component-wise smaller or equal to M . If t

is enabled then it can be fired, leading to a new marking M Õ = M ≠
•t+ t•. We let M

t
≠æ M Õ

denote this. Given ‡ = t1 . . . tn we write M
‡
≠æ Mn when M

t1
≠æ M1

t2
≠æ M2 . . .

tn
≠æ Mn, and

call ‡ a firing sequence.

Example 1. Figure 2.1 represents a Petri net with three places p1, p2, p3 and three
transitions t1, t2, t3. Places are represented by circles, transitions by squares, and tokens
by black dots. The arcs between places and transitions represent the flow function. No
arc means that the flow function has value 0. If there is an arc and it has no number
written on it, then the flow function’s value on that arc is 1 (we say the arc has weight
1). Otherwise, it is the number written on the arc: the arc from t1 to p3 has weight 2, i.e.
F (t1, p3) = 2. The initial marking M0 puts one token in place p1, one in p2 and zero in

11

2 Preliminaries

2

p1

p2

p3
t1

t2

t3

Figure 2.1: A Petri net with initial marking M0 = (1, 1, 0).

p3. We can write M0 either as (1, 1, 0) or as Hp1, p2I. A firing sequence from M0 to M0 is
M0

t1
≠æ (0, 0, 2) t2

≠æ (1, 0, 1) t3
≠æ M0.

Reachability, coverability and liveness. We write M Õ ú
≠æ M ÕÕ if M Õ ‡

≠æ M ÕÕ for some
‡ œ T ú, and say that M ÕÕ is reachable from M Õ. A marking M covers another marking
M Õ, written M Ø M Õ if M(p) Ø M Õ(p) for all places p. A marking M is coverable from
M Õ if there exists a marking M ÕÕ such that M Õ ú

≠æ M ÕÕ
Ø M . A marking M is live if for all

markings M Õ such that M
ú
≠æ M Õ, for all transitions t œ T , there exists a marking M ÕÕ such

that M Õ ú
≠æ M ÕÕ and t is enabled at M ÕÕ. Given a Petri net N = (P, T, F) and two markings

M, M Õ, the reachability problem consists of deciding whether M Õ is reachable from M . The
coverability problem consists of deciding whether M Õ is coverable from M . The liveness
problem consists of deciding whether M is live.

Reachability sets. Let S be a set of markings of N . The backward reachability set
of S is preú(S) def= {M Õ

|÷M œ S . M Õ ú
≠æ M}, and the forward reachability set of S is

postú(S) def= {M |÷M Õ
œ S . M Õ ú

≠æ M}. The one-step backward reachability set of S is
pre(S) def= {M Õ

|÷M œ S . M Õ
æ M}, and the one-step forward reachability set of S is

post(S) def= {M |÷M Õ
œ S . M Õ

æ M}.

Conservative nets. A Petri net N = (P, T, F) is conservative1 if for every transition
the sum of the weights of its input arcs is equal to the sum of the weights of its output arcs,
i.e. if

q
pœP

|
•t(p)| =

q
pœP

|t•(p)| for all t œ T . It follows immediately from the definitions
that if N is conservative and M

ú
≠æ M Õ, then

q
pœP

M(p) =
q

pœP
M Õ(p).

Monotonicity. Petri nets have the following monotonicity property: given markings
M, M Õ, L of a Petri net N , if M

ú
≠æ M Õ, then M + L

ú
≠æ M Õ + L. The proof follows directly

from the fact that tokens in a Petri net cannot disable the occurrence of a transition.

1
These nets are sometimes called 1-conservative in the literature, e.g. in [57].

12

2.3 Cubes and Counting Sets

2.3 Cubes and Counting Sets

Given a finite set P , a cube C is a subset of M(P) described by a lower bound L : P æ N
and an upper bound U : P æ Nfi {Œ} such that C = {C | L Æ C Æ U}. Abusing notation,
we identify the set C with the pair (L, U). Notice that since U(p) can be Œ for some
element p œ P , a cube can contain an infinite number of multisets.

A finite union of cubes
t

m

i=1(Li, Ui) is called a counting constraint and the set of multisets
t

m

i=1 Ci it describes is called a counting set. Given a counting constraint �, we let [�]
denote the counting set described by �. Notice that two di�erent counting constraints
may describe the same counting set. For example, let P = {p} and let (L, U) = (1, 3),
(LÕ, U Õ) = (2, 4), (LÕÕ, U ÕÕ) = (1, 4). The counting constraints (L, U) fi (LÕ, U Õ) and (LÕÕ, U ÕÕ)
define the same counting set. It is easy to show that counting constraints and counting
sets are closed under Boolean operations.

Norms. Let C = (L, U) be a cube. Let ÎCÎl be the sum of the components of L. Let
ÎCÎu be the sum of the finite components of U if there are any, and 0 otherwise. The norm
of C is the maximum of ÎCÎl and ÎCÎu, denoted by ÎCÎ. We define the norm of a counting
constraint � =

t
m

i=1 Ci as Î�Î
def= max

iœ[1,m]
{ÎCiÎ}. The norm of a counting set S is the smallest

norm of a counting constraint describing S, that is, ÎSÎ
def= min

S=[�]
{Î�Î}. The norms of the

union, intersection and complement can be bounded in the following way.

Proposition 1. Let S1, S2 be counting sets over a finite set P . The norms of the union,
intersection and complement satisfy:

• ÎS1 fi S2Î Æ max{ÎS1Î, ÎS2Î},
• ÎS1 fl S2Î Æ ÎS1Î + ÎS2Î, and
• ÎS1Î Æ |P | · ÎS1Î + |P |.

Proof. In the following, let �1 and �2 be counting constraints describing S1 and S2
respectively. We prove the bounds on Î�1Î, Î�2Î, and they hold for ÎS1Î, ÎS2Î by definition
of the norm of a counting set.

Union. Let � be the union of the two counting constraints �1, �2. It is still a counting
constraint as a union of cubes, and the result follows from the definition of the norm.

Intersection. For this proof, we consider a cube representation (L, U) as a collection
of constraints over n = |P | variables x1, . . . , xn of the form li Æ xi or xi Æ ui with li œ N
and ui œ N fi Œ. Each variable xi is associated to an element pi œ P , for an arbitrary
ordering of P = {p1, . . . , pn}. A cube representation can now be seen as a conjunction of
such constraints, one lower bound and one upper bound for each xi for i œ {1, . . . , n}. We
call such a 2n-conjunction a minterm. Counting constraints �1, �2 are thus disjunctions of
minterms, noted “1, “2 respectively. The intersection of �1, �2 is the conjunction “1 · “2.

13

2 Preliminaries

We rearrange this conjunction into a disjunction of minterms by using the following
steps: put “1 · “2 in disjunctive normal form. Remove conjunctions containing the
unsatisfiable constraints l Æ xi · xi Æ u with l > u. Remove redundant constraints inside
conjunctions: replace (l1 Æ x · l2 Æ x) by max{l1, l2} Æ x, and replace (x Æ u1 · x Æ u2)
by x Æ min{u1, u2}. If a conjunction does not contain a lower bound (respectively upper
bound) for xi, add 0 Æ xi (respectively xi Æ Œ), thus making it a minterm. The disjunction
of these minterms is the counting constraint � we are looking for. Each lower bound in � is
at most the maximal lower bound in the minterms of �1 and �2, so Î�Îl Æ Î�1Îl + Î�2Îl.
Each upper bound in � is at most the minimal upper bound in the minterms of �1 and �2,
so Î�Îu Æ min {Î�1Îu, Î�2Îu}. Thus norm of � is smaller or equal to Î�1Î + Î�2Î.

Complement. We reuse the constraint and minterm formalism above. The complement
is represented by the negation of the disjunction of minterms. We rearrange it into a
disjunction of minterms by first putting it in disjunctive normal form, then replacing
¬(xi Æ c) by xi Ø c + 1 if c ”= Œ or removing the enclosing conjunction otherwise, then
replacing ¬(xi Ø c) by xi Æ c ≠ 1 if c œ N \ {0} or removing the enclosing conjunction
otherwise, and finally by using the same rules as above, i.e removing unsatisfiable constraints
from conjunctions, replacing redundant ones and adding lower and upper bounds if they
are missing. We obtain a disjunction of minterms giving us the counting constraint � we
are looking for. It has minterms with lower bounds of the form u + 1, with u an upper
bound in a minterm of the original constraint, meaning u Æ Î�1Î. The reasoning is similar
for the new upper bounds of the minterms; this yields Î�Î Æ nÎ�1Î + n.

Example 2. Consider the cubes C1 = (L1, U1) and C2 = (L2, U2) over a set P = {p1, p2, p3},
with

L1 =
0
3
4

U1 =
Œ

6
Œ

L2 =
10
2
0

U2 =
14
Œ

Œ

The norm of C1 is ÎC1Î = max {ÎC1Îl, ÎC1Îu} = max {7, 6} = 7. The norm of C2 is
ÎC2Î = max {ÎC2Îl, ÎC2Îu} = max {12, 14} = 14.

Counting constraint C1 fi C2 has norm ÎC1 fi C2Î = max {ÎC1Î, ÎC2Î} = 14. Counting
constraint C1 fl C2 is equal to cube C3 = (L3, U3), where

L3 =
10
3
4

U3 =
14
6
Œ

14

2.3 Cubes and Counting Sets

The norm of C1 fl C2 is ÎC1 fl C2Î = ÎC3Î = 20. Counting constraint C1 is equal to counting
constraint C4 fi C5 with C4 = (L4, U4) and C5 = (L5, U5), where

L4 =
0
0
0

U4 =
Œ

2
3

L5 =
0
7
0

U5 =
Œ

Œ

3

The norm of C1 is ÎC1Î = max {ÎC4Î, ÎC5Î} = 7.

Reachability, coverability and liveness. Given a Petri net N = (P, T, F), the reach-
ability problem can be generalized to cubes and counting sets. Cubes and counting sets
over P are seen as sets of markings. The cube-reachability problem consists of deciding,
given two cubes C, C

Õ over P , whether there exist markings M œ C and M Õ
œ C

Õ such
that M Õ is reachable from M in N . If this is the case, we say C

Õ is reachable from C.
The counting set-reachability problem consists of deciding, given two counting sets S, S

Õ,
whether there exist markings M œ S and M Õ

œ S
Õ such that M Õ is reachable from M in

N . We define cube-coverability and counting set-coverability in an analogous way. The
cube-liveness problem consists of deciding if, given a net N and a cube M of markings of
N , every marking of M is live. The counting set-liveness is defined in an analogous way.
The complexity results in this thesis are true irrespective of whether the bounds in a given
input cube or input counting constraint are encoded in unary or in binary.

Semilinear sets. Let d Ø 1. A linear set2 is a set L(b, Pe) of vectors of Nd defined using
a base vector b œ Nd and a finite set of period vectors Pe = {p1, . . . , pn} ™ Nd such that

L(b, Pe) = {b + ⁄1p1 + . . . + ⁄npn | ⁄i Ø 0 for 1 Æ i Æ n} .

A semilinear set is a finite union of linear sets.

A cube is a semilinear set. Let C = (L, U) be a cube over a finite set P = {p1, . . . , pd}.
Notice that multisets over P can be seen as vectors of Nd and vice versa. Let pi be the
multiset over P consisting of one occurrence of pi. Let Pe be the set of pi such that
U(pi) = Œ. The cube C is a semilinear set as a finite union of the linear sets L(b, Pe)
for every multiset b over P such that b(p) = L(p) for p œ P such that U(p) = Œ and
L(p) Æ b(p) Æ U(p) otherwise. A counting set is a semilinear set as a finite union of linear
sets.

2
We use the notations of [54].

15

2 Preliminaries

2.4 Generalized Reachability Problems

Let N = (P, T, F) be a Petri net. A generalized reachability expression of N is an expression
that is constructed by the following syntax:

E := � | postú(E) | preú(E) | E fl E | E fi E | E

where � is any counting constraint over P .
If E is a generalized reachability expression, then the length of E, denoted by |E|, is

defined as follows:

• if E = � where � is a counting constraint, then |E| = 1;
• if E = postú(E1) or E = preú(E1), then |E| = |E1| + 1;
• if E = E1 fi E2 or E = E1 fl E2, then |E| = |E1| + |E2|;
• if E = E1, then |E| = |E1| + 1.

We denote by [E] the set of markings that is described by a generalized reachability
expression E, and it is defined as follows:

• if E = � where � is a counting constraint, then [E] = [�];
• if E = postú(E1), then [E] = postú([E1]);
• if E = preú(E1), then [E] = preú([E1]);
• if E = E1—E2, then [E] = [E1]—[E2] for — œ {fi, fl};
• if E = E1, then [E] = [E1].

Given a Petri net N , a generalized reachability expression E and a marking M , the
generalized reachability membership problem consists of deciding whether M is in [E]. Given
a Petri net N and a generalized reachability expression E, the generalized reachability
emptiness problem consists of deciding whether [E] is empty. These two problems are called
the generalized reachability problems. For example, cube-reachability can be expressed as
a generalized reachability problem: a cube C can reach a cube C

Õ if and only if the set
represented by the generalized reachability expression C

Õ
fl postú(C) is non empty.

2.5 Complexity

We use the usual complexity classes P, NP, PSPACE, and EXPSPACE, and we point the
reader to [61] or any other classic book for formal definitions.

A non-usual class we evoke is the ACKERMANN class. It is a class of problems decidable
by a Turing machine that may require runtime which is non-primitive recursive – the
runtime is seen as a function of the input. A primitive recursive function is, informally, a
function which is computable by a program in which all the loops are for-loops; for-loops

16

2.5 Complexity

provide an upper bound on the number of iterations of the loop, so these programs are
guaranteed to terminate. An example of a primitive recursive function is n ‘æ expn(n) for
n œ N, where the expk are defined inductively using exp0(x) = x and expk+1(x) = 2expk(x).
A non-primitive recursive function is a function that cannot be bounded above by any
primitive recursive function. So a problem that is ACKERMANN-hard can only be computed
by a Turing machine that uses at least non-primitive recursive runtime. The reachability
problem for Petri nets is an example of an ACKERMANN-hard problem. A reader interested
in a detailed definition of this class can refer to [81].

17

3 Immediate Observation Nets

In this chapter we define and study our first class of observation Petri nets, immediate
observation (IO) nets. Section 3.1 gives the formal definition and basic properties. Section
3.2 proves complexity lower bounds for classic analysis problems. Section 3.3 introduces
tools and techniques that are then used in Section 3.4 to prove our main results for IO
nets, including upper complexity bounds for generalized reachability problems.

3.1 Definition and Examples

An immediate observation net is a Petri net with transitions of a certain shape: informally,
a token moves from a place p to a place pÕ by observing the presence of another token in q.

Definition 2. A transition t of a Petri net is an immediate observation transition (IO
transition) if there are places ps, pd, po, not necessarily distinct, such that •t = Hps, poI and
t• = Hpd, poI, or such that •t = HpsI and t• = HpdI. We call ps, pd, po the source, destination,
and observed places of t, respectively. A Petri net is an immediate observation net (IO net)
if all its transitions are IO transitions.

2
2

2

2

p1 p2

p3

t1 t2

t3

t4

Figure 3.1: An IO net from [7].

In the following, for simplicity, we consider only IO nets in which every transition has
an observed place. Given an IO net in which this is not the case, it su�ces to add an
extra marked place which acts as observed place for all the transitions without one. In the
following, we sometimes write t = x

y
≠æ z when x is the source place, y the observed place,

and z the destination place of a transition t. We equate an IO net (P, T, F) with the pair
(P, ”), where ” =

Ó
(x, y, z) œ P 3

| t = x
y
≠æ z œ T

Ô
.

Example 3. In the Petri net of Figure 2.1 , transitions t2 and t3 are IO transitions (without
observed places). However, transition t1 is not, so it is not an IO net. Figure 3.1 shows
an IO net taken from the literature on population protocols (Section 8.1 of [7]). What it

19

3 Immediate Observation Nets

F

S0 S1

E

Eú

Sú
0

Sú
1 F ú

Sú
2

Figure 3.2: An IO net from [4].

models is detailed later in Example 9. Figure 3.2 gives another example of an IO net, this
time taken from the literature on chemical reaction networks ([4], Section 6.2)1. Intuitively,
the transitions model chemical reactions triggered by enzymes. For example, substrate S0
is converted into product S1 by enzyme E. The net models a cascade of reactions in which
some products, for example Eú, may act as an enzyme for the following stage.

Given an arc a from x to y of weight k for (x, y) œ (P ◊ T) fi (T ◊ P) and k Ø 0, we call
the arc from y to x of weight k the reverse arc of a. If we take an IO net N and replace
all its arcs with their reverse arcs, the new Petri net N

Õ obtained is still an IO net. Given
two markings M, M Õ over the set of places of N (equal to the set of places of N

Õ), M Õ is
reachable from M in N if and only if M is reachable from M Õ in N

Õ.

Remark 3. We will also consider immediate multiple observation (IMO) nets, which are
like IO nets except that there may be more than one observed place. This case is treated
in Chapter 6. The results for IO nets shown in the present chapter also hold for IMO
nets, with bounds changing only by a factor corresponding to the maximal number of
observations. We treat this case separately to make the proofs of this chapter cleaner.

Unlike general Petri nets, IO nets have a copycat property, which we describe informally
here. Consider a firing sequence M

ú
≠æ M Õ. We can think of the tokens as each following a

trajectory in the firing sequence, going from place to place following the transitions. If we
add a token to a place q of M already containing an token, i.e. such that M(q) Ø 1, then
this new token can “copy” the trajectory of the old token, mimicking its transitions along
the firing sequence. The intuition is that this is possible for IO nets because the token in
the observed place allowing the transition is not consumed when the transition is fired.
This copycat property is implicitly used in many of the proofs of the following sections. It
is formally defined in Lemma 12 of the next section.

1
The Petri net presented here is simplified, but equivalent to that of [4] for properties that depend only

on the reachability graph, as are the net properties studied in [4].

20

3.1 Definition and Examples

Example 4. Consider the firing sequence in the IO net of Figure 3.1: (3, 0, 0) t1
≠æ (2, 1, 0) t1

≠æ

(1, 2, 0) t2
≠æ (1, 1, 1). One of the tokens goes to places p1, p2, p2, p3. Let us add a token to p1

in the first marking. It can copy the “trajectory” of the previous token, yielding the firing
sequence (4, 0, 0) t1

≠æ (3, 1, 0) t1
≠æ (2, 2, 0) t1

≠æ (1, 3, 0) t2
≠æ (1, 2, 1) t2

≠æ (1, 1, 2).
On the contrary, consider the Petri net of Figure 2.1, and firing sequence (1, 1, 0) t1

≠æ

(0, 2, 0) t2
≠æ (1, 0, 1) t3

≠æ (1, 1, 0). Let us add a token to p1 in the first marking. This token
cannot copy the trajectory of any other token in the firing sequence, because t1 can be
fired once but not twice from (2, 1, 0). Transition t1 is fired by taking a token from p1 and
a token from p2, synchronizing their actions.

Observe that IO transitions have a preset of size two and a postset of size two, so we
have:

Fact 4. Immediate observation nets are conservative.

The transitions of the Petri net of Figure 2.1 also each have a preset and a postset
of equal size. It is an example of a conservative Petri net which is not an IO net. For
conservative Petri nets, the following holds.

Theorem 5. For conservative Petri nets:

• Reachability, coverability, and liveness are in PSPACE.
• Cube-reachability and cube-coverability are as hard as reachability and coverability

for general Petri nets, so non-primitive recursive and EXPSPACE-hard, respectively.

Proof. The first part is proved in [57], we give a sketch here. By Savitch’s Theorem,
NPSPACE=PSPACE, so it is enough to provide a nondeterministic algorithm. Let N be
conservative Petri net, let M and M Õ be markings of N . Since the net is conservative,
the size of markings along a firing sequence is constant. To check if M Õ is reachable
(respectively coverable) from M the algorithm guesses a sequence of markings, step-by-step
reachable, only remembering the current one and the next one, and checking whether it
equals (respectively covers) M Õ. If it does, the algorithm stops and answers that M Õ is
reachable (respectively coverable) from M . To show that there exists an algorithm running
in polynomial space for liveness, the proof uses that coPSPACE=PSPACE and gives an
algorithm for checking if M is not live. The algorithm guesses a transition t and a marking
M1 reachable from M , checking that it is indeed reachable with the above algorithm. Then
it checks for each marking M2 reachable from M1 whether t is enabled at M2. If t is
enabled at no marking reachable from M1, the algorithm answers that M is not live.

For the second part, let N = (P, T, F) be an arbitrary Petri net. We construct a Petri
net N

Õ = (P fi {r, s}, T, F Õ), where r and s are two new places, the repository and the sink,
and F Õ is defined so that, intuitively, transitions of N

Õ neither create nor destroy tokens.
Formally, for every transition t:

21

3 Immediate Observation Nets

2 3

N

s

r
t1

t2

Figure 3.3: Conservative net N
Õ constructed from Petri net N in the proof of Theorem 5.

• F Õ(p, t) = F (p, t) and F Õ(t, p) = F (t, p) for every p œ P .
• F Õ(t, r) = 0, and F Õ(r, t) = max{0, |t•

| ≠ |
•t|}.

• F Õ(s, t) = 0, and F Õ(t, s) = max{0, |
•t| ≠ |t•

|}.

In N
Õ we have

q
pœP fi{r,s} F Õ(p, t) =

q
pœP fi{r,s} F Õ(t, p) for every transition t, and so N

Õ is
conservative. The construction is sketched in Figure 3.3: a Petri net N contains a transition
t1 which has an input arc and two output arcs, all of weight 1. We add a repository place
r and an arc from r to t1, so that t1 no longer creates tokens. The net also contains a
transition t2 with an input arc of weight 2 and an input arc of weight 1. We add a sink
place s and an arc from t2 to s of weight 3, so that t2 no longer destroys tokens.

Given a marking M of N , let (LM , UM) be the cube of N
Õ given by LM (p) = M(p) =

UM (p) for every p œ P , LM (r) = LM (s) = 0 and UM (r) = UM (s) = Œ. Clearly, we have:
M2 is reachable (coverable) from M1 in N if and only if (LM2 , UM2) is reachable (coverable)
from (LM1 , UM1) in N

Õ, and we are done.

IO nets inherit these complexity upper bounds, as they are conservative. But we will
show that for IO nets, the cube-parameterized versions of reachability, coverability and
liveness are also in PSPACE. This pinpoints the essential property of the class: loosely
speaking, deciding standard problems for infinitely many markings is not harder than
deciding them for one marking. More precisely, we will show a theorem stating that any
generalized reachability problem can be solved in polynomial space. That is, membership
or emptiness for any combination of atoms using boolean operations, preú and postú can
be evaluated in polynomial space, where an atom is a counting set.

22

3.2 Lower Bound

The tools to prove this are presented in Section 3.3, and the results are proved in Section
3.4. But first we show that IO nets can simulate bounded-tape Turing machines, providing
us with PSPACE lower bounds for reachability, coverability, and liveness for IO nets.

3.2 Lower Bound

The standard simulation of bounded-tape Turing machines by 1-safe Petri nets, as described
for example in [24, 37], can be modified to produce an IO net (actually, a 1-safe IO net).
Using this result, we can then prove that the reachability, coverability, and liveness problems
are PSPACE-hard. Since a set consisting of a single marking is a special case of a cube, the
result carries over to the cube-versions of the problems. This underlines the importance of
the result that reachability and coverability are still solvable in PSPACE when parameterized
by cubes.

We fix a deterministic Turing machine M with set of control states Q, alphabet �
containing the empty symbol �, and partial transition function ” : Q ◊ � æ Q ◊ � ◊ D

(D = {≠1, +1}). We let K denote an upper bound on the number of tape cells visited by
the computation of M on empty tape. The implementation of M is the IO Petri net NM

described below.
Places of NM. The net NM contains two sets of cell places and head places modelling
the state of the tape cells and the head, respectively. The cell places are:

• o�[‡, n] for each ‡ œ � and 1 Æ n Æ K. A token on o�[‡, n] denotes that cell n

contains symbol ‡, and the cell is “o�”, i.e., the head is not on it.
• on[‡, n] for each ‡ œ � and 1 Æ n Æ K, with analogous intended meaning.

The head places are:

• at[q, n] for each q œ Q and 1 Æ n Æ K. A token on at[q, n] denotes that the head is
in control state q and at cell n.

• move[q, ‡, n, d] for each q œ Q, ‡ œ �, 1 Æ n Æ K and every d œ D such that
1 Æ n + d Æ K. A token on move[q, ‡, n, d] denotes that head is in control state q,
has left cell n after writing symbol ‡ on it, and is currently moving in the direction
given by d.

Transitions of NM. Intuitively, the implementation of M contains a set of cell transitions
in which a cell observes the head and changes its state, and a set of head transitions in
which the head observes a cell. Further, each of these sets contains transitions of two types.
The set of cell transitions contains:

• Type 1a: (o�[‡, n] , at[q, n]) ‘æ (on[‡, n] , at[q, n]) for every state q œ Q, symbol
‡ œ �, and cell 1 Æ n Æ K.
The n-th cell, currently o�, observes that the head is on it, and switches itself on.

23

3 Immediate Observation Nets

o↵[1,n]

o↵[0,n]

on[1,n]

on[0,n]

o↵[1,n+1]

o↵[0,n+1]

on[1,n+1]

on[0,n+1]

at[q,n]

at[q’,n]

at[q,n+1]

at[q’,n+1]move[q’,1,n,1]

Figure 3.4: Some of the places and transitions involved in modelling a Turing machine.

• Type 1b: (on[‡, n] , move[q, ‡Õ, n, d]) ‘æ (o�[‡Õ, n] , move[q, ‡Õ, n, d]) for every q œ Q,
‡ œ �, and 1 Æ n Æ K such that 1 Æ n + d Æ K.
The n-th cell, currently on, observes that the head has left after writing ‡Õ, and
switches itself o� (accepting the character the head intended to write).

The set of head transitions contains:

• Type 2a: (at[q, n] , on[‡, n]) ‘æ (move[”Q(q, ‡), ”�(q, ‡), n, ”D(q, ‡)] , on[‡, n]) for
every q œ Q, ‡ œ �, and 1 Æ n Æ K such that 1 Æ n + ”D(q, ‡) Æ K.
The head, currently on cell n, observes that the cell is on, writes the new symbol on
it, and leaves.

• Type 2b: (move[q, ‡, n, d] , o�[‡, n]) ‘æ (at[q, n + d] , o�[‡, n]) for every q œ Q,
‡ œ �, and 1 Æ n Æ K such that 1 Æ n + d Æ K.
The head, currently moving, observes that the old cell has turned o�, and places
itself on the new cell.

This concludes the definition of NM. In Theorem 9 below we formalize the relation
between the Turing machine M and its implementation NM, using the following definition.

Definition 6. Given a configuration c of M with control state q, tape content ‡1‡2 · · · ‡K ,
and head on cell n Æ K, we denote Mc the marking that puts a token in o�[‡i, i] for each
1 Æ i Æ K, a token in at[q, n], and no tokens elsewhere.

Figure 3.4 illustrates transitions involved in modelling a single step of a Turing machine
that reads 0, writes 1, moves head to the right and switches the control state from q to qÕ.

Definition 7. A marking of NM is a modelling marking if the following conditions hold.

1. If a place is marked, it is marked with a single token.
2. For every 1 Æ n Æ K exactly one of the 2|�| places on[‡, n], o�[‡, n] is marked.

(Intuitively: every cell is either on or o� and contains exactly one symbol.)
3. Exactly one of all the head places is marked.

24

3.2 Lower Bound

4. If a cell place on[‡, n] is marked, then a head place at[q, n] or move[q, ‡Õ, n, d] is
marked for some ‡Õ and d.

5. If a head place move[q, ‡, n, d] is marked, either on[‡Õ, n] is marked for some ‡Õ, of
o�[‡, n] is marked.

Note that for every configuration c of M the marking Mc is a modelling marking.

Lemma 8. For every modelling marking M of NM:

(1) M enables at most one transition.
(2) If M enables no transitions, then it marks places on[‡, n] and at[q, n] for some q œ Q,

‡ œ �, and 1 Æ n Æ K.
(3) If M ≠æ M Õ, then M Õ is also a modelling marking.

Proof. (1) All possible transitions require tokens at two places, one of type on[·, n] or
o�[·, n] and one of type at[·, n] or move[·, n, ·, ·], with the same n. But the modelling
condition requires that there can be at most one such pair marked at M .
(2) By point 3 of Definition 7, M marks exactly one head place. If it is a place move[q, ‡, n, d],
then by point 5 either on[‡Õ, n] or o�[‡, n] is marked. So there is a transition of type 1b
or 2b that is enabled. If the marked head place is a place at[q, n], then by point 2 there
is a unique ‡ such that one of on[‡, n] and o�[‡, n] is marked. If it is o�[‡, n] then a a
transition of type 1a is enabled. The only case left in which M may enable no transition
is if the marked head place is of the form on[‡, n] and the marked cell place with same n is
on[‡, n]. Other cell places marked at M do not enable any transition. The only transition
type possibly enabled is 2a; and these are not defined for every at[q, n] and on[‡, n].
(3) Every transition consumes and produces one token at o�[·, n] or on[·, n] place, and
the new place has the same n. Every transition consumes and produces one token at a
move[·, ·, ·, ·] or at[·, ·] place. If an on[·, n] place becomes marked after a transition, it has
the same n as the marked at[·, n] place of the markings before and after firing the transition;
if an on[·, n] place stays marked, the token is moved from a at[·, n] to a move[·, n, ·, ·] place
with the same n. When move[q, ‡, n, d] becomes marked, the transition needs a marked
on[·, n] place. When move[q, ‡, n, d] stays marked, the transition marks a o�[‡, n] place.

Now we state our simulation theorem and hardness result.

Theorem 9. For every two configurations c, cÕ of M: c ≠æ cÕ if and only if Mc

t1t2t3t4
≠≠≠≠≠æ McÕ

in NM for some transitions t1, t2, t3, t4 of types 1a, 2a, 1b, 2b, respectively.

Proof. Let c be a configuration of M with control state q, tape content ‡1‡2 · · · ‡K , and
head on cell n Æ K. Let cÕ be a configuration of M with control state qÕ, tape content
‡Õ

1‡Õ
2 · · · ‡Õ

K
, and head on cell nÕ

Æ K.

25

3 Immediate Observation Nets

If c ≠æ cÕ, then ”Q(q, ‡n) = qÕ, ”�(q, ‡n) = ‡Õ
n, nÕ = n + ”D(q, ‡n) with 1 Æ nÕ

Æ K, and
for all i ”= n, ‡i = ‡Õ

i
. By definition of Mc, a sequence t1t2t3t4

≠≠≠≠≠æ is enabled where

t1 = (o�[‡n, n], at[q, n]) ‘æ (on[‡n, n], at[q, n]),

t2 = (at[q, n], on[‡n, n]) ‘æ (move[qÕ, ‡Õ
n, n, ”D(q, ‡n)], on[‡n, n]),

t3 = (on[‡n, n], move[qÕ, ‡Õ
n, n, ”D(q, ‡n)]) ‘æ (o�[‡Õ

n, n], move[qÕ, ‡Õ
n, n, ”D(q, ‡n)]),

t4 = (move[qÕ, ‡Õ
n, n, ”D(q, ‡n)], o�[‡Õ

n, n]) ‘æ (at[qÕ, nÕ], o�[‡Õ
n, n]).

The marking reached from Mc by firing t1, t2, t3, t4 is McÕ .
Assume now that Mc

t1t2t3t4
≠≠≠≠≠æ McÕ in NM for some transitions t1, t2, t3, t4 of types

1a, 2a, 1b, 2b, respectively. Transition t1 must be equal to (o�[‡n, n], at[q, n]) ‘æ

(on[‡n, n], at[q, n]) since the only head place marked at Mc is at[q, n] and all marked
cell places are of type o�. After firing t1 from Mc, place on[‡n, n] is marked and it is
the only marked cell place of type on. So transition t2 of type 2a must be equal to
(at[q, n], on[‡n, n]) ‘æ (move[”Q(q, ‡n), ”�(q, ‡n), n, ”D(q, ‡n)], on[‡n, n]). Similarly we have
a unique choice for t3 of type 1b and t4 of type 2b. The existence of t2 implies that
”(q, ‡n) is defined and that 1 Æ n + ”D(q, ‡n) Æ K. Since Mc

t1t2t3t4
≠≠≠≠≠æ McÕ , this entails that

”Q(q, ‡n) = qÕ, ”�(q, ‡n) = ‡Õ
n, nÕ = n + ”D(q, ‡n) and for all i ”= n, ‡i = ‡Õ

i
. Thus in M,

configuration c can reach in one step the configuration with control state qÕ, tape content
‡Õ

1‡Õ
2 · · · ‡Õ

K
, and head on cell nÕ, i.e. cÕ.

Theorem 10. The reachability, coverability and liveness problems for IO nets are PSPACE-
hard.

Proof. The proof is routine. Let p be a fixed polynomial satisfying p(n) Ø n for all n.
Consider the set of deterministic Turing machines whose set of states contains two distinct
distinguished states qacc, qrej , and whose computation on empty tape satisfies the following
conditions:

• The computation never visits more than p(n) cells, where n is the size of M, and
visits the set {qacc, qrej} of states exactly once.

• The computation ends in a configuration c with empty tape, head on the first cell,
and control state either qacc or qrej .

We say that the machine accepts (rejects) if it terminates in qacc (qrej). It is well known
that the problem whether such a machine accepts on empty tape is PSPACE-hard. Given
such a machine M, let NM be its associated IO net, and let M0 and M be the modelling
markings describing the initial configuration and the unique accepting configuration. Then
M accepts if and only if M is reachable from M0. Acceptance is thus reduced to reachability
in IO nets. In fact, M accepts if and only if some marking reachable from M0 covers M ;

26

3.3 Pruning and Boosting

since the number of tokens in M and M0 is the same and since the token number stays
constant in a firing sequence, this is equivalent to M being reachable from M0. Acceptance
is thus reduced to coverability in IO nets.

Now we reduce acceptance of bounded-tape Turing machines to liveness of IO nets.
Consider a Turing machine M with accepting state qacc and K an upper bound on the
number of tape cells visited by a computation of M on empty tape. Let NM be its
associated IO net. We add two additional places to NM, places observer and success. We
add the following transitions for all n such that 1 Æ n Æ K, and for all places p, q including
observer and success:

• (observer, at[qacc, n]) ‘æ success, (at[qacc, n]), and
• (p, success) ‘æ (q, success).

Initially, we place the tokens according to the initial control state and tape contents,
and additionally put one token into observer. Now, if the Turing machine cannot reach
the accepting state, the net will never be able to execute any transition into success (so it
will not be live). If the Turing machine can reach the accepting state, the only possible
sequence of transitions of the net will lead to marking of some place at[qacc, n]. Afterwards,
the net can optionally switch a cell place from o� to on, but cannot continue further
without firing a transition that marks the success place.

Once the success place is marked it stays marked. Additionally, it allows moving tokens
between any two places. Our net contains at least two other tokens, which can thus be
moved to fire any transition. Therefore if the Turing machine reaches the accepting state,
the Petri net is live. This concludes the reduction, which implies PSPACE-hardness of IO
net liveness.

3.3 Pruning and Boosting

The results for IO nets are proved using the idea of “de-anonymizing” tokens, as well as
two main lemmas: the Pruning Lemma and the Boosting Lemma. We start by introducing
some notions required to state the lemmas, and then the lemmas themselves.

Trajectories and histories. Since the transitions of IO nets do not create or destroy
tokens, we can give tokens identities. Given a firing sequence, each token of the initial
marking follows a trajectory through the places of the net until it reaches the final marking
of the sequence. The trajectories of the tokens between given source and target markings
constitute a history.

Fix an IO net N . A trajectory of N of length k is a sequence · = p1 . . . pk of places of
N . We let ·(i) denote the i-th place of · . The i-th step of · is the pair ·(i)·(i + 1). If
·(i) = ·(i + 1) we say the step is horizontal, and otherwise it is non-horizontal. A history

27

3 Immediate Observation Nets

p1

p2

p3

(a) A realizable history.

p1

p2

p3

(b) A non-realizable history.

Figure 3.5: A realizable history and a non-realizable history of the IO net of Figure 3.1.

H of length h is a multiset of trajectories of length h. Given an index 1 Æ i Æ h, the i-th
marking of H, denoted M i

H
, is defined as follows: for every place p, M i

H
(p) is the number

of trajectories · œ H such that ·(i) = p. The markings M1
H

and Mh

H
are the initial and

final markings of H, and we write M1
H

H
≠æ Mh

H
.

A history H of length h Ø 1 is realizable if there exist transitions t1, . . . , th≠1 and numbers
k1, . . . , kh≠1 Ø 0 such that

• M1
H

t
k1
1

≠≠æ M2
H

· · · Mh≠1
H

t
kh≠1
h≠1

≠≠≠æ Mh

H
, where for every t we define M Õ t

0
≠æ M iff M Õ = M .

• For every 1 Æ i Æ h≠1, there are exactly ki trajectories · œ H such that ·(i)·(i+1) =
pspd, where ps, pd are the source and target places of ti, and all other trajectories
· œ H satisfy ·(i) = ·(i + 1). Moreover, there is at least one trajectory · in H such
that ·(i)·(i + 1) = popo, where po is the observed place of ti.

We say that tk1
1 · · · t

kh≠1
h≠1 realizes H. Intuitively, at a step of a realizable history only one

transition occurs, although perhaps multiple times, for di�erent tokens. From the definition
of realizable history we immediately obtain: M Õ ú

≠æ M if and only if there exists a realizable
history with M Õ and M as initial and final markings.

We define a measure of the length of firing sequences that abstracts from the number of
times a transition is consecutively executed: Let ‡ be a firing sequence. Let k1, . . . , km be
the unique positive natural numbers such that ‡ = tk1

1 tk2
2 . . . tkm

m and ti ”= ti+1 for every
i = 1, . . . , m≠1. We say that ‡ has accelerated length m, and let |‡|a denote the accelerated
length of ‡. From the definition of realizable history we immediately obtain: every firing
sequence that realizes a history of length h has accelerated length at most h.

Example 5. Figure 3.5a shows a realizable history of the IO net of Figure 3.1. It consists
of six trajectories of length seven, where trajectories are represented by paths that go
from place to place. The places are represented by circles in a column, with place p1 at
the top, place p2 in the middle and place p3 at the bottom. The columns are repeated
to graphically represent the order of the steps. Between each column, a trajectory takes
either a horizontal step or a non-horizontal step. The multiset of trajectories in the places
of column number i gives the i-th marking M i

H
of H. The first column corresponds to

28

3.3 Pruning and Boosting

the initial marking M1
H

= (5, 0, 1), and the last column corresponds to the final marking
M7

H
= (1, 0, 5).

Consider the top-most path made up of only horizontal steps from p1 to p1. It represents
the trajectory of a token that stays in place p1. Consider the non-horizontal fourth step
p1p3 of the second top-most trajectory. It corresponds to a token in p1 observing a token
in p3 and moving to p3 by transition t3. The observed token in p3 is represented by the
horizontal fourth step of the either the last or next-to-last trajectory. The history is realized
by the firing sequence t3t1t1t3t2t4.

Figure 3.5b shows a non-realizable history of the IO net of Figure 3.1. It consists of four
trajectories of length three. The first step contradicts realizability because there are two
trajectories with non equal non-horizontal steps: the second top-most trajectory takes step
p1p2 and the third top-most trajectory takes step p1p3. The third step also contradicts
realizability: the top-most trajectory takes step p1p2 but there is no horizontal third step
popo such that p1

po
≠æ p2 is a transition of the net.

Bunches and Pruning Lemma. A bunch is a multiset of trajectories with the same
length and the same initial and final place. The Pruning Lemma states that every realizable
history containing a bunch of trajectories from p to pÕ of size larger than the number of
places n can be “pruned”, meaning that the bunch can be replaced by a smaller one, also
leading from p to pÕ, while keeping the history realizable (however, the smaller bunch
cannot always be chosen as a sub-multiset of the original one).

Intuitively, if a bunch B contains many trajectories, we can replace it by a new bunch of
trajectories constructed from it that keep the rest of the history realizable. The trajectories
of the bunch may contain horizontal steps enabling non-horizontal steps in the rest of
the history, where the horizontal steps correspond to tokens in the observed place of a
transition t, and the non-horizontal steps correspond to tokens going from the source to the
destination place of t. The idea is to “fix” one token in each observed place of a transition
realizing H. We use the trajectories of B to build new trajectories that “fix” each such
token in an observed place at the earliest moment possible, and then “unfix” each such
token at the last moment possible – this is enough to guarantee realizability of the rest of
the history.

Lemma 11 (Pruning Lemma). Let N = (P, ”) be an IO net with n places. Let H be
a realizable history of N containing a bunch B ™ H of size larger than n. There exists
a bunch BÕ of size at most n with the same initial and final places as B, such that the
history H Õ def= H ≠ B + BÕ (where + and ≠ denote multiset addition and subtraction) is
also realizable in N .

Proof. Let PB be a set of all places visited by at least one trajectory in the bunch B. For
every p œ PB let f(p) and l(p) be the earliest and the latest moment in time when this

29

3 Immediate Observation Nets

place has been used by any of the trajectories (the first and the last occurrence can be in
di�erent trajectories). Let ·p, p œ PB be a trajectory that first goes to p by the moment
f(p), then waits there until l(p), then goes from p to the final place. To go to and from p

it uses fragments of trajectories of B. The portion between is made of horizontal steps
stationary in p. We take BÕ = {·p | p œ PB} and prove that the history H Õ obtained by
replacing B with BÕ in H is still realizable. Note that we can copy the same fragment of a
trajectory multiple times.

We build ·p by taking fragments of existing trajectories and using them at the exact
same moments as they are used in H, and by adding some horizontal fragments. Therefore,
the set of non-horizontal steps in BÕ is a subset (if we ignore multiplicity) of the set of
non-horizontal steps in B.

Consider any non-horizontal step in H Õ in any trajectory at position (i, i + 1). By
construction, the same step at the same position is also present in H. History H is
realizable in N , so this step corresponds to a pspd such that t = ps

po
≠æ pd œ ” and

M i

H

t
k

≠æ M i+1
H

for some k Ø 1. Also H contains an enabling horizontal step popo in some
trajectory at that position (i, i+1). There are two cases: either that step popo was provided
by a trajectory in B, or not. In the first case, note that the place po of this horizontal
step must be first observed no later than i, and last observed not earlier than i + 1. This
implies f(po) Æ i < i + 1 Æ l(po). As H Õ contains a horizontal step popo for all positions
between f(po) and l(po), in particular it contains it at position (i, i + 1). In the second
case the same horizontal step is present in H Õ as a part of the same trajectory.

Thus H Õ is realizable.

p1

p2

p3

Figure 3.6: The realizable history of Figure 3.5a after pruning.

Example 6. The realizable history H of Figure 3.5a, leading from (5, 0, 1) to (1, 0, 5),
has a bunch B of size 4 Ø n from p1 to p3. It visits all places, and f(p1) = 1, l(p1) = 4,
f(p2) = 3, l(p2) = 6, and f(p3) = 2, l(p3) = 7. Figure 3.6 shows a history H Õ, leading from
(4, 0, 1) to (1, 0, 4), resulting from the application of the Pruning Lemma to H and B. The
new bunch BÕ from p1 to p3 given by the Pruning Lemma is drawn in dashed trajectories.
Notice that the trajectory of BÕ that passes through p2 does not appear in B. The firing
sequence t3t1t3t4 realizes H Õ.

Notice that our definition of realizable histories integrates an important aspect of IO
nets, which is that one token in the observed place po of some transition ps

po
≠æ pd is enough

30

3.3 Pruning and Boosting

p1

p2

p3

(a) A realizable history.

p1

p2

p3

(b) Boosting of the history on the left.

Figure 3.7: A realizable history of the IO net of Figure 3.1 before and after boosting.

to enable an arbitrary number of tokens to go from place ps to pd. In particular, adding a
trajectory with a non-horizontal i-th step pspd to a realizable history already containing a
non-horizontal i-th step pspd does not alter realizability, since the necessary horizontal i-th
step popo is still there.

Boosting Lemma. We present a Boosting Lemma, which states that duplicating a
trajectory of a history of an IO net preserves realizability. Intuitively, duplicating a
trajectory corresponds to adding a new “copycat” token that follows another token wherever
it goes. This is the formalization of the copycat property informally defined in Section 3.1.

Lemma 12 (Boosting Lemma). Let H be a realizable history of an IO net containing a
trajectory · . The history H + H·I is also realizable.

Proof. Let h be the length of H, and let tk1
1 · · · t

kh≠1
h≠1 be a realization of H. For every

1 Æ i Æ h ≠ 1 define kÕ
i

as follows: if ·(i) = ·(i + 1), then kÕ
i

def= ki; if ·(i) ”= ·(i + 1), then
kÕ

i

def= ki + 1. We claim that t
k

Õ
1

1 · · · t
k

Õ
h≠1

h≠1 is a realization of H + · .
Assume h = 1. Then H is realizable by t0 for any transition t, and so is H + · .

Assume that the induction property holds for some h Ø 1, and let H be of length h + 1,
realizable by tk1

1 · · · tkh
h

. By induction, the history H + · truncated of its last step is
realizable by t

k
Õ
1

1 · · · t
k

Õ
h≠1

h≠1 . If ·(h) ”= ·(h + 1) in H, then since · œ H and H is realizable,
·(h)·(h + 1) = pspd for ps and pd the source and destination places of th. Additionally,
there are kh ≠ 1 other trajectories · Õ such that · Õ(h)· Õ(h + 1) = pspd, and there is at least
one trajectory · Õ such that · Õ(h)· Õ(h + 1) = popo. Thus t

k
Õ
1

1 · · · t
k

Õ
h≠1

h≠1 tkh+1
h

realizes H + · . If
·(h) = ·(h + 1) in H, then H + · is realized by t

k
Õ
1

1 · · · t
k

Õ
h≠1

h≠1 tkh
h

.

Example 7. Figure 3.7b shows a realizable history of the IO net of Figure 3.1. It consists
of three trajectories, and the initial and final markings are (3, 0, 0) and (1, 1, 1). The history
is realized by the firing sequence t1t1t2. History H has a trajectory · = p1p2p2p3. Figure
3.7b shows a history H Õ, leading from (4, 0, 0) to (1, 1, 2), resulting from the application of
the Boosting Lemma to H and · . The firing sequence t1t1t1t2t2 realizes H Õ. The reader

31

3 Immediate Observation Nets

with an eye for detail may have noticed this is the same example as was used to illustrate
the copycat property in Example 4 of Section 3.1.

3.4 Results

Given an initial and a final marking, the Pruning and Boosting Lemmas allow us to isolate
a small number of “essential” trajectories needed to go from one to the other. Using
these lemmas we prove results on IO firing sequences, culminating in the Generalized
Reachability Theorem.

3.4.1 Shortening and Flatness

First, we show a Shortening Theorem: if a marking can reach another, then there exists a
firing sequence of bounded accelerated length between the two markings. Given a firing
sequence M Õ ‡

≠æ M , the idea is to take its history, prune it down to have small bunches,
then boost up selected trajectories to create a new history entailing a shorter firing sequence
from M Õ to M .

Theorem 13 (IO Shortening). Let N be an IO net with n places, and let M Õ, M be two
markings of N . If M Õ ú

≠æ M , then M Õ ‡
≠æ M for some ‡ of accelerated length |‡|a Æ (n3+1)n.

Proof. Let H be a realizable history such that M Õ H
≠æ M , and let h be the length of H.

For every two places p, q, let Bp,q denote the bunch of all trajectories of H leading from p

to q, and let Tp,q be equal to the size of Bp,q. Applying the Pruning Lemma to all bunches
Bp,q such that Tp,q Ø n, we obtain a new realizable history ÂH satisfying

ÂTp,q = min{n, Tp,q} for every p, q œ P . (3.1)

So ÂH has
q

p,qœP
ÂTp,q Æ n3 trajectories. Let M1

ÂH
t
k1
1

≠≠æ M2
ÂH · · · Mh≠1

ÂH
t
kh≠1
h≠1

≠≠≠æ Mh

ÂH be a
realization of ÂH. Since ÂH hast at most n3 trajectories, we have M i

ÂH(p) Æ n3 for every
p œ P and 1 Æ i Æ n. If h Ø (n3 + 1)n, then there are 1 Æ i ”= j Æ h such that M i

ÂH = M j

ÂH ,
and the history ÊH Õ obtained by “cutting out” the fragment of ÂH between M i

ÂH and M j

ÂH
is also realizable. (Formally, ÊH Õ is the result of replacing every trajectory · œ ÂH by
·(1) · · · ·(i)·(j + 1) · · · ·(h).) So w.l.o.g. we can assume Âh < (n3 + 1)n.

Since ÂH is realizable, we have ÁM Õ ÂH
≠æ ÊM for some markings ÁM Õ, ÊM . We examine the

relation between M Õ and ÁM Õ, and between M and ÊM . For every place p, the initial (final)
number of tokens of p in H is equal to the number of trajectories of H of starting in p

32

3.4 Results

(ending in p), and similarly for ÂH. So we have

M Õ(p) =
q

qœP
Tp,q and M(p) =

q
qœP

Tq,p

ÁM Õ(p) =
q

qœP
ÂTp,q and ÊM(p) =

q
qœP

ÂTq,p .

Further, for every place p œ P :

(a) ÁM Õ(p) Æ M Õ(p), and ÊM(p) Æ M(p).
Follows immediately from ÂTp,q Æ Tp,q for every q œ P (Equation 3.1).

(b) If ÁM Õ(p) = 0 then M Õ(p) = 0, and if ÊM(p) = 0 then M(p) = 0.
If ÁM Õ(p) = 0 then ÂTp,q = 0 for every q œ P . So, by Equation 3.1, ÂTp,q = Tp,q for
every q œ P , and so M Õ(p) =

q
qœP

Tp,q =
q

qœP
ÂTp,q = ÁM Õ(p) = 0. The proof for the

target markings is analogous.

Let H be the history obtained from ÂH as follows: for every p, q œ P , if ÂTp,q > 0 then pick
a trajectory · œ Bp,q, and set Bp,q = ÂBp,q + (ÂTp,q ≠ Tp,q ≠ 1) · · By the Boosting Lemma,
H is realizable, and so there are markings M Õ, M such that M Õ H

≠æ M . Further, by (a) and
(b) above we have T p,q = Tp,q for every p, q œ P , and so for every p œ P :

M Õ(p) =
ÿ

qœP

T p,q =
ÿ

qœP

Tp,q = M Õ(p)

So we get M Õ H
≠æ M . Since ÂH and H have the same length, we get h < (n3 + 1)n. So every

firing sequence realizing H has accelerated length at most (n3 + 1)n, and we are done.

A consequence of this Shortening Theorem is that the reachability relation for IO nets is
flat. Flatness has been used as a property for reachability in several systems, among which
Petri nets [29, 50, 68]. We use the definition of Leroux and Sutre [68]. A net N = (P, T, F)
is globally flat if there exist transition words w1, w2, . . . , wk œ T ú such that for every two

markings M Õ, M , if M Õ ú
≠æ M , then there exist j1, . . . , jk Ø 0 satisfying M Õ w

j1
1 ...w

jk
k

≠≠≠≠≠≠æ M .
Observe that the words w1, w2, . . . , wk are independent of both M and M Õ.

Theorem 14. IO nets are globally flat.

Proof. Let N = (P, T, F) be an IO net with n places , and let K = (n3 + 1)n. By Theorem
13, for every two markings M Õ and M of N such that M Õ ú

≠æ M , there is a firing sequence
‡ of accelerated length at most K such that M Õ ‡

≠æ M . Let T = {t1, . . . , tm}. Every such
firing sequence belongs to the regular language (tú

1tú
2 · · · tú

m)K . Let w1, w2, . . . , wm·K œ T ú

be the words given by wi = t((i≠1) mod m)+1 for every 1 Æ i Æ m · K. These transition words
witness that N is globally flat.

33

3 Immediate Observation Nets

A net N = (P, T, F) is locally postú-flat2 if for every M Õ there exist transition words
w1, w2, . . . , wk œ T ú such that for every M satisfying M Õ ú

≠æ M there exist j1, . . . , jk Ø 0

such that M Õ w
j1
1 ...w

jk
k

≠≠≠≠≠≠æ M . Here the transition words depend on the choice of source
marking M Õ, whereas they are independent in the definition of globally flat. In particular,
the fact that IO are globally flat implies that they are locally postú-flat. A Petri net being
locally postú-flat is equivalent to the reachability set of the net being semilinear [65]. In our
case, this means that for any marking M of an IO net, postú(M) is a semilinear set. This
result will be subsumed by the Closure Theorem in our next section, which shows that
postú(M) is in fact a counting set (recall that counting sets are a subclass of semilinear
sets).

The fact that IO nets are locally flat allows for analyzing nets by applying existing
symbolic model checking tools which use acceleration techniques (e.g. FAST [13], LASH
[19], TREX [8]). Intuitively, the tools decide reachability by computing transitive closures
of sequences of transitions (the words wi in our flatness definitions) with the help of
symbolic representations. They use semi-decision procedures which may not terminate in
general, but are guaranteed to terminate if the system is flat [68].

3.4.2 Closure under Reachability

Our main result for the verification of IO is the existence of algorithms running in polynomial
space to decide generalized reachability problems. The crucial result that directly leads to
this is that counting sets are closed under reachability operators postú and preú, and that
the norms can be bounded polynomially.

Theorem 15 (IO Closure). Let N = (P, ”) be an IO net with n places. Let C be a cube
over P . Then postú(C) is a counting set and

Îpostú(C)Î Æ ÎCÎ + n3

The same holds for preú(C).

We need a preparatory technical lemma before proving our Closure Theorem. Given a
cube C and a marking M Õ in postú(C), this lemma constructs a cube C

Õ containing M Õ and
itself contained in postú(C), such that the norm of C

Õ is bounded.

Lemma 16. Let N = (P, ”) be an IO net with n places, and let C be a cube. For all
M Õ

œ postú(C), there exists a cube C
Õ such that

1. M Õ
œ C

Õ
™ postú(C), and

2. ÎC
Õ
Î Æ ÎCÎ + n3.

2
What we call locally postú

-flat is called locally flat, or just flat, in [68].

34

3.4 Results

Proof. Let L, U be multisets such that C = (L, U). Let M Õ be a marking of postú(C). There
exists a marking M œ C such that M

ú
≠æ M Õ, and M Ø L by definition of C. Let H be a

history such that M
H
≠æ M Õ. We want to construct a cube C

Õ satisfying conditions (1) and
(2). For this, we choose appropriate lower and upper bounds LÕ, U Õ, and set C

Õ = (LÕ, U Õ).

Lower bound LÕ. Let HL be an arbitrary sub-multiset of H with multiset of initial
places L. Let H Õ denote H ≠ HL. Further, for every p, pÕ

œ P , let H Õ
p,pÕ be the bunch of all

trajectories of H Õ with p and pÕ as initial and final places, respectively. Let T Õ
p,pÕ be the

number of trajectories in H Õ
p,pÕ . We have

H Õ =
ÿ

p,pÕœP

H Õ
p,pÕ

So H Õ is the union of n2 (possibly empty) bunches. Applying the Pruning Lemma
(Lemma 11) to each bunch of H Õ with more than n trajectories yields a new history

H ÕÕ =
ÿ

p,pÕœp

H ÕÕ
p,pÕ

where the sum represents multiset addition, and such that history H ÕÕ + HL is realizable,
and

T ÕÕ
p,pÕ = min{n, T Õ

p,pÕ} for every p, pÕ
œ P . (3.2)

Let D and DÕ be the initial and final markings of H ÕÕ + HL. They satisfy the properties:

• D
ú
≠æ DÕ, because H ÕÕ + HL is realizable.

• D Æ M and DÕ
Æ M Õ, which follows from T ÕÕ

p,pÕ Æ T Õ
p,pÕ for every p, pÕ

œ P (Equation
3.2).

• D Ø L, because HL
Æ H ÕÕ + HL.

• |D| = |DÕ
| Æ |L|+n3 because |H ÕÕ+HL

| =
q

p,pÕ T ÕÕ
p,pÕ +|HL

| Æ n2
·n+|HL

| = |L|+n3.

Since M œ C, we have U Ø M Ø D Ø L. So D œ C, and therefore DÕ
œ postú(C).

Set LÕ def= DÕ as lower bound of our cube C
Õ.

Upper bound U Õ. Recall H is a history from M to M Õ. For q œ P , define U Õ(q) as
follows:

(i) If some trajectory of H ending in q starts from a place r such that U(r) = Œ, then
set U Õ(q) def= Œ.

(ii) If every trajectory of H ending in q starts from a place r such that U(r) < Œ, then
set U Õ(q) = M Õ(q).

We prove that C
Õ def= (LÕ, U Õ) satisfies the conditions of the lemma.

35

3 Immediate Observation Nets

M M Õ

R RÕ

D DÕ

Ø

Ø

Ø

Ø

Æ U Õ

= LÕ

U Ø

L Æ

H

HR

H ÕÕ

Figure 3.8: Construction of the proof of Lemma 16

Property 1: M Õ
œ C

Õ
™ postú(C).

Since C
Õ = (LÕ, U Õ), we first prove LÕ

Æ M Õ
Æ U Õ. The inequality M Õ

Ø LÕ follows from
M Õ

Ø DÕ = LÕ (see Figure 3.8). Inequality M Õ(q) Æ U Õ(q) holds for every place q. If
U Õ(q) = Œ there is nothing to show. If U Õ(q) is finite, i.e., if (ii) above holds, then
U Õ(q) = M Õ(q). Thus M Õ

œ C
Õ.

It remains to prove (LÕ, U Õ) ™ postú(C), which requires more e�ort. We show that for
every marking RÕ

œ (LÕ, U Õ) there exists a history HR leading to RÕ from a marking R œ C,
i.e. satisfying L Æ R Æ U . Since RÕ

œ (LÕ, U Õ) and LÕ = DÕ, we have RÕ
Ø DÕ. We construct

HR by repeatedly applying the Boosting Lemma (Lemma 12) to H ÕÕ and some well-chosen
trajectories of H ÕÕ. Since H ÕÕ starts in D, this guarantees that HR starts in a marking
R such that R Ø D Ø L (see Figure 3.8). Further, to ensure that HR ends at RÕ, for
every q œ P we boost H ÕÕ by exactly (RÕ(q) ≠ DÕ(q)) trajectories ending at q. It remains
to choose these trajectories in such a way that R Æ U holds. We add trajectories so that
R(q) Æ M(q) holds, which, since M(q) Æ U(q) (see Figure 3.8), ensures R(q) Æ U(q). We
decide which trajectories to add according to two cases, similar to the cases (i) and (ii)
above:

(iÕ) H ÕÕ contains a trajectory · ending in q from a place r such that U(r) = Œ.
In this case we add (RÕ(q) ≠ DÕ(q)) copies of · .

(iiÕ) Every trajectory of H ÕÕ ending in q from some place r satisfies U(r) < Œ.
In this case, by the definition of U Õ (see (ii) above), we have U Õ(q) = M Õ(q). Since
RÕ

Æ U Õ by hypothesis, we get DÕ(q) Æ RÕ(q) Æ M Õ(q), and so (RÕ(q) ≠ DÕ(q)) Æ

(M Õ(q) ≠ DÕ(q)). We need to add at most M Õ(q) ≠ DÕ(q) trajectories to H ÕÕ.
For each place r œ P , let Tr,q and T ÕÕ

r,q be the size of the bunch of trajectories leading
from r to q in H and H ÕÕ , respectively. By this definition, and the definition of the
pruning operation, we have

(a) M Õ(q) ≠ DÕ(q) =
q

rœP
(Tr,q ≠ T ÕÕ

r,q).
(b) For every r œ P : Tr,q Ø T ÕÕ

r,q, and
(c) For every r œ P : Tr,q Ø 1 implies T ÕÕ

r,q Ø 1.

We add trajectories as follows: we loop through the places r such that Tr,q Ø 1. We
take any trajectory of H ÕÕ leading from r to q (which exists by (c)), and replicate it

36

3.4 Results

Tr,q ≠ T ÕÕ
r,q times or less, until the quota of RÕ(q) ≠ DÕ(q) trajectories has been reached.

The quota is eventually reached by (a). By the Boosting Lemma, the resulting history
HR is still realizable.

We claim that this procedure produces a history HR such that T R
r,q Æ Tr,q for every

r, q œ P such that U(r) < Œ. Indeed, fix r such that U(r) < Œ. If q satisfies (iÕ), then
no trajectory from r to q is replicated, i.e., T R

r,q = T ÕÕ
r,q Æ Tr,q. If q satisfies (iiÕ), then our

procedure adds at most Tr,q ≠ T ÕÕ
r,q trajectories to the bunch of size T ÕÕ

r,q of H ÕÕ, therefore
T R

r,q Æ Tr,q. This entails that R(r) Æ M(r) for every place r such that U(r) < Œ. Since
M Æ U , we have R Æ U , and so we have shown that R œ C.

Property 2: ÎC
Õ
Î Æ ÎCÎ + n3.

We show ÎC
Õ
Îl Æ ÎCÎ + n3 and ÎC

Õ
Îu Æ ÎCÎ, from which the property is deduced, using

ÎC
Õ
Î = max(ÎC

Õ
Îl, ÎC

Õ
Îu). For the l-norm, recall that LÕ = DÕ. By construction of H ÕÕ (see

above), we have |DÕ
| Æ |L| + n3, and so

Î(LÕ, U Õ)Îl Æ |L| + n3
Æ Î(L, U)Î + n3 .

For the u-norm, notice that by (i) and (ii), every trajectory of H ending in a place q

satisfying U Õ(q) < Œ starts in a place r satisfying U(r) < Œ. Using this remark, we get:

Î(LÕ, U Õ)Îu

=
ÿ

q|U Õ(q)<Œ
U Õ(q)

=
ÿ

qœP |U Õ(q)<Œ
M Õ(q)

!
Def. of U Õ"

=
ÿ

qœP |U Õ(q)<Œ

ÿ

rœP

Tr,q

!
Def. of Tr,q

"

Æ

ÿ

qœP

ÿ

rœP |U(r)<Œ
Tr,q (Remark above)

=
ÿ

rœP |U(r)<Œ

ÿ

qœP

Tr,q (Algebra)

=
ÿ

rœP |U(r)<Œ
M(r) (H starts in M)

Æ

ÿ

rœP |U(r)<Œ
U(r) (M Æ U)

= Î(L, U)Îu

Example 8. Let C = (L, U) be a cube of the IO net of Figure 3.1, with L = (0, 0, 0) and
U = (6, 3, Œ). Let M Õ be the marking (1, 0, 5). It is in postú(C) because it is reachable

37

3 Immediate Observation Nets

from M = (5, 0, 1) œ C, as witnessed by the realizable history H of Figure 3.5a. Following
the proof of Lemma 16, we construct cube C

Õ = (LÕ, U Õ) such that M Õ
œ C

Õ
™ postú(C) and

ÎC
Õ
Î Æ ÎCÎ + n3 = 9 + 33 = 36. History H is pruned down to the history from (4, 0, 1)

to (1, 0, 4) illustrated in Figure 3.6, in which no bunch has more than n = 3 trajectories.
We fix LÕ = (1, 0, 4). The only trajectory of H ending in p1 starts in p1, and U(p1) < Œ

so U Õ(p1) = M Õ(p1) = 1. No trajectory ends in p2, so U Õ(p2) = M Õ(p2) = 0. There is a
trajectory from p3 to p3 and U(p3) = Œ, so U Õ(p3) = Œ and we have U Õ = (1, 0, Œ). The
norm of C

Õ is 5, and C
Õ is indeed included in postú(C): every marking in C

Õ is of the form
(1, 0, 4 + k) for k Ø 0, and it is reachable from marking (4, 0, 1 + k) œ C by firing t3t1t3t4.

The proof of the Closure Theorem follows from the above lemma and the fact that there
are only a finite number of cubes, given bounds on their norms.

Proof of the Closure Theorem (Theorem 15). By Lemma 16, for every marking M Õ
œ

postú(C) there is a cube CM Õ such that M Õ
œ CM Õ , CM Õ ™ postú(C), and ÎCM ÕÎ Æ ÎCÎ + n3.

So postú(C) =
t

M Õœpostú(C) CM Õ . Given a bound on their lower and upper norms, there
are only finitely many cubes CM Õ . Therefore postú(C) =

t
k

i=1 Ci for some k, and so it is
a counting set as a finite union of cubes. Since ÎCiÎ Æ ÎCÎ + n3 for every 1 Æ i Æ k, by
definition of counting set norms we have Îpostú(C)Î Æ ÎCÎ + n3.

The result for preú(C) is proved by considering the net N
Õ obtained by reversing the

arcs of our given IO net N . This is still an IO net. A marking of N is a marking of N
Õ

and vice versa, and it is easy to see that M
ú
≠æ M Õ in N if and only if M Õ ú

≠æ M in N
Õ for

any markings M, M Õ. Thus the set of markings preú
N (C) is equal to the set of markings

postú
N Õ(C). We get that preú

N (C) is a counting set and Îpreú
N (C)Î Æ ÎCÎ+n3, by application

of the above to N
Õ and postú

N Õ(C).

The above result also holds for counting sets. Indeed recall that counting sets can be
represented as finite unions of cubes, and that the norm of a counting set is the maximum
of the norms of these cubes. With the fact that counting sets are closed under boolean
operations, we obtain the following closure result.

Corollary 17. Counting sets of IO nets are closed under postú, preú and boolean operations.

Notice that given a non-empty cube C = (L, U), the marking equal to L(p) for each place
p is in C. Using this and the Closure Theorem, we deduce the existence of a polynomial
size witness for reachability between two counting sets.

Lemma 18. Let N be an IO net with n places. Let S
Õ, S be two counting sets. If S is

reachable from S
Õ, then there exist C Õ

œ S
Õ, C œ S such that C Õ ú

≠æ C and |C Õ
| = |C| Æ

ÎS
Õ
Î + ÎSÎ + n3.

38

3.4 Results

Proof. If S is reachable from S
Õ, then the set of markings described by S fl postú(S Õ) is

non-empty. By the Closure Theorem (Theorem 15) and Proposition 1, S fl postú(S Õ) is
a counting set of norm at most ÎSÎ + ÎS

Õ
Î + n3. Let fiiCi be a counting constraint for

S fl postú(S Õ) whose norm is less than ÎS fl postú(S Õ)Î. Let C = (L, U) a cube in fiiCi.
Marking C equal to L on all places is in C. By definition of the norm, |C| Æ ÎS flpostú(S Õ)Î.
Thus |C| Æ ÎS

Õ
Î + ÎSÎ + n3. Since C œ S fl postú(S Õ), there exists C Õ

œ S
Õ such that

C Õ ú
≠æ C and we are done.

3.4.3 IO Generalized Reachability Theorem

In the Closure Theorem we have shown that, given a cube C, postú(C) and preú(C) are
counting sets of bounded size. Using this, we show our main result: generalized reachability
problems can be solved in polynomial space. That is, membership or emptiness for
any combination of atoms using boolean operations, preú and postú can be evaluated in
polynomial space, where an atom is a counting set. The intuition behind this Generalized
Reachability Theorem is that the norms of the counting sets obtained by such combinations
are “small”, and so we only need to examine small markings to verify them, thus yielding
an algorithm for checking correctness which runs in polynomial space .

Recall the notion of generalized reachability expressions from Section 2.4, expressions
which are constructed using boolean combinations, postú and preú over counting constraints.
By Corollary 17, any generalized reachability expression E is a counting constraint, and
the set of markings [E] it represents is a counting set. Recall that the generalized reacha-
bility problems are the generalized reachability membership problem and the generalized
reachability emptiness problem.

Theorem 19 (IO Generalized Reachability Theorem). Let N be an IO net with n places.
Let E be a generalized reachability expression of length |E|, and let N be the maximum
norm of the counting constraints appearing in E. Then

• [E] is a counting set of norm O(|E| · N · n|E|),
• the generalized reachability membership problem for IO nets is in PSPACE, and
• the generalized reachability emptiness problem for IO nets is in PSPACE.

Proof. Set [E] is a counting set, by Corollary 17. We denote by ÎEÎ the norm of [E]. The
bounds for the norms follow from Proposition 1 and Theorem 15. We proceed by structural
induction on E. If E is a counting constraint �, then ÎEÎ Æ Î�Î Æ N œ O(|E| · N · n|E|).
Let E1 and E2 be generalized reachability expressions with norm O(|E1| · N · n|E1|) and
O(|E2| · N · n|E2|) respectively. If E = E1—E2 with — œ {fi, fl}, then its norm is smaller
or equal to ÎE1Î + ÎE2Î and |E| = |E1| + |E2|, so ÎEÎ œ O(|E| · N · n|E|). If E = E1, then
ÎEÎ Æ nÎE1Î + n and |E| = |E1| + 1, so ÎEÎ œ O(|E| · N · n|E|). Finally, if E = postú(E1)
or E = preú(E1), then ÎEÎ Æ ÎE1Î + n3 and |E| = |E1| + 1, so ÎEÎ œ O(|E| · N · n|E|).

39

3 Immediate Observation Nets

We consider now the generalized reachability membership problem, where the input
is N , E and a marking M . We again proceed by structural induction on E. If E is a
counting constraint, then it is a finite union of cubes, and membership of M in [E] is done
by checking if M(p) is in the bounds of one of these cubes for each place p. If membership
in E1 and E2 can be checked in PSPACE for some generalized reachability expressions
E1, E2, then it is easy to see that membership in E1 fi E2, in E1 fl E2 and in E1 is also
in PSPACE. (This may require storing the input of the subsidiary PSPACE checks, which
can be done in polynomial space.) We show that membership in postú([E1]) is in PSPACE,
where E1 is a generalized reachability expression for which membership is in PSPACE and
[E1] is a counting set with norm O(|E1| · N · n|E1|). The case for membership in preú([E1])
is symmetrical.

By Savitch’s Theorem, NPSPACE=PSPACE, so it is enough to provide a nondeterministic
algorithm. The algorithm first guesses a marking M0 œ [E1] of the same size as M . It
verifies that M0 belongs to [E1] by using the membership algorithm running in polynomial
space that we have by assumption. It then guesses a firing sequence starting at M0, step
by step. The algorithm accepts if the marking reached at some step is M . Notice that all
intermediate markings have the same size as M . At any moment in time the algorithm
only stores three markings, the current one, the next marking in the sequence, and the
input M , which can be done in polynomial space. This concludes the discussion regarding
the membership complexity.

To see that checking emptiness of E is in PSPACE, notice that if E is nonempty, then
it has an element of size at most ÎEÎ. We can guess such an element M in polynomial
space, and verify that M is indeed in E by means of the above membership algorithm.
Storing M encoded in binary requires space at most polynomial in |E|, log(N) and n, by
our bound on ÎEÎ.

Notice that for both our algorithms, the encoding of the input marking M and of the
counting constraints of expression E (whose bounds are smaller or equal to N) can be in
unary or in binary, and the algorithms still run in polynomial space.

This result is a powerful tool which can be used to prove that a host of problems are
in PSPACE for IO. We expose some of them below. For instance, the cube-reachability
problem for cubes C and C

Õ is just checking if postú(C) fl C
Õ is empty.

Theorem 20. The cube-reachability and cube-coverability problems for IO nets are in
PSPACE.

Proof. Let us first consider cube-reachability. Cube C
Õ can reach C if and only if the

generalized reachability expression C fl postú(CÕ) is non empty. This can be checked in
PSPACE by Theorem 19.

40

3.5 Summary and Discussion

Now for cube-coverability. Cube C
Õ can cover C if and only if C

Õ can reach CŒ, where CŒ

is the cube with same lower bounds as C but upper bound Œ on every place. As above,
this can be checked in PSPACE by Theorem 19.

Notice that cube-reachability and coverability can be extended to counting set-reachability
and coverability by virtue of a counting set being a finite union of cubes.

Recall that a marking M0 of an IO net N is live if for every marking M reachable
from M0 and for every transition t of N , some marking reachable from M enables t. The
cube-liveness problem consists of deciding if, given a net N and a cube M of markings of
N , every marking of M is live.

Theorem 21. The cube-liveness problem for IO nets is in PSPACE.

Proof. Let N be an IO net with set of places P , and C a cube. Let t = ps

po
≠æ pd be a

transition of N . The set En(t) of markings that enable t contains the markings that put
at least one token in ps and at least one token in po (unless ps = po in which case there
should be at least two tokens in that place). Clearly, En(t) is a cube. Then preú(En(t)) is
the set of markings M from which one cannot execute transition t anymore by any firing
sequence starting in M . So the set L of live markings of N is given by

L = preú

A
€

tœT

preú(En(t))
B

Deciding whether C ™ L is equivalent to deciding whether C fl L = ÿ holds. This can be
checked in PSPACE by Theorem 19.

The structural liveness problem for Petri nets is: given a net N , does there exist a
marking M such that M is live? A PSPACE upper bound can be shown by using Theorem
19 and the counting set of live markings L from the previous proof. Let C be the cube
representing all markings, i.e. with lower bound 0, and upper bound Œ on all places. The
answer to the structural liveness problem is yes if and only if C fl L is non-empty. This can
be checked in polynomial space by Theorem 19. The authors of [84] give an alternative
proof for the PSPACE upper bound, showing that if an IO net has a live marking, then it
has one such that there are at most two tokens in each place.

The Generalized Reachability Theorem also has consequences for population protocols,
which is the subject of the next chapter.

3.5 Summary and Discussion

We defined immediate observation (IO) nets, a class of Petri nets defined syntactically, in
which the only possible form of synchronization is observation, and no process creation nor

41

3 Immediate Observation Nets

destruction is possible. IO nets are included in the class of conservative Petri nets, for which
classic problems like reachability, coverability and liveness are PSPACE-complete [37]. By
reduction from the acceptance problem for bounded-tape Turing machines in Section 3.2,
we showed that these problems are still PSPACE-hard (and thus complete) for IO nets. We
showed that cube-parameterized versions of reachability and coverability for conservative
Petri nets have the same complexity as reachability and coverability for general Petri nets.
This is not the case for IO nets, for which we showed that the complexity is still PSPACE-
complete, like in the single marking case. In fact, this PSPACE upper bound for IO nets
holds for any generalized reachability problem, as shown in our Generalized Reachability
Theorem. To prove it, we used techniques described in Section 3.3, de-anonymizing token
trajectories, and looking at histories instead of firing sequences. These techniques lead
to additional results, like the IO Shortening Theorem stating that if there exists a firing
sequence between two markings then there exists one with few transition alternations, and
the fact that IO nets are globally flat. We proved the IO Closure Theorem, which states
that counting sets (finite unions of cubes) are closed under forward reachability (postú)
and backward reachability (preú), and that the size of the reachability sets is polynomial
in the initial counting set. This result helps to get a clear picture of the expressivity of IO
nets, and it leads directly to our Generalized Reachability Theorem.

Flatness for Petri nets [50, 68] is a notion which expresses that the reachability set is
somehow simple. The fact that IO nets are (globally and thus locally) flat paves the way
for the use of symbolic model checkers with acceleration techniques in practical analysis
cases. These tools, like FAST [13], LASH [19] and TREX [8], use semi-decision procedures.
They work well in practice but may not terminate. However, it is shown in [68] that they
are guaranteed to terminate if the system is flat. It would be interesting to investigate how
the algorithms of these symbolic model checkers can be tailored to the case of IO nets to
produce e�cient verification techniques, using the results on the reachability of IO nets
provided in this chapter. As mentioned in the introduction, IO nets model networks of
enzymatic chemical reactions. Properties of these sometimes translate as properties of the
reachability graph [4], providing a setting in which to apply the above tools.

In [84] the authors study the structural liveness problem for IO nets. They prove that the
problem is PSPACE-complete, adapting the bounded-tape Turing machine simulation for
the lower bound, and showing that an IO net is structurally live if and only if it is live from a
marking with at most 2 tokens in any place. The result is elegant and the proof uses classic
Petri net theory tools like siphons. For future work, it may be interesting to look more at
the interaction of IO nets with tools such as siphons, traps or place/transition-invariants.

Finally, another perspective o�ered by this chapter for future work is the use of token
de-anonymization and histories. We are surely not the first to use this approach, but we
can spread its use, as it provides a good angle for studying systems, like Petri nets, in

42

3.5 Summary and Discussion

which the tokens or processes can be seen as agents (and not as di�erent entities at each
moment).

Sources. IO nets were introduced in [47] as a Petri net model inspired by immediate
observation population protocols (IO protocols, see next Chapter). The lower bounds,
the Pruning and Boosting Lemmas, the IO Closure Theorem as well as the upper bounds
for cube-reachability, cube-coverability and cube-liveness were published in [47]. The
Shortening and Flatness Theorems come from [77]. The Generalized Reachability Theorem
appears in [46](Lemma 6.3), though in a di�erent form.

An earlier paper [44] considers the model of IO population protocols, a model close to IO
nets, and studies a problem called the correctness problem. Using a Racko� style argument
[74], it gives a doubly-exponential bound on the norms of postú and preú of a counting
set. This leads to an EXPSPACE upper bound on the correctness problem, in the same
way that the Closure Theorem leads to the Generalized Reachability Problem (using an
algorithm which guesses configurations of size doubly-exponential, which are encoded in
exponential space). The paper also contains a PSPACE-hardness proof for the correctness
problem by reduction from the acceptance problem for bounded-tape Turing machines.
The correctness problem for IO protocols can be expressed as a generalized reachability
problem, and the results of [44] are subsumed by the later results of [47]. However, [44]
can be considered as the first paper of the line of research presented in this thesis.

43

4 Application to Population Protocols

Population protocols were introduced by Angluin et al. as a model of distributed computa-
tion [6], and since then they have been extensively studied [1–3, 30, 36, 40]. They were
originally introduced to model mobile sensor networks with limited computational capacity,
and they also find motivation in the field of chemical reaction networks [83]. The model
postulates a “soup” of finite-state, indistinguishable agents interacting in pairs. A protocol
has a set of initial configurations. Intuitively, each initial configuration corresponds to
an input, and the purpose of a protocol is to compute a boolean output, 0 or 1, for each
input. A protocol outputs b for a given initial configuration C if in all fair runs starting at
C (with respect to a certain fairness condition), all agents eventually agree to output b.
So, loosely speaking, population protocols compute by reaching a stable consensus. The
predicate computed by a protocol is the function that assigns to each initial configuration
C the boolean output computed by the protocol when started at C.

Petri nets can model population protocols, and in the last years, this connection was
exploited to address the problem of proving population protocols correct. The fundamental
correctness problem for population protocols asks, given a protocol and a predicate, whether
the protocol computes the predicate. This question was proved decidable in [41, 42], but,
unfortunately, the same papers also showed that the correctness problem is at least as hard
as Petri net reachability, and so of non-primitive recursive complexity [31].

In their seminal paper on the expressive power of population protocols [7], Angluin et al.
defined subclasses corresponding to di�erent communication primitives between agents. In
particular, they introduced immediate observation protocols, called IO protocols for short.
We show that these are modelled by IO nets, and that the correctness problem can be
expressed as a generalized reachability problem.

Section 4.1 gives definitions for population protocols and IO protocols, and describes
their connection to Petri nets. Section 4.2 focuses on solving the correctness problem for
IO protocols, applying the results of the previous chapter.

4.1 Primer on Population Protocols

Definition and connection to Petri nets. A population protocol consists of a set
of states Q, a set of transitions T ™ Q2

◊ Q2, a set of input states I ™ Q and an
output function O : Q æ {0, 1} assigning a boolean value to each state. A transition
!
(q1, q2), (q3, q4)

"
œ T is denoted (q1, q2) ‘æ (q3, q4). A configuration is a multiset over the

states Q. Given two configurations C and C Õ we say that there is a step C
t

≠æ C Õ if there

45

4 Application to Population Protocols

exists t = (q1, q2) ‘æ (q3, q4) œ T , if C(q) Ø q1 + q2, and if C Õ = C ≠ q1 ≠ q2 + q3 + q4. A
run is a sequence of steps.

The connection to Petri nets is immediate: the Petri net modelling a protocol has one
place for each state, and one transition for every transition of the protocol. If transition t

of the Petri net models (q1, q2) ‘æ (q3, q4), then •t = Hq1, q2I, and t• = Hq3, q4I. An agent
in state q is modeled by a token in place q. A configuration C with C(q) agents in state q

is modeled by the marking putting C(q) tokens in place q for every q œ Q. A run in the
protocol corresponds to a firing sequence in the Petri net and vice versa. Observe that the
transitions of the net each have a preset and a postset of equal size, so we have:

Fact 22. Petri nets obtained from population protocols are conservative.

Computation. Population protocols are designed to compute predicates Ï : Nk
æ {0, 1}.

We first give an informal explanation of how a protocol computes a predicate, and then
a formal definition using Petri net terminology. A protocol for Ï has a k input states
{q1, q2, . . . , qk} ™ Q. Assume for example k = 2. In order to compute Ï(n1, n2), we first
place ni agents in qi for j = 1, 2, and zero agents elsewhere. This is the initial configuration
of the protocol for the input (n1, n2). Then we let the protocol run. The protocol satisfies
that in every fair run starting at the initial configuration (fair is defined formally below),
eventually all agents reach states labeled with 1 by the output function, and stay in such
states forever, or they reach states labeled with 0 by the output function, and stay in such
states forever. So, intuitively, in all fair runs all agents eventually “agree” on a boolean
value. By definition, this value is the result of the computation, i.e, the value of Ï(n1, n2).

Formally, and in Petri net terms, fix a Petri net N = (P, T, F) with |
•t| = 2 = |t•

|

for every transition t. Further, fix a set I = {p1, . . . , pk} of input places, and a function
O : P æ {0, 1}. We identify the tuple (N , I, O) and the population protocol it models. A
marking M is a b-consensus if M(p) > 0 implies O(p) = b. A b-consensus M is stable if every
marking reachable from M is also a b-consensus. A firing sequence M0

t1
≠æ M1

t2
≠æ M2 · · · of

N is fair if it is finite and ends at a deadlock marking, or if it is infinite and the following
condition holds for all markings M, M Õ and t œ T : if M

t
≠æ M Õ and M = Mi for infinitely

many j Ø 0, then Mj

tj+1
≠≠æ Mj+1 = M

t
≠æ M Õ for infinitely many j Ø 0. In other words, if

a fair sequence reaches a marking infinitely often, then all the transitions enabled at that
marking will be fired infinitely often from that marking. A fair firing sequence converges
to b if there is j Ø 0 such that Mj is a b-consensus for every marking j Ø i of the sequence.
For every v œ Nk with |v| Ø 2 let Mv be the marking given by Mv(pi) = vi for every
pi œ I, and Mv(p) = 0 for every p œ P \ I. We call Mv the initial marking for input v. We
say (N , I, O) computes the predicate Ï : Nk

æ {0, 1} if for every v œ Nk, every fair firing
sequence starting at Mv converges to b.

46

4.1 Primer on Population Protocols

2 2 2

2

2

q0

q1 q2

q3

t1

t2

t3

t4 t5 t6

Figure 4.1: Petri net underlying population protocol P2.

Example 9. We exhibit two population protocols that compute the predicate Ï(x) def=
[x Ø 3], and their corresponding Petri nets.

The Petri net N1 for the first protocol P1 is shown in Figure 3.1. Protocol P1 has states
P = {p1, p2, p3} and transitions (pa, pa) ‘æ (pa+1, pa) and (pa, p3) ‘æ (p3, p3) for a = 1, 2.
The only input state is p1. States p1 and p2 are labeled with 0, and state p3 with 1. The
initial marking in N1 for input x puts x tokens on the place p1 corresponding to state p1,
and no token elsewhere. If x Ø 3, then every fair firing sequence of N1 eventually reaches
the deadlock marking with x tokens in p3 and no tokens elsewhere (indeed, transitions t3
and t4 ensure that after a token reaches p3, eventually all other tokens move to p3 as well).
So the tokens eventually reach consensus 1. If x < 3, then no firing sequence ever puts a
token in q3 and so, since both p1 and p2 have output 0, the tokens reach consensus 0.

The Petri net N2 for the second protocol P2 is shown in Figure 4.1. Protocol P2 has
state set Q = {q0, q1, q2, q3}, and transitions (qa, qb) ‘æ (q0, qmin(a+b,3)) for 0 < a, b < 3,
and (qa, q3) ‘æ (q3, q3) for 0 Æ a < 3. Again, the only input state is q1. States q0, q1, q2
are labeled with 0, and state q3 is labeled with 1. The intuition is that a token is in qi

if it “knows” that there are at least i tokens in the net, for i œ {0, . . . , 3}. For example,
the initial marking H3 · q1I of N2 shown in Figure 4.1 has three tokens which each “know”
that there is at least one token in the net (themself). By firing t2, one of the tokens can
“transfer” its information to another, and forget its own: one token moves to q2 with the
information that there are at least two tokens, and the other token moves to q0 with the
(non-)information that there are at least zero tokens. As in the first protocol, the tokens
eventually reach consensus 1 from an input x if and only if x Ø 3. If x Ø 3, then in every
fair firing sequence of N2 a token will eventually reach place q3. Transitions t4, t5 and t6
then ensure that all tokens move to q3, which has output 1, and stay there. If x < 3, then
no firing sequence can put a token in q3 and so all tokens stay in places with output 0.

47

4 Application to Population Protocols

Both these protocols could be generalized to compute [x Ø n] for any natural n Ø 1.

Immediate observation protocols. When two agents of a population protocol com-
municate, they can both simultaneously change their states. This corresponds to communi-
cation by rendez-vous. In [7], Angluin et al. introduced immediate observation protocols,
corresponding to a more restricted communication mechanism. One of the agents observes
the state of the other agent, and updates its own state accordingly; the observed agent
does not change its state, since it may not even know that it is being observed. Transitions
are of the form (qs, qo) ‘æ (qd, qo), where qo is the state of the observed agent.

Example 10. Protocol P1 of Example 9 is immediate observation, but P2 is not.

The connection to IO nets is immediate. Transitions (qs, qo) ‘æ (qd, qo) of the protocol are
simply IO transitions of the form qs

qo
≠æ qd. Given an IO protocol, the Petri net modelling

it is an IO net.

Verifying population protocols. Not every population protocol is well designed. For
some inputs (n1, . . . , nk) the protocol can have fair runs that never converge, or fair runs
converging to the wrong value 1 ≠ Ï(n1, . . . , nk). This raises the question of how to
automatically verify that a protocol correctly computes a predicate. The main di�culty is
to prove convergence to the right value for each of the infinitely many possible inputs. In
the next section, we show how to formalize this as a generalized reachability problem.

Example 11. Consider the population protocol P1 of Example 9 whose corresponding
Petri net is shown in Figure 3.1. Let us add a transition t5 = (p3, p3) ‘æ (p1, p3). We do
not prove it formally, but it is easy to see that this new protocol has fair runs that never
converge. We reason in the corresponding Petri nets. A fair firing sequence can only be
finite if it ends at a deadlock, and this was the case for fair firing sequences of P1 that
started with three or more tokens in p1: they ended in the 1-consensus deadlock marking
with all tokens in p3. In the new protocol, t5 is enabled at this marking so it is no longer a
deadlock, and the marking reached by firing t5 is not a 1-consensus. A fair firing sequence
of the new protocol starting with three or more tokens in p1 cannot converge to 1, and in
fact it also cannot converge to 0.

4.2 Correctness of Immediate Observation Population
Protocols

The correctness problem for immediate observation protocols asks, given a protocol and a
predicate, whether the protocol computes the predicate. In order to study the complexity
of the problem we need to restrict ourselves to a class of predicates representable by finite

48

4.2 Correctness of Immediate Observation Population Protocols

means. A characterization of the predicates computable by IO protocols was given in [7]:
they compute predicates representable by counting constraints (called COUNT* in [7]).
The predicates representable by counting constraints are the predicates Ï : Nk

æ {0, 1} for
which there is a counting constraint � such that Ï(v) = 1 if and only if v is in [�]. So we
can formulate the correctness problem as follows: given a counting constraint � and an IO
protocol with a suitable set of input states, does it compute the predicate represented by
�?

In Petri net terms, the correctness problem for IO nets asks, given an IO net N , an input
set I, an output function O and a counting constraint �, whether (N , I, O) computes �
(formally defined in Section 4.1). We use the Generalized Reachability Theorem (Theorem
19) to show that the correctness problem for IO nets, and so for IO protocols, is PSPACE-
complete.

We present a proposition that characterizes the nets N that compute a given predicate
Ï : Nk

æ {0, 1}. On top of the definitions of Section 4.1, we need some notations. For IO
net N = (P, T, F), input set I ™ P , output function O : P æ {0, 1}, and b œ {0, 1}:

• Ib = {Mv | Ï(v) = b}, i.e., I1 (I0) denotes the initial markings of N for the input
vectors satisfying (not satisfying) Ï.

• Cb denotes the set of b-consensuses of N .
• ST b

def= preú
1
Cb

2
denotes the set of stable consensuses of N (the complement of the

markings from which one can reach a non-b-consensus).

Proposition 23. Let N be an IO net, let I be a set of input places, let O : P æ {0, 1} be
an output function, and let Ï : Nk

æ {0, 1} be a predicate where k = |I|. Then (N , I, O)
computes Ï if and only if postú(Ib) ™ preú(ST b) holds for b œ {0, 1}.

Proof. Assume that postú(Ib) ™ preú(ST b) holds for b œ {0, 1}. Recall: (N , I, O) computes
Ï if for b = 0, 1, for every initial marking M œ Ib, every fair firing sequence starting in
M converges to b. Let fi = M0, M1, . . . be a fair firing sequence with M0 œ Ib for some
b œ {0, 1}. We show that fi converges to b.

A marking M of N is called a bottom marking if M
ú
≠æ M Õ implies M Õ ú

≠æ M for every
marking M Õ. In other words, M is a bottom marking if it belongs to a bottom strongly
connected component (SCC) of the reachability graph of the net. If M

ú
≠æ M Õ then

|M | = |M Õ
|. The set of markings reachable from M is finite for any M , so every fair firing

sequence eventually visits a bottom marking. In particular, fi contains a bottom marking
M of a bottom SCC B. By assumption, we know that ST b is reachable from M , so there
exists M Õ

œ ST b such that M
ú
≠æ M Õ. This entails M Õ

œ B. Since for all D œ ST b, if
D

ú
≠æ DÕ then DÕ

œ ST b, we obtain that B ™ ST b. Every marking of ST b is a b-consensus
so fi converges to b.

Assume that (N , I, O) computes Ï, i.e. that every fair firing sequence starting in Ib

converges to b for b œ {0, 1}. Let us show that postú(Ib) ™ preú(ST b) holds. Consider

49

4 Application to Population Protocols

M œ postú(Ib). There exists M0 œ Ib such that M0
ú
≠æ M . We show that this finite firing

sequence can be extended to a fair infinite firing sequence fi.
Let Conf be the set of markings of the net, and let fi be a finite firing sequence.

Fix an infinite sequence fl = M0, M1, . . . of markings such that every marking of Conf

appears infinitely often in fl. Define the infinite firing sequence fi0 fi1 fi2 . . . and the infinite
subsequence Mi0 , Mi1 , Mi2 . . . of fl inductively as follows. For i = 0, let fi0 := fi and
Mi0 := M0. For every j Ø 0, let fi0 . . . fij fij+1 be any firing sequence leading to the first
marking of fl after Mij that is reachable from the last marking of fi0 . . . fij . It is easy to
see that fi0 fi1 fi2 . . . is fair.

By the reasoning on bottom markings, our fair firing sequence contains a bottom marking
M Õ of a bottom SCC B. If B ™ ST b then M œ preú(ST b) and our proof is done. Suppose
this is not the case, i.e. B fl ST b ”= ÿ. This means that there is a marking M̂ /œ Cb that is
in B. It is thus reachable from any marking of fi and so by fairness it is reached infinitely
often. Thus fi does not converge to b, contradicting the correctness assumption.

Thus correctness can be solved by checking if postú(Ib) ™ preú(ST b) holds for b œ

{0, 1}. We show that Ib and ST b are counting sets, allowing us to apply the Generalized
Reachability Theorem to solve this inclusion question.

Lemma 24. Let N = (P, T, F) be an IO net, let I ™ P be a set of input places of size k,
let O : P æ {0, 1} be an output function, and let Ï : Nk

æ {0, 1} be a predicate represented
by some counting constraint �Ï. Then for b œ {0, 1}, the sets Ib, Cb and ST b are counting
sets with norms polynomial in |P |, �Ï.

Proof. The set Cb is equal to the cube such that there are 0 tokens in states q with
O(q) = 1 ≠ b (i.e. an upper and a lower bound of 0), and an arbitrary number of tokens
elsewhere (i.e. an upper bound of Œ and a lower bound of 0). It has norm equal to 0. By
Proposition 1 and Theorem 15, ST b = preú

1
Cb

2
is a counting set of norm polynomial in

|P |. Set Ib is a counting set described by either �Ï or its complement.

Checking postú(Ib) ™ preú(ST b) is equivalent to checking postú(Ib) fl preú(ST b) = ÿ.
Since Ib and ST b are counting sets, this is a generalized reachability problem.

Theorem 25. The correctness problem for IO nets is PSPACE-complete.

Proof. Let N = (P, T, F) be an IO net, let I ™ P be a set of input places of size k, let
O : P æ {0, 1} be an output function, and let Ï : Nk

æ {0, 1} be a predicate represented
by some counting constraint �Ï. The condition for correctness of Proposition 23 can be
rewritten as

postú(Ib) fl preú(ST b) = ÿ. (4.1)

By Lemma 24, Ib and ST b are counting sets. Thus postú(Ib) fl preú(ST b) is a generalized
reachability expression. Its emptiness can be checked in PSPACE by Theorem 19.

50

4.2 Correctness of Immediate Observation Population Protocols

The proof for PSPACE-hardness reduces from the acceptance problem for deterministic
Turing machines running in linear space. We prove that the correctness problem is
PSPACE-hard, using the construction from the proof of Theorem 10.

Given a Turing machine M with initial state qinit and a size bound, we construct
the corresponding IO net NM (of Theorem 10) and apply some changes. We restrict
(success, p) ‘æ (success, q) transitions to (success, p) ‘æ (success, success) transitions for
any place p. We add transitions such that if there are two tokens in the head places, or
two tokens in the cell places for the same cell, or two tokens in the observer place, one of
them can move to success. We fix our input places to be the places o�[0, ·], at[qinit, 1] and
the observer place. We fix our output function to return 1 for success and 0 otherwise.
We fix the predicate “there are initially at least two tokens in one of the input places”.

If the Turing machine accepts the empty tape without going out of bounds, the protocol
is not correct, as we can put exactly one token in every input and run the simulation
until the acceptance will lead to one of the (at[qacc, ·], observer) ‘æ (at[qacc, ·], success)
transitions firing. Then all the tokens can go to success, leading to a 1-consensus deadlock
marking even thought the predicate is not true.

Otherwise, if the Turing machine does not accept, the protocol is correct. Initial markings
M smaller or equal to the marking M0 with one token in every input place do not satisfy
the predicate. No firing sequence starting in such an M can mark success because then by
monotonicity, marking M0 could too. But the success place can only be marked from M0
if the Turing machine can reach the accepting state, and it cannot by assumption. So all
fair firing sequences starting in such an M converge to 0, since they only visit 0-consensus
markings. The remaining markings are bigger than M0, which means they put more than
one token in one of the input places: they satisfy the predicate. Using our added transitions,
fair firing sequences starting in such markings will converge to 1, because eventually they
reach the marking with all the tokens in the success place, which is a 1-consensus deadlock
marking.

In [7], Angluin et al. show that IO protocols compute exactly the predicates representable
by counting constraints. They do so by first showing that given a predicate representable
by a counting constraint, there exists an IO protocol computing it; and second, by showing
that any correct IO protocol computes a predicate representable by a counting constraint.
The first part is done by showing that one can construct a IO protocol computing any
“threshold predicate” of the form Ï(x) def= [x Ø k] for k Ø 0, like in Example 9, and that the
class of predicates computable by IO protocols is closed under boolean operations. The
second part is involved and uses Higman’s Lemma. We can reprove it here in a simple
manner using the Closure Theorem.

Lemma 26. Let P be a IO protocol that computes the predicate Ï : Nk
æ {0, 1}. Then

Ï is representable by counting constraints.

51

4 Application to Population Protocols

Proof. Let N be an IO net, let I be a set of input places, and let O be an output function
such that (N , I, O) models P. Recall that Ï is representable by counting constraints if
there is a counting constraint � such that Ï(v) = 1 if and only if v is in the counting
set [�] described by �. Let I be the counting set of initial markings defined by the cube
which puts an arbitrary number of tokens in initial states of I, and 0 elsewhere. The set
I fl preú(preú(ST b)) is the set of initial markings from which all runs of P converge to
b for b in {0, 1}. Informally: a marking M in this set is initial, and it cannot reach a
marking which can reach a marking in preú(ST b), that is a marking which cannot reach a
stable b-consensus. In other words, there is no way for M to not be able to reach a stable
b-consensus, and so by fairness it eventually will. By Lemma 24 and the Closure Corollary
17, it is a counting set. Since (N , I, O) computes Ï, by definition Ib = I fl preú(preú(ST b)).
The set {v | Ï(v) = b} is equal to Ib restricted to the initial states I, and so we are
done.

4.3 Summary and Discussion

In this chapter we recall the formalism of population protocols, introduced in [6]. The main
verification problem for these is the correctness problem, which asks if a given protocol
computes a given predicate. The authors of [6] introduced in [7] a subclass called immediate
observation population protocols. We explain how IO nets model these IO protocols, and
we characterize the correctness problem for IO protocols as a generalized reachability
problem for IO nets. Using our Generalized Reachability Theorem from the previous
chapter, we conclude that IO protocol correctness is in PSPACE. This closes a complexity
gap we had opened in [44], and contributed to our article [46] which gives the complexity of
the correctness problem for all of the population protocol subclasses originally introduced
in [7]. Our results on IO nets from the previous chapter also allow us to reprove a result
from [7] in a succinct manner, namely that IO protocols compute predicates definable by
counting sets. It is also worth noting that IO nets take their name from IO protocols,
because we introduced them in [47] with the goal of modelling IO protocols.

We show that checking the correctness problem for IO protocols is equivalent to checking
a generalized reachability problem which is expressed using both postú and preú of counting
sets. We then get the complexity result by invoking the Generalized Reachability Theorem.
This fully uses the fact that, for IO nets, both the forward and backward reachability set
of a counting set is a (small) counting set. This is not the case for BIO nets.

Sources. The result on IO protocol correctness was published in [47]. The result reproving
that IO protocols compute counting sets appeared in the appendix of [10] (Lemma 7). A
PSPACE lower bound and an EXPSPACE upper bound on the correctness problem appeared
in [44], but are subsumed by the results of [47].

52

5 Branching Immediate Observation Nets

In this chapter we define and study our second class of observation Petri nets, branching
immediate observation (BIO) nets. Section 5.1 gives the formal definition and basic
properties. Section 5.2 introduces tools and techniques, echoing those for IO nets in Section
3.3, that are then used in Section 5.3 to prove our main results for BIO nets.

5.1 Definition and Examples

Branching immediate observation nets, or BIO nets, are a generalization of IO nets and
BPP nets. Informally, a BIO net is an IO net in which a token may branch into several
tokens upon observing the presence of another token.

Definition 27. A transition t of a Petri net is a branching IO transition (BIO transition) if
there is k Ø 0 and places ps, pd1 , . . . , pdk

, po, not necessarily distinct, such that •t = Hps, poI

and t• = Hpd1 , . . . , pdk
, poI, or such that •t = HpsI and t• = Hpd1 , . . . , pdk

I. We call ps the
source place, po the observed place, and the pdi the destination places of t. A Petri net is a
branching IO net (BIO net) if all its transitions are BIO transitions.

W R

S C

t2 t4

t1

t3

Figure 5.1: A BIO net.

Like for IO nets, in the proofs of this chapter we consider only BIO nets in which every
transition has an observed place. Given a BIO net in which this is not the case, it su�ces to
add an extra marked place which acts as observed place for all the transitions without one.
In the following, we sometimes denote by ps

po
≠æ Hp1, . . . , pkI the transition t with source

place ps, observed place po and t• = Hp1, . . . , pkI. We equate a BIO net (P, T, F) with the
pair (P, ”), where ” is the set of tuples (ps, po, Hp1, . . . , pkI) such that ps

po
≠æ Hp1, . . . , pkI is

in T .

Example 12. Figure 5.1 shows a BIO net representing a client server interaction. If
the server S observes a client C, it creates a worker W , which creates a response R and
terminates. The client C “leaves” after observing a response. Responses may expire.

53

5 Branching Immediate Observation Nets

2

c1
pc2

qc3

t4t2

t1

t3

Figure 5.2: A non-flat BIO net.

Notice that unlike IO nets, BIO nets are not conservative, and firing transitions can add
more tokens to the net. Also unlike IO nets, the reverse of a BIO net – that is, the net in
which all arcs are reversed – is no longer a BIO net.

Remark 28. We will also consider branching immediate multiple observation (BIMO)
nets, which are like BIO nets except there may be more than one observed place. This case
is treated in Chapter 6. The results for BIO nets hold also for BIMO nets, with bounds
changing only by a factor corresponding to the maximal number of observations. We treat
this case separately to make the proofs of this chapter cleaner.

BIO nets also have the copycat property. Consider a firing sequence M
ú
≠æ M Õ. We can

think of the tokens as each producing a trajectory tree by following the firing sequence: a
token in a place can branch into a multiset of children following a transition. If we add a
token to a place q of M already containing an token, i.e. such that M(q) Ø 1, then this new
token can “copy” the trajectory tree of the old token, mimicking its transitions along the
firing sequence. The intuition is the same as for IO nets: the token in the observed place
allowing the transition to fire is not consumed when the transition is fired, so additional
tokens can also take the transition. This property is formally defined in Lemma 30 of the
next section.

Example 13. We write the markings of the BIO net of Figure 5.1 using the order-
ing S,W,C,R on the places. Consider the firing sequence: (1, 1, 3, 0) t2

≠æ (1, 0, 3, 1) t3
≠æ

(1, 0, 2, 1) t4
≠æ (1, 0, 2, 0). One of the tokens is in place W , then moves to place R,

then dissapears. Let us add a token to W in the first marking. It can copy the “tra-
jectory tree” (here non-branching) of the previous token, yielding the firing sequence
(1, 2, 3, 0) t2

≠æ
t2
≠æ (1, 0, 3, 2) t3

≠æ (1, 0, 2, 2) t4
≠æ

t4
≠æ (1, 0, 2, 0).

The next example shows that BIO nets may have non-semilinear sets of reachable
markings. It is taken from Hopcroft and Pansiot’s well-known example of a Petri net with
a non-semilinear reachability set (Lemma 2.8 of [56]).

Example 14 ([56]). Consider the BIO net N of Figure 5.2, with states p, q, c1, c2, c3 and
initial marking M0 = (1, 0, 0, 0, 1). The set postú(M0) of markings reachable from M0 in N

54

5.1 Definition and Examples

2

2

3

2

Transform
A�ne

Area

double void

clone1

TransArea
create

clone2

setToRotation
clone3

A�neTrans()

Figure 5.3: A MIO net from [49].

is characterized by the condition (p = 1 · q = 0 · 0 < c2 + c3 Æ 2c1) ‚ (p = 0 · q = 1 · 0 <

2c2 + c3 Æ 2c1+1), where c denotes the number of tokens in some place c. Informally, one
token cycles between p and q, putting a new token in c1 at every new cycle. When p is
marked, tokens in c3 can move to c2, and when q is marked, tokens in c2 can move to c3
while doubling their number (see Lemma 2.8 of [56]). It is well known that semilinear sets
coincide with the sets of natural numbers definable in Presburger arithmetic [52, 54], i.e. in
FO(N, +), in which one cannot express an exponential. Clearly postú(M0) is not semilinear.
And therefore also the reachability relation of this BIO net is not semilinear.

This directly implies that BIO nets do not have a globally flat reachability relation
like IO nets, since global flatness is equivalent to semilinearity of the reachability set [65].
However we will show that they are locally flat, for a certain definition of locally flat [68],
which still allow us to analyze the nets applying existing symbolic model checking tools.

BIO nets are an extension of IO nets, and they inherit the PSPACE lower bounds for
reachability, coverability and liveness. Even though BIO nets are more expressive than IO
nets (non-semilinearity), we show that they enjoy many similar properties. If a marking
can reach another, it can do so by a “short” firing sequence (this time dependent on the
target marking). If a cube can reach another, there exists a polynomial size marking firing
sequence witnessing this. Moreover, BIO nets have a Generalized Reachability Theorem
stating that any combination of atoms using boolean operations and preú (but not postú)
can be evaluated in polynomial space, where an atom is a counting set. This entails
that, like for IO nets, deciding standard problems (reachability, coverability, liveness) for
infinitely many markings is not harder than deciding them for one marking.

The tools to prove all this are presented in Section 5.2, the results are proved in Section
5.3.

Remark 29. One can also define merging immediate observation (MIO) nets. These are
the Petri nets obtained from BIO nets by reversing all the arcs. Reversing all the arcs in a

55

5 Branching Immediate Observation Nets

BIO net yields a MIO net, and vice versa. Our results for BIO nets imply dual results for
MIO nets: any result on preú for BIO nets implies the same result on postú for MIO nets.

Figure 5.3 illustrates (a fragment of) a MIO net taken from the literature on type-driven
component-based synthesis [49]. The net represents relationships between API components:
the places are types, the transitions are methods and the tokens represent the number of
program variables of a certain type. Additionally, there are clone transitions which allow
program variables to be reused.

5.2 Branching Histories

Like for IO nets, the results for BIO nets are proved using the idea of “de-anonymizing”
tokens. However, since BIO nets can create and destroy tokens, trajectories must be
generalized to branching trajectories, which are trees of places; intuitively, the tree captures
the cascade of tokens created by a token of the initial marking.

We fix a BIO net N = (P, T, F) with n places, and let md := maxtœT |t•
≠

•t| denote
the maximum number of tokens created by a transition.

Branching trajectories. A branching trajectory of N is a nonempty, directed tree —

whose nodes are labeled with places of P . A node labeled by p is called a p-node. The i-th
level of —, denoted by —(i), is the (possibly empty) set of nodes of — at distance (i≠1) from
the root. We let M—(i) denote the multiset of places labeling the nodes of —(i). Observe
that M—(i) is a marking. We say that — has length l if —(l) ”= ÿ and —(l + 1) = ÿ. For
example, the first branching trajectory —c in the history of Figure 5.4 has length 9 and
M—(3) = Hp, qI.

Histories and realizable histories. A history H of length h is a forest of branching
trajectories of length at most h. We use histories to describe a behaviour from an initial
marking; the history contains a branching trajectory for each token of the initial marking.

Given a history H of length h and an index 1 Æ i Æ h, the i-th level of H is the
set H(i) =

t
—œH

—(i), and the i-th marking of H, denoted M i

H
, is the multiset M i

H
=

q
—œH

M—(i). The markings M1
H

and Mh

H
are called the initial and final markings of H,

and we write M1
H

H
≠æ Mh

H
. If the length of H is longer than the length of its branching

trajectories, the final marking of H is the zero marking. Two histories are equivalent if
they have the same initial and final markings.

A history H of length h Ø 1 is realizable if there exist transitions t1, . . . , th≠1 œ T and
numbers k1, . . . , kh≠1 Ø 0 such that for every 1 Æ i Æ h ≠ 1 the set H(i) can be partitioned
into two sets:

56

5.2 Branching Histories

1
p

p

p

p p

q q

q q q q q q

r r
r

p

q q q q q q

p

q

p p p q

q

q

q

q q q q q

p

q q q q q q

p

q q q q q q

2 3 4 5 6 7 8 9

—c

4 ◊ —1

—2

Figure 5.4: A decorated realizable history of a BIO net.

• A set Ha(i) containing exactly ki active nodes labeled by the source place of ti. Given
a particular active node, say v, the multiset of labels of its children is the (possibly
empty) multiset Hpd1 , . . . , pdk

I of destination places of ti.
• A set Hp(i) containing passive nodes, each of them with exactly one child, carrying

the same label as their parents. This set must contain at least one node labeled by
the place po observed by ti.

We say that the sequence tk1
1 · · · t

kh≠1
h≠1 realizes H. It follows easily from the definitions

that M1
H

t
k1
1

≠≠æ M2
H

· · · Mh≠1
H

t
kh≠1
h≠1

≠≠≠æ Mh

H
holds (where M

t
0

≠æ M Õ iff M = M Õ). From this
definition we easily obtain: M

ú
≠æ M Õ if and only if there exists a realizable history with M

and M Õ as initial and final markings.
Like for IO, we define the accelerated length of a firing sequence: Let ‡ be a firing

sequence. let k1, . . . , km be the unique positive natural numbers such that ‡ = tk1
1 tk2

2 . . . tkm
m

and ti ”= ti+1 for every i = 1, . . . , m ≠ 1. Then ‡ has accelerated length m, and |‡|a denotes
this accelerated length. From the definition of realizable history we immediately obtain:
every firing sequence that realizes a history of length h has accelerated length at most h.

Example 15. Figure 5.4 shows a realizable history H of a BIO net with places {p, q, r}

(for the moment, ignore the shades of gray). H consists of six branching trajectories: —c,
four copies of —1, and —2. The history has length 9, and its initial and final markings are
M1

H
= H6pI and M9

H
= Hq, rI. The transition ti executed at step i is

t1 = p
p
≠æ Hq, pI t2 = p

p
≠æ H2q, pI t3 = p

q
≠æ ÿ t4 = q

q
≠æ Hq, rI

t5 = r
p
≠æ ÿ t6 = p

q
≠æ H2qI t7 = t4 t8 = q

r
≠æ ÿ

57

5 Branching Immediate Observation Nets

The firing sequence that realizes H is t1 t5
2 t2

3 t4 t5 t4
6 t7 t18

8 . While the final marking of H

is produced by —c only, —c is not realizable on its own. For example, the r-node of —c at
level 5 is destroyed in the next step by the firing of t5, but t5 can only occur if there is at
least one token in place p; this token is supplied by —1 or —2. We can think of —1 and —2
as branching trajectories that eventually become extinct, but before extinction provide
tokens that need to be observable to fire some transitions.

Like for IO nets, our definition of realizable histories integrates the important aspect
of BIO nets which is that one token in the observed place po of some transition ps

po
≠æ

Hpd1 , . . . , pdk
I is enough to enable an arbitrary number of tokens to branch from place ps

to Hpd1 , . . . , pdk
I. In a realizable history, the token in the observed place is represented

by a passive node labeled by the observed place, and the tokens in the corresponding
source place are represented by active nodes labeled by the source place. We present a
Boosting Lemma for BIO nets. It states that duplicating a branching trajectory of a history
preserves realizability. It is the formalization of the copycat property informally defined in
Section 5.1.

Lemma 30 (BIO Boosting Lemma). Let H be a realizable history of a BIO net containing
a branching trajectory —. The history H + H—I is also realizable.

Proof. Let h be the length of H, and let tk1
1 · · · t

kh≠1
h≠1 be a realization of H. For every

1 Æ i Æ h ≠ 1 define kÕ
i

as follows: if there are no nodes of —(i) in the active nodes Ha(i)
of H(i), then kÕ

i

def= ki; otherwise let bi be the number of nodes of —(i) in the active nodes
Ha(i). Define kÕ

i

def= ki + bi. We show by induction on h that H Õ def= H + H—I is realizable by
t
k

Õ
1

1 · · · t
k

Õ
h≠1

h≠1 . Assume h = 1. Then H is realizable by t0 for any transition t, and so is H Õ.
Assume that the induction property holds for some h Ø 1, and let H be of length h + 1,

realizable by tk1
1 · · · tkh

h
. By induction, the history H Õ truncated of its last step is realizable

by t
k

Õ
1

1 · · · t
k

Õ
h≠1

h≠1 . We partition the nodes of H Õ(h) into

• a set H Õ
a(h): it contains the set Ha(h) of active nodes of H(h), as well as a copy of v

for each node v of —(h) which is in Ha(h).
• a set H Õ

p(h): it contains the set Hp(h) of passive nodes of H(h), as well as a copy of
v for each node v of —(h) which is in Hp(h).

Since H Õ
p(h) contains Hp(h), H Õ

p(h) has at least one node labeled by the place po observed
by th. Since every v added to Ha(h) to obtain H Õ

a(h) is a copy of a node already in Ha(h),
the multiset of labels of its children is guaranteed to be the multiset Hpd1 , . . . , pdk

I of
destination places of th. There are ki +bi nodes in H Õ

a(h) by definition of bi and realizability
of H. Thus H Õ is realizable, and realized by t

k
Õ
1

1 · · · t
k

Õ
h≠1

h≠1 t
k

Õ
h

h
.

58

5.2 Branching Histories

5.2.1 Decorated Histories

To prove our next results, we need to add information to our histories. A decoration ‚H of
a history H consists of the history H itself and a partition of the nodes of H into cargo,
fuel, and smoke nodes. Figure 5.4 shows a history H with a decoration ‚H. Graphically,
cargo nodes are white, gray nodes are fuel, and black nodes are smoke.

Before giving the formal definition of a decoration, let us provide some intuition. Think
of the sequence of markings of a history as the sequence of states of a ship. All nodes of
the final marking are cargo, they are what the ship “delivers” in the end. At any other
marking, the cargo nodes are the “causal predecessors” of the final cargo nodes. In the
history of Figure 5.4, only branching trajectory —c has nodes at the final level, and thus in
the final marking. These nodes labeled q and r must be (white) cargo nodes, and their
predecessors in —c – the nodes with a path to them – must also be cargo nodes.

Every decoration has the same cargo nodes, they only di�er in the partition of the other
nodes into fuel and smoke. Intuitively, a decoration reserves the right to use fuel nodes to
fire transitions (a p-node can be “used” to fire a transition that observes p), and commits
to never using a smoke node or its descendants. In the ship analogy, the fuel is “useful”
and the smoke is “useless”. In the realizable history of Figure 5.4, whenever there is a
(black) smoke node labeled by a place, there is also a (gray) fuel node labeled by the same
place. This means that if po is the observed place of a transition ti realizing H at step i,
then we can always pick a cargo or a fuel po-node to be the necessary passive po-node of
H(i). The most conservative decoration (which always exists) is the one that declares all
non-cargo nodes as fuel. Our first goal will be to show that every history has an equivalent
fuel-e�cient history that delivers the same cargo but admits a low-fuel decoration.

Decorations. Formally, a decoration ‚H of a history H of length h is a partition of the
nodes of H into cargo, fuel, and smoke nodes satisfying the following conditions:

• A node of H is a cargo node if and only if it has at least one descendant in H(h).
• All descendants of smoke nodes are smoke nodes.
• For every place p and level i, if H(i) contains smoke p-nodes, then it also contains

fuel p-nodes. (“No smoke without fuel”. Intuitively, the smoke p-nodes are not needed
because the fuel p-nodes can be used instead.)

A decorated history is a pair consisting of H and a decoration of H. Observe that along all
paths cargo comes before fuel, and fuel before smoke. Graphically, white nodes (if any)
come before gray nodes (if any), and gray nodes before black nodes (if any).

59

5 Branching Immediate Observation Nets

5.2.2 Fuel-e�cient Histories

We prove that every realizable history has an equivalent realizable history with a fuel-
e�cient decoration, defined as follows.

Definition 31. Let ‚H be a decorated history. A place p is wasteful at level i if ‚H(i)
contains more than n fuel p-nodes. A place p is wasteful in ‚H if it is wasteful at some level;
otherwise p is fuel-e�cient in ‚H. Finally, ‚H is fuel-e�cient if all places are fuel-e�cient.

Example 16. Since n = 3, in the decorated history of Figure 5.4 place p is wasteful at
levels 1 to 6, and q is wasteful at levels 3 to 8. The history is not fuel-e�cient.

The proof is based on a Replacement Lemma, which plays a role similar to that of the
Pruning Lemma for IO nets. We need a definition.

Definition 32. The (p, i)-bunch of H, denoted Bp(i), is the set of subtrees of H rooted
at the p-nodes of H(i).

Loosely speaking, the Replacement Lemma shows that if i is the earliest level at which
p is wasteful, then the bunch Bp(i) of trajectories can be replaced so that the new history
has a decoration where p is not wasteful anymore. The lemma shows how to do this while
ensuring that the histories before and after the replacement are equivalent. Repeated
applications of the Replacement Lemma yield a fuel-e�cient history.

Formally, given a history BÕ
p with p-nodes as roots and with the same number of trees as

Bp(i), we let H[BÕ
p/Bp(i)] denote the result of replacing each tree of Bp(i) by a di�erent

tree of BÕ
p. For this we assume that Bp(i) and BÕ

p have been enumerated in some way, and
the j-th tree of Bp(i) is replaced by the j-th tree of BÕ

p. We state the Replacement Lemma:

Lemma 33 (Replacement Lemma). Let ‚H be a decoration of a realizable history H such
that p is wasteful, and i is the earliest level at which p is wasteful. There exists a history
BÕ

p such that H Õ def= H[BÕ
p/Bp(i)] is realizable, equivalent to H, and has a decoration whose

fuel-e�cient places contain all fuel-e�cient places of ‚H and p.

Before giving the proof, we present an example.

Example 17. Consider the decorated history ‚H of Figure 5.4. Place p is wasteful at level 1
and Bp(1) = H. So all of H is replaced by BÕ

p whose existence is given by the Replacement
Lemma applied to H, p and i := 1. Figure 5.5 shows a realizable history H Õ = BÕ

p with
decoration „H Õ. The histories H Õ and H are equivalent: H Õ leads from H6pI to Hq, rI. It is
realized by t1 t2 t3 t4 t5 t5

6 t7 t12
8 . Place p is no longer wasteful in „H Õ, and in fact all places

are fuel-e�cient.

We give ourselves a few more definitions to help in the construction of BÕ
p. We call smoke

and fuel nodes transportation nodes. Given a decorated history ‚H, let last(p) denote the

60

5.2 Branching Histories

1

p

p

p

p

p p

q q

q q q q q q

r r
rp p p p p

q

q

q

q

p p p p p q

q

q

q

p

q q q q q q

p

q

p p p q

q

q

q

q q q q q

2 3 4 5 6 7 8 9

—c

3 ◊ —s

—p

—q

Figure 5.5: Result of replacing Bp(1) in the history of Figure 5.4.

last level i such that ‚H(i) contains a transportation p-node. A place-level is a pair (q, j),
where q is a place and j is a level of H. A path of place-levels is a concatenation of “steps”
of two types: “doing nothing” steps from (r, l) to (r, l + 1), and “transportation history”
steps from (r, l) to (s, l + 1) such that some transportation r-node of ‚H(l) has an s-child
in ‚H(l + 1). If H is realizable, this “transportation history” step corresponds to an r-node
being active at H(l) and having s in the multiset of labels of its children. We say that
(q, j) is reachable from (p, i) if there is a path from (p, i) to (q, j), and let Rp,i be the set of
all place-levels (q, j) reachable from (p, i).

Before giving the proof proper, we describe an example construction of history BÕ
p for

the decorated history of Figure 5.4 and place p.

Example 18. Let ‚H be the decorated history of Figure 5.4, in which p is already wasteful
at level i = 1. We construct BÕ

p, illustrated in Figure 5.5. Recall that since Bp(1) = H, we
have H[BÕ

p/Bp(1)] = BÕ
p.

In our example ‚H, we have Rp,1 = {(p, 1), . . . , (p, 6), (q, 3), . . . , (q, 8)}. (Observe that
(r, 5) does not belong to Rp,1, because its parent is a cargo node.) BÕ

p is the union of
three sets of branching trajectories, Bc, Bf , and Bs (where c, f, s stand for cargo, fuel, and
smoke):

• Bc contains all branching trajectories of Bp(i) rooted at a cargo node. (In Figure 5.5,
Bc is the singleton set {—c}.) The decoration conserves the cargo nodes but turns the
other nodes to smoke. Intuitively, Bc ensures that H Õ delivers the same cargo as H.

• Bf contains a branching trajectory —q for every q such that (q, j) œ Rp,i for some j.
(In Figure 5.5, Bf contains the two trees —p and —q.) Intuitively, these trajectories
guarantee that the new set Rp,i of „H Õ is a superset of the old one, and so that any

61

5 Branching Immediate Observation Nets

transition firing that relies on observing some place q at level j can still occur, because
(q, j) is still reachable from (p, i).
Let us now define —q. (Figure 5.6 shows —q for the history of Figure 5.5.) Let first(q)
be the smallest j such that (q, j) œ Rp,i. There is a shortest path from (p, i) to
(q, first(q)), and each step of the path corresponds to doing nothing or to executing
a transition once. (In Figure 5.6 we have (p, i) = (p, 1), (q, first(q)) = (q, 3). The
shortest path between them is (p, 1)(p, 2)(q, 3), and it corresponds to doing nothing
in the first step then firing t2.) Let ”q be the corresponding branching trajectory
– a more precise definition is given in the proof, but intuitively it is the branching
trajectory produced by either doing nothing or taking a transition following the steps
of the shortest path considered. (In Figure 5.6, ”q is the tree contained in the blue
area.) First we append a path to each leaf of ”q: if the leaf is, say, an r-node at level
j, then we append to it a path of r-nodes from level j to level last(r). (Red area of
Figure 5.6.) Then, we append to the end of each such path a r-destroyer, i.e., a tree
that makes the token disappear. We choose for this any subtree of ‚H rooted in a
transportation node of (r, last(r)). (Green area of Figure 5.6; in order to destroy a
p-node we first transform it into two q-nodes by firing t6, wait while t7 is fired in
another part of the history, and then destroy the q-nodes by firing t8 twice. The two
q-nodes are destroyed by firing t8 twice.) The decoration of —q is chosen so that there
is a fuel path rooted in (p, i) containing q-nodes from levels first(q) to last(q), and
the rest is smoke.

1

p p

q q q q q q

p

q

p p p q

q

q

q

q q q q q

2 3 4 5 6 7 8 9

—q

Figure 5.6: Illustration of the construction of the set Bf of trees.

• Bs contains |Bp(i)| ≠ |Bc| ≠ |Bf | copies of a tree of smoke nodes —s consisting of a
path of p-nodes of length last(p) ≠ i + 1 appended with a p-destroyer. Intuitively,
this is smoke added to ensure that H(i) = H Õ(i).

This concludes the description of BÕ
p. There are at most |Bf | Æ n fuel nodes per level in

BÕ
p, so p is fuel-e�cient.

62

5.2 Branching Histories

Proof. (Replacement Lemma.) We first construct H Õ def= H[BÕ
p/Bp(i)] and show that it is

realizable and equivalent to H. Then, we define a decoration „H Õ of H Õ, and show that it
realizes the condition of the lemma.

Construction of H Õ. We define BÕ
p as the union of three sets of branching trajectories, Bc,

Bf , and Bs (where c, f, s stand for cargo, fuel, and smoke):

• Bc contains all branching trajectories of Bp(i) rooted at a cargo node.
• Bf contains a branching trajectory —q for every q œ Rp,i.

We define —q. Let first(q) be the smallest j such that (q, j) œ Rp,i. Notice that
first(q) Æ last(q) for all q œ P , since by definition of reachability there exists a
transportation q-node in level first(q). There is a shortest path flq from (p, i) to
(q, first(q)). This path induces a branching trajectory ”q: intuitively it is produced
by either doing nothing or taking a transition following the steps of the shortest path
considered. We construct ”q as follows. Let flq = (p0, i)(p1, i + 1) . . . (pk, i + k), where
p0 = p and (pk, i + k) = (q, first(q)). The root of ”q is a p-node v0. For j from 0 to
k ≠ 1, if (pj , i + j)(pj+1, i + j + 1) is a “doing nothing” step of flq, then add to vj a
child node vj+1 labeled by pj+1. If (pj , i + j)(pj+1, i + j + 1) is a “transportation
history” step of flq, then there is an active pj-node in H(i + j) such that the multiset
of labels of its children is the multiset Hpd1 , . . . , pdk

I of destination places of some ti

with source place pj and such that pj+1 is equal to one of the pdl
. Add to vj a set of

children nodes with multiset of labels Hpd1 , . . . , pdk
I, and call vj+1 one of the nodes

labeled by pj+1. This procedure gives us ”q. We are building a branching trajectory
—q that we will root in level i of H, so intuitively the nodes in level j of —q will be at
level i + j of our new history. We build upon ”q as follows. First, we append a path
to each leaf of ”q: if the leaf is an r-node at level j of ”q for some r and j, then we
append to it a path of r-nodes from level j to level last(r) ≠ i (thus the last node
of this path will be at level last(r) of the new history where —q is rooted in a node
of level i). Then, we append to the end of each such path a r-destroyer, i.e., a tree
that makes the token disappear. We choose for this any subtree “r of ‚H rooted in a
transportation node of (r, last(r)). This concludes the construction of —q.

• Bs contains |Bp(i)| ≠ |Bc| ≠ |Bf | copies of a tree —s consisting of a path of p-nodes of
length last(p) ≠ i + 1 appended with a p-destroyer “p.

We define the replacement H Õ = H[BÕ
p/Bp(i)]: we replace the trees of Bp(i) with a cargo

root in ‚H by the same tree in Bc, we replace some trees of Bp(i) with a fuel root in ‚H by
the trees of Bf (in any order), and the rest of the trees of Bp(i) by the trees of Bs. This is
well-defined because

• the trees of BÕ
p all have p-nodes as root,

• there are more than n trees with fuel roots in Bp(i) since p is wasteful at i,

63

5 Branching Immediate Observation Nets

• there are not more than n trees in Bf since there is at most one tree per q œ P , and
• there are as many trees overall in BÕ

p as in Bp(i).

History H Õ is equivalent to history H: the trees added in BÕ
p \ Bc all end in destroyers,

and the other trees of H Õ were already in H, so H Õ has the same final marking. In case
i = 1, the number of p-nodes in H(i) and H Õ(i) is the same so H Õ has the same initial
marking.

History H Õ is realizable. History H is realizable, and we note tk1
1 · · · t

kh≠1
h≠1 a sequence that

realizes it, for some transitions t1, . . . , th≠1 œ T and numbers k1, . . . , kh≠1 Ø 0. We show
that H Õ is realizable using the same transitions but di�erent numbers l1, . . . , lh≠1 Ø 0. Let
1 Æ j Æ h ≠ 1. Let H Õ

p(j) be the set of nodes of H Õ(j) which have exactly one child with
the same label, and let H Õ

a(j) be the rest.
We claim that for every node vÕ in H Õ

a(j) with label r and multiset of children labels c,
there exists a node v in Ha(j) with label r and multiset of children labels c. By realizability
of H this entails that vÕ is labeled with the source place ps of tj , and the multiset of labels
of its children is the multiset Hpd1 , . . . , pdk

I of destinations of tj .
Now to show our claim. Let vÕ a node of H Õ

a(j). If vÕ is not a node of the subtree BÕ
p, or

if vÕ is a node of Bc, then we are done. Let us assume this is not the case, i.e. vÕ
œ Bf fi Bs.

• If vÕ is in a tree —s, then it is in a destroyer (since vÕ is not in H Õ
p(j)) and so it is in a

copy of a subtree of ‚H .
• Assume vÕ is in a tree —q for some q œ Rp,i. If vÕ is in a destroyer then it is in a

copy of a subtree of ‚H, and we are done. Otherwise, vÕ is in the tree ”q induced
by the shortest path flq from (p, i) to (q, first(q)) in H. Since vÕ is not passive, i.e.
vÕ /œ H Õ

p(j), there exists a “transportation history” step (r, j)(rÕ, j + 1) in flq for some
rÕ

œ c. By definition of ”q, this means that there is an r-node v active at H(j) with
the same multiset c of children labels.

We now show that the set H Õ
p(j) contains a node labeled by the place po observed by

tj . If there is a node labeled po in Hp(j) that is not in Bp(i), then it is also in H Õ
p(j) and

we are done. Let us assume that the only nodes of Hp(j) labeled po are in Bp(i). If there
is a cargo node labeled po in ‚Hp(j) then it is also in H Õ

p(j), so we are done. Otherwise
there exists a transportation node v labeled po in ‚Hp(j), and j Æ last(po) by definition.
Since v is in Bp(i), either v is in a tree with a cargo root, or place-level (po, j) is reachable
from (p, i). If v is in a tree of Bp(i) with a cargo root, it is also in Bc ™ BÕ

p. Otherwise
(po, j) œ Rp,i, and therefore by construction there is a node in BÕ

p labeled po at every level
between first(po) and last(po), in particular at j.

Decoration of H Õ. Let „H Õ be the following decoration of H Õ. We start with the nodes of BÕ
p.

We define the cargo nodes of Bc to be the cargo nodes of Bp(i) in ‚H, and let the rest of
the nodes of Bc be smoke. In each tree —q in Bf , constructed around the tree induced by a

64

5.2 Branching Histories

shortest path flq from (p, i) to (q, first(q)), we let the nodes along the path flq be fuel nodes,
along with the nodes along one branch from (q, first(q)) to (q, last(q)). All the other nodes
of —q are defined as smoke nodes. We let all the nodes of the trees —s be smoke nodes.

The nodes of H Õ
\BÕ

p are decorated in two steps. First, we set „H Õ to be equal to ‚H on the
nodes of H Õ

\ BÕ
p, which is possible because H Õ

\ BÕ
p = H \ Bp(i). Then, we do the following

“re-decoration”. Let (q, j) be a place level reachable from (p, i) in H Õ. If there are any fuel
nodes labeled q in (H Õ

\ Bf)(j), redecorate them and all their descendants as smoke nodes
in „H Õ. Do this for every (q, j) reachable from (p, i). Notice that this re-decoration only
a�ects nodes of H Õ

\ BÕ
p, as the only fuel nodes of BÕ

p are in Bf . We now show that this
decoration is well-defined.

The decoration is well-defined. The cargo nodes in „H Õ are well defined, as the cargo nodes
of „H Õ are the cargo nodes of ‚H. The order of “cargo then fuel then smoke” is respected
along the branching trajectories of „H Õ because they are respected in BÕ

p, by construction.
We now show that the “no smoke without fuel” property holds.

First remark that, for any place p, the last level index last(p) at which there is a
transportation p-node in „H Õ is equal to last(p) in ‚H by construction. Let v be a smoke
q-node at level „H Õ(j), for some q and j. If (q, j) is reachable from (p, i) in H then there
exists a fuel q-node in „H Õ(j) provided by —q, since j Æ last(q) by virtue of v being smoke.
If (q, j) is not reachable from (p, i) in H, then there is no subtree of Bp(i) rooted in a
transportation p-node with a descendant labeled q. Therefore in „H Õ, node v is not in Bf .
Since it is also not in Bs, whose trees are only p nodes until last(p), v is in either a tree
of Bc or in no tree of BÕ

p, and therefore v exists also in ‚H as a smoke node. Since the
smoke/fuel partition of ‚H is well defined, there exists a fuel q-node vÕ in ‚H(j). Since (q, j)
is not reachable from (p, i) in H, vÕ is either in Bc or not part of Bp(i) and so vÕ is also in
„H Õ(j).

Fuel-e�cient places. For every place-level (q, j) in H Õ reachable from (p, i), there are at
most n fuel q-nodes in „H Õ(j). Indeed, by definition, the only fuel nodes labeled q in „H Õ(j)
are in Bf (j). By definition of Bf (j), the only fuel nodes labeled q in Bf (j) are in the trees
—r for some r œ Rp,i. There are a most n such trees, and in each tree there is at most one
fuel node per level. Therefore there are no wasteful places q at some level j such that (q, j)
is reachable from (p, i) in H Õ. In particular, p is fuel-e�cient since i is the earliest level at
which p is wasteful in H. If there is a wasteful place-level in „H Õ, then it is unreachable
from (p, i) in H Õ. By definition of H Õ, this means that it is also a wasteful place-level in
H \ BÕ

p and thus in H. Thus the fuel-e�cient places of „H Õ contain all the fuel-e�cient
places of ‚H, as well as the place p.

Notice that repeated applications of the Replacement Lemma to some history H yield
the existence of a fuel-e�cient decoration „H Õ of a history H Õ equivalent to H.

65

5 Branching Immediate Observation Nets

5.2.3 Smoke Irrelevance and Unique Footprint

Our next results for BIO histories are the Smoke Irrelevance Lemma and the Unique
Footprint Lemma. Intuitively, the Smoke Irrelevance Lemma shows that we can always
deliver the same cargo using the same fuel independently of the initial amount of smoke.
We use this to prove our second lemma: the Unique Footprint Lemma shows that for every
history there exists an equivalent history in which any two levels di�er in the cargo, the
fuel, or the support of the smoke. This allows us to bound the length of histories for given
initial and a final markings.

Let ‚Hc(i), ‚Hf (i), ‚Hs(i) denote the multisets of cargo, fuel, and smoke nodes of ‚H(i), for
‚H a decorated history and i a level of H.

Lemma 34 (Smoke Irrelevance Lemma). Let ‚H be a realizable decorated history of length
h, and let µ be any multiset of places such that ÎµÎ ™ Î ‚Hs(1)Î. There exists a realizable
decorated history „H Õ of length h such that „H Õ

s(1) = µ and, for every level 1 Æ i Æ h,
„H Õ

c(i) = ‚Hc(i) and „H Õ
f (i) = ‚Hf (i).

We present an example before giving the proof.

Example 19. Consider the realizable decorated history ‚H of Figure 5.5. The smoke nodes
of ‚Hs(1) are the roots of the three —s trees, and their multiset of labels is H3 · pI. Let
µ = HpI. We have ÎµÎ ™ Î ‚Hs(1)Î = {p}. Let „H Õ be the decorated history equal to ‚H
with two of the three trees —s removed. It is such that „H Õ

s(1) = µ and it is realized by
t1 t2 t3 t4 t5 t3

6 t7 t8
8. At each level i from 1 to 9, it has the same cargo and fuel nodes as ‚H.

Notice that the new history given by the Smoke Irrelevance Lemma has the same final
marking, since the final level is only cargo nodes.

Proof. Rename ‹ := ‚Hs(1) for clarity. To construct „H Õ, start with ‚H, and do the following
for every place p œ P . If µ(p) Æ ‹(p), then delete ‹(p) ≠ µ(p) smoke p-nodes from ‚H(1)
as well as all their descendants (which are all smoke nodes by definition). If µ(p) > ‹(p),
then add to ‚H (µ(p) ≠ ‹(p)) copies of an arbitrary tree — of smoke nodes of ‚H rooted in
(p, 1). This tree exists because p œ ÎµÎ, and so p œ Î‹Î. The addition of the copies of —

maintains the “no smoke without fuel” property, because it was already fulfilled in ‚H by
the nodes of —. The smoke nodes of ‚H Õ(1) thus constructed are labelled by the places of µ,
and fuel and cargo nodes are neither added nor removed.

We prove that ‚H Õ is realizable. Let tk1
1 · · · t

kh≠1
h≠1 be a sequence that realizes ‚H, for some

transitions t1, . . . , th≠1 œ T and numbers k1, . . . , kh≠1 Ø 0. Removing trees of smoke nodes
from ‚H Õ does not a�ect realizability: if there is a smoke po-node with a po-node child in
some level ‚H(i) where po is the observed place of ti, then there is also a fuel po-node in
‚H(i) with a po-node child by the “no smoke without fuel” property. These fuel nodes are
still in ‚H Õ because we only remove trees of smoke nodes. Removing the trees translates

66

5.2 Branching Histories

1

p

p

p

p

p p

q q

q q q

r
rp p

q

q

q

q

p p q

q

q

q

p

q q q

p

q

q

q

q

q

q q

2 3 7 8 9

—c

3 ◊ —s

—p

—q

Figure 5.7: Result of splicing out levels between 3 and 6 in the history of Figure 5.5.

as decreasing the iterations of some transitions in the realizing sequence of ‚H. The trees
of smoke nodes that we add to ‚H Õ also do not a�ect realizability: they only increase the
iterations of the transitions in the realizing sequence, as in the proof of the Replacement
Theorem.

We use the lemma to show that for every history there exists an equivalent decorated
history in which any two levels di�er in the cargo, the fuel, or the support of the smoke.

Definition 35. Given a level ‚H(i) of a decorated history, define its footprint as the triple
(‚Hc(i), ‚Hf (i), Î ‚Hs(i)Î) (that is, we only take the support of ‚Hs(i), not ‚Hs(i) itself).

Lemma 36 (Unique Footprint Lemma). Every realizable history has an equivalent fuel-
e�cient realizable decorated history in which every level has a di�erent footprint.

Before giving the proof, we provide an example which describes the proof idea.

Example 20. Consider the realizable decorated history ‚H in Figure 5.5. It is of length
nine and goes from H6pI to Hq, rI. Level 3 and 6 have the same footprint: ‚Hc(i) = HqI,
‚Hf (i) = Hp, qI and Î ‚Hs(i)Î = {p} for i = 3, 6. Applying the Smoke Irrelevance Lemma to
µ := ‚Hs(3) and to the history starting in ‚H(6) yields the existence of a realizable decorated
history „H Õ of length four such that „H Õ(1) = ‚H(3) and such that the final marking is Hq, rI.
We construct a new realizable decorated history by taking the first two levels of ‚H and
appending „H Õ. The new history is represented in Figure 5.7. It is equivalent to H, it is
realized by t1 t2 t5

6 t7 t12
8 and it has a unique footprint at each level.

67

5 Branching Immediate Observation Nets

Proof. Let H be a realizable history, and let ‚H be a decoration of H (one always exists,
for example the conservative decoration that declares all non-cargo nodes as fuel). By the
Replacement Lemma, we can assume w.l.o.g. that ‚H is fuel-e�cient. Assume further that
‚H has minimal length h, i.e., every equivalent decorated history that is also fuel-e�cient has
length at least h. We claim that every level of ‚H has a di�erent footprint. Assume this is
not the case. Then there exist two indices 1 Æ i < j Æ h such that (‚Hc(i), ‚Hf (i), Î ‚Hs(i)Î) =
(‚Hc(j), ‚Hf (j), Î ‚Hs(j)Î). The truncated history ‚H(j) ‚H(j + 1) . . . ‚H(h) is clearly realizable.
Since Î ‚Hs(i)Î = Î ‚Hs(j)Î, we can apply the Smoke Irrelevance Lemma with µ := ‚Hs(i)
and obtain a decorated history „H Õ of length h ≠ j + 1 such that (‚Hc(i), ‚Hf (i), ‚Hs(i)) =
(„H Õ

c(1), „H Õ
f (1), „H Õ

s(1)) (notice: now ‚Hs(i) = „H Õ
s(1), instead of only Î ‚Hs(i)Î = Î„H Õ

s(1)Î).
But this implies ‚H(i) = „H Õ(1), and so the concatenation H(1) · · · H(i ≠ 1)H Õ(1) · · · H Õ(h ≠

j +1) is also a realizable history. By the Smoke Irrelevance Lemma we have „H Õ
c(h≠j +1) =

‚Hc(h). Since the last levels of a decorated history only contain cargo nodes, this implies
„H Õ(h ≠ j + 1) = ‚H(h), and so the concatenation is equivalent to H. Further, since „H Õ

has the same cargo and fuel nodes as ‚H(j) ‚H(j + 1) . . . ‚H(h), the concatenation is also
fuel-e�cient, contradicting that ‚H has minimal length.

5.3 Results

Given an initial and a final marking, the set of tools of the previous section show us that
only a small number of trajectory trees are “essential” to go from one to the other. We
use this to derive our main results for BIO nets. In Section 5.3.1 we show BIO versions
of the Shortening Theorem and flatness results for IO nets. In Section 5.3.2 we show a
BIO Closure Theorem from which we derive our main result on generalized reachability
problems for BIO, presented in Section 5.3.3.

5.3.1 Shortening and Local Flatness

Like for IO nets, we show a Shortening Theorem for BIO nets: if a marking can reach
another, then there exists a firing sequence of bounded accelerated length between the two
markings. Unlike for IO nets, this bound depends not only on the size of the net, but also
on the final (target) marking. Example 14 of Section 5.1 illustrates that for BIO nets the
bound cannot be independent of both the initial and final marking.

Example 21. Recall the BIO net of Example 14 with states p, q, c1, c2, c3. It is easy to
see that for j Ø 1 the marking Mj

def= (1, 0, j, 0, 2j) is reachable only via the firing sequence

(t1t2t3t4)(t2
1t2t2

3t4) . . . (ti

1t2ti

3t4) . . . (tj

1t2tj

3t4).

This sequence has accelerated length 4j, which depends on the target marking Mj .

68

5.3 Results

The BIO Shortening Theorem has an added feature: it bounds the size of the markings
along the shorter firing sequence. In IO the token number stays constant along a firing
sequence, but this is not the case for BIO.

Theorem 37 (BIO Shortening). Let N be a BIO net with n places, let M Õ, M be two
markings of N , and let |M Õ

| = mÕ, |M | = m. Let md := maxtœT |t•
≠

•t| denote the
maximum number of tokens created by a transition of N . If M Õ ú

≠æ M , then M Õ ‡
≠æ M

for some ‡ of accelerated length |‡|a Æ 2n(m + 1)n(n + 1)n. Further, the intermediate
markings along ‡ have size at most (mÕ + 2n(m + 1)n(n + 1)n(m + n)md)mn

d
.

Given a history for firing sequence M Õ ‡
≠æ M , the proof idea for the Shortening Theorem

is to apply the Unique Footprint Lemma to get a short history, from which we also derive
the token bound.

Proof. We first prove the bound on the accelerated length. By the Unique Footprint
Lemma, there is a history H such that M Õ H

≠æ M and H has a decoration ‚H where every
level has a di�erent footprint. So the length of ‚H is bounded by the number of possible
footprints of the histories leading from M Õ to M . Since, by definition, the number of cargo
nodes cannot decrease from a level to the next, and the last level consists of only cargo,
every level has between 0 and m cargo nodes per place. Since ‚H is fuel-e�cient, every
level has between 0 and n fuel nodes per place. Finally, there are at most 2n possible
supports in a net with n places. So the number of footprints, and so the length of ‚H, and
the accelerated length of any firing sequence realizing ‚H, is at most 2n(m + 1)n(n + 1)n.

Let us now prove the token bound. To bound the number of smoke nodes in each level,
we apply the following operation. Replace every largest tree of smoke nodes (since the
children of smoke nodes are smoke, this means trees rooted at smoke nodes whose parents
are cargo or fuel) by the tree —s defined as in the Replacement Lemma: —s is a path of
smoke p-nodes ending at level last(p), appended by a p-destroyer tree. This maintains
realizability, because (by the “no smoke without fuel” property in ‚H), it does not decrease
the support of the multiset of places of any level. We call „H Õ the resulting realizable history
with decorated nodes. Note that the “no smoke without fuel” property may not hold in „H Õ,
so it is not formally a decorated history, but it is su�cient to conclude the proof. „H Õ has
the following property: smoke p-nodes can only create other nodes (which, by definition,
are also smoke) at the level last(p), and it can create at most md of them.

At all other levels j of ‚H Õ, only cargo and fuel nodes can create nodes. There are at most
hÕ

Æ 2n(m + 1)n(n + 1)n levels, and at most (m + n) cargo and fuel nodes per place. Each
transition has a unique source place, and all the nodes are added to the initial mÕ nodes
corresponding to the tokens of M Õ. Thus there are at most mÕ + hÕ(m + n)md nodes at the
first level last(p) in which a smoke node creates nodes. At most all of the nodes are smoke,
so at most (mÕ + hÕ(m + n)md)md nodes are created. There are at most n levels last(p),

69

5 Branching Immediate Observation Nets

which each create at most the total amount of nodes times md nodes. Thus at every level
of the history there are at most (mÕ + hÕ(m + n)md)mn

d
nodes, concluding the proof.

Analogously to IO nets, this Shortening Theorem entails that the reachability relation
for BIO nets is flat, at least in a local sense. In Section 3.4.1, we gave the definition of a
locally postú-flat Petri net. We say a Petri net is locally preú-flat if and only if its reverse
net, i.e. the net with reverse arcs, is locally postú-flat.

Theorem 38. BIO nets are locally preú-flat, but neither globally flat nor locally postú-flat.

Proof. (a) We show that BIO nets are locally preú-flat. Let N = (P, T, F) be a BIO net
with n places and T = {t1, . . . , tl}, let M be a marking of N with |M | = m, and let
K = 2n(m + 1)n(n + 1)n. By Theorem 37, for every marking M Õ of N there is a firing
sequence tj1

i1 · · · tjK
iK

leading from M Õ to M . Since every such sequence belongs to the regular
language (tú

1tú
2 · · · tú

l
)K , the words w1, w2, . . . , wl·K given by wi = t((i≠1) mod l)+1 for every

1 Æ i Æ l · K witness that N is locally preú-flat.

(b) We show that BIO nets are not locally postú-flat, and so also not globally flat. Consider
the BIO net of Figure 5.2 with states p, q, c1, c2, c3. Recall that for all j Ø 1, M0 only
reaches the marking Mj

def= (1, 0, j, 0, 2j) via (t1t2t3t4)(t2
1t2t2

3t4) . . . (ti
1t2ti

3t4) . . . (tj

1t2tj

3t4).
So in order to reach Mj it is necessary to fire j times a sequence of the form tk

1tk2
2 tk

3tk4
4 ,

which proves the result.

The Shortening Theorem for BIO nets can also be used to prove that reachability
between single markings is in PSPACE: using the bound on the number of tokens in the
intermediary markings of a firing sequence, we only need to check if there exists a firing
sequence between markings of bounded size. But in the next sections, we show that there
is a Closure Theorem and thus a Generalized Reachability Theorem for BIO nets that
subsumes this result in a stronger result on generalized reachability expressions.

5.3.2 Closure under Backwards Reachability

Recall that for an IO net with n places and a counting set S, we have that postú(S) is
also a counting set and Îpostú(S)Î Æ ÎSÎ + n3. The same holds for preú(S). This result
can be partially extended to BIO nets. This cannot be the case for both preú and postú:
a counting set is a semilinear set, and we have already seen that BIO nets may have a
marking M0 such that postú(M0) is non-semilinear (Example 14). However, we show that
preú of a counting set is a counting set with polynomially bounded norm.

First, and using the tools from Section 5.2, we show that preú of a singleton marking is
a counting set with polynomially bounded norm. Essentially we show that token counts
above |M | + n are not distinguishable from the point of view of reachability of a marking
M .

70

5.3 Results

Lemma 39. Let N = (P, T, F) be a BIO net with n places. Let M be a marking of N .
Then preú(M) is a counting set and

Îpreú(M)Î Æ n|M | + n2.

Proof. Let M Õ be a marking in preú(M). There exists ‚H, a realizable decorated history
from M Õ to M . By the Replacement Lemma (Lemma 33), we can assume w.l.o.g. that
‚H is fuel-e�cient. Given a place p, if M Õ(p) Ø |M | + n + 1, then there exists a smoke
p-node in ‚H(1). Indeed, there are at most |M | cargo nodes at any level of ‚H, and at
most n fuel p-nodes by fuel-e�ciency. By the Smoke Irrelevance Lemma (Lemma 34),
we can decrease or increase the number of smoke p-nodes in M Õ by any amount and still
reach M . That is, for any k Ø 0, the marking equal to ‚Hf (1)(p) + ‚Hc(1)(p) + k on p and
equal to M Õ everywhere else is in preú(M). We deduce that preú(M) can be represented
by a counting constraint as a finite union of cubes with bounds on places p of the form
a Æ p Æ a for a œ {0, . . . , |M | + n} or |M | + n Æ p Æ Œ. Thus preú(M) is a counting set,
and by definition of the norm it has norm smaller or equal to n times |M | + n.

We extend this result to preú of a cube. In the proof, we add token-destroying transitions
to the net in order to reduce the problem to single-marking (backwards) reachability.

Theorem 40 (BIO Closure). Let N = (P, T, F) be a BIO net with n places. Let C be a
cube over P . Then preú(C) is a counting set and

Îpreú(C)Î Æ nÎCÎ + n2

Proof. Every cube C can be decomposed into a finite union of simple cubes: cubes with
bounds on each place p of the form bp Æ p Æ bp or bp Æ p Æ Œ for some bp œ N such that
bp Æ ÎCÎ.

Let Cs be a simple cube. For each place p with upper bound Œ, we add a transition
t with preset •t = {p} and postset t• = ÿ. It is easy to see that for every marking M Õ,
the modified net N

Õ has a firing sequence from M Õ to the lower bound L of Cs if and
only if the original net N has a firing sequence from M Õ to some marking in Cs. It then
remains to apply Lemma 39 to L and N

Õ, which has the same place count as N . We obtain
Îpreú(Cs)Î Æ n|L| + n2 and we conclude by applying |L| Æ ÎCsÎ.

The bounds still apply to an arbitrary cube C: it is a union of simple cubes, and the
norm of a union is the maximum of the norms.

The above result also holds for counting sets, as finite unions of cubes. With the fact
that counting sets are closed under boolean operations, we obtain the following closure
result for BIO nets.

Corollary 41. Counting sets of BIO nets are closed under preú and boolean operations.

71

5 Branching Immediate Observation Nets

Like for IO nets, we deduce the existence of a polynomial size witness for reachability
between two counting sets. For IO nets we used the fact that S being reachable from S

Õ

entails that S fl postú(S) is non-empty. This time we use that S being reachable from S
Õ

entails that S
Õ
fl preú(S) is non-empty.

Lemma 42. Let N = (P, T, F) be a BIO net with n places. Let S
Õ, S be two counting

sets. If S is reachable from S
Õ, then there exist C Õ

œ S
Õ, C œ S such that C Õ ú

≠æ C and
|C Õ

| Æ ÎS
Õ
Î + nÎSÎ + n2.

Proof. If S is reachable from S
Õ, then the set of markings described by S

Õ
fl preú(S) is

non-empty. By the Closure Theorem (Theorem 40) and Proposition 1, S
Õ
fl preú(S) is

a counting set of norm at most ÎS
Õ
Î + nÎSÎ + n2. Let fiiCi be a counting constraint

for S
Õ
fl preú(S) whose norm is less than or equal to ÎS

Õ
fl preú(S)Î. Let C = (L, U) a

cube in fiiCi. Marking C Õ equal to L on on all places is in C. By definition of the norm,
|C Õ

| Æ ÎS
Õ
fl preú(S)Î. Thus |C Õ

| Æ ÎS
Õ
Î + nÎSÎ + n2. Since C Õ

œ S
Õ
fl preú(S), there exists

C œ S such that C Õ ú
≠æ C and we are done.

5.3.3 BIO Generalized Reachability Theorem

Like for IO nets, we show a Generalized Reachability Theorem using the Closure Theorem.
It is weaker than for IO nets, because it is not true that postú of a counting set is a counting
set, this only holds for preú. To state the BIO Generalized Reachability Theorem, we
restrict the generalized reachability expressions and problems defined in Section 2.4 so they
cannot use the postú operator.

Let N = (P, T, F) be a Petri net. A preú-generalized reachability expression of N is an
expression that is constructed by the following syntax:

E := � | preú(E) | E fl E | E fi E | E

where � is any counting constraint over P . The set [E] represented by E and the length |E|

of a preú-generalized reachability expression is defined in the same way as for generalized
reachability expressions (see Section 2.4). Notice that by Corollary 41, any preú-generalized
reachability expression E is a counting constraint, and the set of markings [E] is a counting
set.

Given a Petri net N , a preú-generalized reachability expression E and a marking M , the
preú-generalized reachability membership problem consists of deciding whether M is in [E].
Given a Petri net N and a preú-generalized reachability expression E, the preú-generalized
reachability emptiness problem consists of deciding whether [E] is empty. These two
problems are called the preú-generalized reachability problems.

72

5.3 Results

Theorem 43 (BIO Generalized Reachability Theorem). Let N be a BIO net with n

places. Let E be a preú-generalized reachability expression of length |E|, and let N be the
maximum norm of the counting constraints appearing in E. Then

• [E] is a counting set of norm O(|E| · N · n|E|),
• the preú-generalized reachability membership problem for BIO nets is in PSPACE,

and
• the preú-generalized reachability emptiness problem for BIO nets is in PSPACE.

Proof. The proof is similar in parts to the proof of Theorem 19 for IO generalized reachability
expressions.

Set [E] is a counting set, by Corollary 41. We denote by ÎEÎ the norm of [E]. The
bounds for the norms follow from Proposition 1 and Theorem 40. The proof is done in the
same way as in the proof of Theorem 19, except that if E = postú(E1) or E = preú(E1)
for some preú-generalized reachability expression E1, then ÎEÎ Æ nÎE1Î + n2 instead of
ÎEÎ Æ ÎE1Î + n3.

We consider the generalized reachability membership problem, where the input is N , E

and a marking M . Like for Theorem 19, we proceed by structural induction on E. If E is a
counting constraint, if E = E1 fi E2, if E = E1 fl E2 or if E = E1 for some preú-generalized
reachability expressions E1, E2, then the proof is the same as in Theorem 19. The only case
which di�ers is if E = preú([E1]). We show that membership in preú([E1]) is in PSPACE,
where E1 is a preú-generalized reachability expression for which membership is in PSPACE

and [E1] is a counting set with norm O(|E1| · N · n|E1|).
By Savitch’s Theorem, NPSPACE=PSPACE, so it is enough to provide a nondeterministic

algorithm. In the proof of Theorem 19 for IO nets, we guessed a marking in [E1] of same
size as M , and checked if there was a firing sequence between them. This procedure is not
suited for BIO nets, because the markings along a firing sequence do not all have the same
size. Instead, we guess a cube in E1.

Set [E1] is a counting set, and thus it is equal to a finite union of cubes, each of norm
smaller or equal to ÎE1Î. Without loss of generality, we can assume each of these cubes is
simple, like in the proof of Theorem 40: each place of the cube either has upper bound
equal to Œ or upper bound equal to the lower bound. The algorithm first guesses a
simple cube C = (L, U) from this finite union. Intuitively C is such that if M œ preú([E1]),
then M œ preú(C). Storing the cube (with bounds encoded in binary) uses space at most
polynomial in |E|, log(N) and n, since its bounds are smaller or equal to ÎEÎ.

We want to verify that C ™ [E1]. This is equivalent to checking whether C fl [E1] = ÿ.
Because coPSPACE=PSPACE, it is su�cient to give an algorithm running in polynomial
space that checks whether C fl [E1] ”= ÿ. If the intersection is not empty, i.e. if C fl [E1] ”= ÿ,
then it has an element M Õ of size at most ÎC fl [E1]Î Æ ÎCÎ+nÎ[E1]Î+n (by Proposition 1).
We guess such an M Õ and check if it is in C by comparing it to the bounds (L, U), then

73

5 Branching Immediate Observation Nets

check if it is in [E1] by using the membership algorithm running in polynomial space for
[E1] that we have by assumption. Storing M Õ encoded in binary requires space at most
polynomial in log(ÎCÎ), log(Î[E1]Î) and n, i.e. space at most polynomial in |E|, log(N)
and n, since the cube and E1’s norms are smaller or equal to ÎEÎ.

We now modify the net as in the proof of Theorem 40: for each place p with upper
bound Œ in C, we add a transition t with preset •t = {p} and postset t• = ÿ. Let L be
the lower bound of C. If there exists a firing sequence from our input marking M to L in
this modified net, then there exists a firing sequence from M to some marking in C in the
original net. In the modified net, starting in M , the algorithm guesses a firing sequence,
step by step, guessing each time a marking of size bounded by Theorem 37 with mÕ = |M |

and m = |L|. The algorithm accepts if the marking reached at some step is L.
At any moment in time the algorithm only stores the current marking, the next marking

in the sequence, and cube C = (L, U). A seen above, storing the cube requires space at most
polynomial in |E|, log(N) and n. The size of the markings in the sequence are bounded by
Theorem 37, i.e. by (|M |+2n(|L|+1)n(n+1)n(|L|+n)md)mn

d
, where md := maxtœT |t•

≠
•t|.

Note that since the added transitions have no destination places, md is the same in the
original net and in the modified net. Encoding the marking in binary thus requires space
at most polynomial in |E|, log(|M |), log(N), log(md) and n. This concludes the discussion
regarding the membership complexity.

To see that checking emptiness of E is in PSPACE, we use the same proof as in Theorem
19. If E is nonempty, then it has an element of size at most ÎEÎ. We guess such an
element M in polynomial space, and verify that M is in E using the PSPACE membership
algorithm. Storing M encoded in binary requires space at most polynomial in |E|, log(N)
and n.

Like for IO nets in Theorem 19, the encoding of the input marking M and of the counting
constraints of expression E (whose bounds are smaller or equal to N) can be in unary or
in binary, and our algorithms still run in polynomial space.

Even without postú, this result is a powerful tool which can be used to prove that many
problems are in PSPACE for BIO nets. For instance, the cube-reachability problem from
cube C

Õ to cube C can be decided by checking if preú(C)flC
Õ is empty. Notice first that since

IO nets are a subclass of BIO nets, BIO nets inherit the PSPACE-hardness of reachability,
coverability and liveness (Theorem 10).

Theorem 44. The reachability, coverability and liveness problems for BIO nets are
PSPACE-hard.

Now we give a theorem echoing the IO net Theorems 20 and 21.

Theorem 45. The cube-reachability, cube-coverability and cube-liveness problems for
BIO nets are in PSPACE.

74

5.4 Summary and Discussion

Proof. Let us first consider cube-reachability. For IO nets, we decided it by checking
whether C fl postú(CÕ) was empty. For BIO nets we want to replace postú by preú. Cube C

Õ

can reach C if and only if the preú-generalized reachability expression C
Õ
fl preú(C) is non

empty. This can be checked in PSPACE by Theorem 43.
Cube-coverability is reduced to cube-reachability in the same way as in the proof of

Theorem 20: cube C
Õ can cover cube C if and only if C

Õ can reach CŒ, where CŒ is the cube
with same lower bounds as C but upper bound Œ on every place. This can be checked in
PSPACE by Theorem 43.

Cube-liveness is treated as in the proof of Theorem 21: the set of live markings of a BIO
net N = (P, T, F) is expressed as

L = preú

A
€

tœT

preú(En(t))
B

where En(t) is the cube of markings that enable t. Deciding whether C ™ L is equivalent
to deciding whether C fl L = ÿ holds. This is checked in PSPACE by Theorem 43.

Recall that these cube problems can be extended to counting set problems, by virtue of
a counting set being a finite union of cubes.

Finally, just like for IO nets, the structural liveness problem can be expressed as
a generalized reachability problem. It can thus be decided in polynomial space using
Theorem 43. This is also proved in [84], using a di�erent technique: the authors show that
a BIO net with n places and maximum edge weight w is structurally live if and only if it is
live from a marking with at most nw tokens in any place.

Remark 46. As mentioned in Remark 29, each result on preú for BIO nets immediately
implies the same result on postú for MIO nets. In particular, the following results hold for
MIO nets.

• MIO nets are locally postú-flat but not locally preú-flat.
• Let N = (P, T, F) be a MIO net with n places. Let C be a cube over P . Then

postú(C) is a counting set and Îpostú(C)Î Æ nÎCÎ + n2.

• The postú-generalized reachability problems for MIO nets are in PSPACE, where
postú-generalized reachability problems are expressed using generalized reachability
expressions constructed without preú.

5.4 Summary and Discussion

We define branching immediate observation (BIO) nets, a class of Petri nets defined
syntactically, in which the only possible form of synchronization is observation. It is a

75

5 Branching Immediate Observation Nets

generalization of IO nets: we no longer disallow process creation and destruction. It is also
a generalization of BPP nets, or communication free nets. This is a well studied class of
Petri nets (see e.g. [27, 39, 50, 64, 68, 72, 85]) in which synchronization is prohibited by
having transitions with exactly one input place; in BIO nets we allow observation as well.

We show that a subclass of generalized reachability problems for BIO nets are in PSPACE.
This entails that cube-parameterized versions of reachability, coverability and liveness
can be solved in polynomial space. This is much better than the complexities for general
Petri nets even in the single marking case of these problems (reachability is non-primitive
recursive [31], reachability and liveness are recursively equivalent [55], and coverability
is EXPSPACE-complete [69, 74]). We develop techniques similar to the ones for IO nets,
de-anonymizing token trajectories, and looking at histories instead of firing sequences. This
time the trajectories are trees instead of paths, since tokens may “branch” into new tokens.
We show a BIO Shortening Theorem which says that if there exists a firing sequence from a
target marking to a source marking, then there exists one with few transition alternations;
this “few” now depends on the size of the target marking, unlike for IO. Additionally,
the theorem bounds the size of the markings in the new firing sequence, i.e. it bounds
the number of tokens needed to go from a marking to another. BIO nets may have a
non-semilinear forward reachability set, by Hopcroft and Pansiot’s well-known example [56],
which happens to be a BIO net. This implies that the forward reachability set of a BIO net
may not be flat, but we show that BIO nets always have a flat backward reachability set.
Our BIO Closure Theorem shows that counting sets are closed under backward reachability
(for IO nets they are closed under backward and forward reachability), and that the size of
the backward reachability set is polynomial in the initial counting set (like for IO nets).
This leads to our BIO Generalized Reachability Theorem, which says that preú-generalized
reachability problems (generalized reachability problems not using postú) can be solved in
polynomial space.

BIO nets are essentially the fullest class defined by restricting all synchronization to
observation (except for having multiple observations and possibly no source place, a case
treated in the last chapter which does not change the complexity results). As far as we
know, BIO nets are the first class of Petri nets for which the reachability problem is proved
to be easier than in the general case while also having a forward reachability set which
may be non-semilinear. The classes of unbounded Petri nets for which the reachability
problem is demonstrably simpler than for arbitrary Petri nets – like BPP-nets, reversible
nets, and IO nets – all have semilinear reachability sets. The local flatness of BIO nets
already allows the application of symbolic model checkers that use acceleration techniques.
Indeed, these use semi-decision procedures to compute reachability sets. These procedures
terminate if the reachability sets of the net are flat [68], so for BIO nets these can be used
to compute the backward reachability set of a net. Like for IO nets, an idea for future work
is to see how to tailor their use for BIO nets specifically and apply it in practical cases.

76

5.4 Summary and Discussion

As explained in the introduction and in Remark 29, MIO nets (reverse BIO nets) can be
found in the field of type-directed program synthesis [49, 53]. In tool SyPet of [49], Petri
nets are used to provide well-typed program sketches, which are then completed using
constraint solvers. We expect this to be an interesting field of application. Another domain
for BIO net application is chemical reaction networks. As mentioned in the introduction,
IO nets have already been used to model enzymatic chemical reactions [4]. It is reasonable
to expect that BIO nets find a similar application.

Sources. BIO nets were introduced in [77]. The article contained the BIO Shortening and
Flatness Theorems as well as the technical lemmas of Replacement, Smoke Irrelevance and
Unique Footprint. The Closure and Generalized Reachability Theorems are unpublished,
although they existed in a di�erent form in a first version of [77], which can be found at
[76]. That version gave an exponential bound on the size of preú of a counting set, whereas
this thesis gives a polynomial bound.

77

6 Extensions

In this chapter we present extensions to the theory of observation Petri nets. Section
6.1 looks at IO and BIO nets which have multiple observed places, and details how the
results of the previous chapters evolve. Section 6.2 links IO nets to an existing model of
distributed systems called reconfigurable broadcast networks, then considers branching
reconfigurable broadcast networks. Finally, Section 6.3 presents some considerations on
observation Petri nets and model checking.

6.1 Multiple Observation Nets

A natural extension for IO and BIO nets is to consider multiple observation: that is, a
transition with one source place can fire from a marking if and only if a multiset of observed
places is covered by the marking. The results of the previous sections change very little for
this extension, only adding as factor to some results the maximal number of tokens needed
in an observed place to fire a transition of the net.

6.1.1 Immediate Multiple Observation Nets

We consider a natural extension of IO nets called immediate multiple observation nets, or
IMO nets, in which a token may observe multiple tokens instead of just the one.

Definition 47. A transition t of a Petri net is an immediate multiple observation (IMO)
transition if there are places ps, pd, po1 , po2 , . . . , pok for some k œ N, not necessarily distinct,
such that •t = Hps, po1 , . . . , pokI and t• = Hpd, po1 , . . . , pokI. We call ps and pd the source
and destination places of t, and Hpd, po1 , . . . , pokI the observed multiset of places of t. A
Petri net is an immediate multiple observation net if and only if all its transitions are IMO
transitions.

We let mo = max(1, maxtœT {min(•t(p), t•(p)) | p œ
•t fl t•

}) denote the maximal obser-
vation degree of N , that is the maximal number of tokens needed in an observed place to
fire a transition of T , or 1 if this number is 0.

Notice that IMO nets are conservative Petri nets, like IO nets.

Example 22. Figure 6.1 is an IMO net with mo = 2, because the observed multiset of t1
is H2p1I. It is such that p2 is reachable from a marking M0 with only tokens in p1 if and
only if M0(p1) Ø 3. In contrast to the IO net of Figure 3.1, this “threshold check” can be
realized in just one transition.

79

6 Extensions

3

2
2

p1 p2
t1

t2

Figure 6.1: An IMO net.

We demonstrate that the proofs for the IO nets are applicable to IMO nets with only
minor modifications. The idea is that we can reuse the same proofs and formalisms except
that instead of making sure there is at least one token in each observed place, we make
sure there are at least mo.

Pruning and Boosting for IMO Nets

Defining histories in the same way as for IO nets, we say that a history H of length h Ø 1
is realizable if there exist transitions t1, . . . , th≠1 and numbers k1, . . . , kh≠1 Ø 0 such that

• M1
H

t
k1
1

≠≠æ M2
H

· · · Mh≠1
H

t
kh≠1
h≠1

≠≠≠æ Mh

H
, where for every t we define M Õ t

0
≠æ M iff M Õ = M .

• For every 1 Æ i Æ h≠1, there are exactly ki trajectories · œ H such that ·(i)·(i+1) =
pspd, where ps, pd are the source and target places of ti, and all other trajectories
· œ H satisfy ·(i) = ·(i + 1). Moreover, H contains a submultiset of trajectories
H· Õ

1, . . . , · Õ
l
I with · Õ

j
(i) = · Õ

j
(i + 1) = poj for all 1 Æ j Æ l, where Hpo1 , . . . , polI is the

observed multiset of places of ti.

We say that tk1
1 · · · t

kh≠1
h≠1 realizes H. For a step i corresponding to a transition ti, there

must be l trajectories in H that each have a horizontal step at i such that the steps are
labeled by the observed multiset Hpo1 , . . . , polI of ti. In IO nets this l was always equal to
one.

Defining bunches in the same way, we prove a Pruning Lemma for IMO nets in which a
“big” bunch is one of size larger than nmo, instead of n as it was for IO nets.

Lemma 48 (IMO Pruning Lemma). Let N = (P, ”) be an IMO net with n places and
maximal observation degree mo. Let H be a realizable history of N containing a bunch
B ™ H of size larger than nmo. There exists a bunch BÕ of size at most nmo with the
same initial and final places as B, such that the history H Õ def= H ≠ B + BÕ (where + and
≠ denote multiset addition and subtraction) is also realizable in N .

We give an example to illustrate why bunches of size n are too small to prune.

Example 23. Figure 6.2 shows a realizable history H of the IMO net N of Figure 6.1.
The history starts in marking H3p1I and ends in marking H3p2I. It is realized by t1t2

2. There

80

6.1 Multiple Observation Nets

p1

p2

Figure 6.2: A realizable history of the net in Figure 6.1.

are three trajectories, all starting in p1 and ending in p2. The trajectories make up a bunch
of size 3, where n < 3 Æ nmo, since n = 2 and mo = 2 for N . If we prune this bunch like
we would for an IO net, then we obtain the history made up of one of the top trajectories
of H and the bottom trajectory of H. This history is not realizable: no marking is enabled
at the initial marking H2p1I. Indeed, t1 needs three tokens in p1 to fire – one token in the
source place (p1) and two tokens in the observed place (also p1).

For each of the at most n places po visited by a bunch, our pruning operation for IMO
nets replaces a “big” bunch with a bunch that has enough horizontal steps labeled by po

to enable any transition which has po in its observed multiset; such a transition may need
to observe up to mo tokens in po.

Proof. The proof is the same as for IO nets, except that now we take mo copies of each
trajectory ·p, where p is a place visited by the bunch B. Let PB be a set of all places visited
by at least one trajectory in the bunch B. For every p œ PB let f(p) and l(p) be the earliest
and the latest moment in time when this place has been used by any of the trajectories
(the first and the last occurrence can be in di�erent trajectories). Let ·p, p œ PB be a
trajectory that first goes to p by the moment f(p), then waits there until l(p), then goes
from p to the final place. To go to and from p it uses fragments of trajectories of B. The
portion between is made of horizontal steps stationary in p. Note that we can copy the
same fragment of a trajectory multiple times. We take BÕ = {·p | p œ PB} and prove that
the history H Õ obtained by replacing B with mo copies of BÕ in H is still realizable.

We build ·p by taking fragments of existing trajectories and using them at the exact
same moments as they are used in H, and by adding some horizontal fragments. Therefore,
the set of non-horizontal steps in BÕ is a subset (if we ignore multiplicity) of the set of
non-horizontal steps in B.

Consider any non-horizontal step in H Õ in any trajectory at position (i, i + 1). By
construction, the same step at the same position is also present in H. History H is
realizable in N , so this step corresponds to a pspd such that there is a t œ ” with
•t = Hps, po1 , . . . , pokI and t• = Hpd, po1 , . . . , pokI, and M i

H

t
l

≠æ M i+1
H

for some l Ø 1. Also,
H contains an enabling horizontal step popo for each po œ Hpo1 , . . . , pokI (with multiplicity)
in some trajectory at that position (i, i + 1). We must show that for each such horizontal
step in H there is a corresponding horizontal step in H Õ, also at position (i, i + 1). Consider
one such step popo in H. There are two cases: either the step is provided by a trajectory

81

6 Extensions

that is not in B, or it is provided by a trajectory that is in B. In the first case the same
horizontal step is present in H Õ as a part of the same trajectory. In the second case, note
that the place po of this horizontal step must be first observed no later than i, and last
observed not earlier than i + 1. This implies f(po) Æ i < i + 1 Æ l(po). As H Õ contains
mo horizontal steps popo for all positions between f(po) and l(po), in particular it contains
them at position (i, i + 1). The fact that there are mo such steps in H Õ ensures that if
transition t is enabled by mo observations of po, then we can match each popo step in H to
a popo step in H Õ.

Thus H Õ is realizable.

The Boosting Lemma holds for IMO nets as it did for IO nets: duplicating a trajectory
preserves realizability of a history.

Lemma 49 (IMO Boosting Lemma). Let H be a realizable history of an IMO net
containing a trajectory · . The history H + H·I is also realizable.

Results for IMO Nets

Like for IO nets, we can now also prove that IMO nets are globally flat via a bound on the
accelerated length of the firing sequences.

Lemma 50 (IMO Shortening). Let N be an IMO net with n places and maximal obser-
vation degree mo. Let M Õ, M be two markings of N . If M Õ ú

≠æ M , then M Õ ‡
≠æ M for some

‡ of accelerated length |‡|a Æ (n3
· mo + 1)n.

This proof is the same as for Theorem 13 for IO nets, except that the size of the bunches
pruned is now nmo instead of n. A consequence is the global flatness of IMO nets, with
the same proof as for IO nets.

Theorem 51. Immediate multiple observation nets are globally flat.

The backward and forward reachability sets of a cube are “small” counting sets.

Theorem 52 (IMO Closure). Let N be an IMO net with place count n and maximal
observation degree mo. Let C be a cube. Then postú(C) is a counting set and

Îpostú(C)Î Æ ÎCÎ + mo · n3

The same holds for preú(C).

The proof is the same as for IO nets, and yields the IMO Generalized Reachability
Theorem.

82

6.1 Multiple Observation Nets

Theorem 53 (IMO Generalized Reachability Theorem). Let N be an IMO net with n

places and maximal observation degree mo. Let E be a generalized reachability expression
of length |E|, and let N be the maximum norm of the counting constraints appearing in E.
Then

• [E] is a counting set of norm O(|E| · N · mo · n|E|),
• the generalized reachability membership problem for IMO nets is in PSPACE, and
• the generalized reachability emptiness problem for IMO nets is in PSPACE.

Like for IO nets, this results entails PSPACE-completeness of cube-parameterized results.

Theorem 54. The cube-reachability, cube-coverability, cube-liveness and stuctural liveness
problems for IMO nets are PSPACE-complete.

6.1.2 Branching Immediate Multiple Observation Nets

We now consider an extension of BIO nets called branching immediate multiple observation
nets, or BIMO nets, in which a token may observe multiple tokens. It also extends BIO
nets by allowing transitions to have no source place. Like for IMO and IO nets, BIMO
nets retain the properties of BIO nets.

Definition 55. A transition t of a Petri net is a branching immediate multiple observation
(BIMO) transition if |

•t ≠ t•
| Æ 1 (recall that multiset subtraction is the component-wise

maximum between the subtraction of the components and 0). A Petri net N = (P, T, F) is
a branching immediate multiple observation net if and only if all its transitions are BIMO
transitions.

We let mo = max(1, max {min(•t(p), t•(p)) | t œ T, p œ
•t fl t•

}) denote the maximal
observation degree of N , that is the maximal number of tokens needed in an observed place
to fire a transition of T , or 1 if this number is 0.

The interpretation of BIMO transitions in terms of observation is as follows:

• either t is of the form •t = Hps, po1 , . . . , pokI and t• = Hpd1 , . . . , pdl
, po1 , . . . , pokI,

• or t is of the form •t = Hpo1 , . . . , pokI and t• = Hpd1 , . . . , pdl
, po1 , . . . , pokI,

with ps the source place, pd1 , . . . , pdl
the destination places, and po1 , . . . , pok the observed

places of t, all of them not necessarily distinct. In other words, each BIMO transition is
such that there is at most one source place. Additionally l and k can be equal to zero,
meaning there may be no destination or no observed places. Like BIO transitions and
contrary to IO and IMO transitions, a BIMO transition can destroy tokens (via transitions
t with t• = Hpo1 , . . . , pokI) or create tokens (via transitions t with |t•

| Ø |
•t|). Thus BIMO

nets are not conservative Petri nets.

83

6 Extensions

2

2

2

2

2

p r

q

t1

t2 t3

t4

Figure 6.3: A BIMO net.

Example 24. Figure 6.3 shows a BIMO net with three places and four transitions. The
maximal observation degree mo is equal to 2.

Remark 56. One can also define merging immediate multiple observation (MIMO) nets,
akin to the MIO nets of Remark 29. These are the Petri nets obtained from BIMO nets by
reversing all the transitions. Reversing all the transitions in a BIMO net yields a MIMO
net, and vice versa. Like for BIO and MIO nets, our results for BIMO nets imply dual
results for MIMO nets: any result on preú for BIMO nets implies the same result on postú

for MIMO nets.

Branching Histories for BIMO Nets

We fix a BIMO net N = (P, T, F) with n places and maximal observation degree mo. To
make further proofs easier, we do a preprocessing step in which we modify all transitions
to have a source place. We add a place € to P , and for every transition t œ T such that
•t = ÿ, we change the preset to H€I and the postset to H€I + t•. Intuitively, we want
to place one token in € in every execution so that all originally “source-less” transitions
are always enabled. Accordingly, in the following we will consider only firing sequences
(respectively histories) that start from a marking M Õ with M Õ(€) = 1. This entails that
there is exactly one token (resp. node) in € at each marking of the firing sequence (resp.
at each level of the history), since transitions with source place € also have € exactly once
in their destination multiset. We have that M Õ ‡

≠æ M in the original net if and only if
M Õ + H€I

‡
≠æ M + H€I in the preprocessed net (abusing notation and equating t in the

original net with t in the preprocessed net). In the rest of the section, we assume that we
have preprocessed our BIMO net in this way.

Example 25. Let us apply the preprocessing step to the net of Figure 6.3. Transition t2
is the only transition without source place; we replace it with (abusing notation) t2 such
that •t2 = H€I and t2• = H€, pI.

We define branching trajectories, histories and decorations in the same way as for BIO
nets. Note that by our preprocessing step, P contains €, so there may be nodes labelled

84

6.1 Multiple Observation Nets

1
p

r

€

q q q q q

q q

q q q

r r r

€ € € € €

p
p p

p q q q

q q q

2 3 4 5 6

—c

7 · —

—€

(a) A realizable decorated history.

1
p

r

r

r

€

q q q q q

q q

q q q

r r r

r r r

r r r

€ € € € €

p
p p

p q q q

q q q

2 3 4 5 6

—c

—r

—r

5 · —s

—€

(b) A fuel-e�cient realizable decorated history.

Figure 6.4: A realizable decorated history in the BIMO net of Figure 6.3 before and after
application of the BIMO Replacement Lemma.

by the symbol €. We say that a history H of length h Ø 1 is realizable if there exist
transitions t1, . . . , th≠1 œ T and numbers k1, . . . , kh≠1 Ø 0 such that for every 1 Æ i Æ h ≠ 1
the set H(i) can be partitioned into two sets:

• A set Ha(i) containing exactly ki active nodes labeled by the source place of ti. Given
a particular active node, say v, the multiset of labels of its children is the (possibly
empty) multiset Hpd1 , . . . , pdl

I of destination places of ti.
• A set Hp(i) containing passive nodes, each of them with exactly one child, carrying

the same label as their parents. This set must contain a set of nodes such that the
multiset of their labels is equal to the (possibly empty) observed multiset of places of
ti: Hpo1 , . . . , pokI.

We say that the sequence tk1
1 · · · t

kh≠1
h≠1 realizes H. Since we consider histories starting with

exactly one €-node, this entails that there can be at most one active €-node.

Example 26. Figure 6.4a shows a realizable history H of the BIMO net of Figure 6.3. It
consists of nine branching trajectories: —c, seven identical trees —, and —€. The initial and
final markings are Hp, 7r, €I and H4q, €I. The firing sequence that realizes H is t1 t2 t1 t7

3 t4.

The definition of a decoration is the same, except for the “no smoke without fuel” rule.
It is modified to reflect the possible need to observe mo p-nodes. Formally, a decoration of
H is a partition of the nodes of H into cargo, fuel, and smoke nodes satisfying the following
conditions:

85

6 Extensions

• A node of H is a cargo node if and only if it has at least one descendant in H(l).
• All descendants of smoke nodes are smoke nodes.
• For every place p and level i, if H(i) contains smoke p-nodes, then it also contains at

least mo fuel p-nodes. (“No smoke without fuel”. Intuitively, the smoke p-nodes are
not needed because the fuel p-nodes can be used instead.)

Note that since the histories we consider have exactly one €-node at each level, this €-node
must be decorated as cargo.

Example 27. Figure 6.4a shows a realizable decorated history ‚H. The decoration is the
“conservative decoration”, where any non-cargo node is fuel.

The definition of fuel-e�cient is also modified to accommodate multiple observations.

Definition 57. Let ‚H be a decorated history. A place p is wasteful at level i if ‚H(i)
contains more than nmo fuel p-nodes. A place p is wasteful in ‚H if it is wasteful at
some level; otherwise p is fuel-e�cient in ‚H. Finally, ‚H is fuel-e�cient if all places are
fuel-e�cient.

The Replacement Lemma for BIMO nets is proved in the same way as for BIO nets,
except that instead of one copy of —q in Bf , we put mo copies of —q in Bf .

Lemma 58 (BIMO Replacement Lemma). Let ‚H be a decoration of a realizable history
H such that p is wasteful, and i is the earliest level at which p is wasteful. There exists a
history BÕ

p such that H Õ def= H[BÕ
p/Bp(i)] is realizable, equivalent to H, and has a decoration

whose fuel-e�cient places contain all fuel-e�cient places of ‚H and p.

Example 28. Place r is wasteful at levels 1 to 4 of the decorated history ‚H of Figure
6.4a. Applying the Replacement Lemma to r and i := 1 to ‚H yields the decorated history
„H Õ of Figure 6.4b. Like H, it leads from Hp, 7r, €I to H4q, €I. It is made up of mo = 2
copies of — decorated as fuel, and five copies of — decorated as smoke. Place r is no longer
wasteful in „H Õ, and in fact all places are fuel-e�cient.

The Smoke Irrelevance and Unique Footprint Lemma hold and are proved in the same
way as for BIO nets.

Results for BIMO Nets

Like for BIO nets, we prove that BIMO nets are locally flat via a bound on the accelerated
length of the firing sequences.

Lemma 59 (BIMO Shortening). Let N be a BIMO net with n places and maximal
observation degree mo. Let md := maxtœT |t•

≠
•t| denote the maximum number of tokens

created by a transition of N . Let M Õ, M be two markings of N . If M Õ ú
≠æ M , then M Õ ‡

≠æ M

86

6.1 Multiple Observation Nets

for some ‡ of accelerated length |‡|a Æ 2n(m + 1)n(nmo + 1)n. Further, the intermediate
markings along ‡ have size at most (mÕ + 2n(m + 1)n(nmo + 1)n(m + nmo)md)mn

d
.

This proof is the same as for the BIO Shortening Theorem, except that the maximum
number of fuel nodes in a place of a fuel-e�cient history is now nmo instead of n, modifying
the bounds. The bounds of this result also hold for a BIMO net which has not gone
through the preprocessing step, since M Õ ‡

≠æ M in the non-preprocessed net if and only if
M Õ + H€I

‡
≠æ M + H€I in the preprocessed net.

Proof. Like in the proof for BIO nets (Theorem 37), we give ourselves a fuel-e�cient
decorated history of unique footprint starting in M Õ and ending in M . Every level has
between 0 and m cargo nodes per place. Additionally, since ‚H is fuel-e�cient, every level
has between 0 and nmo fuel nodes per place. Finally, there are at most 2n possible supports
in a net with n places. So the number of footprints, and so the length of ‚H, and the
accelerated length of any firing sequence realizing ‚H, is at most 2n(m + 1)n(nmo + 1)n.

The proof for the token bound is the same as the proof of Theorem 37 for BIO nets,
except that now there are at most 2n(m + 1)n(nmo + 1)n levels in the history, and at most
(m + nmo) cargo and fuel nodes per place at each level. This entails the token bound
(mÕ + hÕ(m + nmo)md)mn

d
.

A consequence is the local preú-flatness of BIMO nets, with the same proof as for BIO
nets. The fact that BIMO nets are not globally flat nor locally postú-flat follows from the
fact that BIO nets are BIMO nets, and they are not globally flat nor locally postú-flat.

Theorem 60. BIMO nets are locally preú-flat, but neither globally flat nor locally postú-
flat.

Like for BIO nets, the backward reachability set of a cube is a “small” counting set.

Theorem 61 (BIMO Closure). Let N be a BIMO net with n places and maximal
observation degree mo. Let C be a cube. Then preú(C) is a counting set and

Îpreú(C)Î Æ n · ÎCÎ + mo · n2

The proof is the same as for BIO nets, and yields the BIMO Generalized Reachability
Theorem. Recall that preú-generalized reachability expressions are generalized reachability
expressions that do not use postú, and preú-reachability problems are the corresponding
membership and emptiness problems (see definitions in Section 5.3.3).

Theorem 62 (BIMO Generalized Reachability Theorem). Let N be a BIMO net with
n places and maximal observation degree mo. Let E be a preú-generalized reachability
expression of length |E|, and let N be the maximum norm of the counting constraints
appearing in E. Then

87

6 Extensions

• [E] is a counting set of norm O(|E| · N · mo · n|E|),
• the preú-generalized reachability membership problem for BIMO nets is in PSPACE,

and
• the preú-generalized reachability emptiness problem for BIMO nets is in PSPACE.

Like for BIO nets, this results entails PSPACE-completeness of cube-parameterized
results.

Theorem 63. The cube-reachability, cube-coverability, cube-liveness and stuctural liveness
problems for BIMO nets are PSPACE-complete.

6.2 Reconfigurable Broadcast Networks

Reconfigurable broadcast networks (RBN) were introduced in [33, 34] and studied in [16,
17, 26] and other papers. RBN are networks consisting of finite-state, anonymous agents
which run the same protocol. The agents communicate by selective broadcast: a process
can broadcast a message which is received by all of its neighbors, and the set of neighbors
of an agent can change arbitrarily over time. This model can be seen as an extension of
IO nets: the broadcasting agent plays the role of an observed token which can move to
a di�erent place after being observed. Since the neighbors of the broadcasting agent can
be any subset of the other agents, the agent does not know if it has been “observed” (i.e.
if its message has been received) by other tokens – the information flow goes in only one
direction, like for IO nets.

We give a simulation of IO nets by RBN, which allows us to transfer results for RBN to
IO nets. We show however that IO nets cannot simulate RBN. In particular, we exhibit a
result proved for IO nets in the previous sections which does not hold for RBN. Finally,
inspired by the extension from IO to BIO, we initiate the study of branching RBN.

6.2.1 Definition

Reconfigurable broadcast networks (RBN) are networks consisting of finite-state, anonymous
agents and a communication topology which specifies, for every pair of agents, whether or
not there is a communication link between them. Agents with a communication link are
neighbors. During a step, a single agent can broadcast a message which is received by all
of its neighbors, after which both the agent and its neighbors change their state according
to some transition relation. Further, in between two steps, the communication topology
can change in an arbitrary manner. These reconfigurations of the communication topology
can be seen as spontaneous movements of the nodes which can connect and disconnect
from each other at any moment. One can also picture a fully connected network in which
messages sometimes get lost: only a subset of the agents receive a broadcast. In the frame

88

6.2 Reconfigurable Broadcast Networks

q1 q2 q3

?a

!b

?b

!a

Figure 6.5: An RBN R with three states.

of this thesis, it is easier to forget the communication topology and define the semantics of
an RBN directly in terms of collections of agents.

Definition 64. A reconfigurable broadcast network is a tuple R = (Q, �, ”) where Q is a
finite set of states, � is a finite alphabet and ” ™ Q ◊ {!a, ?a | a œ �} ◊ Q is the transition
relation.

If (p, !a, q) (resp. (p, ?a, q)) is a transition in ”, we denote it by p
!a
≠æ q (resp. p

?a
≠æ q).

We call transitions with !a broadcast transitions, and transitions with ?a receive transitions.
A configuration C of a RBN R is a multiset over Q, which intuitively counts the number
of agents in each state. Given a letter a œ � and two configurations C and C Õ we say that
there is a step C

a
≠æ C Õ if there exists a multiset Ht, t1, . . . , tkI of ” for some k Ø 0 satisfying

the following: t is of the form p
!a
≠æ q, each ti is of the form pi

?a
≠æ qi, and the configurations

are such that C Ø p +
q

i
pi and C Õ = C ≠ p ≠

q
i
pi + q +

q
i
qi. We sometimes write this

as C
t+t1,...,tn
≠≠≠≠≠≠æ C Õ or C

a
≠æ C Õ. Intuitively it means that an agent at the state p broadcasts

the message a and moves to q, and for each 1 Æ i Æ k, there is an agent at the state pi

which receives this message and moves to qi. We denote by ú
≠æ the reflexive and transitive

closure of the step relation. A run is then a sequence of steps.
Let C, C Õ, C ÕÕ be configurations of a given RBN. We say that C Õ is reachable from C

if there exists a run from C to C Õ. We say that C ÕÕ is coverable from C if there exists a
configuration C Õ which covers C ÕÕ, and there exists a run from C to C Õ. The reachability
and coverability problems as well as the cube-reachability and cube-coverability problems
are defined as expected.

Example 29. Figure 6.5 illustrates a RBN R = (Q, �, ”) with Q = {q1, q2, q3} and
” = {t1, t2, t3, t4}, where

t1 = q1
!a
≠æ q1 t2 = q1

?a
≠æ q2 t3 = q2

!b
≠æ q1 t4 = q2

?b
≠æ q3

Configuration H3 · q1I can reach H2 · q1, q3I in two steps. First, an agent broadcasts a, while
the two other agents receive a and move to q2. Then, one of the agents in q2 broadcasts b

and moves to q1, while the other one receives b and moves to q3. The run described can be

89

6 Extensions

written as
H3 · q1I

t1+2·t2
≠≠≠≠æ Hq1, 2 · q2I

t3+t4
≠≠≠æ H2 · q1, q3I.

Notice that Hq3I is only coverable from a configuration Hk · q1I if k Ø 3.

Remark 65. RBN are conservative, in the sense that no transition adds or removes agents,
and thus the number of agents stays constant along a run. In particular, this entails that
the reachability and coverability problems between single configurations are in PSPACE:
given an initial and final configuration, it su�ces to guess a sequence of configurations,
step-by-step reachable, only remembering the last one and checking whether it equals or
covers the final configuration.

RBN, like Petri nets, have the monotonicity property: given configurations C, C Õ, D of
an RBN R, if C

ú
≠æ C Õ + D, then C

ú
≠æ C Õ + D. The proof follows directly from the fact

that agents in an RBN cannot disable the occurrence of a transition.
RBN also have the “copycat” property. Consider a run C

ú
≠æ C Õ. Like for IO nets, we

can think of each agent in the run as following a trajectory. If we add an agent to a state q

of C already containing an agent, i.e. such that C(q) Ø 1, then this new agent can “copy”
the trajectory of the old agent, taking the same transitions (broadcast or receive) along
the run.

Example 30. Consider the run H3 · q1I
t1+2·t2
≠≠≠≠æ Hq1, 2 · q2I

t3+t4
≠≠≠æ H2 · q1, q3I of Example 29.

Let us add an agent to q1 in the first configuration. It can copy the trajectory of the agent
which goes to q3, yielding the run

H4 · q1I
t1+3·t2
≠≠≠≠æ Hq1, 3 · q2I

t3+2·t4
≠≠≠≠æ H2 · q1, 2 · q3I.

Or it can copy the trajectory of the agent which goes to q2 then back to q1, yielding the
run

H4 · q1I
t1+3·t2
≠≠≠≠æ Hq1, 3 · q2I

t3+t4
≠≠≠æ H2 · q1, q2, q3I

t3
≠æ H3 · q1, q3I.

6.2.2 Simulation of IO nets by RBN

Following the idea that RBN can be seen as an extension of IO nets, we show that RBN
can simulate IO nets in the following way.

Theorem 66 (Simulation). Given an IO net N with states QN , there exists a RBN R

with states QR such that R is polynomial in the size of N , QN = QR, and C Õ ú
≠æ C in N

if and only if C Õ ú
≠æ C in R for any multisets C, C Õ over QN .

The proof essentially builds an RBN from an IO net by modelling observations as
broadcasts where the broadcaster does not change states. Given an IO net or an RBN I,
we let postú

I
and preú

I
denote the forward and backward reachability operators in I.

90

6.2 Reconfigurable Broadcast Networks

Proof. Let N = (Q, ”) be an IO net. We construct an RBN that simulates N in which
processes send messages signalling their current state. Let R = (QÕ, �Õ, ”Õ) be the following
RBN: the set of states QÕ and the alphabet �Õ are both equal to Q. The transition relation
”Õ is such that for every q œ Q there is a transition q

!q
≠æ q in ”Õ, and for every p

q
≠æ pÕ

œ ”

there is a transition p
?q
≠æ pÕ in ”Õ.

There is a natural bijection between configurations of R and markings of N . We show
that C Õ

œ postú
N (C) if and only if C Õ

œ postú
R(C) for any configurations C and C Õ of N .

Indeed, if C reaches C Õ by one step p
q
≠æ pÕ in N , then C

t+t1
≠≠≠æ C Õ with t = q

!q
≠æ q and

t1 = p
?q
≠æ pÕ in R. Conversely, let C

t+t1,...,tk
≠≠≠≠≠≠æ C Õ be a step in R with t = q

!q
≠æ q and

ti = pi

?q
≠æ pÕ

i
for some k Ø 0. The step must be of this form because the only broadcast

transitions of R are of the form q
!q
≠æ q. Then C reaches C Õ by the sequence of transitions

(p1
q
≠æ pÕ

1), (p2
q
≠æ pÕ

2), . . . , (pk

q
≠æ pÕ

k
) in N .

Using the Simulation Theorem above, we transfer results from RBN to IO nets.

Restrictions of cube-reachability. In [33], two restrictions of the cube-reachability
problem for RBN are considered. The first restriction, dubbed CRP [Ø 1] (where CRP
stands for cardinality reachability problem), considers cube pairs C = (L, U), C

Õ = (LÕ, U Õ)
such that L(q) = 0 and U(q) œ {0, Œ} for every state q, and LÕ(q) œ {0, 1} and U Õ(q) = Œ

for all q. That is, the initial cube allows for an unbounded number of agents only
in some initial states, and the final cube detects the presence of at least one agent
in some states. The second restriction, dubbed CRP [Ø 1, = 0], considers cube pairs
C = (L, U), C

Õ = (LÕ, U Õ) such that L(q) = 0 and U(q) œ {0, Œ} for every state q, and
LÕ(q) œ {0, 1} and U Õ(q) œ {0, Œ} for all q. That is, the initial cube allows for an unbounded
number of agents only in some initial states, and the final cube detects the presence or
absence of agents in some states. For RBN, the problems CRP [Ø 1] and CRP [Ø 1, = 0]
are in P and in NP respectively (Theorem 3.3 and 4.3 of [33]). By the construction given
above, we get:

Theorem 67. For IO nets, CRP [Ø 1] and CRP [Ø 1, = 0] are in P and in NP respectively.

We define IO nets equipped with leaders, inspired by RBN with leaders [11] and
asynchronous shared memory systems, another distributed system model, with leaders [25,
43].

IO nets with leaders. An IO-leader net is an IO net N = (Q, ”) with Q and ” fulfilling
the following conditions. Set Q is the disjoint union of non empty sets QL, QC , where QL

is a finite set of leader places and QC is a finite set of contributor places. The transition
relation ” is the disjoint union of ”L, ”C , where ”L ™ QL ◊QC ◊QL and ”C ™ QC ◊Q◊QC .
Intuitively, there is exactly one token which moves around places of QL (the leader). All

91

6 Extensions

the other tokens moves around places of QC (the contributors). This is formalized as
follows: a marking of such a system is defined to be a pair (q, M) where q œ QL, and M

is a multiset on QC . A step between C = (q, M) and C Õ = (qÕ, M Õ) exists if one of the
following is true:

• There exists q
p
≠æ qÕ

œ ”L such that M(p) Ø 1 and M Õ = M .
• There exists p

r
≠æ pÕ

œ ”C such that M(p) Ø 1, M Õ = M ≠ p + pÕ, q = qÕ, and either
q = r or M(r) Ø 1.

We can then define the notion of a firing sequence for an IO-leader net in the usual way.
The IO-leader reachability problem is to decide, given an IO-leader net N , two leader places
qI

L
, qf

L
, and a contributor place qI

C
, whether there exists a k Ø 1 such that the marking

(qI

L
, Hk · qI

C
I) can reach a marking C Õ = (qf

L
, M Õ) for some M Õ.

We now define a special case of cube-reachability in IO nets and notice that this special
case is exactly equivalent to IO-leader reachability. An IO-leader cube is a pair (N , C, C

Õ) of
the following form: the net N = (Q, ”) is such that there exists a partition of the places and
transition relation as Q = QC fiQL, ” = ”C fi”L. And C = (L, U), C

Õ = (LÕ, U Õ) satisfy: there
exists exactly two places qI

L
, qf

L
œ QL such that L(qI

L
) = U(qI

L
) = 1, LÕ(qf

L
) = U Õ(qf

L
) = 1

and for every other place q œ QL, L(q) = LÕ(q) = U(q) = U Õ(q) = 0. Additionally, there
exists exactly one place qI

C
œ QC such that L(qI

C
) = LÕ(qI

C
) = 0, U(qI

C
) = U Õ(qI

C
) = Œ

and for every other place q œ QC , L(q) = U(q) = LÕ(q) = 0, U Õ(q) = Œ. It is easy to see
that the IO-leader reachability problem is equivalent to the cube-reachability problem for
IO-leader cubes.

RBN-leader protocols are defined in an analog way [11]: an RBN-leader protocol is
an RBN R = (Q, �, ”) fulfilling the following conditions. Set Q is the disjoint union of
non empty sets QL, QC . The transition relation ” is the disjoint union of ”L, ”C , where
”L ™ QL ◊ {!a, ?a | a œ �} ◊ QL and ”C ™ QC ◊ {!a, ?a | a œ �} ◊ QC . A configuration
of such a system is defined to be a pair (q, C) where q œ QL, and C is a multiset on QC .
A step between (q, C) and (qÕ, C Õ) exists if there is a step (q, C) a

≠æ (qÕ, C Õ) in R for (q, C)
and (qÕ, C Õ) seen as configurations of Q. The following result has been shown.

Theorem 68 ([11]). The RBN-leader reachability problem is NP-complete.

From this and our simulation we deduce the following.

Theorem 69. The IO-leader reachability problem is NP-complete.

Proof. For the upper bound, notice that given an IO-leader cube, our Simulation Theorem
produces an RBN-leader cube. Since the reachability problem for RBN-leader cubes is in
NP, this immediately gives us the same upper bound for IO-leader cube reachability.

For the lower bound, we give a reduction from 3-SAT. Let Ï =
w

m

i=1 Ci be a 3-CNF
formula over the variables x1, . . . , xn where each Ci = ¸1

i
‚ ¸2

i
‚ ¸3

i
. Construct an IO-leader

92

6.2 Reconfigurable Broadcast Networks

net as follows : the leader will have 2n + m + 1 states q0, q1, q̄1, . . . , qn, q̄n, p1, . . . , pm and
the contributors will have 2n + 1 states init, x1, x̄1, x2, x̄2, . . . , xn, x̄n.

We allow ourselves to have no observed place for some transitions (or equivalently we
add one always-marked place which serves as observed place for any transition lacking
one). For every 1 Æ i Æ n, from the state qi≠1, the leader can move to qi or move to q̄i

(no observation). Similarly, from the state ¯qi≠1, the leader can move to qi or move to q̄i

(no observation). These transitions intuitively correspond to the leader guessing that the
variable xi is either true or false. From the state init, a contributor can move to yi if it
observes a token in qi or move to ȳi if it observes a token in q̄i. Intuitively, for each i, some
contributor receives the guess made by the leader and stores it in its finite set of states so
that it can be observed by the leader later on.

Denoting the state qn by p0, for every 1 Æ i Æ m, from the state pi≠1, the leader can
observe any one of the literals ¸1

i
, ¸2

i
, ¸3

i
and move to pi. Hence, the leader can move to pi

from pi≠1 if and only if the guesses that it made before satisfy the i-th clause.
If we now set that the leader must start at q0 and end up at pm and the contributors

must start at init, then it is clear from construction that the IO-leader reachability problem
for this leader net is true if and only if Ï is satisfiable.

Using the Simulation Theorem in the opposite direction, we show that reachability and
coverability are PSPACE-hard for RBN. With Remark 65, this implies PSPACE-completeness
of these problems.

Theorem 70. The reachability and coverability problems for RBN are PSPACE-complete.

Proof. As mentioned in Remark 65, reachability and coverability problems for RBN are in
PSPACE: since the number of agents does not change along a run, it su�ces to explore the
finite reachability graph of configurations of a given size non-deterministically.

IO net reachability and coverability are PSPACE-hard, we reduce them to RBN reacha-
bility and coverability to show that these problems are PSPACE-hard. Let N an IO net of
state set Q. By Theorem 66, there exists a RBN R with states Q, polynomial in the size
of N , and such that C Õ ú

≠æ C in N if and only if C Õ ú
≠æ C in R for any multisets C, C Õ over

Q. So C is reachable (respectively coverable) from C Õ in N if and only if it is in R.

6.2.3 RBN are more complex than IO nets

We show that the converse of the Simulation Theorem (Theorem 66) is not true: IO nets
cannot simulate RBN even with a more permissive definition of simulation. If this was
the case, the results of the IO Closure Theorem (Theorem 15) stating that reachability
sets of a cube are counting sets of polynomial norm could be transferred to RBN. But this
would lead to a contradiction. We show first the transfer of results, then the contradiction.

93

6 Extensions

Essentially, we show that the reachability set of a cube in an RBN is not necessarily of
polynomial norm by exhibiting an exponential example.

We establish some notation and a simulation definition. Let C be a multiset over a finite
set Q, where intuitively C is a configuration if Q is the state set of an RBN and a marking
if Q is the place set of an IO net. Let QÕ be a finite set disjoint from Q, and let h be a
multiset over QÕ. Then C · h is defined as the multiset over Q fi QÕ with (C · h)(q) = C(q)
for all q œ Q and (C · h)(q) = h(q) for all q œ QÕ. Given an RBN R with states QR, we say
R is polynomially simulated by an IO net N with places QN if N is polynomial in the size
of R with QR ™ QN , and there exists a multiset h over QN \ QR of polynomial size such
that C Õ

œ postú
R(C) if and only if C Õ

· h œ postú
N (C · h) for any multisets C, C Õ over QR.

Lemma 71. Assume that for every RBN R there exists an IO net N such that R can be
polynomially simulated by N . Then there exists a constant k such that for any RBN with
n states, for any cube C of R, postú(C) is a counting set and Îpostú(C)Î œ O(ÎCÎ + n)k.

Proof. The polynomial simulation of an RBN R with states QR by an IO net N with
places QN entails a bijection b from configurations of R to a subset G of “good” markings
of N . Let C be a configuration of R and let h be the multiset h over QN \ QR given by
the simulation. Then b(C) = C · h, and G is the set of markings b(C) for C a configuration
of R.

Notice that a cube of R is mapped by b to a cube of N . Intuitively, the image of a cube
C

Õ of R is its “extension” with the cube on QN \ QR of lower and upper bound equal to h.
The norm of b(CÕ) is Îb(CÕ)Î = ÎC

Õ
Î + |h|. A cube C of N restricted to G is equal to the

cube C|G = C fl H where H is the cube of lower bound 0 and upper bound Œ on QR, and
upper and lower bounds equal to h on QN \ QR. The reverse image of this cube by b is
the cube of R in which we “forget” the information of QN \ QR. The norm of b≠1(C|G) is
smaller or equal to ÎC fl HÎ ≠ h Æ ÎCÎ + ÎHÎ ≠ h = ÎCÎ.

Fix an RBN R = (Q, �, ”) and a cube C over Q. Let N = (QN , ”N) be an IO net that
polynomially simulates R, and let b be the bijection induced from configurations of R to
the subset G of “good markings” of N . Since b preserves cubes, b(C) is a cube of N . By
Theorem 15, postú

N (b(C)) is a counting set, and thus there exist cubes C1, . . . , Cn of N such
that postú

N (b(C)) = fi
n

i=1Ci. Let M be the set fi
n

i=1b≠1(Ci|G) of configurations of R.
We show that postú

R(C) = M. Let C œ M. There exists i such that C œ b≠1(Ci|G).
Thus b(C) œ Ci|G ™ postú

N (b(C)). By polynomial simulation, C œ postú
R(C). For the

other direction of inclusion, consider C œ postú
R(C). By polynomial simulation, b(C) œ

postú
N (b(C)), and thus there exists i such that b(C) œ Ci. By definition, b(C) œ G, so

b(C) œ Ci|G and C œ b≠1(Ci|G) ™ M, concluding our proof of equality.
Since the b≠1(Ci|G) are cubes, postú

R(C) is a counting set as a finite union of cubes. The
size of postú

N (b(C)) is polynomial in C and R by Theorem 15, and thus the size of postú
R(C)

is too.

94

6.2 Reconfigurable Broadcast Networks

a1

b1

c1

a2

b2

c2

a3

b3

c3

tok

sent

!1

?1

?1

!2
?2

?2

!3
?3

?3

!4

Figure 6.6: An RBN simulating a counter to 23.

Notice that the result also holds when we replace cube C by a counting set, since a
counting set is a finite union of cubes and postú of a union is equal to the union of the
postú.

Deriving the contradiction. We now exhibit a contradiction to the result of Lemma
71, thus proving that IO nets do not simulate RBN in this way. Consider the RBN
represented in Figure 6.6, with set of states {tok, sent} fi {ai, bi, ci|1 Æ i Æ 3}. It is inspired
by a similar example described in Section 5.1 of [21]. Let C0 be the cube which puts exactly
one process in each ai, an arbitrary number of processes in tok and 0 processes elsewhere.
That is, C0 = (L, U) such that L(ai) = U(ai) = 1 for all i, L(tok) = 0 and U(tok) = Œ,
and L(q) = U(q) = 0 for all other states q. Let Cf be the cube which puts at least one
process in c3 and an arbitrary number elsewhere. Suppose some configuration in C0 reaches
some configuration in Cf . By construction, for a process to reach c3 it must start in a3
and receive message 3 twice. For a process to broadcast 3 it must start in a2 and receive 2
twice, and for a process to broadcast 2 it must start in a1 and receive 1 twice. So a run
from a configuration of C0 to a configuration of Cf must contain at least 23 broadcasts of 1.
Since the only way to broadcast 1 is for a process to go from tok to sent, there must be at
least 23 processes in tok in the initial configuration of C0.

We can generalize this RBN to a family of RBN Rn = (Q, �, ”), parameterized by n Ø 1,
with set of states {tok, sent} fi {ai, bi, ci|1 Æ i Æ n}. Let C0 be the cube in which there are
arbitrarily many agents in tok, exactly one agent in each ai and 0 agents in the other states.
Let Cf be the cube in which there is a least one agent in cn and an arbitrary number
elsewhere. We claim that if we start from a configuration of C0, we can only reach Cf if we
initially have 2n or more agents in tok. Indeed we can show by induction on i œ {1, . . . , n}

that 1 must be broadcasted 2i times to reach ci, and thus that 2i agents are needed in
tok initially to reach ci. By Proposition 1 and Lemma 71, the set S := postú(C0) fl Cf is a
counting set of size at most polynomial in |Q|, ÎC0Î and ÎCf Î. The cubes ÎC0Î and ÎCf Î

have norms n and 1 respectively, so S is of norm polynomial in n. Thus if it is non-empty
it must contain a configuration of size at most polynomial in n: simply take a configuration

95

6 Extensions

equal to the lower bounds L of one of the cubes in the union equal to the counting set
postú(C0) fl Cf . This contradicts the fact that 2n agents are needed to reach Cf .

This gives us the following theorem.

Theorem 72. There exists an RBN that cannot be polynomially simulated by any IO net.

6.2.4 Branching Reconfigurable Broadcast Networks

Inspired by the definition of BIO nets as generalization of IO nets, we define branching RBN,
where process creation is allowed upon receiving a broadcast, with the usual reconfigurations
of the neighborhood topology. We do a preliminary exploration of this model. In particular,
we show that its coverability problem is EXPSPACE-complete. This shows it is more
complex than RBN, for which coverability is PSPACE-complete (Theorem 70).

Definition 73. A branching reconfigurable broadcast network is a tuple B = (Q, �, ”)
where Q is a finite set of states, � is a finite alphabet and ” ™ (Q ◊ {!a | a œ �} ◊ Q) fi

(Q ◊ {?a | a œ �} ◊ NQ) is the transition relation.

Transitions are of the form t = (p, ?a, Hp1, . . . , pkI) for receive transitions, with k Ø 0, and
t = (q, !a, qÕ) for broadcast transitions. A configuration C of a BRBN B is a multiset over Q

which counts the number of agents in each state. Given a letter a œ � and two configurations
C and C Õ we say that there is a step C

a
≠æ C Õ if there exists a multiset Ht, t1, . . . , tkI of

” for some k Ø 0 satisfying the following: t = q
!a
≠æ qÕ, each ti = pi

?a
≠æ Hpi

1, . . . , pi

ki
I,

C Ø q +
q

i
pi and C Õ = C ≠ q ≠

q
i
pi + qÕ +

q
i
pi

1 + . . . + pi
ki

. We denote by ú
≠æ

the reflexive and transitive closure of the step relation, and define the reachability and
coverability problems as usual. A run is a sequence of steps.

q1 •

q2

q3

• !b

!a

?b ?a

Figure 6.7: A BRBN.

Example 31. Figure 6.7 illustrates a BRBN R = (Q, �, ”) with Q = {q1, q2, q3} and
” = {t1, t2, t3, t4}, where

t1 = q1
!a
≠æ q1 t2 = q1

?a
≠æ Hq2, q3I t3 = q3

!b
≠æ q1 t4 = q1

?b
≠æ ÿ

An example run is (3, 0, 0) t1+t2
≠≠≠æ (2, 1, 1) t3+2·t4

≠≠≠≠æ (0, 2, 0).

96

6.2 Reconfigurable Broadcast Networks

Like RBN, BRBN have the monotonicity property and the copycat property. However
they are no longer conservative, since a transition occurring in a run may increase or
decrease the number of agents in the configurations of the run.

Lower Bound

We prove that the coverability problem for BRBN protocols is EXPSPACE-hard by reduction
from the coverability problem for vector addition systems with states (VASS).

VASS formalism. We fix a VASS V = (S, T) of dimension n > 0, where S is a finite
set of states, and T ™ S ◊ Zn

◊ S is a finite set of transitions. A configuration of V is a
pair (q, Èc1, . . . , cnÍ), with q œ S and c1, . . . , cn œ N. The ci are the values of n counters,
which must be non negative. Without loss of generality for our reachability queries, we can
assume that the transitions of T only a�ect one counter c at a time, either by +1 or ≠1. If
a transition from some state q to some state qÕ contains several increments or decrements
of counters, one can add a path of new transitions and states starting in q and ending in qÕ

such that each new transition only does one increment or one decrement. That is, every
t œ T is of the form (q, v, qÕ) where v is equal to 1 or ≠1 on one index and 0 elsewhere. If
this index is the i-th index, we denote t by (q, inc(ci), qÕ) if its value is 1 and (q, dec(ci), qÕ)
if its value is ≠1.

Given a transition t = (q, inc(ci), qÕ) and two configurations C and C Õ, there is a step
C

t
≠æ C Õ if C = (q, Èc1, . . . , cnÍ) and C Õ = (qÕ, Èc1, . . . , ci + 1, . . . , cnÍ). Given a transition

t = (q, dec(ci), qÕ) and two configurations C and C Õ, there is a step C
t

≠æ C Õ if C =
(q, Èc1, . . . , cnÍ), ci > 0 and C Õ = (qÕ, Èc1, . . . , ci ≠ 1, . . . , cnÍ). We denote by ú

≠æ the reflexive
and transitive closure of the step relation, and define the reachability and coverability
problems as usual. In particular, C = (q, Èc1, . . . , cnÍ) covers C Õ = (qÕ, ÈcÕ

1, . . . , cÕ
nÍ) if q = qÕ

and ci Ø cÕ
i

for all i.

BRBN construction. We construct a BRBN BV = (Q, �, ”) and a mapping f : S ◊

Nn
æ N|Q| from configurations of V to configurations of BV verifying the following: given

configurations C and C Õ of V, configuration C Õ is coverable from configuration C if and
only if configuration f(C Õ) is coverable from configuration f(C) in BV .

Intuitively, Q has a state for each state of S, n states representing the counters of V, as
well as some intermediary states. Formally, the set of states Q is comprised of the states
of S, a state t for each t œ T , states ‹ and emp, and for each i œ {1, . . . , n}: a state ci,
states ctrl(ci) and ctrl(ci), and states ct

i
for each t = (q, ci, qÕ) œ T .

Before describing the transition relation ”, we define good configurations of BV . These
are the configurations D such that

q
qœS

D(q) = 1, D(emp) = 1, D(ctrl(ci)) = 1 and
D(ci) Ø 0 for each i, and for any other q œ Q, D(q) = 0. Note that there is a natural

97

6 Extensions

q i qÕ

p d pÕ

ctrl(c)

•

ctrl(c)

c

cd ‹ emp

•

!mi ?mi

!md ?md

!mi

?md

!md

!memp?memp

?mi

Figure 6.8: Simulation of a VASS increment i and decrement d.

bijection between the configurations of V and the good configurations of BV : the one agent
in

q
qœS

D(q) designates the state of the VASS configuration, while the number of agents
in state ci designates the value of the counter ci, for each i. For C a configuration of V , we
note f(C) the corresponding good configuration in BV . For D a good configuration of BV ,
we note f≠1(D) the corresponding configuration in V.

We define ”:

• Let t = (q, inc(c), qÕ) a transition of V. Then ” contains transitions (q, !mt, t)
and (t, ?mt, HqÕI), ensuring that the agent indicating the VASS state moves to the
correct place. Additionally, ” contains transitions (ctrl(c), ?mt, Hctrl(c), cI) and
(ctrl(c), !mt, ctrl(c)), ensuring that the state encoding counter c gets one more agent.

• Let t = (q, dec(c), qÕ) a transition of V. Then ” contains transitions (q, !mt, HtI) and
(t, ?mt, HqÕI), ensuring that the agent indicating the VASS state moves to the correct
place. Additionally, ” contains transitions (c, ?mt, HctI) and (ct, !mt, ‹), ensuring that
at least one agent moves from the state encoding counter c to the ‹ state (which
can be seen as the “trash” state).

• Finally, ” contains transitions (emp, !memp, emp) and (‹, ?memp, ÿ). The function of
these is to empty the ‹ state.

Accordingly, the set of messages of BV is � = {mt, mt | t œ T} fi {memp}. Illustrated in
Figure 6.8 is the simulation of transitions i = (q, inc(c), qÕ) and d = (p, dec(c), pÕ).

Lemma 74. Let C, C Õ two configurations of V . Then C Õ is coverable from C if and only if
f(C Õ) is coverable from f(C) in BV .

Proof. If C Õ is coverable from C, then there exists C ÕÕ and a sequence of transitions ‡

such that C
‡
≠æ C ÕÕ

Ø C Õ. If ‡ is empty and C covers C Õ, then also f(C) covers f(C Õ), by
definition of f . Otherwise, let t be a transition in ‡.

• If t = (q, inc(c), qÕ) then we simulate it in BV by a broadcast (q, !mt, t) with receive
(ctrl(c), ?mt, Hctrl(c), cI), followed by a broadcast by (ctrl(c), !mt, ctrl(c)) with receive
(t, ?mt, HqÕI).

98

6.2 Reconfigurable Broadcast Networks

• If t = (q, dec(c), qÕ) then we simulate it in BV by a broadcast by (q, !mt, t) with
receive (c, ?mt, HctI), followed by a broadcast by (ct, !mt, ‹) with receive (t, ?mt, HqÕI),
followed by a broadcast (emp, !memp, emp) with receive (‹, ?memp, ÿ) to empty the
‹ state.

This entails that if C
‡
≠æ C ÕÕ then there exists a run in BV such that f(C) ú

≠æ f(C ÕÕ). By
definition, f(C ÕÕ) covers f(C Õ).

For the other direction, assume DÕ is coverable from D for two good configurations
D, DÕ of BV . There exists DÕÕ and a run fl such that D

fl
≠æ DÕÕ

Ø DÕ. If DÕÕ is not a good
configuration, we show it can reach an E Ø DÕ such that E is a good configuration. DÕÕ is
reachable from the good configuration D which has

q
qœS

D(q) = 1. By construction of BV ,
the number of agents in S fiT stays constant along a run. Since DÕÕ

Ø DÕ, we therefore have
q

qœS
DÕÕ(q) = 1. Similarly, DÕÕ(ctrl(c)) = 1 for every counter c and DÕÕ(emp) = 1, using

that D is good, DÕÕ covers D and the number of agents in ctrl(c) fi ctrl(c) stays constant
along a run for every counter c. The only states which stop DÕÕ from being good are the ct

and ‹. DÕÕ can reach a good configuration E by taking broadcasts (ct, !mt, ‹) until every
ct is empty, then taking a broadcast (emp, !memp, emp) received by all the agents in ‹.
Configuration E covers DÕ because the above steps do not modify the number of agents in
any other state than ‹ and the ct, and D(cd) = D(‹) = 0. So without loss of generality,
we assume in the rest that DÕÕ is a good configuration.

If fl is empty and D covers DÕ, then also f≠1(D) covers f≠1(DÕ) by definition. Otherwise,
we can decompose fl as fl = fl1fl2 . . . fll where the fli are sequences of steps starting with
mt
≠≠æ for a t œ T and with no other ms

≠≠æ for any s œ T in the rest of fli (the rest of the steps
are of the form memp

≠≠≠æ or mu
≠≠æ for u œ T). Let ‡ be the sequence of transitions in the VASS

V equal to t1t2 . . . tl where ti is the transition of the first step of fli for each i. We show
that there exists a configuration C in V such that f≠1(D) ‡

≠æ C and such that C covers
f≠1(DÕÕ). By definition, f≠1(DÕÕ) covers f≠1(DÕ).

Intuitively, our construction of BV ensures that a broadcast of an increment transition
i does indeed add an agent to the appropriate counter. On the other hand, a broadcast
of a decrement transition d may result in more than one agent being removed from the
appropriate counter. In the run ‡ of V we take as many decrements as there are broadcasts
of decrement transitions in fl, thus possibly ending in a configuration C with counter
values higher than the number of agents in the counters in DÕÕ – this is not a problem for
coverability.

All configurations D̃ along fl are such that
q

qœSfiT
D̃(q) = 1, since they are reached

from the good configuration D and since the number of agents in S fi T stays constant
along a run. Also, all broadcasts !mt for t œ T go from a state of S to a state of T , and
the only transition leaving from a state of t œ T is the receive transition ?mt. Therefore
there is a unique agent in S fi T which broadcasts the mt and receives the mt. Because

99

6 Extensions

D and DÕÕ are good, this agent is in S in D and in DÕÕ. These considerations lead to the
following fact.

Fact 75. The number of occurrences of !mt is smaller or equal to the number of occurrences
of !mt in fl, for every t œ T .

All configurations D̃ along fl are such that D̃(ctrl(c)) + D̃(ctrl(c)) = 1 for every counter
c, since they are reached from the good configuration D for which this holds. Thus, for
every broadcast !mi where i œ T is an increment transition, there is at most one receive. If
there is no receive, then the unique agent of S fi T is stuck in i. Therefore there is exactly
one receive, which has the e�ect of adding one agent to the appropriate counter for every
broadcast of mi in fl.

In the case of a decrement transition d œ T , there is no guarantee that md will be
received, or be received by only one agent. However, notice that an agent can only be in
cd if it received a broadcast of md, and only agents in cd can broadcast md. Since the run
starts in D which has 0 agents in cd and ends in DÕÕ which has 0 agents in cd, there are as
many occurrences of ?md as occurrences of !md in fl. Combining this with Fact 75, the
number of occurrences of !md is smaller or equal to the number of occurrences of ?md,
i.e. there are at least as many agents that leave the appropriate counters as there are
broadcasts of the decrement transition md.

Let C be the configuration of V obtained by taking ‡ from f≠1(D). By the considerations
above, C Ø f≠1(DÕÕ), and we are done.

Using this reduction lemma and the fact that the coverability problem is in EXPSPACE

for VASS [74], we get the announced result.

Theorem 76. The coverability problem for BRBN is EXPSPACE-hard.

Petri nets simulate BRBN

We show that Petri nets can simulate BRBN. The Petri nets coverability problem is in
EXPSPACE [37], and the reachability problem is in ACKERMANN [67]. The simulation
entails a transfer of complexity upper bounds from Petri nets to BRBN.

Let B = (Q, �, ”) a BRBN. We construct N = (P, T, F) and a mapping f : N|Q|
æ N|P |

from configurations of B to markings of N verifying the following: given configurations
C and C Õ of B, configuration C Õ is reachable from configuration C if and only if marking
f(C Õ) is reachable from marking f(C) in N .

Intuitively, P has a place for each state of Q, a place for each message of � and transition
that can broadcast it, a place emp signifying that no message is currently being broadcasted,
as well as some intermediary states. The idea of the simulation is that there is exactly one

100

6.2 Reconfigurable Broadcast Networks

p1

p2
p

q

qÕ

empas

ts ts

s

s

intt,s

Figure 6.9: Simulation of a BRBN broadcast s and receive t by a Petri net.

token among the places representing messages and the emp place. When the token is in
some place representing message a œ �, places of Q can “receive” the message and move
to intermediary places. The token for a then moves to emp and the places that “received”
a can move to their destinations.

Formally, the set of places P is comprised of a place q for each state q œ Q, a place emp,
and, for each transition s = (q, !a, qÕ) œ ”, a place as and places intt,s for each t œ ” such
that t is a receive of a. The set T is defined as follows:

• Let s = (q, !a, qÕ) be a transition of B. Then T contains transition s such that
•s = Hq, empI and s• = HasI, and transition s such that •s = HasI and s• = HqÕ, empI.

• Let t = (p, ?a, Hp1, . . . , pkI) for k Ø 0 be a transition of B. Then T contains transitions
ts such that •ts = Hp, asI and ts

• = Has, intt,sI, and transitions ts such that •ts =
Hintt,s, empI and ts

• = Hemp, p1, . . . , pkI, for every s = (q, !a, qÕ) œ ” that broadcasts
message a for some q, qÕ.

Illustrated in Figure 6.9 is the simulation of transitions s = (q, !a, qÕ) and t = (p, ?a, Hp1, p2I).
Observe that the only non BIO transitions of this simulating Petri net are the s of the
form •t = Hq, empI and t• = HasI. The fact that emp is in the preset of every transition s

such that s is a broadcast transition of B is essential to ensuring that only one broadcast
is simulated at a time: between two consecutive occurrences of broadcast transitions s and
sÕ in some firing sequence, there must be an occurrence of s, which intuitively ends the
simulation of broadcast s.

Note that there is a natural bijection between the configurations C of B and the markings
of N such that there are C(q) many tokens in q œ Q, one token in emp and 0 elsewhere.
We call such markings good, and for C a configuration of B, we note f(C) the corresponding

101

6 Extensions

good marking in N . For M a good marking of N , we note f≠1(M) the corresponding
configuration in B.

Lemma 77. Let C, C Õ two configurations of B. Then C Õ is reachable from C if and only
if f(C Õ) is reachable from f(C) in N .

Proof. If C Õ is reachable from C, then there exists a sequence of steps ‡ such that
C

‡
≠æ C Õ. If ‡ is empty, C = C Õ and f(C) = f(C Õ). Otherwise, let s + t(1), . . . , t(n)

be a step in ‡ from some D to DÕ, with s = (q, !a, qÕ) and t(i) = (p, ?a, Hp1, . . . , pkiI) for
k Ø 0, i œ {1, . . . , n} , n Ø 0. We simulate it in N by taking s, t(1)

s , . . . , t(n)
s , s, t(1)

s , . . . , t(n)
s

from f(D) to f(DÕ). This entails that if C
‡
≠æ C Õ then there exists a firing sequence in N

such that f(C) ú
≠æ f(C Õ).

For the other direction, assume M Õ is reachable from M for two good markings M, M Õ

of N . There exists a firing sequence fl such that M
fl
≠æ M Õ. If fl is empty, M = M Õ and

f≠1(M) = f≠1(M Õ). Otherwise, we claim that there exists a sequence of broadcast steps
in B such that f≠1(M) ú

≠æ f≠1(M Õ).
A run fl of N is a good run if there exists fl1, . . . , flm œ T ú, with m Ø 0, such that

fl = fl1 . . . flm and every fli is a good step of the form s, t(1)
s , . . . , t(n)

s , s, t(1)
s , . . . , t(n)

s where s

is the name of a broadcast in B and n Ø 0. We claim that if there exists a run between
two good markings M, M Õ, then there exists a good run between M and M Õ.

Let fl be a run between two good markings M, M Õ. Place emp is in the preset of every
broadcast s and in the postset of every s. This entails that after a transition s is fired, no
other transition sÕ or sÕ can fire until s is fired, for any broadcasts s, sÕ of B. Using this,
the construction of N and the fact that fl starts in a good marking, we get that fl is of
the form ‡1 . . . ‡m where each ‡i is of the form s, t(1)

s , . . . , t(k)
s , s, u(1)

s1 , . . . , u(l)
sl . Since M Õ is

good, it contains no tokens in places of the form intt,s. So there are as many occurrences
of a receive ts as there are occurrences of ts in fl. We associate to each occurrence of a
receive ts in fl a matching occurrence of ts: if there is an occurrence of ts at index k of fl,
then it is matched with the first unmatched occurrence of ts after index k. Thus each ts in
some ‡i is matched with a ts in a ‡j such that i Æ j. If this ts is not in ‡i, i.e. if i < j,
moving it there does not disable any future firing. Thus the ‡1 . . . ‡m can be rearranged
into good steps fl1 . . . flm, and fl into a good run.

This good run directly corresponds to a sequence of broadcast steps in B such that
f≠1(M) ú

≠æ f≠1(M Õ).

Thus we can reduce BRBN reachability to Petri net reachability and BRBN coverability
to Petri net coverability (since f(C) Ø f(C Õ) if and only if C Ø C Õ for any configurations
C, C Õ of B). Using this and Theorem 76 we get the announced result.

Theorem 78. The coverability problem for BRBN is EXPSPACE-complete. The reacha-
bility problem for BRBN is in ACKERMANN.

102

6.3 Model Checking

6.3 Model Checking

We examine the model checking problem for a CTL-style temporal logic and the observation
Petri nets studied in this thesis. We use the logic UB, for Unified system of Branching time,
introduced in [14]. Note that UB is a fragment of (and inspiration for) Computational
Tree Logic (CTL). We derive our results from the article by Esparza on model checking
for infinite-state concurrent systems [38]. We recall the notations and results briefly here,
but direct the interested reader to the original article for a more complete presentation.

Logic Syntax and Semantics Given a Petri net N , the syntax of UB formulas is

Ï ::= true | ¬Ï | Ï1 · Ï2 | E(t)Ï | EFÏ | EGÏ

where t is a transition of N . The formulas are interpreted on markings of N . E(t)Ï is
satisfied by marking M if t is enabled at M and firing it leads to a marking satisfying Ï.
EFÏ is satisfied by M if there exists a firing sequence from M to a marking satisfying
Ï. EGÏ is satisfied by M if there exists an infinite firing sequence from M such that all
markings along it satisfy Ï. The constant true is satisfied by all markings, and connectives
¬ and · are interpreted in the usual way.

The logics EF (respectively EG) are obtained from UB by removing the operator
EG (respectively EF). We extend UB to the logic UB + Cube with additional atomic
formulas of the form CubeC for each cube C definable on N . CubeC is satisfied on
markings belonging to C. The logics EF + Cube and EG + Cube are obtained in the
same way.

Theorem 4.4 of [38] states that the model checking problem is decidable for EF and
classes of Petri nets whose reachability relations are e�ectively semilinear. The reachability
relation of a net is the set of pairs (M, M Õ) of markings such that M reaches M Õ in the net.
The reachability relations of a class of nets are e�ectively semilinear if they are semilinear
sets and if there is an algorithm to compute the reachability relation, given a net of the
class. It is clear that IO and IMO nets have e�ectively semilinear reachability relations,
notably via our global flatness theorems. Section 5.2 of [38] says that Theorem 4.4 still
holds when we add atomic formulas to EF, so long as their valuations are expressible in
Presburger arithmetic [54]. This is the case of semilinear sets [52], and cubes are semilinear
sets (see Section 2.3). So Theorem 4.4 can be applied to EF + Cube and to IMO nets,
from which we get that the model checking problem for EF + Cube formulas is decidable
for IMO nets.

In the following, we show that this also holds for BIMO nets. In fact, we show a stronger
result: the model checking problem for EF + Cube formulas is in EXPSPACE for BIMO
nets (and thus also for BIO, IMO and IO nets).

103

6 Extensions

Theorem 79. The model checking problem for EF + Cube formulas is in EXPSPACE for
BIMO nets.

Proof. Let N be a BIMO net. We consider the problem of whether a given initial marking
M of N satisfies a given formula Ï. We define the size of a formula as the length of the
binary encoding of the symbols of the formula and the bounds of the cubes in the formula.
By induction over the formula size, we can see that a EF + Cube formula Ï of size s

represents a counting set SÏ of norm exponential in s and size of N .

– true represents (or is satisfied by the markings of) the cube of all markings of N

(lower bounds 0, upper bounds Œ)
– ¬Ï represents the counting set SÏ

– Ï1 · Ï2 represents the counting set SÏ1 · SÏ2

– E(t)Ï represents the counting set pre[t](SÏ) of markings obtained by backward firing
t from some marking of SÏ which covers t•

– EFÏ represents the counting set preú(SÏ)

The size of SÏ, exponential in the sizes of Ï and N , follows from Proposition 1 (on norms
of counting sets under boolean operations) and Theorem 61 (the BIMO Closure Theorem).
Now we need to verify whether M œ SÏ. This can be done in polynomial space in the size
of SÏ, by the BIMO Generalized Reachability Theorem. Since the size of SÏ is exponential
in the sizes of Ï and N , this check can be done in exponential space in the input.

Theorem 4.3 from [38] states that the model checking problem for EG and a subclass
of BPP nets is undecidable. As BIO nets are a superclass of BPP nets, this implies
undecidability of the model checking problem for EG and BIO nets. By extension, UB
and CTL model checking is also undecidable for BIO (and BIMO) nets.

Theorem 80. The model checking problem for EG and UB formulas is undecidable for
BIO nets.

This still holds if we add +Cube to the logics. On the other hand, model checking is
clearly decidable for IO nets and IMO nets: this follows from the fact that there is only a
finite set of reachable markings from a given initial marking .

Theorem 81. The model checking problem for UB + Cube formulas is decidable for
IMO nets.

6.4 Summary and Discussion

In this chapter, we look at an assortment of extensions to the theory of observation Petri
nets presented in the previous chapters. First, we look at IO and BIO nets in which a

104

6.4 Summary and Discussion

transition may require a multiset of tokens to be observed to be able to fire. We show that
the results of IO and BIO nets hold for IMO and BIMO nets up to a factor corresponding
to the maximal amount of tokens needed in an observed place for a transition to fire. Next,
we consider reconfigurable broadcast networks (RBN), a pre-existing model studied in [16,
17, 26, 33, 34] in which finite-state, anonymous agents communicate by broadcast. IO nets
are “nothing but” RBN nets in which the agent broadcasting a message does not change
its state. We deduce some results for IO nets coming from RBN theory. We show, however,
that some results of IO nets do not hold for RBN, showing that RBN are a more expressive
model. Inspired by the IO to BIO generalization, we initiate the study of branching RBN.
We show in particular that these have an EXPSPACE-complete coverability problem, in
comparison to the PSPACE-completeness of coverability for RBN. Finally, we show results
for model-checking of observation Petri nets and the temporal logic UB (Unified system of
Branching time), a fragment of CTL. These are mostly proved by applying results from
the article “Decidability of model checking for infinite-state concurrent systems” [38].

We initially studied the link between RBN and IO nets in the hopes that we could apply
the same techniques to prove a Generalized Reachability Theorem for RBN. In [10], we
published results containing a Closure Theorem and consequent Generalized Reachability
Theorem for RBN. The Closure Theorem stated that counting sets were closed under
reachability for RBN, and that the norms of the reachability set were at most exponential in
the norms of the initial counting set (compared to polynomial for IO nets). Unfortunately
the proof of the Closure Theorem (Theorem 2 in the paper) contains a mistake. Therefore
it is still an open problem whether counting sets are closed under reachability and whether
their norm is “small”. From this thesis chapter we know that the forward reachability set
of a counting set, if it is itself a counting set, must have at least exponential norm.

Applications of the BRBN model should be explored, to decide whether it is a model
worth studying. The results in this last chapter are meant as a preliminary exploration
of the model. In particular, there is room for improvement on the complexity of the
reachability problem, which may not be as hard for BRBN as it is for general Petri nets.

Sources. The IMO and BIMO models were defined and studied in an unpublished first
version of [77], which can be found at [76]. The results on RBN were published in [11].
The definition of BRBN and the results for them are new and unpublished. Finally, the
model checking results appeared only in the unpublished version of [77], available at [76].

105

7 Conclusion

In this thesis, we introduced the observation feature to describe a restricted form of
synchronization in Petri nets. We developed the theory of observation Petri nets, a class
of nets we defined syntactically in which the only form of synchronization is observation.
We first studied immediate observation nets, where process creation or destruction is
prohibited, in Chapter 3. We applied the results to population protocols, a well-studied
distributed computing model, in Chapter 4. In Chapter 5, we studied branching immediate
observation nets, where process creation or destruction is allowed. Finally, Chapter 6
collects additional results pertaining to the theory of observation Petri nets: the case in
which there are multiple observation places and possibly no source place, the link to the
model of reconfigurable broadcast networks, and considerations on model checking.

The main analysis problems we studied for observation Petri nets are the class of
generalized reachability problems. This class extends reachability queries to possibly
infinite sets of markings, which are expressed as unions of cubes. It includes the cube-
reachability problem, which given two sets asks if there is a marking in the first set which
can reach a marking in the second set. It also includes problems like whether all the
markings of a set can reach a marking in another set, or whether an observation Petri
net is live from some marking in a given set. We show that this class of problems can
be decided in polynomial space for IO nets, and that a slight restriction of this class can
be decided in polynomial space for BIO nets. The classic reachability problem asking
if a marking can reach another is already in PSPACE for both IO and BIO nets – our
results for generalized reachability problems show that it is not harder to check reachability
between single markings than it is to check reachability between possibly infinite sets of
markings. Thus the observation feature captures a non-trivial property of Petri nets that
is particularly interesting for parameterized verification.

A natural continuation of our work is to implement algorithms for verifying observation
Petri nets. To decide generalized reachability problems we guess markings for which the
number of tokens is bounded by an exponential in the input size, and we check reachability
from or to these markings. Constructing and exploring the reachability graph containing
markings of this size induces a state-space explosion. Tools often use symbolic verification
to avoid this explosion. As already mentioned, tool FAST [13] uses acceleration techniques,
computing transitive closures of sequences of transitions. It applies these to symbolic
representations of sets of configurations. Another example is the tool UPPAAL for timed-
automata [62, 63], which reduces verification of reachability properties to solving constraint
systems that are easier to manipulate, and combines this with under-approximation

107

7 Conclusion

approaches like randomized explorations of the state-space. For our implementation we
can try and combine such methods.

In the case of implementations for IO nets, we can turn to the Peregrine tool [18, 45].
Peregrine is a tool that automatically verifies the correctness of population protocols.
The tool uses techniques based on so-called stage graphs, as well as constraint-solving
techniques. In Chapter 4, we saw that IO nets can be seen as the underlying structure of
IO population protocols, and that the correctness problem for IO population protocols can
be expressed as a generalized reachability problem for IO nets. Peregrine was developed for
general population protocols. One avenue of research would be to tailor its implementation
to the case of IO protocols, using the results on IO net reachability sets from this thesis.
Another avenue would be to take the techniques of Peregrine for checking correctness, and
extend them to checking generalized reachability problems.

It was shown early on in the study of Petri nets that the reachability problem was
EXPSPACE-hard [69]. This motivated studying subclasses with better reachability com-
plexity, and one of the first examples was marked graphs [28]. Other classes followed,
like BPP nets and reversible nets. However, all these classes have semilinear reachability
sets, both forward and backward. In BIO nets, the reachability sets are not necessarily
semilinear. In particular, Hopcroft and Pansiot’s well-known example of a Petri net with
a non-semilinear forward reachability set (Lemma 2.8 of [56]) is a BIO net. To the best
of our knowledge, BIO nets are the first natural class of nets such that this is true and
for which reachability and coverability have elementary complexity. In this thesis, we
developed verification techniques for BIO nets. These rely in part on BIO nets’ local (preú)
flatness, or equivalently on the semilinearity of their backward reachability sets. A future
direction of research could be to identify other Petri net classes with local but not global
flatness, and apply the approaches of this thesis to them.

As mentioned before, Petri nets are sometimes used to model chemical reaction networks
[4, 5, 59, 86]. In [4], the authors study the persistence property: if every species is present
at the start of the reaction, then no species is eliminated in the course of the reaction.
Reactions are modeled using Petri nets, with places representing species and transitions
representing atomic reactions. The authors show that the persistence property can be
checked on the reachability graph of the modelling Petri net. They apply their results to
enzymatic mechanisms closely resembling IO nets. It would be interesting to collaborate
with researchers working on chemical reaction networks to find out which properties relevant
to them can be expressed as generalized reachability problems.

The expectation is that studying the observation feature will help us to better understand
Petri nets on the whole, providing intuition and avenues of investigation.

108

List of Figures

1.1 A Petri net. 2
1.2 Observation Petri nets. 4

2.1 A Petri net with initial marking M0 = (1, 1, 0). 12

3.1 An IO net from [7]. 19
3.2 An IO net from [4]. 20
3.3 Conservative net N

Õ constructed from Petri net N in the proof of Theorem 5. 22
3.4 Some of the places and transitions involved in modelling a Turing machine. 24
3.5 A realizable history and a non-realizable history of the IO net of Figure 3.1. 28
3.6 The realizable history of Figure 3.5a after pruning. 30
3.7 A realizable history of the IO net of Figure 3.1 before and after boosting. . 31
3.8 Construction of the proof of Lemma 16 . 36

4.1 Petri net underlying population protocol P2. 47

5.1 A BIO net. 53
5.2 A non-flat BIO net. 54
5.3 A MIO net from [49]. 55
5.4 A decorated realizable history of a BIO net. 57
5.5 Result of replacing Bp(1) in the history of Figure 5.4. 61
5.6 Illustration of the construction of the set Bf of trees. 62
5.7 Result of splicing out levels between 3 and 6 in the history of Figure 5.5. . . 67

6.1 An IMO net. 80
6.2 A realizable history of the net in Figure 6.1. 81
6.3 A BIMO net. 84
6.4 A realizable decorated history in the BIMO net of Figure 6.3 before and

after application of the BIMO Replacement Lemma. 85
6.5 An RBN R with three states. 89
6.6 An RBN simulating a counter to 23. 95
6.7 A BRBN. 96
6.8 Simulation of a VASS increment i and decrement d. 98
6.9 Simulation of a BRBN broadcast s and receive t by a Petri net. 101

109

Bibliography

[1] D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R. L. Rivest. “Time-Space
Trade-o�s in Population Protocols”. In: Proc. Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2017. doi: 10.1137/1.9781611974782.
169.

[2] D. Alistarh, J. Aspnes, and R. Gelashvili. “Space-Optimal Majority in Population
Protocols”. In: Proc. Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2018. doi: 10.1137/1.9781611975031.144.

[3] D. Alistarh and R. Gelashvili. “Recent Algorithmic Advances in Population Protocols”.
In: SIGACT News 3 (2018). doi: 10.1145/3289137.3289150.

[4] D. Angeli, P. De Leenheer, and E. D. Sontag. “A Petri net approach to the study of
persistence in chemical reaction networks”. In: Mathematical biosciences 2 (2007).

[5] D. Angeli and S. Manfredi. “A Petri Net approach to consensus in networks with joint-
agent interactions”. In: Autom. (2019). doi: 10.1016/j.automatica.2019.06.018.

[6] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. “Computation
in networks of passively mobile finite-state sensors”. In: Proc. 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC). 2004. doi: 10.1145/
1011767.1011810.

[7] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. “The computational power of
population protocols”. In: Distributed Comput. 4 (2007). doi: 10.1007/s00446-007-
0040-2.

[8] A. Annichini, A. Bouajjani, and M. Sighireanu. “TReX: A Tool for Reachability
Analysis of Complex Systems.” In: CAV. Ed. by G. Berry, H. Comon, and A. Finkel.
Lecture Notes in Computer Science. Springer, 2001. isbn: 3-540-42345-1.

[9] R. Aris. “Prolegomena to the rational analysis of systems of chemical reactions”. In:
Archive for rational mechanics and analysis 2 (1965).

[10] A. R. Balasubramanian, L. Guillou, and C. Weil-Kennedy. “Parameterized Analysis
of Reconfigurable Broadcast Networks”. In: Foundations of Software Science and
Computation Structures - 25th International Conference, FOSSACS 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Munich, Germany, April 2-7, 2022, Proceedings. Ed. by P. Bouyer and L.
Schröder. Lecture Notes in Computer Science. Springer, 2022. doi: 10.1007/978-3-
030-99253-8_4. url: https://doi.org/10.1007/978-3-030-99253-8%5C_4.

111

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1016/j.automatica.2019.06.018
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/978-3-030-99253-8%5C_4

Bibliography

[11] A. R. Balasubramanian and C. Weil-Kennedy. “Reconfigurable Broadcast Networks
and Asynchronous Shared-Memory Systems are Equivalent”. In: Proceedings 12th
International Symposium on Games, Automata, Logics, and Formal Verification,
GandALF 2021, Padua, Italy, 20-22 September 2021. Ed. by P. Ganty and D. Bresolin.
EPTCS. 2021. doi: 10.4204/EPTCS.346.2. url: https://doi.org/10.4204/EPTCS.
346.2.

[12] P. Baldan, N. Cocco, A. Marin, and M. Simeoni. “Petri nets for modelling metabolic
pathways: a survey”. In: Natural Computing 4 (2010).

[13] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. “FAST: Fast Acceleration of Symbolic
Transition Systems.” In: CAV. Ed. by W. A. H. Jr. and F. Somenzi. Lecture Notes in
Computer Science. Springer, 2003. isbn: 3-540-40524-0. url: http://www.lsv.ens-
cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps.

[14] M. Ben-Ari, A. Pnueli, and Z. Manna. “The Temporal Logic of Branching Time.” In:
Acta Informatica (1983).

[15] G. Berthelot and R. Terrat. “Petri nets theory for the correctness of protocols”. In:
IEEE Transactions on Communications 12 (1982).

[16] N. Bertrand and P. Fournier. “Parameterized Verification of Many Identical Proba-
bilistic Timed Processes”. In: IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS. 2013. doi: 10.4230/LIPIcs.
FSTTCS.2013.501.

[17] N. Bertrand, P. Fournier, and A. Sangnier. “Playing with Probabilities in Reconfig-
urable Broadcast Networks”. In: Foundations of Software Science and Computation
Structures - 17th International Conference, FOSSACS. 2014. doi: 10.1007/978-3-
642-54830-7_9.

[18] M. Blondin, J. Esparza, and S. Jaax. “Peregrine: A Tool for the Analysis of Population
Protocols.” In: CAV (1). Ed. by H. Chockler and G. Weissenbacher. Lecture Notes
in Computer Science. Springer, 2018. isbn: 978-3-319-96145-3. url: http://info.
usherbrooke.ca/mblondin/papers/BEJ18b.pdf.

[19] B. Boigelot. The LASH toolset homepage. 2014. url: http://www.montefiore.ulg.
ac.be/~boigelot/research/lash/index.html.

[20] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. “Two-variable
logic on data words”. In: ACM Trans. Comput. Log. 4 (2011). doi: 10.1145/1970398.
1970403.

112

https://doi.org/10.4204/EPTCS.346.2
https://doi.org/10.4204/EPTCS.346.2
https://doi.org/10.4204/EPTCS.346.2
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501
http://info.usherbrooke.ca/mblondin/papers/BEJ18b.pdf
http://info.usherbrooke.ca/mblondin/papers/BEJ18b.pdf
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/index.html
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/index.html
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403

[21] P. Bouyer, N. Markey, M. Randour, A. Sangnier, and D. Stan. “Reachability in
Networks of Register Protocols under Stochastic Schedulers”. In: 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy. Ed. by I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and
D. Sangiorgi. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.106. url: https://doi.org/10.4230/LIPIcs.
ICALP.2016.106.

[22] C. Chaouiya. “Petri net modelling of biological networks”. In: Briefings in Bioin-
formatics 4 (July 2007). issn: 1467-5463. doi: 10.1093/bib/bbm029. eprint: https:
//academic.oup.com/bib/article-pdf/8/4/210/591466/bbm029.pdf.

[23] P. Chelikani, I. Fita, and P. Loewen. “Diversity of structures and properties among
catalases”. In: Cell. Mol. Life Sci. (2004).

[24] A. Cheng, J. Esparza, and J. Palsberg. “Complexity Results for 1-Safe Nets”. In:
Theor. Comput. Sci. 1&2 (1995).

[25] P. Chini, R. Meyer, and P. Saivasan. “Fine-Grained Complexity of Safety Verification”.
In: J. Autom. Reason. 7 (2020). doi: 10.1007/s10817-020-09572-x.

[26] P. Chini, R. Meyer, and P. Saivasan. “Liveness in Broadcast Networks”. In: Networked
Systems - 7th International Conference, NETYS 2019, Marrakech, Morocco, June 19-
21, 2019, Revised Selected Papers. Ed. by M. F. Atig and A. A. Schwarzmann. Lecture
Notes in Computer Science. Springer, 2019. doi: 10.1007/978-3-030-31277-0_4.
url: https://doi.org/10.1007/978-3-030-31277-0%5C_4.

[27] S. Christensen, Y. Hirshfeld, and F. Moller. “Decomposability, Decidability and
Axiomatisability for Bisimulation Equivalence on Basic Parallel Processes”. In: LICS.
IEEE Computer Society, 1993. isbn: 0-8186-3140-6. url: http://dblp.uni-trier.
de/db/conf/lics/lics93.html#ChristensenHM93.

[28] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. “Marked Directed Graphs”. In:
J. Comput. Syst. Sci. 5 (1971). doi: 10.1016/S0022-0000(71)80013-2.

[29] H. Comon and Y. Jurski. “Multiple Counters Automata, Safety Analysis and Pres-
burger Arithmetic.” In: CAV. Ed. by A. J. Hu and M. Y. Vardi. Lecture Notes in
Computer Science. Springer, 1998. isbn: 3-540-64608-6. url: http://www.lsv.ens-
cachan.fr/Publis/PAPERS/PS/ComJur-cav98.ps.

[30] P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza. “Fast and Succinct Population
Protocols for Presburger Arithmetic”. In: 1st Symposium on Algorithmic Foundations
of Dynamic Networks, SAND 2022, March 28-30, 2022, Virtual Conference. Ed. by
J. Aspnes and O. Michail. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi: 10.4230/LIPIcs.SAND.2022.11. url: https://doi.org/10.4230/
LIPIcs.SAND.2022.11.

113

https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.1093/bib/bbm029
https://academic.oup.com/bib/article-pdf/8/4/210/591466/bbm029.pdf
https://academic.oup.com/bib/article-pdf/8/4/210/591466/bbm029.pdf
https://doi.org/10.1007/s10817-020-09572-x
https://doi.org/10.1007/978-3-030-31277-0%5C_4
http://dblp.uni-trier.de/db/conf/lics/lics93.html#ChristensenHM93
http://dblp.uni-trier.de/db/conf/lics/lics93.html#ChristensenHM93
https://doi.org/10.1016/S0022-0000(71)80013-2
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/ComJur-cav98.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/ComJur-cav98.ps
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.4230/LIPIcs.SAND.2022.11

Bibliography

[31] W. Czerwinski and L. Orlikowski. “Reachability in Vector Addition Systems is
Ackermann-complete”. In: 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120. url: https://doi.org/10.1109/FOCS52979.
2021.00120.

[32] R. David and H. Alla. “Petri nets for modeling of dynamic systems: A survey”. In:
Autom. 2 (1994). doi: 10.1016/0005-1098(94)90024-8.

[33] G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. “On the Complexity
of Parameterized Reachability in Reconfigurable Broadcast Networks”. In: IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India. Ed. by D. D’Souza,
T. Kavitha, and J. Radhakrishnan. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2012. url: https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289.

[34] G. Delzanno, A. Sangnier, and G. Zavattaro. “Parameterized Verification of Ad Hoc
Networks”. In: CONCUR 2010 - Concurrency Theory, 21th International Conference,
CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings. Ed. by
P. Gastin and F. Laroussinie. Lecture Notes in Computer Science. Springer, 2010.
doi: 10.1007/978-3-642-15375-4_22. url: https://doi.org/10.1007/978-3-
642-15375-4%5C_22.

[35] J. Desel and W. Reisig. “Place/Transition Petri Nets”. In: Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, held in Dagstuhl, September 1996. Ed. by W. Reisig and G. Rozenberg.
Lecture Notes in Computer Science. Springer, 1996. doi: 10.1007/3-540-65306-
6_15. url: https://doi.org/10.1007/3-540-65306-6%5C_15.

[36] R. Elsässer and T. Radzik. “Recent Results in Population Protocols for Exact Majority
and Leader Election”. In: Bulletin of the EATCS (2018).

[37] J. Esparza. “Decidability and Complexity of Petri Net Problems - An Introduction”.
In: Petri Nets. Lecture Notes in Computer Science. Springer, 1996.

[38] J. Esparza. “Decidability of Model Checking for Infinite-State Concurrent Systems.”
In: Acta Inf. 2 (1997).

[39] J. Esparza. “Petri Nets, Commutative Context-Free Grammars, and Basic Parallel
Processes.” In: Fundam. Inform. 1 (1997).

[40] J. Esparza. “Population Protocols: Beyond Runtime Analysis”. In: Reachability
Problems - 15th International Conference, RP 2021, Liverpool, UK, October 25-27,
2021, Proceedings. Ed. by P. C. Bell, P. Totzke, and I. Potapov. Lecture Notes in
Computer Science. Springer, 2021. doi: 10.1007/978-3-030-89716-1_3. url:
https://doi.org/10.1007/978-3-030-89716-1%5C_3.

114

https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1016/0005-1098(94)90024-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.1007/978-3-642-15375-4%5C_22
https://doi.org/10.1007/978-3-642-15375-4%5C_22
https://doi.org/10.1007/3-540-65306-6%5C_15
https://doi.org/10.1007/978-3-030-89716-1%5C_3

[41] J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. “Verification of Population
Protocols”. In: CONCUR. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[42] J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. “Verification of population
protocols”. In: Acta Informatica 2 (2017). doi: 10.1007/s00236-016-0272-3.

[43] J. Esparza, P. Ganty, and R. Majumdar. “Parameterized Verification of Asynchronous
Shared-Memory Systems”. In: J. ACM 1 (2016). doi: 10.1145/2842603.

[44] J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy. “Verification of Immediate
Observation Population Protocols”. In: CONCUR. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018.

[45] J. Esparza, M. Helfrich, S. Jaax, and P. J. Meyer. “Peregrine 2.0: Explaining Correct-
ness of Population Protocols Through Stage Graphs”. In: Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Viet-
nam, October 19-23, 2020, Proceedings. Ed. by D. V. Hung and O. Sokolsky. Lecture
Notes in Computer Science. Springer, 2020. doi: 10.1007/978-3-030-59152-6_32.
url: https://doi.org/10.1007/978-3-030-59152-6%5C_32.

[46] J. Esparza, S. Jaax, M. A. Raskin, and C. Weil-Kennedy. “The complexity of verifying
population protocols”. In: Distributed Comput. 2 (2021). doi: 10.1007/s00446-021-
00390-x.

[47] J. Esparza, M. A. Raskin, and C. Weil-Kennedy. “Parameterized Analysis of Im-
mediate Observation Petri Nets”. In: Application and Theory of Petri Nets and
Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Ger-
many, June 23-28, 2019, Proceedings. Ed. by S. Donatelli and S. Haar. Lecture Notes
in Computer Science. Springer, 2019. doi: 10.1007/978-3-030-21571-2_20. url:
https://doi.org/10.1007/978-3-030-21571-2%5C_20.

[48] M. Feinberg. “Foundations of chemical reaction network theory”. In: (2019).

[49] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. “Component-based
synthesis for complex APIs”. In: Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. 2017.

[50] L. Fribourg. “Petri Nets, Flat Languages and Linear Arithmetic”. In: Proceedings
of the 9th International Workshop on Functional and Logic Programming (WFLP
2000). Ed. by M. Alpuente. Benicassim, Spain: Universidad Politécnica de Valencia,
Spain, Sept. 2000. url: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/Fri-
wflp00.ps.

[51] H. J. Genrich and K. Lautenbach. “Synchronisationsgraphen”. In: Acta Informatica
2 (1973).

115

https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1145/2842603
https://doi.org/10.1007/978-3-030-59152-6%5C_32
https://doi.org/10.1007/s00446-021-00390-x
https://doi.org/10.1007/s00446-021-00390-x
https://doi.org/10.1007/978-3-030-21571-2%5C_20
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/Fri-wflp00.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/Fri-wflp00.ps

Bibliography

[52] S. Ginsburg and E. H. Spanier. “Bounded Algol-Like Languages”. In: Transactions of
the American Mathematical Society 2 (1964). issn: 00029947. (Visited on 10/31/2022).

[53] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, et al. “Program synthesis by type-
guided abstraction refinement”. In: Proc. ACM Program. Lang. POPL (2020). doi:
10.1145/3371080.

[54] C. Haase. “A survival guide to presburger arithmetic”. In: ACM SIGLOG News 3
(2018). doi: 10.1145/3242953.3242964.

[55] M. Hack. “Decidability questions for Petri Nets”. PhD thesis. Massachusetts Institute
of Technology, Cambridge, MA, USA, 1976. url: https://hdl.handle.net/1721.
1/27441.

[56] J. E. Hopcroft and J.-J. Pansiot. “On the Reachability Problem for 5-Dimensional
Vector Addition Systems.” In: Theor. Comput. Sci. (1979).

[57] N. D. Jones, L. H. Landweber, and Y. E. Lien. “Complexity of Some Problems
in Petri Nets.” In: Theoretical Computer Science 3 (1977). doi: 10.1016/0304-
3975(77)90014-7.

[58] M. I. Kanovich. “Petri Nets, Horn Programs, Linear Logic and Vector Games”. In:
Ann. Pure Appl. Log. 1-2 (1995). doi: 10.1016/0168-0072(94)00060-G.

[59] I. Koch. “Petri nets–a mathematical formalism to analyze chemical reaction networks”.
In: Molecular Informatics 12 (2010).

[60] I. Koch, W. Reisig, and F. Schreiber. Modeling in systems biology: the Petri net
approach. Springer science & business media, 2010.

[61] D. Kozen. Theory of Computation. Texts in Computer Science. Springer, 2006. isbn:
978-1-84628-297-3. doi: 10.1007/1-84628-477-5.

[62] K. G. Larsen, P. Pettersson, and W. Yi. “Compositional and Symbolic Model-
Checking of Real-Time Systems”. In: 16th IEEE Real-Time Systems Symposium,
Palazzo dei Congressi, Via Matteotti, 1, Pisa, Italy, December 4-7, 1995, Proceedings.
IEEE Computer Society, 1995. doi: 10.1109/REAL.1995.495198. url: https:
//doi.org/10.1109/REAL.1995.495198.

[63] K. G. Larsen, P. Pettersson, and W. Yi. “UPPAAL in a Nutshell”. In: Int. J. Softw.
Tools Technol. Transf. 1-2 (1997). doi: 10.1007/s100090050010.

[64] S. Lasota. “EXPSPACE lower bounds for the simulation preorder between a
communication-free Petri net and a finite-state system”. In: Inf. Process. Lett. 15
(2009).

[65] J. Leroux. “Presburger Vector Addition Systems.” In: LICS. IEEE Computer Society,
2013. isbn: 978-1-4799-0413-6. url: http://dblp.uni-trier.de/db/conf/lics/
lics2013.html#Leroux13.

116

https://doi.org/10.1145/3371080
https://doi.org/10.1145/3242953.3242964
https://hdl.handle.net/1721.1/27441
https://hdl.handle.net/1721.1/27441
https://doi.org/10.1016/0304-3975(77)90014-7
https://doi.org/10.1016/0304-3975(77)90014-7
https://doi.org/10.1016/0168-0072(94)00060-G
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1109/REAL.1995.495198
https://doi.org/10.1109/REAL.1995.495198
https://doi.org/10.1109/REAL.1995.495198
https://doi.org/10.1007/s100090050010
http://dblp.uni-trier.de/db/conf/lics/lics2013.html#Leroux13
http://dblp.uni-trier.de/db/conf/lics/lics2013.html#Leroux13

[66] J. Leroux. “The Reachability Problem for Petri Nets is Not Primitive Recursive”. In:
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022. IEEE, 2021. doi: 10.1109/FOCS52979.
2021.00121. url: https://doi.org/10.1109/FOCS52979.2021.00121.

[67] J. Leroux and S. Schmitz. “Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension”. In: 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE,
2019. doi: 10.1109/LICS.2019.8785796. url: https://doi.org/10.1109/LICS.
2019.8785796.

[68] J. Leroux and G. Sutre. “Flat Counter Automata Almost Everywhere!” In: ATVA.
Ed. by D. A. Peled and Y.-K. Tsay. Lecture Notes in Computer Science. Springer,
2005. isbn: 3-540-29209-8. url: https : / / hal . archives - ouvertes . fr / hal -
00346310/document.

[69] R. Lipton. The reachability problem is exponential-space hard. Tech. rep. 62. Depart-
ment of Computer Science, Yale University, Jan. 1976.

[70] N. Lohmann, E. Verbeek, and R. Dijkman. “Petri Net Transformations for Busi-
ness Processes – A Survey”. In: Transactions on Petri Nets and Other Models of
Concurrency II: Special Issue on Concurrency in Process-Aware Information Systems.
Ed. by K. Jensen and W. M. P. van der Aalst. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. isbn: 978-3-642-00899-3. doi: 10.1007/978-3-642-00899-3_3.
url: https://doi.org/10.1007/978-3-642-00899-3_3.

[71] W. Marwan, A. Wagler, and R. Weismantel. “Petri nets as a framework for the
reconstruction and analysis of signal transduction pathways and regulatory networks”.
In: Natural Computing 2 (2011).

[72] E. W. Mayr and J. Weihmann. “Complexity Results for Problems of Communication-
Free Petri Nets and Related Formalisms”. In: Fundam. Inform. 1 (2015).

[73] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proc. IEEE 4
(1989). doi: 10.1109/5.24143.

[74] C. Racko�. “The Covering and Boundedness Problems for Vector Addition Systems.”
In: Theor. Comput. Sci. (1978). doi: 10.1016/0304-3975(78)90036-1.

[75] M. Raskin and C. Weil-Kennedy. “E�cient Restrictions of Immediate Observation
Petri Nets”. In: Reachability Problems - 14th International Conference, RP 2020,
Paris, France, October 19-21, 2020, Proceedings. Ed. by S. Schmitz and I. Potapov.
Lecture Notes in Computer Science. Springer, 2020. doi: 10.1007/978-3-030-
61739-4_7. url: https://doi.org/10.1007/978-3-030-61739-4%5C_7.

117

https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796
https://hal.archives-ouvertes.fr/hal-00346310/document
https://hal.archives-ouvertes.fr/hal-00346310/document
https://doi.org/10.1007/978-3-642-00899-3_3
https://doi.org/10.1007/978-3-642-00899-3_3
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/978-3-030-61739-4%5C_7

Bibliography

[76] M. A. Raskin and C. Weil-Kennedy. “On the Flatness of Immediate Observation
Petri Nets”. In: CoRR (2020). arXiv: 2001.09966v1.

[77] M. Raskin, C. Weil-Kennedy, and J. Esparza. “Flatness and Complexity of Immediate
Observation Petri Nets”. In: 31st International Conference on Concurrency Theory
(CONCUR 2020). Ed. by I. Konnov and L. Kovács. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2020. isbn: 978-3-95977-160-3. doi: 10.4230/LIPIcs.CONCUR.2020.45.
url: https://drops.dagstuhl.de/opus/volltexte/2020/12857.

[78] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer
Science. Springer, 1985. isbn: 3-540-13723-8. doi: 10.1007/978-3-642-69968-9.

[79] G. Rozenberg and J. Engelfriet. “Elementary Net Systems”. In: Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the Advanced
Course on Petri Nets, held in Dagstuhl, September 1996. Ed. by W. Reisig and G.
Rozenberg. Lecture Notes in Computer Science. Springer, 1996. doi: 10.1007/3-
540-65306-6_14. url: https://doi.org/10.1007/3-540-65306-6%5C_14.

[80] G. Rozenberg and P. S. Thiagarajan. “Petri Nets: Basic Notions, Structure, Be-
haviour”. In: Current Trends in Concurrency, Overviews and Tutorials. Ed. by J. W.
de Bakker, W. P. de Roever, and G. Rozenberg. Lecture Notes in Computer Science.
Springer, 1986. doi: 10.1007/BFb0027048.

[81] S. Schmitz. “Complexity Hierarchies beyond Elementary”. In: ACM Trans. Comput.
Theory 1 (2016). doi: 10.1145/2858784.

[82] S. Schmitz. “The complexity of reachability in vector addition systems”. In: ACM
SIGLOG News 1 (2016). doi: 10.1145/2893582.2893585.

[83] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. “Computation with finite stochas-
tic chemical reaction networks”. In: Nat. Comput. 4 (2008). doi: 10.1007/s11047-
008-9067-y.

[84] J. Valusek and P. Jancar. “Structural Liveness of Immediate Observation Petri Nets”.
In: CoRR (2021). arXiv: 2112.15524.

[85] H. Yen. “On Reachability Equivalence for BPP-Nets”. In: Theor. Comput. Sci. 1-2
(1997).

[86] I. Zevedei-Oancea and S. Schuster. “Topological analysis of metabolic networks based
on Petri net theory”. In: Silico Biol. 3 (2003).

[87] R. Zurawski and M. Zhou. “Petri nets and industrial applications: A tutorial”. In:
IEEE Trans. Ind. Electron. 6 (1994). doi: 10.1109/41.334574.

118

https://arxiv.org/abs/2001.09966v1
https://doi.org/10.4230/LIPIcs.CONCUR.2020.45
https://drops.dagstuhl.de/opus/volltexte/2020/12857
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/3-540-65306-6%5C_14
https://doi.org/10.1007/BFb0027048
https://doi.org/10.1145/2858784
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/s11047-008-9067-y
https://arxiv.org/abs/2112.15524
https://doi.org/10.1109/41.334574

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Petri Nets
	1.2 Observation Petri Nets
	1.3 Outline and Publications

	2 Preliminaries
	2.1 Multisets
	2.2 Petri Nets
	2.3 Cubes and Counting Sets
	2.4 Generalized Reachability Problems
	2.5 Complexity

	3 Immediate Observation Nets
	3.1 Definition and Examples
	3.2 Lower Bound
	3.3 Pruning and Boosting
	3.4 Results
	3.4.1 Shortening and Flatness
	3.4.2 Closure under Reachability
	3.4.3 IO Generalized Reachability Theorem

	3.5 Summary and Discussion

	4 Application to Population Protocols
	4.1 Primer on Population Protocols
	4.2 Correctness of Immediate Observation Population Protocols
	4.3 Summary and Discussion

	5 Branching Immediate Observation Nets
	5.1 Definition and Examples
	5.2 Branching Histories
	5.2.1 Decorated Histories
	5.2.2 Fuel-efficient Histories
	5.2.3 Smoke Irrelevance and Unique Footprint

	5.3 Results
	5.3.1 Shortening and Local Flatness
	5.3.2 Closure under Backwards Reachability
	5.3.3 BIO Generalized Reachability Theorem

	5.4 Summary and Discussion

	6 Extensions
	6.1 Multiple Observation Nets
	6.1.1 Immediate Multiple Observation Nets
	6.1.2 Branching Immediate Multiple Observation Nets

	6.2 Reconfigurable Broadcast Networks
	6.2.1 Definition
	6.2.2 Simulation of IO nets by RBN
	6.2.3 RBN are more complex than IO nets
	6.2.4 Branching Reconfigurable Broadcast Networks

	6.3 Model Checking
	6.4 Summary and Discussion

	7 Conclusion
	List of Figures
	Bibliography

