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Abstract 

Walking is an important mode for sustainability, health, environment, urban vitality, and 

equity. There is a critical need for pedestrian planning tools that operate at a scale that is 

sensitive to pedestrian needs and the quality of walking environments. Some efforts have 

been taken to develop stand-alone pedestrian planning tools or consider pedestrians in 

travel demand models that operate at an urban scale. However, pedestrian travel demand 

models still face challenges, such as limited understanding of travel behavior variability 

due to the lack of longitudinal data, poor spatial and temporal transferability of built en-

vironment measurements, and insufficient work in applying pedestrian travel behavior 

knowledge into modeling practices. Those gaps could limit the ability of researchers, 

planners, and policymakers to assess future transport demand and evaluate various future 

plans and policies.  

This dissertation improves pedestrian travel demand modeling in terms of model accu-

racy, sensitivity, transferability, and efficiency. It targets to advance pedestrian modeling 

both theoretically and practically.  

To begin, this work improves the stand-alone pedestrian planning tool Model of Pedes-

trian Demand (MoPeD) established in the Portland context. It explores the appropriate 

spatial resolution for measuring pedestrian environment and modeling behavior at the 

scale of a metropolitan area. It concludes that there is no optimal spatial resolution, and 

the selection of spatial resolution depends on the type of applications and the availability 

of spatial data needed to implement. More importantly, efforts are made to enhance the 

model performance of MoPeD, particularly for model transferability and efficiency. The 

model run time is upgraded to a few minutes for running large-scale areas at fine spatial 

units. The new pedestrian accessibility measurements are easy to construct and transfer 

to other contexts. Two-step walk destination choice models are estimated using small-

scale destination zone alternatives. Besides, multiple built environment variables such as 

network density, accessibility to shops and retail, cross motorway, slope, and proportion 

of industrial jobs are incorporated in walk destination choice models.  

Following that, the integrated modeling framework that incorporates MoPeD into the 

agent-based transport model (MITO) is developed in the Munich context. MoPeD and 

MITO have their respective strengths, and the integration can complement each other. 

The integrated model benefits from MoPeD’s fine spatial resolution and its better 
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representation of the built environment, as well as MITO’s agent-based environment and 

its good representation of motorized modes. The technical integration of the two models 

is straightforward though involving a large amount of coding work. The spatial transfer 

of econometric models from the estimation context (Portland) to the application context 

(Munich) involves several steps. First, the input data containers are prepared for the Mu-

nich context, including fine zone system, pedestrian network, and built environment data. 

Then, models are calibrated at an aggregate level by updating constants. After applying 

the integrated model to the Munich study area, model performances are compared to the 

MITO stand-alone model. It concludes that the integrated model can provide more accu-

rate travel outcomes such as shares of walk trips, walk trip length distribution, the spatial 

distribution of walk trips, and physical activity volumes.  

Finally, novel and longitudinal data Google Location History (GLH) is collected. 27 valid 

GLH datasets are used in this research. Due to privacy concerns and the effort required 

for in-person recruitment, the number of recruited individuals is limited. However, the 

data is rich in a wide range of time period. Most of the GLH datasets cover a large number 

of successive days over a two-year period. The mean number of days recorded is 481 

days.  The collected GLH data is employed to have a closer investigation of travel behav-

ior variability. The analysis of travel behavior variability proves that individuals have a 

great deal of day-to-day variability. Week-to-week travel behaviors have relatively low 

dispersion, while people tend to have periodical behavior on a monthly scale. The analysis 

of GLH data confirms that household travel surveys were poor at capturing walking ac-

tivities and biased in self-reported travel distance. The work also attempts to find out the 

potential determinants of travel behavior variability. It is proved that socio-demographics 

have impacts on travel behavior variability, particularly students have higher in-

trapersonal variability than workers, and individuals who have no car are more variable 

than those who have cars. Weather and public holidays can also disrupt an individual’s 

travel behavior routine.  

Overall, this dissertation makes strides towards a more accurate, sensitive, transferable, 

and efficient pedestrian planning tool for delivering travel outcomes as well as evaluating 

policies and scenarios. The pedestrian planning tool is an open-source model which can 

be further applied to other contexts. Furthermore, this work illustrates the use of longitu-

dinal data. Although the analyses are conducted with a small sample size, the findings 

still reveal some innovative and exploratory insights into travel behavior and perhaps 
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more importantly provide some better guidance on the design of future data collection 

efforts and the utility of GLH for transportation analysis. 
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1. Introduction 

1.1. Background 

Walking, as a low/no-tech mobility, is the most traditional mode we have experienced in eve-

ryday travel. More use of non-motorized modes helps to achieve better health outcomes in a 

number of ways. Walking can be an important source of physical activity, and better accom-

modation of these modes can lead to fewer injuries and deaths due to conflicts with motorized 

vehicles. Encouraging walking over private car use also reduces energy consumption and mit-

igates transportation’s negative environmental impacts, such as greenhouse gas and other emis-

sions. In terms of livability, the inclusion of these modes allows for a broader range of trans-

portation choices for residents and visitors, lowers the costs of accessing destinations, and con-

tributes to vibrant local commercial districts.  

To achieve these ends, urban planners are increasingly interested in having more sophisticated 

models to estimate pedestrian travel, which can help evaluate the outcomes of various policies. 

As a result, there is a critical need for pedestrian planning tools that operate at a scale that is 

sensitive to pedestrian needs and the quality of walking environments. A better pedestrian 

travel demand model can improve sensitivity to pedestrian-relevant factors, provide better pre-

diction of mode shifts, yield results that are responsive to socioeconomic and policy changes, 

and make outputs useful for policy making. In addition, efforts are keen to link these model 

outcomes to other tools for assessing other issues such as air quality, public health, and road 

safety. 

However, pedestrians have often been left out of the modeling process. This is hampered by 

either misguided omission in favor of motorized planning goals, lack of fundamental research 

on pedestrian travel behavior, inadequate pedestrian data and corresponding information about 

the built environment at appropriate scales, or inability to process pedestrian demand due to 

computation limitations.  

Today, many of the barriers mentioned above have been surmounted. First, pedestrian research 

has advanced over the last two decades thanks to the vast improvement of pedestrian data avail-

ability, particularly in the literature on linking travel behavior to the built environment 

(Cervero, 2003; Ewing & Cervero, 2010; Hahm et al., 2019; Khan et al., 2014; Targa & Clifton, 

2004; Tian & Ewing, 2017). These studies have identified many factors that influence how 
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frequently people walk, whether people walk, and activity locations where people walk. For 

example, Singleton et al. (2014) created the Pedestrian Index of the Environment (PIE), which 

included six measures such as activity density, transit access, block size, sidewalk extent, bi-

cycle facilities, and urban living infrastructure. PIE was found to be significant and positively 

related to whether people walk or not. 

Some efforts were taken to develop stand-alone pedestrian planning tools or consider pedestri-

ans in travel demand models that operate at an urban scale. Most of the studies take a simulation 

approach and model individual microscopic pedestrians under specified locations, such as train 

stations, public streets, airports, and shopping malls, with a focus on wayfinding, evacuation, 

and response to crowding and queuing (Borrmann, Kneidl, Köster, Ruzika, & Thiemann, 2012; 

Erdmann & Krajzewicz, 2015; Kielar & Borrmann, 2016). Some travel demand models have 

begun to consider walk mode into the framework that is primarily designed to simulate car 

traffic (Delaware Valley Regional Planning Commission, 2011; Moeckel et al., 2020; San 

Francisco County Transportation Authority, 2002). Only a few models emphasize estimating 

the amount and nature of pedestrian travel (K. J. Clifton et al., 2016b). For example, the Model 

of Pedestrian Demand (MoPeD) is one of the first pedestrian-centric transport models. One of 

the contributions of MoPeD is using a finer-grained scale called Pedestrian Analysis Zone 

(PAZ) rather than coarse transportation analysis zones (TAZs). This can better represent the 

pedestrian behavior and built environment variables. 

Despite pedestrian research and modeling practice have attracted more attention in transporta-

tion planning and have contributed to a number of improvements, pedestrian travel demand 

models still face several challenges. 

Fundamentally, further theoretical studies are needed to investigate individuals’ walking activ-

ity, including not only the interpersonal differences but also intrapersonal changes in behavior 

over time and space. An additional challenge for investigating intrapersonal variability is the 

scarcity of longitudinal travel behavior data. Collecting longitudinal travel behavior data and 

exploring the variation in pedestrian travel would be useful for predicting individuals’ weekly 

walking levels, allowing for a more accurate assessment of health benefits.  

Additionally, research on built environment measurements such as the walkability index at-

tempted to cover a wide range of spatial factors while overlooking the complexity and trans-

ferability when applying those metrics to modeling practice for exploring future scenarios. 
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Because the availability and quality of data vary greatly across study areas, those metrics may 

be a barrier to incorporate built environment influences into planning tools. 

Finally, more efforts are needed to apply theoretical and empirical analysis of pedestrian be-

havior into practice for use in planning and policy decisions. While the pedestrian-centric plan-

ning tool MoPeD has a wide range of benefits to modeling pedestrian travel behavior, many 

challenges remain in further development and implementation. For example, MoPeD has an 

issue in model efficiency due to the heavy computational burden of processing pedestrian de-

mand at fine spatial scales. This also limits its ability to run large-scale scenarios. Moreover, 

MoPeD is limited to its nature of aggregated modeling. Average social-demographic attributes 

are simulated at the zonal level, which makes it less sensitive to demographic changes such as 

aging or car ownership in scenario application. Agent-based transport models have great op-

portunities to simulate pedestrian travel at a fine spatial resolution and at an individual level. 

However, most agent-based transport models either overlook pedestrian activities or have lim-

ited representation of pedestrian behavior. For example, the Microscopic Transportation Or-

chestrator (MITO) is a microscopic travel demand model that generates trips for every individ-

ual. In this modeling suite, the multinomial logit model that is part of MITO estimates the 

shares of walk trips but subsequently drops those trips from further analysis. Walk trips are 

processed in TAZs, and there are no built environment measurements related to pedestrians 

included in the models. 

Based on the discussion above, the research gaps can be summarized as 1) lack of longitudinal 

travel behavior data; 2) limited understanding of travel behavior variability; 3) Poor transfera-

bility of built environment measurements; 4) insufficient work of incorporating pedestrian 

travel into modeling practices. Those gaps mentioned above could limit the ability of research-

ers, planners, and policymakers to assess future transport demand and evaluate various future 

plans and policies. A clear understanding of pedestrian behavior and better modeling of pedes-

trian activities could help to anticipate and plan for future transportation needs.  

1.2. Research Objectives 

This dissertation aims to address the gaps and limitations of the fundamental research and mod-

eling practices mentioned above. Therefore, the goal of this dissertation is to improve pedes-

trian representation in travel demand models to better assess travel outcomes and evaluate pol-

icies and scenarios. To achieve this goal, four key requirements are identified to improve the 
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performance of the pedestrian planning tools. They are model accuracy, sensitivity, transfera-

bility, and efficiency.  

Model accuracy is one of the essential aspects. More accurate model outcomes such as mode 

shifts, walk trip lengths, and pedestrian flows can provide a clear picture of future transport 

demand, which results in better decisions in land use and transport infrastructure investments. 

Moreover, model outputs such as car volumes, physical activity volumes, and trip trajectories 

are increasingly valued as important inputs to emissions, climate, health, and equity analysis. 

Therefore, more accurate model outcomes can also help to assess other issues such as air qual-

ity, public health, and road safety. Model inaccuracy in pedestrian travel demand models can 

be caused by several reasons, including inaccurate fundamental data, improper modeling ap-

proaches as well as inappropriate spatial and temporal resolution.  

Model sensitivity is an important indicator to show the explainable power of the model. It also 

reflects the model’s accuracy. If key influencing factors are missing from the model, it can lead 

to model inaccuracy and reduce the interpretability of the policies and scenarios that have 

changes in the missing factors. The effects of the built environment on pedestrian travel behav-

ior have been extensively investigated, but the incorporation of pedestrian-related built envi-

ronment factors into transport planning tools is still lacking. Furthermore, the influences of 

time-varying factors such as the day of the week and weather are rarely explored or considered 

in travel demand models. 

Model transferability plays an important role in transportation planning tools. The spatial 

transfer of an existing model from one location (estimation context) to another (application 

context) can save a deal of time and efforts in data collection and model development 

(Karasmaa, 2003). Particularly when pedestrian travel behavior data is scarce, spatial transfer-

ability can help to boost the application of pedestrian-centric planning tools. Moreover, tem-

poral transferability is critical for almost all planning tools because the primary purpose of the 

pedestrian travel demand model is to evaluate future policies and scenarios by using models 

estimated from historical data. The methods for constructing built environment measurements 

are complex and vary largely. This may cause issues in spatial and temporal transferability. 

Model efficiency is also essential for developing practical planning tools. Despite significant 

advances in computer technology, using fine spatial scales in large-scale study areas can boost 

the computational burden. The size of the context and the processing zone system have a large 
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impact on model run time. In addition, the modeling approach can also have an effect on model 

efficiency. For example, pedestrian route choice is typically more expensive in terms of run 

time and memory usage. 

Each research gap mentioned in Section 1.1 can lead to one or more issues in pedestrian mod-

eling in terms of these four model requirements. When the gaps are addressed, and these four 

requirements are fulfilled, pedestrian planning tools will become widely applicable and useful 

for evaluating policies and scenarios. 

1.3. Approaches 

To achieve the end, research gaps are addressed through different theoretical, empirical, or 

analytical approaches involving advanced model development and novel longitudinal data col-

lection. 

1.3.1. Model Enhancement and Integration 

To fill the gaps in modeling practices, an integrated modeling framework is proposed that in-

corporates a fine-grained resolution model of pedestrian demand (MoPeD) into a sparser spatial 

resolution of an agent-based transport model (MITO). MoPeD and MITO have their respective 

strengths and can complement each other. The integrated model would benefit from MoPeD’s 

fine spatial resolution and its better representation of the built environment, as well as MITO’s 

agent-based environment and its good representation of motorized modes.  

Before the integration, it is critical to enhance MoPeD and resolve some of its limitations. First, 

the appropriate spatial resolution for measuring pedestrian environment and modeling behavior 

is explored at the scale of a metropolitan area. This investigation is useful for determining the 

spatial resolution requirements when transferring MoPeD to other contexts. To further improve 

the transferability of MoPeD, a new pedestrian accessibility measurement is created, and it 

replaces PIE in walk mode choice models. Then, the existing walk destination choice models 

are enhanced by using the whole universe of choices and a two-step multinomial logit model 

technique. From the technical view, the run time and memory saving of the model is upgraded 

by building up the whole model in the Java environment. 

Once MoPeD is enhanced, it is incorporated into MITO. The integrated modeling framework 

is developed in the context of the Munich Metropolitan area. Thus, the first step is to gather 

input data for pedestrian modeling, such as fine zone systems, pedestrian street networks, and 
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data for built environment measurements. Then, the step of integration is not straightforward 

due to the different spatial units and modeling sequences in these two models. Coding inter-

faces are created to transfer MITO trip locations to PAZs used in MoPeD. Moreover, a hybrid 

trip decision process is developed based on the modeling sequences in both models. Finally, 

the integration work also includes a large part of the development of source code in Java. 

1.3.2. Novel Data Collection and Fundamental Research 

To fill the gaps in fundamental data and research of travel behavior variability, a survey is 

designed to collect an individual’s longitudinal travel behavior in a way that can enrich the data 

sources of week-long travel behavior and can investigate how and why an individual’s travel 

behavior varies over time. The survey collects longitudinal and passive data – Google Location 

History (GLH) – that records an individual’s trip diaries with coordinates and a board time 

horizon, which is a major innovation compared to previous studies. Besides the individual and 

household characteristics, the survey also asked questions about the occurrence of major life 

events (marriage, children, changing jobs, etc.) in the past 18 months. This intends to explore 

the relationship between life events and the change in travel behavior. Next, the collected GLH 

data is employed to have a closer investigation of week-long travel behavior and travel behav-

ior variability. Specifically, four research tasks will be carried out to provide a better under-

standing of intrapersonal differences in behavior over time.  

First, the specific measurements of travel behavior variability are examined across various tem-

poral scales (day-to-day, week-to-week, and month-to-month). This analysis addresses the em-

pirical question about how different travel metrics vary over time, including the number of 

trips, total travel time, walk time, number of walk trips, and start time of day. In addition, the 

author attempts to find out the correlation between socio-demographic attributes and an indi-

vidual’s travel behavior variability level. 

Second, the assessment of weekly walking behavior (such as the weekly number of walk trips, 

weekly walk time, and weekly walk distances) is compared by using four different data sources, 

including GLH, a one-day travel survey, a seven-day travel survey, and a self-reported physical 

activity questionnaire. The comparison can highlight the strengths and limitations of each data 

collection method. Furthermore, there is a debate about using the single-day survey to estimate 

an individual’s weekly travel behavior. This investigation may also provide some analytical 

evidence for the debate. 



7 

 

Following the empirical examination, the next task is to investigate the potential determinants 

of weekly travel behavior. The first investigation explores the explanatory factors such as so-

cio-demographic characteristics, household attributes, travel-related information, weather-re-

lated attributes (e.g., weekly precipitation, weekly temperature), and time-related variables 

(e.g., month, has public holiday). Linear panel regression models are employed for predicting 

weekly walk time and physical activity volume. The majority of the samples have zero obser-

vation in weekly cycle time. Therefore, a binary logit model is first involved in determining 

whether people have cycle activities, and then a linear panel regression model is used to esti-

mate weekly cycle time. The second investigation looked at how major life events influence 

weekly travel behavior. Due to the limited number of life events observed among the survey 

participants, the analysis is conducted through a series of descriptive statistics. These two stud-

ies can provide answers to the questions of the determinants of weekly travel behavior and the 

extent to which different attributes affect weekly travel behavior. 

In contrast to the theory-driven approaches mentioned above, a data-driven approach is applied 

in the final step to further investigate an individual’s travel routines and their potential disrup-

tions. Unsupervised learning approaches are widely used in the transportation field to explore 

activity patterns (Cui et al., 2018; El Mahrsi et al., 2017). Here, the author will use cluster 

algorithms to group days with similar travel characteristics based on mode usage by time of 

day. The resulting clusters represent the regularity in travel behavior, while the difference be-

tween clusters represents some level of disruption. 

1.4. Structure of the Dissertation 

Figure 1 presents the road map of this dissertation. It reflects the dissertation goals and research 

gaps for defining four research objectives as well as the approaches to achieve these objectives. 

The structure of the dissertation is organized into several chapters that align with the different 

steps in the road map. The motivation and goals of this dissertation are presented in Chapter 1. 

The remaining chapters are summarized in the following paragraphs. 
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Figure 1 Framework and structure of the dissertation  

Chapter 2 presents the progress of research on pedestrian behavior and existing modeling prac-

tices. First, various data collection methods for analyzing pedestrian behavior are reviewed. 

The strengths and limitations of different data sources are discussed. Next, the literature on 

built environment influences on walking behavior is reviewed, pointing out that there is a need 

to call for standardization and transferability of built environment measurements. Studies on 

travel behavior variability are also reviewed, with the conclusion that more emphasis should 

be placed on understanding how and why an individual’s travel behavior varies over time. 

Finally, some existing travel demand models and their representation of pedestrian travel are 

demonstrated. Based on the existing literature and model practices, the author summarizes four 

major research gaps (as shown in Figure 1): 1) lack of longitudinal travel behavior data; 2) 

Poor transferability of built environment measurements; 3) limited understanding of travel be-

havior variability; 4) insufficient work of incorporating pedestrian travel into modeling prac-

tices. 

Chapter 3 introduces the study areas that will be employed in this dissertation. MoPeD 2.0 was 

developed in the context of the Portland metropolitan area. The application of MoPeD 2.0 is 

carried out in the Portland Central City area. The Munich metropolitan area will be used for 

the development of the integrated model and its scenario applications. 

Chapter 4 enhances the stand-alone pedestrian model MoPeD in different aspects. First, it ex-

plores the appropriate spatial resolution for measuring pedestrian environment and modeling 
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behavior at the scale of a metropolitan area, concluding that there is no optimal spatial resolu-

tion, and the selection of spatial resolution depends on the type of applications and the availa-

bility of spatial data needed to implement. Then, efforts are made to enhance MoPeD in terms 

of model efficiency, transferability, accuracy, and sensitivity, including run-time upgrade, re-

construction of new pedestrian accessibility measures, and enhancement of the walk destina-

tion choice model. 

Chapter 5 applies the enhanced MoPeD to the Portland Central City area to assess realistic 

urban and transportation scenarios from the Portland Central City 2035 Plan. The impacts of 

scenarios are evaluated in terms of changes in walk shares, average trip length, and pedestrian 

flows. The application demonstrates the capability of MoPeD in reflecting land use scenarios 

while also revealing the limitations of MoPeD, such as its insensitivity to the quality of network 

infrastructures. 

Chapter 6 presents the integrated modeling framework that incorporates MoPeD into MITO. 

The author specifically addresses how the integration of these models improves the represen-

tation of pedestrians. The approach of integrating MoPeD and MITO is presented. Then, the 

input data containers are prepared for the Munich context. Since the mode choice and destina-

tion choice models were developed in the Portland context and then married into the Munich 

study area, a model transfer/calibration process is carried out. After applying the integrated 

model to the Munich study area, model performances are compared to the MITO stand-alone 

model. It concludes that the integrated model can provide more accurate travel outcomes such 

as walk shares, walk trip length distribution, the spatial distribution of walk trips, and physical 

activity volumes.  

Chapter 7 applies three scenarios with the integrated model. The first application investigates 

the pedestrian travel demand changes and health impacts of a teleworking scenario. The second 

application investigates the changes in walking behavior under a radical scenario where jobs 

and workers are perfectly assigned to achieve minimal commuting time. The third application 

tests the concept of a car-free city under some draconic scenario settings, such as allowing only 

one car in the household. The application results prove the capabilities and sensitivity of the 

integrated model to various policies and scenarios. On the other hand, they also highlight the 

limitations of the model. 
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Chapter 8 demonstrates the novel longitudinal data from Google Location History and analyses 

of travel behavior variability. First, it documents the development and administration of the 

data collection effort. Due to privacy concerns and the effort required for in-person recruitment, 

the number of recruited individuals is limited. In the end, there are only 27 valid GLH datasets 

used in this research. Then, the methods of data filtering and processing are presented. After 

that, some descriptive statistics are presented, such as the socio-demographic distribution of 

samples and respondents’ travel behaviors. Finally, the processed GLH data is employed to 

have a closer investigation of travel behavior variability. Four research tasks are carried out 1) 

empirical examination of travel behavior variability; 2) assessment and comparison of weekly 

walking behavior using four data sources; 3) investigation of the potential determinants of 

weekly travel behavior; 4) application of clustering algorithms to further investigate individ-

ual’s travel routines and disruptions. The analysis of travel behavior variability proved that 

individuals have a great deal of day-to-day variability. Week-to-week travel behaviors have 

relatively low dispersion, while people tend to have periodical behavior on a monthly scale. 

The investigations of weekly walking behavior discovered its association with the weather, day 

of the week, public holidays, and life events. Although these analyses are conducted with a 

small sample size, they still provide innovative and exploratory insights into pedestrian travel 

behavior research. 

Chapter 9 concludes the dissertation with a summary of the research motivation and key 

achievements. It then highlights the key contributions and implications of this research. In 

terms of fundamental research, this dissertation makes strides toward richer data sources and a 

better understanding of pedestrian travel behavior variability. In terms of modeling, this dis-

sertation develops a more accurate, sensitive, transferable, and efficient pedestrian planning 

tool for delivering travel outcomes and evaluating policies and scenarios. Finally, the chapter 

concludes with a discussion of research limitations and opportunities for future work. 
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2. Literature Review 

Early studies of pedestrian travel were limited and primarily hampered by the lack of pedestrian 

data and corresponding information on the built environment. There was also a notable gap 

between research on pedestrian behavior and modeling practices. This was mainly because of 

the car-centric design goals of most travel demand models, as well as their inability to process 

pedestrian demand at the appropriate scale due to computational limitations. However, many 

of these obstacles have now been overcome. The availability of data has improved signifi-

cantly. Aided by a wealth of data, scholars have begun to investigate the mechanisms and im-

pacts of walking behavior. In the meanwhile, researchers and transport planners also have made 

efforts to improve pedestrian planning tools.  

The goal of this review is to present the progress of research on pedestrian behavior and exist-

ing modeling practices. Section 2.1 first presents various data collection methods for analyzing 

pedestrian behavior. Then Sections 2.3 and 2.2 concentrate on the behavioral research of pe-

destrian studies. They summarize the literature on built environment influences on walking 

behavior and temporal patterns of walking trips. Section 2.4.1 focuses on the progress of pe-

destrian modeling practices. The author discusses the spatial resolution used in pedestrian 

travel demand models. After that, some existing travel demand models and their representation 

of pedestrian travel are demonstrated. Based on the existing literature and model practices, the 

author summarizes some research gaps in Section 2.52.5, which also serves as the basis for this 

dissertation framework.  

2.1. Data Collection Methods for Studying Pedestrian Behavior 

In the early stage, one common problem that the researchers faced when modeling pedestrian 

demand was the barrier of the data collection on pedestrian behaviors and environments. Data 

sources for investigating pedestrian travel behavior are generally grouped into two categories: 

self-report surveys and objective measures.  

Household travel surveys (HTS) are used primarily by transport scientists and practitioners to 

explore pedestrian travel behavior (K. Clifton & Muhs, 2012; Fairnie et al., 2016). HTS collects 

characteristics of individuals and their households and ask respondents to record trip diaries 

over a specified time period. Every interaction the respondents have with the transportation 

system, including active travel, is recorded. Trip distance, speed, mode, and departure/arrival 
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time are all captured. HTS generally provides rich information on travel purposes, travel be-

havior, and sociodemographic attributes. For example, the national household travel survey, 

Mobilität in Deutschland (MiD), is the most widely used data source for transport studies in 

Germany (BMVI, 2019b). It is a large cross-sectional survey conducted in 2016-2017 consist-

ing of 156,420 households containing 912,002 trips. Respondents complete 24-hour travel di-

aries to give on their interactions with the transport network over the course of a day. Trips 

recorded in MiD with main mode walking can be used to investigate pedestrian travel behavior. 

However, walk distances are self-reported and origins and destinations of trips are recorded 

with very coarse geographic locations. This is a barrier for pedestrian travel behavior studies 

to associate built environments with walk trips. 

Although HTS has made improvements that do a better job of capturing pedestrian behaviors, 

including prompts for infrequent and short-distance trips, there would be several pitfalls in 

using household travel surveys in this way. First, due to the nature of self-reporting, HTS may 

still be biased in the trip distance (Aschauer et al., 2018; K. W. Axhausen et al., 2007; Reiffer 

et al., 2022; Wolf et al., 2003). This may cause inaccurate measures of walking behavior like 

the willingness to walk and destination choice of walking trips. Moreover, most HTSs only 

require respondents to record trip diaries on a single day (Kunert et al., 2002). As a result, they 

are limited in capturing important variations in an individual’s travel across the day of the week 

or seasons of the year. In some areas and during specific seasons, weather can be a significant 

factor affecting pedestrian trips (Aultman-Hall et al., 2009; Miranda-Moreno & Lahti, 2013). 

On the other hand, understanding the regularity of travel behavior like walking and cycling is 

an important component of health research (Merom et al., 2010). For example, public health 

guideline recommendations use a week-long timescale for assessing walking, cycling, and 

other physical activities.  

To overcome this issue, longer-term HTS or panel surveys were conducted and widely used in 

transport studies. The Uppsala household travel survey and Reading activity survey, which are 

widely used in the literature, were conducted in the early 1970s. The Uppsala data records 

travel diaries over 35 consecutive days, while the Reading data had seven days (Hanson & 

Huff, 1982; Pas, 1983). The UK national travel survey was carried out with a seven-day travel 

diary which is helpful in exploring pedestrian travel behavior patterns across weekdays and 

weekends. However, this dataset is limited in capturing the variance of short walk trips because 

respondents are only required to record walks of less than 1.6km on one of the seven days (The 
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Department for Transport, 2020). The Mobidrive six-week travel diary dataset collected in 

1996 also provides a rich source for travel pattern variability studies (K. Axhausen et al., 2002). 

However, one major issue of longer-term travel diaries or panel surveys is respondent fatigue 

(K. W. Axhausen et al., 2007).  

With advances in technology, objective measurements, such as global position systems (GPS), 

accelerometers, and pedometers, have emerged. GPS technology is widely used in studying the 

relationship between pedestrian travel behavior and the built environment. Lue and Miller 

(2019) investigated pedestrian route choice behavior by using smartphone-based travel survey 

data collected in Toronto. Their study demonstrates the feasibility of using GPS data for pe-

destrian travel behavior studies. Objective measurements are also broadly employed in health 

studies to capture physical activity such as walking and cycling. A recent study by Chaix et al. 

(2019) used GPS receivers and accelerometers to capture walking during the usage of public 

transport. These technologies facilitate the collection of location-based data at a high resolution 

over long periods of time without the issues of respondent burden. However, they are relatively 

expensive due to the cost of equipment and participant burden, so they are usually employed 

only with a small population. In addition, they require data processing and algorithms to infer 

the activity type and travel mode. Assumptions used for data processing may result in large 

differences in understanding pedestrian travel behavior. 

2.2. Travel Behavior Variability 

Transportation behavior and policy researchers raise important questions about how and why 

an individual’s travel behavior might vary over time (Hanson & Huff, 1982; Jones & Clarke, 

1988; Pas, 1983). The study of variability can, to some extent, improve the goodness-of-fit of 

the transport models (Pas, 1987). With an interest in crafting policy interventions for conges-

tion, the environment, and health, it is important to understand how an individual’s behavior 

might change under different circumstances (Jones & Clarke 1988). Understanding the regu-

larity of walking travel behavior can also better predict individuals’ level of walking, which in 

turn allows for a more accurate assessment of people’s health benefits. Thus, there has been a 

long interest in analyzing travel behavior variability. 

2.2.1.1. Measures of Travel Behavior Variability 

Travel behaviors are complex and are influenced by many factors, some of which can change 

daily, including activity participation, weather, and availability of modes. Previous studies have 
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investigated travel behavior variability across different travel metrics. Pas & Koppelman 

(1986) looked at the changes in daily trip frequency and found considerable differences. The 

degree of variation was dependent upon the socio-demographic characteristics. For example, 

individuals with fewer economic and role-related constraints (such as non-employed individu-

als) were observed to have higher levels of intrapersonal variability in daily trip frequency. 

Most of the research uses a combination of travel measures to represent an individual's travel-

activity pattern (Dharmowijoyo et al., 2017; Hanson & Huff, 1982, 1986, 1988; Manley et al., 

2016; Pas, 1983; Schlich & Axhausen, 2003; Susilo & Axhausen, 2014; Tarigan et al., 2012). 

The most common travel measures are activity types, trip frequency, time use, and travel dis-

tance. For example, Hanson & Huff (1986) derived a set of travel measures to summarize an 

individual's travel-activity pattern, such as the proportion of different activity types and the 

number of stops per tour. Additional dimensions, including multimodal travel, location choice, 

and route choice, are considered in measuring travel patterns (Buliung et al., 2008; Chikaraishi 

et al., 2009; Heinen & Chatterjee, 2015; Manley et al., 2016; Pas & Sundar, 1995; Streit et al., 

2015). As a result, different levels of variability were found for different travel measures. The 

variability of the travel-activity pattern increases if more complexity is considered in the travel 

pattern measurement (Schlich & Axhausen, 2003). 

In more recent works, researchers found that the order of activities and travel events play an 

important role in the regularity of travel behavior (Goulet-Langlois et al., 2018; Prelipcean et 

al., 2018; Xianyu et al., 2017). Travel-activity sequences are similar among weekdays while 

being different from weekend sequences. (Xianyu et al., 2017). 

2.2.1.2. Temporal Scales of Travel Behavior Variability 

The level of variability could be quite different when analyzed at different temporal scales. The 

majority of previous studies examined the day-to-day changes in travel behavior. Hanson & 

Huff (1982) investigated daily travel activity patterns and concluded that employed men and 

nonworking women tend to have a higher level of repetition in their daily travel-activity pat-

terns. Pas & Sundar (1995) analyzed the daily variability in trip chaining generation, departure 

time from home, and route choice. They found that individuals from two-person households 

have substantial day-to-day variability in travel behavior. Susilo & Axhausen (2014) measured 

the degree of repetition of an individual’s daily activity-travel-location pattern. The results in-

dicated a significant variance in travel behavior patterns, which is influenced by personal and 

household characteristics and the accessibility of the activity locations. 
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Some studies focused on analyzing the day-of-week variability of travel behavior. In general, 

they found that weekend-to-weekday variability is much greater than weekday-to-weekday or 

weekend-to-weekend variability (Buliung et al., 2008; Dharmowijoyo et al., 2017). In terms of 

activity space, it is found that weekday activity spaces are more compact than those at week-

ends (Dharmowijoyo et al., 2014). This is expected since individuals have less flexibility in 

their schedules during workdays. Furthermore, Xianyu et al. (2017) discovered a similar pattern 

that weekday activity-travel sequences are more similar while being different from weekend 

sequences. 

A few studies have investigated the week-to-week variability or even month-to-month varia-

bility due to the lack of data. Hanson & Huff (1988) attempted to find out the repetition of 

travel patterns from week to week by using a five-week travel survey. However, they didn’t 

find a weekly cycle to be sufficient to define travel routines. Tarigan & Kitamura (2009) stud-

ied the week-to-week variability in leisure trip frequency. Their results revealed that the mean 

number of trips per week influences the week-to-week variability in the number of trips for 

socializing activity types.  

2.3. Association with Built Environment 

Since the 2000s, many scholars have considered theories about the relationships between the 

built environment and travel behavior (Boarnet & Crane, 2001; Ewing & Cervero, 2001). 

Thanks to the improvement of travel survey data and data collection technologies, a number of 

studies on the association between pedestrian behavior and the built environment have been 

carried out. These studies identified the various factors which impact pedestrian behavior. It 

was confirmed many times that environmental influences are related to walk trip frequency, 

walk mode choice, walk destination choice and walk route choice (Ewing & Cervero, 2010; 

Khan, M. Kockelman, & Xiong, 2014; Kuzmyak, Walters, Bradley, & Kockelman, 2014). 

However, the set of factors and the magnitude of their effects vary across different aspects of 

walking activity. 

The role of the built environment on the choice to walk and how frequently people walk has 

been investigated in many studies. Researchers have identified a common set of built environ-

ment attributes that are related to walk trip frequency and walk mode choice. They are residen-

tial and employment densities, land use diversity, and pedestrian network connectivity (Ewing 

and Cervero, 2010; Saelens and Handy, 2008; Saelens et al., 2003; Guo et al., 2007). A few 
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studies also pointed out the positive relationship between walk trip generation and sidewalk 

conditions (Ewing and Cervero, 2010; Desyllas et al., 2003; Boarnet et al., 2011). In addition 

to discussing influencing factors, researchers also worked on finding out appropriate spatial 

scales for measuring these attributes (Gehrke and Clifton, 2014). They emphasized the need to 

use small geographic scales in pedestrian travel behavior research. 

The influence of the pedestrian environment on destination choice has been examined in a few 

studies. Khan, Kockelman, and Xiong (2014) found that intrazonal non-motorized trip likeli-

hoods rose with higher street connectivity, transit availability, and land use entropy. K. J. 

Clifton et al. (2016a) developed pedestrian destination choice models for different trip pur-

poses. They concluded that pedestrian destination choice was primarily influenced by distance, 

while it was also sensitive to the pedestrian environment (Ewing & Cervero, 2010; Saelens & 

Handy, 2008; Saelens et al., 2003). Their research found that retail employment, household 

density, and parks are positively related to the likelihood of choosing a destination. On the 

other hand, the degree of slope, the existence of freeways, and the share of industrial-type em-

ployment are barriers for pedestrians in choosing a destination.  

Pedestrian route choice is an emerging topic. There is comparatively less research devoted to 

how pedestrians choose routes, and the built environment attributes that they consider for var-

ious trip purposes (Borst et al., 2009; Broach & Dill, 2015; Koh & Wong, 2013; Rodríguez et 

al., 2015). Lue and Miller (2019) investigated the influences of street infrastructure and built 

environment on pedestrian route choice behavior by using smartphone-based travel survey data 

collected in Toronto. They found that the number of signalized intersections and traveling along 

sidewalks were significant variables in the pedestrian route choice model. Broach & Dill (2015) 

presented a pedestrian route choice model estimated from revealed preference GPS data. Their 

research found that pedestrians are sensitive to attributes of the walking network, intersection 

crossing aids, and elements of the street environment. Rodríguez et al. (2015) examined the 

influence of the built environment on pedestrian route selection among adolescent girls. They 

pointed out that shorter distances had the strongest positive association with route choice. In 

addition, a set of built environment variables was found to be associated with better walking 

routes in their research, such as the presence of a greenway or trail, higher safety, the presence 

of sidewalks, and the availability of destinations along a route. 

This review of walking and the built environment in different aspects of walking activity is 

useful for the selection of variables in the later stages of model estimations. 
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2.4. Modeling Practices 

2.4.1. Spatial Resolution of Pedestrian Travel Demand Modeling 

Finding an appropriate spatial scale at which to model travel and land use patterns is a critical 

and often challenging decision, made even more difficult with the additional constraint of mod-

eling pedestrian travel. Singleton et al. (2018) conclude that one of the perspectives of the 

research on pedestrian modeling is a traditional four-steps pedestrian model with finer spatial 

resolution. However, there are only a few operational models estimating pedestrian demand 

with a fine zoning system. Generally, the zone system could be divided into two categories: 

gradual raster cells and uniform raster cells. 

Moeckel and Donnelly (2015) develop a methodology to create a zoning system with gradual 

raster cells. The size of the raster cell depends on the population and employment density. Finer 

raster cells are used in areas with higher density, while coarse raster cells are generated in low-

density areas. A most recent study by Okrah et al. (2017) implements this methodology into 

practice to find the optimal spatial resolution for handling non-motorized transport. They use 

the total network length in a zone to define the size of raster cells, and the threshold value of 

network length ranges from 50m to 5000m. By comparing the predicted traffic assignment 

volume to the reference volume, they conclude that a total network length of 1,000 m per zone 

as the optimal spatial resolution for their study area. 

Regards the uniform raster cells, K. J. Clifton et al. (2016b) established a model of pedestrian 

demand (MoPeD) by using a uniform zoning system. It follows the traditional four-step model, 

but it changes the spatial unit from Transportation Analysis Zone (TAZ) to a finer spatial scale 

called a Pedestrian Analysis Zone (PAZ) defined by an 80 m × 80 m grid cell and an aggrega-

tion of these PAZs into 400 m × 400 m zones called superPAZ. In addition, there have been 

some studies examining the pedestrian behavioral response to built environment measures 

taken at various scales (Gehrke & Clifton, 2014). These studies operate a much courser reso-

lution (400 m buffers and larger). To date, there has been no exploration of the responsiveness 

and efficiency of a pedestrian demand model to finer uniform raster cells (< 400 m × 400 m). 

Although the studies mentioned above prove that finer spatial units can better represent pedes-

trian behavior and react to the changing pedestrian environment, they also identify the difficul-

ties and challenges in computational burden and data collection when implementing finer 

scales. Some researchers contend that reducing zone sizes to parcel level will cause an 
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exponential increase in the size of impedance matrices in the traffic assignment step, which 

could escalate the computational burden (Moeckel & Donnelly, 2015; Okrah et al., 2017). In 

terms of data collection, although the data quality of archived household travel behavior data 

and land use data has been improving at very fine scales, it could be challenging when fore-

casting these data at the same fine level of detail.  

2.4.2. Model of Pedestrian Demand (MoPeD) 

2.4.2.1. Overview 

With the advances in data availability and computation power, some efforts were taken to de-

velop stand-alone pedestrian planning tools or better represent pedestrians in travel demand 

models that operate at an urban scale. One of the recent works, which achieved this end, is the 

modeling framework MoPeD developed by Dr. Clifton and her team (Clifton et al. 2016a; 

Clifton et al. 2016b). The framework of MoPeD is illustrated in Figure 2. The pedestrian pre-

diction tool is integrated with a four-step urban model, in this case, the Portland Metro Regional 

Model.  

 
Figure 2 Modeling framework of MoPeD (adopted from (K. J. Clifton et al., 2016)) 
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2.4.2.2. Contribution 

One of the contributions of MoPeD is that stage 1 (Trip Generation), stage 2 (Walk Mode 

Split), and stage 3 (Pedestrian Destination Choice) are all modeled at a Pedestrian Analysis 

Zone (PAZ), which is represented as an 80m by 80m grid cell. See the comparison of the PAZ 

zonal structure with the larger Transportation Analysis Zone (TAZ) used in regional transpor-

tation models in Portland, OR, in Figure 3 below. 

 

Figure 3 Comparison of two zonal structures—PAZs and TAZs—in part of the Portland, Oregon, region. (K. J. 

Clifton et al., 2016b) 

MoPeD starts with trip generation at the finer spatial resolution. Stage 2 models the probability 

that these trips are made by walking. Those trips that are made by walking are then distributed 

to destination PAZs using a destination choice model in Stage 3. In the traditional four-step 

modeling process, mode choice commonly follows the trip distribution. Nevertheless, this op-

posite order or model steps was chosen in MoPeD because destination choice works substan-

tially differently for walk trips and non-walk trips. By modeling the choice walk/non-walk first, 

the conditions for the destination choice model are largely improved. Also, since MoPeD im-

plements at a fine spatial resolution, making mode choices prior to the destination choice can 

avoid dealing with massive distance matrices. 
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Trips that are not made by walking (vehicular modes) as determined by Stage 2 can then be 

aggregated to larger zonal structures (such as TAZs) and handled by the more typical transport 

demand modeling process. 

Another contribution of MoPeD is that the model utilized a measure of the pedestrian environ-

ment (Pedestrian Index of the Environment, or PIE) at the PAZ scale (Singleton et al. 2014). It 

consisted of six measures that included activity density, transit access, block size, sidewalk 

extent (miles of continuous sidewalks within 0.25 miles), bicycle facilities, and urban living 

infrastructure, which means the number of shopping and service destinations in the neighbor-

hood. PIE was used as one predictor in walk mode choice models, and some other pedestrian 

supports and barriers variables (e.g., slope, park, and freeway) were also considered in walk 

destination choice models. This improvement of model practice is aligned with the findings of 

built environment influences on walking behavior presented in Section 2.3. As a result, the 

MoPeD model can better represent pedestrian behavior and more accurately simulate walk 

trips. 

The authors also pointed out that there is a wide range of applications for MoPeD. For example, 

the model can simulate urban-wide/regional-wide pedestrian activities, which can be used for 

various planning and policy applications. Moreover, there is the opportunity to link the outputs 

of these models to health assessment tools such as the Integrated Transport and Health Impact 

Modeling Tool (James Woodcock et al., 2013). 

2.4.2.3. Discussion on MoPeD 

Although MoPeD has a wide range of benefits to modeling pedestrian and transport planning. 

Many challenges remain in further development and implementation. 

First, the first implementation of MoPeD in R had slow run times and could only run a small 

subset of the Portland region at a time. It was not able to handle the entire Portland metropolitan 

area due to the heavy computational burden of this fine spatial resolution.  

Second, one of the limitations of the previous MoPeD model is the complexity of pedestrian-

built environment representation. As described in 2.4.2.2, the pedestrian index of the environ-

ment (PIE) was used in MoPeD. With a rich spatial database, PIE was able to better represent 

walking behavior. However, it was less transferable to other applications due to the require-

ments of detail land use data at a fine spatial resolution. In addition, it was difficult to assess 
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future scenarios and policies because it was challenging to predict the specific changes to the 

built environment, such as sidewalks and cycle lanes, at this fine spatial resolution.  

Another limitation of the previous MoPeD model is the destination choice. The choice set gen-

eration method is a major challenge. The previous MoPeD model employed a simple random 

sample of ten zones for the choice set. There is an ongoing debate on destination choice sets. 

Singleton and Wang (Singleton & Wang, 2014) found that estimation results did not change 

substantially when using choice sets of 10 or 25 alternatives. Using the universe of destination 

alternatives might have conflicts with an individual’s behavioral decision-making principle. 

However, some authors still suggested using full samples or sampling a larger number or pro-

portion of alternatives (Nerella & Bhat, 2004). They argued that model performance is quite 

sensitive to the sampling approach. Using universe alternatives can eliminate the drawbacks 

caused by the sampling process. Furthermore, it is feasible to run a large number of alternatives 

in the discrete choice model (Travel Forecasting Resource, 2019). 

In addition, the pedestrian trip assignment was eliminated in MoPeD. Pedestrian trips are not 

typically assigned to a network because of the computational complexity of considering the 

various route options, particularly in dense, connected urban areas. However, the state of the 

research in this area is rapidly changing (Broach & Dill, 2015; Rodríguez et al., 2015), and 

with the addition of new data and primary research, future work of MoPeD may consider add-

ing this stage. 

Finally, MoPeD is also limited to its nature of aggregated modeling. Average social-demo-

graphic attributes are simulated at the PAZ level, which makes it less sensitive to demographic 

changes such as aging or car ownership in scenario application. 

2.4.3. Microscopic Transportation Orchestrator (MITO) 

Agent-based transport models have been well-developed in the past decades. The Munich 

Model is a model suite with three modules, including the synthetic population (Moreno & 

Moeckel, 2018), the travel demand model - MITO (Moeckel et al., 2020), and the transportation 

simulation - MATSim (Horni et al., 2016). The synthetic population provides a list of house-

holds and persons with socioeconomic and demographic attributes, workplaces, and school 

places, which are then fed into MITO. MITO is a microscopic travel demand model that gen-

erates trips for every individual, which are then passed on to MATSim for trip assignment. In 

this modeling suite, the multinomial logit mode choice model that is part of MITO estimates 
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shares of walk trips but subsequently drops those trips from further analysis (as shown in Figure 

4). Most agent/activity-based models fall within this framework (Singleton et al., 2018). At this 

point, it is impossible to analyze the impact of the built environment on walking or the health 

benefits for travelers choosing non-motorized modes. The Munich Model uses 4,953 gradually-

sized zones as its spatial unit (Molloy & Moeckel, 2017), which were designed to capture ve-

hicle trips rather than relatively short walking trips. These short trips in MITO were usually 

considered as same length intrazonal trips. The length of intrazonal trips is half of the average 

distance to the 3 nearest neighboring zones (Okrah, 2016). 

 

Figure 4 Pedestrian modeling framework used in the Munich Model (adapted from Singleton et al., 2018) 

2.4.4. Other Travel Demand Models 

Although the research on pedestrian travel behavior has lots of key findings, there is still in-

sufficient work on developing pedestrian travel demand in transport models, especially at a 

regional level. The regional transport planning tools were originally oriented towards automo-

bile travel. Non-motorized modes were first incorporated into regional transport models in the 

early 1990s (Liu et al., 2012). After that, many Metropolitan Planning Organizations (MPO) 

made progress in their regional models for pedestrian travel. 

The DVRPC Regional Travel Demand Model is applied in the Philadelphia area (Delaware 

Valley Regional Planning Commission, 2011). In the DVRPC model, the non-motorized trip 

rates are directly modeled in the trip generation stage for three purposes. They are stored as 

zonal results and are dropped off in the distribution and assignment stage. The trip generation 

models for non-motorized trips include TAZ-level attributes such as the number of households, 

group quarters population, basic employment, and retail employment.  

In the San Francisco County Model (SF-CHAMP), walk and bike trips are modeled separately 

in mode choice models (San Francisco County Transportation Authority, 2002). Pedestrian 

environment factors such as network continuity, ease of street crossing, perception of safety, 



23 

 

and topological barriers are considered in mode choice. The route choice model is applied to 

cyclists but not to pedestrians. Trip purposes are only categorized into work, education, and 

others.  

mobiTopp was developed and applied in the German context (Schnittger & Zumkeller, 2004). 

The model simulates activities over a week. Walk and bike tours/trips are modeled separately 

for eight personal purposes, including shopping and leisure. Mode choice is modeled after des-

tination choice. There are no pedestrian environment factors including in mode choice models. 

Portland Metro Model has enhanced non-motorized travel forecasting by incorporating walk 

and bike modes in the mode choice model (Portland METRO, 2020). Walk, and bike choices 

are made by these TAZ variables: number of local intersections, households, and total/retail 

employment. In addition, recreation trips are modeled, which comprise a significant number of 

pedestrian and bicycle trips. 

A comprehensive report on urban models is conducted by Singleton et al. (2018). Among the 

48 MPOs in the US, non-motorized trips are still excluded in 12 MPO models. The rest of the 

MPO models include walking and cycling separately or only as a combined non-motorized 

mode in mode choice. Although the shift to sustainable transport has created increasing interest 

in modeling pedestrian travel, there remain improvements that can better represent pedestrian 

behavior and evaluate health impacts more accurately. They conclude that the perspectives of 

the research on pedestrian modeling are 1) traditional pedestrian models with finer spatial res-

olution and 2) disaggregated models like agent-based and activity-based models.  

2.4.5. Transport and Health Models 

In previous studies, many researches have observed the health outcomes resulting from physi-

cal activity, including active transport, referring to walking and cycling (Evenson et al., 2012; 

Health Effects Institute (HEI), 2010; Maizlish et al., 2013). These studies have established the 

links between physical activity and health outcomes and exposure to pollutants and various 

respiratory diseases. A systematic review of health impact assessments (HIAs) from the U.S. 

included 21 HIA projects in the transportation sector (Rhodus et al., 2013). Most of them utilize 

the HIAs tools to examine the likely health impacts of transport-related policies and prioritize 

maximizing health impacts.  

Walking-related indicators play important roles in the HIAs tools. One of the indicators widely 

used in the HIAs tools is the share of active transport mode. For instance, estimated walk and 
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cycle share was used to calculate the number of lives saved in the Health Economics Assess-

ment Tool for evaluating different road pricing policies (Rhodus et al., 2013). In addition, time 

spent/distance traveled in walking is an important indicator needed to calculate the total time 

of physical activity, the risk exposure to pedestrian-vehicular crashes and the contribution on 

air pollutant reduction (Lassarre et al., 2007; Maizlish et al., 2013; James Woodcock et al., 

2013). The integrated Transport and Health Impact Modelling Tool (ITHIM) developed by 

James Woodcock is widely used in many countries for evaluating the health effects of different 

transport scenarios and policies (Centre for Diet and Activity Research, 2018). He implements 

the ITHIM to calculate the number of deaths by mean time spent in walking and cycling per 

week under three scenarios in the UK and India (Woodcock et al. 2009).  They find that in-

creasing active travel and lower-emission motor vehicles would give large benefits on health, 

especially for a reduction of ischemic heart disease. Besides walk share and time spend in 

walking, walkability/walk score is another common indicator for the health assessment at a 

local or country level. Interestingly, the CLARK county public health department found that 

the greater walkability can increase the access to healthy food, which can reduce the risk of 

obesity and many chronic diseases (Haggerty et al., 2011). 

2.5. Research Gaps 

This chapter presented state of the art on pedestrian studies in terms of data, behavioral re-

search, and modeling approaches. In general, pedestrian research and practice have attracted 

more attention in transportation planning and have contributed to several improvements. How-

ever, there are still several issues that need to be taken up by the researchers to better understand 

and model pedestrian travel demand.  

2.5.1. Pedestrian Travel Behavior Variability 

Few studies have been conducted on travel behavior variability, particularly when accounting 

for pedestrian behavior. 

One of the reasons is that the data for exploring travel behavior variability has historically been 

rare. Although a wide range of data sources exists for exploring pedestrian behavior, all these 

methods have strengths and limitations in assessing pedestrian behavior variability. HTS is 

costly and laborious. Due to the nature of self-reporting, HTS may still be biased in terms of 

the number of trips and trip distance. Also, conventional HTS data commonly provides only 

one day of travel and records the activity locations at a sparse scale/zonal level, which has poor 



25 

 

coverage in terms of spatial and temporal resolution. Although panel surveys or longer-term 

HTS data can capture pedestrian travel behavior patterns across weekdays and weekends, they 

also face challenges in respondent fatigue and lack of fine-scaled location information. There 

are efforts made to combine HTS or panel surveys with GPS tracker technologies, but it is a 

relatively new approach with only a few examples. The quality of cell phone data highly de-

pends on the density of cell phone towers, which varies by location. In general, there are few 

comprehensive datasets that can capture multi-temporal and spatial features simultaneously for 

understanding pedestrian travel patterns.  

Another reason for the lack of travel behavior variability studies is that weekly or monthly 

(pedestrian) travel behavior is complex. It turns out that defining variability (and vice versa 

stability) is challenging. Furthermore, changes in travel behavior can be influenced by a variety 

of factors. Some of these factors can change on a daily basis, including activity participation, 

weather, and availability of modes. Some circumstances occasionally change during life, such 

as household relocation, car/bike purchases, and changes in employment status. Others could 

be exogenous changes brought about by the social and economic environment. 

The lack of knowledge about pedestrian behavior variability can lead to some issues in model 

accuracy and model sensitivity. For example, those pedestrian planning tools mentioned in 

Section 2.4 simulated walk trips for a typical day. To calculate the physical activity volume for 

the health benefits assessment, the walk time/distance will be simply multiplied by seven under 

the assumption that people have the same active level on other days. Without capturing the 

walking behavior variability, pedestrian travel demand models tend to overmeasure people’s 

physical activity volume (James Woodcock et al., 2009). Furthermore, in scenarios where em-

ployees work partially from home, their travel behavior will be related to the day of the week. 

For example, a day without commuting might lead to more active travel for non-commuting 

purposes. However, the existing pedestrian travel demand models are not sensitive to the par-

tially teleworking scenarios since the temporal patterns are not considered.  

Given the scarcity of longitudinal travel behavior data and the limitations of household travel 

surveys, this dissertation will carry out a survey to collect longitudinal and passive data – 

Google Location History (GLH) – that records an individual’s trip diaries with coordinates and 

a board time horizon. Moreover, the collected GLH data will be employed to have a closer 

investigation of travel behavior variability. The survey design, empirical examination, and 

some analysis approaches of travel behavior variability are demonstrated in Chapter 8. 
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2.5.2. Built Environment Measurements 

Built environment measurements are constructed differently across studies, which may be a 

source of discrepancy in results. As a result, there is a need to call for standardization of meas-

uring built environment that is relevant to pedestrians.  

In addition, it is important to account for how these measures may be used in various scenarios 

and forecasting applications. For example, the PIE measure developed for MoPeD combines 

six aspects of the pedestrian environment into an index scaled from 20-100. While the PIE can 

statistically avoid the high correlation between built environment variables, this index suffers 

from an inability to understand what sets of policies/actions can result in a 10-point increase in 

PIE.  

Another issue of built environment measurements is that it is defined by the context of different 

study areas and is difficult to be transferred or applied to other regions. For example, it is dif-

ficult to collect built environment information to construct a walkability index or PIE for areas 

where data are scarce.  

To improve the transferability of MoPeD, a new pedestrian accessibility measurement will be 

constructed to replace PIE and be used as a predictor in walk mode choice models. The details 

are presented in Section 4.2.3. The new measurement is easier to construct than PIE, more 

transferable to other study areas due to fewer data requirements, and easier to interpret in future 

scenarios. 

2.5.3. Modeling Approaches 

Although the research on pedestrian travel behavior has made great progress, there are only a 

few publications on pedestrian modeling practices. Most of these studies focus on simulating 

microscopic pedestrian movements in a specific situation, such as crowding and queuing at a 

single intersection or pedestrian evacuation at train stations and shopping centers (Borrmann, 

Kneidl, Köster, Ruzika, & Thiemann, 2012; Erdmann & Krajzewicz, 2015; Kielar & Borr-

mann, 2016). Only a few studies focus on pedestrian travel demand models at the urban scale. 

A comprehensive review of urban travel demand models in the U.S. pointed out that only over 

half of the transport planning tools account for walking or non-motorized mode shares (Single-

ton et al., 2018). 

Some models, such as MoPeD, MITO, and SF-CHAMP, have improved the representation of 

pedestrians in travel demand models. While they have a wide range of benefits to pedestrian 
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modeling and transport planning, many challenges remain in further development and imple-

mentation.  

Pedestrian-centric planning tool MoPeD has a better representation of pedestrian behavior by 

employing finer spatial units and incorporating built environment variables. However, due to 

the heavy computational burden, model performance is limited. Model transferability is ham-

pered by the complexity of built environment measurements. The nature of aggregation mod-

eling limits model sensitivity to individual attributes, while the lack of representation of non-

walk modes also limits model sensitivity to other modes. 

The existing travel demand models, such as MITO and mobiTopp, have great opportunities to 

simulate pedestrian trips in an agent-based environment and along with other modes. However, 

most agent-based transport models either overlook pedestrian activities or have limited repre-

sentation of pedestrian behavior. Walk mode is usually skipped or combined with cycling as 

one non-motorized mode (Waddell, 2002). When it comes to measuring physical activity en-

ergy expenditure, walking and cycling have significant differences. As a result, combining 

walking and cycling as the non-motorized mode will cause some issues when evaluating the 

health benefits of transport-related physical activity. 

Moreover, the majority of the transport models are applied with coarse zone systems (e.g., 

block group, TAZ). This is sufficient for understanding car demand on transport infrastructure. 

However, the walk trips are usually too short to be neglected or be considered as intrazonal 

trips in the car-oriented transport models. Intrazonal trips are always difficult to measure. The 

great number of intrazonal trips will also reduce model accuracy and sensitivity because intra-

zonal trips are usually assigned to the same length. To simulate pedestrian demand in an agent-

based transport model, it is important to apply a fine-grained spatial resolution to better capture 

shorter trips as well as attributes of the built environment that influence walking.  

Another limitation of agent-based transport models is the poor understanding of important fac-

tors that influence walking. Previous studies have shown a significant influence of built envi-

ronment factors on walking behavior. This knowledge has not been incorporated into agent-

based transport models in reliable, predictive methods for use in planning and policy decisions. 

The author concludes that the pedestrian-centric planning tool MoPeD and agent-based 

transport models have their respective strengths and limitations, which can complement each 
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other. However, the incorporation of pedestrian-centric modeling with an agent-based transport 

model in an urban region has not been attempted. 

To fill this gap, MoPeD and MITO are chosen as the two starting points of model development. 

To begin, efforts will be made to enhance the stand-alone MoPeD model. Its limitations, as 

mentioned in Section 2.4.2.3, will be addressed one by one in Chapter 3. Once MoPeD is im-

proved, it will be incorporated into MITO. An integrated modeling framework will be devel-

oped in Chapter 6, resulting in a more accurate, sensitive, transferable, and efficient pedestrian 

planning tool. 
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3. Study Areas  

This chapter introduces the study areas that will be employed in the subsequent chapters. Mo-

PeD 2.0 described in Chapter 4 is developed in the context of the Portland metropolitan area. 

Portland Central City area will be used in scenario applications in Chapter 5. Munich metro-

politan area will be used in Chapters 6 and 7 for the development of the integrated model and 

its scenario applications. 

3.1. Portland Metropolitan Area 

The Portland metropolitan area has more than two million population. It has made large invest-

ments in public transportation and in pedestrian public spaces that are experienced every day. 

MoPeD 2.0 is developed in the context of the Portland metropolitan area, which is delimited 

by the urban growth boundary defined by Portland Metro Regional Governance (see Figure 5). 

The total population of the three counties of this region is over 1.6 million, and the area covers 

about 1,048 square kilometers. 

 
Figure 5 The urban growth boundary of the Portland metropolitan area 
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3.2. Portland Central City 

Portland, OR, as the heart of the metropolitan area, has the densest concentration of people and 

jobs. With an increase in urbanization, Portland city will continue to experience population and 

employment growth. The city projects it is going to gain approximately 38,000 new households 

and about 51,000 new jobs by 2035 (City of Portland, 2018).  

The study area for scenario application in Chapter 5 is Portland Central City, shown in Figure 

6. The Central City area consists of ten different neighborhoods and stretches from the West 

Hills to East 12th Avenue and from the Pearl and Lower Albina to the South Waterfront area 

and Powell Boulevard (City of Portland, 2018). Although Central City only covers about 12 

square kilometers in land area, it accounts for almost 20% of the total population in the metro-

politan region. It is the densest area of people and jobs in Oregon. The Willamette River divides 

this area and is spanned by several bridges, including the non-automobile bridge Tilikum 

Crossing, completed in 2015.  

 

Figure 6 A map of the Portland Metropolitan area and the Portland Central City City of Portland, 2018) 
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3.3. Munich Metropolitan Area 

The MITO/MoPeD integration model is developed in the context of the Munich metropolitan 

region. Munich is the capital of Bavaria state in Germany. It is also the third-largest city, with 

a population of 1.58 million (Landeshauptstadt Muenchen, 2022). The study area is delineated 

based on commute flows to five core cities: Munich, Augsburg, Ingolstadt, Landshut, and 

Rosenheim (see Figure 7). The study area includes all municipalities from where 25% or more 

of the working population commutes to one of the five core cities. This 25% threshold was 

chosen to include all major commute flows while keeping the study area size computationally 

feasible.  

The synthetic population consists of geo-referenced microscopic households, persons, jobs, 

and dwellings, which were generated using an iterative proportional updating approach 

(Moreno & Moeckel, 2018). The synthetic population consists of 2.1 million households with 

4.4 million persons (of which 1.7 million are workers) and 2.5 million jobs. 

 

Figure 7 Extent of the study area and major commute flows between core cities 
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A zoning system of 4,096 zones was developed with a quad-tree-based automated zone system 

generator that iteratively creates smaller raster cells in densely populated areas and larger raster 

cells in rural areas while respecting administrative boundaries (Molloy & Moeckel, 2017). This 

leads to zones with similar population sizes but different sizes (see Figure 8 and Figure 9). 

 

Figure 8 TAZ Zone system of the Munich Metropolitan Area  
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Figure 9 A closer look at the TAZ zone system of the Munich metropolitan area 
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4. Advancing Pedestrian Demand Modeling: Towards Mo-

PeD 2.0 

In this chapter, the existing pedestrian modeling tool – Model of Pedestrian Travel (MoPeD) – 

will be enhanced. The aim is to improve the stand-alone pedestrian planning tool MoPeD to be 

more efficient, more sensitive to the built environment, more powerful in predicting and ex-

plaining future scenarios as well as easier to be transferred to other areas/applications. The 

limitations of the MoPeD 1.0 discussed in 2.4.2.3 are the barriers to achieving this goal. In the 

following sections, the author presents the approaches for addressing these issues.  

In Section 4.1, the appropriate spatial resolution for measuring pedestrian environment and 

modeling behavior is explored at the scale of a metropolitan area. Once the appropriate spatial 

scale is determined, Section 4.2 presents some key improvements the author made in MoPeD 

2.0. First, the run time and memory saving of the model are upgraded (Section 4.2.1). Then in 

Section 4.2.2, the author implemented trip generation models based on the latest version de-

veloped by the Oregon Metropolitan Planning Organization (MPO). Furthermore, the new pe-

destrian accessibility measures are developed and integrated into the walk mode choice models 

as a strong predictor (Section 4.2.3 and 4.2.4). More important, walk destination choice models 

are re-estimated by using the whole universe of choices and a two-step multinomial logit model 

technique (Section 4.2.5). 

4.1. Spatial Resolution Investigation 

Along with the rich literature on influencing factors on pedestrian travel behavior, many schol-

ars also emphasis the appropriate spatial scales for measuring and modeling pedestrian travel 

(Gehrke and Clifton, 2014). It is important for models to set a finer spatial resolution to capture 

variations in walking conditions, leading to a better representation of pedestrian demand over 

space (Gehrke & Clifton, 2014). 

However, it might be impossible to define a singular solution of the “optimal” spatial resolution 

that fits various types of applications, including but not limited to transportation investments 

and land use policy. Each of these uses has different requirements with implications for spatial 

resolution. For example, regional land use scenarios may require a scale that can detect modal 

responses to the changes in local and regional accessibility. There is increasing interest in con-

ducting health impact assessments for planned transportation investments with an emphasis on 
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safety, air quality exposure, and physical activity. The latter requires some estimation of total 

minutes spent in physical activity from active transport modes, which could be approximated 

from the trip distance. The error introduced by increasing the spatial resolution of the model 

could have an impact on its ability to inform these various studies. As a result, the appropriate 

spatial resolution highly depends on the research questions that the model aims to address, the 

run times that the model shall not exceed, and the availability of spatial data needed to imple-

ment. Therefore, this work is to try to balance these considerations and understand the various 

trade-offs involved by testing various spatial scales and providing recommendations of the ap-

propriate resolution for a specific scenario. The results presented here have been published in 

Zhang, Clifton, & Moeckel (2019) 

Eight different scales are examined (Figure 10). They are 80 m to 400 m in increments of 80 

m, as well as 800 m, 1,200 m, and 2,400 m. The current size of PAZ (80 m × 80 m) is considered 

the reference scale since it is the minimum grid cell size. The grid cell sizes smaller than 80 m 

are not considered in this study. This is because the archived land use and household travel 

data are available in the 80 m level of detail. The data disaggregation spatially needs an addi-

tional process. Besides, an 80 m grid cell was hypothesized to be small enough to capture fine-

grained attributes of households and the physical environment, as well as variation within those 

attributes, in order to accurately represent walking (K. J. Clifton et al., 2013).  

The Portland study area is divided into 54,329 raster cells having a dimension of 80 m × 80 m. 

It is a challenging amount for the computational burden. The varying test scales decrease the 

number of grid cells from 54,329 to 89. Table 1 lists the number of raster cells for each test 

PAZ scale. It shows an exponential decrease trend in the number of raster cells when applying 

coarser spatial resolution. 

Regards to the impedance of intrazonal trips, there are several approaches to calculating the 

intrazonal distance appropriately. In this study, we define the intrazonal distances as half of the 

cell sizes, which also represent half of the distances to the adjacent zones. Therefore, the intra-

zonal impedance varies in different test scales. Table 1 gives the overall impedance of each 

PAZ scale. 
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Figure 10 Eight test scales 

Table 1 Number of raster cells and intrazonal impedance of each test scales 

Cell Size Number of Raster Cells Intrazonal Impedance 

80 m × 80 m 54329 40 m 

160 m × 160 m 14057 80 m 

240 m × 240 m 6433 120 m 

320 m × 320 m 3722 160 m 

400 m × 400 m 2430 200 m 

800 m × 800 m 649 400 m 

1200 m × 1200 m 311 600 m 

2400 m × 2400 m 89 1200 m 

 

After defining the test PAZ scales, we prepare the input data corresponding to the test scales. 

The mode choice and destination choice model used in MoPeD measures relationships between 

walking and built environment, traveler characteristics, and socioeconomic variables. There-

fore, basic inputs to MoPeD include the number of households with different household char-

acteristics, the number of jobs by employment type, and various measures of the built environ-

ment, such as the pedestrian index of the environment variable called PIE (Singleton et al., 

2014), slope and freeway. Most of these data are available in 80 m × 80 m level of details.  
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The input data of a larger PAZ scale is an aggregation of the original data of each reference 

scale. The aggregation methods are different according to the data type. For count data (house-

holds, jobs, and shopping center areas), aggregated data is a sum of each reference PAZ data. 

For PIE and length of the freeway, we assume that the data in larger scales are the mean of 

each reference PAZ within them. For binary data (freeway and parks), provided there is free-

way/parks in the correlated reference PAZ, the data in larger scales is set to one. Different from 

the other input data, the degree of slope is only available in the level of details of 400 m × 400 

m. To disaggregate the value to the reference scale, we assume that each reference PAZ within 

the same 400m × 400 m grid cell has the same value of the slope. 

When implementing different zoning systems, the impedance matrices need to be recalculated 

between new O-D pairs. The centroid coordinates represent the location of each raster cell. 

Network data is obtained from OpenStreetMap Contributors (OpenStreetMap Contributors, 

2017), which skims off the motorway and includes both bicycle and pedestrian paths. MATSim 

(Horni et al., 2016) is used for calculating the impedance matrices. With an increase in the 

number of raster cells, calculating time and computer memory increase dramatically. It is most 

challenging to calculate the reference zone system, which spent over four hours to generate the 

impedance matric. 

4.1.1. Impacts on Model Efficiency 

Undoubtedly, model complexity is inversely proportional to model efficiency. In this study, 

model complexity refers to the reduction of the cell size as well as the increase of the number 

of raster cells in the model. Figure 11 shows how model complexity impacts the run time (sec-

onds) and the maximum memory usage (Gigabytes). Both indicators are generated after imple-

menting the model 20 times. 

As seen in Figure 11 (a), the run times decrease as the spatial resolution becomes coarser. The 

drop of run times is extremely steep from 80 m to 240 m scale and becomes relatively gentle 

between 240 m and 800 m scale. Beyond 800 m scales, it reaches a stable level. As varying the 

cell size, the run times improve from four and half minutes to 0.1 seconds. Although the run 

times with 80 m cell size are already very promising, Figure 11 (a) seeks to highlight the dra-

matic change between 80 m and 160 m. Maximum memory usage (Figure 11(b)) shows an 

approximate exponential growth as the increase of number of raster cells. It is worth mention-

ing that using the finest scales (80 m) occupies more than 40 GB, which already accounts for 

two-third memory of the experimental computer. The great amount of memory is caused by 
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the large size of the impedance matrix that depends on the number of OD pairs. Therefore, it 

would imply that memory exceed would be happened soon when we increase the number of 

raster cells to more than 60,000. 

 

Figure 11 (a) Run time in seconds by varying cell sizes; (b) Maximum memory usage in gigabytes by a varying 

number of raster cells 

4.1.2. Impacts on Model Performance Indicators 

The errors of walk share and average trip length are computed as percentage root mean square 

error (%RMSE) between the predicted data of each test scale and the results from the reference 

scale (80 m x 80 m). Average trip length is the total trip length divided by the total walk trips, 

including both interzonal and intrazonal trips. To have a better understanding of the errors of 

both performance indicators, Figure 12 illustrates the normalized %RMSE by difference scales, 

while the data labels are the %RMSE in correlation with the test scales. 

 

Figure 12 (a) Normalized %RMSE of walk share; (b) Normalized %RMSE of average trip length. 

Figure 12 (a) figures out how spatial resolution impacts the deviation of walk share compared 

to the reference data. We can find that the error of walk share increases sharply when using 

400 m, but they maintain the error under the level of 10% when using cell size under 320 m. 

As seen in Figure 12 (b), although the deviations of average trip length show a reduction at the 

point of 320 m, they generally illustrate a rising trend with the varying cell sizes. Compared to 
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walk share, the varying spatial resolutions have larger impacts on the average trip length. Al-

most all the test scales generated more than 10% RMSE. 

 

Figure 13 Intrazonal trip share 

For a zonal-based travel demand model, intrazonal trips cannot be ignored and are always dif-

ficult to measure. The great number of intrazonal trips will to some extent, reduce the accuracy 

of the model estimation. Walking is a relatively short distance trip, so intrazonal walking trips 

are much more sensitive to spatial resolution. As expected, the intrazonal trip share increase 

approximately linearly as the spatial resolution gets coarser (Figure 13). The steepest increase 

occurs between 400 m and 1,200 m. It is unusual to use uniform 2,400 m × 2,400m raster cells 

in the pedestrian demand model, but it hints at the great number of intrazonal trips when mod-

eling walking trips in the regional demand model with TAZ or block groups. With a threshold 

of 5%, this research suggests that the zone systems with raster cells equal to or under 400 m 

are supposed to be good for avoiding intrazonal trips. 

To sum up, it is proved in this section that the use of fine levels of spatial resolutions generally 

results in improved representation of walk share and average trip length and a reduction of 

intrazonal trips. However, this comes with an exponential increase in run time and memory 

usage.  

4.1.3. Impacts on Scenario Applications 

Previous sections give us general ideas for how spatial resolutions impact the model perfor-

mance and efficiency, but it cannot conclude an optimal spatial resolution at all since the spatial 

resolution depends on the type of application. In this section, we implement these scales into a 

local land use development scenario. This is a sensitivity analysis to explore the impact of 
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spatial resolution on scenario results. In terms of the redevelopment in Portland city, a large 

parking center in downtown is supposed to be built as a mixed residential and commercial area. 

The assumed land use scenario allocates 500 new households with a population of about 800 

and 1000 new jobs to the downtown.  

Regarding the input data, household and job distribution are changed in the scenario case. 

Meanwhile, PIE is recalculated for the entire study area in correlation with the scenario as-

sumption since activity density is one of the measures for estimating PIE.  

The deviation of walk shares and average trip length is computed as percentage root mean 

square deviation (%RMSD) between the scenario case and the base case of each test scale. 

Figure 14 illustrates the normalized %RMSD of both indicators by different scales. It tells us 

the sensitivity of the spatial resolution response to the scenario changes. 

 

Figure 14 (a) Normalized %RMSD of walk share; (b) Normalized %RMSD of average trip length. 

Since the scenario assumption is allocated in a high activity density area, it is expected to be 

more sensitive to spatial resolution. Figure 14 proves that finer scales are more sensitive to 

detect the changes between the scenario case and base case. Moreover, it is remarkable that the 

impacts of the land use scenario on walking behavior cannot be represented well when using 

coarser spatial resolutions that are equal to or larger than 800 m. In terms of the spatial resolu-

tion under 800 m, the sensitivity to the scenario change differs from these two indicators. Un-

doubtedly, the 80 m scale is the best to represent the changes between the scenario and base 

case. However, the finer scales reduce the model efficiency, and increase the difficulties in 

calculating impedance matrices and assembling input data, so it is worthwhile to limit the cell 

size. Instead of the finest spatial scale (80 m), 160 m is the second appropriate spatial resolution 

for estimating the scenario changes in walk share, while 160 m to 320 m could all be alternative 

resolutions for predicting the change of average trip length. 
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4.1.4. Summary 

This research provided an exploration into pedestrian demand model performance and effi-

ciency at various geographic scales. Different from previous studies on examining the pedes-

trian behavioral response to various spatial resolutions, such as gradual raster cells (Okrah et 

al., 2017) and uniform raster cells larger than 400 m (Gehrke and Clifton, 2014), this study 

focused on exploring the uniform raster cells ranging from 80 m to 2400 m. It fills the research 

gap and provides recommendations for the appropriate resolution, which is ever more im-

portant as the development of pedestrian models is on the rise (Singleton et al. forthcoming). 

The results presented in this section proved that a finer spatial resolution is beneficial for model 

accuracy in estimating walking-related indicators and sensitivity to the scenario analysis. 

Coarser scales that are larger than 800 m generally cause high errors in predicting walk share 

and average trip length and lose a great amount of information due to the high share of intra-

zonal trips. However, the finer scales reduce the model efficiency, increase the difficulties in 

calculating impedance matrices and have a heavier computational burden in memory usage. 

Particularly, using the finest spatial resolution (80 m) is the risk of the memory exceeding issue. 

Besides, it would meet the challenge of hardware limitations when expanding the model func-

tionality. Therefore, the findings pointed out that the finest spatial resolution may not be the 

appropriate scale, and it is reasonable to enlarge the cell sizes up to 400 m, which produces an 

acceptable error as well as higher efficiency and maintain the intrazonal trip share under a level 

of 5%. These findings also give the locations where the land use data are not available at a fine-

grained level a better understanding of choosing alternative spatial resolutions when develop-

ing pedestrian travel demand models. 

The debate about the appropriate spatial resolution will continue since it highly depends on the 

type of application that the model aims to address and the level of details of the available data 

differing from locations. In this study, a land use scenario was applied at various scales. The 

scenario assumption is a block-level land use development in the downtown area. 80 m scale 

is the best to represent the changes between the scenario and base case. Nevertheless, fine 

scales of 160 m and 240 m are relatively more sensitive than the other scales, which can be 

considered as the second appropriate spatial resolution.   

To have a better understanding of defining an appropriate spatial resolution, more scenario 

analysis should be conducted in future work. Besides the land use policy, they should cover 

other various types of applications such as transportation investments and safety and health 
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assessment. In addition, the areas with different activity densities and pedestrian environments 

will have diverse requirements for spatial resolution. In this study, the results of the urban area 

show a high sensitivity to the spatial resolution, while the results may have little difference 

between fine-grained cells and coarse grid cells in a suburban area. As a result, scenario anal-

ysis in suburban areas will be conducted in future work.  

4.2. Enhancements in MoPeD 2.0 

We enhanced the model performance and made some modifications to the model stages from 

the version previously described by Clifton et al. (2015, 2016a, 2016b, 2018). These improve-

ments were made to overcome the limitations mentioned in Section 2.4.2.3.  

4.2.1. Upgrade of Model Run Performance 

MoPeD 1.0 was developed in R, which is easy to construct and accessible with limited 

knowledge of programming. However, MoPeD 1.0 was facing the computational burden of 

running large-scale study areas with fine spatial resolution. The computational burden highly 

depends on the number of PAZs in the study area, which is discussed in Section 4.1.1. It was 

only managed to test scenarios for a subset of the Portland central city area 

To address the model efficiency issue, the author migrates the full model from R to a Java 

project. Benefits from the nature of Java as a high-level language, this change made the model 

efficient and operational for the entire Portland region with a runtime of a few minutes (Pre-

sented in Section 4.1.1). 

4.2.2. Extension of Trip Generation Models 

For trip generation models, we adopted Metro's existing trip production models, which use 

cross-classification to calculate trip production for all home-based purposes (Vogt et al., 2015). 

While Metro designed a model for TAZ-level inputs, we assumed model scalability and applied 

the trip rates at the PAZ level. The detailed methodology and coefficients of the trip generation 

model can be found in the report Vogt et al. (2015). Home-based work (HBW), home-based 

education (HBE), home-based shopping (HBS), home-based recreational (HBR), home-based 

other (HBO), non-home-based work (NHBW) and non-home-based other (NHBO) purposes 

are modeled in MoPeD 2.0. Take HBW trips as an example, they are produced based on the 

number of workers in a household. For each zone, the number of households by the number of 

workers (0 workers, one worker, two workers, and 3+ workers) is multiplied by the 
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corresponding production rate. Afterward, the number of trips is scaled up to match the total 

regional number of jobs by applying a calibration factor of 1.36 for HBW trips. For the entire 

Portland Metro area, the model generates a total of 1,039,872 HBW trips. 

4.2.3. Reconstruction of Pedestrian Environment Index 

The Pedestrian Index of the Environment, called PIE, was less transferable to other applications 

due to the requirement of detailed land use data at a fine spatial resolution (K. J. Clifton et al., 

2019). Also, it was challenging to predict changes to the built environment due to its construc-

tion. Furthermore, PIE limits the model's transferability to other regions due to its relative scale. 

For example, an area in Portland with a PIE scale of 100 represents the best conditions for 

walking in that region. However, for the less walkable cities, the best areas are not comparable 

with those in Portland. With this study, the author contributes a more transferable measurement 

of pedestrian activity that is more usable for policy analysis.  

The new pedestrian accessibility that is used in mode choice is defined as activity density (em-

ployment and population) that can be reached within an 800-meters network distance. Often, 

accessibility is calculated based on a circular buffer (Greenwald & Boarnet, 2001; Lee & 

Moudon, 2006). However, it neglects that people do not make travel decisions in a circular 

buffer, but rather following street grids can be imperfect and lack connectivity. The network 

distance to reach the outer rim of the buffer area is likely to be longer than the radius of the 

circle. To overcome the limitation, we use network-distance-based isochrones instead of circu-

lar buffers. The isochrones are also known as the pedestrian catchment area (PCA) and repre-

sent a buffer defined by the pedestrian network distance instead of a fixed radius. For this task, 

we generated the PCA for each PAZ in the sample using a fixed network distance of 800 meters. 

According to Oregon Household Activity Survey (OHAS) data, an 800-meter distance covers 

80% of the walk trip distances, and an 800-meter distance is equivalent to about 10 minutes’ 

walk, which is sufficient to represent the pedestrian accessibility in the neighborhood. The 

method is based on street segments to generate the buffer polygon. For this task, every block 

that is enclosed by street segments becomes part of the polygon. If the street segment does not 

enclose an area, a buffer of 25 meters of the street segment is added to the polygon. We com-

pleted this task for the urban growth boundary of Portland which consists of about 160,000 

PAZ. Afterward, we calculated the total number of jobs by type and population that live within 

each polygon, resulting in the measurement of pedestrian accessibility within 800 meters for 

the mode choice model. The built environment data used in this study for Portland, Oregon, 
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was provided by the Portland Metro MPO. The scale of the data is the PAZ level, which con-

sists of a grid of 80 by 80 meters. For each zone, the population and the number of employees 

by eight job types were provided. The results of pedestrian accessibility for the Portland met-

ropolitan area are shown in Figure 15. 

 

 
Figure 15 Map of the pedestrian accessibility 

4.2.4. Estimation of Walk Mode Choice Models 

The model choice models in MoPeD are estimated with data from the Oregon Household Ac-

tivity Survey (OHAS). OHAS is a one-day household travel survey collected for the entire 

state, including the Portland metropolitan region. The survey was conducted in the fall of 2011 

and included 6,450 households in the Portland Metropolitan area. Personal and household char-

acteristics and their travel behavior were collected.  

MoPeD employs a binary logit model to estimate the probability of choosing to walk. Note that 

in contrast to traditional four-step models, the MoPeD mode choice model does not know the 

destination yet. Since MoPeD is an aggregate model, the utility is computed for each household 

type located in every PAZ. Previously, the model for HBW included five household attributes 

(household size, income, age of household head, number of vehicles, and children) and PIE as 

independent variables. In this study, we replaced PIE with the pedestrian accessibility 
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measurement, which does represent not only the activity density but also the network connec-

tivity between PAZs. In addition, the model includes household car ownership and a dummy 

variable for having children. After removing the non-significant variables, the final model es-

timation results are shown in Table 2. Some variables with a significance slightly below 90% 

were also highlighted when theory supports their inclusion 

Table 2 Binary logit mode choice model estimation in MoPeD 2.0 

  Home-based purposes  Non-home-based purposes 

  Estimate Pr(>|z|)  Estimate Pr(>|z|)  

(intercept) -8.392 0.000 *** -7.411 0.000 *** 

Income category 2    -0.205 0.261  

Income category 3    0.222 0.046 * 

Income category 4   . 0.448 0.000 *** 

Number of vehicles (0) 1.001 0.000 *** 1.375 0.000 *** 

Number of vehicles (2) -0.226 0.002 ** -0.898 0.000 *** 

Number of vehicles (2+) -0.394 0.000 *** -0.963 0.000 *** 

Number of children (0) -0.554 0.000 ***    

Number of children (2) -0.574 0.000 ***    

Number of children (2+) -0.718 0.000 ***    

Child (Yes)   *** -0.162 0.039 * 

log(pedestrian accessibility) 0.754 0.000 *** 0.686 0.000 *** 

HBS 1.029 0.000 ***    

HBO 1.046 0.000 ***    

HBR 1.566 0.000 ***    

NHBW    -0.362 0.000 *** 

           

Log-Likelihood: -4189    -2624    

McFadden R^2: 0.135    0.228    

Accuracy 10.14%     11.96%     

 

Household characteristics had significant effects in the model. The number of vehicles was the 

most significant predictor of walking. Zero-car households had a more positive association 

with walking than households that owned cars. Households with two or more vehicles had 

increasingly negative coefficients, confirming that household with more vehicle is less likely 

to walk. Household income had no significant impact in the model. It also highly correlated 

with the number of vehicles, and we removed it from the final model. An interesting effect was 
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observed for the dummy variable of having children. In the model, living in a household with 

children had a positive impact on walk mode choice for work trips. Household size was re-

moved from the model due to its high correlation with the number of children. 

Pedestrian accessibility was transformed into a log-form to improve the model fit. It shows a 

positive impact in the model, which indicates that households living in denser neighborhoods 

with better street networks tend to be more likely to walk. The log-transformation suggests that 

differences in pedestrian accessibility matter a lot at the lower end of accessibility. Once a 

certain level of pedestrian accessibility has been reached, additional growth in accessibility has 

less impact on the likelihood of walking. This suggests that pedestrians need a certain level of 

accessibility. Once this level is satisfied, commuters are much more likely to walk to work. 

The statistical significance also indicates that the new measurement of the built environment is 

a good indicator of walking activity while controlling for all other variables. The R2 appears 

low in comparison to traditional mode choice models. However, traditional mode choice mod-

els appear after destination choice, and thereby they can model the walk share based on travel 

distance. In this case, the walk share is modeled first to skim off walk trips from the total trip 

production. As the travel distance is not known yet, the challenge for MoPeD’s mode choice 

model is substantially higher. After implementing the mode choice model to the entire study 

area, the estimated walk share in this region is 3.85% (observed walk share in OHAS: 3.50%). 

Figure 16 presents how the walk share is spatially distributed in the Portland metropolitan area. 
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Figure 16 Estimated walk mode share of commute trips in the Portland metropolitan area 

 

4.2.5. Estimation of Walk Destination Choice Models 

For the estimation of the choice model, the definition of the choice set is a major challenge. 

There is little literature regarding this topic for pedestrian models, and there is no conclusive 

evidence of the preferable approach. The debate continues in the literature between different 

sampling methods or to include the whole universe of choices. Clifton et al. (K. J. Clifton et 

al., 2016a) used a random sample of 10 trips that were shorter than the distance of the 99% 

percentile in the observed data, Berjisian and Habibian (Berjisian & Habibian, 2019) used a 

90% percentile threshold with a complete sample at a different spatial scale. We took the per-

centile 99% of the network distance that was 4.8 kilometers, and we used the whole choice set 

to estimate the destination choice model.  

Using PAZ, the choice set would include an average of 10,000 possible destinations. Such a 

large choice set violates the assumption of discrete choice models that the number of choices 

should be small enough to be comparable against each other. Therefore, we aggregated the 

PAZ structure to a new scale that we called superPAZ. A superPAZ consists of 5 by 5 PAZ. 

For the purpose of estimation, we calculated the network distance shortest path between all 

superPAZ. Next, we assigned origin and destination superPAZ to each observation in the 
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OHAS survey data for model estimation. In terms of superPAZ, the possible choice set for each 

trip is about 576 (all superPAZ within a 4.8-kilometer buffer). By aggregating PAZ to super-

PAZ, the issue of very large samples was compensated to some degree. 

The specification (see equation below) was inspired by the previous MoPeD model yet simpli-

fied slightly to improve model sensitivities. Newly introduced were a log transformation of 

total employment, the proportion of industrial jobs, and the distance to be controlled by car 

ownership. We also introduced a 𝛽0 as a constant of intrazonal trips. The estimation results are 

presented in Table 3 and Table 4. 

𝑈𝑖𝑗 = 𝛽0 + 𝛽𝑑𝑖𝑠𝑡𝐷𝐼𝑆𝑇𝑖𝑗𝐴𝑢𝑡𝑜 + 𝛽𝑠𝑖𝑧𝑒 ln(𝑇𝑜𝑡𝑎𝑙 𝑗𝑜𝑏𝑠𝑗) + 𝛽𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙
𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑗𝑜𝑏𝑠𝑗

𝑇𝑜𝑡𝑎𝑙 𝑗𝑜𝑏𝑠𝑗
       

Distance was a significant and sensitive factor in the model. If the destination is one kilometer 

further, then its probability of being chosen is reduced by 75% compared to a destination at the 

origin of the trip. Supporting the previous destination choice model, we found a significant 

interaction between distance and auto ownership. Households with no cars tend to walk slightly 

longer than those who own cars. The size variable shows a significant and positive impact, 

while the share of industrial jobs has a barrier impact on choosing a destination. It suggests that 

destinations with more retail and service jobs and fewer industrial jobs are more attractive to 

choose. In contrast to the previous destination choice model, we added a dummy variable for 

checking if the destination zone is equal to the origin zone. In other words, it is a constant for 

intrazonal trips. The result represents that the origin zone has a higher probability of being 

chosen. This confirms expectations as we are using a superPAZ of 400 by 400 meters in the 

destination choice model, which leads to a significant number of intrazonal trips. 
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Table 3 Results of the SuperPAZ destination choice model (HBW, HBS, HBR) 

  HBW HBS HBR 

  Estimate Pr(>|z|)   Estimate Pr(>|z|)   Estimate Pr(>|z|)   

Distance (Km)                   

 x Auto (Yes) -1.536 0.000 ***             

 x Auto (No) -1.372 0.000 ***             

 x Child (Yes)       -2.182 0.000 *** -2.321 0.000 *** 

 x Child (No)       -1.776 0.000 *** -1.955 0.000 *** 

Network density 
(Km) 

0.141 0.008 ** 0.049 0.209         

                    

Size term (ln)                   

Service 
0.445 0.000 *** 

      
0.133 0.000 *** 

Retail 0.977 0.000 *** 

Finance 

0.352 0.000 *** 

            

Government             

All other non-in-
dustrial 

            

Household             0.054 0.126   

Industrial prop. -1.249 0.021 * -1.306 0.003 **       

Slope (mean) -0.167 0.024 * -0.386 0.000 *** -0.139 0.001 *** 

Crossing Motor-
way                          

-0.321 0.18   -0.279 0.149   -0.568 
0.032 

* 

Park (Yes)             0.662 0.000 *** 

                    

Sample size 289     646     626     

Null model Log-
Likelihood: 

-1516     -3402     -3261     

Final model Log-
Likelihood: 

-952     -1598     -1910     

Pseudo R^2: 0.37     0.53     0.41     
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Table 4 Results of the SuperPAZ destination choice model (HBO, NHBW, NHBO) 

  HBO NHBW NHBO 

  Estimate Pr(>|z|)   Estimate Pr(>|z|)   Estimate Pr(>|z|)   

Distance (Km) -2.217 0.000 *** -1.883 0.000 *** -2.141 0.000 *** 

 x Auto (Yes)                   

 x Auto (No)                   

 x Child (Yes)                   

 x Child (No)                   

Network density 
(Km) 

0.214 0.000 *** 0.185 0.000 *** 0.184 0.000 *** 

                    

Size term (ln)                   

Service 

0.389 0.000 *** 0.667 0.000 *** 0.516 0.000 *** 

Retail 

Finance 

Government 

All other non-in-
dustrial 

Household                   

Industrial prop.       -0.749 0.117         

Slope (mean) -0.381 0.000 *** -0.157 0.006 ** -0.060 0.220   

Crossing Motor-
way                          

-0.828 0.000 *** -0.718 0.000 *** -1.361 0.000 *** 

Park (Yes) 0.510 0.000 ***             

                    

Sample size 1042     723     697     

Null model Log-
Likelihood: 

-5438     -3728     -3621     

Final model Log-
Likelihood: 

-2939     -1774     -1762     

Pseudo R^2: 0.46     0.52     0.51     

 

 

Table 5 and Table 6 present the estimation results of the PAZ-level destination choice models. 

In general, they had low goodness of fit. This could be due to fewer variations across small-

scale destination zones or the lack of important factors in the model. Future studies need to 

investigate more factors, such as micro-level or street-level built environment variables (e.g., 

pavement condition and the number of trees).  
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Table 5 Results of the PAZ destination choice model (HBW, HBS, HBR) 

  HBW HBS HBR 

  Estimate Pr(>|z|)   Estimate Pr(>|z|)   Estimate Pr(>|z|)   

OriginPAZ 2.068 0.000 *** 0.623 0.132   2.704 0 *** 

Distance (Km) -1.335 0.000 *** -2.120 0.000 *** -1.974 0.000 *** 

Size term (ln)                   

Retail 0.541 0.000 *** 0.820 0.000 *** 0.123 0.028 * 

Service 0.188 0.000 *** 

Finance                   

Government             

Household -0.433 0.000 *** -0.169 0.000 *** -0.560 0.000 *** 

Industrial prop. 1.629 0.000 ***       -1.602 0.003 ** 

Park (acre)       -0.651 0.285   1.473 0.013 * 

                    

Sample size 289     646     626     

Null model Log-Like-
lihood: 

-939     -2070     -1428     

Final model Log-
Likelihood: 

-813     -1617     -813     

Pseudo R^2: 0.13     0.22     0.14     
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Table 6 Results of the PAZ destination mode choice model (HBO, NHBW, NHBO) 

  HBO NHBW NHBO 

  
Esti-
mate 

Pr(>|z|)   
Esti-
mate 

Pr(>|z|)   
Esti-
mate 

Pr(>|z|)   

OriginPAZ 3.162 0.000 *** 0.654 0.000 *** 1.628 0.000 *** 

Distance (Km) -2.348 0.000 *** -2.894 0.000 *** -2.163 0.000 *** 

Size term (ln)                   

Retail 0.145 0.000 *** 0.316 0.000 *** 0.355 0.000 *** 

Service                   

Finance 0.559 0.000 *** 0.062 0.016 *** 0.137 0.001 *** 

Government                   

Household -0.507 0.000 *** -0.051 0.097 . -0.082 0.022 * 

Industrial prop. -0.477 0.086 .       -0.694 0.058 . 

Park (Yes)                   

                    

Sample size 1042     723     697     

Null model Log-Likeli-
hood: 

-3362     -2332     -2255     

Final model Log-Likeli-
hood: 

-2617     -2116     -1982     

Pseudo R^2: 0.22     0.09     0.12     

 

The parameters are calibrated to match the trip length frequency distribution and the average 

trip length reported for HBW trips in the OHAS data. After calibration, the estimated average 

trip length is 1.14 km (observed: 1.11km) and the cumulative trip length distribution of both 

estimated and observed results are similar (Figure 17). 
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Figure 17 Cumulative trip length frequency distribution of modeled and observed trips 

 

4.3. Discussion on MoPeD 2.0 

While MoPeD was a well-established pedestrian planning tool, the enhancement made in this 

chapter upgrades the performance of MoPeD, particularly for model transferability and effi-

ciency. The new pedestrian accessibility measurement replaced PIE in walk mode choice mod-

els. It is easy to construct, and it showed positive and significant influences on walk mode 

choice. However, the walk mode choice models in MoPeD 2.0 still had low model goodness 

of fit. This was mainly because travel distance was not incorporated in the mode choice models.  

The modeling sequence used in MoPeD 2.0 allowed us to better estimate the destination choice 

of walk activities at fine spatial resolution. However, it also eliminated the strong effect of 

travel distance in the mode choice model. Further research can focus on testing different mod-

eling sequences or adding proxy parameters to represent distance in the mode choice stage. For 

example, adding habitual travel behavior, such as average trip length by purpose, may help 

improve the mode choice performance. 

The walk destination choice models in MoPeD 2.0 better captured the relationship between 

built environment variables and the destination utility. The destination choice models at the 



54 

 

superPAZ level had good performances and showed intuitive associations with the built envi-

ronment. Network density and the accessibility to shops and retail stores showed strong posi-

tive effects on destination selection, whereas the proportion of industrial jobs, crossing the 

motorway, and slopes were barriers. However, the goodness-of-fit of PAZ-level discrete choice 

models was generally poor. It is challenging to estimate the destination choice at a very fine 

spatial unit. The PAZ-level selection may be related to the micro-level/street-level built envi-

ronment attributes such as pavement condition and greenness. Since this information was rarely 

available, they were not considered in this study. 

The enhanced MoPeD model will be applied in the following chapters. The application of pol-

icy and scenarios is presented in the next chapter, and the integration with the agent-based 

transport model MITO is introduced in Chapter 6. 
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5. Application of MoPeD 2.0 to scenarios in Portland Central 

City 

To check the model sensitivity and explainability of MoPeD 2.0, the enhanced model is applied 

to the Portland Central City area for the assessment of urban and transportation scenarios. The 

impacts of scenarios are evaluated in terms of changes in walk shares, average trip length, and 

pedestrian flows. Section 5.1 presents the background and scenario setups. The case study areas 

are introduced in Section 5.2. Scenario results are discussed in Section 5.3.  

The results presented here have been published in Zhang et al. (2022). 

5.1. Background and Scenario Setups 

With an increase in urbanization, Portland central city area (as shown in Figure 6) will continue 

to experience population and employment growth. The city projects it is going to gain approx-

imately 38,000 new households and about 51,000 new jobs by 2035 (City of Portland, 2018). 

To meet this challenge, the city issued a set of goals and policies called the Central City 2035 

(City of Portland, 2018). This new plan affirms that promoting walking is one of the solutions 

to build an efficient urban network and that the plan should put pedestrians at the forefront of 

city policies. The city will encourage investments in pedestrian facilities, such as pedestrian 

crossings, aiming to keep people walking safely and comfortably through the city. Combined 

with increases in the density and mix of use, these infrastructure and land use investments will 

support more travel by walking and other sustainable modes of transportation. 

The benefits of urban pedestrian travel are well documented in the literature (Sallis et al., 2016; 

Saunders et al., 2013). Therefore, it is no surprise that cities like Portland incorporate these 

principles in their future policies. The city issued a set of goals and policies called the Central 

City 2035 (City of Portland, 2018). This new plan affirms that promoting walking is one of the 

solutions to build an efficient urban network and that the plan should put pedestrians at the 

forefront of city policies. However, planners and policymakers do not often have the appropri-

ate tools to address planning questions and assess the impact of their policies on meeting their 

pedestrian-related goals. Regional travel demand models have been more focused on issues of 

moving vehicles and planning for their infrastructure needs and less on serving pedestrian be-

havior. Few practical applications focus on how these tools can be used to estimate future pe-

destrian demand in response to land use and transportation changes. 
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To illustrate the potential of pedestrian planning tools to assess the impact of future scenarios 

on pedestrian demand, we use the MoPeD 2.0 to assess urban and transportation scenarios for 

the Portland Central City area. 

For the base year, we rely on population and employment conditions from the 2010 U.S. Cen-

sus for these neighborhoods. For future conditions, we analyzed the impact of a planned pe-

destrian bridge and a newly-built car-free crossing. Aligned with these facilities, neighborhood 

land use scenarios have been created based on the Portland Central City 2035 Plan (City of 

Portland, 2018). New households and different types of employment are allocated to PAZs 

based on this plan for all ten districts in the Central City area. The case study locations are 

described in more detailed way in Section 5.2.  

We implemented the MoPeD 2.0 model to test urban development scenarios. These scenarios 

serve to model various land use and transportation policies to assess to which degree the built 

environment supports an increase in the share of walk trips. For each of the case study loca-

tions, the following scenarios will be modeled: 

A. 2010 Base year: A 2010 base year scenario based on the census 2010 population and 

employment data. 

B. 2035 with average growth: A 2035 future year scenario with an average population 

and employment growth across all locations. 

C. Scenario B + Infrastructure: Scenario B with pedestrian bridges completed and a 

denser street network. 

D. 2035 with Central City Plan: A 2035 future year scenario with population and em-

ployment growth corresponding to the Central City Plan. 

E. Scenario D + Infrastructure: Scenario D with pedestrian bridges completed and a 

denser street network. 
 

Scenario A is the baseline scenario. It employs the population and employment distribution in 

2010. Scenario B is a business-as-usual scenario with an average of 1.5% increase in population 

and employment across all locations. In scenario D, future population, and job growth for 2035 

are applied corresponding to the Central City Plan, which is described in the previous section. 

Pedestrian accessibility measures are recalculated with the new population and new jobs. In 

scenarios C and E, pedestrian facilities are tested with different population and job growth 

strategies. As a result of the new bridges and new pedestrian links, the pedestrian catchment 

area is enlarged, and the accessibility measures also increase.  
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5.2. Case Study Areas 

The study area for this modeling exercise is the Portland Central City shown in Figure 6. The 

Central City area consists of ten different neighborhoods and stretches from the West Hills to 

East 12th Avenue, and from the Pearl and Lower Albina to the South Waterfront area and 

Powell Boulevard (City of Portland, 2018). The Willamette River divides this area and is 

spanned by several bridges, including the non-automobile bridge Tilikum Crossing, completed 

in 2015.  

Table 7 shows the population and employment for each of these neighborhoods in 2010, which 

is the base year for the models, and projected growth in each for 2035, which is the modeled 

horizon year. In the base year, Downtown is the economic center with most of the office em-

ployment, retails, and services. The Pearl District is a mixed-use district with commerce and 

retails and the largest number of households. The Central Eastside and Lloyd Districts are char-

acterized as an industrial center and an office core, respectively, and are less populated. South 

Waterfront is not yet developed and has the lowest density of population and jobs. The base 

year 2010 was chosen due to the availability of detailed land use and infrastructure at the PAZ 

level for that year.  

In the Portland Central City 2035 Plan (City of Portland, 2018), scenarios are outlined for each 

of these neighborhoods in terms of projected residential and employment growth. In addition, 

there is a planned pedestrian crossing (the Congressman Earl Blumenauer Bicycle and Pedes-

trian Bridge) that will connect the Central Eastside with the Lloyd District and the Tilikum 

Crossing. It was built in 2015, which is after our base year, and is a car-free facility that links 

the Central Eastside with the South Waterfront.  

By 2035, the Central City will gain approximately 2-times more households compared to the 

base year and a roughly 40 percent growth in jobs. The Central Eastside, Lloyd District, and 

South Waterfront will be the focus of demographic growth in the future decades, with an in-

crease of households by 800%, 778%, and 364% respectively. The emphasis of the employ-

ment development is expected to be on the South Waterfront. 
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Table 7 Total household and employment in 2010 and projected for 2035 by districts. 

District 
Total households Total employment 

2010 2035 Change in % 2010 2035 Change in % 

Central Eastside 900 7900 +778% 17000 25000 +47% 

Downtown 1600 4600 +188% 48200 55200 +15% 

Goose Hollow 3900 4900 +26% 5300 7300 +38% 

Lloyd 1000 9000 +800% 16800 25800 +54% 

Lower Albina 100 300 +200% 2100 2300 +10% 

Old Town 1900 3900 +105% 5200 8200 +58% 

Pearl 5600 11600 +107% 10700 14700 +37% 

South Waterfront 1100 5100 +364% 1200 11200 +833% 

University District 3200 6200 +94% 10400 14400 +38% 

West End 3800 6800 +79% 6900 9900 +43% 

Sum 23100 60300 +161% 123800 174000 +41% 

 

To understand the impacts of planned infrastructures and growth on pedestrian travel, we have 

incorporated these realistic scenarios and allocated the projected population and employment 

growth to our PAZ structure based on the details provided in the Central City 2035 Plan. Each 

of the future scenarios outlined below is for the planning horizon of 2035 and compared against 

the base year 2010. Besides the locations described in more detail below, we also distributed 

housing and employment growth to other neighboring districts based on the Portland Central 

City 2035 Plan (City of Portland, 2018). Each district has a different distribution of population 

and employment growth based on the corresponding future development vision. The table in 

the Appendix 1 summarizes the detailed housing and jobs growth plan across ten districts in 

Central City.  
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Figure 18 An overview of land use plans (left) and pedestrian facilities (right) for 2035 in the Central City. 

There are two specific pedestrian bridge scenarios that we compared to the 2010 base year 

conditions. One is a new pedestrian bridge and the growth projected for the Lloyd Center and 

the Central Eastside (Case Study 1). The other is the Tilikum Bridge and the growth projected 

for the South Waterfront and the Central Eastside (Case Study 2). Besides two pedestrian 

bridges, more detailed pedestrian networks are added to several areas including the south tri-

angle of Central Eastside, Lloyd District, and South Waterfront. In total, 41.2 kilometers of 

new pedestrian links were added in 2035 by extending the current grid network. These are 

described in more detail below and an overview is shown in Figure 18. 

5.2.1. Case Study 1 Lloyd Center-Blumenauer Bridge-Central Eastside 

A new pedestrian and bicycle facility – the Congressman Earl Blumenauer Bridge – is currently 

being constructed to link the Lloyd District and Central Eastside (Portland Bureau of 

Transportation, 2019). We aim to examine the implications of this increased connectivity and 

the anticipated growth described below. 

The Lloyd District has been identified as an “eco-district” with a focus on equitable, sustaina-

ble, and resilient development. Between 2010 and 2035, Lloyd is expected to grow by 8,000 

households and 9,000 jobs to a total of 9,000 households and 25,800 jobs. In this study, 8,000 
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households are distributed evenly over 33 PAZs identified as housing in Figure 19 (in yellow). 

Each PAZ added 242 households, and the same demographic attributes as in the 2010 distribu-

tion were assumed. For 9,000 jobs, we assume 25% distributed each to retail, finance, services, 

and government. In this scenario,14 PAZs around Convention and Lloyd are considered as 

office cores (in red). Accordingly, they will get all new finance employment (2,250), all gov-

ernment (2,250) jobs, 25% of service jobs (562), and 10% of retail (225). The remaining 9 

PAZs will get 65% of service (1,462) and 70% of retail (1,575) employment. The remaining 

10% of service (225) and 20% of retail (450) will be distributed across 33 housing PAZs. 

Over the same period, the Central Eastside is expected to grow by 7,000 households and 8,000 

jobs, for a total of 7,900 households and 25,000 jobs. In the growth scenario, 7,000 households 

are distributed evenly over the 15 PAZs identified as housing in Figure 20 (in yellow). Each 

PAZ added 467 households and the same demographic attributes as in the 2010 distribution 

were assumed. In the lower triangle, 41 PAZs will get 75% of the employment growth (shown 

in red). The remaining 13 PAZs targeted for commercial will get 1,500 jobs distributed by 

service, retail and financial. The remaining areas will realize a total growth of 500 jobs in in-

dustrial employment, distributed evenly over all the PAZs.  

  

Figure 19 Land use development plan 2035 of Lloyd District (City of Portland 2018) 
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Figure 20 Land use development plan 2035 of Central Eastside (City of Portland 2018) 

5.2.2. Case Study 2: Central Eastside-Tilikum Crossing-South Waterfront  

The Tilikum Crossing was completed in 2015 and is the longest car-free bridge in the United 

States. It spans the Willamette River, linking Portland’s South Waterfront to the Central 

Eastside Industrial District, described above. 

The South Waterfront is a dense, walkable, mixed-use community and is expected to grow by 

4,000 households and 10,000 jobs, for a total of 5,100 households and 11,200 jobs from 2010 

to 2035. The bridge directly links the South Waterfront to the development planned near the 

Oregon Museum of Science and Industry (OMSI) on the Central Eastside. 

In the South Waterfront plan for 2035, 4,000 households are distributed evenly over the 22 

PAZs identified with housing. Each of these PAZs added 182 households and assumed the 

same attributes as the 2010 distribution. In this scenario, 8,000 government jobs are allocated 

to institutional PAZs, while 1,000 service jobs are allocated to commercial PAZs. To account 

for the mixing of land uses, 1,000 retail jobs are evenly distributed to all PAZs. 

5.3. Scenario Discussion 

5.3.1. Impacts on Network Connectivity 

Network connectivity for pedestrians can be measured by pedestrian catchment ratio (PCR). 

Here the PCR is the ratio of the pedestrian catchment area to the theoretical circle area with a 

radius of 800 meters around the centroid of the same PAZ. The higher the PCR, the better the 
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network connectivity. Figure 21 shows that the distribution of PCR under the bridge scenario 

is generally shifted to the right, which indicates that new bridges and pedestrian streets can 

help improve pedestrian network connectivity. 

 

Figure 21 Frequency distribution of pedestrian catchment ratios under different scenarios 

Figure 22 shows the spatial distribution of the increase in pedestrian catchment ratio (PCR) 

comparing between with and without the new bridges and new pedestrian streets. Most PAZs 

close to the new bridges experience an improvement in network connectivity. The newly built 

pedestrian streets also play important roles in improving network connectivity, which leads to 

dramatic increases of PCR on the left side of the Tilikum bridge.  
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Figure 22 Increases of pedestrian catchment ratio of each PAZ when comparing between with and without new 

bridges and new pedestrian streets. 

 

5.3.2. Impacts on Walk Share 

The policy scenarios evaluated in this study have varying degrees of impact on the share of 

walk trips. Two scenarios with average growth (Scenario B and C) have little impact on in-

creasing the walk share, while two Central City Plan scenarios (Scenario D and E) significantly 

influence the walk share. Figure 23 compares the distributions of PAZ walk shares based on 

different scenarios. Table 8 provides an overview of the number of walk trips and walk shares 

under five scenarios as well as their relative changes compared to the baseline. 
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Table 8 Total trips, walk trips and walk share across the whole Portland Central City area of five scenarios. 

Scenario A: 2010 
Base 
year 

B: 2035 with 
average 
growth 

 

C: Scenario B  

+ infrastructure 

D: 2035 
with Central 
City Plan 

E: Scenario D  

+ infrastructure 

Households 23,100 23,446 23,446 60,300 60,300 

…% change compared to 
base 

 +1.5% +1.5% +161.0% +161.0% 

Number of trips (all modes) 282,948 287,170 287,170 533,367 533,367 

…% change compared to 
base 

 +1.5% +1.5% +88.5% +88.5% 

Number of walk trips 84,452 86,255 87,624 184,370 189,174 

…% change compared to 
base 

 +2.1% +3.8% +118.3% +124.0% 

Share of walk trips 29.8% 30.0% 30.5% 34.6% 35.5% 

…% change compared to 
base 

 +0.6% +2.2% +15.8% +18.8% 

Total trips/household 12.25 12.25 12.25 8.85 8.85 

…% change compared to 
base 

 0.0% 0.0% -27.8% -27.8% 

Walk trips/household 3.66 3.68 3.74 3.06 3.14 

…% change compared to 
base 

 +0.6% +2.2% -16.4% -14.2% 

 

In the two scenarios with average growth (Scenario B and C), the population evenly grows by 

1.5% across all PAZs with the assumption that household compositions remain unchanged. 

The distribution of walk shares by PAZ are very similar to the baseline. As shown in Table 8, 

the overall walk shares of the two average growth scenarios are fairly close to the baseline walk 

share. 

In the Central City Plan scenario, the distribution of PAZ walk shares shifts towards the right, 

which indicates moderate-high walk shares. Most PAZs experience an increase in the share of 

walk trips. The same shift is observed in the Central City Plan scenario with the pedestrian 

facility development. The shift is even slightly larger than in the Central City Plan scenario 

without infrastructure (Scenario D). The pedestrian facility development appears to only show 

an impact for zones in the catchment area of the bridges. Overall, under two Central City Plan 
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scenarios, the whole Central City area will produce roughly 100,000 more walk trips in 2035 

(an increase of about 120%). 

 

Figure 23 Cumulative distribution walk shares by PAZ. 

Although the Central City Plan scenarios have notable effects on encouraging higher walk 

shares, it is observed that the value of average walk trips per household decreases by 16.4% 

and 14.2% separately in two Central City Plan scenarios (shown in Table 8). One reason for 

this notable decrease is the assumption that the household composition of PAZs with no house-

hold in the base year follows the average distribution of households in the Central City Plan 

scenarios, where 49% are assumed to be single-person households. Those households tend to 

generate fewer trips than larger households (Zhang, Clifton, Moeckel, et al., 2019), reducing 

the number of walk trips per household. The decrease may also imply the limitation of the trip 

generation model used in MoPeD. In this study, trip generation models can only reflect the 

demographic changes but are insensitive to the changes in land use development. The effects 

of pedestrian accessibility are currently not considered. 
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The following sections will illustrate the impacts of policy scenarios on individual districts. 

Table 9 provides an overview of the resulting walk shares of each district under different sce-

narios and the comparison to the reference scenario. 

In the base year 2010, the West End district has the highest walk share, followed by its two 

neighboring districts, Downtown and Old Town. A higher density of households and jobs, as 

well as good street connectivity, create an attractive built environment to support walking in 

those districts. South Waterfront is the least walkable district because in the base year it was 

not yet developed with vacant brownfield sites and buildings were underutilized. Central 

Eastside and Lower Albina also have relatively low walk shares in the base scenario. This 

might be because they were characterized by an industrial core with a high share of manufac-

turing buildings and a low share of residential and commercial land use. Under the average 

growth scenario, the characteristics of each district are retained, and the growth is evenly dis-

tributed. Thus, walk shares are slightly increased. 

As expected, the Central City Plan scenario without infrastructure leads to an increase in the 

walk share in all districts. Their increases in walk shares range from 12% to 119%. In particular, 

the walk share in South Waterfront is more than doubled. The change is caused by a large 

amount of development in housing and employment with a total of 4,000 new households and 

10,000 jobs. Similar to South Waterfront, Lloyd District and Central Eastside also gain sub-

stantial increases in walk shares due to the rapid and large-scale development in residential and 

commercial uses. It reveals that the increased rates of walk shares largely depend on the number 

of new households and new jobs in the district and in the neighboring districts. However, the 

walk share does not necessarily grow proportionately with population and jobs. The walk mode 

choice model is designed with a logarithmic relationship between walk shares and pedestrian 

accessibility. Thus the marginal impact of additional population and jobs is a decreasing func-

tion. Figure 24 shows the nature of the logarithmic relation. It indicates that the magnitude of 

rates of change in walk shares highly depends on the baseline pedestrian accessibility. For 

example, although a large number of new households and jobs are placed in the Downtown and 

West End districts (purple and light green dots in Figure 24), the walk shares of these two 

districts grow only moderately compared to other districts. It suggests that Portland downtown 

is already very dense and has already reached a certain level of pedestrian accessibility. More 

activity density does not encourage many more walk trips. 
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In the scenarios with pedestrian facility development (Scenario C and E), the increase in walk 

shares is much more pronounced. When comparing the infrastructure scenarios with their cor-

responding growth-only scenarios (Scenario B and D), the change in walk shares of the infra-

structure scenarios only occur in the districts associated with the new pedestrian facilities. 

Those are Central Eastside, Llyod District, Lower Albina, South Waterfront, and University 

District. Almost no changes are noticeable in the remaining districts.



68 

 

 

Table 9 Share of walk trips across different districts in five scenarios 

 Scenario/District 
A: 2010 Base 
year 

B: 2035 with 
average 
growth 

C: Scenario B 
+ infrastruc-
ture 

D: 2035 with 
Central City 
Plan 

E: Scenario D 
+ infrastruc-
ture 

     
% change 

compared to A 

% change 
compared to B 

% change 
compared to A 

% change 
compared to D 

 

CENTRAL 
EASTSIDE 

14.1% +0.8% +4.9% +55.4% +4.1% 

DOWNTOWN 38.5% +0.6% +0.1% +19.0% +0.1% 

GOOSE HOLLOW 27.9% +0.7% +0.0% +17.3% +0.0% 

LLOYD 20.6% +0.8% +3.6% +43.8% +2.7% 

LOWER ALBINA 9.7% +0.9% +6.1% +62.8% +1.3% 

OLD TOWN 32.3% +0.6% +0.0% +16.6% +0.0% 

PEARL 28.8% +0.7% +0.0% +12.0% +0.0% 

SOUTH WATER-
FRONT 

8.3% +1.0% +13.5% +118.9% +24.1% 

UNIVERSITY DIS-
TRICT 

28.7% +0.7% +9.5% +12.3% +9.0% 

WEST END 41.8% +0.5% +0.1% +13.0% +0.0% 
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Figure 24 The change in walk shares and pedestrian accessibility (defined as population + employment 

within 800 meters) in the baseline scenario and the Central City Plan scenario without infrastructure. 

To have a closer look into the pedestrian facility scenario, we compared the walk share 

of each PAZs between scenario D and scenario E (shown in Figure 25). New bridges and 

links enlarge the pedestrian catchment area because of good and direct connectivity. Most 

PAZs close to the new facilities experience an increase in walk share. PAZs located on 

the north side of Congressman Earl Blumenauer Bridge have smaller increases in walk 

shares than those located on the south side. According to the land use development plan 

shown in Figure 18, the south side of the bridge generally has less diverse growth than 

the north side of the bridge. While people living in the north of the Lloyd District could 

easily visit locations on the other side of the bridge, a lack of diversity on the south side 

of the bridge limits the growth in walk trips. The same situation of unbalanced growth is 

also found near the Tilikum Bridge. The bridge offers good connectivity to the west side 

of the river. Nevertheless, the land use growth on the west side lacks diversity and focuses 

on education. Thus, the Tilikum Bridge is not as attractive for people working and living 

on the east side of the bridge. 
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Figure 25 Comparison of walk shares under Central City Plan scenarios with/without pedestrian facilities 

(scenarios D and E) 

5.3.3. Impacts on Average Trip Length 

The average trip distance is largely dependent on the attractiveness of the surrounding 

district and the district itself. When the district itself has a good street network to access 

many opportunities, people tend to travel within the district. Otherwise, people will be 

attracted more strongly to neighboring districts. Figure 26 shows the cumulative distribu-

tion of the average trip length by PAZ under the five scenarios. In general, the impact of 

land use and infrastructure on average trip length is not particularly large. Three typical 

districts that represent three different distribution patterns are selected for discussion. 

Scenario B with average growth has almost no effect on average trip length, and the 

curves of baseline and scenario B mostly overlap. Under the average growth scenario 

with pedestrian facility development in the Llyod district (blue lines in Figure 26), the 

distribution noteworthily shifts to the left, indicating an increase in walk shares. However, 

the distribution in the South Waterfront shows rather moderate changes. This is because 

the South Waterfront is still undeveloped in the average growth scenarios. Although the 

denser pedestrian network improves connectivity in the district, densities are relatively 
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low. This suggests that the development of a denser pedestrian network without corre-

sponding population and employment densities has a limited impact on walk shares. 

 

Figure 26 Cumulative distribution of average trip length by PAZ in selected districts 

5.3.4. Impacts on Pedestrian Flows 

Pedestrian route choices were implemented to assign walk trips to the pedestrian network. 

Figure 27 demonstrates how the pedestrian flows are distributed in the pedestrian network 

in different scenarios. 

In the base year scenario, most of the pedestrian flows are populated in the downtown 

areas, with the highest segment usage of 2596 pedestrian trips. Many streets on the east 

side of the river had daily pedestrian trips under 150. Due to the moderate growth strategy, 

the pattern of pedestrian flow distribution in scenario B is unchanged. In scenario C, the 

Congressman Earl Blumenauer bridge is used by 320 pedestrians, and it also slightly im-

pacts the volumes of the surrounding links. However, the usage of the Tilikum bridge is 

relatively low with an average pedestrian volume of 111 in both directions. Scenario D 

with Central City Plan significantly influences the pedestrian volumes in the entire study 

area. On the one hand, the pedestrian flows in the downtown area boosted to a higher 
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level. The busiest street is crossed by 7321 pedestrians. On the other hand, there are more 

pedestrian flows occurring on the east side of the river, especially in the Lloyd District. 

It also increases the usage of the existing bridges connecting the two sides of the river. In 

scenario E, the pedestrian flows are sprawled across the east side of the study area. The 

usage of the minor roads is increased. The usage of the Tilikum bridge is increased to an 

average pedestrian volume of 797 in both directions. The variation plots in Figure 27 give 

us a better understanding of how the new pedestrian infrastructure impacts daily pedes-

trian flow. The Tilikum Bridge facilitates the number of pedestrians along the west side 

of the river, while the Congressman Earl Blumenauer bridge in the Lloyd District en-

hances the pedestrian volume along the freeway. Also, the new pedestrian roads in the 

Lloyd District attract a large number of walkers as well as relieve the burden of pedestrian 

traffic on the surrounding main roads.  
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Figure 27 Daily pedestrian volumes on the pedestrian network in different scenarios. 
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5.4. Discussion on Portland Scenarios 

Overall, the scenario application presented in this chapter proved that the pedestrian plan-

ning tool MoPeD 2.0 is sensitive to the small-scale variations in local land use and 

transport development. It can help the policymakers to have a better understanding of the 

effects of various demographic policies and infrastructure planning on the walk probabil-

ity. Most importantly, it can address planning issues. It can assess how the Central City 

2035 policies support increased pedestrian activities. Moreover, it can support planning 

effective pedestrian networks based on maximizing accessibility and connectivity 

On the other hand, this application exercise also reveals the limitations of MoPeD 2.0, 

which should be addressed in future work. The pedestrian model appears to be only sen-

sitive to the level of street connectivity rather than the quality of street connectivity. The 

new bridge with the wide and dedicated pedestrian lane is treated the same as the old 

bridge with an unpaved pedestrian lane. This could be one of the reasons that there are no 

big changes in walk share in the bridge applications. The mode choice model lacks the 

attributes that can reflect the quality of connectivity. Therefore, in future research, char-

acteristics of the pedestrian facility need to be added to the choice model. Furthermore, 

when we allocated households and jobs into the PAZ structure, we assumed the average 

demographic attributes based on the 2010 distribution. Realistic demographic changes 

such as aging or car ownership changes are not considered in this scenario application. 

MoPeD's aggregated modeling approach prevents us from setting up demographic 

changes in a more realistic way. This is one of the key motivations for integrating MoPeD 

into the agent-based environment of MITO. The MoPeD and MITO integration will be 

presented in the next chapter. 
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6. MoPeD Meets MITO: an Integrated Agent-Based 

Model for Pedestrian Travel Demand 

In the previous two chapters, we introduced the enhanced MoPeD and showed its ability 

to capture small-scale variations in land use and transport policy. However, MoPeD is 

limited to its nature of aggregated modeling. Average social-demographic attributes are 

simulated at the zonal level, which makes it difficult to consider demographic changes 

such as aging or car ownership in scenario application. Moreover, it also has a limited 

representation of non-walk modes. Agent-based transport model MITO can complement 

the limitations of MoPeD. By simulating at the individual level, MITO can help research-

ers identify transport issues at a fine resolution. The outcomes could be used to calculate 

an individual’s units of physical activity (metabolic equivalents, METs) which are critical 

inputs to health impact assessment models.  

Therefore, in this chapter, we propose an integrated modeling framework (referred to as 

MITO/MoPeD) that incorporates the fine-grained resolution model of pedestrian demand 

(MoPeD) into a sparser spatial resolution of an agent-based transport model (hereafter 

referred to as the Munich Model). The author attempts to explore whether the integrated 

modeling framework (MITO/MoPeD) has a better performance than the Munich Model 

in terms of simulating walk-related metrics. The central hypothesis is that the Munich 

Model would not be suitable for pedestrian modeling and health impact assessment, but 

the following adaptations from MoPeD could improve their accuracy:  

• Separate walk trip decisions from the multimodal models. 

• Apply a finer zone system for walk trip decisions. 

• Apply more built environment factors for walk trip decisions. 

The approach to integrate MoPeD and MITO is presented in Section 6.1. After that, the 

input data containers are prepared for the Munich context (Section 6.2). Since the mode 

choice and destination choice models were developed in the Portland context and then 

married into the Munich study area, a model transfer/calibration process is presented in 

Section 6.3. To check the plausibility, the Munich model and the MITO/MoPeD model 

are applied to the Munich study area. In Section 6.4, model performances are discussed 

based on the prediction of walk shares, walk trip length distribution, the spatial distribu-

tion of walk trips, and physical activity volumes. 
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6.1. Model Integration 

Figure 28 shows the working process of the MITO/MoPeD model. First, MITO provides 

trip generation at the individual level to MoPeD. In the MoPeD module, walk trips are 

generated and processed, and then fed back to MITO.    

 

 

Figure 28 The framework of the integrated modeling framework – the MITO/MoPeD model 

The incorporation of MoPeD and the Munich Model is not trivial. MoPeD is carried out 

with a fine-grained resolution, whereas the Munich Model uses a much sparser TAZ as 

its spatial unit. The difference in spatial resolution should be adapted. In addition, the 

walk trip decision sequences are not aligned in MITO and MoPeD. As shown in Figure 

4, individuals in MITO first choose the trip destination and then the trip mode, while in 

MoPeD individuals choose to walk or not first, then select a destination if they walk. An 

integrated decision process needs to be defined in the MITO/MoPeD model. Moreover, 

the mode choice and destination choice factors of MITO and MoPeD need to be integrated 

to meet the needs for pedestrian modeling. Therefore, to develop an integrated model 

suite, the following adaptions were implemented: 

• appropriate zone systems for measuring built environment that is relevant to pe-

destrian and modeling pedestrian behaviors. 

• built environment factors in the mode choice models and the destination choice 

models for different trip purposes; and 

• integrated trip decision processes to establish the interfaces between MITO and 

MoPeD.  
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Figure 29 gives an overview of the integrated trip decision process linking MITO and 

MoPeD. The framework essentially follows the paradigm of the traditional four-step 

model. 

Given that the locations of work and education trips were predefined in the synthetic 

population, those trips are modeled first. The number of work and education trips is mod-

eled in MITO. Then, work and education trips are fed into MoPeD to make the walk mode 

decisions. Work and school locations are stored in the synthetic population. Hence, no 

destination choice is necessary here for work and education trips. After that, the modes 

of work and education trips that are not made by walking are modeled in MITO. 

Following the work and education trips, other trips are generated, which takes the number 

of work and education trips as one of the independent variables into account. HBS, HBR 

and HBO trips are simulated before the non-home-based ones (NHBW and NHBO). This 

is because we assume that the trip origins of non-home-based trips are influenced by the 

destination end of home-based trips. Similar to the work and education trips, those trips 

are first sent to MoPeD to select walking or not walking. The destination of walk trips is 

subsequently selected in MoPeD. Then, non-walk trips are fed back to MITO for TAZ 

destination choice and non-walk mode choice.  

In the end, the selection of the preferred arrival time is modeled in MITO for all trips. 

The resulting trips are passed on to MATSim for trip assignment on the networks of dif-

ferent modes. Pedestrian flows are simulated in MATSim using the shortest path algo-

rithm. We recognize that pedestrians may use other decision criteria besides trip distance 

(e.g., safety, comfort, scenery); however, data about network qualities were not available.  

Note that this modeling suite does not intend to simulate detailed paths of pedestrians. 

While the assignment selects links chosen by the pedestrians, the location on a link is not 

modeled here. This level of detail is represented by a large amount of research work on 

pedestrian microsimulation models (Borrmann et al., 2012; Erdmann & Krajzewicz, 

2015; Kielar & Borrmann, 2016). At the level of a metropolitan area, we simplify this 

step and focus on mode choice and destination choice instead. 
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Figure 29 The travel demand modeling process of the MITO/MoPeD model 

6.2. Model Setup for Munich 

6.2.1. Define Zonal System 

The Munich Model uses 4,953 gradually sized zones as its spatial unit (as shown in Figure 

30). The sizes of zones vary from 200 meters to several kilometers. Coarser scales that 

are larger than 800 m might cause high errors in predicting walk behavior (Zhang, Clifton, 

& Moeckel, 2019). Thus, a finer and uniform zone system is needed for the MITO/Mo-

PeD model.  
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Figure 30 The Munich Metropolitan Area with TAZ zone systems (left) and the comparison of TAZs and 

PAZs (right) 

Previous studies have pointed out that the finest spatial resolution may not be the appro-

priate scale and the spatial resolution selection is a trade-off among model performance, 

efficiency, and the availability of spatial data needed to implement (Zhang, Clifton, & 

Moeckel, 2019). In this study, we define the PAZ scale for the Munich region as 

100m×100m raster. There are two main reasons for choosing this PAZ scale. First, the 

spatial units chosen to model the pedestrian behavior for this research depend on the rel-

evant data available for Munich. Land cover data for the Munich region is provided as a 

100m×100m raster. More importantly, the appropriate spatial resolution highly depends 

on the type of application. In this research, we aim to assess the unit of physical activity 

(PA). Health studies concluded that there is a non-linear dose-response relationship for 

PA (J. Woodcock et al., 2011). This means short walk trips might have large impacts on 

individuals with low PA. Because of this non-linearity, short walks need to be better cap-

tured in the MITO/MoPeD model, which further determines the necessity of using a finer 

spatial resolution. With such a small PAZ scale, the study area of the Munich region is 

covered by approximately 2,000,000 PAZ equivalents. A comparison of TAZs and PAZs 

can be found in Figure 30. 

As the trip origin and destination locations in MITO are simulated at the micro-location 

level (in x/y coordinate), it is flexible to aggregate locations to any spatial resolution. The 

PAZ zone system is utilized in MoPeD for walk mode choice. In the walk trip distribution 

stage, destination choice is first conducted at SuperPAZs (400-meter grid cells). Then, 
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trips are allocated from the selected SuperPAZ to the constituent PAZs. Trips that are not 

made by walking are handled in MITO at the TAZ zonal structure. 

6.2.2. Create Pedestrian Street Network 

The pedestrian street network in this study is obtained from OpenStreetMap. The links in 

OpenStreetMap are categorized into several road types with a certain hierarchy order as 

shown in Table 10. In the Munich Model, the network links are built until the level of 

residential road, which covers the important ways for vehicles. For the integrated model, 

pedestrian-centric roads such as the category “living street” and “pedestrian” are consid-

ered. This helps to boost the completeness of the road networks for pedestrian simulation. 

Also, we can get a better measurement of pedestrian network connectivity, which is an 

important feature for pedestrian mode and destination choice. Although service and track 

roads are also mostly used by non-motorized users, they are not included for this study. 

There are some reasons for dropping service and track roads. First, service roads are 

mainly connection links between real estate buildings and road accesses/exits. In 

MATSim, the access/exit road distance from activity coordinates to road node is meas-

ured using Euclidean distance. Because most of the service roads are very short, the Eu-

clidean distance is close to the real network distance. Then, track links defined in Open-

StreetMap are roads mostly located in rural areas for agricultural or forestry uses. The 

Munich metropolitan area is mainly covered by urban land use, so the amount of track 

roads is not significant in the study area. Lastly, dropping service and track links can help 

to avoid a boost in computational burden at trip assignment stage.  

Table 10 Link types defined in OpenStreetMap (OpenStreetMap Wiki, 2020) 

Hierarchy  Road type 

1 Motorway 

2 Trunk 

3 Primary/Primary link 

4 Secondary/Secondary link 

5 Tertiary/Tertiary link 

6 Residential road 

7 Living street 

8 Pedestrian 

9 Service 

10 Track 
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6.2.3. Calculate Built Environment Factors 

Walking behavior is highly correlated to built environment variables. The Munich Model 

considers a few built environment variables in the walk mode choice and walk destination 

choice model. For example, area type dummies are used primarily to differentiate land 

use at an aggregated level. To model the effects of the built environment on pedestrian 

travel behavior, the measurement of pedestrian accessibility is included in the MITO/Mo-

PeD model. Pedestrian accessibility is defined as population and non-industrial jobs 

within an 800-meter network distance. Pedestrian accessibility data in the Munich region 

has been measured at the PAZ level. First, the isochrones, also known as pedestrian catch-

ment areas, are generated based on the pedestrian network from OpenStreetMap. After-

ward, we calculated the total number of non-industrial jobs and population that locate 

within each isochrone. Results of pedestrian accessibility for the Munich region are 

shown in Figure 31.  

 

Figure 31 Pedestrian accessibility in the Munich city area  

6.3. Mode Choice Model Calibration 

Due to the lack of geographic information about the trips in the German national house-

hold travel survey, model parameters cannot be re-estimated using local surveys. There-

fore, the model estimates used in the MITO/MoPeD model were developed in the context 

of the Portland, Oregon metropolitan area in the United States while they are applied to 

the Munich study area in Germany.  
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First, the binary walk mode choice models of home-based purposes were re-estimated by 

using the OHAS data. The estimation models in MoPeD 2.0 did not include distance as a 

predictor for HBW and HBE trips because the mode choice was made before the destina-

tion choice. Benefits from agent-based nature of MITO, work and education location was 

known as an input information from synthetic population. As a result, the models were 

re-estimated by separating HBW and HBE purposes and adding distance factors to each. 

Table 11 presents the estimation results of HBW, HBE and other HB purposes. Distance 

is a strong predictor in mode choice. By adding distance factor in the models, the model 

goodness-of-fit improved compared to those in Table 2. The rest of the predictors re-

mained the similar magnitude as shown in Table 2. 

Table 11 Binary walk mode choice model estimation of home-based purposes in the integrated model 

  HBW  HBE Other HB purposes 

  
Esti-

mate 
Pr(>|z|)   

Esti-

mate 
Pr(>|z|)   

Esti-

mate 
Pr(>|z|)   

(intercept) -7.425 0.000 *** -2.178 0.000 *** -7.276 0.000 *** 

Distance to work/school 

(km) 
-0.422 0.000 *** -1.371 0.000 ***    

Number of vehicle (0)       0.945 0.000 *** 

Number of vehicle (2)       -0.239 0.002 ** 

Number of vehicle (2+)       -0.408 0.000 *** 

Vehicle (Yes) -0.491 0.127  -0.445 0.147     

Number of children (1)    1.637 0.000 ***    

Number of children (2)    1.626 0.000 ***    

Number of children (2+)    1.268 0.000 ***    

Child (Yes) 0.745 0.000 ***    0.184 0.000 *** 

log(pedestrian accessibility) 0.778 0.000 *** 0.208 0.000 *** 0.727 0.000 *** 

HBRecreation       base   

HBShop       -0.585 0.000 *** 

HBOther       -0.555 0.000 *** 

              

Log-Likelihood: -334   -758   -4406     

McFadden R^2: 0.270   0.322   0.129     

 

Then, the binary mode choice models for home-based purposes (shown in Table 11) and 

the models for non-home-based purposes (shown in Table 2) were transferred from the 

Portland context to the Munich context. Previous works have focused on the spatial trans-

ferability of travel forecasting models (Agyemang-Duah & Hall, 1997; Cotrus et al., 

2005; Everett, 2009; Huntsinger & Rouphail, 2013; Sikder et al., 2013). They showed the 
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ability to transfer models between different regions and suggested the methods used to 

enhance model transferability. Updating constants/adding new constants is a widely used 

method in practice to enhance the model suitability. 

To make a fair comparison between the two modeling frameworks, a mode choice cali-

bration process was implemented in the MITO/MoPeD model. In this research, we as-

sumed that the parameters other than the constants are transferable in two contexts. Ad-

ditional constants were introduced into the mode choice models to scale up the average 

walk shares to match the observed shares. Table 12 shows the final calibration factors 

implemented in the models by trip purposes. These calibration factors represent the dif-

ference between the influences of unobserved factors (e.g., mobility culture, geography, 

and weather) in Portland and Munich. 

Table 12 Calibration factors of walk mode choice models by trip purposes 

Purpose Calibration factor 

HBW 0.919 

HBE 1.369 

HBS 0.784 

HBR 0.708 

HBO 0.612 

NHBW 0.781 

NHBO 0.776 

 

Figure 32 compares the simulated walk shares by trip purposes to the observed walk 

shares taken from Germany household survey data 2017 - Mobilität in Deutschland 

(MiD). Before calibration, the walk mode choice models in the MITO/MoPeD model 

underestimated the shares of walk trips across all purposes. Although there are deviations 

in the absolute values, the relative relationships among purposes are consistent with the 

observed data. For example, recreational trips (HBR) have the highest shares of walking 

while work-related trips (HBW and NHBW) have lower walk shares.  



84 

 

 

Figure 32 Observed walk shares of MiD and predicted walk shares resulting from the MITO/MoPeD 

model by trip purposes. 

6.4. Model Results 

To answer the research questions mentioned above and to test the plausibility of the 

MITO/MoPeD model, this section evaluates how effectively the MITO/MoPeD model 

structure improves the estimation of transport outcomes and physical activity volumes. 

The Munich model and the MITO/MoPeD model are applied to the Munich metropolitan 

area. Model performances are analyzed based on average walk shares, the spatial distri-

bution of walk shares, mean trip length, trip length distribution, pedestrian flows, and 

physical activity volumes. 

6.4.1. Walk Mode Shares 

The share of walk trips is one of the key outcomes for investigating policies and strategies 

to encourage walking.   

After calibration, both models can simulate the average walk shares accurately. Besides 

the mean value, the spatial distribution of walk trips is also an important outcome to eval-

uate the model performance. Figure 33 presents the spatial distribution of walk shares 

across the Munich metropolitan area resulting from two modeling frameworks. From an 

overall perspective, both models demonstrate similar patterns that walk shares in the ur-

ban areas are higher than those in the suburban or rural areas. Nevertheless, we note that 

the distribution in the Munich Model (Figure 33a) has a boundary issue. The border areas 

sometimes show high walk shares which are at the same level as the urban centers.  



85 

 

There are three major reasons why these border areas have higher walk shares than we 

expected. First, trip distance is a key factor of the mode selection in the Munich Model. 

Shorter trips tend to use the walk mode. The border areas have limited destination alter-

natives and their surrounding areas are mostly rural and less attractive. Thus, trips gener-

ated in those areas are more likely to select a closer destination with a short distance 

which leads to a high share of walk trips.  The second reason may be due to the coarse 

zone system used in the Munich Model. Larger zones result in a greater share of intrazonal 

trips. As intrazonal trips have the same trip length, which is relatively short, having larger 

zones causes an overestimation of walk trips. Lastly, built environment variables like 

population and employment density are not considered when selecting modes in the Mu-

nich Model. This means short trips generated in the less-populated areas have the same 

likelihood of choosing walking as those in the urban areas.  

Benefit from the fine spatial resolution used in the MITO/MoPeD model, trips are mod-

eled with more precise network distances rather than being considered as same length 

intrazonal trips. In addition, by introducing the activity density into the walk mode choice 

models, the MITO/MoPeD model can better capture the differences in walk shares be-

tween urban areas and rural areas. As shown in Figure 33b, the MITO/MoPeD model 

mitigates the issue of walk share overestimation at the border areas. 

To have a closer look into the walk share distributions in the Munich city area. The results 

of the Munich Model (Figure 33c) show that walk trips are sprawled in the entire Munich 

city area though we can see a decreasing trend in the outer areas. Given the coarse spatial 

resolution, it is difficult to observe the areas for pedestrian demand in the Munich city 

area. Nevertheless, the MITO/MoPeD model can give us a clearer picture of the hotspots 

for walk trips as shown in Figure 33d. 
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Figure 33 Shares of walk trips resulting from the Munich Model across Munich metropolitan area (a) and 

in Munich city (c); Shares of walk trips resulting from the MITO/MoPeD model across Munich metropol-

itan area (b) and in Munich city (d) 

6.4.2. Trip Length Distribution 

Previous studies have found that destination choice models are the largest source of errors 

in travel demand models (Zhao & Kockelman, 2002). Trip length distributions can be 

used to evaluate the performance of destination choice models. Figure 34a shows the trip 

length distribution of all trips. Compared to the observed data, the Munich Model has a 

significant deviation for the short distance trips. Figure 34b presents the distribution of 

walk trips. It indicates that the Munich Model overestimated the trip lengths for walk trips 

and then further confirms that the Munich Model is poor at capturing pedestrian travel 

behaviors. Nevertheless, both figures indicate that the MITO/MoPeD model performed 

better in modeling walk trip lengths. Without any calibration, the shape of the walk trip 
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distribution of the MITO/MoPeD model is almost matched to the observed data. For the 

MITO/MoPeD model, we find that the left side of the distribution and the peak are close 

to the observed data, but there is a large difference on the right side of the distribution. 

This means that the MITO/MoPeD model underestimates long-distance walk trips. 

 

 

Figure 34 Comparison of trip length distribution of all trips (a) and comparison of trip length distribution 

of walk trips (b) 
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6.4.3. Pedestrian Flows 

After walk trips were generated, they were then passed on to MATSim for route assign-

ment. In this study, the shortest path algorithm is used for assigning walk trips. In future 

studies, pedestrian route choice behavior needs to be further investigated and more ad-

vanced routing techniques need to be applied to get more precise route estimates.  

Figure 35 compares pedestrian volumes of network links resulting from two models. We 

can find that pedestrian flows are sprawled in the Munich Model and pedestrian volumes 

are much higher than those in the MITO/MoPeD model. The lack of count data is a barrier 

to model validation. Thus, in this study, we cannot make a conclusion about the model 

performance based on pedestrian flow maps. However, we hypothesize that the Munich 

Model overestimated the pedestrian volumes on the links. As discussed above, the Mu-

nich model was poor at simulating walk trip lengths. The overestimation of walk trip 

lengths results in an overestimation of pedestrian kilometers traveled in the trip assign-

ment stage. The total pedestrian kilometer traveled is 239,539 km in the MITO/MoPeD 

model while the number is 738,599 km in the Munich Model which is almost tripled. The 

high value of pedestrian kilometers traveled in the Munich Model may be the reason for 

high pedestrian volumes on network links. The results from the MITO/MoPeD model 

show a more reasonable pattern in that the network in the city center has higher pedestrian 

volumes with a diminishing trend outward. 
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Figure 35 Comparison of pedestrian volumes assigned to the network links 

6.4.4. Volume of Physical Activity  

PA volume is one of the critical inputs to measure an individual’s health indicators. PA 

commonly has four domains including occupational, domestic, leisure, and transporta-

tion. In this study, we focus on PA in the transportation domain. For this, information on 

all walking and cycling activities is usually included to measure PA volume (James 

Woodcock et al., 2013). In this study, modeling components of bicycle trips are un-

changed so that the cycling activities retain the same in the base model and the MITO/Mo-

PeD model. To avoid confounding comparisons, this study only measures the walk trips 

for physical activity volume. 

Physical activity volume is the product of frequency, duration, and intensity. Commonly, 

it is measured over a week-long period with the unit of mMET-hours per week (James 

Woodcock et al., 2013). In this study, the transport models only simulate the travel de-

mand on a typical day, so the walk trips are multiplied by a factor of 7. Walk trip durations 

are measured using the walk trip distances resulting from MATSim. Trip distances are 

converted to durations using an average speed. Ideally, speeds could be differentiated by 

age and sex to measure PA volume more precisely. However, for this study, we try to 

skim off confounding factors and investigate a pure comparison between the base model 

and the MITO/MoPeD model. Therefore, an average speed of 4.8 km/h is chosen for walk 

trips (Kahlmeier et al., 2014). Similarly, a single value of intensity is used for all walk 

trips. This is 3.61 mMETs for walking which is the median intensities obtained from a 

recent objective study on commuters by Costa et. al. (2015). Thus, the PA volume of 

individual i is measured by the following equation: 

𝑃𝐴𝑖 = 7 ∗ ∑
𝑤𝑎𝑙𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4.8
∗ 3.61

𝑤𝑎𝑙𝑘 𝑡𝑟𝑖𝑝𝑠

𝑛=1

 

Figure 36 compares the distribution of PA volume resulting from two modeling frame-

works. The observed PA distribution based on MiD 2017 is considered as the reference. 

In this plot, the proportions of inactive individuals (the values at x = 0) are very high. This 

is because we only measured walk trips and it is incomplete for assessing total PA. The 

results first confirm the hypothesis that the Munich Model is poor at assessing PA vol-

umes. The fundamental issue is that the Munich Model overestimates the length of walk 

trips. As a result, the Munich Model overestimates the PA volumes of each individual. 
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As discussed before, the MITO/MoPeD model has a better performance in capturing the 

distribution of walk trip lengths, so we didn’t see the issue of overestimating PA volumes 

in the MITO/MoPeD model. However, the plot reveals that the MITO/MoPeD model 

generally underestimates PA volumes.  

There are three major reasons for the underestimation of PA volumes in the MITO/Mo-

PeD model. First, as discussed above, the MITO/MoPeD model is poor at modeling long 

and uncommon walk trips while those long walk trips are recorded in MiD data. Missing 

these long walk trips causes the underestimation of PA volumes. Another reason is that 

access and egress trips to public transport are not modeled in the transport model, result-

ing in the elimination of a small share of PA. Lastly, the observed data may be biased by 

walk distances since the distances in the survey were self-reported. 

 

Figure 36 Comparison of physical activity volume distribution 

 

6.5. Discussion on the Integrated Model 

In this chapter, we advanced the state of modeling pedestrian behaviors by integrating 

MoPeD into the agent-based transport model MITO. This integrated modeling framework 

builds a link between advanced pedestrian modeling techniques with the agent-based 
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modeling approach. More importantly, the results proved that the integrated model can 

better simulate travel outcomes than the Munich Model.  

However, the integrated model still faces some limitations that should be addressed in 

future work. First, the access and egress walk trips are neglected in the integrated model. 

To simulate physical activity volumes more precisely, those trips navigating to public 

transport need to be considered in the model.  

Second, there are limitations in the physical activity volumes calculation methodology 

because it has been heavily simplified. For comparison of model results, a simplified cal-

culation methodology can help us to eliminate confounding factors. However, for a more 

realistic health assessment, future research could introduce more precise PA intensities 

using available information on the gradient, speed, age, and sex.  

Furthermore, though having pedestrian route choices in the MITO/MoPeD model is an 

improvement, more advanced algorithms need to be considered in future studies. For ex-

ample, route choice decision factors such as safety, comfort, and scenery need to be in-

vestigated and applied.  

Moreover, to transfer model estimates from Portland to the Munich context, we applied 

the simple transfer method by updating constants. This approach helps us to match the 

mode shares at an aggregate level, but it does not capture the differences in the magnitude 

of variation in observed and unobserved factors. Therefore, more advanced approaches 

can be applied in the future to enhance model transferability. 

Lastly, the integrated model is sensitive to spatial attributes but not sensitive to temporal 

attributes. The pedestrian travel behavior variability is not captured in the model. This 

can lead to some issues in model accuracy and model sensitivity. For example, the phys-

ical activity volume is simply measured by multiplying walk time/distances by 7 to rep-

resent the weekly physical activity. For the comparison purpose in this chapter, the sim-

plified measurement is not an issue. However, imputing weekly walk trips from single-

day behavior will cause some issues when using travel outcomes for health benefits as-

sessment. Therefore, the next crucial task for pedestrian modeling is to understand weekly 

travel behavior and the variability of walk trips.  
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7. Application of the Integrated Model to scenarios in the 

Munich Metropolitan Area 

In this chapter, three policy scenarios were developed to assess the impact of radical strat-

egies on walking behavior. The scenarios include 1) teleworking, which may become 

more common post-Covid; 2) excess commute, which can minimize people’s commuting 

time; and 3) car-free city, which discourage personal vehicle trips. It is expected that the 

scenarios will encourage more walking over private car use, resulting in better health 

outcomes. All three scenarios were applied to the Munich Metropolitan area. 

7.1. Teleworking Scenario 

The scenario investigates the travel demand changes and health impacts of a scenario in 

which 80% of the workers in the administration, financial, and service sectors are required 

to work from home. The integrated model randomly selected 80% of teleworkers in af-

fected job sectors and assigned them zero work trips in the work trip frequency model. 

For this scenario, travel demand changes only for workers in affected job sectors. There-

fore, this section discusses only individuals in that group. 

 

Figure 37 Total trip generation by purposes of the workers in affected job sectors 

Figure 37 shows the number of trips generated by workers in affected job sectors. For 

mandatory purposes, there are exactly 80% fewer work trips as defined and no change in 

education trips. MITO incorporated travel time budgets (TTB) into demand generation, 

so the integrated model can simulate the compensatory behavior between mandatory and 

discretionary travel. Therefore, in this scenario, the reduction in mandatory trips is 
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compensated by an increase in discretionary trips for all purposes except non-home-based 

work. NHBW trips are usually lunch trips during working time or leisure trips before or 

after work, so the teleworking scenario also cuts down the number of NHBW trips. Over-

all, there is an 18.6% decrease in the total number of trips made by workers in the affected 

sectors. 

Figure 38 presents the number of trips by different modes generated by workers in af-

fected sectors. There is a decrease in auto drivers and public transport modes while an 

increase in auto passengers and almost no changes in walk mode. These changes are the 

result of different mode preferences for mandatory purposes versus discretionary pur-

poses. First, motorized and public transport modes are commonly used for commuting 

trips. Therefore, the number of trips of these modes had a dramatic decrease in HBW and 

NHBW purposes. Active modes are more likely to be used for discretionary purposes. On 

the one hand, there was a drop in active commuting trips due to teleworking. On the other 

hand, there was an increase in walking and cycling trips for discretionary purposes. There-

fore, the total number of walking trips showed no changes, and the total number of cycling 

trips showed a slight decrease. Auto-passenger mode is usually used for educational pur-

poses. The telework scenario had no influence on education trips. The small increase in 

auto passenger trips was gained from the increase in discretionary trips. 

 

Figure 38 Trip generation by modes and purposes of the workers in affected job sectors  
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Figure 39 shows the mean daily distances travelled by workers in affected sectors, differ-

entiated by mode. There is a decrease in kilometers travelled by car, train, tram/metro, 

and bicycle, but an increase in kilometers walked. These changes are related to different 

trip length preferences for mandatory purposes versus discretionary purposes. Telework-

ing resulted in more walk discretionary trips as shown in Figure 38. Those active trips for 

leisure purposes are more likely to have longer trip lengths, which leads to an increase in 

the distance walked. 

 

Figure 39 Distance travelled for each mode of the workers in affected job sectors 

Finally, there is an overall increase in PA for workers in affected sectors. The PA volume 

calculation for walking trips is the same as the one presented in Section 6.4.4. The same 

function was used for cycling trips but with different parameters for average speed and 

PA intensity. An average speed of 13.9 km/h and a PA intensity of 5.44 mMETs is chosen 

for cycling (Kahlmeier et al., 2014, Costa et. al. 2015). For these individuals, there is an 

average 8% decrease in cycling PA in the teleworking scenario. This is offset by a 31% 

increase in walking. As shown in Figure 40, the increase in walking PA mainly happened 

to the individuals who have a high level of PA, which is mainly due to increased discre-

tionary (particularly recreational) travel.  
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Figure 40 Walking and cycling physical activity volumes of the workers in affected job sectors 

7.2. Excess Commute Scenario  

Excess commute (EC) refers to the sub-optimal allocation of workers to jobs in an urban 

region in terms of minimal commute distances. This application investigates the changes 

of walking behavior under a radical scenario where jobs and workers are perfectly as-

signed to achieve minimal commuting time. This scenario analysis is based on the work 

done by the author and other colleagues. The method of estimating the optimized worker-

job allocations can be found in the paper (Kuehnel et al., 2022). The actual mean commute 

time was about 12.4 minutes, and the mean commute time for the optimized job-worker 

allocation was about 3.3 minutes. In this scenario, travel demand changes only for com-

muters. The integrated model did not consider the intra-household interaction in travel 

behavior, so the travel behavior of non-commuters has no change in this scenario. There-

fore, the following paragraphs discuss the changes in commuting trips. 

Figure 41 compares the number of trips generated by commuters. The overall trip count 

increased by about 0.6% because of the increase in discretionary travel. This can be ex-

plained by the TTB theory. Commuters in this scenario had shorter commute time, allow-

ing them to devote more time to other activities. Besides that, NHBW trips were reduced 

significantly. According to Staves (2020), this is because active commuters are more 

likely to take home-based discretionary trips rather than more complex non-home-based 

trip chains.  
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Figure 41 Total trip generation by purposes of the commuters  

 

As shown in Figure 42, the modal split for commute trips did not change significantly, 

which is not intuitive. The hypothesis is that shorter commute distances lead to more use 

of active modes. However, the integrated model cannot capture the mode shift in the ex-

cess commute scenario. This is mainly due to the limitation of the walk mode choice 

model for HBW trips that the model poorly captures the relationship between distance 

and utility. 

 

Figure 42 Mode split of commute trips. 
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7.3. Car-Free City Scenario 

In this radical scenario, two policies were applied at the household level and the city level. 

First, all households with cars must reduce their number of registered vehicles by one. 

Then, car-free zones were implemented in the city center of Munich. Car-free zones are 

districts where motorized vehicles are prohibited, and people mainly rely on public 

transport, walking, or cycling. Since 2008, a low emission zone has been in effect in Mu-

nich (City of Munich, 2021). This scenario utilized the spatial context of the low-emission 

zone and fully converted it to a car-free zone (see Figure 43).  

 

Figure 43 Munich Low Emission Zone (City of Munich, 2021) 

Table 13 shows the number of trips generated by different modes. It is not surprising that 

there is a dramatic decrease in motorized vehicles, which is aligned with the scenario 

design. As car usage is restricted, those trips to/from the city center were shifted largely 

to active modes and public transport modes.  
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Table 13 Number of trips by modes in base and car-free city scenarios 

Mode Base scenario Car-free city Difference 

Auto Driver          2,977,585           1,191,258  -60% 

Auto Passenger          1,057,144               682,604  -35% 

Bicycle              932,118           1,438,343  54% 

Bus              270,377               561,672  108% 

Train              158,793               388,008  144% 

Tram/Metro              201,016               461,418  130% 

Walk          1,949,765           2,768,980  42% 

 

Figure 44 gives a clear picture of mode shifts for each purpose. For mandatory purposes 

(HBW and HBE), trips were shifted from motorized modes to bicycle and public 

transport, while there was no significant change in walk mode shares. For discretionary 

purposes, walking became the dominant mode for recreational trips. Both walking and 

cycling had a high share in shopping purposes. 

 

Figure 44 Mode shares in base and car-free city scenarios 
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Figure 45 illustrates the mean distances travelled by different modes. In the car-free city 

scenario, individuals relied on public transport, bicycle, and walk modes, resulting in a 

significant increase in distance travelled by these modes. The average daily walking dis-

tance increased from 445 meters to 622 meters, while the average daily cycling distance 

was almost doubled.  

 

Figure 45 Distance traveled by modes in base and car-free city scenarios 

As expected, there was an overall increase in physical activity volume in the car-free city 

scenario. It is notable that the shares of non-active individuals decreased. This indicates 

that some individuals who did not walk or cycle in the base scenario started using active 

modes in the car-free city scenario, perhaps these were car-dominant users.  
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Figure 46 Cumulative distribution of walking and cycling physical activity volume in base and car-free city 

scenarios 

7.4. Discussion on Munich Scenarios 

In this chapter, three scenarios were applied to the integrated model for the Munich Met-

ropolitan area. This helped us to check the capability of the integrated model, as well as 

its limitations. 

First, the telework scenario revealed that individuals who work from home tend to have 

more and longer active discretionary trips.  The restriction of car use in the car-free city 

scenario also encouraged a large shift from motorized vehicles to active modes. While 

both scenarios underlined an increase in physical activity volume for the affected popu-

lation, it is important to note that the effects may not be that significant when applying 

more realistic assumptions. For example, the calculation of weekly PA volume was heav-

ily simplified by using average PA intensity. The scenarios may have different effects on 

different population groups when using more precise PA intensities differentiated by gra-

dient, speed, age, and sex.  

Second, the significant increasing effect on physical activity volume may not be true. 

Kölbl & Helbing (2003) pointed out a law of constant average energy consumption for 

the physical activity of daily travel. This physical activity budget effect was not consid-

ered in the integrated model. Therefore, the increase in walking and cycling activity in 
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the scenarios was not constrained. This study did not prove whether the physical activity 

budget would increase across populations in the scenario. With the consideration of the 

daily physical activity budget, the increase in walking and cycling modes may be moder-

ate, and more car trips may be shifted to non-active modes such as public transport.  

Third, the excess commute scenario revealed a major limitation of the integrated model. 

The walk mode choice model for HBW trips poorly captured the relationship between 

distance and utility, resulting in less sensitive to the excess commute scenario. On the one 

hand, there was an insufficient distance penalty for active modes. On the other hand, it 

could be because the binary walk mode choice model failed to account for the utility of 

competing modes. Further research is needed to have a closer investigation into the model 

estimation approach. 

Finally, it is important to note that the scenarios presented here were defined by some 

radical strategies. They have served as a demonstration but not for an actual policy eval-

uation.  
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8. Google Timeline: A Novel Dataset for Exploring Pe-

destrian Travel Behavior 

In the previous chapter, the integrated model revealed that the lack of representation of 

travel behavior variability could lead to some issues in model accuracy and model sensi-

tivity, particularly when assessing travel outcomes (e.g., weekly walk and cycle time) for 

evaluating the health benefits of policies and scenarios.  

Given the scarcity of longitudinal travel behavior data and the limitations of household 

travel surveys, this dissertation will conduct a survey to collect longitudinal and passive 

data – Google Location History (GLH) – that records individual trip diaries with coordi-

nates and a board time horizon. Following that, the GLH data will be employed to have a 

closer investigation of travel behavior variability. This chapter demonstrates the survey 

design, empirical examination, and some approaches to analyze travel behavior variabil-

ity. 

First, Section 8.1 introduces what Google Timeline is and how trips and modes are iden-

tified in the data. Then, Section 8.2 documents the development and administration of the 

longitudinal travel behavior survey. Survey results, such as sample distribution, are 

demonstrated in Section 8.3. After that, the methods of data filtering and processing are 

employed in Section 8.4. Some descriptive statistics of respondents’ travel behavior are 

presented in Section 8.5. Finally, the processed GLH data is employed in Section 8.6 to 

conduct four research tasks of exploring travel behavior variability. In general, all the 

research tasks aim at finding the regularity of travel behavior, further assessing week-

long pedestrian activities, and investigating the potential determinants of week-long 

travel behavior by using theory-based or data-driven approaches.  

8.1. Introduction of Google Timeline data 

In the Google Maps smartphone application, the location information is passively col-

lected if the user enables the built-in function called Google Timeline. It automatically 

records the geographic coordinates of user’s daily trips across a wide time spans and spa-

tial context (Figure 47), resulting in the longitudinal dataset called Google location his-

tory (GLH). 
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Figure 47 Example of GLH data points across Europe over five years 

As shown in Figure 48, conventional household travel surveys are limited to coarse spatial 

units and the single-day time scale. Although there are efforts made in combining HTS 

with GPS tracker technologies, it is a relatively new approach with only a few examples 

and limited performance. The GLH data used in this dissertation covers a wide range of 

time spans that are not possible to be captured in other datasets. Because GLH data is 

passively collected, it avoids recall bias when compared to self-reported travel surveys. 

It also reduces the burden on respondents when compared to GPS trackers. More im-

portantly, GLH data like the other smartphone data is identified using a combination of 

the phone’s internal GPS, connected WiFi devices, and cell towers, so it is spatially as 

fine as GPS tracker data. 
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Figure 48 Spatial scales and time spans covered in different data sources 

Once GLH data is recorded, each user can access their own GLH data and download the 

source data file on the Google Takeout website. The GLH data points are stored in JavaS-

cript Object Notation (JSON) files. There are two types of downloadable files: raw loca-

tion history JSON files and semantic location history JSON files. Raw GLH data consists 

of a list of timestamped location records arranged chronologically. Compared to the raw 

data, semantic GLH data contains more high-level and processed information. The se-

mantic information is the same as those presented in the Timeline pages (seen in Figure 

49). Besides the timestamped location records, the information is aggregated and sum-

marized as a daily travel diary, including a sequence of inferred place visits, activity seg-

ments (as known as means of transport in travel surveys) between place visits, and all 

with a start time and an end time. 
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Figure 49 Example of semantic GLH information presented on the Google Timeline webpage 

In this study, semantic GLH data will be employed for several reasons. First, common 

challenges of using location points data are inferring travel mode and purpose, as this 

information is usually not provided along with the location points. Many algorithms were 

developed to detect travel mode and identify activity purpose, but the performance of 

inference varies greatly, particularly when differentiating non-motorized modes. The in-

ferred information provided in the semantic GLH data can help the author tackle this 

challenge so that more efforts can be made into utilizing the data for further investigation 

of travel behavior. Furthermore, benefits from some built-in infrastructures of 

smartphones, GLH data can make use of the accelerometer sensors to deduce travel mode. 

Therefore, the author makes the hypothesis that GLH data can better capture the infor-

mation of travel mode. 

However, the algorithms for processing GLH data are not accessible to the public. To test 

the hypothesis, a small validation test was conducted. Three volunteers were asked to 

enable their GLH services in Google Maps application for a week. In the meanwhile, they 

were asked to manually record their travel diary, including the arrival and departure time 

of each activity location, detailed address and name of activity location, and the means of 

transport used between locations. The trip information in GLH can be edited/corrected by 

users. However, in this validation study, participants were required not to make any cor-

rection to their GLH information. Overall, in the validation dataset, GLH captured 94% 

of the trips generated by samples across a week. The 6% missing trips were mostly short 

walking trips less than ten minutes. For the captured trips, the mode detection was totally 

correct for walk trips, while it had lower accuracy in detecting different kinds of public 



106 

 

transport modes. Because the focus of this study is on analyzing pedestrian travel behav-

ior, the bias in public transport detection will not have large impacts on the following 

analyses. 

8.2. Longitudinal Travel Behavior Survey 

In this study, a survey was carried out to better understand individual’s travel behavior 

variability. The goal is to determine how variable or stable travel behavior is, as well as 

how various life events interact with transportation choices, including the use of active 

modes. The survey collected the GLH datasets along with information about personal 

characteristics, transportation resources and major life events. After the survey develop-

ment and a small pilot study, the final survey was administered to residents in Munich 

metropolitan area during January, February, and March 2020. The following sections go 

into detail about the survey design process, pilot survey feedback, and recruitment proce-

dures. 

8.2.1. Questionnaire Design 

To understand more about travel behavior variability and its potential determinants, an 

online questionnaire was designed and administered through Qualtrics. The questionnaire 

was developed both in English and German, so that the majority of the residents in Mu-

nich can have equal access to the survey. This survey consists of two parts. All partici-

pants were invited to take part in both stages. The first part is to fill out a short question-

naire that asks questions about their individual and household characteristics, and then a 

brief introduction about Google Timeline that is automatically collected by their 

smartphone. In the end of part one, the participants were asked to upload their GLH data 

for the period from 2018 and 2019. The second part is a series of questions about the 

occurrence of major life events that happened since January 2018. The logic/procedure 

of the questionnaire is shown in Figure 50.  

Although some participants may have GLH data for longer time before 2018, the time 

period in this survey was limited to two years due to several reasons. First, technology 

was rapidly evolving. Different technologies may have impacts on the quality and the 

structure of GLH data. Data with larger time spans may involve multiple technologies, 

resulting in incomparable data quality. Second, asking people to recall life events that 

occurred a long time ago may be an unnecessary response burden that can lead to 
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respondent fatigue. Finally, two-year travel behavior data is sufficient for the study pur-

pose and is much richer than those used in the previous studies.  

 

Figure 50 Flow chart of the questionnaire logic  

8.2.1.1. Part I 

Part 1 begins with a descriptive introduction page and indication of consent, followed by 

an eligibility question that restricted participants to those who were aged over eighteen. 
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After that, it shows a brief introduction of what is Google Timeline and asks the question 

to check if GLH service was enabled on participants’ smartphone. Instructions in both 

English and German are provided on how to check whether GLH is enabled. For those 

who already have GLH enabled on their smartphones and are willing to share GLH data, 

they will follow the instructions to download their Google Timeline files and upload them 

to the survey platform. The instructions are provided in English and German for iPhone 

users and Android users.  

For those who didn’t have G H enabled, they were asked if they were willing to partici-

pate and turn on GLH service for the next four weeks. Those who were willing to partic-

ipate will be followed up and asked to conduct the survey again after four weeks. 

After uploading the GLH data, a group of questions about transportation-related and per-

sonal characteristics are asked in order to link them with travel behavior variability in 

later studies. Transportation characteristics include: 

• Driver license holding 

• Transit pass holding 

• Membership in car-share, ride-share, and bike-share services 

• Personal vehicle access, including both automobiles and bicycles 

Personal characteristics include: 

• Age group 

• Gender 

• Employment status 

• Household structure (e.g., number of people living in the household, number of 

children under six years old, number of children between six and eighteen years 

old) 

• Number of employed people in the household 

• Monthly income (before taxes), in categories 
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8.2.1.2. Part II 

Part II of the survey is to ask about changes participants have experienced since January 

1st 2018, including changes to the household structure, transportation resources, employ-

ment status or location, and student status. Participants are asked to select events that 

happened to them, and then correspondingly select in while month(s) these events hap-

pened. If the event happened more than once since January 2018, then they need to select 

all the months that apply. The change in household size could have major impacts on 

individual’s lifestyle and travel behavior. The survey attempts to capture not only the 

changes in household size but also the structure of the household members. The following 

relevant events are summarized and asked about in the survey: 

• A family member/partner/roommate moved out of your residence 

• A family member/partner/roommate (who lived with you) passed away 

• A family member/partner/roommate moved into your residence 

• A new child/children arrived in your household (through birth, adoption, step 

child etc.) 

• Other events that changed the number of adults or number of children in your 

household 

Then, the transportation-related events include: 

• Got/lost access to a car/motorcycle 

• Gained/got rid of a driver’s license 

• Registered/got rid of car-sharing membership 

• Got/got rid of transit pass 

• Got/lost access to a bicycle 

• Registered/got rid of bike-sharing membership 

For employees or students who have an internship, the following events could happen to 

them: 
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• Started/lost a new job 

• Increased/decreased working hours 

• Changed job location 

• Promoted to a position with more responsibilities 

For students, the following events could happen to them: 

• Started attending a school/university 

• Graduated from school/university 

• Dropped out of school/university 

• Changed school/university location 

8.2.2. Pilot Survey 

Before deploying the survey for final data collection, a pilot deployment was undertaken. 

This piloting involved two steps: First, the initial survey was distributed to a small group 

of students and employees from Portland State University (N=6). An oral feedback ses-

sion was conducted with the pilot survey respondents directly after they finished the sur-

vey. In the oral session, pilot participants shared their thoughts about the survey, any 

confusing sections, and suggestions for improvement.  

Appendix 2 documents the full list of concerns and suggestions derived from the oral 

feedback session. Several changes in language, format and styles were made to the survey 

based on participants’ suggestions, which makes the survey easier to read and the ques-

tions easier to answer. In addition, two major changes were made to the survey as a direct 

result of the piloting and participants’ feedback. First, the participants pointed out the 

importance of having a more compelling welcome page/introduction, which should es-

tablish a relationship with the person and present the goal of the study by using simple 

and easy-to-understand language. Therefore, some facts and figures were added to the 

welcome page and visualized nicely in the final survey design (see Figure 51). It linked 

this study of active transport with an individual’s physical well-being. The final survey 

that incorporated the feedbacks from pilot participants is shown in Appendix 3. 
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Figure 51 Welcome page in the final survey design 

 

8.2.3. Recruitment 

Because of the uniqueness of the GLH data, the recruitment process was deliberately 

planned. The most serious concern among the pilot participants is the issue of data pri-

vacy. The author acknowledged that the GLH data is extremely private. Therefore, the 

traditional recruitment methods of random sampling, such as flyers, press release, and 

postcard/letter, are not applicable in this study. Given the specialty of GLH data and lim-

ited time, budget and human resources, convenience sampling method was employed. 

The primary target groups are convenient samples, such as friends and colleagues of the 

researcher, students, and employees at the Technical University of Munich (TUM) be-

cause it is more possible to establish trust with people who know the researcher. Besides 

that, an existing email list maintained by TUM graduate school was used to access a large 

group of doctoral students.  

Several actions were taken in the recruitment procedure to establish trust with people and 

minimize their concerns about data privacy.  
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First, in order to discuss privacy concerns about providing personal GLH data, the survey 

recruitment of convenient samples was all conducted in person. The researcher first con-

tacted organizations via emails, including research groups at TUM and associated depart-

ments in companies, to express the research interest and the study purpose of the survey. 

Then, an in-person information session was arranged for all potential participants at each 

organization. During the session, a five-minute in-person pitch was given by the re-

searcher. The presentation focused on giving information about the study purpose, what 

is Google Timeline, and how the researcher protects data privacy. Besides that, an infor-

mation sheet was provided, which clearly stated the data privacy protection rules. (See 

Appendix 4). After the in-person information session, a recruitment email was sent to the 

potential participants. A sample email invitation is shown in Figure 52. Due to the effort 

required for in-person recruitment, the number of recruited individuals in-person is lim-

ited. In total, 31 friends and families of the author were contacted. 14 organizations were 

contacted including three departments in companies, six research groups at TUM and four 

university classes at TUM. Approximately 200 potential participants were recruited in 

person. 

 

Figure 52 Sample recruitment email for the Longitudinal Travel Behavior Survey 
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Second, for those who cannot attend the in-person information session and for people 

who were recruited via email. A URL that linked to the project website was provided in 

the email. On this website, the project goals were briefly described, and a link to the 

Qualtrics survey was highlighted. More importantly, a five-minute video was posted on 

this website to inform project goals and address data privacy concerns. Figure 53 shows 

a screenshot of the project website.  

 

Figure 53 Project website for the Longitudinal Travel Behavior Survey 
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8.3. Survey Results 

After in-person and email recruitment, 98 survey responses were collected. Almost all the 

respondents were recruited from the in-person recruitment approach, and the email-list 

approach did not provide any successful responses.  

All participants were invited to take part in an online survey about their socio-de-

mographics, transportation resources and major life events. Then, they were asked to up-

load their location history data (GLH) for the period from 2018 and 2019. Out of 98 re-

sponses, 53 respondents completed the online survey. Of those, only 29 respondents had 

GLH data collection previously enabled on their mobile phones and were willing to share 

them. 14 respondents did not have GLH enabled but were willing to turn it on and come 

back in four weeks. However, no additional samples got after four weeks. Table 14 shows 

the number of responses of each survey section.  

Table 14 Number of responses completing each section of each survey 

Survey section Count Share 

Started 98 100% 

Introduction of Google Timeline 98 100% 

Check if Google Timeline enabled 94 96% 

Check if Google Timeline enabled - Yes 56 57% 

Transportation resources 53 54% 

Personal characteristics 52 53% 

Upload Google Timeline data 29 30% 

Life events 29 30% 

Submitted 29 30% 

Check if Google Timeline enabled - No 38 39% 

Keep Google Timeline enabled for the next 4 weeks - Yes 14 14% 

Keep Google Timeline enabled for the next 4 weeks - No 16 16% 

Personal characteristics 26 27% 

Submitted 24 24% 
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Figure 54 summarizes the times respondents took to complete the survey. For respondents 

who did not have Google Timeline enabled had a mean completion time of 6.4 minutes, 

while for those who had Google Timeline enabled finished the survey with a mean dura-

tion of 24.9 minutes. As expected, downloading and uploading GLH data took most of 

the survey time. There were some outliers taking more than 40 minutes to finish the sur-

vey. It may be caused by the pause, interruption, or some technical difficulties in down-

loading and uploading GLH data. 

 

Figure 54 Boxplot of survey completion time 

 

8.3.1. Sample Description 

Figure 55 presents the demographic information of the 29 respondents who shared their 

GLH data and completed the survey. Figure 56 compares the sample distribution with the 

German census distribution in terms of some key socio-demographic attributes. The data 

are skewed towards participants who are aged from 25 to 34. This is not surprising be-

cause as anticipated, the convenience sampling recruitment resulted in university-centric 
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respondents. The data are also skewed towards male participants. Most of the respondents 

(20 out of 29) are employed full time. medium-to-high income, living in two-person 

households without children.  

 

Figure 55 Survey respondents’ socio-demographic attributes 

 

Figure 56 Respondents’ socio-demographic distribution compared to the German census distribution 

Table 15 shows the number of respondents in each mobile phone type. The mobile phone 

types can have impacts on the quality of GLH data points. In this study, respondents' 

mobile phone types covered the most popular brands in the market and were evenly dis-

tributed. 
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Table 15 Number of respondents in each mobile phone type 

Mobile phone type Count 

Apple (iPhone) 7 

Huawei 8 

Samsung 6 

Other 8 

 

Figure 57 demonstrates transportation resources of survey respondents. Transportation 

resources are important indicators of choosing travel mode. It also to some extent indi-

cates an individual’s travel behavior pattern. For example, people who hold transit pass 

are more likely to be a frequent transit user and have more stable behavior in terms of 

mode usages. Most of the respondents hold a driver license and/or a transit pass. Shared 

mobility subscription is another way of accessing a car and bike. Munich currently has 

several shared mobility service providers, including DriveNow, Sixt Share, and MVG 

Bike. Shared mobility is still not commonly used by the survey respondents. Most of the 

respondents have no access to a car but have one or more access to a bike.  

 

Figure 57 Survey respondents’ transportation resources 
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8.3.2. Google Timeline Data 

The time period of GLH data varies for each respondent and not all have two complete 

years of GLH data. This may be because respondents disabled the GLH at some point. 

Figure 58 shows the time period of GLH data and the number of recorded days for each 

respondent. Respondent 9 and Respondent 15 are excluded since their GLH datasets are 

empty. This may be because the GLH service was never enabled on their devices, but 

they answered “is enabled” in the survey. As a result, 27 valid GLH datasets were used 

in this study. Most of the GLH datasets cover a large number of successive days over the 

two-year period. The mean number of days recorded is 481 days. More descriptive anal-

ysis of GLH data will be demonstrated in Section 8.5 after GLH data processing. 

  

Figure 58 The time length of GLH data and number of recorded days of each respondent. 

 

 

 

 

SAMPLEID NUMBER OF DAYS RECORDED 

29 726 
28 730 
27 606 
26 465 
25 74 
24 704 
23 730 
22 232 
21 183 
20 727 
19 600 
18 507 
17 501 
16 731 
14 335 
13 663 
12 714 
11 722 
10 34 
8 712 
7 13 
6 21 
5 119 
4 731 
3 282 
2 570 
1 567 
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8.3.3. Life Events 

The second part of the survey is a series of questions about the occurrence of major life 

events that happened in 2018 and 2019. In total, 90 life events were recorded among all 

respondents. As shown in Figure 59, four respondents had no life events occurrence. Most 

of the respondents had one to four events that happened in 2018 and 2019. 

 

Figure 59 Number of respondents for frequency of life events happened since January 1st 2018 

Table 16 demonstrates the number of cases of each event type. Getting a bike and starting 

a new job are the most common events. It would be worthwhile to investigate how cycling 

behavior changes after gaining bike access as well as whether starting a new job affects 

individual’s habitual travel mode. The household-related events indicate the changes of 

household size and household structure. Besides that, there are three household relocation 

events. The change of neighborhood built environment may also change individual’s 

travel behavior. These events will be employed in Section 8.6.4 to explore the association 

between life events and travel behavior changes.  
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Table 16 Number of cases of each life event type 

Category Life event type Number of cases 

Household events Person moved out 4 

 Person moved in 5 

 New birth 1 

 Moved home 3 

Mobility events Got car access 3 

 Lost car access 4 

 Got driver license 2 

 Registered car sharing  1 

 Registered e-scooter 1 

 Got bike access 13 

 Lost bike access 5 

 Registered bike sharing 1 

Job events Started new job 15 

 Lost job 2 

 Changed job location 5 

 Promotion 4 

 Increased work hour 5 

 Decreased work hour 2 

School events Started school/university 6 

 Graduated from school/university 6 

 Changed school location 2 

 

8.4. Google Timeline Data Processing 

Semantic GLH data contains more high-level and processed information. Besides the 

timestamped location records, the information is aggregated and summarized as a daily 

travel diary, including a sequence of inferred place visits, activity segments (as known as 
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means of transport in travel surveys) between place visits, and a start time and an end 

time of each activity. 

As seen in Figure 60, Semantic GLH data is stored in JSON file. The timeline object 

consists of all available semantic information in chronological order. Each item in the list 

is either an activity segment or a place visit.  

Activity segment is an activity involving location changes from one place to another, 

which can be considered as a trip in the context of transport models. Each activity segment 

contains the start and end location, duration of the trip, distance traveled during this trip, 

and activity type. Here the activity type refers to the means of transport. The activity type 

is inferred with a certain probability. The most common activity types are walk, car drive, 

bus ride, subway ride, cycling or running. 

Place visit means a visit or stay at a fixed location for a duration of time, for example 

stay at home, at work, or at a shopping mall or a restaurant. Place visit provides infor-

mation includes location coordinates and length of stay at the location. It also provides 

confidence in demonstrating the accuracy of location inferences. 

      

Figure 60 An example of the GLH data structures stored in a JSOM file 

To use GLH data for further travel behavior analysis, several procedures are needed to 

process the data. First, each activity segment object is converted to a trip, then combined 

with place visit, resulting in an activity chain of each day. The values of start and end 

location are defined as the origin and destination of the trip. The travel time is calculated 
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as the difference between timestamps at activity ends and starts. Travel distance is directly 

obtained from the distance value. Trip mode is defined by the activity type with the high-

est probability. Overall, the data for all respondents include 45,050 trips on 12,999 per-

son-days. 1,420 trips (3%) were removed due to unknown activity type and unknown 

travel distance. 

Then, a validity check was conducted to filter out trips with unreasonable travel time or 

travel distance. Travel speed is calculated based on the observed travel time and travel 

distance. For motorized modes such as passenger vehicles and public transport (e.g., bus, 

tram, subway, and train), trips with travel speeds over 300 km/h are filtered out. For cy-

cling and running trips, those with travel speeds over 30 km/h are sorted out. For walk 

trips, those with travel speeds over 7.5 km/h are excluded. As a result, 823 trips (1.8%) 

were filtered. Table 17 shows the trip counts and shares by activity types before and after 

filtering. Finally, there are 42,744 trips used in this analysis. 

Table 17 Trip counts and shares by activity types 

 Before filtering After filtering 

Activity type Count Share Count Share 

Passenger car  8,810 20.2% 8,765 20.5% 

Public transport  12,101 27.7% 12,055 28.2% 

Cycling 3,082 7.1% 3,052 7.1% 

Running 251 0.6% 250 0.6% 

Walking 19,323 44.3% 18,622 43.6% 

 

8.5. Descriptive Analysis 

Table 18 shows the overall descriptive characteristics of the samples analyzed from the 

GLH data in terms of travel behaviors. The average daily travel time across the respond-

ents is 122 minutes (about 2 hours). It is higher than the average traveling time observed 

in the German national travel survey 2017 (MiD), which is 75 minutes per person per day 

(BMVI, 2019b). Similarly, the average number of trips per day is 4.6 in the GLH dataset 

while it is only 3.1 in the MiD 2017 dataset (BMVI, 2019b). Overall, the respondents 

traveled more than the average level observed in MiD data. First, this is because the 
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respondents are mostly characterized as graduate students or middle-aged university staff, 

who usually engage in more daily activities. Another reason is that GLH data recorded 

not only the daily short-distance activities but also long-distance trips, such as tourist trips 

during holidays and business trips. More importantly, one limitation of traditional HTS 

is that respondents generally underreport their travel, resulting in a smaller number of 

trips recorded in HTS compared to the GLH data. 

Regarding walking behavior, on average, the respondents have 2.1 walk trips per day and 

walk 28.9 minutes per day. This is also above the average level observed in MiD data, 

which is 0.8 walk trips and 20.1 minutes per day (BMVI, 2019b). On one hand, it suggests 

that people in the GLH dataset are more active. On the other hand, it may indicate that 

GLH data can capture more active trips since each short-distance trip is recorded pre-

cisely. 

Regarding cycling behavior, the respondents have an average daily cycle trips of 0.2 and 

cycle time of 6.0 minutes. This is much lower than the average values observed in MiD 

data, which is 0.4 cycle trips and 9.5 minutes per day. This suggests that cycling trips are 

underrepresented among respondents.  
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Table 18 Descriptive statistics of respondents’ travel behaviors 

Travel behavior indicators Time scale Mean SD. Min Max 

Number of non-mobile days Weekly 1.96 5.62 0.10 4.74 

 Monthly 6.35 26.64 0.25 15.42 

Number of trips Daily 4.62 1.34 1.75 8.54 

 Weekly 24.51 11.74 3.96 52.82 

 Monthly 118.38 39.21 22.00 193.67 

Total travel time (mins) Daily 122.88 38.00 63.46 262.27 

 Weekly 609.67 224.42 235.17 1273.87 

 Monthly 2929.83 1026.67 1269.63 6713.08 

Number of walk trips Daily 2.07 0.89 0.61 4.87 

 Weekly 11.13 6.61 1.38 30.09 

 Monthly 53.28 24.31 2.00 110.33 

Total walk time (mins) Daily 28.93 13.83 7.03 66.17 

 Weekly 149.21 89.30 19.39 383.80 

 Monthly 709.90 371.03 232.74 1705.00 

Total walk distance (km) Daily 1.77 0.81 0.44 3.74 

 Weekly 9.22 5.54 1.21 21.67 

 Monthly 43.53 23.06 4.64 96.58 

Number of cycle trips Daily 0.24 0.29 0.00 0.88 

 Weekly 1.30 1.70 0.00 5.50 

 Monthly 6.62 7.93 0.00 24.04 

Total cycle time (mins) Daily 6.04 9.84 0.00 47.12 

 Weekly 27.99 36.97 0.00 110.27 

 Monthly 154.29 241.38 0.00 1059.26 

Total cycle distance (km) Daily 0.82 1.30 0.00 5.45 

 Weekly 4.02 5.88 0.00 22.28 

 Monthly 23.15 37.60 0.00 156.26 
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8.6. Analysis of Travel Behavior Variability 

8.6.1. Investigation of Travel Behavior Variability 

Many policy questions about travel behavior are predicated on the desire to understand 

behavioral change and travel variability in response to changes in an individual’s eco-

nomic changes, environmental conditions, and policy interventions. Until now, the lack 

of data has hampered the ability to examine these relationships. The emergence of longi-

tudinal, location-based data offers the potential to understand the variability of individual 

activity and travel patterns. Recent studies have found that people have large variability 

in daily travel behavior (Hanson & Huff, 1982, 1988; Pas & Koppelman, 1986; Pas & 

Sundar, 1995; Raux et al., 2016; Schlich & Axhausen, 2003; Susilo & Axhausen, 2014). 

The level of variability could be quite different when analyzed using different temporal 

scales, travel metrics, and measures of variation. Most of the recent studies have focused 

on the day-to-day variability, and few have had the opportunity to observe variability over 

longer time periods, such as week-to-week and month-to-month. 

In this section, we employed the collected GLH data to explore travel behavior variability. 

Different from previous studies which mainly focused on day-to-day variability, this 

study observed the variability across various temporal scales (day-to-day, week-to-week, 

and month-to-month). Furthermore, the variability of various travel behavior indicators 

is examined. They are the variability of (1) start time of day; (2) number of trips; (3) total 

travel time; (4) number of walk trips and (5) total walk time.  

Among the 27 samples described in Section 8.3.2, a few samples are excluded in some of 

the analysis here since the length of GLH data is not sufficient to capture the variance of 

travel behavior. Respondent 6 is excluded in the analysis of week-to-week variability and 

month-to-month variability. Respondent 7 and sample 10 are excluded in the analysis of 

month-to-month variability. 

8.6.1.1. Measurement of Variability Index 

Previous research employed different measurements for calculating travel behavior/pat-

tern variability, but there is a lack of consensus on a common way to identify similar-

ity/variability of travel behavior/pattern. Some studies considered various travel behavior 

indicators separately and then measured variability from every single dimension (Li et 

al., 2018; Pas & Koppelman, 1986; Pas & Sundar, 1995; Raux et al., 2016; Tarigan & 

Kitamura, 2009). The usual travel behavior indicators are the number of trips per day, 
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daily time use allocation, and dominant mode. However, Schlich & Axhausen (2003) 

argued that travel behaviors are a complex and multidimensional phenomenon. They ap-

plied more complex variability measurements to consider the temporal dimension of trips 

and the sequence of activity chains.  

In this section, intrapersonal variability is computed for each respondent in different tem-

poral scales, including day-to-day variability, week-to-week variability, and month-to-

month variability. The travel-related indicators computed at the individual level are (1) 

start time of day; (2) number of trips; (3) total travel time; (4) number of walk trips and 

(5) total walk time. We adopt the single dimension approach by measuring the variability 

of various travel behavior indicators separately. First, the single dimension analysis can 

help us to investigate the variability of each indicator. The results are usually easier to 

interpret than the multidimensional measurement. Second, the sample size used in this 

study is relatively small, so to get meaningful outcomes, it is necessary to reduce the level 

of complexity in the analysis.  

Commonly, there are four statistics to measure variability within one dataset. They are 

range, interquartile range, standard deviation, and variance. However, they are all abso-

lute variability. To compare variability between individuals with widely different means, 

we need to calculate the relative variability.  

The coefficient of variation (CV), also known as relative standard deviation (RSD) is a 

dimensionless measure of dispersion. It is widely used to express the repeatability of an 

experiment. It is calculated as 𝐶𝑉 =  
𝜎

𝜇
 , where 𝜎 represents total variance and 𝜇 repre-

sents the mean. 

8.6.1.2. Intrapersonal Travel Behavior Variability 

In Figure 61, we compare the intrapersonal variability (CV) of different travel behavior 

indicators across different temporal scales. There is no standard rule to interpret high or 

low variance by using CV. The higher the coefficient of variance, the greater the level of 

dispersion around the mean. As a rule of thumb, the coefficient of variance larger than 1 

indicates a relatively high variation, while the coefficient of variance lower than 1 can be 

considered low dispersion. 

When comparing the intrapersonal variability across different temporal scales, we found 

that day-to-day travel behaviors are more variable than week-to-week and month-to-
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month travel behaviors. Especially for monthly indicators, the travel behaviors show a 

high level of similarity. This suggests that people may have a regularity in their activity 

participation or have a travel budget that gets articulated over a week or a month. How-

ever, it also partly due to the smoothing of values over a larger number of days.   

An important question of household travel surveys is how many days of observations are 

needed to obtain an individual’s routine travel behavior, while minimi ing costs and re-

spondent burden. Schlich & Axhausen (2003) recommended that travel surveys should 

span at least two weeks in order to capture an individual’s activity pattern. Previous stud-

ies in the field of health research suggested that a reliable estimate of physical activity 

using an accelerometer should monitor over three to seven days (Pedersen et al., 2016). 

The results from this study indicate that there is low weekly variance because all of the 

travel measures have CV values less than 1. This suggests that a period of one week 

maybe be sufficient to capture routine travel behaviors in surveys or other data collection 

efforts. This is consistent with the previous findings, but it is not conclusive. CV is a 

descriptive measure and additional statistical methods are needed to explore how many 

successive days are needed to capture sufficient variation in an individual’s travel behav-

ior. 

The intrapersonal variability index also differs across the different travel behavior indi-

cators. The start time of the first trip in a day has the least variance, across all of the 

temporal scales. Since most of the respondents in this study are workers, this suggests 

more habitual behaviors in the morning, perhaps around commuting behavior 

In general, the trip frequencies (number of total trips and number of walk trips) are less 

variable than the time spent traveling (total travel time and total walk time). The results, 

however, do support the idea of a travel time budget over a longer time span – weekly or 

monthly, rather than daily. The idea of travel time budget found in the literature suggests 

that each person is willing to spend a fixed amount of time to travel across a day or week 

(Zahavi, 1974). Total walk time has the highest variance among all travel behavior indi-

cators across all of the time scales. While this study does not offer evidence to support 

why this may be, walking behaviors may be more variable because the decision to walk 

may be more subject to the weather, physical activity budgets, and the built environment. 

Thus, one-day travel surveys may not be sufficient to characterize walking activity for 

travel or physical activity.  
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It is also interesting to examine the degree of dispersion of the individual variability 

within each measure of travel behavior. The month-to-month variation has a narrower 

range of values across all measures of travel behavior. As with the CV index, the start 

time has the lowest range of variability values across all time scales. Again, this is not 

surprising given the skewed sample of workers from the same location. A larger sample 

that includes more workers from various industries and nonworkers may have a wider 

range of variability. The CV in the weekly number of trips has a large degree of dispersion 

compared to other time scales and other measures. This is likely due to the differences 

between weekday and weekend activity patterns.  

These results suggest that a traditional one-day survey is not adequate to capture a repre-

sentative sample of complex travel patterns and that patterns may exist over longer peri-

ods of time. It also raises questions about the explanatory factors for the differences in 

variation across individuals.  

 

Figure 61 Intrapersonal variability index (CV) of different travel behavior indicators across different tem-

poral scales 

8.6.1.3. Impacts of Socio-Demographics on Intrapersonal Travel Behavior 

Variability 

Based on the analysis in the previous section, we found that the degree of intrapersonal 

variability varies widely across different temporal scales and most travel measures have 

a wide range of CV values across individuals in the sample. As a result, we will test the 

contributions that various socio-demographic characteristics might have on the level of 
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intrapersonal travel behavior variability. To test these associations, a set of univariate 

linear regression models are estimated to investigate the effects of socio-demographic 

variables on intrapersonal variability. The regression analysis of variability is conducted 

for the four travel behavior indicators (number of trips, number of walk trips, total travel 

time, and total walk time) for each of the temporal scales. The intrapersonal variability in 

the start time of day is not analyzed here because it has little variance observed in the 

previous section.  

The personal and household characteristics shown in Figure 55 are considered as predic-

tors for regression analysis. They are age group, gender, occupation status, income group, 

household size, number of cars, and number of young children (six years or younger). 

The number of observations is small in some categories, so several categories are com-

bined. For example, the age group from 35 to 44 is combined with the age group from 45 

to 64. Occupation status includes student and full-time employee. Monthly income (eu-

ros) has three categories, high-income group (more than 6,000), medium-income group 

(2,000-6,000), and low-income group (under 2,000). 

There are several reasons why we use univariate linear regression models. Due to the 

small sample size in this study, we reduced the model complexity to better explore the 

associations with socio-demographic variables. The second reason is the high correlation 

among socio-demographic variables. As shown in Figure 62, income groups are highly 

correlated with age groups. Also, household size, income, car access, and the number of 

young children are correlated. Using simple regression models ( a linear regression model 

with a single explanatory variable) can help us to avoid the multicollinearity issue and 

directly investigate the impacts of each socio-demographic variable. 
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Figure 62 Pearson correlation among socio-demographic variables 

Table 19 provides a summary of the coefficients from univariate linear regression models. 

Significant variables are bolded (Intercepts are not highlighted as they are always signif-

icant). Some variables with a significance slightly below 90% were also highlighted when 

the theory supports their inclusion. The detailed regression model specifications with sig-

nificance and model fits are presented in Appendix 5. Each table presents the univariate 

linear regression models for intrapersonal variability in different indicators across three 

temporal scales.  
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Table 19 A summary of the coefficients from univariate linear regression models for intrapersonal varia-

bility 

 Travel time #Trips Walk time #Walk trips 

Variables Day Week Month Day Week Month Day Week Month Day Week Month 

Age             

(Intercept) 0.97 0.61 0.31 0.57 0.49 0.24 1.23 0.68 0.45 0.87 0.58 0.29 

18 to 24 -0.18 0.02 -0.02 0.00 0.07 0.05 0.18 0.18 0.03 0.03 0.13 0.10 

25 to 34 0.08 0.10 0.01 0.03 0.10 0.04 0.17 0.23 -0.02 0.07 0.17 0.05 

35 to 64                         

Gender             

(Intercept) 1.13 0.82 0.35 0.62 0.68 0.24 1.47 1.06 0.44 0.99 0.88 0.32 

Male -0.19 -0.23 -0.05 -0.04 -0.18 0.05 -0.17 -0.31 0.00 -0.10 -0.26 0.03 

Female                         

Occupation             

(Intercept) 1.05 0.66 0.28 0.59 0.51 0.24 1.35 0.84 0.41 0.93 0.66 0.30 

Student -0.12 0.06 0.10 0.02 0.18 0.09 0.06 0.10 0.07 0.00 0.20 0.11 

Worker                         

Household size             

(Intercept) 1.13 0.74 0.30 0.64 0.66 0.26 1.51 0.94 0.41 1.01 0.86 0.35 

1 -0.16 0.03 0.09 -0.04 0.01 0.13 -0.15 0.03 0.11 -0.09 -0.04 0.09 

2 -0.17 -0.14 -0.01 -0.07 -0.20 -0.03 -0.21 -0.15 0.01 -0.13 -0.27 -0.07 

More than 2                         

Car access             

(Intercept) 0.90 0.53 0.25 0.53 0.41 0.22 1.42 0.76 0.41 0.95 0.58 0.30 

No car access 0.18 0.24 0.13 0.11 0.26 0.10 -0.08 0.18 0.05 -0.04 0.23 0.08 

Has car access                         

Income group             

(Intercept) 1.03 0.70 0.32 0.60 0.56 0.27 1.31 0.84 0.41 0.89 0.68 0.33 

High 0.04 -0.17 -0.12 -0.06 -0.21 -0.07 0.07 -0.13 -0.04 0.06 -0.14 -0.06 

Low -0.10 0.18 0.19 0.09 0.42 0.13 0.31 0.39 0.17 0.27 0.60 0.18 

Medium                         

Children             

(Intercept) 1.03 0.57 0.21 0.57 0.42 0.23 1.42 0.70 0.37 0.94 0.59 0.32 

No children -0.02 0.13 0.14 0.03 0.18 0.06 -0.06 0.20 0.09 -0.02 0.16 0.02 

Has children                         
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Overall, the models show that most socio-demographic variables have no or weak impacts 

on intrapersonal variability, regardless of travel behavior indicators. The small sample 

sizes undoubtedly contribute to this. Nonetheless, some characteristics are significant and 

point to areas for future work. 

Models across all travel behavior indicators have some common findings. First, age has 

no significant impact on intrapersonal variability. Perhaps this can be attributed to the 

aggregation of ages into broad categories and the small samples sizes. Intrapersonal var-

iability is consistently lower for men, and it is significant in the models of daily and 

weekly variability. This is aligned with findings in previous study (Raux et al., 2016). 

Moreover, students have higher intrapersonal variability in travel times at the monthly 

scale. This may be due to school holidays and semester breaks, leading to larger changes 

in travel times. Finally, the presence of young children in the household also has almost 

no significant impact on intrapersonal variability. This may also be an artifact of the small 

sample of individuals with children. 

Car access has the most significant impact on intrapersonal variability of total travel time 

and the number of trips. Not having a car is systematically associated with high variance 

in travel time budget and number of trips. This can be explained by people without cars 

who are more likely to be active travelers. The Department for Transport (Department for 

Transport, 2019) found that walkers and cyclists were more likely to vary their commute 

mode than car drivers. Therefore, people having no car tend to have more variance in 

travel modes, leading to more variance in travel times. 

Household size has no important effects on intrapersonal variability of total travel time. 

However, people living alone have higher variability in month-to-month trip counts, walk 

trip counts, and walk time. Besides that, two-person households systemically have lower 

variability in number of walk trips across all temporal scales.  

In contrast to our expectations, the model shows that high-income people have lower var-

iability in monthly travel time budget and number of trips, while low-income people have 

higher variability in monthly travel time budget and number of trips. Low-income people 

are also correlated to lower variability in walking time and number of walk trips. 
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8.6.2. Assessment of Transport-Related Physical Activity and Its Comparison with 

Travel Surveys 

Physical inactivity is one of the key risk factors of chronic disease. According to the 

World Health Organization, over half of the German adults are not sufficiently active 

(World Health Organization, 2018). One of the easiest ways to accumulate physical ac-

tivity (PA) is through active transport including walking and cycling. Adults who use 

active travel are overall more physically active (Sahlqvist et al., 2012). Therefore, re-

searchers in both transport and health science have assessed transport PA to understand 

its demographic and behavioral determinants. 

The results in Section 8.6.1 showed that walking behavior has a highest variance over 

days. This indicates that a traditional one-day survey may not be adequate to capture the 

complexity of walking behavior pattern, particularly when calculating physical activity 

volume for health benefits assessment. However, travel surveys are still the most acces-

sible and widely used data sources for transportation studies. It is important to investigate 

if travel surveys are suitable for assessing transport-related physical activity. Therefore, 

this study aims to assess walking and cycling travel behavior and to find out the strengths 

and limitations of different data sources. A comprehensive comparison will be conducted 

across four datasets: 1) One-day Household Travel Survey; 2) Mobility Panel Survey; 3) 

Google Location History data; and 4) Physical activity questionnaire. 

8.6.2.1. Introduction of Data Sources 

This study used four different data sources that were all conducted in Germany. Two data 

sources are self-report surveys in which households complete travel diaries designed to 

capture every occasion in which a household member changes location. One data source 

is the passive smartphone data (GLH) collected for this dissertation. The other data source 

is a large-scale physical activity questionnaire. A summary table of each dataset and rel-

evant attributes for this study is given in Table 20. 
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Table 20 Overview of data sources used for this study 

 
Mobilität in 

Deutschland  

(MiD) 

Deutsches 

Mobilitätspanel  

(MOP) 

German Health 

Update  

(GEDA)  

Google Location 

History data  

(GLH) 

Year 2016-2017 2016-2018 2014-2015 2018-2019 

Country Germany Germany Germany Germany 

Sample ages  All ages 10 years or older 18 years or older  18 - 64 

Sample size 316,361 11,225 24,016 27 (1,668 weeks) 

How is walk-

ing/cycling rec-

orded? 

One-day  

trip diary 

Seven-day  

trip diary 

Questions GPS tracking  

 

Mobilität in Deutschland (MiD) is Germany’s most recent national travel survey (BMVI, 

2019b). It is a large cross-sectional survey conducted in 2016-2017 consisting of 156,420 

households containing 912,002 trips. Respondents complete 24-hour travel diaries to give 

on their interactions with the transport network over the course of a day. Trips recorded 

in MiD with main mode walking and cycling can be used to investigate transport-domain 

PA. However, distances and travel times are self-reported, limiting the precision of PA 

estimates. In addition, there is limited information on walking and cycling during trips 

where another mode is the main mode, such as access and egress to public transport. 

The Deutsches Mobilitätspanel (MOP) is a nationwide German panel survey conducted 

every year (BMVI, 2019a). Around 650 households are recruited per year and respond-

ents stay in the panel for 3 years. Each year respondents complete a 7-day travel diary. 

For this study the MOP is used as a cross-sectional survey in which household IDs are 

unique each year. Thanks to the 7-day diary period we can capture transport-domain PA 

more representative of respondents’ overall behavior. However, MOP suffers from the 

same limitations as MiD in that trip details are self-reported and walking and cycling is 

difficult to capture if not the main mode. 

Google location history (GLH) data were introduction in Section 8.1. The 27 valid GLH 

datasets were used in this study. The semantic location history data that contains the in-

formation of travel mode, travel time and travel distance is employed for measuring walk-

ing and cycling behavior.  
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The German Health Update (GEDA) is a cross-sectional health survey (Lange et al., 

2017). It is conducted with a large sample size in the German adult population on a regular 

basis. The latest data which is accessible for research purposes is from the wave of 2014-

2015. The European Health Interview Survey (EHIS) PA questionnaire is completely in-

tegrated into the GEDA 2014-2015. A total of 24,016 persons aged 18 years or older 

participated. Transport-related walking and cycling are assessed separately by asking re-

spondents the questions about their time spent on walking/cycling in a typical week:  

1) On how many days in a typical week do you walk/cycle at least 10 minutes with-

out stopping to get from place to place? 

2) On a typical day, how long do you walk/cycle to get to the place? 

 

8.6.2.1. Assessment and Comparison 

Four different datasets were compared against the key indicators presented in Table 21. 

Travel measures for walking and cycling were compared separately. Due to the nature of 

GEDA questionnaire, trip-level indicators (e.g., mean walk trips per walker/cyclist, mean 

walk distance per walker/cyclist, and mean walk time per walker/cyclist) were only com-

pared among MiD, MOP and GLH. Walk and cycle time in GEDA were recorded at 

week-long level in groups. In GEDA, physical activity is defined as walking/cycling at 

least 10 minutes without stopping. In other to have a fair comparison, here walkers/cy-

clists are defined as those with at least one walk/cycle trip over 10 minutes reported in 

the day or week. In addition, the assessments were only compared among people aged 

from 18 to 64 in order to compare datasets under the similar context. 
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Table 21 Overview of indicators used for comparison 

  MiD MOP GLH GEDA 

Travel measures 

(walk) 
Share of walkers x x x x 

 Mean walk trips per walker x x x  

 Mean walk distance per walker x x x  

 Mean walk time per walker x x x  

 Mean walk time per walker 

 (In group) 
x x x x 

Travel measures 

(cycle) 
Share of cyclists x x x x 

 Mean cycle trips per cyclist x x x  

 Mean cycle distance per cyclist x x x  

 Mean cycle time per cyclist x x x  

 Mean cycle time per cyclist  

(In group) 
x x x x 

Physical activity 

measure 

Transport-related physical activity in 

MET-hours/week  
x x x x 

 

Figure 63 compares walkers’ daily and weekly travel behavior across four datasets. The 

share of walkers (i.e., those with at least one walk trip reported in the day or week), is 

lower in MiD and MOP than GLH. In other words, MiD and MOP overestimate non-

active people.  

At the daily level, mean number of walk trips are similar across three datasets, while MiD 

and MOP recorded longer walk distances and walk times than GLH. This might reveal 

that walk trips recorded in MiD and MOP are usually long-distance walk trips and short 

walk trips are poorly captured. Also, due to the fact that MiD and MOP are self-report 

surveys, respondents tend to overreport travel times and distances of their walk trips. 

When it comes to the weekly indicators, MiD shows a much higher mean walk trip and 

walk distance per walker. This is because MiD only records trips on a single day and the 

data were multiplied by a factor of 7 to get the weekly walking behavior. People who 

actively travelled on the survey data are assumed to have the same active level on other 

days. Without capturing the interpersonal behavior variability, MiD tends to overmeasure 

walkers’ walk trip frequency, distances and times. Thanks to the week-long nature of 

MOP, it doesn’t show overestimation issues, but still MOP captures fewer walk trips at 
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the week level compared to GLH and the mean walk distance is compensated by trips 

with longer distances. 

 

Figure 63 Comparison of walkers’ travel behavior at daily and weekly levels across MiD, MOP and Google 

Timeline datasets 

Figure 64 compares the weekly walk time across four datasets. First, without capturing 

the interpersonal behavior variability, people in MiD have either no walk time or ex-

tremely high walk time during a week. Compared to the shares in GEDA, MOP also has 

a larger share of non-active people. The shares resulted from GLH data are aligned with 

those in GEDA, except that the share of non-active people is a bit smaller than GEDA. 

While it is hard to tell what is the ground truth of individuals’ weekly walk time, it is 

obvious that MiD is not suitable for assess people’s physical activity level due to the high 

share of non-active people and less variance across populations. 
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Figure 64 Comparison of weekly walk time across MiD, MOP, Google Timeline and GEDA 

 

Figure 65 Comparison of cyclists’ travel behavior at daily and weekly levels across MiD, MOP and Google 

Timeline datasets 
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As mentioned in section 8.5, cyclists are underrepresented in the collected GLH data. 

Therefore, the comparison results are less intuitive and convincing. Figure 65 shows that 

at the daily level, GLH data had a higher share of cyclist, less distance cycled per cyclist 

but much higher cycling time per cyclist. At the weekly level, MiD again shows a much 

higher mean cycle trip and cycle distance per walker. The differences between MOP and 

GLH were also large. Figure 66 presents the difference of weekly cycle time distribution 

across four datasets. MiD still has the same issue as it had for walk travel behavior. The 

differences among MOP, Google Timeline and GEDA are minor since the majority of the 

population has no weekly cycle time. 

 

Figure 66 Comparison of weekly cycle time across MiD, MOP, Google Timeline and GEDA 

World Health Organization (WHO) recommends that adults accumulate at least 150 

minutes of moderate-vigorous physical activity (MVPA) per week. Walking and cycling 

for transport qualify as being at least moderate intensity activity. Therefore, it is important 

to assess physical activity level based on four datasets. Figure 67 presents weekly 

MET/hour distribution across four datasets. These results support the hypothesis that a 1-

day diary is not representative of the weekly distribution of transport-domain PA. The 
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proportion of inactive individuals is overestimated, while the number of individuals in 

the central PA levels is underestimated. The proportion of individuals in the highest PA 

level is slightly overestimated. 

 

Figure 67 Comparison of weekly MET/hour distribution across MiD, MOP, Google Timeline and GEDA 

find out if disagreements and bias exist in some specific person groups  

Furthermore, the physical activity level (MET/hour/week) of different datasets were also 

compared in relation to subgroups in order to find out if disagreements and bias exist in 

some specific person groups. Figure 68 and Figure 69 compare weekly MET/hour distri-

bution by age group and gender. It indicates that the disagreement is larger in the age 

group of 18 to 24, may suggesting that people those who from 18 to 24 are poor in report 

trip diaries in travel surveys. 
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Figure 68 Comparison of weekly MET/hour distribution by age group across four datasets 

 

 

Figure 69 Comparison of weekly MET/hour distribution by gender across four datasets 

 

8.6.3. Determinants of Weekly Travel Behavior 

In previous sections, the analysis of travel behavior variability proved that individuals 

have a great deal of day-to-day variability. Week-to-week travel behaviors have relatively 
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low dispersion. Weekly walk and cycle time are also the common metrics in health re-

search for assessing physical activity volumes. Therefore, it is important to have a closer 

investigation on weekly travel behavior. This study attempts to find out the potential de-

terminants of weekly walk time, weekly cycle time, as well as weekly physical activity 

volumes. The following analysis addresses the question of how factors such as personal 

attributes and weather influence individuals’ weekly walking and cycling time. 

The 27 valid GLH dataset was used in this analysis. In total, 1667 weeks were recorded. 

The 27 individuals with varying weeks consist of the panel data for estimation. Linear 

panel regression models with random effects are employed in this study. The regression 

equation of panel data with random effects is shown below: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽 ∗ 𝑋𝑖𝑡 + 𝛼𝑖 + 𝑈𝑖𝑡 

Where 𝑋𝑖𝑡 is a set of explanatory variables; 𝛼𝑖 is the random term capturing unobserved 

individual factors; 𝑈𝑖𝑡 are the error terms varies by individual and time. 

This model estimates panel data where interference variables may be associated across 

time and across individuals. The difference between intercepts is accommodated by the 

error terms of each individual. The advantage of using the random effect model is to 

eliminate heteroscedasticity in individuals and over time.  

Three regression models were estimated for dependent variables, including weekly walk 

time in minutes, weekly cycle time in minutes and weekly physical activity volume in 

mMET. The weekly physical activity volume was measured by the following equation: 

𝑃𝐴𝑖 = ∑ ( ∑
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑,𝑤

4.8
∗ 3.61 + ∑

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑,𝑐

13.9
∗ 5.44)

𝑐𝑦𝑐𝑙𝑒 𝑡𝑟𝑖𝑝𝑠

𝑐=1

𝑤𝑎𝑙𝑘 𝑡𝑟𝑖𝑝𝑠

𝑤=1

𝑑𝑎𝑦𝑠

𝑑=1

 

The explanatory factors included in the models are: 

• Socio-demographic characteristics (e.g., age, gender, occupation, and household 

size) 

• Travel-related information (e.g., a set of binary variables about car access, bike 

access, car share membership and bike share membership) 
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• Weather-related attributes (e.g., weekly average precipitation in millimeters, 

weekly average temperature in Celsius, and weekly average snow depth in centi-

meters) 

• Time-related variables (e.g., month, has public holidays in the week or not).  

The weather data in this study was obtained from Deutscher Wetterdienst (DWD). The 

DWD provides open-source data on a wide range of historical and current climate infor-

mation. The DWD platform was used to download daily climate data from 107 weather 

stations across Germany for the year 2018 and 2019. Then each trip was mapped to the 

closet weather station and the matched date to get the precipitation, temperature, and snow 

depth on that day. 

By analyzing the model performance and significance, some of the variables were ex-

cluded and the final model specifications are presented in Table 12 Some variables with 

a significance slightly below 90% were included in the final estimation if theory sup-

ported their inclusion.  

Individuals aged from 25 to 34 are less active in both walking and cycling. Males and 

students tend to walk more but cycle less though the influence is minor. Having a car 

access is a significant to being active. In average, those with car access walked 51 minutes 

less and cycled 15 minutes less than those without car access. Having bike access in-

creased weekly cycle time by 42 minutes. It is interesting to note that people who use car 

share tend to walk more. This could be due to the short walking trips to the car. House-

holds with a larger household size tend to walk more but cycle less, which makes sense 

because walking in a group is easier than cycling together. Walking and cycling time are 

negatively associated with weekly average precipitation. Heavy rain (defined as a precip-

itation rate over 7 mm) can reduce walking time by 5.5 minutes and cycling time by 8.2 

minutes.  The snow depth showed a positive influence on walking and cycling, which is 

not intuitive. This might be because of the rare snowing days throughout the year, as well 

as the fact that snow depth in Germany is generally not significant. Having public holi-

days is a strong predictor for walking time while has almost no impact on cycling time. 

Walking and cycling time also varied across different months. From August to November, 

people are generally more likely to walk. This might be because of the vacation season. 

It is surprising that months such as June and July have a negative correlation with walking 

time. 
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In general, the weekly walk time and weekly PA volume models have relatively good R2, 

whereas the goodness-of-fit of the weekly cycle time model is poor. This could be due to 

the small number of cycling trips represented in the collected GLH data. 

Table 22 Estimation results of linear panel regression models  

 
Weekly walk time Weekly cycle time   Weekly PA volume 

 
θ Pr(>|z|) θ  Pr(>|z|) θ  Pr(>|z|) 

Intercept 47.71 0 *** 18.76  0  *** 5.43  0  *** 

Age: 25-34 -23.54 0 *** -10.82  0  *** -2.54  0  *** 

Gender: male 1.06 0 *** -9.73  0  *** -1.02  0  ** 

Occupation: student -0.59 0 *** -7.69  0  *** -1.1  0  *** 

Has car access: yes -51.52 0 *** -16.47  0  *** -4.68  0  *** 

Has bike access: yes -17.36 0 *** 43.44  0  *** 2.93  0  *** 

Has car share membership: yes 2.05 0 *** -5.55  0  *** -0.5  0.09  . 

Has bike share membership: yes -15.85 0 *** 33.61  0  *** 2.43  0  *** 

Household size = 2 1.44 0 *** -17.19  0  *** -2.1  0  *** 

Household size > 2 7.35 0 *** -21.13  0  *** -1.9  0  *** 

Weekly average precipitation -0.79 0 *** -1.17  0  *** -0.16  0  *** 

Weekly average snow depth  0.13 0 *** 0.01  0  *** 0.01  0  *** 

Weekly average temperature n.s.   0.41  0  *** 0.04  0  *** 

Has public holiday: yes 14.82 0 *** 0.37  0  *** 0.3  0  *** 

Weekly total number of trips 4.39 0 *** -11.1  0  *** -0.17  0.08  . 

Month: February -7.03 0 *** -6.13  0  *** -1.01  0  *** 

Month: March -6.82 0 *** -4.67  0  *** -0.87  0  *** 

Month: April -3.6 0 *** 17.99  0  *** 1.55  0  *** 

Month: May -3.14 0 *** 13.68  0  *** 1.18  0  *** 

Month: June -11.92 0 *** 4.58  0  *** n.s.     

Month: July -16.02 0 *** 5.8  0  *** n.s.     

Month: August 11.78 0 *** -4.3  0  *** 0.37  0.1   

Month: September 17.36 0 *** -1.63  0  *** 0.92  0  *** 

Month: October 15.66 0 *** -6.17  0  *** 0.35  0.04  * 

Month: November 3.79 0 *** -1.82  0  *** n.s.     

Month: December -9.63 0 *** -5.27  0  *** -1.09  0  *** 

R-Squared: 0.48   0.21     0.42     

 ote  Pr(.| |)   the level of significance; ***, **, *, ‘.’   99.9%, 99%, 95% and 90% level of significance, respec-

tively 

 

8.6.4. Impacts of Life Events on Weekly Travel Behavior 

Changes in travel behavior can be influenced by a variety of factors. The previous section 

explored its association with weather that changes on a daily basis. Some circumstances 

that change occasionally during life, such as household relocation, car/bike purchases and 

changes of employment status, may also have influences on the change of travel behavior. 
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In this section, the investigation tried to look at how major life events influence weekly 

travel behavior. However, due to the limited number of life events observed among the 

survey participants, the analysis was conducted through a series of descriptive statistics. 

Appendix 6 contains descriptive analyses of changes in travel behavior by different event 

types. The changes in monthly travel time, monthly walk time, monthly cycle time and 

monthly PA volume were calculated for each event case. Take monthly walk time as an 

example, changes in monthly walk time are defined as the percentage increase/decrease 

in walk time by comparing the average monthly walk time before and after event occur-

rence. Average monthly walk time is defined as the mean value of walk time over three 

months before/after the month of occurrence. Since behavioral change caused by life 

events usually has a transition phrase, the walk time generated in the month of occurrence 

was not used for capturing travel behavior change. According to this calculation method, 

the GLH data for analyses needs to have at least three successive months (the month of 

occurrence, month of occurrence +1 and month of occurrence -1). However, some of the 

respondents did not have a three-month-long GLH data and were excluded from this anal-

ysis. Finally, 32 out of 90 recorded event cases were presented in Appendix 6. 

The time-varying factor such as weather could also have joint influences on travel behav-

ior changes. Due to the rare samples in each event type, factors such as weather and 

months were not controlled in the analysis. It is noted that the change in travel behavior 

could be affected by multiple life events. Overall, this analysis only serves as a demon-

stration of how to use the collected GLH data for exploring the relationship between ma-

jor life events and changes of travel behavior. There is no intuitive conclusion that can be 

drawn based on such a small sample size.  

 

8.6.5. Defining Travel Routines and Disruptions Using Machine Learning Approaches 

The theory-driven approach mentioned in Section 5.4.1 proved that sociodemographic 

characteristics can to some extent explain the change in travel behavior. However, travel 

behaviors are complex and are influenced by many factors. Some factors can change 

daily, including the built environment, weather, and availability of mode, while the other 

factors may change occasionally during life such as life-changing events (e.g., household 

relocation, car/bike purchase) and social intervention. Socio-demographics are only a 
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small part of the determinants. Also, the evidence of sociodemographic is less success-

fully found when using more complex behavioral measures (Raux et al., 2016).  

Recently, the data-driven machine learning approach has been popular for understanding 

unobserved and complex phenomena since it does not rely on explicit knowledge and 

theory. Making use of the advances in data science, this section employs clustering algo-

rithms and machine learning techniques to examine variations in travel over various pe-

riods based upon the Google Location History (GLH) data for a small sample of individ-

uals. This analysis aims to define the concept of routine behavior as well as identify dis-

ruptions to this routine. Given that this research observes travel behavior with a large 

number of location points over years, sufficient data are available to apply these and other 

machine learning techniques. For example, clustering algorithms, such as those widely 

used in travel behavior research to explore activity patterns (Cui et al., 2018; El Mahrsi 

et al., 2017), will be used to group days with similar travel characteristics based on mode 

usage and time of day. The resulting clusters represent the regularity in travel behavior, 

while the difference between clusters represents some level of disruption.  

8.6.5.1. Methodology of Cluster Algorithm  

Cluster analysis is a machine learning technique to find the natural grouping of data points 

so that the points in the same cluster have similar characteristics. It is widely used for 

pattern recognition in many fields. In this research, we consider each day as a data point, 

then use the clustering algorithm to group the days with travel patterns into one cluster 

considering activity types, departure and arrival times at activities, and activity duration. 

Here are the steps of the data analysis: 

• Data filter and process 

• Data transformation: generate a time-activity binary matrix for each day 

• Similarity measurement of each day pairs 𝑆𝑖𝑗 

• Cluster formation 

• Cluster interpretation and evaluation 

First, GLH data are processed to be ready for the following analysis. For example, we 

convert time steps from Unix epoch format to standard date format in seconds. Moreover, 

activity types are defined for all trips as the type with the highest confidence. Afterward, 
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we create a time-activity type map for each day. As seen in Figure 70, activity types are 

categorized into four groups, and time is recorded at a rather fine-scale (in one-minute 

bins) to also capture short walk trips.   

 

Figure 70 Time-activity type map of an example day. 

After that, we convert the maps into binary matrices with 4 [activities] x 1440 [1-minute 

time step] entries (Equation 1).  

[

𝑥11 ⋯ 𝑥1𝑗

⋮ ⋱ ⋮
𝑥𝑖1 ⋯ 𝑥𝑖𝑗

]       (1) 

where 𝑥𝑖𝑗 is a binary variable. 𝑥𝑖𝑗 equals 1 when activity type 𝑖 happened at time bin 𝑗; 

otherwise 𝑥𝑖𝑗 equals to 0. 

The measurement of the distance between two data points is crucial for the clustering 

algorithm. In this study, the distance of points is defined as the similarity of the binary 

matrix of two days. The Jaccard similarity coefficient is used to measure similarities for 

binary matrices (Equation 2). 

𝐽 =  
𝑀11

𝑀01+𝑀10+ 𝑀11
      (2) 

where 𝑀11 represents the total number of cells where two days both have a value of 1. 

𝑀01 and 𝑀10represent the total number of cells where one matrix has a 0 and the other 

matrix has a 1. Finally, we generate a similarity matrix for all the point pairs (Equation 

3). The matrix is mirrored (i.e., 𝑆1,2 is the same as 𝑆2,1). 

time

Activity type

00:00 24:00

Still

Walk

Cycling

In vehicle



148 

 

[
 
 
 
 
 

0 𝑆1,2 ⋯ 𝑆1,𝑗−1 𝑆1,𝑗

𝑆2,1 0 ⋯ 𝑆2,𝑗−1 𝑆2,𝑗

⋮ ⋮ ⋱ ⋮ ⋮
𝑆𝑖−1,1 𝑆𝑖−1,2 ⋯ 0 𝑆𝑖−1,𝑗

𝑆𝑖,1 𝑆𝑖,2 ⋯ 𝑆𝑖,𝑗−1 0 ]
 
 
 
 
 

    (3) 

There are many common cluster algorithms that can be utilized. Here, we use the graph-

theoretic algorithm for clustering data points. The key is to construct a similarity graph 

from a similarity matrix. Each day denotes a node 𝑖 in the graph. Every two nodes are 

connected by an edge when the Jaccard similarity 𝑆𝑖𝑗 is above some threshold. After gen-

erating a similarity graph, a cutting algorithm is used to cluster nodes into several groups.  

To interpret the regularity in travel behavior, we will analyze several characteristics of 

the nodes in the same cluster, such as travel characteristics, weather, time-related attrib-

utes (month and public holidays), spatial-related attributes (Walk score, population den-

sity, accessibility). The difference between clusters represents some level of disruption. 

Special attention will be given to sudden changes in the similarities over time. For exam-

ple, someone might have walked to reach activities most of the time, but at some point, 

switches to driving as the predominant mode. The questionnaire from the respondents 

will reveal if life-changing events, such as a move from the city to the suburbs, triggered 

this behavior change.  

8.6.5.1. Analysis Examples of Cluster Algorithm  

The methodology mentioned above was applied to all respondents. In this section, we 

take respondent sample 5 as an example to show the analysis process. First, an activity 

map is generated for all the observed days (see Figure 71) and then we transfer the activity 

map to a 1 x 5760 (= 4 x 1440) binary vector to represent the activity chain for each day.  
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Figure 71 Time-activity type map of sample 5  

Then, the Jaccard similarity index is measured for every pair of days (see Figure 72). In 

this case, every two nodes are connected by an edge when the Jaccard similarity is above 

the threshold of 0.8. The appropriate threshold is defined by a series of experiments. The 

rule of thumb is that the number of clusters and the node in each cluster is reasonable. 
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Figure 72 An example of the Jaccard similarity matrix of sample 5 

In the third step, the nodes and edges are fed into Gephi, and the community detection 

algorithm is conducted to define the modularity class of each node. For this dataset, four 

clusters are detected (see Figure 73).  

 

Figure 73 The visualization of clusters generated in Gephi 

After cluster formation, several characteristics are summarized to interpret the similarity 

within clusters and the difference between clusters. From Table 23, we can see that cluster 

1 represents the weekend pattern with a late start time of the day and higher travel time. 

Cluster 2 represents the weekdays with a high share of walking activities. Based on these 

characteristics, we cannot tell the significant difference between clusters 3 and 4. The 

days in cluster 3 and 4 are all weekdays with relatively less travel time and low share of 

walk trips. The start time of the day in cluster 4 is slightly earlier than that in cluster 3. 

There could be some unobserved factors that can distinguish the days in clusters 3 and 4. 

Day 123 124 126 127 128 129 … 234 235 236 238 239 240

122 0.83 0.92 0.86 0.86 0.82 0.85 … 0.82 0.80 0.85 0.83 0.76 0.88

123 0.85 0.84 0.85 0.86 0.84 … 0.81 0.85 0.78 0.86 0.76 0.90

124 0.86 0.86 0.84 0.85 … 0.82 0.85 0.92 0.85 0.79 0.93

126 0.99 0.92 0.99 … 0.89 0.84 0.79 0.94 0.84 0.92

127 0.91 0.98 … 0.90 0.85 0.79 0.93 0.83 0.92

128 0.92 … 0.89 0.83 0.78 0.94 0.83 0.89

129 … 0.89 0.84 0.79 0.94 0.85 0.91

… … … … … … …

234 0.80 0.76 0.88 0.76 0.87

235 0.78 0.84 0.75 0.90

236 0.79 0.74 0.86

238 0.84 0.90

239 0.81
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Table 23 Day and travel behavior characteristics of each cluster 

Cluster 1 2 3 4 

Cluster size 22 32 20 31 

Number of weekend days 18 2 0 0 

Number of public holidays 1 0 0 0 

Mean still time (min)  1283 1323 1329 1333 

Mean total travel time (min) 156 117 107 108 

Mean total trips 5 6 4 5 

Mean walk time (min) 13 15 6 7 

Mean walk distance (m) 770 1006 470 472 

Mean share of walk trips 0.16 0.28 0.16 0.19 

Mean start time of the day (hour) 10.84 7.90 8.23 7.88 

 

8.7. Discussion and Limitations 

The collected GLH data is a novel and rich source and helped to better understand the 

travel behavior variability over days, weeks, and months. However, the work presented 

in this section has some important shortcomings that limit the ability to draw broad con-

clusions or examine correlates of behavioral variations. The foremost among these is the 

small sample size of participants. Given the novelty of these data and the detailed spatial 

travel patterns, it is no surprise that many potential participants were reticent to engage in 

our study. In future studies, this could be mitigated by providing potential recruits with 

more examples of how these data would be analyzed, including the analyses in this dis-

sertation. Offering recruits some compensation for their time, effort, and data might also 

increase the likelihood of participation. 

The analysis of GLH data confirmed that HTS was poor at capturing walking activities 

and biased in self-reported travel distance. Although limitations exist in the traditional 

HTS, this work did not use the GLH data to estimate econometric models (such as walk 

mode choice models and walk destination choice models) for the integrated model pre-

sented in Chapter 6. There are several reasons for not applying GLH data for model esti-

mation in pedestrian travel demand models. 

The main reason is the small sample size of participants. The limited size of GLH data 

was a bottleneck to estimate stable econometric models. To illustrate the variation across 

population, it is important to add essential socio-demographic attributes such as age and 

gender to the models. However, it was generally not possible to control age and gender 

in the models because of the limited number of records available.  



152 

 

While the samples were all recruited from the Munich region, they were not representa-

tive of either the Munich population or the German population. The cross-data compari-

son between survey respondents and German census data in Section 8.3.1 revealed that 

GLH samples are skewed towards participants who are aged 25 to 34. Also, due to ethical 

considerations, young children or teenagers (under age 18) were not included in the sur-

vey recruitment. These sample biases restricted the use of  GLH data to the integrated 

model that simulates the travel demand across the entire synthetic population.  

More importantly, HTS data remains the most commonly used data source for travel de-

mand models. We cannot overlook the strength of HTS, such as large sample size, better 

representation of population distribution, and more accessible to researchers. As a result, 

it is more important to inform about HTS limitations rather than to replace them in the 

travel demand models.  

The research suggests that HTS can be validated against objective methods. Because of 

the small sample size in this study, the German HTS could not be validated by using GLH 

data. Once the GLH data is collected with a larger sample size and better representation 

of population distribution, cross-data validation can be conducted for different person 

groups in terms of travel metrics such as trip generation, travel time, and travel distances. 

Calibration factors can be derived for each person group and then used to modify the self-

reported travel information in HTS. Furthermore, GLH data can be used to calculate the 

variability index of different person groups. Then the variability index can be used to 

impute an individual’s week-long travel behavior based on the one-day HTS. 

Overall, the focus of this study is to explore the capabilities of using Google Timeline 

data for travel behavior studies. It is not suitable for exploring the variations across the 

population, while it has great potential for investigating the variations within an individ-

ual. The findings from this analysis reveal some insights into travel behavior and perhaps 

more importantly provide some better guidance on the design of future data collection 

efforts and the utility of GLH for transportation analysis. 
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9. Conclusion 

This dissertation improved pedestrian travel demand modeling in terms of model accu-

racy, sensitivity, transferability, and efficiency. It targeted to advance pedestrian model-

ing both theoretically and practically. First, it enhanced the stand-alone pedestrian model 

MoPeD in different aspects, including run-time upgrade, reconstruction of new pedestrian 

accessibility measures, and enhancement of the walk destination choice model. Next, the 

integrated modeling framework that incorporates MoPeD into MITO was developed to 

provide more accurate travel outcomes for evaluating policies and scenarios. Finally, 

novel data on travel behavior variability was collected. Detailed data analyses examined 

travel behavior variability, identified the limitations of HTS, examined potential determi-

nants of weekly travel behavior, and investigated individuals’ travel routines and disrup-

tions by using machine learning techniques.  

While the key findings and limitations were discussed at the end of each chapter, this 

section will outline them in a more general view and focus on some broader issues. This 

chapter begins by highlighting some key findings and lessons learned in each part of the 

dissertation. Then, Section 9.2 summarizes the contributions and implications of this 

study, including innovations in data, fundamental research in the travel behavior field, 

and advances in modeling approaches. The limitations of the work and possible improve-

ments in future research are then discussed in Section 9.3. Finally, Section 9.4 makes 

some broad recommendations for future pedestrian modeling.  

9.1. Key Findings 

Fine spatial resolution was employed in this study, with 80-meter grid sizes in the Port-

land context and 100-meter grid sizes in the Munich context. It is proved that using fine 

spatial resolution can improve the model accuracy in mode shares and walk trip lengths 

while the model run time increases exponentially. This work managed to upgrade run 

time to a few minutes for running large-scale areas with fine spatial resolution. However, 

this study does not advocate for always using the finest spatial resolution for travel de-

mand models. The selection of the appropriate spatial resolution highly depends on the 

type of application, the model aims to address and the level of details of the available data 

differing from locations.  
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The new pedestrian accessibility measurement proposed in this study follows a simple 

specification. It is easy to construct and transfer to other study areas. It showed positive 

and significant influences on walk mode choice. However, the goodness-of-fit of walk 

mode choice models in MoPeD 2.0 was poor. It is unsurprising because the travel distance 

is not known at the mode choice stage. This work would underline that the challenge for 

the walk mode choice model is significantly increased when mode choices are made prior 

to destination selection. Future research can focus on different modeling sequences or 

more advanced modeling approaches for joint mode and destination models.   

The walk destination choice models in MoPeD 2.0 captured the relationship between built 

environment variables and destination utility. Network density and the accessibility to 

shops and retail stores showed strong positive effects on destination selection, whereas 

the proportion of industrial jobs, cross motorway, and slope were barriers. Different from 

previous studies that choose walk destinations at the TAZ level, the destination choice 

models in this study were employed at small scales. However, the model estimation be-

came challenging with the use of small-scale destination zone alternatives.  The models 

for selecting superPAZ destinations (400-meter grid cells) had good performances and 

showed intuitive associations with the built environment, while PAZ-level (80-meter grid 

cells) destination choice models had a low goodness-of-fit. This could be due to fewer 

variations across small-scale destination zones or the lack of important factors in the 

model. Future studies need to investigate more factors, such as micro-level or street-level 

built environment variables (e.g., pavement condition and the number of trees).  

The MITO/MoPeD integrated model improved the estimation of travel outcomes such as 

mode shares and walk trip length distributions, but it did not contribute to the better as-

sessment of physical activity volume. One major reason is that the access and egress walk 

trips are neglected in the integrated model. Active trips navigating to public transport are 

also a major source of physical activity. Those trips need to be considered in the model 

to simulate physical activity volumes more precisely. However, the travel information for 

access and egress trips was limited in HTS. More data needs to be collected to understand 

these trips. Another reason is that the integrated model does not capture pedestrian travel 

behavior variability. The physical activity volume is simply measured by multiplying 

walk time/distances by 7 to represent the weekly physical activity. To better assess phys-

ical activity volumes, it is crucial to either find out better methods of imputing weekly 
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walk trips from single-day behavior or move travel demand models from one day to week-

long. 

The MITO/MoPeD integrated model is an open-source planning tool that can be trans-

ferred to other contexts and applied to various policies and scenarios. The main finding 

of the model integration task was that the technical integration of two models is straight-

forward though involving a large amount of coding work. However, the spatial transfer 

of econometric models from the estimation context to the application context is not trivial. 

Data needs to be collected at the same level of detail and applied using coherent defini-

tions. For example, income categories need to be matched in two contexts because they 

are usually defined differently in different countries. More importantly, models need to 

be calibrated at an aggregate level by updating constants. More advanced approaches can 

also be applied to calibrate the differences in the magnitude of variation in observed and 

unobserved factors. 

The collected GLH data is a novel and rich source and helped to better understand the 

travel behavior variability over days, weeks, and months. Although we suggest that a one-

week period of observation could be sufficient to capture the variability of some travel 

metrics, there is no solid conclusion on how many days of observations are enough for 

capturing an individual’s routine travel behavior. The analysis of GLH data confirmed 

that HTS was poor at capturing walking activities and biased in self-reported travel dis-

tance. Although limitations exist in the traditional HTS, this work does not underline the 

need to replace HTS with passively collected data such as GPS and smartphone data. 

More importantly, the work provided guidance on the design of HTS data collection and 

suggested that HTS data be validated against objective methods. The analysis of GLH 

data attempted to find out the potential determinants of travel behavior stability/variabil-

ity. It is proved that socio-demographics have impacts on travel behavior variability, par-

ticularly students have higher intrapersonal variability than workers, and individuals who 

have no car are more variable than those who have cars. Weather and the days of public 

holidays can also disrupt an individual’s routine. However, due to the limited number of 

life events observed among the survey participants, the relationship between life events 

and travel behavior was not clearly established in this study. 
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9.2. Contributions 

This work makes major contributions to the improvement of pedestrian travel demand 

modeling in the broad areas of data collection, travel behavior studies, and modeling ap-

proaches. 

First, the longitudinal travel behavior survey itself involved novel elements. One notable 

aspect was the collection of Google Location History data. Few transportation studies 

have utilized GLH, in part, because of their proprietary nature. Indeed, the effort to recruit 

individuals and have them download and share their individual data was not insignificant. 

However, these data are detailed sources of longitudinal activity and travel diaries that 

provide rich information for exploring travel behavior variability. Another novelty was 

the wide time spans of GLH data. Previous studies conducted self-reported surveys or 

collected GPS data for multiple days or weeks (K. Axhausen et al., 2002; Xianyu et al., 

2017). The passively collected location data (GLH) collected in this dissertation recorded 

respondents’ travel diaries over months, which provides great opportunities for exploring 

longer-term variations in travel behavior. 

Additionally, this dissertation provides additional evidence toward growing literature on 

the field of travel behavior variability. Although the findings were not as novel as the 

contributions, the new data, along with the advanced approaches, provided numerical ev-

idence in a quantitative way. For instance, the analyses in Chapter 8.6 confirmed the large 

intrapersonal travel behavior variability, and its degree varies widely across different tem-

poral scales and travel metrics. The study also confirmed the limitations of HTS for cap-

turing pedestrian activities and suggested that HTS assessment be validated against ob-

jective methods. Several relatively well-established findings about the determinants of 

travel behavior were also confirmed, such as association with weather and the built envi-

ronment.  

More importantly, this dissertation contributes to better pedestrian modeling practices. 

While MoPeD was a well-established pedestrian planning tool, the enhancement made in 

this dissertation upgrades the performance of MoPeD, particularly for model transfera-

bility and efficiency. Furthermore, the integrated model presented in Chapter 6 is one of 

the first to incorporate pedestrian modeling into the agent-based transport model. It pro-

vides more accurate model outcomes, resulting in a clear picture of future transport de-

mand.  
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Overall, this dissertation makes strides towards a more accurate, sensitive, transferable, 

and efficient pedestrian planning tool for delivering travel outcomes as well as evaluating 

policies and scenarios. The work demonstrates that this planning tool is capable of eval-

uating a variety of policies and scenarios, including transportation infrastructure invest-

ments and land use planning. Perhaps the greatest contribution of this work is in the il-

lustration of the use of longitudinal data. The findings from this analysis reveal some 

insights into travel behavior and perhaps more importantly provide some better guidance 

on the design of future data collection efforts and the utility of GLH for transportation 

analysis. 

9.3. Limitations and Future Work 

While the models developed in this dissertation made significant advances in pedestrian 

modeling, they are not without limitations. First, A number of additional factors can be 

added to the models to yield a better representation of pedestrian travel behavior, partic-

ularly around walk mode choice and destination choice. For instance, this application 

work in Chapter 5 reveals that the pedestrian planning tool appears to be only sensitive to 

the level of street connectivity rather than the quality of street connectivity, which refers 

to micro-level data such as the design and pavement conditions of the pedestrian street. 

Due to the large-scale application of the pedestrian planning tool, such small-scale infor-

mation on the street-level built environment was not able to obtain for the entire study 

area. Also, having such fine-grained information in the model would increase the data 

collection burden, leading to lower model transferability to other study areas. Thus, the 

micro-level built environment factors were eliminated in this study. As more information 

becomes available, these street-level factors may be incorporated into pedestrian models. 

Also, this limitation may be addressed in the future when pedestrian models are applied 

to small-scale planning, such as neighborhood design.  

Second, more sophisticated modeling approaches could be employed in pedestrian plan-

ning tools. The mode choice models only considered the traditional modes, including car, 

public transport, bike, and walking, but did not incorporate new modes such as e-bike, 

bike share, and e-scooter, which may compete with walking. This dissertation employed 

Oregon household travel surveys collected in the year 2011, which did not include new 

active mobility and micro-mobility. A number of electric bike trips are captured in the 

most recent travel surveys (e.g., MiD 2017), but the information on bike share and e-
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scooter is still missing. Furthermore, only trips with walking as the primary mode was 

simulated in the model. Public transit access and egress trips were excluded due to the 

lack of data. This may cause an underestimation of total walking activity, leading to an 

inaccurate assessment of health benefits.  

Third, the small sample size of GLH data prevented us from drawing solid conclusions 

about travel behavior variability across the population. This is also the main reason why 

the GLH data was not used for developing pedestrian planning tools. Although the GLH 

data was not suitable for interpersonal travel behavior study, it is a unique data source for 

intrapersonal travel behavior research. A few analyses were conducted in this dissertation, 

but the collected data was not fully utilized. For instance, the fine location information in 

GLH data can be used for pedestrian route choice modeling. The shortest-path route 

choice model was implemented in the integrated model for simplicity. Future work can 

explore the relationship between pedestrian route choice and the built environment by 

using GLH data. Additionally, the analyses of travel behavior variability were conducted 

without differentiating activity purposes. Activity purposes may reflect different relation-

ships with travel behavior variability. For example, individuals may have more stable 

travel behavior for commuting and some favorite shops and restaurants frequently visited, 

while relatively high variance for leisure activities (Hasan et al., 2013; Tarigan & 

Kitamura, 2009). Because such information is not inferred in the collected GLH data, 

future work will require algorithms for deducing activity purposes. 

Finally, more research is needed to address the issue of GLH data reliability. Although a 

small-scale data validation test was conducted in this study and concluded that GLH data 

was reliable for capturing means of transport, there has recently been a debate among 

researchers. On the one hand, researchers showed evidence and success in using GLH 

data. Yu et al. (2019) concluded that GLH data reasonably captured the spatial move-

ments of the subjects. They also confirmed that the estimation of daily exposures to am-

bient particulate matter using GLH had less than 1.2% error when compared to the results 

using the GPS data logger. On the other hand, researchers argued that GLH data does not 

capture the locations and trips adequately. Macarulla Rodriguez et al. (2018) pointed out 

that GLH data has a low accuracy rate in capturing locations in meters. Cools et al. (2021) 

validated the GLH data with prescribed itineraries and found that GLH was poor in cap-

turing short trips. Disagreements arise mainly from different methodologies, the purpose 
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of the study, and different ground-truth data. Therefore, a more comprehensive validation 

study needs to be conducted to check the reliability of GLH data for various applications. 

In conclusion, more fundamental research is needed to investigate the travel behavior 

variations within the population and its association with the built environment and life 

events. Furthermore, modeling practices need to keep pace with the fundamental research 

by incorporating key influences and using more advanced modeling approaches. 

 

9.4. Recommendations 

It has been illustrated that the pedestrian planning tool presented here can provide better 

prediction of travel outcomes as well as assessment of transportation and land use policies 

and scenarios. Its capabilities, however, are not limited to this. Future efforts may be in-

terested in linking these model outcomes to other tools for assessing broader issues such 

as air quality, public health, and road safety. For example, the number of walk trips along 

or across a corridor can be used as a measure of exposure when calculating crash rates 

and assessing traffic safety. Physical activity volumes could be used to assess the relative 

risk of all-cause mortality. Routes of walk trips on a pedestrian network can improve the 

precision of these metrics but also can be used for measuring air pollutant exposure while 

traveling. Such a model has a great opportunity of incorporating health, environmental, 

and equity research.  

The next generation of pedestrian planning tools may attempt to integrate with activity-

based models (ABM) and shift modeling from one day to a week. Developing pedestrian 

activities in ABM may have a wide range of benefits. First, ABM generates tours rather 

than separate trips, which may result in a better representation of the interconnected mode 

chain. Individuals who use public transit as their primary mode may be more likely to 

choose to walk as the trip mode. Then, ABM can capture the effect of the built environ-

ment on the total number of tours, which has been investigated in the literature (Zhang et 

al., 2019). Furthermore, ABM may incorporate a broader scope of walking. Walking is 

not only a trip mode but also a (physical) activity. ABM has a great opportunity of incor-

porating non-transport-domain physical activity such as leisure domain (e.g., walking a 

dog, jogging, and exercise). Finally, Kölbl & Helbing (2003) pointed out a law of constant 

average energy consumption for the physical activity of daily travel. Once a broader scope 
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of walking activities is implemented in ABM, the nature law of physical activity budget 

may be introduced to improve the representation of pedestrian travel behavior in travel 

demand models. 

More generally, the work in this dissertation pushes the pedestrian travel demand model 

toward finer spatial resolution and more measures of the pedestrian environment. Future 

developments in pedestrian travel demand models need to move toward a longer planning 

horizon and a broader range of pedestrian activities. 
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Appendix 1: Portland Central City Scenario  

Projected household and employment growth distribution plan at PAZ level for 2035 

District Total growth Land use type 
#PAZs  

allocated 

Population and employment growth in each PAZ 

Household Service Retail Finance Government Industrial 

Central  

Eastside 

7,000 Households 

8,000 Jobs 

Housing 15 467 - - - - - 

Commercial (lower triangle) 41 - 73 24 24 24 - 

Commercial (remaining) 13 - 16 16 16 - - 

Industrial 290 - - - - - 2 

Downtown 
3,000 Households 

7,000 Jobs 

Housing 10 700 - - - - - 

Commercial 6 - 333 167 500 - - 

Government 2 - - - - 500 - 

Goose Hollow 
1,000 Households 

2,000 Jobs 

Housing 13 77 - - - - - 

Commercial 4 - 200 160 - - - 

Institutional 1 - - - - 200 - 

Lloyd 
8,000 Households 

9,000 Jobs 

Housing 33 242 7 14 - - - 

Commercial (office core) 14 - 40 16 161 161 - 

Commercial 9 - 163 175 - - - 

Lower Albina 
200 Households 

200 Jobs 

Housing 1 200 - - - - - 

Industrial 3 - - - - - 67 

Old Town/ 

Chinatown 

2,000 Households 

3,000 Jobs 

Housing 8 25 - - - - - 

Commercial 9 - 222 111 - - - 

The Pearl 
6,000 Households 

4,000 Jobs 

Housing 23 261 - 29 - - - 

Commercial 9 - 182 29 45 - - 

Institutional 2 - - 29 - 250 - 

West End 
3,000 Households 

3,000 Jobs 

Housing 8 375 63 63 - - - 

Commercial 7 - 143 143 - - - 

University Dis-

trict 

3,000 Households 

4,000 Jobs 

Housing 10 300 - 43 - - - 

Commercial 7 - 143 43 - - - 

Institutional 6 - - 43 - 333 - 

South Water-

front 

4,000 Households 

10,000 Jobs 

Housing 22 182 - 18 - - - 

Commercial 3 - 333 18 - - - 

Institutional 30 - - 18 - 267 - 
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Appendix 2: Summary of Oral Feedback Session with Sur-

vey Pilots 

• Was Google Location History on by default? 

o Android 

▪ On by default: 2 people 

o Apple 

▪ Turned on manually: 1 person 

▪ Turned off by default or turned off manually, not sure: 1 person 

• Regarding the welcome page (1st page) 

o Extra information sheet: Only 1 person clicked on the extra information 

sheet linked in the first page. The rest skipped it. 

▪ Perhaps this should be consolidated somehow? 

o  “To the point” 

o The page does not clarify what the researcher is looking for. It could be ac-

ceptable to be entirely forthcoming about this since the data is from the past 

and shouldn’t be able to be influenced by the survey. The survey questions 

ask about facts, not opinions. 

o “Jargon” – the page should use more layman’s terms 

o Needs to establish a relationship with person  

o Show user that you appreciate them  

o “This is incredibly private information” so need a better hook. Give connec-

tion to health? Environment? Need more altruistic purposes to inspire the 

respondent in the letter but need to truthfully be able to link it to the purpose 

of the research. 

o “Think about explaining it to your grandmother” 

• Regarding the turning on tracking and responding in 4 weeks 

o Remove this. 

o The survey should boot people that do not already have location history 

turned on. 

• Regarding the length of the survey 

o Survey itself is not long or difficult to complete 

o If you had to go turn on location history and then come back to the survey 

(for the 4 weeks tracking purpose), this took a long time 

• Regarding the question format/style 

o Drag and drop is “Hard to do on phone,” especially when trying to drag/drop 

the last option in the list 

o Drag and drop is “awkward looking” 

o “Maybe make it a checkbox – does not need to be this fancy” 

• Regarding questions asking “Did any of the following event(s) happen in your 

household since January 2018? 

o User error happened – more than one person was thinking about the current 

year and not 2018 

o Could use since January 1st 

o “Am I selecting month that I moved or the whole time I was gone?” – one re-

spondent was temporarily located elsewhere while house was getting re-

modeled 

o Option 3 is confusing (saying two different things) 

o Say “in the past 18 months” instead of January 
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• Regarding question asking “What was your total household annual income in 

2018? 

o Everyone just did their taxes, so it was easier than normal 

o Assumptions were made of partner’s income in some cases 

o “Can be awkward to ask roommates about income” 

• Regarding question about getting/buying bicycle 

o Needs to confirm that these questions are looking at net change of bicycles 

in household 

o How do your account for if you are buying a bicycle for your child? 

• Regarding question about employment status 

o The question is not being read through thoroughly. It should be up front 

(question stem – see reading). 

o Maybe “Did anything change about your work” and list potential options 

o Somebody stepped down from an academic position, but felt weird about 

saying “I was demoted” 

o Perhaps add “Other” or “lateral shift or change in job title” 

o People who are self-employed may feel better about saying “Other” as they 

may not necessarily work from home 

• Regarding downloading data and privacy 

o Takes a long time to download the data 

o Need to verify that the data file itself is anonymized (no IP address, 

username, etc.) 

o Does Qualtrics collect IP? Could potentially link this file then to Qualtrics re-

spondent 

o If collecting contact information on Qualtrics for providing incentives, how is 

this anonymized? 

• Regarding uploading data 

o Someone accidentally selected a different file on their phone and was una-

ble to swap files, therefore no data was uploaded 

o File size is good – on the order of 10 of megabytes 

• Other comments 

o bike share should be listed among the bike options 

o “I was happy to be able to choose that I work and go to school” 

o “Add pickup or SUV to car” because some people are very proud of their 

pickup or SUV 

o How to handle children that do not spend all of their time in a household, 

such as 

▪ Divorced 

▪ Children in college 

o “Why am I as a PhD student grouped together with a high school student” 

o “Demographic questions should always be at the end” – J Dill 

o “Sometimes the survey asks about the respondent, other times it asks about 

the household. Be clear. 

o What is important? how many people have bicycles or how many bicycles in 

a household. 

o Why ask about children under age 6 specifically? What is the purpose of do-

ing this? 

o Did not ask about gender, race, ethnicity, disability, age, or “other normal 

demographic data”  
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Appendix 3: Survey 
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Appendix 4: Information sheet of survey recruitment 

Dear Sir or Madam, 

We would like to invite you to participate in the research project “Exploring the 

correlation between individual’s travel routine and life events using longitudinal 

travel diary data”. The objective of this research is to use longitudinal travel data 

to observe changes individual’s transportation patterns over time, with a specific 

interest in walking and health.  

All participants will be invited to participation in the following stages:  

1) The first part asks information about your socio-demographics, transpor-

tation resources and requests your location history data from your 

smartphone (since January 2018). Here, participants are asked to retrieve 

their location history from Google Timeline (see below) and upload it to a 

password-protected server. This research will only focus on the data of the 

years 2018 and 2019. You can fill in the survey on your PC or your mobile 

device. We will assign each participant a subject ID and all records will be 

coded with the subject ID rather than personal identifiers. 

2) The second part is an online questionnaire that will take 7-8 minutes to 

complete. We ask information about your life events since January 2018.  

Survey records and location history data collected in steps 1 and 2 will be filtered 

and aggregated by using automated scripts to record the mode, travel distance, 

and travel duration. All information will be stored on protected severs at Portland 

State University and the Technical University of Munich. All personal identifying 

information will be removed, and participants’ identities will remain confidential. 

In addition, all participant information stored on our protected server will be iden-

tified by a randomly assigned subject ID only. Only the researchers collaborating 

in this research project and requiring access to this information will have access 

to these data and will be subject to a strict duty of confidentiality. At the conclusion 

of this project, all data records will be deleted. 

We do not see any major personal risks in participating in this study. However, 

we do recognize that you will be asked to provide personal information about your 

transportation patterns and location history, which are personal and perhaps sen-

sitive. Thus, the biggest risk is the disclosure of your personal location history. 

We are taking action to minimize this concern by storing the information on a 
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secure server, limiting the access to this information to select members of the 

research team, anonymizing participant identity, filtering out only the data neces-

sary for our study, and deleting information at the end of our study.  

No personal information (e.g., name, address, phone number) will be collected in 

the whole procedure. Each participant will hold a subject ID and all survey records 

and location history data will be associated with this subject ID. 

As a participant, you have the right to withdraw from the project at any time and 

request that your information be deleted, without any negative consequences for 

you. 

Results of this research may be reported in scientific journals, meetings and con-

ferences. None of these reports will show your personal information or data that 

can point to any person who took part in the study. 

What is Google Timeline data? 

Google timeline data makes use of the global positioning system (GPS) capabil-

ities of your smartphone and track information about your travel patterns, includ-

ing location, travel mode, travel duration, and activity. More information can be 

found on the Google Maps Help page: https://support.google.com/maps/an-

swer/6258979?co=GENIE.Platform%3DDesktop&hl=en# 

 

Further Questions? 

You are welcome to ask any questions for clarification or additional information. 

For any information about this research, you can contact Qin Zhang (the Principal 

Investigator of this project) by email qin.zhang@tum.de or by calling 0049-89-

289-22698. 

 

https://support.google.com/maps/answer/6258979?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/maps/answer/6258979?co=GENIE.Platform%3DDesktop&hl=en
mailto:qin.zhang@tum.de
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Appendix 5: Univariate linear regression models for in-

trapersonal variability 

Table A: Univariate linear regression models for intrapersonal variability in total travel time across differ-

ent temporal scales (daily, weekly, and monthly)  

*Significant variables are bolded (Intercepts are not highlighted as they are always significant) 

 
Day   Week   Month   

Variables Coef. P-value R2 Coef. P-value R2 Coef. P-value R2 

Model - age   0.07   0.02   0.01 

(Intercept) 0.97 0.00  0.61 0.00  0.31 0.00  

18 to 24 -0.18 0.48  0.02 0.93  -0.02 0.88  

25 to 34 0.08 0.66  0.10 0.54  0.01 0.85  

35 to 64 Base         

Model - gender   0.09   0.18   0.03 

(Intercept) 1.13 0.00  0.82 0.00  0.35 0.00  

Male -0.19 0.13  -0.23 0.03  -0.05 0.42  

Female Base         

Model - occupation   0.03   0.01   0.14 

(Intercept) 1.05 0.00  0.66 0.00  0.28 0.00  

Student -0.12 0.37  0.06 0.58  0.10 0.08  

Worker Base         

Model -household size   0.05   0.08   0.11 

(Intercept) 1.13 0.00  0.74 0.00  0.30 0.00  

1 -0.16 0.37  0.03 0.86  0.09 0.23  

2 -0.17 0.29  -0.14 0.30  -0.01 0.87  

More than 2 Base         

Model - car access   0.08   0.18   0.24 

(Intercept) 0.90 0.00  0.53 0.00  0.25 0.00  

No car access 0.18 0.16  0.24 0.03  0.13 0.02  

Has car access Base         

Model - income group   0.01   0.13   0.47 

(Intercept) 1.03 0.00  0.70 0.00  0.32 0.00  

High 0.04 0.83  -0.17 0.23  -0.12 0.05  

Low -0.10 0.66  0.18 0.31  0.19 0.01  

Medium Base         

Model - children   0.00   0.03   0.17 

(Intercept) 1.03 0.00  0.57 0.00  0.21 0.00  

No children -0.02 0.89  0.13 0.39  0.14 0.05  

Has children Base         
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Table B: Univariate linear regression models for intrapersonal variability in the number of trips across 

different temporal scales (daily, weekly, and monthly) 

*Significant variables are bolded (Intercepts are not highlighted as they are always significant) 

 Day   Week   Month   

Variables Coef. P-value R2 Coef. P-value R2 Coef. P-value R2 

Model - age   0.01   0.01   0.02 

(Intercept) 0.57 0.00  0.49 0.01  0.24 0.00  

18 to 24 0.00 0.99  0.07 0.77  0.05 0.61  

25 to 34 0.03 0.63  0.10 0.56  0.04 0.56  

35 to 64          

Model - gender   0.03   0.08   0.04 

(Intercept) 0.62 0.00  0.68 0.00  0.24 0.00  

Male -0.04 0.42  -0.18 0.14  0.05 0.36  

Female          

Model - occupation   0.01   0.08   0.15 

(Intercept) 0.59 0.00  0.51 0.00  0.24 0.00  

Student 0.02 0.70  0.18 0.15  0.09 0.07  

Worker          

Model -household size   0.05   0.11   0.35 

(Intercept) 0.64 0.00  0.66 0.00  0.26 0.00  

1 -0.04 0.60  0.01 0.95  0.13 0.03  

2 -0.07 0.26  -0.20 0.17  -0.03 0.51  

More than 2          

Model - car access   0.18   0.18   0.18 

(Intercept) 0.53 0.00  0.41 0.00  0.22 0.00  

No car access 0.11 0.03  0.26 0.03  0.10 0.04  

Has car access          

Model - income group   0.11   0.32   0.28 

(Intercept) 0.60 0.00  0.56 0.00  0.27 0.00  

High -0.06 0.35  -0.21 0.14  -0.07 0.24  

Low 0.09 0.29  0.42 0.02  0.13 0.06  

Medium          

Model - children   0.01   0.04   0.03 

(Intercept) 0.57 0.00  0.42 0.01  0.23 0.00  

No children 0.03 0.66  0.18 0.30  0.06 0.40  

Has children          
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Table C: Univariate linear regression models for intrapersonal variability in total walk time across differ-

ent temporal scales (daily, weekly, and monthly) 

*Significant variables are bolded (Intercepts are not highlighted as they are always significant) 

 
Day   Week   Month   

Variables Coef. P-value R2 Coef. P-value R2 Coef. P-value R2 

Model - age   0.03   0.05   0.02 

(Intercept) 1.23 0.00  0.68 0.00  0.45 0.00  

18 to 24 0.18 0.52  0.18 0.55  0.03 0.75  

25 to 34 0.17 0.39  0.23 0.29  -0.02 0.75  

35 to 64          

Model - gender   0.06   0.17   0.00 

(Intercept) 1.47 0.00  1.06 0.00  0.44 0.00  

Male -0.17 0.21  -0.31 0.03  0.00 0.96  

Female          

Model - occupation   0.01   0.02   0.10 

(Intercept) 1.35 0.00  0.84 0.00  0.41 0.00  

Student 0.06 0.68  0.10 0.53  0.07 0.14  

Worker          

Model -household size   0.07   0.05   0.15 

(Intercept) 1.51 0.00  0.94 0.00  0.41 0.00  

1 -0.15 0.41  0.03 0.90  0.11 0.10  

2 -0.21 0.21  -0.15 0.41  0.01 0.81  

More than 2          

Model - car access   0.01   0.05   0.04 

(Intercept) 1.42 0.00  0.76 0.00  0.41 0.00  

No car access -0.08 0.58  0.18 0.24  0.05 0.34  

Has car access          

Model - income group   0.09   0.14   0.35 

(Intercept) 1.31 0.00  0.84 0.00  0.41 0.00  

High 0.07 0.70  -0.13 0.50  -0.04 0.45  

Low 0.31 0.16  0.39 0.12  0.17 0.01  

Medium          

Model - children   0.00   0.03   0.08 

(Intercept) 1.42 0.00  0.70 0.00  0.37 0.00  

No children -0.06 0.77  0.20 0.35  0.09 0.19  

Has children          
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Table D: Univariate linear regression models for intrapersonal variability in the number of walk trips 

across different temporal scales (daily, weekly, and monthly) 

*Significant variables are bolded (Intercepts are not highlighted as they are always significant) 

 Day   Week   Month   

Variables Coef. P-value R2 Coef. P-value R2 Coef. P-value R2 

Model - age   0.02   0.03   0.06 

(Intercept) 0.87 0.00  0.58 0.01  0.29 0.00  

18 to 24 0.03 0.87  0.13 0.66  0.10 0.29  

25 to 34 0.07 0.55  0.17 0.43  0.05 0.48  

35 to 64          

Model - gender   0.05   0.12   0.02 

(Intercept) 0.99 0.00  0.88 0.00  0.32 0.00  

Male -0.10 0.26  -0.26 0.08  0.03 0.54  

Female          

Model - occupation   0.00   0.06   0.24 

(Intercept) 0.93 0.00  0.66 0.00  0.30 0.00  

Student 0.00 0.98  0.20 0.21  0.11 0.02  

Worker          

Model -household size   0.06   0.11   0.33 

(Intercept) 1.01 0.00  0.86 0.00  0.35 0.00  

1 -0.09 0.46  -0.04 0.85  0.09 0.12  

2 -0.13 0.22  -0.27 0.14  -0.07 0.16  

More than 2          

Model - car access   0.01   0.09   0.12 

(Intercept) 0.95 0.00  0.58 0.00  0.30 0.00  

No car access -0.04 0.63  0.23 0.12  0.08 0.11  

Has car access          

Model - income group   0.16   0.32   0.43 

(Intercept) 0.89 0.00  0.68 0.00  0.33 0.00  

High 0.06 0.61  -0.14 0.41  -0.06 0.22  

Low 0.27 0.06  0.60 0.01  0.18 0.01  

Medium          

Model - children   0.00   0.02   0.00 

(Intercept) 0.94 0.00  0.59 0.00  0.32 0.00  

No children -0.02 0.90  0.16 0.45  0.02 0.76  

Has children          
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Appendix 6: Descriptive Analysis of Travel Behavior Changes by Event Types 

Category Event type Cases Sample id Occurrence   Changes in … 

        Month Year Monthly travel time Monthly walk time Monthly cycle time Monthly PA volume 

Household events Moved home 1 12 9 2018 -27% 24% 168% 30% 

 Person moved in 1 24 6 2018 -8% -47% 812% -32% 

 Person moved out 2 11 8 2019 68% 1396% - 1415% 

      24 12 2018 -58% -75% -10% -61% 

Job events Changed job location 3 19 10 2018 -54% -15% -5% -15% 

   20 9 2019 48% -1% - 12% 

     24 8 2018 1% 81% 11346% 131% 

 Lost job 1 12 9 2018 -27% 24% 168% 30% 

 Promotion 3 12 7 2018 -21% -62% 6162% -59% 

   13 2 2019 -18% 47% 669% 172% 

     29 9 2019 105% 143% 473% 169% 

 Started new job 3 20 9 2019 48% -1% - 12% 

   24 8 2018 1% 81% 11346% 131% 

     28 8 2019 41% -8% 172% 33% 

 Decreased work hour 1 20 4 2019 -11% -7% -100% -7% 

 Increased work hour 3 13 8 2018 -42% -21% 188% 9% 

   24 5 2019 83% 3% 62% 34% 

   29 9 2019 105% 143% 473% 169% 

Mobility events Registered bike sharing 1 28 7 2019 19% -22% 229% 38% 

 Got bike access 5 12 5 2019 270% 512% -11% 387% 

   16 4 2019 45% 93% -33% 21% 
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   19 3 2019 8% -22% 6423% 136% 

   20 9 2019 48% -1% - 12% 

     28 2 2019 56% 19% 340% 39% 

 Lost bike access 1 20 5 2018 -9% 21% -18% 18% 

 Lost car access 2 11 8 2019 68% 1396% - 1415% 

      12 5 2018 -30% -3% 142% 0% 

School events Graduated from school/university 3 18 9 2019 -23% -14% - 30% 

   20 4 2019 -11% -7% -100% -7% 

     24 3 2019 231% 1376% 1686% 1595% 

 Started school/university 2 8 4 2018 -43% -88% - -88% 

      12 10 2018 -36% 304% 373% 314% 
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