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Abstract — Processing radar signals with neural networks has
shown promising results in classification and regression tasks.
While processed radar data is intrinsically complex-valued, most
architectures using neural networks are comprised of real-values
and their arithmetic. Previous work has found that keeping
the complex-valued number system and extending it into the
domain of neural networks can be beneficial. In this paper,
we demonstrate that in two-dimensional direction-of-arrival
(DoA) estimation, complex-valued neural networks (CVNNs)
show better results than real-valued neural networks (RVNNs).
Real-world recordings of ten different FMCW radar devices were
used to train numerous models, varying in the computational
complexity and varying in data properties. Over all models
trained, the best CVNN surpassed the best RVNN by 14%. In
terms of model complexity, CVNNs also showed better results,
both per trainable parameter and per floating point operation
(FLOP). Similarly, CVNNs surpass RVNNs, both when trained
with decreased data quantity and decreased data quality.
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I. INTRODUCTION

The majority of fields using machine learning rely on data
which is real-valued, the most prominent example being RGB
images. This is not surprising, as many sensors and their
hardware sample the world with real values. However, the
signals sampled by various sensors frequently include wave
phenomena, which are often resolved via transforms like the
discrete Fourier transform or wavelet transforms. With these
signal processing tools, important features of the sampled
waves such as frequency, amplitude and phase can easily be
extracted in a complex-valued representation.

Complex-valued neural networks (CVNNs) keep these
quantities of phase and amplitude together by extending this
number system to neural networks, as introduced in [1], [2].
With the number system of complex-values, CVNNs have been
shown to be good with a wide variety of wave phenomena.
The addition of prior knowledge about the data reduces
the degrees of freedom of networks, which can result in a
more meaningful generalization [3]. Similarly, the concept of
locality in convolutions also reduces the degrees of freedom
when compared to fully-connected layers.

In the case of frequency modulated continuous wave
(FMCW) radar, the relative relationships of the properties of
phase and magnitude throughout multiple antennas can be

interpreted as metrics of position, velocity and angle of a target
in reference to the sensor. While other applications of CVNNs
have started earlier, first works with radar appeared in 2003
[4] and first works with generic direction-of-arrival (DoA)
appeared in 1994 [5]. Although some recent publications
working on FMCW radar neural networks have emphasized
the concept of phase in data [6], a common approach is to
input complex-valued data into real-valued neural networks
(RVNNs), e.g. by simply concatenating or interleaving real
and imaginary part in the channel dimension [7], [8].

In recent history, CVNNs have conquered a variety of
different applications in radar, including imaging [9],[10],
automotive scene classification [11], ego-velocity estimation
[12], signal denoising [13] and human activity classification
[14]. In these fields, some publications have shown better
results for CVNNs with fewer parameters [9], fewer training
data [13],[14] and lower signal-to-noise ratios (SNR) [14] than
their RVNN counterparts. The performance in reference to
parameter count, floating point operations (FLOPs), amount
of training data and SNR are all important metrics, especially
when targeting an embedded platform. In embedded scenarios,
reduced computational and memory overhead can reduce
size, energy consumption and cost of a microcontroller.
Analogously, achieving higher performance for identical SNRs
can allow for economical radar hardware to be able to meet the
demands of more use-cases. While the need for less training
data is not only interesting for embedded sensors, reducing the
need for large amounts of training data can reduce the barrier
of entry for new use-cases.

To implement the networks in this work, the TensorFlow
based library of [15] was used, which showed higher accuracy,
smaller variance and less overfitting of CVNNs for simulated
data. In this paper, the two-dimensional DoA estimation
performance of CVNNs and RVNNs is compared with
real-world FMCW radar data of a corner target. In this domain,
we show that CVNNs outperform RVNNs when trained under
variations of the following characteristics:

Complexity of models:
• Trainable parameters
• FLOPs

Reduction of Data:
• Quality
• Quantity
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II. DATASET AND RADAR SYSTEM

A. Radar System

The two-dimensional DoA estimation was carried out with
Infineon’s 60 GHz FMCW radar sensor BGT60ATR24C. This
device has two transmit (Tx) and four receive (Rx) antennas.
The device used for recording, along with its virtual array
configuration, is depicted in Fig. 1.

With this antenna configuration, each transmit antenna
emits sequentially in time, also called time-division
multiplexing. The signal resulting from mixing the received
with the original chirp is digitized by an analog-to-digital
converter (ADC) for each combination of transmit and receive
antenna. This signal is output in a 4D array of dimensions F x
C x D x R, where F is the index of the frame captured, C the
index of the virtual array antennas, D the index in slow-time
and R the index in fast time.
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Fig. 1. Infineon BGT60ATR24C (a) an image of the antenna shield; (b) the
virtual antenna array

B. Corner Target Measurement Setup

The data for DoA estimation was captured in an anechoic
chamber, with a target at a fixed position. In a distance of
1.4 m, a total of ten different radar devices were fixed to a
pan-and-tilt gimbal as depicted in Fig. 2. For each device,
different positions in azimuth and elevation were traversed in
a grid like pattern. At the origin of both angles, the corner
target is perpendicular to the front of the radar devices. The
entire grid spans from -50° to 50° in 5° steps in both azimuth
and elevation angles. For each position, multiple frames were
acquired. Because the position in both angles is known during
acquisition, the labels for later DoA estimation can be saved.

Fig. 2. Recording setup with radar sensor fixed to pan-and-tilt gimbal, to
record a corner target at fixed distance from multiple angles of azimuth and
elevation.

III. BASELINE NETWORK ARCHITECTURES

A. Architecture and Hyperparameters
Between CVNNs and RVNNs, a comparable base

architecture was derived. Each architecture consists of multiple
hyperparameters and is separated into two parts, feature
extraction and regression. The feature extraction is composed
of a variable number of Conv2D layers, Conv2D 1 to
Conv2D 5. These are sequentially added to the network,
until the value of num conv layers is reached. Each of these
convolutional layers also have a variable number of filters,
as listed in Table 1. Each layer is followed by an activation
function, which is fixed model-wide with the hyperparameter
act func. To limit the amount of hyperparameters in the final
study, the activation functions were fixed to ReLU for RVNNs
and cart ReLU for CVNNs after empirical analysis showed
no improvements with other activation functions.

In the second half of the model, dimensionality is reduced
and angles are regressed. First, reduction is achieved by
the means of a Conv2D Layer with a singular output filter,
activated by act func. The output thereof is flattened and
followed by a fully connected layer with a variable number of
neurons num dense. After act func is applied, the final layer of
the network is another fully-connected layer with two neurons
as output.

Table 1. Hyperparameters for models of RVNNs and CVNNs to be trained for
DoA estimation. The Conv2D based layers are added sequentially, until the
selected number of num conv layers is reached. Activation functions act func
are applied after every layer.

Hyperparameter RVNN CVNN
act func cart ReLU ReLU
num conv layers [1,2,3,4,5]

Conv2D 1 [12,16,20] [8,10,12]
Conv2D 2 [6,8,10] [6,8]
Conv2D 3 [6,8] [6,8]
Conv2D 4 [6] [4]
Conv2D 5 [4] [4,2]

num dense [6,8,12,16] [6,8,12]

While the base architecture is similar, some functionality
had to be adapted between CVNNs and RVNNs. While both
types can be normalized per frame, the normalization factor for
CVNNs is calculated by the magnitude of the complex-values.
Similar layers, such as a convolution for RVNNs and a
complex convolution for CVNNs, have a different amount of
total trainable parameters per filter of each layer. To overcome
this difference, the hyperparameters were empirically adapted
to approximately match each other in total trainable parameter
count. The output angles of the network are determined in two
distinctive ways. For RVNNs, the values of the last layers were
used while in the case of CVNNs, the phase of the two output
layers was used.

B. Training Procedure
For a comparison between RVNNs and CVNNs, a random

subsampling of all possible combinations of parameters

146

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 03,2022 at 09:09:52 UTC from IEEE Xplore.  Restrictions apply. 



was carried out. The resulting models of these parameter
combinations were trained until the validation loss stopped
improving. To decrease resource consumption, parameters such
as learning rate or batch size were fixed after empirical
evaluation.

The regression loss during training was calculated with the
mean-squared-error (MSE) of all angle estimations of a batch.
After training, other metrics of mean-absolute-error (MAE)
were calculated. In the spherical coordinates of this recording
setup, elevation angles converge at the poles with increasing
value. To overcome artifacts of the coordinate system at higher
angles and to have a more meaningful metric, both angles of
azimuth and elevation were converted to a single, direct angle
between labels and predictions.

C. Data Pipeline
Before the dataset is passed to the network, the raw radar

data was pre-processed. First, a DC offset was removed, and a
Fourier transform in both slow- and fast-time was applied. The
resulting range-doppler-map (RDM) was both calculated with
and without a previous Blackman–Harris window function,
for separate models respectively. After traditional radar signal
processing, a complex-valued, additive white Gaussian noise
(AWGN) was added dynamically during training for all
networks to reduce overfitting. The dataset was split into
training, validation and test subsets along unique radar devices.
The total of ten devices were thereby split into six for
training, two for validation and two for testing. Because all
the following evaluations rely on the same processed data, the
already processed subsets were loaded during training. While
the evaluation of model complexity required the calculation
of FLOPs and parameters, the subsequent evaluations of data
quantity and quality required two additional transforms to the
dataset. As these dynamic transforms of the data introduce
additional hyperparameters, a subset of the network parameters
was chosen to save computational resources.

1) Reduction in Dataset Training Size
For an accurate comparison, both CVNNs and RVNNs

were trained on the same subsets of the training dataset. We
chose to compare the entire training dataset to five different
percentages of itself: 10%, 20%, 33%, 50% and 75%. For
evaluation, however, the entire validation dataset was used.

2) Reduction in Dataset Signal Quality

As above, the base architecture was retained, while
the input training data was modified. The reduction of
signal quality was achieved by re-using the same data from
before, but adding noise dynamically. This dynamic transform
avoids overfitting to static noise. To avoid the significant
computational overhead of pre-processing during training,
noise was added after this step. With no windowing present,
a SNR can be calculated traditionally. With the signal of a
sample known, an additional AWGN term can be calculated
to create a predefined SNR. In the case of the windowed
data, additional caution is necessary. If a window function is
applied in time domain, the resulting signal in a RDM is spread
over multiple bins. In this case, only a modified SNR can be
calculated, in which the peak of the windowed signal divided
by the new noise: SNRmodified = SignalWindowed/Noise.
This joins both the processing friendly noise addition after
pre-processing with the beneficial presence of windowing

IV. EXPERIMENTS AND RESULTS

In the following, the performance of all fully trained neural
network models of CVNNs and RVNNs were evaluated in
terms of the metric of MAE. The first part compares MAE
in reference to the number of trainable parameters and FLOPs
of various models. The second part of this section is based on
a subset of models. There, the MAE of different architectures
are compared when trained on fewer training data and with
lower signal quality data.

A. Complexity of Models

All fully trained models are compared along the number
of trainable parameters and FLOPs of all layers within the
network. These values are plotted against the MAE in Fig.
3 (a) for trainable parameters and (b) for FLOPs. For easier
evaluation, the cumulative minimum over all models of each
network type is visualized as a step plot. The best performing
models of CVNNs seem to have significantly lower values
of MAE than RVNNs over the entire range of parameter
counts. From all trained models, the best CVNN outperformed
the best RVNN by 14%. The difference of the best MAE
between architectures decreases with an increasing number of
parameters. This agrees with the findings of [9], which showed
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Fig. 3. Fully-trained models for DoA estimation with a wide variety of hyperparameters. Model complexity comparison of fully trained CVNN (red) and RVNN
(blue) models plotted with MAE against the number of: (a) trainable parameters; (b) FLOPs. The solid lines depict the cumulative minimum per architecture.
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Fig. 4. Fully-trained models for DoA estimation with a wide variety of hyperparameters. Data reduction comparison of CVNN (red) and RVNN (blue) models
with MAE against: (a) training dataset size; (b) SNRmodified. All models of a reduction step are plotted as box plots (left) and their respective values (right).

better radar imaging results with fewer parameters. When the
same models are evaluated against the number of FLOPs, a
similar, but slightly weaker trend of CVNNs showing better
values of MAE is visible. This smaller gap can be attested
to analogous layers between architectures being comprised of
more operations in CVNNs.

B. Reduction of Data

When a subset of the previous models was trained with
altered training data, CVNNs again show better ability of
DoA estimation. The values of reduced training data and
reduced SNRmodified are plotted against MAE in Fig. 4
(a) and (b) respectively. In both metrics, CVNNs outperform
their real-valued counterparts not only in the best performing
models, but also in the mean of their distributions. When
looking at the best models of each architecture per training
data reduction increment, CVNNs outperform RVNNs in our
scenario by 8-26% overall. In the same manner, the best
models per signal quality reduction step show an improvement
of 17-22% over RVNNs. Another remarkable behavior is
the concise distribution of CVNNs compared to the wider
distributions in the real-valued case.

V. CONCLUSION

This paper investigated the use of CVNNs for DoA
estimation for FMCW radar systems. We showed CVNNs to be
superior to RVNNs when evaluated with data from ten unique
radar devices. When compared under both model complexity
(trainable parameters and FLOPs) and reduced training data
(quantity and quality), CVNNs showed better results than
RVNNs. In the case of the best of all models trained, CVNNs
show lower estimation error than RVNNs, exceeding them
in performance by 14%. Surprisingly, CVNNs show better
performance per FLOP than RVNNs most of the time, even
though analogous layers require more operations for CVNNs.

The presented CVNN DoA estimation is well suited for
embedded radar, as it is capable of working with lower quality
signals and fewer computational resources for edge computing.
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