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Abstract: Flaxseeds are typically consumed either as whole flaxseed, ground flaxseed, flaxseed
oil, partially defatted flaxseed meal, or as a milk alternative. They are considered a rich source of
vitamins, minerals, proteins and peptides, lipids, carbohydrates, lignans, and dietary fiber, which
have shown hypolipidemic, antiatherogenic, anticholesterolemic, and anti-inflammatory property
activity. Here, an in vitro batch culture model was used to investigate the influence of whole milled
flaxseed and partially defatted milled flaxseed press cake on the gut microbiota and the liberation
of flaxseed bioactives. Microbial communities were profiled using 16S rRNA gene-based high-
throughput sequencing with targeted mass spectrometry measuring lignan, cyclolinopeptide, and
bile acid content and HPLC for short-chain fatty acid profiles. Flaxseed supplementation decreased
gut microbiota richness with Firmicutes, Proteobacteria, and Bacteroidetes becoming the predominant
phyla. Secoisolariciresinol, enterodiol, and enterolactone were rapidly produced with acetic acid,
butyric acid, and propionic acid being the predominant acids after 24 h of fermentation. The flaxseed
press cake and whole flaxseed were equivalent in microbiota changes and functionality. However,
press cake may be superior as a functional additive in a variety of foods in terms of consumer
acceptance as it would be more resistant to oxidative changes.

Keywords: flaxseed; plant bioactives; microbiota; enterolignans; cyclolinopeptides

1. Introduction

Flax or linseed (Linum usitatissimum L.) belongs to the family Linaceae and is na-
tive to Western Asia, North Africa, and Southern Europe. Today, flax is grown in about
50 countries, most of which are in the northern hemisphere [1]. With circa 40% of the
world’s production, Canada is the largest producer of flaxseed to date [2]. In general,
flaxseed contains up to 50% oil. Flaxseed meal comprises 23% to 34% protein, 4% ash,
5% viscous fiber, and lignan precursors (9 to 30 mg/g of defatted meal) [3]. Traditionally
used for their fibers in the textile industry, flaxseeds have now been widely adopted in the
food industry. Products from flax for human consumption include whole flaxseed, ground
flaxseed, flaxseed oil, partially defatted flaxseed meal and flaxseed milk alternatives [4,5].
Flaxseeds also contain antinutrients, but there is no indication that flaxseed could cause
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toxicity in humans [4,6]. Hence, flaxseed is generally recognized as safe (GRAS) and is
considered a rich source of vitamins, minerals, proteins and peptides, lipids, carbohy-
drates, lignans, and dietary fiber. Bioactive compounds from flaxseed have shown to have
hypolipidemic, antiatherogenic, anticholesterolemic, and anti-inflammatory properties,
amongst others [4–9]. Due to its high content of alpha linolenic acid (ALA), flaxseed is
susceptible to oxidation, causing rancidness, off flavors, bitterness, and a musty aroma [4,8].
This bitterness of linseed and, particularly, linseed oil is due in part to a group of cyclic
octa- and nonapeptides, called cyclolinopeptides. The latter, furthermore, may have anti-
inflammatory and hepatoprotective effects [9].

In addition to n-3 fatty acids, phenolic compounds, such as lignans and dietary
fibers, make up a significant fraction of flax composition. Flaxseeds contain insoluble and
soluble fibers in a proportion ranging from 60:40 to 80:20 [10]. The major insoluble fiber
fraction consists of cellulose and lignin [11]. The main soluble fiber from flaxseed has been
reported to be a heterogeneous polysaccharide consisting of neutral arabinoxylan and acidic
rhamnose [12]. This flaxseed polysaccharide exhibited good antioxidant activities in vitro
and reduced elevated blood glucose in rats [13]. Despite their physiological advantages,
little research has been conducted on the fermentability of flaxseed fibers. A recent study by
Arora et al. [14] found that flaxseed fibers promoted the cecal proliferation of Bifidobacterium
and Akkermansia and were fermented into short-chain fatty acids (SCFAs) and other small
organic acids in mice models. The production of acetic acid from flaxseed xyloglucans and
butyric acid from flaxseed arabinoxylans was significantly higher than in negative controls
following the 48 h in vitro fermentation of pig colonic digesta [15].

Dietary lignans have been linked to several health benefits such as protection from os-
teoporosis, cardiac and liver disease, and the reduction of plasma cholesterol [16]. As such,
lignans have been recognized as nutraceuticals and functional foods [17]. In plants, lignans
exist predominately as glycosides [18]. Flaxseeds contain 75 to 800 times more lignans com-
pared to other cereal crops [6,7]. The most abundant lignin is secoisolariciresinol diglucoside
(SDG) and its deglycosylated form, secoisolariciresinol (SECO) [19]. Flaxseed contains
the highest concentrations of SECO of any food (28–369 mg/100 g) [18]. Flaxseed also
contains other lignans such as matairesinol (1100 µg/100 g of full fat flaxseed), pinoresinol
(PINO) (870 µg/411 g), lariciresinol (LA) (1780 µg/100 g), pinoresinol diglucoside (PDG),
medioresinol, isolariciresinol, syringaresinol, and hydroxymatairesinol [7,20,21].

SDG and SECO have been shown to be of particular interest as they are converted
in mammalian colon to the enterolignans (mammalian lignans) enterodiol (ED) and en-
terolactone (EL) [21]. Enterolignans may possess a variety of biological activities such
as antioxidant activity and may influence cellular pathways that are important to cancer
risk [22]. They may also reduce the plasma levels of free estradiol and testosterone, and
thus, affect the development of hormone-dependent diseases [23]. EL inhibited the prolifer-
ation of estradiol-stimulated MCF-7 human breast cancer cells in vitro by competing for
sulfokinases and sulfatases involved in estrogen metabolism [24].

The production of gut bacteria plays an important role in the formation of enterolignans
as plant lignan glycosides are poorly absorbed by the small intestine and resist hydrolysis by
mammalian enzymes [4]. The transformation of SDG in the mammalian colon is performed
by the resident anaerobic microbiota. Firstly, glucose moieties are removed to produce an
intermediate, secoisolariciresinol monoglucoside (SMG) before being further deglycosylated
into SECO. SECO is then demethylated and decarboxylated to yield ED and EL [25,26].
SDG hydrolysis may be performed by bacteria possessing β-glucosidase (β-glu, EC 3.2.1.21)
activity, which include strains of Bacteroides, Clostridium, and some Bifidobacterium [27]. As a
result, the probiotic bifidobacteria are of interest to promote the production of ED and EL in
the gut, as they already are implicated in a variety of health-promoting benefits. Unfortu-
nately, it has been found that SDG conversion is not a common feature of Bifidobacterium.
In pure cultures, out of 28 strains, only Bifidobacterium pseudocatenulatum WC 401 showed
a 75% conversion of SDG to SECO after 48 h in a cellobiose-based medium [27]. In other
studies, EL production was linked to an abundance of Ruminococcus species, particularly,
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R. bromii and R. lactaris, as well as Lactobacillus-Enterococcus and Methanobervibacter [28].
Bilophila were inversely correlated with EL and ED production [29]. The composition of
dominant fecal bacterial (Bacteroidetes and Firmicutes) communities was not significantly
affected by flaxseed ingestion at nearly all taxonomic levels analyzed [28]. Similarly, a pilot
study using lignan-rich oilseeds in in vitro batch culture fermentations of fecal microbiota
of healthy younger and premenopausal females pointed towards Klebsiella and Collinsella
spp. as prospective actors in EL and ED production. Further observations showed that 24
h of in vitro batch culture fermentation with the oilseed mix resulted in decreased propor-
tions of Ruminococcaceae and members of Lachnospiraceae, whereas Enterobacteriaceae
increased significantly (p ≤ 0.1) [29]. This was also observed in a study supplementing
the diet of Peking ducks with flaxseed. Here, flaxseed-fed groups had significantly higher
abundances of Escherichia, Shigella, and Campylobacter (p < 0.1). Flaxseed supplementation in
the same study also changed the abundance of pro-inflammatory bacteria: Veillonellaceae
first increased and then decreased significantly (both p < 0.05), which was associated with
serum prostaglandin E2 and leukotriene B4 [30].

In this study, we used an in vitro batch culture model to investigate the dynamics of
the human gut microbiota stimulated by defatted flaxseed press cake and whole flaxseed
supplementation. In particular, flaxseed lignans, enterolignans, the gut microbiota, cy-
clolinopeptides, and metabolic end products of microbial fermentation are examined. These
ex vivo models facilitate the preliminary screening of microbiome modulators and have
proven their use and validity in a large number of previous studies [31]. Whole milled
flaxseed and partially defatted milled flaxseed press cake were used. Microbial communi-
ties were profiled using 16S rRNA gene-based high-throughput sequencing with targeted
mass spectrometry measuring lignan, cyclolinopeptide, and bile acid content and HPLC
for short-chain fatty acid profiles. The in vitro batch system is a host-free platform that can
simulate the spatial, temporal, and environmental features that microbes encounter in the
gut lumen. They are ideal systems for studying microbial perturbations resulting from the
addition of exogenous stimuli.

2. Results
2.1. Characterization of Chemically and Enzymatically Predigested Flaxseed Press Cake and Milled
Whole Flaxseeds
Sample Hydrolysis, Extraction, and Quantification

After the two-step in vitro digestions mimicking the role of stomach and pancreas,
particle sizes of heterocolloids from defatted flaxseed press cake and milled, whole flaxseeds
had between a 350 and400 µm diam. After digestion, fine, slightly brown powders were
obtained: 45 g from digested flaxseed press cake and 35 g from digested milled whole
flaxseed. The fiber content of the digested flaxseed press cake was 43.10 g × 100 g mass-1
(insoluble dietary fiber) and 7.44 g × 100 g mass-1 (soluble dietary fiber). The fiber content
of the digested milled whole flaxseeds was 40.90 g × 100 g mass-1 (insoluble dietary fiber)
and 7.38 g × 100 g mass-1 (soluble dietary fiber).

2.2. Impact of Flaxseed on Fecal-Derived Microbial Communities

Next, the predigested flaxseed preparation was incubated with human gut microbiota
of three different donors. The analysis of the impact of the flaxseed preparation on the
luminal content of the adult human gut microbiota was assessed using a batch culture,
followed by sequencing of V3 and V4 regions of the 16S rRNA gene using an Illumina
MiSeq. We obtained 1,7045,399 amplicon raw sequences for 27 fecal samples that we
filtered by length, quality, and chimera, giving a total of 1,4473,113 filtered sequences with
an average of 24,971 sequences per sample. Alpha diversity analysis showed that control
fermentations maintained stable populations (Table 1). However, both fermentations
using digested, defatted flaxseed press cake and digested whole flaxseed had perturbed
populations from 6 h of fermentation onwards compared to control fermentations (p < 0.05).
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To assess the overall bacterial composition for the control and the whole flaxseed and
flaxseed press cake groups, we performed a generalized UniFrac.

Table 1. Alpha diversity changes of human gut microbiota batch cultures observed over 24 h (T0, T6,
T18, T24 = observed timepoints 0 h, 6 h, 18 h, and 24 h; C = control fermentation without flaxseed,
PC = digested flaxseed press cake, FS = digested milled whole flaxseed).

Richness Normalized
Richness

Effective
Richness

Shannon
Index

Shannon
Effective

Simpson
Index

Simpson
Effective Evenness

T0 78 70 51 3.28 26.58 0.08 13.07 0.52

C T6 77 71 56 3.35 28.38 0.07 14.22 0.53
C T18 80 74 55 3.29 26.74 0.08 12.53 0.52
C T24 80 72 54 3.28 26.05 0.08 12.36 0.52

T6 PC 71 57 29 2.21 9.98 0.28 4.27 0.36
T18 PC 73 50 34 2.69 15.99 0.14 8.27 0.43
T24 PC 75 52 36 2.75 16.58 0.15 7.68 0.44

T6 FS 79 66 37 2.65 16.82 0.20 7.95 0.42
T18 FS 75 51 33 2.59 14.60 0.16 7.70 0.42
T24 FS 73 50 33 2.78 16.57 0.12 9.39 0.45

Analysis using a dendrogram and non-metric multidimensional scaling plot (NMDS)
showed good separation of control fermentations without flaxseed at 6 h, 18 h, and 24 h,
which clustered the point of inoculation (T0) from the test fermentations using digested,
defatted flaxseed press cake and digested whole flaxseed (Figure 1a,b).
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Figure 1. (a) Dendrogram and (b) generalized Unifrac NMDS plot of human gut microbiota batch
cultures observed over 24 h (T0, T6, T18, T24 = observed timepoints 0 h (red), 6 h (green), 18 h (blue),
and 24 h (purple); C = control fermentation without flaxseed, PC = digested flaxseed press cake,
FS = digested milled whole flaxseed).

Batch cultures using digested flaxseed press cake and digested milled whole flaxseed
clustered together in their respective time points. A stacked bar plot of the relative abun-
dance of the 15 most predominant genera showed that Bacteroides OTUs were the most
relative abundant taxa at the point of inoculation (T0) and in all the control fermenta-
tions (T6 C, T18 C, T24 C), followed by Faecalibacterium, Roseburia and Parabacteroides
OTUs (Figure 2). In fermentations using digested, defatted flaxseed press cake and di-
gested whole flaxseed populations at 6 h of fermentation (T6 press cake (PC) and T6
whole flaxseed (FS)), Escherichia-Shigella OTUs were the most relative abundant taxa
(p < 0.05), followed by Bacteroides. From T6 onwards, populations also showed an in-
crease in the relative abundance of Acidaminococcus (p < 0.05), Dialister (p < 0.05), and
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Parasutterella OTUs. The relative abundance of Bacteroides, Faecalibacterium, and Eubac-
terium OTUs (Eubacterium eligens group, Eubacterium ventriosum group, Eubacterium
xylanophilum group) decreased. At time points 18 h and 24 h, Acidaminococcus became
the OTU with the most relative abundance in fermentations using digested, defatted
flaxseed press cake (p < 0.05) and digested whole flaxseed populations (p < 0.05) (T18
PC, T24 PC, T18 FS, T24 FS). The relative abundance of Veillonella (p < 0.05) and Lach-
nospira (p < 0.05) OTUs (Lachnospira, Lachnospiraceae-ND3007-group, Lachnospiraceae-
NK4A136-group, Lachnospiraceae-UCG-001, Lachnospiraceae-UCG-004) also increased
significantly, whereas the relative abundance of Escherichia-Shigella OTUs decreased but
did not return to levels compared to the inoculum or the control fermentations. Gen-
era with a known effect on EL production only represented a minor part of the overall
population with relative abundances not exceeding 1.5% at most. Notably, Akkermansia, Bi-
fidobacterium, and Collinsella generally increased during fermentation as compared to the
inoculum, whereas Ruminococcaceae (Ruminococcaceae NK4A214 group) decreased and
Lachnospira remained stable at inoculum levels. Bifidobacterium spp. initially increased
in the initial 6 h of fermentation (from 0.15% to 0.52% and 0.93% in press cake and whole
flaxseed, respectively). Between 6 h and 24 h, the relative abundance of bifidobacteria,
however, decreased again (0.33% and 0.36% in press cake and whole flaxseed, respectively).
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gut microbiota batch cultures. T0, T6, T18, T24 = observed timepoints 0 h, 6 h, 18 h, and 24 h;
C = control fermentation without flaxseed, PC = digested flaxseed press cake, FS = digested milled
whole flaxseed.

Similarly, Akkermansia was present at 0.01% at T0, then increased to 0.10 and 0.34 in
press cake and whole flaxseed, respectively. The abundance of Collinsiella increased in
the initial 6 h of fermentation and then remained stable (from 0.04% at T0 to 0.28% and
0.40% at T6). Genera belonging to the Ruminococcaceae were initially present at 0.24%,
but disappeared after 18 h of fermentation in both flaxseed fermentations. Similar trends
were detected in control fermentations without flaxseed and showed the populations of
Lachnospira slightly increased to 1.29% after 24 h of fermentation. Genera representing the
Ruminococcaceae also decreased but did not disappear completely.

Relative abundances at the phylum level within the bacterial communities of the
different fermentations showed that Bacteroidetes was the most abundant at T0 and in
the control fermentations (T6 C, T18 C, T24 C). In fermentations using digested, defatted
flaxseed press cake and digested whole flaxseed populations at 6 h of fermentation (T6
PC and T6 FS), Proteobacteria became the most abundant phylum (55.67% and 42.13%,
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respectively). In fermentations using digested, defatted flaxseed press cake and digested
whole flaxseed 18 h and 24 h after inoculation (T18 PC, T24 PC, T18 FS, T24 FS), Firmicutes
represented the most relatively abundant phylum with values between 56.26 and 64.01%
of classified reads per sample. The Bacteroidetes phylum then came second in terms of
relative abundance (Figure 3).
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2.3. Analysis of Fiber-Derived Short-Chain Fatty Acids in Fermented Samples

In batch cultures using both linseed preparations, acetic, butyric, propionic, succinic,
and lactic acids accumulated over the 24 h time period of the incubation of the batch culture
(Figure 4). Acetic acid was predominant and accumulated from 0.19 (±0.002) mg/mL at T0
to 4.05 (±0.582) mg/mL and 4.09 (±0.445) mg/mL at T24 in press cake (p < 0.05) and ground
whole flaxseed (p < 0.05), respectively. Butyric acid accumulated from 0.03 (±0.014) mg/mL
at T0 to 1.62 (±0.396) mg/mL at T24 in press cake (p < 0.05) and 1.44 (±0.622) mg/mL at T24
in ground whole flaxseed (p < 0.05). Propionic acid accumulated from 0.01 (±0.005) mg/mL
at T0 to 0.98 (±0.189) mg/mL and 1.04 (±0.256) mg/mL at T24 in press cake and ground
whole flaxseed, respectively. Lactic acid increased between inoculation (T0) and 6 h of
fermentation (T6). However, the lactic acid concentration then decreased until the end of the
fermentation after 24 h. Other acids occurred only sporadically in trace amounts. In control
fermentations without flaxseed, all examined acids increased throughout the fermentation.
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2.4. Analysis of Lignans, Cyclolinopeptides, and Bile Acids in Fermented Samples
2.4.1. Lignans

The diglucosides SDG and PDG are rapidly degraded by the bacteria, which conse-
quently increase the concentrations of SECO and PINO within 18 h and 6 h of fermentation,
respectively. PINO is also degraded and is not detected in later fermentation time points,
whereas SECO is detected at later time points. LA is present at T0 and T6 and is then
degraded as well. As described in the literature, ED and EL are formed out of these lignan
precursors (Figure 5).
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2.4.2. Cyclolinopeptides

Quantitative analysis of different flaxseeds showed that CL1, 1-Met-CL2, 1-Met-CL3, 1-
Met-CL4, and 1-Met,3-Met-CL6 (Lang et al. 2022) are the most abundant cyclolinopeptides
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present in fresh flaxseed (Figure 6). During storage, the methionine group is oxidized,
forming methionine sulfoxide (Mso) or the methionine sulfone (Msn). The quantitative
analysis of the cyclolinopeptides present in PC and FS demonstrated that during the
preparation of the PC and FS, oxidation must have occurred, showing the presence of
1-Mso-CL3, 1-Mso-CL4, and 1-Mso-CL2. CL1’s presence is due to its chemical structure
not being prone to oxidation. Interestingly, during the fermentation, the concentration of
the non-oxidized CL, such as 1-Met-CL4 and 1-Met-CL2, increased, showing the reductive
potential of the fermentation culture.
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2.4.3. Bile Acids

The fermentation culture was supplemented with bile salts #3 which mainly consisted
of cholic acid (CA) and deoxycholic acid (DCA) (Figure 7). At T0, not only are the primary
bile CA and DCA present, but the bile acids are as well; the bile acids are conjugated with
glycine or taurine. During the fermentation process, the bile acids were depleted, forming
the secondary bile acids 7-ketolithocholic acid (7-KLCA) and α-muricholic acid (α-MCA).
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3. Discussion

Flaxseed and its bioactive components have been implicated in several health benefits,
positively impacting cardiovascular disease, diabetes, hormonal status, brain health, skin
health, gut health, and cancer [4]. Most of these effects were due to flaxseed containing alpha-
linolenic acid (ALA), lignans, and fiber [5]. Flaxseed cyclolinopeptides were found to have
anti-inflammatory and hepatoprotective effects [9]. The objective of this study was to examine
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the compositional changes of the human gut microbiota and follow its metabolic impact in
batch cultures with defatted flaxseed press cake and whole flaxseed supplementation.

3.1. Microbial Communities

Fermentations using either whole flaxseed or defatted flaxseed press cake showed
almost identical microbial profiles, which significantly (p < 0.05) differed from the control
fermentation and the inoculum. Flaxseed supplementation decreased the richness of gut
microbiota when compared to control fermentations. Firmicutes, Proteobacteria, and Bac-
teroidetes became the predominant phyla. This conflicted with most previous studies, but
coincided with the findings of Wu et al. and Xia et al. [30,32]. After 6 h of fermentation,
Proteobacteria belonging to the genera Escherichia and Shigella became dominant with sig-
nificant concomitant increases in Veillonellaceae and Dialister. This is congruent with earlier
reports that demonstrated that the genera Escherichia and Shigella increased in flaxseed-fed
groups alongside pro-inflammatory bacteria, including members of the taxa Negativicutes,
Veillonellaceae, Dialister, Megamonas, and Prevotella [30]. In contrast, anti-inflammatory bacte-
ria, including Clostridia, Porphyromonadaceae, Lachnospiraceae, and Bacteroides diminished,
but increased again with a prolonged feeding duration [30,32]. Faecalibacterium and Akker-
mansia, two important commensal bacteria of the human gut microbiota, also decreased.
Experiments in animal models using flaxseed showed that flaxseed supplementation re-
duced Akkermansia muciniphila abundance. Furthermore, flaxseed mucilage showed a
decrease in Faecalibacterium [33,34]. After 18 h, Firmicutes and the genus Acidaminococcus
showed the highest relative abundance. Increases in the genus Acidaminococcus, belonging
to the phylum Firmicutes, has been associated with acute myocardial infarction and the
flaxseed oil supplementation of lambs’ diet [35–37].

3.2. Short-Chain Fatty Acids

In this study, acetic acid was the predominant SCFA, followed by butyric and propionic
acids in both press cake and whole flaxseed samples. Acetate may be converted to acetyl-
CoA and incorporated in the tricarboxylic acid (TCA) cycle. Within the gut, acetic acid
may improve the insulin resistance in obese individuals by affecting peripheral tissues that
collectively improve body weight control and insulin sensitivity [38]. Propionic acid and
butyrate are resorbed by the intestinal epithelium and are an important energy source used
for the growth and maintenance of colonocytes. Furthermore, SCFAs also enhance gut
barrier integrity while modulating inflammation-related signaling pathways [39]. SCFAs
are also suspected to impact glucose homeostasis and lipid metabolism by affecting distinct
hormones involved in appetite regulation [40]. It has been previously observed in in vivo
studies that flaxseed increased the production of the SCFA acetic acid, propionic acid,
and butyric acid [41,42]. In these studies, acetic acid was also the predominant SCFA as
observed here, reaching 80% of total SCFA after 48 h in whole flaxseed and 97% of total
SCFA after 48 h in flaxseed flour. Butyric acid decreased over the fermentation period,
whereas the content of other acids was not significant [41]. In our study, butyric acid
and propionic acid also increased with whole flaxseed and defatted flaxseed press cake
samples over a 24 h period, whereas lactic acid increased in the first 6 h of fermentation
and then decreased again. Lactic acid may be further metabolized to acetate, propionate,
and butyrate by gut microbiota, where both d- and l-lactate were similarly fermented [43].
Amino acid fermentation may also contribute to the production of SCFAs by providing an
acidic environment suitable for acidophilic microorganisms. Using amino acids to produce
SFCAs mainly yields acetate and propionate [40]. As the present study reports a significant
abundance of the genus Acidaminococcus, the production of acetic acid, butyric acid, and
propionic acid may, in part, be due to free amino acids in the flaxseed fermentations as
reported by Jumas-Bilak et al. [44].
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3.3. Lignans

As previously reported in the literature, the human gut microbiota was able to rapidly
degrade SDG into SECO, ED, and EL. Although it has been suggested that the deglyco-
sylation of SDG may occur via the action of brush border enzymes, it appeared from the
present study that the gut microbiota is able to perform this step without host interven-
tion [45]. SDG and SECO were further metabolized to the mammalian lignans ED and EL
by human intestinal microflora, starting at 18 h of the batch culture. Defatted press cake in
this study seemed to be the efficient substrate for the human gut microbiota as a higher
concentration of both EL and ED were detected. This has been similarly reported in a previ-
ous study comparing whole flaxseed with flaxseed flour [41]. A study comparing whole
flaxseed and flaxseed oil suggested that flaxseed fiber supports SDG microbial metabolism
to produce EL and ED [46,47]. The production of EL and ED occurred through the demethy-
lation of SECO, forming dihydroxyenterodiol [33]. Organisms implicated in this step were
Butyribacterium methylotrophicum, Eubacterium callanderi, Eubacterium limosum, Ruminococ-
cus productus, and Peptostreptococcus productus. Dehydroxylation by Clostridium scindens,
Clostridium saccharogumia, Blautia producta, or Eggerthella lenta then resulted in the formation
of ED [33]. Roncaglia et al. [27] further attributed EL and ED production to Bacteroides spp.
and Bifidobacterium spp. Dehydrogenation of ED to EL was shown to be accomplished by
Lactonifactor longoviformis [26]. In the present study, Bacteroides spp. and Eubacterium spp.
were part of the 15 genera with the most relative abundance, whereas Bifidobacterium spp.,
Blautia spp., Clostridium spp., and Ruminococcus spp. were minor components. Hence, it
may be speculated that the genera present here were able to perform SDG degradation [48].
However, SECO was also not completely degraded to ED and EL in this study. Hu et al. [49]
reported that the antioxidant activity of SECO was higher than ED and EL, which suggests
that SECO may diminish some of the negative effects of the pro-inflammatory bacteria that
increased during flaxseed fermentation.

This has also been observed with PDG. Although its derivatives PINO and LA were
already present in our samples at T0, it was completely degraded after 6 h, leaving only
PINO and LA, with PINO being only present in whole flaxseed samples. LA was present
in both samples of press cake and whole flaxseed. Likewise, in our results, in vivo studies
also showed that LA increased significantly in study subjects and could be formed from
PINO, as well as from syringaresinol, following the production of PINO from PDG [50].
The degradation of PINO to LA by demethylation was attributed to Enterococcus faecalis
and Peptostreptococcus productus [26,51]. Degradation by human gut microbiota of LA to ED
and EL has been suggested by Xie et al. [51] via a pathway of conversion of LA to SECO.
This would explain the disappearance of PDG, PINO, and LA after 6 h of digestion here.

3.4. Cyclolinopeptides

The lack of consumer acceptance of flaxseed products is partially due to the presence
of cyclolinopeptides that trigger a rapidly developing bitter taste [9]. Here, the quantita-
tive analysis of the cyclolinopeptides present in flaxseed press cake and whole flaxseed
demonstrated that during the processing of the in vitro digestion before batch culture fer-
mentation, oxidation must have occurred. During fermentation, cyclolinopeptide profiles
shifted towards 1-Met-CL2 and 1-Met-CL4. Although previous studies have suggested
that the human gut microbiota interacts with cyclolinopeptides, it remains unknown how
and to what extent flaxseed cyclopeptides may affect the human microbiota [52]. Dietary
cyclolinopeptides may remain stable in the human gut, which could in turn aid their
antimicrobial and antimalarial activities [9]. Further investigations using cyclolinopeptides
and pathogenic consortia may be useful in supplementing this field.

3.5. Bile Acids

Human gut microbiota associated with fiber metabolism may affect secondary bile acid
(BAs) metabolism [53]. Several species of gut bacteria, including Clostridium, Enterococcus,
Bifidobacterium, Lactobacillus, and Bacteroides, can convert primary bile acids into secondary
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bile acids, such as lithocholic acid (LCA) and deoxycholic acid (DCA) [54]. In vivo, EL has
been shown to interact with nuclear receptors involved in bile acid metabolism. Therefore,
EL may mediate bile acid synthesis and metabolism [55]. An animal trial assessing the
microbiota of C57BL/6 mice on a “Western” high-fat diet (HFD) showed that BAs positively
correlated with Firmicutes, Proteobacteria, and Actinobacteria had positive correlations,
whereas there was a negative correlation with Verrucomicrobia and TM7. The authors
suggested that BAs are the most relevant metabolites affecting gut microbiota [56]. In this
study, bile acids were depleted and formed the secondary bile acids 7-KLCA and α-MCA,
whereas a microbiota shift towards Firmicutes, Proteobacteria, and Actinobacteria was
observed. This suggests, at least partially, that BAs may contribute towards microbiota
changes. However, no statistically significant correlations between the production of
secondary bile acids from flaxseed preparations and changes in the microbiota composition
were observed here.

4. Materials and Methods
4.1. Flaxseed Processing

Flaxseed, harvested in the year 2017, was obtained from Naturoel AG (Lanzenneunforn,
CH). Flaxseed oil was produced by cold pressing (Oil Press FX20, Oeltech Maschinenbau,
Munich, Germany) 10 kg of flaxseed. The compression of the press cake was controlled via
the manual slit distance regulation, as well as via the oil temperature (50 ◦C). The oil (2.5 kg)
was discarded and the defatted flaxseed press cake (7.5 g) and original whole flaxseed were
further processed by dry milling (Pin Mill C100 UPZ, Alpine, Augsburg, Germany) with
a 3 mm screen insert at room temperature (air-cooled). Then, 500 g of the two matrices,
the defatted press cake and the whole flaxseed, were mixed with 4500 g of demineralized
water for wet milling with a ball mill (CoBall-Mill MS 12, FrymaKoruma, Rheinfelden,
Switzerland), with 1 mm ceramic beads (SiLibeads Type ZY-E, Sigmund Lindner GmbH,
Warmensteinach, Germany), for 10 min at a rotary speed of 10 m/s. The jacket cooling
system was operated with tap water. Heterocolloids from milled press cake and milled whole
flaxseed were obtained. The mean particle size of these aqueous dispersions was determined
with a Camsizer XT (Retsch Technology, Haan, Germany), equipped with a XT-flow module
(LOD 5 µm). These heterocolloids were used for the two-step in vitro digestion.

4.2. In Vitro Digestion

A two-stage in vitro digestion model based on the procedure described by Xie was
used with some modifications [57]. A volume of 650 mL of the linseed heterocolloids was
diluted with water (1:1) up to 1300 mL. The gastric phase was initiated by adding 240 mL of
0.05 mol/L HCl solution (pH 1.3) to the heterocolloid solutions. A pepsin solution (130 mL;
3.5 g of pepsin from porcine stomach mucosa in 500 mL HCl 0.1 mol/L) was added, and the
mixture was purged with nitrogen and placed in a Multitron PRO incubator (Blanc Labo,
Lonay, Switzerland) at 37 ◦C for 1 h with constant shaking. After the gastric digestion, the
pH was adjusted to 6.5 using a NaOH solution (1 mol/L). After the addition of 130 mL
of a pancreatin and bile salt solution (3.5 g and 3.7 g, respectively in 500 mL of 0.1 mol/L
NaHCO3), the mixture was purged with nitrogen and placed at 37 ◦C for 2 h with constant
shaking. During the whole digestion process, the solutions were protected from light.

4.3. Processing of Digested Flaxseed Press Cake and Whole Flaxseed

Digested hydrocolloid solutions were centrifuged at 13,000× g for 45 min at room
temperature. The supernatant was ultrafiltered with a cross flow diafiltration (LabStak M-
20, DDS Filtration/Alfa Laval, Lund, Sweden) that was equipped with a stacked membrane
module (cut-off = 1000 Da, ETNA 01A, DDS Filtration/Alfa Laval, Denmark) against
deionized water with a diafiltration factor of 3. The retentates from the digested press cake
and digested original flaxseed were lyophilized with a freeze-drying plant (Sublimator
3 × 4 × 5, Zirbus Technology, Bad Grund, Germany). Samples were frozen at −40 ◦C on
the shelves before the vacuum was set to 0.2 mbar. Then, the shelves’ temperature was
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ramped up to −5 ◦C and kept constant until the product temperature reached −5 ◦C on
all shelves. A post-drying step at 20 ◦C and the maximum power of the vacuum pump
finished the drying process. The obtained powders were analyzed for their soluble and
insoluble fiber contents.

4.4. Soluble and Insoluble Fiber Content

The powders from lyophilization were analyzed using a commercial test kit from
Megazyme (Integrated Total Dietary Fiber Assay Kit, Dublin, Ireland), for the determination
of insoluble (IDF) and soluble (SDF) dietary fiber (including resistant starch). This method
corresponds to the method of the Association of Official Agricultural Chemists (AOAC),
Method 2011.25.

4.5. Dry Matter of Lyophilized Powders

All the results were expressed per dry matter, which was determined using the HG53
Halogen Moisture Analyzer (Mettler Toledo, Greifensee, Switzerland).

4.6. Stool Sample Collection and Preparation

Testing of the digested linseed samples was performed using pooled, freshly voided
fecal samples from 3 healthy adult volunteer donors between the ages of 30 and 45 years
following a standard Western diet and with no recent history of probiotic, prebiotic, or
antibiotic use (within the last 6 months). Information on the donors’ health status, lifestyle
habits, clinical anamnesis, and medicine use was collected with a pre-informative question-
naire. For inoculation of the batch culture model, 10% (w/v) fecal slurries were prepared
using anaerobic phosphate-buffered saline (0.1 M, pH 7.2) and homogenized for 2 min
at 460 paddle-beats (Stomacher 400, Seward, West Sussex, UK). The maximum time for
sample preparation after reception of the fecal sample and inoculation of fermenter vessels
was 15 min.

4.7. In Vitro Batch Culture Microbiota Model

Triplicate batch culture fermentations were carried out as previously described by
Gibson et al. [58]. For the anaerobic batch culture system, a continuous culture growth
medium (CMGM, Table 2) was prepared in 1 L of deionized water, adjusted to pH 6.5,
and sterilized by autoclaving. Media with linseed preparations contained a sterile CMGM
containing 4 mL/L of a 250 mg/L stock solution of resazurin (Fisher Scientific, Reinach,
Switzerland), 0.5 g/l L-Cysteine HCl (Sigma, Buchs, Switzerland) and 1% (w/v) of digested
linseed samples. A control fermentation was performed using only a sterile CMGM
containing 4 mL/L of a 250 mg/L stock solution of resazurin (Fisher Scientific, Reinach,
Switzerland) and 0.5 g/l L of cysteine-HCl (Sigma, Buchs, Switzerland). All media were
placed into 100 mL batch culture vessels and maintained under an atmosphere of oxygen-
free nitrogen gas by continuously sparging with oxygen-free nitrogen (15 mL/min). The
vessel was magnetically stirred, and pH was maintained using a pH controller (Electrolab
Biotech Limited, Gloucester, UK). The medium was allowed to equilibrate overnight before
fecal inoculation. Batch cultures ran under anaerobic conditions for a period of 24 h during
which samples (5 mL) were collected at times of 0 h, 6 h, 18 h and 24 h for high-throughput
sequencing and metabolomics analysis. T0 samples were taken from the respective vessels
under operating conditions and not from volunteer fecal slurries. Samples were stored at
−80 ◦C until needed. Twenty-four hours is the typical maximum incubation time for batch
systems when simulating the large intestine of monogastric animals [59].
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Table 2. Continuous culture growth medium (CMGM, g liter−1 in distilled water) [58,60].

Component g × L−1

Starch (BDH Ltd.) 5.0
Pectin (citrus) 2.0
Guar gum 1.0
Mucin (porcine gastric type III) 4.0
Xylan (oat spelt) 2.0
Arabinogalactan (larch wood) 2.0
Inulin 1.0
Casein (BDH Ltd.) 3.0
Peptone water 5.0
Tryptone 5.0
Bile salts No. 3 0.4
Yeast extract 4.5
FeSO4 × 7H2O 0.005
NaCl 4.5
KCl 4.5
KH2PO4 0.5
SO4 × 7H2O 1.25
CaCl2 × 6H2O 0.15
NaHCO3 1.5
Cysteine 0.8
Hemin 0.01
Tween 80 1.0

4.8. Sequencing

DNA extraction was performed using the QIAamp Fast DNA Stool Mini Kit (Qiagen,
Hombrechtikon, Switzerland) following the manufacturer’s protocols. Further sample
preparation and sequencing was outsourced and performed at the Swiss Integrative Center
for Human Health (SICHH; Fribourg, Switzerland). DNA concentrations for the PCR were
normalized to 5 ng/µL. Sequencing libraries were created from 2 ng/µL of DNA after
the PCR and after applying the 16S Metagenomic Sequencing Library protocol (Illumina,
Zürich, Switzerland), targeting the variable V3 and V4 regions of the 16S rRNA gene (a
single amplicon of approximately 460 bp) [61]. All 27 samples (plus 1 negative control) were
sequenced in one Illumina MiSeq run at a 2× 300 bp paired-end read length, which yielded
between 344,848 (103 Mb) and 842,725 pass-filtered reads (252 Mb) per sample, reaching a
median pass-filtered sequencing depth of 160 Mb per sample. Illumina conversion software
bcl2fastq2 version v2.18.0.12 was automatically run through the MiSeq local run manager
set with default parameters to trim Illumina adapters, demultiplex samples based on their
respective index, and generate fastq files. Sequencing reads were evaluated for quality and
adaptor contamination using FastQC v0.11.5 [62].

Paired-end sequencing reads were uploaded on the microbiota sequencing and analy-
sis platform imngs2 (https://www.imngs2.org, accessed on 6 July 2022). Analyses were
performed using the Rhea pipeline in R [63]. Taxonomy assignment, alpha diversity, and
beta diversity based on the generalized UniFrac were generated using the Rhea pipeline.
The generalized UniFrac was used to avoid analytical sensitivity to rare and dominant
OTUs [64]. The dendrogram of all the samples was calculated by hierarchical clustering us-
ing the Ward’s minimum variance method [65]. Beta diversity visualization was performed
by unconstrained, non-metric multidimensional scaling (NMDS) [66]. A permutational
multivariate analysis of variance using distance matrices (vegan: adonis) was performed to
determine if the separation of groups is significant. To aid visualization, replicate samples
were averaged and displayed together.

Nucleotide Sequence Accession Numbers

Metagenome raw sequencing datasets have been made public through the Sequence
Read Archive of the National Center for Biotechnology Information under SRA Accession

https://www.imngs2.org
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Numbers SRR8695500 to SRR8695526, and gathered together under the Bioproject Accession
Number PRJNA525885 and the Study Accession Number SRP187837 [67].

4.9. Volatile Fatty Acid Analysis

For sample analysis, 1 mL aliquots of culture were taken at inoculation (T0), after 6 h
(T6), after 18 h (T18), and after 24 h (T24). Samples were centrifuged (13,000× g) for 10 min
and the supernatant filtered through a sterile 0.45µm syringe filter. The filtrate was injected
directly into an HPLC (Agilent, Basel, Switzerland) using a Cation H+ pre-column and
Rezex ROA-Organic Acid H+ (8%) column (30 × 4.6 mm, Phenomenex, Aschaffenburg,
Germany), which was ran with an isocratic mobile phase of 5 mM H2SO4 at a flowrate of
0.5 mL min−1 (62 min, 70 ◦C). Lactic acid, acetic acid, succinic acid, propionic acid, and
butyric acid were detected by refractive index and UV (210 nm) spectrometry. To aid in
visualization, replicate samples were averaged and displayed together.

4.10. Targeted Analysis of Lignans, Cyclolinopeptides, and Bile Acids

For the targeted analysis, 100 µL of digested media was evaporated using an Ep-
pendorf concentrator. The dried sample was dissolved in 100 µL of 80% acetonitrile by
sonication for 10 min and vigorous shaking for 5 min, followed by sonication for 10 min.
The samples were centrifuged at 3000 rpm for 10 min and the clear supernatant was used
for mass spectrometric analysis. An API 5500 QTrap mass spectrometer (Sciex, Darmstadt,
Germany) coupled to an ExionLC UPLC was used for the detection of lignans, cyclolinopep-
tides, and bile acids in multiple reaction monitoring mode (MRM). The reference materials
for lignans and bile acids were commercially available. Cyclolinopeptides were isolated
according to Frank et al. [68]. Data acquisition was performed with Analyst 1.7.0 soft-
ware (Sciex), data analysis with MultiQuant 3.0.3 (Sciex), and statistical analysis with
Metaboanalyst [69]. Mass spectrometric settings for the MRM transitions of lignans and
cyclolinopeptides are shown in Table 3.

4.10.1. Lignans and Cyclolinopeptides

Chromatographic separation was carried out on a 100 mm× 2.1 mm i.d., 5 µm, Kinetex
XB-C18 column (Phenomenex, Germany, Aschaffenburg) using a linear binary gradient
at a column temperature of 40 ◦C. The injection volume was 1 µL, and the autosampler
was cooled to 15 ◦C. The flow rate was 300 µL/min. Solvent A was 0.1% formic acid,
and solvent B was 0.1% formic acid in acetonitrile. The UPLC was programmed using
a gradient from 5% B that was held for 0.5 min to 100% B at 10 min. After flushing the
column for 5 min at 10 0% B, the column was equilibrated to the starting conditions.

For electrospray ionization, the ion voltage was set to +5500 V in positive mode and to
−4500 V in negative mode, and nitrogen was used as the curtain gas (35 psi). Zero-grade
air was used as a nebulizer gas (45 psi), and as a drying gas (55 psi), heated to 400 ◦C.
For quantitation, the multiple reaction monitoring mass spectrometry (MRM) transitions
were optimized for each reference compound using standard material. Cyclolinopeptides
were measured in positive ionization mode and SECO, SDG, ED, EL, (+)-LA, PINO, and
PDG were measured in negative ionization mode. The MRM transitions of lignans and
cyclolinopeptides are shown in Table 2.
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Table 3. Mass spectrometric settings for the MRM transitions of lignans and cyclolinopeptides. Q
stands for quantifier and ID stands for identifier. A terminology showing the structural relations of
the cyclolinopeptides was used: CL1→ CLA, 1-Met-CL2→ CLB, 1-Mso-CL2→ CLC, 1-Met-CL3→
CLD’, 1-Mso-CL3→ CLD, 1-Met-CL4→ CLE’, 1-Mso-CL4→ CLE.

Sample Name Polarity Q1 (Da) Q3 (Da) Dwell Time
(ms) DP (V) EP (volts) CE (volts) CXP (volts)

(+)-Lariciresinol Q - 359.027 175.000 25 −115 −10 −32 −9
(+)-Lariciresinol ID - 359.027 160.400 25 −115 −10 −40 −7

Enterodiol Q - 301.031 106.500 25 −140 −10 −42 −15
Enterodiol ID - 301.031 270.900 25 −140 −10 −34 −11

Enterolactone Q - 296.998 106.500 25 −100 −10 −40 −5
Enterolactone ID - 296.998 121.100 25 −100 −10 −32 −1

Secoisolariciresinol
diglucoside ID - 685.153 361.000 25 −290 −10 −56 −15

Secoisolariciresinol
diglucoside Q - 685.153 58.900 25 −290 −10 −112 −9

Secoisolariciresinol
Q - 361.041 165.100 25 −40 −10 −34 −5

Secoisolariciresinol
ID - 361.041 120.900 25 −40 −10 −58 −7

Pinoresinol
diglucoside Q - 682.108 520.100 25 −210 −10 −22 −21

Pinoresinol
diglucoside ID - 682.108 151.100 25 −210 −10 −66 −5

Pinoresinol Q + 359.067 137.100 25 +96 +10 +33 +6
Pinoresinol ID + 359.067 175.100 25 +96 +10 +23 +6

CL1 Q + 1040.600 941.4 25 +296 +10 +41 +36
CL1 ID + 1040.600 828.4 25 +296 +10 +49 +30

1-Met-CL2 Q + 1058.6 945.4 25 +296 +10 +45 +36
1-Met-CL2 ID + 1058.6 588.2 25 +296 +10 +61 +20
1-Mso-CL2 Q + 1074.5 961.3 25 +286 +10 +49 +38
1-Mso-CL2 ID + 1074.5 489.1 25 +286 +10 +73 +18
1-Met-CL3 Q + 1048.5 935.3 25 +241 +10 +35 +34
1-Met-CL3 ID + 1048.5 822.2 25 +241 +10 +45 +30
1-Mso-CL3 Q + 1064.5 951.3 25 +266 +10 +41 +36
1-Mso-CL3 ID + 1064.5 1000.4 25 +266 +10 +37 +36
1-Met-CL4 Q + 961.5 814.3 25 +296 +10 +35 +30
1-Met-CL4 ID + 961.5 358.1 25 +296 +10 +57 +40
1-Mso-CL4 Q + 977.5 358.1 25 +296 +10 +59 +12
1-Mso-CL4 ID + 977.5 211.1 25 +296 +10 +67 +24

4.10.2. Bile Acids

Bile acid analysis was performed according to Reiter et al. [70]. An electrospray
ion voltage of −4500 V and the following ion source parameters were used: curtain
gas (35 psi), temperature (450 ◦C), gas 1 (55 psi), gas 2 (65 psi), and entrance potential
(−10 V). For separation of the analytes, a 100 × 2.1 mm, 100 Å, 1.7 µm, Kinetex C18
column (Phenomenex) was used. Chromatographic separation was performed with a
constant flow rate of 0.4 mL/min using a mobile phase consisting of water (eluent A) and
acetonitrile/water (95/5, v/v, eluent B), both of which contained 5 mM ammonium acetate
and 0.1% formic acid. The gradient elution started with 25% B for 2 min, increased at
3.5 min to 27% B, and then increased in 2 min to 35% B. This was held until 10 min of
elution time was reached. Afterwards, the eluent B concentration was increased in 1 min to
43% B, which was held for 1 min before again increasing eluent B in 2 min to 58% B. This
concentration of eluent B was held for 3 min isocratically. Finally, the concentration of B
was increased to 65% at 17.5 min, with another increase to 80% B at 18 min, following an
increase at 19 min to 100% B which was held for 1 min. After a total runtime of 20.5 min,
the column was equilibrated to the starting conditions for 4.5 min. The injection volume for
all samples was 1 µL, the column oven temperature was set to 40 ◦C, and the auto-sampler
was kept at 15 ◦C. Data acquisition and instrumental control were performed with Analyst
1.7 software (Sciex, Darmstadt, Germany). The data were analyzed with MultiQuant 3.0.3
(Sciex, Darmstadt, Germany) and Metaboanalyst [69].

5. Conclusions

In the study presented here, we compared and examined the changes in microbiota
composition and changes in bioactive components of whole flaxseed and defatted flaxseed
press cake during microbiota fermentation in vitro. We observed that press cake and whole
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flaxseed are equivalent in microbiota changes and functionality. However, press cake may
be superior as a functional additive in a variety of foods in terms of consumer acceptance as
it would be more resistant to oxidative changes, improving sensory perception and storage.
Considering that flaxseed press cake is a cheap by-product of flaxseed oil production, the
addition of this waste product to consumer foods may yield a sustainable and resource-
efficient source of food additives. However, more in vivo studies are needed to ascertain
the dysbiotic effect of flaxseed supplementation seen here to see if they pose any dangers
to either healthy individuals or people with circulatory diseases.
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