
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computational Science and Engineering

Enabling Dynamic Load Balancing for
MiniMD on OctoPOS

Radu Raicea

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computational Science and Engineering

Enabling Dynamic Load Balancing for MiniMD on
OctoPOS

Author: Radu Raicea

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Santiago Narváez Rivas, M.Sc.

Date: October 9, 2022

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, October 9, 2022 Radu Raicea

Acknowledgements

I would like to thank Santiago Narváez Rivas for being such a great advisor and for helping
me throughout my thesis, as well as being so flexible with me.

I would also like to thank my wife for her support, especially during the more work intensive
moments of the thesis.

vii

viii

Abstract

This thesis aims at adding dynamic load balancing to the miniMD (a simple parallel molecular
dynamics simulation program) port in OctoPOS, an operating system that is meant to
be run on exotic multiprocessor computers such as those designed specifically with the
invasive computing paradigm in mind. Different load balancing schemes are implemented,
and their performance are compared: a “naive” load balancing scheme, an inverted pressure
scheme using a swipe to change all subdomains in one load balancing iteration, as well as A
Loadbalancing Library’s tensor method.

ix

x

Contents

Acknowledgements vii

Abstract ix

I. Introduction and Background 1

1. Introduction 2
1.1. A World of Systems . 2
1.2. The Supercomputer . 2
1.3. Molecular Dynamics Simulations . 3
1.4. The Imbalance Problem . 3
1.5. Dynamic Load Balancing . 4

2. Background 5
2.1. miniMD . 5
2.2. Lennard-Jones Potential . 5
2.3. Neighborhood Lists . 6
2.4. Invasive Computing and OctoPOS . 8

3. Related Works 10
3.1. Porting miniMD to OctoPOS . 10
3.2. ALL - A Loadbalancing Library . 11
3.3. miniMD’s Structure . 12

3.3.1. Setting Up the Simulation . 12
3.3.2. Building the Neighborhood Lists . 13
3.3.3. Computing Forces and Moving the Particles 13
3.3.4. Exchanging Atoms Between Ranks 14

II. Thesis Development 15

4. Naive Dynamic Load Balancing 16
4.1. Detecting a Load Imbalance . 17

4.1.1. Defining Work . 17
4.1.2. Synchronizing Work Between Processing Units 18
4.1.3. Computing the Imbalance . 18

4.2. Determining New Subdomains . 20
4.2.1. The Naive Heuristic . 20

xi

4.2.2. Finding the Processing Unit With the Least Amount of Work 21
4.2.3. Determining Which Adjacent Processing Unit to Balance With . . . 21
4.2.4. Changing the Subdomain Boundaries 22

4.3. Transferring Atoms to their New Processing Units 24
4.3.1. The comm_setup function . 25
4.3.2. The exchange function . 25
4.3.3. The borders function . 25
4.3.4. The build function . 25

5. Improved Load Balancing Schemes 26
5.1. Swipe Load Balancing . 26

5.1.1. Inverted Pressure Scheme . 30
5.1.2. Tensor Method (ALL) Scheme . 31

6. Polishing the Dynamic Load Balancing 33
6.1. Some Optimizations . 33
6.2. Timing the Load Balancing . 35

III. Results and Conclusion 37

7. Evaluation 38
7.1. Evaluation Test Scenarios . 38
7.2. Evaluation Test Environment . 38
7.3. Results . 39

8. Conclusion 42
8.1. Goals Achieved . 42
8.2. Future Work . 42

IV. Appendix 44

Bibliography 47

Part I.

Introduction and Background

1

1. Introduction

1.1. A World of Systems

We live in a world made of systems working together. These systems can be either natural
or man-made, however, at their core, they are still multiple parts interacting with each
other to form a whole. Since we are driven by curiosity to understand these systems, as
well as to build them, we require a way to gather information about how they behave in
certain environments and how they react to actions performed on them. We could gather
the information in the real world, but often times this comes with serious limitations, if even
possible.

Instead, to study how these systems behave, we often need to perform computer simulations.
Simulations provide a safe and controllable environment to understand the systems in
various scenarios, often not necessarily possible in the real world. As well, given enough
computational power, we are able to speed up the real world time of some systems to get
much faster results than if we studied the system in the real world.

These computer simulations start off with a mathematical model, a simulation domain,
boundary conditions, and the initial state of the system. By using a mathematical model,
the computer is able to compute the new state that the system will be in after each time
step. The simulation is also limited to the domain specified, and it knows what to do with
elements of that system that reach the boundaries of that domain.

Since most interesting systems studied by scientists and engineers are gigantic with respect
to the number of elements they contain, the computer running the simulation needs to have
a great degree of computational power, as well as a large capacity to store the data of the
system. This is why one single computer, even the most powerful computer in the world,
would not be able to run interesting simulations in a reasonable amount of time. Instead, we
need a network of computers working together to run those simulations; a supercomputer.

1.2. The Supercomputer

A large set of computers connected through a network, like SuperMUC-NG at the LRZ
Lab in Garching [dBAdW99], are able to work in coordination to run large simulations in a
reasonable amount of time.

Often, computer simulations meant to run on a supercomputer require us to divide the
simulation domain into multiple smaller subdomains. The number of subdomains depends
on the number of processing units allocated by the supercomputer for the simulation. Each
processing unit performs computations on the element of its subdomain.

2

1.3. Molecular Dynamics Simulations

Afterwards, these processing units need to communicate with each other to exchange
information about the elements that are located in their subdomain because they also
interact with other elements from their neighboring subdomains. This communication
between processing units is done through an interface like the Message Passing Interface
(MPI)[Lab12].

1.3. Molecular Dynamics Simulations

One type of system scientists and engineers are interested in simulating is molecular systems.
These systems contain a large number of atoms and molecules that interact with each other,
changing their positions and velocities at each time step. In this thesis, we are interested in
these kinds of systems.

A large and well known molecular dynamics (MD) program is the Large-scale Atomic/-
Molecular Massively Parallel Simulator (LAMMPS) developed by the Sandia National
Laboratories[APT22]. Another, much smaller, MD program is miniMD, also developed by
the Sandia National Laboratories. This smaller MD program was made specifically to me
more simple, lightweight, and easier to adapt to different architectures[Lab16]. We will
be working on miniMD because modifying it will be a much easier task than modifying
LAMMPS.

1.4. The Imbalance Problem

When dividing a simulation domain to run it on a supercomputer, we often make equally
sized subdomains. If the elements of the simulated system are somewhat evenly distributed
throughout the simulation, this approach can work well. This is because each processing
unit performs a similar amount of work and holds a similar amount of data as the other
processing units.

A problem can arise when the elements of the system do not stay somewhat evenly distributed
throughout the simulation. In this case, the amount of work done by each processing unit is
vastly different, resulting in a great loss of efficiency due to the idling of the processing units
with little work to do. This can be seen in figure 1.1, where a water droplet is dropped on
a copper block. Most of the molecules will stay at the bottom of the simulation domain,
resulting in idleness in the processing units that cover the top part of the domain.

3

1. Introduction

Figure 1.1.: Water droplet hitting a copper block.
Source: [YXL+21]

We could create unequally sized subdomains to assure a balance of work between processing
units, but nothing guarantees that the elements will stay in the same subdomain. They
might instead all move to another subdomain, creating idleness for some processing units
while increasing the load of others.

This imbalance problem can be especially prevalent in molecular dynamics simulations
because, often times, interesting simulations don’t start with a domain that has evenly
distributed molecules. Also, scenarios can involve collision of objects, which might drastically
change the distribution of molecules throughout the domain.

1.5. Dynamic Load Balancing

What is needed is a way to detect these work load imbalances between processing units
and a way to adjust the subdomains of the processing units to rebalance the work load.
This would allow us to set the subdomains naively at the beginning of the simulation, and
automatically change the subdomains whenever some processing units do much less work
than others.

In the context of an MD simulation, this can be incredibly useful. If we simulate a collision
between two small objects, most of the simulation domain is empty. If we have a high
number of processing units, which we usually do, many of them might not have a single
molecule, making them a complete waste of resources.

The motivation of this thesis is to add dynamic load balancing to the miniMD port in
OctoPOS, an operating system described in section 2.4.

4

2. Background

2.1. miniMD

miniMD is a codebase that allows the creations and execution of parallel MD simulations. It
was designed to be a much smaller version of LAMMPS by the Sandia National Laboratories
and is part of the Mantevo mini-application suite [CTN+09]. It is mostly written in C++
and it is intended to be run on supercomputer architectures, as well as other experimental
architectures because it can somewhat easily be updated to work on new architectures.

It performs simulations for MD systems using the Lennard-Jones or EAM models for
intermolecular potential. In the scope of this thesis, only Lennard-Jones potential was used
for the force calculations.

2.2. Lennard-Jones Potential

At each time step of the MD simulation, molecules interact with each other, creating a
certain force on one another. This force makes them either attract or repel each other. The
calculation for the force they exert on each other can be calculated using the Lennard-Jones
model, which is defined as:

VLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]
, (2.1)

where r is the distance between the two molecules, sigma is the intermolecular distance when
the potential is zero, and epsilon is the depth of the potential well[WRHDF20].

The following potential creates an intermolecular interaction where extremely close molecules
repel each other, close molecules attract each other, and molecules that are not close to
each other do not interact. This can be seen in figure 2.1, relating the potential with the
intermolecular distance:

5

2. Background

Figure 2.1.: Lennard-Jones Potential with respect to the intermolecular distance.
Source: [Wik22]

We can observe that when the intermolecular distance is equal to sigma, there is no interaction
between the molecules, but when the distance gets smaller than sigma, there is a tremendous
repulsive force. Another important thing to notice is when the intermolecular distance is
three times sigma. There is virtually no attractive or repulsive force between the molecules.

The previous factor is very important in the scope of our simulation because calculating the
Lennard-Jones potential for each pair of molecules in our simulation, on every time step,
can become extremely computational intensive for not reason, since most potential will be
virtually zero for far away molecules.

To counter these negligible potential calculations, miniMD uses a concept called neighborhood
lists.

2.3. Neighborhood Lists

The purpose of neighborhood lists is to limit unnecessary force calculations between molecules
that have a virtually no forces exerted between them.

This approach aims to determine a certain cut-off distance, after which pairwise forces
become negligible. Then, for each molecule, a list of molecules that have an intermolecular
distance less than the cut-off distance is kept. When calculating the force exerted on that
molecule, it only uses the potentials of the molecules from its neighborhood list. This
approach decreases the number of intermolecular potentials needed to be calculated, but
adds the need to compute neighborhood lists for each molecule in the simulation, which in
turn calculates the distance between each pair of molecules.

6

2.3. Neighborhood Lists

To optimize this, miniMD also uses the link-cell method [Koe21]. This method divides
the domain into bins of the size of around the cut-off distance. This binning isn’t very
computationally expensive and only needs to be done once for the whole domain. The
purpose of this binning is to limit the distance calculation when building neighborhood
lists. In a 2D domain, building the neighborhood list for a molecule only requires distance
calculations for pairs of molecules that are in 9 bins. An example of the reduced number of
distances required to be computed is shown in the following figure.

Figure 2.2.: The simulation domain decomposed in cells. The light gray area represents
the cells in which we look for neighbors for the molecule in the center of the
circle. The dark gray area represents the actual neighbors in that molecule’s
neighborhood list.
Source: [GZK07]

Building the neighborhood lists on each time step is still a computationally expensive
endeavor. To counter this, we can build them after every few time steps. However, since
molecules interact with each other and move in the domain, neighborhood lists might become
outdated before they are rebuilt, introducing errors that can become major. This is why
miniMD uses a cutoff distance slightly larger than needed, to compensate for the movement
of molecules at every time step.

There is another problem when building a neighborhood lists for a simulation that is
run on multiple processing units, each with their own subdomains: computing forces for
molecules at the edge of the subdomains. This is especially true for subdomain edges
between two processing units. This is a problem because molecules from one subdomain
requires information about neighboring molecules from the other subdomain, but they reside
on another processing unit with which communication is impossible in the middle of an
iteration.

7

2. Background

To solve this problem, whenever a division of subdomains is made, every subdomain needs
to be expanded slightly. Then, molecules from neighboring subdomains need to be copied
over on those expanded edges. These locations are called “ghost cells”. This makes every
subdomain overlap with another, and the exchange can happen every few iterations.

Then, neighborhood lists for molecules at the edge of a subdomain can be built using the
copied molecules from the neighboring subdomains.

2.4. Invasive Computing and OctoPOS

Invasive computing is a new paradigm for designing parallel computer systems and for writing
applications to run on those. A computer designed under such paradigm allows applications
to increase and reduce the number of processing units depending on its needs. One purpose
of such an approach is to increase the efficiency of the processing units. Processes that
temporarily require a great amount of parallel computing power can “invade” new processing
units, and then “retreat” to release them and allow other processes to use them[THH+11].

OctoPOS is an operating system that is meant to be run on exotic multiprocessor computers
such as those designed specifically with the invasive computing paradigm in mind[OSK+11].
miniMD was previously ported to work on a system running OctoPOS. The port is written
in C instead of C++. OctoPOS allows a program to be run with varying allocated resources
because it supports invasive computing. Its goal is to allow programs to free resources it
does not need anymore, or to receive more resources if it needs them.

In the case of simulation programs like miniMD, which are meant to be run on supercomputers,
this invasive computing paradigm would allow the resource manager of the supercomputer to
increase or reduce the number of MPI ranks allocated to the process in which the simulation
is running. This approach can increase the efficiency of a supercomputer by properly
reallocating resources to the different processes currently running. This is a use case of
invasive computing for a supercomputer. For OctoPOS, which is not necessarily meant to be
run on a supercomputer, miniMD was ported on it to show how an MD simulation program
can be run on it.

In order to change the number of MPI ranks allocated to a process while running, there
needs to be a change in the interface of MPI. The new interface should allow a process
to change its number of ranks during runtime. This extension of MPI’s interface is called
iMPI, for invasive MPI[HJB17]. iMPI’s implementation in OctoPOS does not include all
the functions, like MPI_Gather, known to be implemented in MPI. It has, however, the new
functions that allow invasive programming features:

1.1 int MPI_Init_adapt(int *argc , char **args ,

2 int *local_status);

3

This is the initiation function for MPI, but which specifies that we are using the
invasive programming model. It requires a local_status parameter to differentiate
between new ranks being dynamically added by the resource manager and already
existing ranks.

8

2.4. Invasive Computing and OctoPOS

2.1 int MPI_Probe_adapt(int *pending_adaptation ,

2 int *local_status , MPI_info *info);

3

This function is used to check whether there are resources available to perform
a change of the number of ranks. The pending_adaptation parameter defines whether
a change of resources is waiting to happen, and the local_status parameter gives
information about the rank’s change in the adaptation.

3.1 int MPI_Comm_adapt_begin(MPI_Comm *intercomm ,

2 MPI_Comm *intracomm , int *stayingcount , int *leavingcount ,

3 int *joiningcount);

4

This function starts the adaptation of ranks, and creates two communication
groups. intercomm contains the ranks entering or leaving the simulation program,
and intracomm contains either all the remaining ranks, in the case where the resource
manager takes ranks away, or the previous ranks with the newly added ranks.

4.1 int MPI_Comm_adapt_commit();

2

This function finishes the change of ranks it replaces MPI_COMM_WORLD with the group
of ranks from intracomm and the ranks that are no longer allocated to the process are
killed.

9

3. Related Works

3.1. Porting miniMD to OctoPOS

In a previous master’s thesis by Huaiwei Zhang, miniMD was ported to OctoPOS[Zha22].
In this port, only the Lennard-Jones potential can be used.

There are three test scenarios implemented:

1. EVENLY

This scenario evenly distributes the molecules when setting up the simulation. It
doesn’t simulate gravity acting on the particles. It uses periodic boundary conditions.

Figure 3.1.: Initial state of an EVENLY scenario.

2. RBCCOLLISION

This scenario drops a circle of molecules on a slab of molecules. Gravity is
simulated, and the boundary conditions are reflective.

10

3.2. ALL - A Loadbalancing Library

Figure 3.2.: Initial state of a RBCCOLLISION scenario.

3. OBCCOLLISION

This scenario drops a rectangle of molecules on a slab o molecules. Gravity is
simulated, and the boundary conditions are an outflow.

Figure 3.3.: Initial state of an OBCCOLLISION scenario.

These differing flows are useful to see how dynamic load balancing performs under different
conditions.

3.2. ALL - A Loadbalancing Library

ALL is a load balancing library created by the Simulation Laboratory Molecular Systems of
the Juelich Supercomputing Centre (JSC), Research Centre Juelich (Forschungszentrum
Jülich GmbH) in Germany that provides multiple domain decomposition schemas to change
the subdomains when load balancing is required[HSS99]. These include tensor product,
staggered grid and histogram based staggered grid. The library also has multiple new domain
decomposition schemes that are currently being built: topological mesh, Voronoi mesh and
orthogonal recursive bisection.

11

3. Related Works

Unfortunately, this library can not be used for the miniMD port on OctoPOS because it is
written in C++ and requires a C++11 compiler, as well as full iMPI support of functions
that are not currently supported in OctoPOS.

3.3. miniMD’s Structure

In the following section, miniMD’s port in OctoPOS will be presented to give a better
understanding of how it functions. Multiple key features of miniMD will be presented as
subsections.

3.3.1. Setting Up the Simulation

miniMD starts by setting up iMPI for inter-rank communication in miniMD.c. It does so by
defining iMPI related variables and calling the initiation function for iMPI: MPI_Init_adapt.
This can be seen in listing 3.1.

1 MPI_Info info;

2 MPI_Comm intercomm , new_comm_world;

3 int rank , old_size , new_size , local_status , tmp_status , pending_adapt ,

staying_count , leaving_count , joining_count;

4 MPI_Init_adapt(argc , argv , &local_status);

5 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

Listing 3.1: Initialization of iMPI.

Then, miniMD begins running the invasive logic given by iMPI to add or remove ranks to
the main communicator. While this is a vital part of the miniMD port on OctoPOS, it is
not directly relevant to the scope of this thesis.

After the communication is set up, the simulation logic begins. miniMD first initializes
multiple containers to keep the data throughout the simulation by calling multiple helper
functions. miniMD sets up the simulation using hard-coded parameters from the input.c

module. This is also where the 3 scenarios mentioned in section 3.1 are defined, along with
their parameters.

After the initialization of the containers, the relevant variables from the in variable are set
on those containers, depending on the simulation scenario chosen.

After the initialization of the containers, the simulation box is created. In the EVENLY scenario,
a 3D simulation box is created. In the other two scenarios, a 2D box is created.

Once the simulation box is created, the simulation domain is divided into multiple subdomains
to distribute to the available iMPI ranks. This is done in the comm.c module. It computes
and communicates multiple important values, such as which ranks are a current rank’s
neighbors. The grid of subdomains is divided on each dimension, which results in a regular
grid.

After each rank has its defined subdomain, the subdomains are further split into bins, in
order to apply the previously mentioned link-cell method when building the neighborhood
lists. This is achieved inside the neighborAndAtom.c module.

12

3.3. miniMD’s Structure

One important aspect to note is that all the atoms are generated on rank 0, not on their
corresponding subdomain to which the other ranks represent. This means that a transfer of
atoms will be required so that each atom is moved to their corresponding rank. This transfer
is done after by the exchange function of the comm.c module. This is a fairly large function
that also applies global boundary conditions. It will be discussed in subsection 3.3.4.

Once the atoms are in their corresponding ranks, the simulation is almost ready to start.
The last thing it needs to do is to transfer the ghost cells mentioned in section 2.3 with the
use of the borders function from the comm.c module. Once this is completed, the first step of
the simulation is to build the neighborhood lists.

3.3.2. Building the Neighborhood Lists

In miniMD, the neighborhood list of each atom is built inside the build function of the
neighborAndAtom.c module. It creates a neighborhood list for each atom in a fairly efficient
manner, because it makes use of the cells, or bins, previously created. This is the method
mentioned previously in section 2.3.

When creating the neighborhood lists, one of the first things the build function does is to
bin the atoms. This is the process of assigning each atom to its corresponding bin inside the
rank’s subdomain, according to its coordinates. Once the binning process is complete, the
build function can efficiently go define, for each atom, its neighbors list from its own and
neighboring bins.

This procedure of binning the atoms and building their corresponding neighborhood lists is,
as mentioned in section 2.3, not performed before every time step of the simulation. Instead,
it is performed after a set amount of time steps. This amount is defined in the input.c

module and can be modified for each scenario.

3.3.3. Computing Forces and Moving the Particles

During each simulation iteration, miniMD computes the force exerted unto each atom by
the atoms in its neighborhood list. This is done to move the atom to its new position.
This force computation is done by the force_lj.c module. The miniMD port on OctoPOS
supports full neighborhood lists for its force computations. The force calculation follows the
Lennard-Jones potential mentioned in section 2.2.

Once the force exerted on each atom by its neighbors is computed, miniMD then moves the
atom through the simulation domain. This process is done by the integrate.c module. The
change in position and velocity of each atom follows the Velocity-Verlet method[GZK07],
defined as:

xn+1 = xn + vn∆t+
1

2
an(∆t)2 (3.1)

13

3. Related Works

vn+1 = vn +
1

2
(an+1 + an)∆t (3.2)

3.3.4. Exchanging Atoms Between Ranks

miniMD implements an important function that does multiple things, but most importantly
it applies the global boundary conditions, depending on the scenario, and it exchanges atoms
between ranks, in the case where the atom’s position is outside the boundaries of its current
rank. The function in question is exchange, from the comm.c module.

This function first calls one of the boundary condition functions from the atom.c module.
Then, exchange performs a seemingly complex set of operations to exchange atoms between
ranks, and it does so one dimension at a time. In listing 3.2, a very small extract shows
how, on one dimension, each atom in the rank is looped upon. It first verifies if the atom is
outside the global boundaries (since the boundary conditions have already been applied at
this point in the function). Then, it checks if the atom has left the subdomain’s boundaries
and notes its index, so that it can later be sent to a neighboring rank.

1 void exchange(Comm *comm , Atom *atom) {

2 ...

3

4 for (int i = 0; i < nlocal; i++) {

5 if (x[i * PAD + idim] < lprd || x[i * PAD + idim] >= rprd)

6 printf("DEBUG: wrong loc %f\n", x[i * PAD + idim]);

7 if (x[i * PAD + idim] < lo || x[i * PAD + idim] >= hi) {

8 if (nsend >= comm ->maxsend_thread[tid]) {

9 comm ->maxsend_thread[tid] = nsend + 100;

10 comm ->exc_sendlist_thread[tid] = (int *) realloc(

11 comm ->exc_sendlist_thread[tid], (nsend + 100) * sizeof(int));

12 }

13 comm ->exc_sendlist_thread[tid][nsend ++] = i;

14 comm ->send_flag[i] = 0;

15 } else {

16 comm ->send_flag[i] = 1;

17 }

18 }

19

20 ...

21 }

Listing 3.2: Function applying the periodic boundary conditions.

14

Part II.

Thesis Development

15

4. Naive Dynamic Load Balancing

Performing dynamic load balancing on miniMD can be broken down into a few steps. First,
there needs to be a way to detect that our processor perform an imbalanced amount of work.
Second, a heuristic must be used to determine new subdomains for each processor, in hopes
of balancing the workload between them. Third, atoms need to be transferred from one
processor’s memory to another, since changing the subdomain bounds of a processor might
add or remove atoms from its subdomain.

For simplicity, the processor topology used for implementing dynamic load balancing is a
split on one dimension, as can be seen in figure 4.1. All the load balancing methods can also
be extended to support load balancing in two or three dimensions.

Figure 4.1.: Example of how the domain is divided for dynamic load balancing.

This division in one dimension is done inside the comm_setup function of the comm.c module.
Initially, miniMD would determine the number of subdomains in each direction by its own
heuristic. Instead, with dynamic load balancing enabled, the number of subdomains is
only set on direction as the number of processing units given to the simulation, as seen in
listing 4.1. comm->procgrid is an array holding the number of subdomains in each of the three
dimensions, and nprocs is the number of processors assigned to the simulation.

1 // The processor layout when load balancing is enabled needs to be only on

the x dimension.

2 void create_processor_layout_for_load_balancing(Comm *comm , int nprocs) {

16

4.1. Detecting a Load Imbalance

3 comm ->procgrid [0] = nprocs;

4 comm ->procgrid [1] = 1;

5 comm ->procgrid [2] = 1;

6 }

7

8 /* setup spatial -decomposition communication patterns */

9 int comm_setup(Comm *comm , MMD_float cutoff_distance , Atom *atom , In *in ,

int currently_load_balancing) {

10 ...

11

12 #ifndef LOAD_BALANCE

13 create_processor_layout(comm , prd , nprocs);

14 #else

15 create_processor_layout_for_load_balancing(comm , nprocs);

16 #endif

17

18 ...

19 }

Listing 4.1: Setting up the initial number of subdomains by dimension.

As seen in listing 4.1, LOAD_BALANCE is set by a macro defined in types.h, as seen in listing 4.2.
This is also used in a few other places to execute dynamic load balancing code.

1 // LOAD_BALANCE: define for dynamic load balancing , do not define for no

load balancing

2 #ifndef LOAD_BALANCE

3 #define LOAD_BALANCE

4 #endif

Listing 4.2: Defining the LOAD BALANCE macro.

Multiple load balancing schemes were implemented for the purpose of this thesis in miniMD.
The first one is a scheme that takes a very simple approach, possibly one of the most
straightforward ones, hence its name: naive.

4.1. Detecting a Load Imbalance

The first step to implement dynamic load balancing is to have the ability to detect when
there is a load imbalance between the processing units.

4.1.1. Defining Work

Each processing unit performs an amount of work during each simulation iteration. This
work can be defined in different manners. It could take the form of the time elapsed to
complete a simulation iteration, which would require time tracking of the processing units
for each simulation iteration, as well as communication of it between the processing units.
Instead, I chose to use a simpler value for the amount of work, which is already being held
in each processing unit: the amount of atoms in the processing unit’s subdomain.

This approach to evaluating the work functions well, because the number of atoms is directly
proportional to the amount of time a processing unit takes to perform a simulation iteration.

17

4. Naive Dynamic Load Balancing

This is because the more atoms a processing unit has, the more computation it needs to
perform to build the neighborhood lists for each atom, as well as the to evaluate the force
and move the atoms.

4.1.2. Synchronizing Work Between Processing Units

In order to synchronize the work done by each processing unit, at the beginning of each
simulation iteration inside the run function of the run.c module, there is a loop broadcasting
each processing unit’s number of atoms to all the others, so that they can store the work of
each processor inside an array, to later use for determining if there is a load imbalance. This
can be seen in listing 4.3. It also synchronizes the subdomain size (in the x dimension) of
each processing unit to be later used.

1 // Gather the number of atoms on each rank to check for load imbalance

2 float *number_of_atoms_per_rank = (float *) malloc(sizeof(float) * size);

3 float *subdomain_size_per_rank = (float *) malloc(sizeof(float) * size);

4

5 // Makes all ranks have the required data to make load balancing decisions.

6 for (int i = 0; i < size; i++) {

7 int current_count = atom ->nlocal;

8 MMD_float subdomain_size = atom ->box.xhi - atom ->box.xlo;

9

10 MPI_Bcast (& current_count , 1, MPI_INT , i, MPI_COMM_WORLD);

11 MPI_Bcast (& subdomain_size , 1, MPI_FLOAT , i, MPI_COMM_WORLD);

12

13 number_of_atoms_per_rank[i] = (float) current_count;

14 subdomain_size_per_rank[i] = subdomain_size;

15 }

Listing 4.3: Synchronizing the number of atoms held in each processing unit.

The reason a broadcast inside a loop was used instead of MPI_Gather is because that function
is not supported in iMPI’s implementation on OctoPOS.

4.1.3. Computing the Imbalance

Once the work on each processing unit is synchronized between them, the load imbalance
can be computed. This is done by computing the standard deviation of the work on
each processing unit. Then, the standard deviation is compared with a previously defined
tolerance. If it is higher than the tolerance, then load balancing is performed.

The tolerance is defined inside the run.c module, as can be seen in listing 4.4.

1 // The tolerance is calculated as a percentage of the quantity of interest

2 // (the quantity that represents the work on a rank), divided by the number

3 // of ranks.

4 //

5 // e.g. If we use the number of atoms as the quantity of interest , and we

6 // have 2400 atoms split on 4 ranks , for a PERCENT_TOLERANCE of 0.15

7 // (15%) , we have a TOLERANCE of (2400 / 4) * 0.15 = 90.

8 const float PERCENT_TOLERANCE = 0.15;

18

4.1. Detecting a Load Imbalance

9 const float TOLERANCE = atom ->natoms / size * PERCENT_TOLERANCE;

Listing 4.4: Defining the tolerance.

The user defined value is the PERCENT_TOLERANCE, which represents the percentage of how far
from the ideal load balance we can be to be considered “balanced”. Then, the TOLERANCE

is computed using the magnitude of the work on each processing unit, as can be seen in
equation 4.1. Since the load imbalance is determined by comparing the standard deviation
of each processing unit’s number of atoms with the tolerance, the tolerance should be scaled
up or down to that work value.

TOLERANCE =
total number of atoms

number of processing units
∗ PERCENT TOLERANCE (4.1)

Using this computed TOLERANCE and the work on each processing unit, miniMD can now
determine whether there is a load imbalance. This is done in a newly create module
called load_balancer.c, which contains a function named load_balancing_needed. This function
computes the standard deviation of the array containing the work on each processing unit
(called quantities_of_interest to allow for different definitions of work, other than the number
of atoms). This function can be seen in listing 4.5.

1 /*

2 Function determining whether there is a significant load imbalance between

the ranks.

3

4 Currently takes an array of values (one of each rank), computes their

standard deviation ,

5 and determines whether the standard deviation is larger than the given

tolerance. If it

6 is , then there is a significant load imbalance.

7

8 Can be extended to support different heuristics for determining significant

load imbalances.

9

10 Returns 1 if there is a significant load imbalance.

11 Returns 0 if there isn’t a significant load imbalance.

12 */

13 int load_balancing_needed(int number_of_ranks , float tolerance , float*

quantities_of_interest) {

14 int rank;

15 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

16

17 float sum = 0.0;

18 float squared_sum = 0.0;

19

20 for (int i = 0; i < number_of_ranks; i++) {

21 sum += quantities_of_interest[i];

22 }

23

24 float mean = sum / (float) number_of_ranks;

25

26 for (int i = 0; i < number_of_ranks; i++) {

19

4. Naive Dynamic Load Balancing

27 float deviation = quantities_of_interest[i] - mean;

28 squared_sum += deviation * deviation;

29 }

30

31 float standard_deviation = sqrt(squared_sum / (float) number_of_ranks);

32

33 return standard_deviation <= tolerance ? 0 : 1;

34 }

Listing 4.5: Function determining whether there is a load imbalance.

4.2. Determining New Subdomains

Once it has been established that, in the current simulation iteration, there is a load
imbalance, there can be a balancing to try to reduce the standard deviation of the work
performed on each processing unit. The goal is to reach a point where the standard deviation
is lower than the TOLERANCE.

To balance the work between processing units, which is measured in number of atoms for our
implementation, we can change the area each subdomain owns. This increases or decreases
the number of atoms owned by a processing unit. We can perform this subdomain change for
all processing units in the same simulation iteration, or we can just change the subdomain
of a pair of adjacent subdomains (by increasing one and decreasing the other).

4.2.1. The Naive Heuristic

For the naive load balancing scheme, the latter was chosen, to keep the heuristic as simple
and straightforward as possible. The steps that the naive scheme needs to perform are the
following:

1. Finding the processing unit that does the least amount of work.

2. Choosing one of the two adjacent neighboring subdomains to resize with.

3. Changing the size of the pair of subdomains.

Each of those steps have been separated into their own functions inside the load_balancer.c

module. They are called from the run function inside the run.c module after determining
that there is a load imbalance, as seen in listing 4.6.

1 int rank_with_smallest_load;

2 int exchange_with_rank;

3

4 rank_with_smallest_load = min_quantity_of_interest_rank(size ,

number_of_atoms_per_rank , subdomain_size_per_rank);

5

6 exchange_with_rank = neighbor_to_exchange_with(size , rank_with_smallest_load

, number_of_atoms_per_rank);

7

8 resized = change_sub_domains_naive(rank_with_smallest_load ,

exchange_with_rank , atom , minimum_subdomain_size);

Listing 4.6: Calling the relevant functions for the naive load balancing implementation.

20

4.2. Determining New Subdomains

The logic of choosing to take the processing unit with the least amount of work done and
to take more work from an adjacent subdomain is done slowly balance the work between
processors.

4.2.2. Finding the Processing Unit With the Least Amount of Work

To find the processing unit with the least amount of work performed, a function named
min_quantity_of_interest_rank from the load_balancer.c module is called. This function, which
can be seen in listing 4.7, loops through each subdomain sequentially, keeping track of the
processing unit with the lowest amount of work done.

There might be a case where multiple processing units have the same amount of work
(especially when there are multiple subdomains with zero atoms in them). When this happens,
min_quantity_of_interest_rank chooses the processing unit with the smallest subdomain,
because the larger one already has more chances of an atom landing in it. In any case, if
there is still a tie on the next simulation iteration, and the previously changed subdomain is
larger the one that was larger in the last iteration, it will get increased as well.

1 /*

2 Helper function to find the minimum quantity of interest ’s rank.

3 If it’s a tie , choose the rank with the smallest subdomain.

4 */

5 int min_quantity_of_interest_rank(int number_of_ranks , float*

quantities_of_interest , float* subdomain_size_per_rank) {

6 int minimum_rank = 0;

7 float current_minimum = quantities_of_interest [0];

8 float current_minimum_rank_subdomain_size = subdomain_size_per_rank [0];

9

10 for (int i = 1; i < number_of_ranks; i++) {

11 if (quantities_of_interest[i] < current_minimum || (

quantities_of_interest[i] == current_minimum && subdomain_size_per_rank[

i] < current_minimum_rank_subdomain_size)) {

12 current_minimum = quantities_of_interest[i];

13 current_minimum_rank_subdomain_size = subdomain_size_per_rank[i

];

14 minimum_rank = i;

15 }

16 }

17

18 return minimum_rank;

19 }

Listing 4.7: Function finding the rank with the minimum work done.

4.2.3. Determining Which Adjacent Processing Unit to Balance With

Once the rank with the smallest workload has been determined, the adjacent rank to change
the subdomain’s boundaries with needs to be chosen. We can recall in figure 4.1 that the
domain is divided only on one dimension, meaning that a processing unit can only have at
most two adjacent processing units: one to the left and one to the right. Of course, if the

21

4. Naive Dynamic Load Balancing

processing unit with the least amount of work is at an edge, it can only have one adjacent
processing unit.

To determine which one of the adjacent processing units to alter subdomains with, the run

function calls the neighbor_to_exchange_with function from the load_balancer.c module, which
can be seen in listing 4.8.

The function first checks if the processing unit with the lowest workload is at an edge, and
returns the only possible adjacent rank. If it isn’t on the edge of the domain, then it chooses
the adjacent rank with the highest workload, to reduce the load imbalance as much as
possible.

1 /*

2 Helper function to find which neighbor to exchange with.

3 */

4 int neighbor_to_exchange_with(int number_of_ranks , int lowest_rank , float*

quantities_of_interest) {

5 if (lowest_rank == number_of_ranks - 1 && lowest_rank != 0) {

6 return lowest_rank - 1;

7 }

8

9 if (lowest_rank == 0 && lowest_rank != number_of_ranks - 1) {

10 return lowest_rank + 1;

11 }

12

13 return quantities_of_interest[lowest_rank - 1] > quantities_of_interest[

lowest_rank + 1] ? lowest_rank - 1 : lowest_rank + 1;

14 }

Listing 4.8: Function determining which adjacent processing unit to alter subdomains with.

4.2.4. Changing the Subdomain Boundaries

After the pair of processing units has been chosen, their subdomain alterations can be done.
This is implemented in the change_sub_domains_naive function of the load_balancer.c module.
Since this function is fairly large, an explanation of each part of it is described below.

First, we need to determine the amount of the subdomain with the higher workload that we
want to transfer to the subdomain with the lowest workload. This is done in listing 4.9 by
computing the length of the subdomain with the higher workload in the x dimension, and
then taking 10% of it.

After the interval in the x dimension that we want to add to the subdomain with the lowest
workload has been computed, it is sent and received through a pair of MPI_Send and MPI_Recv

calls.

1 int rank;

2 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

3

4 int resized = 1;

5

6 MMD_float interval_to_add_to_smallest;

7

22

4.2. Determining New Subdomains

8 if (rank == exchange_with_rank) {

9 interval_to_add_to_smallest = (atom ->box.xhi - atom ->box.xlo) / 10;

10 MPI_Send (& interval_to_add_to_smallest , 1, MPI_MMDFLOAT ,

rank_with_smallest_load , 0, MPI_COMM_WORLD);

11 }

12

13 if (rank == rank_with_smallest_load) {

14 MPI_Status status;

15 MPI_Recv (& interval_to_add_to_smallest , 1, MPI_MMDFLOAT ,

exchange_with_rank , 0, MPI_COMM_WORLD , &status);

16 }

Listing 4.9: Determining how much of the subdomain to transfer to the rank with the lowest
workload.

Once the interval is synchronized between the pair of processing units, there are two branches
in which they can proceed. This depends on whether the processing unit with the higher
workload is on the right or the left of the processing unit with the lowest workload.

If it is on the right side, then the branch in listing 4.10 is executed.

1 if (rank_with_smallest_load < exchange_with_rank) {

2 if (rank == exchange_with_rank) {

3 if (! can_make_smaller_from_the_left(interval_to_add_to_smallest ,

atom ->box.xlo , atom ->box.xhi , minimum_subdomain_size)) {

4 resized = 0;

5 }

6

7 MPI_Send (&resized , 1, MPI_INT , rank_with_smallest_load , 0,

MPI_COMM_WORLD);

8

9 if (resized) {

10 atom ->box.xlo = atom ->box.xlo + interval_to_add_to_smallest;

11 }

12 }

13

14 if (rank == rank_with_smallest_load) {

15 MPI_Status status;

16 MPI_Recv (&resized , 1, MPI_INT , exchange_with_rank , 0, MPI_COMM_WORLD

, &status);

17

18 if (resized) {

19 atom ->box.xhi = atom ->box.xhi + interval_to_add_to_smallest;

20 }

21 }

22 }

Listing 4.10: Changing the subdomains when the subdomain with the bigger workload is on
the right.

This branch first checks, for the subdomain with the higher workload, if it can be made
smaller, through the call to can_make_smaller_from_the_left. This function verifies whether
the subdomain’s length in the x dimension will reach a length that is smaller than a defined
minimum subdomain size.

23

4. Naive Dynamic Load Balancing

This minimum subdomain size is set inside the run.c module to be 5% of the simulation
domain’s length in the x dimension. This minimum size was implemented to avoid having
subdomains that reach an extremely small size, as that created some abnormal behavior
where atoms were moved in unrealistic locations between simulation iterations.

If the resizing of the subdomains fails this minimum subdomain size condition, the resized

variable, which was initially set to 1, gets set to 0. This is then synchronized between the
pair of processing units to decide whether to change the subdomain coordinates through a
pair of MPI_Send and MPI_Recv calls.

If the resized variable is still 1, then the coordinates of the subdomains edges in the x
dimension are changed for both processing units, using the previously calculate interval to
add or remove.

In the opposing case, where the processing unit with the higher workload is on the left side,
the branch is almost identical, with its difference being its logic on opposing sides.

4.3. Transferring Atoms to their New Processing Units

After changing the boundaries of the subdomains in the x dimension, some atoms need to
be moved from one processing unit to another. This is what also changes the workload of
the processing units.

Initially, I had planned to implement this exchange, possibly by synchronizing all the atoms
to one processing unit, and then distributing them to their corresponding subdomains.
However, miniMD already implements a function that moves atoms between processing
units, when their position change in a simulation iteration makes them jump far enough to
reach another subdomain.

Actually, miniMD implements multiple useful functions to move atoms between processing
units and to set up certain variables before or after this exchange is done. After changing the
subdomains, during a load balancing iteration, calls to those functions are made, sequentially,
as seen in listing 4.11.

1 // This part calls a few functions that already exist from miniMD to

transfer atoms to their new

2 // respective ranks , as well as set the ghost cells and recreate the

neighborhood list.

3 MPI_Barrier(MPI_COMM_WORLD);

4 comm_setup(comm , neighbor ->cutoff_distance , atom , &in , 1);

5

6 MPI_Barrier(MPI_COMM_WORLD);

7 exchange(comm , atom , 0);

8

9 MPI_Barrier(MPI_COMM_WORLD);

10 borders(comm , atom);

11

12 MPI_Barrier(MPI_COMM_WORLD);

13 build(neighbor , atom);

Listing 4.11: Calling miniMD’s functions to move atoms between processing units.

24

4.3. Transferring Atoms to their New Processing Units

These four functions are also called by miniMD when setting up the simulation, as well as
at the end of each set amount of simulation iterations (except comm_setup, which only gets
called when setting up the simulation).

4.3.1. The comm_setup function

The comm_setup function sets up the boundaries of each subdomain, and initializes important
variables and containers. I modified its signature to take a flag to signify that it is being
called from a load balancing iteration and not during the setup. This flag can be seen in
listing 4.11, as its last parameter. Using the flag, it skips on a few console prints, as well as
does not overwrite the subdomain boundaries (which were previously changed during the
load balancing iteration).

4.3.2. The exchange function

The exchange function is in charge of moving atoms to their correct processing unit. It is used
during the simulation to move atoms between subdomains when the simulation iteration
made their position change outside the boundaries of their current subdomain. It is also
called at the beginning of a simulation because atoms are initialized in one processing unit,
and then moved using this exchange function. I also added a flag to the signature of this
function, to enable or disable the application of boundary conditions, as seen in the last
parameter of the function call in listing 4.11. This flag disables boundary conditions during
load balancing iterations, because otherwise there is a bug produced. At the end of the
simulation iteration, the boundary conditions are still applied, so it does not affect the
results of the simulation.

4.3.3. The borders function

The borders function is responsible for communicating atoms forming ghost cells between
processing units. This function is important to call after changing the boundaries of
subdomains because entirely new atoms form the ghost cells between subdomains.

4.3.4. The build function

The build function, implemented in the neighborAndAtom.c module as opposed to the comm.c

module in which the previously mentioned functions are implemented, creates neighborhood
lists for each atom. These neighborhood lists, mentioned in section 2.3, are important to
avoid useless force computations between pairs of atoms that are far away from each other.
This function is also important to call after performing a load balancing iteration because
the atoms that were moved between processing units will need to create new neighborhood
lists with the atoms in their new subdomain.

These four functions, which were minimally modified to allow to be called in a load balancing
iteration, allowed me to reuse a lot of very useful code from miniMD implementation. They
provide an easy way to move atoms between processing units after changing the boundaries
of subdomains, as seen in listing 4.10.

25

5. Improved Load Balancing Schemes

The naive dynamic load balancing iteration shown in chapter 4 gave positive results in
execution time. However, intuitively, it seemed inefficient because it only updated the
subdomains of one pair of adjacent processing units per load balancing iteration.

Ideally, the subdomains of all processing units would be changed in each load balancing
iteration, to reduce the number of load balancing iterations. This can potentially be an
improvement in the time taken to reach a load imbalance within the defined tolerance.

5.1. Swipe Load Balancing

As the name suggests, swipe load balancing performs a swipe over the x dimension, changing
the subdomains of each pair of adjacent processing units. This swiping approach was inspired
by the Tensor Method in the A Loadbalancing Library [HSS99].

This swipe load balancing uses the same logic as the naive load balancing to determine
whether there is a load imbalance or not, as well as to transfer atoms between processing
units. The differing code is the function that changes the subdomain edges. Instead of
calling min_quantity_of_interest_rank, neighbor_to_exchange_with, and change_sub_domains_naive

, it makes a single call to change_sub_domains_swipe from the load_balancer.c module, as seen
in listing 5.1.

1 switch (load_balancing_scheme) {

2 case NAIVE:

3 int rank_with_smallest_load;

4 int exchange_with_rank;

5

6 rank_with_smallest_load = min_quantity_of_interest_rank(size ,

number_of_atoms_per_rank , subdomain_size_per_rank);

7

8 exchange_with_rank = neighbor_to_exchange_with(size ,

rank_with_smallest_load , number_of_atoms_per_rank);

9

10 resized = change_sub_domains_naive(rank_with_smallest_load ,

exchange_with_rank , atom , minimum_subdomain_size);

11

12 break;

13 case SWIPE_INVERTED:

14 case SWIPE_ALL:

15 resized = change_sub_domains_swipe(size , number_of_atoms_per_rank , atom ,

minimum_subdomain_size , load_balancing_scheme);

16

17 break;

26

5.1. Swipe Load Balancing

18 }

Listing 5.1: Branching between the naive and the swipe load balancing schemes.

change_sub_domains_swipe iterates through pairs of processing units from the left to the right
of the x dimension. For each pair, it compares the work performed by those processing units,
and decides a new position for the edge separating them. Then, it changes both subdomains
and continues iterating through the pairs.

In the end, each subdomain gets resized twice, once with its left adjacent subdomain, and
another time with its right adjacent subdomain. This, of course, does not apply for the two
subdomains at the edges of the domain.

One challenge with this approach is calculating the new workload on each processing unit
after changing the subdomain edges during the swipe. This is because, during the swipe
through all adjacent pairs of subdomains, atoms are never exchanged between processing
units (otherwise this would the overhead of a full load balancing iteration for each pair of
subdomains, beating the purpose of changing them all at once).

The approach chosen to counter this challenge was to estimate the new workloads. This
estimation is done proportional to the subdomain size increase or decrease. The assumption
used for this approach is that atoms are evenly distributed in a subdomain. Even though
they are almost never evenly distributed, it does give a somewhat good estimate for the
purpose of applying the load balancing scheme to decide how much and in which direction
to move the edge between subdomains.

The change_sub_domains_swipe function can be seen in listing 5.2. It keeps a pointer to a left
and right processing unit, and loops through each adjacent pair from the left to the right
of the x dimension. It performs some logic to change the subdomains on the left and right
processing units, and then synchronizes the new estimated workload of the right processing
unit using a MPI_Bcast.

1 int change_sub_domains_swipe(int size , float* quantities_of_interest , Atom *

atom , MMD_float minimum_subdomain_size , enum LoadBalancingScheme scheme)

{

2 int rank;

3 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

4

5 int resized = 0;

6

7 int left_rank = 0;

8 int right_rank;

9

10 for (int i = 1; i < size; i++) {

11 right_rank = i;

12

13 MMD_float new_edge_position;

14 float new_estimated_quantity_of_interest_right_rank;

15

16 if (rank == left_rank) {

17 ...

18 }

19

27

5. Improved Load Balancing Schemes

20 if (rank == right_rank) {

21 ...

22 }

23

24 left_rank = right_rank;

25

26 MPI_Bcast (& new_estimated_quantity_of_interest_right_rank , 1,

MPI_MMDFLOAT , right_rank , MPI_COMM_WORLD);

27

28 quantities_of_interest[right_rank] =

new_estimated_quantity_of_interest_right_rank;

29 }

30

31 return resized;

32 }

Listing 5.2: Base of the function that changes subdomains in the swipe manner.

Of course, since the swipe happens from left to right, after a processing unit is resized when
it’s the left one of the pair, its workload is not relevant for the remaining calculations of the
swipe, so its new workload is not estimated.

When a processing unit is assigned as the left one of the pair, it must send the position of
its left subdomain edge, as well as receive the position of the right subdomain edge of the
right processing unit of the pair. These two values are synchronized using a pair of MPI_Send
and MPI_Recv, as seen in listing 5.3.

Then, the new edge position for the edge between the subdomain is calculated using the
chosen load balancing scheme. Once the new position has been determined, a check is
performed to verify if change the subdomains would result in a subdomain smaller than the
minimum subdomain size.

Once the check is done, the subdomain of the left processing unit is changed.

1 if (rank == left_rank) {

2 MMD_float left_rank_left_edge = atom ->box.xlo;

3 MMD_float right_rank_right_edge;

4

5 MPI_Send (& left_rank_left_edge , 1, MPI_MMDFLOAT , right_rank , 0,

MPI_COMM_WORLD);

6

7 MPI_Status status;

8 MPI_Recv (& right_rank_right_edge , 1, MPI_MMDFLOAT , right_rank , 0,

MPI_COMM_WORLD , &status);

9

10 switch (scheme) {

11 case SWIPE_INVERTED:

12 new_edge_position = get_new_edge_using_inverted_pressure(

13 atom ->box.xhi ,

14 quantities_of_interest[left_rank],

15 quantities_of_interest[right_rank],

16 left_rank_left_edge ,

17 right_rank_right_edge

18);

19

28

5.1. Swipe Load Balancing

20 break;

21 case SWIPE_ALL:

22 new_edge_position = get_new_edge_using_all(

23 atom ->box.xhi ,

24 quantities_of_interest[left_rank],

25 quantities_of_interest[right_rank],

26 left_rank_left_edge ,

27 atom ->box.yhi - atom ->box.yylo

28 lo

29);

30 }

31

32 if (new_edge_position - left_rank_left_edge >= minimum_subdomain_size &&

right_rank_right_edge - new_edge_position >= minimum_subdomain_size) {

33 atom ->box.xhi = new_edge_position;

34

35 resized = 1;

36 }

37 }

Listing 5.3: Logic performed by the left processing unit of the pair in a swipe iteration.

The logic performed on the right processing unit of the pair is very similar to the one shown
in listing 5.3 for the left processing unit.

The key difference is the computation of the estimated new workload of the right processing
unit. This can be seen in listing 5.4.

1 if (new_edge_position - left_rank_left_edge >= minimum_subdomain_size &&

right_rank_right_edge - new_edge_position >= minimum_subdomain_size) {

2 // This value assume an even distribution of atoms in the domain.

3 // This is estimated in order to avoid having to calculate the

4 // actual new quantity of interest during load balancing.

5 new_estimated_quantity_of_interest_right_rank = quantities_of_interest[

right_rank] + quantities_of_interest[right_rank] * (atom ->box.xlo -

new_edge_position) / (atom ->box.xhi - atom ->box.xlo);

6

7 atom ->box.xlo = new_edge_position;

8

9 resized = 1;

10 }

Listing 5.4: Changing the subdomain of the right processing unit of the pair for swipe load
balancing.

The last piece missing from the change_sub_domains_swipe function is the computation of the
new position of the edge between subdomains. For the purpose of this thesis, I chose to
introduce two schemes:

1. Inverted Pressure Scheme

2. Tensor Method Scheme

Both load balancing scheme implementations in miniMD have been modified to fit the
unique needs of its implementation.

29

5. Improved Load Balancing Schemes

An illustration of what these two schemes aim to solve can be seen in figure 5.1. When
the swiping algorithm balances each pair of adjacent subdomains, it attempts to find a
corresponding new position for x1 using the weights of both subdomain A and B.

Figure 5.1.: The problem that the two load balancing schemes aim to solve: finding an
appropriate position for the common edge.
Source: [Koe21]

5.1.1. Inverted Pressure Scheme

The first of the two schemes is the Inverted Pressure Scheme, inspired by the implementation
from the AutoPas Demonstrator MD-Flexible thesis [Koe21].

This scheme requires the position of the left boundary of the left subdomain (A), the right
boundary of the right subdomain (B), and the weight for each processing unit in the pair.

In order to define the new position of x1, equation 5.1 is applied [Koe21]. W represents the
workload of the corresponding subdomain in its subscript.

x′1 =
WB ∗ x2 +WA ∗ x0

WA +WB
(5.1)

This method of defining the new edge position has an edge case for miniMD, where one
of the workloads can be zero. This happens when a subdomain does not have any atoms
(something quite common if the simulation scenario only has a concentration of atoms in a
certain area of the domain). When this is the case, the new edge position will make it equal
to either x0 or x2, resulting in one subdomain to cease to exist.

In order to counter this problem, the Inverted Pressure Scheme was modified for miniMD.
Its new version can be seen in equation 5.2.

x′1 =
WB ∗ x2 + (WB +WA) ∗ x1 +WA ∗ x0

2 ∗ (WA +WB)
(5.2)

This new version puts the same amount of weight in the current position of the edge between
the two subdomains as the amount put on the outer edges. This fixes the subdomain
vanishing problem for processing units with a workload of zero.

30

5.1. Swipe Load Balancing

The downside of this adjustment is that it will also update the common edge position by a
smaller amount on each load balancing iteration. This, however, could also be a benefit,
since it might trigger the minimum subdomain size condition seen in listing 5.3 more rarely.

The code of the function being called inside change_sub_domains_swipe can be seen in listing
5.5.

1 MMD_float get_new_edge_using_inverted_pressure(MMD_float

current_edge_position , float left_weight , float right_weight , MMD_float

left_rank_left_edge , MMD_float right_rank_right_edge) {

2

3 float total_weight = left_weight + right_weight;

4

5 return (left_weight * left_rank_left_edge + right_weight *

right_rank_right_edge + total_weight * current_edge_position) / (2 *

total_weight);

6 }

Listing 5.5: Determining the new edge using the Inverted Pressure Scheme.

5.1.2. Tensor Method (ALL) Scheme

The second of the two schemes is the Tensor Method Scheme from the ALL library, applied
to one dimension [HSS99].

This scheme requires the left boundary of the left subdomain (A), the position of the edge
between the two subdomains, the height of the subdomains (h), and the weight for each
processing unit in the pair.

The update equation for the common edge is defined in the AutoPas Demonstrator MD-
Flexible thesis [Koe21] in the same way as in equation 5.3.

x′1 = x1 +
WB −WA

2 ∗ γ ∗ (WA +WB) ∗ ((x1 − x0) ∗ h+WB)
(5.3)

The gamma (γ) in the equation is dynamically set in the ALL library for each iteration
[HSS99]. It is calculated using equation 5.4.

γ = MAX(4.1, 2 ∗ (1 + MAX(left subdomain size, right subdomain size)

MIN(left subdomain size, right subdomain size)
)) (5.4)

The gamma, as defined by the ALL library, will always wield an extremely small change for
x′1. This usually makes miniMD load balance on every single iteration, never reach a load
balance within the tolerance.

To counter this problem, the gamma used for this load balancing scheme in miniMD has
a hard-coded gamma of 0.0001. This value was defined empirically because it reached a
load balance within the tolerance in a reasonable amount of time, without losing the clear

31

5. Improved Load Balancing Schemes

advantage of the Tensor Method to slowly optimize the subdomains until the workload is
balanced.

The code of the function being called inside change_sub_domains_swipe can be seen in listing
5.6.

1 MMD_float get_new_edge_using_all(MMD_float current_edge_position , float

left_weight , float right_weight , MMD_float left_rank_left_edge ,

MMD_float height) {

2

3 float total_weight = left_weight + right_weight;

4 float weight_difference = right_weight - left_weight;

5

6 float gamma = 0.0001;

7

8 return current_edge_position + weight_difference / (2 * gamma *

total_weight * ((current_edge_position - left_rank_left_edge) * height +

right_weight));

9 }

Listing 5.6: Determining the new edge using the Inverted Pressure Scheme.

32

6. Polishing the Dynamic Load Balancing

After successfully implementing all three load balancing schemes, there were a few obvious
inefficiencies with regard to when a load balancing iteration should start, as well as a need
to differentiate the time spent on load balancing code, to understand where exactly time
improvements are made when using one of the load balancing schemes.

6.1. Some Optimizations

There were two cases when a load balancing iteration would not be needed or would not be
possible in the next few simulation iterations. These are:

1. If the load imbalance is within the tolerance.

2. If a load balancing iteration started, but was unable to change the subdomain because
it would create a subdomain smaller than the minimum subdomain size.

This is why a concept of load balancing iteration skips was introduced to miniMD.

A variable named load_balancing_skips is introduced and set to 0. Then, on each simulation
iteration, the value of the variable is reduced by 1 if miniMD does not enter a load balancing
iteration. If it does enter one, then the load_balancing_skips variable can either:

• Remain 0, if the load balancing iteration was successful and subdomains were changed.

• Be set to LOAD_BALANCING_NOT_NEEDED_SKIPS if the load imbalance is within the tolerance.

• Be set to LOAD_BALANCING_NOT_POSSIBLE_SKIPS if there was a failed attempt to change
subdomains because it would have created a subdomain smaller than the minimum
subdomain size.

These three behaviors can be seen in listing 6.1.

1 const int LOAD_BALANCING_NOT_NEEDED_SKIPS = 10;

2 const int LOAD_BALANCING_NOT_POSSIBLE_SKIPS = 100;

3

4 int load_balancing_skips = 0;

5

6 // Simulation iteration loop

7 for (n = 0; n < integrate ->ntimes; n++) {

8

9 ...

10

11 if (load_balancing_skips == 0) {

12

13 ...

33

6. Polishing the Dynamic Load Balancing

14

15 if (load_balancing_needed(size , TOLERANCE , number_of_atoms_per_rank)) {

16

17 // Change the subdomains.

18 ...

19

20 for (int i = 0; i < size; i++) {

21 MPI_Bcast (&resized , 1, MPI_INT , i, MPI_COMM_WORLD);

22

23 if (resized) break;

24 }

25

26 if (resized == 0) {

27 load_balancing_skips = LOAD_BALANCING_NOT_POSSIBLE_SKIPS;

28 }

29

30 // Move atoms to their new processing units.

31 ...

32

33 } else {

34 load_balancing_skips = LOAD_BALANCING_NOT_NEEDED_SKIPS;

35 }

36 } else {

37 load_balancing_skips = load_balancing_skips - 1;

38 }

39

40 // Continue simulation iteration.

41 ...

42

43 }

Listing 6.1: High level overview of the concept of load balancing skips.

A challenge was how to determine whether subdomains were changed or not (due to the
minimum subdomain size condition), to know whether load_balancing_skips should be set to
LOAD_BALANCING_NOT_POSSIBLE_SKIPS or not.

The solution to that problem was to return a flag on each of the two subdomain change
functions (change_sub_domains_naive and change_sub_domains_swipe). This flag, which is initially
set to 0, only gets returned as 1 from those functions if that particular processing unit had
its subdomain changed.

This is why there needs to be a loop with a MPI_Bcast to sync the local resized values until
there is a value of 1 or until all processing units were looped upon.

The values for LOAD_BALANCING_NOT_NEEDED_SKIPS and LOAD_BALANCING_NOT_POSSIBLE_SKIPS were
determined empirically and with the following assumptions:

• If there is no load imbalance, atoms could move enough in a few iterations to cause an
imbalance greater than the tolerance. This is why the number of skips for this case is
small.

• If there is a load imbalance, but the subdomains can not be changed due to failing
the minimum subdomain size condition, then it is likely that approximately the same

34

6.2. Timing the Load Balancing

subdomain change is going to be attempted in the near future, unless the atoms have
significantly moved. This is why the number of skips for this case is large.

These values can, of course, be viewed as simulation parameters and be changed according
to one’s needs.

6.2. Timing the Load Balancing

To be able to understand and assess the impact of dynamic load balancing on miniMD’s
simulations, it is important to time the amount of time spent during load balancing iterations.

Other important steps of the simulation, such as the force calculation time, neighborhood
list computation time and communication time, are already timed, as seen in figure 6.1.

Figure 6.1.: Performance overview at the end of a simulation.

The time spent on load balancing iterations is included in OTHERTIME, which is calculated as
the TOTALTIME minus all the other, more specific, times.

To calculate the time spent on load balancing iterations, a new time type of time called
LOADBALANCETIME was added, and the appropriate functions from the timer.c module were
added before and after the load balancing code in the run.c module.

These functions calls can be seen in listing 6.2.

1 #if METRICS == 1

2 if (rank == 0) time_mark(timer);

3 #endif

4

5 #ifdef LOAD_BALANCE

6 if (load_balancing_skips == 0) {

7

8 ...

9

10 } else {

11

12 ...

13

14 }

15 #endif

16

17 #if METRICS == 1

18 if (rank == 0) {

19 time_mark(timer);

20 add_time(timer , LOADBALANCETIME);

21 }

22 #endif

Listing 6.2: Functions calls to capture the time spent in a load balancing iteration.

35

6. Polishing the Dynamic Load Balancing

The METRICS flag defined in the types.h module enables all the timing to occur, in the same
way as LOAD_BALANCE enables or disables dynamic load balancing on miniMD.

The result of this addition is a new column being printed at the end of simulation, as can be
seen in figure 6.2.

Figure 6.2.: Performance overview at the end of a simulation with load balancing timed.

36

Part III.

Results and Conclusion

37

7. Evaluation

7.1. Evaluation Test Scenarios

All three load balancing schemes will be evaluated on two test scenarios: a smaller one and
a larger one.

Both test scenarios are similar to the RBCCOLLISION scenario, which uses reflective boundary
collision of a water drop simulation, like in figure 3.2.

In the larger test scenario, miniMD will run 30,000 simulation iterations, so that the water
droplet hits the slab and enough of the post-impact behavior is simulated. It will simulate a
total of 9270 atoms on a domain of size 250×100×1. The minimum subdomain size is set to
5% of the domain size.

The smaller test scenario is almost identical to the larger one, with the sole difference being
the number of atoms in the simulation, which is 4361 atoms.

Each simulation configuration will be run five times and the times will be averaged to get a
representative performance result. The simulation configurations are the following:

1. No load balancing

2. Load balancing using the naive scheme and a PERCENT_TOLERANCE of 0.15

3. Load balancing using the inverted pressure swipe scheme and a PERCENT_TOLERANCE of
0.22

4. Load balancing using the tensor method swipe scheme and a PERCENT_TOLERANCE of 0.25

The PERCENT_TOLERANCE values were chosen empirically such that the method eventually load
balances the workloads and does not attempt to load balance during the whole simulation.

7.2. Evaluation Test Environment

The simulations were run on a Lenovo Ideapad 320-15AST computer running OctoPOS on
the QEMU emulator, with the following specifications:

• AMD A6-9220 Radeon r4, 5 compute cores 2c+3g × 2 Processor

• 6.7 GB RAM

• AMD Stoney Graphics

38

7.3. Results

The simulation was run with 4 processing units that were initially unbalanced. For the larger
test scenario, the processing units had the following number of atoms: 1120, 3492, 3538, 1120.
The load imbalance, or standard deviation, at the beginning of the simulation was 1197.61.
For the smaller test scenario, the atom distribution was 760, 1408, 1433, 760, and the load
imbalance was 330.37 at the beginning of the simulation.

7.3. Results

The averaged results of the larger and smaller simulations can be seen in tables 7.1 and 7.2
respectively.

Scheme Total Other Force Comm. Neigh. Lists Load Balancing

No Load Balancing 770.02 57.88 421.55 232.00 58.58 0.01
Naive 613.90 78.20 383.10 82.47 53.18 16.94

Inverted Pressure 831.54 73.34 400.13 80.64 55.04 222.39
Tensor (ALL) 642.82 97.11 377.90 90.11 53.07 24.63

Table 7.1.: Time spent on each simulation part by the different load balancing schemes for
the larger test scenario.

Scheme Total Other Force Comm. Neigh. Lists Load Balancing

No Load Balancing 339.13 36.19 126.43 154.23 22.27 0.01
Naive 267.29 48.25 116.22 67.09 21.26 14.46

Inverted Pressure 260.75 53.34 116.65 54.71 21.47 14.58
Tensor (ALL) 277.10 46.86 122.91 69.62 21.34 16.37

Table 7.2.: Time spent on each simulation part by the different load balancing schemes for
the smaller test scenario.

We can observe that, for both test scenarios, the total simulation time was reduced by
around 20-25% for the best performing load balancing scheme, compared to the run without
any load balancing.

Both the naive and the tensor method (ALL) performed consistently better than the base
case in both test scenarios, with the naive method performing slightly better. However, the
inverted pressure method had a great variability between the two test scenarios. This can
be better seen in figures 7.1 and 7.2.

In the larger test scenario, seen in figure 7.1, the inverted pressure method spent a fairly
large amount of time in the load balancing portion of the simulation. This was because it
did not reach a load imbalance within the tolerance for a while.

The reason why finding an acceptable load imbalance took so long for this method, compared
to the others, is that the subdomains in the inverted pressure method change by a higher
amount on each simulation iteration than for the other methods. This could lead to a slightly

39

7. Evaluation

Figure 7.1.: Time comparisons by load balancing schema for the scenario with 9270 atoms.

smaller amount to reach a load balance, or to a vastly larger amount of time, like in this
case. For this particular scenario, some subdomain edge positions probably oscillated for a
while due to the large changes applied on them, until they finally reached a load balance.

On the other hand, for the smaller test scenario shown in figure 7.2, the inverted pressure
method outperformed the other load balancing methods. This is because of a combination
of quickly reaching a load imbalance within the tolerance, as well as having a more balanced
work distribution between the processing units.

This high variability in results makes the inverted pressure method’s performance more
dependent on the user defined load balancing parameters like the PERCENT_TOLERANCE or the
minimum subdomain size than the naive and tensor method, but it can outperform them
given the right parameters for the test scenario.

40

7.3. Results

Figure 7.2.: Time comparisons by load balancing schema for the scenario with 4361 atoms.

41

8. Conclusion

8.1. Goals Achieved

During this master thesis, I was able to successfully add dynamic load balancing to miniMD’s
port in OctoPOS.

This addition included some refactoring work to make certain parts of miniMD more modular,
in order to implement multiple load balancing schemes in such a way that they can be easily
extended and modified.

Three different schemes were implemented:

1. A naive scheme that updates a single pair of adjacent processing units on every
iteration.

2. A modified version of the inverted pressure method, using a swipe to modify all
subdomains in a single iteration.

3. The tensor method from the ALL library applied in a single dimension, with a static
gamma that keeps its advantage of a slower change on each load balancing iteration,
while reaching a load balance in a reasonable amount of time, also modifying all
subdomains on each iteration using a swipe.

Multiple parameters were implemented in such a way that they can be customized by the
user to optimize the load balancing of the simulation according to their scenario’s needs.

The performance of the schemes is very promising, but depend on the amount of initial
imbalance of the test scenario and initial subdomain configuration.

8.2. Future Work

In future work, the load balancing schemes that I implemented could be extended to support
2D or 3D domain decompositions. Since I implemented the load balancing module in a
modular way, this can be done without much difficulty.

The value used for work, which is currently the number of atoms in the current processing
unit, could be changed. Another potential value to represent the workload of a processing
unit could be the time spent performing the previous simulation iteration.

More schemas can also be added, in addition to the inverted pressure and the tensor methods,
to possibly improve the new subdomain edges during a swipe iteration.

42

8.2. Future Work

While the dynamic load balancing worked in a virtual machine running OctoPOS, and this
was tested on multiple different computers, the dynamic load balancing did not work on
the real machine running OctoPOS due to a bug. The bug is probably due to differences in
memory allocations between the virtual machine and the real machine.

43

Part IV.

Appendix

44

List of Figures

1.1. Water droplet hitting a copper block. 4

2.1. Lennard-Jones Potential with respect to the intermolecular distance. 6
2.2. The simulation domain decomposed in cells. The light gray area represents

the cells in which we look for neighbors for the molecule in the center of the
circle. The dark gray area represents the actual neighbors in that molecule’s
neighborhood list. 7

3.1. Initial state of an EVENLY scenario. 10
3.2. Initial state of a RBCCOLLISION scenario. 11
3.3. Initial state of an OBCCOLLISION scenario. 11

4.1. Example of how the domain is divided for dynamic load balancing. 16

5.1. The problem that the two load balancing schemes aim to solve: finding an
appropriate position for the common edge. 30

6.1. Performance overview at the end of a simulation. 35
6.2. Performance overview at the end of a simulation with load balancing timed. 36

7.1. Time comparisons by load balancing schema for the scenario with 9270 atoms. 40
7.2. Time comparisons by load balancing schema for the scenario with 4361 atoms. 41

45

List of Tables

7.1. Time spent on each simulation part by the different load balancing schemes
for the larger test scenario. 39

7.2. Time spent on each simulation part by the different load balancing schemes
for the smaller test scenario. 39

46

Bibliography

[APT22] R. Berger D. S. Bolintineanu W. M. Brown P. S. Crozier P. J. in ’t Veld A.
Kohlmeyer S. G. Moore T. D. Nguyen R. Shan M. J. Stevens J. Tranchida C.
Trott S. J. Plimpton A. P. Thompson, H. M. Aktulga. Lammps - a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales, 2022.

[CTN+09] Paul Crozier, Heidi Thornquist, Robert Numrich, Alan Williams, H. Edwards,
Eric Keiter, Mahesh Rajan, James Willenbring, Douglas Doerfler, and Michael
Heroux. Improving performance via mini-applications. 01 2009.

[dBAdW99] LRZ: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften.
High performance computing, 1999.

[GZK07] Michael Griebel, Gerhard Zumbusch, and Stephan Knapek. Numerical Simu-
lation in Molecular Dynamics Numerics, Algorithms, Parallelization, Applica-
tions: Numerics, Algorithms, Parallelization, Applications. 01 2007.

[HJB17] M. Bader I. Comprés A. Hollmann A. Mo-Hellenbrand M. Schreiber J. Wei-
dendorfer H.-J. Bungartz, M. Gerndt. D3: Invasion for high-performance
computing, 2017.

[HSS99] R. Halver, S. Schulz, and G. Sutmann. All - a loadbalancing library, 1999.

[Koe21] J. Koerner. Enabling massive parallelism for the autopas demonstrator md-
flexible using adaptive domain decomposition master thesis. Master’s thesis,
Technische Universität München, 2021.

[Lab12] Argonne National Laboratory. Mpich, 2012.

[Lab16] Sandia National Laboratories. minimd, 2016.

[OSK+11] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer, Jörg Henkel,
Daniel Lohmann, and Wolfgang Schröder-Preikschat. Octopos: A parallel
operating system for invasive computing. 04 2011.

[THH+11] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel,
Wolfgang Schröder-Preikschat, and Gregor Snelting. Invasive Computing: An
Overview, pages 241–268. Springer New York, New York, NY, 2011.

[Wik22] Wikipedia contributors. Lennard-jones potential — Wikipedia, the free ency-
clopedia, 2022.

[WRHDF20] Xipeng Wang, Simón Ramı́rez-Hinestrosa, Jure Dobnikar, and Daan Frenkel.

47

Bibliography

The lennard-jones potential: when (not) to use it. Phys. Chem. Chem. Phys.,
22:10624–10633, 2020.

[YXL+21] Yinhao Yu, Xiongwen Xu, Jinping Liu, Yuehui Liu, Wenhao Cai, and Jianxun
Chen. The study of water wettability on solid surfaces by molecular dynamics
simulation. Surface Science, 714:121916, 2021.

[Zha22] H. Zhang. Implementing a molecular dynamics simulation for the invasive
run-time support system. Master’s thesis, Technische Universität München,
2022.

48

	Acknowledgements
	Abstract
	Introduction and Background
	Introduction
	A World of Systems
	The Supercomputer
	Molecular Dynamics Simulations
	The Imbalance Problem
	Dynamic Load Balancing

	Background
	miniMD
	Lennard-Jones Potential
	Neighborhood Lists
	Invasive Computing and OctoPOS

	Related Works
	Porting miniMD to OctoPOS
	ALL - A Loadbalancing Library
	miniMD's Structure
	Setting Up the Simulation
	Building the Neighborhood Lists
	Computing Forces and Moving the Particles
	Exchanging Atoms Between Ranks

	Thesis Development
	Naive Dynamic Load Balancing
	Detecting a Load Imbalance
	Defining Work
	Synchronizing Work Between Processing Units
	Computing the Imbalance

	Determining New Subdomains
	The Naive Heuristic
	Finding the Processing Unit With the Least Amount of Work
	Determining Which Adjacent Processing Unit to Balance With
	Changing the Subdomain Boundaries

	Transferring Atoms to their New Processing Units
	The commsetup function
	The exchange function
	The borders function
	The build function

	Improved Load Balancing Schemes
	Swipe Load Balancing
	Inverted Pressure Scheme
	Tensor Method (ALL) Scheme

	Polishing the Dynamic Load Balancing
	Some Optimizations
	Timing the Load Balancing

	Results and Conclusion
	Evaluation
	Evaluation Test Scenarios
	Evaluation Test Environment
	Results

	Conclusion
	Goals Achieved
	Future Work

	Appendix
	Bibliography

