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preface

Researchers have been driven to study the dynamic of objects for centuries, ranging from
planets and galaxies to the microscopic motion of electrons and protons. Understanding
how objects move and why the world behaves as it does, was my motivation to study
Physics after finishing high school.

Learning about Newtonian mechanics in my first theoretical physics course was a fasci-
nating experience. I learned that one could precisely determine the object’s trajectory of
its past, present, and future by only following the principle of least action. The principle
states that physical objects move along extremal trajectories to minimize energy, distance,
or travel time. From there, equations that explain natural phenomena magically fall
out of the equations; Fermat’s principle describes light scattering in different media
or the Brachistochrone curve that explains the shortest path between two points in a
gravitational force field.

After my university graduation, I heard for the first time about machine learning and
neural networks. Immediately, I was thrilled by their capabilities. "How is it possible
that simple, functional layers result in a structure capable of executing tasks that usually
require human intelligence." On this note, have you realized that the cover image of this
thesis was generated by an AI? Indeed, the image was automatically created by OpenAI’s
DALL·E 2 [17] given a short text description of the visualized scenario.

It became quickly apparent that I wanted to dedicate myself to this topic to understand
the magic behind neural networks and pursue a doctoral degree in the field. Hence,
I applied to the Dynamic Vision and Learning (DVL) group and was fortunate to be
accepted as a doctoral candidate.

My background in Physics made it easier for me to start with a project on pedestrian
trajectory prediction project because it combined my interest in motion with state-of-the-
art deep learning methods. Later, I became more involved in multi-object tracking, where
motion plays a critical role in tracking objects across different time frames. Multi-object
tracking and trajectory prediction are often treated as two separate fields of research.
However, in our understanding, both disciplines could benefit each other. So, our goal
was to unite both fields and demonstrate the beneficial synergies.

After more than four years, I am excited to present our research and advances in the
field. Despite being the single author of this dissertation, I use the plural pronoun we
throughout the text because research is a team sport, and my journey would not have
been possible without the help of many people supporting me.

First and foremost, special thanks to my supervisor Laura. You gave me the chance
and freedom to explore the world of neural networks and to let me work on my ideas.
Thank you for all your support, your pieces of advice, your patience on last-minute paper
submissions, our party times, and many more.



I also want to thank Aljoša for spending much time discussing ideas and writing papers
with me. Without your help, our papers would not even be half as sound and structured.

Our DVL group rapidly grew in numbers. We shared good times at the retreat, journal
clubs, and inspiring discussions on research ideas. Thanks to all of my colleagues: Andreas,
Aysim, Franzi, Guillem, Ili, Jenny, Mark, Matthias, Maxim, Orcun, Qunjie, Robert, Sergio,
Thomas, and Tim.

I want to thank Sabine for taking care of any administrative issues, and Quirin for his
continuous support. Special kudos to two of my students at TUM, Sven, and Vladimir.
You both showed outstanding dedication and motivation, which was awarded our published
papers.

During my fourth year, I worked in the perception team of Argo AI in Munich for five
months. It was an exciting experience to see the integration of academic research on
self-driving cars and the complexity of hundreds of engineers working together towards
one goal. I want to thank my supervisors Andreas, Alex, Andrew, Frie, and the entire
perception team, who all were very welcoming and supportive.

Lastly, I want to thank my family, best friends, and partner, for all their support in
whichever goal I wanted to pursue. Theresa, you supported me during stressful deadline
periods, comforted me with rejections, and enthusiastically celebrated successes with me.

The journey of this PhD has been both challenging and exciting. I had the privilege
to learn many new things and the time to study thoroughly the problems I am deeply
interested in. The personal experiences and learnings are invaluable, and I am proudly
finishing my PhD with many lessons learned. Now, my journey at TUM is ending, but I
am excited about my future steps, which I hope will be as inspiring and promising as my
PhD.

Patrick Dendorfer
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abstract

Visual perception and understanding of human motion are fundamental problems in
computer vision and essential abilities for modern computer systems. Understanding a
specific scenario involves perceiving, interpreting, and forecasting object motion. Self-
driving cars and social robots must be capable of tracking pedestrians, predicting their
future paths, and anticipating their actions. Therefore, systems need a model for human
motion and interaction. In the computer vision literature, these tasks relate to the two
separate fields of multi-object tracking and pedestrian trajectory prediction.

This thesis explores these fields and contributes new methodologies, metrics, and datasets
to them. The focus is on deep learning methods, which have dominated research in these
fields in recent years. While there have been several success stories, numerous challenges
remain.

One of the most critical properties of pedestrian trajectory prediction methods is to
provide multimodal forecasts and to reflect the uncertainty of the predictions. Most
methods commonly use a vanilla GAN architecture that has limitations in generating
multimodal distributions. In this study, we investigate the properties of multimodal
trajectory prediction and propose two novel architectures for generating realistic and
interpretable distributions of pedestrian trajectories. Our first solution, Goal GAN,
generates a discrete distribution of realistic goal positions. The sampled goal positions
help generate trajectories reaching these goals. The second method, MG-GAN, consists
of multiple generators, each specializing in predicting trajectories of a specific mode of
the target distribution.

Our contribution to multi-object tracking includes MOTChallenge, a platform for multi-
object tracking datasets and model evaluation. With help of the collected information, we
present an elaborative study on the development and trends of state-of-the-art pedestrian
tracking methods and identify ongoing challenges for the task. Furthermore, we present a
novel tracking metric, HOTA, that improves the balance between detection and association
errors, and MOTCOM, a measure that describes the complexity of tracking sequences.

As a final contribution, we incorporate our state-of-the-art pedestrian trajectory prediction
methods into multi-object tracking to overcome the challenge of bridging long-term
occlusions in tracking. Our approach estimates a bird’s-eye view transformation by fusing
semantic and depth image information to represent tracklets in metric space. Once a track
is lost, we predict future multimodal trajectories and try to re-match these inactive tracks
with new detections in the association step. With this approach, we can significantly
decrease the number of false associations even after an occlusion of multiple seconds and
achieve state-of-the-tracking performance.

Ultimately, we advocate that both fields of multi-object tracking and trajectory prediction
work closely together in the future and develop jointly as they benefit each other.
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i Introduction

“Epur si muove." – “And yet it does move."
– Galileo Galilei

1 Motivation

Humans can track moving objects and anticipate their future positions. We experience
the world with our senses and process visual information with our brains. Our ability to
see develops at a very early age. It enables us to walk, cycle, or drive a car in our daily
lives. However, building a computer system to do alike is not a trivial task.

Artificial computer systems that aim to perform these tasks require a visual understanding.
With the advent of modern computers, researchers established the field of computer
vision [61] to build computer programs that perceive and understand the world around
us. Automatic processing and interpretation of visual information is the central aspect of
computer vision where the computer is taught to see.

Along this line, the tasks of tracking and forecasting have a long and rich history in
the field of computer vision. Continuous improvement of input sensors, computational
power, and algorithms favored a steady development over time. However, only a decade
ago, the revolutionary breakthrough of deep learning algorithms, in combination with a
large amount of available data, led to a significant boost in performance and drew much
attention to these tasks. These key technologies may enable new autonomous platforms,
such as self-driving cars, to revolutionize the future of mobility.

Most real-world objects and problems are dynamic. So we need to track and forecast
human motion from moving frames. While other tasks in computer vision, i.e., object
detection or segmentation, can be formulated on a static frame-by-frame setup, multi-
object tracking, and pedestrian trajectory prediction rely on a dynamic video input stream.
In this dissertation, we focus on understanding human motion in video sequences. To this
end, we discuss the task of pedestrian trajectory prediction and video object tracking.

Pedestrian trajectory prediction is the task of predicting one or multiple future trajec-
tories of objects with known observed history. Sophisticated prediction methods model
interactions between multiple agents or the scene to generate realistic future paths. The
task of multi-object tracking involves constructing trajectories of one or multiple moving
objects in a video stream across different time frames.

1
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1.1 Real-World Applications

Multiple real-world applications rely on tracking and predicting the positions of pedestrians.
While humans usually have good intuition and the ability to anticipate pedestrians’ motion
and future positions, any artificial system interacting with humans needs those capabilities.
These systems record raw sensor data such as RGB-video streams or lidar point clouds
and process them with state-of-the-art computer vision methods. In Figure 1, we show
relevant applications that require multi-object tracking and trajectory prediction methods.

Autonomous Vehicles
Tracking and forecasting pedestrians and other moving objects are essential components of
an autonomous driving stack. The ability to anticipate the behavior of other agents is vital
to route safely to the desired goal while preventing collisions, emergency breaks, or other
unsafe actions. Safe navigation requires a real-time and robust prediction method. Since
vehicles operate in dynamic and complex environments, incorporating scene structures
such as roads, lanes, and traffic signs can enhance the accuracy of predicting the motion
of traffic participants such as pedestrians and cyclists.

Not only fully self-driving vehicles benefit from those methods. Sophisticated trajectory
prediction can support humans in safety-critical scenarios. Automatic driving assistants
can inform the driver about pedestrians moving in the blind spot of the car or spontaneously
crossing the road. As pedestrians represent 23% of annual 1.35 million road traffic
deaths [60], most tragic events happen in crowded scenarios where the driver does not
oversee all pedestrians near the vehicle. The number of accidents could be drastically
reduced by introducing semi-automated driving systems.

Visual Surveillance
As security becomes more and more relevant, multi-object tracking systems help to track
and follow targets across a network of stationary or moving cameras. Consistent tracks
allow them to perform action recognition that may increase the chances of identifying
criminal or suspicious behavior. The surveillance setup can vary from a single CCTV
for a small convenience store to a multi-camera system in public areas. Besides security
applications, the analysis of the recorded trajectories can lead to better and safer urban
planning of public spaces.

Human-Robot Interaction
Human-robot interaction is an important topic, as we start to deploy robots in our
homes and industry environments. Forecasting and anticipating the movements of human
trajectories is a prerequisite for human-robot interaction to avoid collisions and dangerous
situations.

2 Thesis Outline

In the section above, we motivate the significance of building computer-based vision
systems that can complete the task of multi-object tracking and trajectory forecasting.
Therefore, we present advancements in trajectory prediction and tracking. We develop
different concepts and methods for motion understanding. Our contribution in this

2
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(a) Autonomous Vehicles 1 (b) Visual Surveillance 2 (c) Human-Robot Interac-
tion 3

Figure 1: Illustration of different real-world applications that require multi-object tracking and
trajectory prediction.

dissertation is threefold:

1. Multimodal Pedestrian Trajectory Prediction (Section 1.2)

We present two novel methods for stochastic pedestrian trajectory prediction. These
methods provide interpretable neural network architectures capable of learning a
proper multimodal trajectory distribution.

2. Benchmarking, Evaluating, and Analysing Object Trackers (Section 2.2)

We present our public evaluation benchmark for testing multi-object tracker -
MOTChallenge, a symmetric evaluation metric HOTA, a dataset complexity metric
MOTCOM, and an extensive analysis paper on the progress of multi-object trackers.

3. Solving Long-Term Occlusions with Trajectory Prediction (Section 3.2)

We leverage state-of-the-art multimodal trajectory prediction models to improve the
re-identification of tracking methods after long-term occlusions. Here, we establish
a novel tracking-by-forecasting paradigm for single-camera multi-object tracking.

To provide sufficient background information and describe the contributions of our
publications, we structure this dissertation into five chapters.

In Chapter i, we provide motivation for the relevance of the research topics presented in
this thesis, and we delineate the scope of this dissertation.
In Chapter ii, we provide comprehensive background information and an overview of
the relevant research field of this dissertation. In detail, we discuss pedestrian trajectory
prediction (Section 1.1), multi-object tracking (Section 2.1), and the effect of camera
projection on recorded motion (Section 3.1). In every section, we state our contributions
after the previous introductions to the topic and problem.
In Chapter iii, we provide a more detailed summary of our cumulative content as a
compilation of four research publications.
In Chapter iv we conclude this thesis and discuss future research directions.
The last chapter Publications includes the cumulative publications of this dissertation.

1https://s3-prod.autonews.com/s3fs-public/Waymo_SFO-MAIN_i_0_0.jpg
2https://upload.wikimedia.org/wikipedia/commons/thumb/2/2b/AphelionApplication21.jpg/

300px-AphelionApplication21.jpg
3https://miro.medium.com/v2/resize:fit:1200/1*6W-eVi8rD7Hy2qN23iJQ_Q.jpeg

3

https://s3-prod.autonews.com/s3fs-public/Waymo_SFO-MAIN_i_0_0.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/2/2b/AphelionApplication21.jpg/300px-AphelionApplication21.jpg
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ii Background and Contributions

This section introduces the reader to the relevant topics addressed in this PhD dissertation
and outlines the contributions to the respective fields. We provide comprehensive back-
ground information on relevant research fields that supports the reader’s understanding
of the relevance of our contributions presented in this thesis.

First, we introduce the task of pedestrian trajectory prediction and present state-of-the-art
methods (Section 1.1). Second, we discuss the multi-object tracking task (Section 2.1).
Ultimately, we provide background on camera projection and on how real-world motion
of objects appears in video sequences (Section 3.1). In each section, we include a brief
discourse on the particular problems we have identified and our proposed solution.

4



Background and Contributions

Figure 2: Illustration of Pedestrian Trajectory Forecasting.

1 Trajectory Forecasting

1.1 Background

Due to its relevance for multiple problems, the task of trajectory forecasting has already
existed for some decades. Since its start, several approaches for multi-agent forecasting
have been proposed. The approaches range from classical physics-based models to
generative deep learning methods, as described by Rudenko et al. [71]. In the following,
we will outline the problem formulation of trajectory forecasting and present existing
forecasting methodologies.

The ability to predict human motion in different scenarios is precious for many applications.
These applications range from autonomous vehicles to social robots and city planning.
The scenarios which require trajectory forecasting can include very crowded scenes or
restrictive scene topology that dominantly influences the movement of the pedestrians.
Trajectory prediction is challenging because of the complexity of human behavior that
arises from various internal and external stimuli. Human motion is affected by individual
preferences, intentions, and complex interactions, most of which are not directly observable
and difficult to model. Therefore, pedestrians can suddenly change their direction or
speed. However, such behavior is difficult to anticipate from the previous observations
and not trivial to predict.

1.1.1 Problem Formulation

The task of trajectory forecasting is defined as predicting the future trajectory �̂� of an
agent e.g., pedestrian, bicyclist, or vehicle for a given past observed trajectory 𝑋 as shown
in Figure 2. A trajectory is defined as a sequence of the agent’s position; changes in the
position reflect the velocity. Here, the 2D input trajectory of a person 𝑖 is defined as
𝑋𝑖 = (𝑥 𝑡𝑖 , 𝑦 𝑡𝑖 ) for 𝑡 = 1,… , 𝑡𝑜𝑏𝑠 and the future trajectory 𝑌 𝑡

𝑖 = (𝑥 𝑡𝑖 , 𝑦 𝑡𝑖 ) for 𝑡 = 𝑡𝑜𝑏𝑠+1,… , 𝑡𝑝𝑟𝑒𝑑
For a scenario with multiple agents, the problem involves predicting the motion of all
agents �̂� = {�̂�1,… , �̂�𝑁 } ∈  for a set of 𝑁 agent from past observations 𝐗 = {𝑋1,… , 𝑋𝑁 } ∈  .

5



Background and Contributions

Hence, the forecasting can be seen as a function 𝑓 ∶  →  mapping

�̂� = 𝑓 (𝐗) . (1)

Trajectory forecasting is dominantly a sequence-to-sequence modeling task that first
includes encoding the long-term temporal relations of the observed trajectory into a latent
representation. Interactions are modeled on top of the latent code before multimodal
trajectories are decoded and generated from the final latent representation. The observa-
tion 𝑋 represents the past of the agent. It can contain the trajectory coordinates and
additional scene information depending on the recording platform and available sensors.
The predictions of future trajectories usually range over a time window of a couple of
seconds.

1.1.2 Trajectory Prediction Datasets

Large datasets are indispensable for training and testing deep learning algorithms. In
pedestrian trajectory prediction, datasets usually provide pedestrian trajectories repre-
sented as 2D points (𝑥, 𝑦) in metric space. A standard setup for data collection includes
a video camera filming a scene from a static top-down view. Objects are detected and
tracked in each frame and labeled with unique IDs. These detections are then projected
into the ground plane and transformed by the scene homography.

Researchers commonly work with the ETH [66] and UCY [48] datasets. These real-world
datasets contain multi-human interaction scenarios captured at 2.5 Hz (𝑡 = 0.4𝑠). There
exist five datasets of four different scenes with 1536 unique pedestrians. Both, ETH
and UCY, are used jointly for training and testing. With this, it is standard to use the
leave-one-out cross-validation approach. The model is trained on four sets and tested on
the remaining one. This process is repeated five times to include all data combinations.

Another large-scale dataset is the Stanford Drone Dataset [70] (SDD). The dataset
consists of annotated videos with more than 20, 000 targets, such as pedestrians, bikers,
skateboarders, cars, buses, and golf carts. These objects navigate in eight unique scenes
on the Stanford University campus. The dataset contains several spatially multimodal
scenes with path crossings or roundabouts.

In contrast to the datasets mentioned above, the Garden of Forking Path [49] provides
multiple future trajectories for a given set of observations. To obtain multiple possible
future trajectories, the creators of the dataset rebuild some of the ETH and UCY scenarios
inside a simulator. Human annotators then control selected agents to reach predefined
spatial goals. Each agent has, on average, 5.9 future trajectories in 127 scenarios leading
to 750 trajectories.

1.1.3 Trajectory Prediction Methods

Many approaches for multi-agent trajectory forecasting exist in the literature. The large
trends range from physics-based models [38] to learned deterministic regressors [1] and
generative probabilistic models [36, 45]. The following section will explore the different
model categories, focusing on deep learning methods.

6
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(a) ETH / UCY Dataset [66, 48] (b) Stanford Drone Dataset [70] (c) Garden of Forking Paths [49]

Figure 3: Different datasets for pedestrian trajectory prediction.

Traditional physics-based [38] models consider an explicit hand-crafted dynamic model
that follows Newton’s law of motion. The forces driving the dynamic include basic
rules and consider the pedestrians’ physical and social or psychological factors with
interpretable parameters that specify the interactions’ coupling. These methods try to
model the microscopic behavior with physical dynamic systems.

While these methods are generally practical to simulate macroscopic phenomena in specific
scenarios e.g., occupation of escape routes in case of an emergency, the resulting dynamic
heavily relies on the fixed parameters and the theoretical modeling framework. Hence,
obtaining accurate trajectory predictions requires an ideal parameter fit which is very
tricky. Once a set of parameters is fitted to a particular scene, the model shows low
generalizability to other scenes. This limitation led to a shift toward data-driven methods.

Before researchers started to use deep learning networks, they applied statistical models
like linear Kalman filters to propagate the current state with a dynamic model to predict
the next steps. However, these simple models only consider pedestrians individually,
assume linear motion, and cannot account for interactions. Consequently, these models
are too inaccurate for many use cases that deal with complex dynamics.

With the rise of deep learning methods, neural networks have vastly outperformed physics-
based models and have been stated as the foundation for all modern forecasting methods.
The success of deep learning methods was enabled by a large amount of available data
and the exponential improvement of high-end computing. Deep learning reduces the
amount of feature engineering because data-driven models take minimal assumptions
about the structure of the agent model. The networks learn to extract the relevant
information from the data where the training objective guides the optimization. Hence,
complex tasks can be solved by training neural networks on historically observed data.
Deep learning architectures are nowadays the standard choice for pedestrian trajectory
prediction models.

In order to deal with the temporal nature of the problem, recurrent neural networks
are commonly used for the task. Sequence-to-sequence models overcome the problem of
feed-forward networks. These networks have a fixed size of input and output vectors. In
contrast, the recurrent architecture allows the model to process sequences with different
time lengths. In the next paragraph, we will introduce the reader to recurrent neural
network architectures.

7
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(a) Vanilla Recurrent Neural Network (RNN) (b) Long Term-Short Memory (LSTM) Network

Figure 4: Architectures of different Recurrent Neural Networks4.

Recurrent Neural Networks
A recurrent neural network (RNN) is an extension to a feed-forward layer to process
sequential data. RNNs use the output of the previous timestep in addition to the data
point as input for the current timestep. Thus, the architecture allows the network to
store information in a memory state. An illustration of a vanilla RNN layer is shown
in Figure 4a. While vanilla RNNs are effective at handling short-term information, they
struggle to store information over longer time gaps due to the problem of vanishing
gradients, as described by [39].

Long Short-Term Memory (LSTM) [40] networks address the problem of vanishing
gradients and provide a solution to store long-term information. LSTMs successfully
apply to numerous tasks such as speech recognition [14], machine translation [15], and
video classification [59]. The LSTM has a gate structure to update the hidden and cell
state of the network, as shown in Figure 4b. This architecture solves the vanishing
gradient problem because the network’s cell state (memory) propagates across different
timesteps without being modified at each time step (depending on the activations of the
gates).

An encoder-recurrent-decoder (ERD) architecture is the standard for sequence-to-sequence
models. The RNN encoder first maps the entire sequence into a high-dimensional latent
space. The latent encoding initializes the decoder then to generate the prediction. The
ERD was first used for predicting the motion of human body poses [33] and is nowadays
the most frequent architecture choice for prediction architectures.

1.1.4 Generative Trajectory Prediction Methods

An essential feature of a trajectory prediction model is the incorporation of uncertainty.
Consider a pedestrian approaching a crossroad as shown in Figure 5a. The pedestrian may
turn left or right or even walk straight. Therefore, we find that the distribution of future
trajectories has multiple spatial modes. Multimodality means that the manifold of the
whole distribution is the union of disconnected smaller manifolds, that may correspond
to different directions. Trajectories of different modes are called multimodal, while
trajectories within the same mode refer to the diversity of trajectories. This fact will
become relevant as we discuss generative prediction methods later on. Consequently, we
cannot yet clearly determine the route the pedestrian might take given the observation 𝑋 .
Ideally, we want the prediction method to express the prediction’s uncertainty.

4https://colah.github.io/posts/2015-08-Understanding-LSTMs

8
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(a) Spatial Multimodality (b) Single determin-
istic prediction

(c) Distribution of fu-
ture trajectories

(d) Sample predic-
tions of a GAN

Figure 5: Illustration of deterministic and stochastic trajectory prediction.

This fact leads to a paradigm shift from predicting the single best trajectory (Figure 5b)
to producing a distribution of future trajectories (Figure 5c). Assuming there exists a
real conditional probability distribution 𝑝 (𝑌 |𝑋 ), we want to estimate this distribution as
well as we can. Knowing about the distribution of realistic future trajectories is more
instructive than a single prediction for downstream tasks in autonomous platforms, e.g.,
motion planning, and decision-making.

Ideally, we want to formulate an analytic form for the distribution 𝑝 (𝑌 |𝑋 ). However,
we can only construct a closed analytic form for parametric distributions e.g., Gaussian
mixture models. The downside of parametric distributions is that they are constrained to
an explicit functional form and cannot learn more complex behavior. In the following, we
will present how we can build a stochastic one-to-many trajectory forecasting method
that is not constrained to a particular parametric distribution.

Deep generative models can learn to generate complex dynamics and interactions, re-
placing parametric models for trajectory prediction. There exists a large zoo of different
generative models in the field. The most famous approaches are generative adversarial
networks (GAN) [35], conditional variational autoencoders (CVAE) [44], normalizing
flow networks [76] or diffusion models [77]. The standard generative model for trajectory
prediction is an encoder-decoder model with a stochastic latent variable modeled by either
a conditional variational autoencoder [74] or generative adversarial network [36].

The CVAE explicitly models multimodality with a bivariate Gaussian distribution in
the latent space and maximizes the log-likelihood between the latent variables and the
samples. In contrast, GANs implicitly learn to transform a known distribution into the
target distribution. We can directly produce samples by drawing noise vectors from the
known distribution and transforming them with the model into trajectories.

While GANs allow us to sample different trajectory forecasts of the estimated distribution,
they do not provide a closed-form density function (Figure 5d). Suppose we need to
estimate the probability density of the samples. In that case, we can use a kernel density
estimate [62], a statistical tool fitting a probability density function to a set of generated
samples.

In this dissertation, we will primarily focus on generative adversarial networks and discuss
this class of models in more detail in the following section.

Generative Adversarial Networks
A generative adversarial network [35] is a generative model capable of learning a target
distribution and allows us to sample trajectories from the learned distribution. The main
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Figure 6: A generative adversarial network 𝐺 transforms a sample 𝑧 from a known distribution
into a sample 𝑥 of the distribution 𝑝𝑔 . During the network optimization, the model learns to
estimate the data distribution 𝑝data with 𝑝𝑔 .

idea behind GANs is the inverse transform method. In essence, the inverse transform
method is a way to generate samples from a target distribution 𝑝𝑑𝑎𝑡𝑎 by transforming a
pseudo-randomly generated variable 𝑧 from a known distribution 𝑝 (𝑧) by a well-defined
transformation function 𝐺 (⋅). As shown in Figure 6, the purpose of the generator is to
deform the input distribution to match the target distribution and explain the observed
data samples. During the training of the model, the optimization aims to push the output
distribution 𝑝𝑔 as close as possible to the data distribution 𝑝𝑑𝑎𝑡𝑎 such that 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎.
A GAN implicitly models the target distribution and transforms samples of a known
distribution into those of the desired target distribution. Thus, the model has more
capacity to learn complex behavior than parametric models because it is not constrained
to a specific class of functions.

The GAN architecture, first proposed in 2014 by Goodfellow et al. [35], consists of a
generator (G) and discriminator (D) (Figure 7). Inspired by game theory, the optimization
principle follows a min-max objective in which 𝐺 and 𝐷 compete against each other while
collectively becoming stronger. The G network attempts to fool the discriminator network,
whereas the D learns to distinguish between real and fake data. In the original GAN
paper, the min-max game training object reads:

min
𝐺

max
𝐷

𝑉 (𝐺, 𝐷) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝔼𝑧∼𝑝(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]. (2)

The generator learns to produce a distribution 𝑝𝑔 to match the real data distribution
𝑝𝑑𝑎𝑡𝑎. The global solution of the optimization in Equation (2) defines an equilibrium and
reformulates to the Jensen-Shannon divergence. The optimal solution is in the global
minimum of the objective where 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎. In the equilibrium, the discriminator D cannot
distinguish between real and fake samples, and the best strategy is always to output a
fixed probability 𝐷(𝑥) = 1

2 .

Despite the success of GAN-based methods, training these models is challenging because
of two main challenges. First, the unbalanced min-max game between the discriminator
and generator can lead to divergence and instabilities of the training loss or settling in
undesired local minima. Second, the vanilla GAN training results in a mode collapse,
where the generator maps any random value 𝑧 to the same output and does not produce
diverse samples.
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Figure 7: Illustration of a generative adversarial network [35]. The model consists of a generator
𝐺 and discriminator 𝐷. The generator transforms a standard Gaussian variable 𝑧 ∼  (0, 1) into
a sample 𝑥𝑔 . Then, the discriminator learns to distinguish between real 𝑥𝑑𝑎𝑡𝑎 and generated 𝑥𝑔
samples.

As the initial GAN paper discusses some of these limitations of the original formulation,
multiple model variations have proposed remedies to the shortcomings mentioned above.
In order to improve the learning of the generator, researchers introduce alternative training
procedures [57], objectives [4, 55], or additional players to the min-max game [12, 90, 89].

Generative Adversarial Networks for Trajectory Prediction
Social-GAN [36] is the first model that proposes a GAN architecture for trajectory predic-
tion. The generator produces trajectory predictions, and the discriminator distinguishes
between real and fake trajectories considering the dynamics and social behavior of the
samples. Additionally, this model uses a best-of-N (BoN) 𝐿2 training loss [8] to counter-
act mode collapse and to encourage the model to produce samples covering all modes.
However, this training loss results in many unrealistic out-of-distribution samples, which
we discuss in the contribution part of this thesis (Section 1.2). In Figure 8, we show
trajectories generated by the generator for different noise samples for the same observation.
The network learns to encode the different directions of the output distribution into the
random latent space.

Social-Ways [2] leverages InfoGAN [12], an information-theoretic extension to the vanilla
GAN, that introduces an additional latent code to improve multimodality. An information-
based cost function replaces the standard BoN loss to encourage the model to be genuinely
injective.

Along this line, Social-BiGAT [45] incorporates the idea of bicycle GAN training [90] to
learn a bijective transformation between the latent space and the trajectory samples by
applying cycle consistency [89].

In trajectory forecasting, researchers use GANs to learn a multimodal distribution of
human motion. However, this raises a very general question (formalized by Khayatkhoet
et al. [81]): how can they [generators] fit disconnected manifolds when they are trained to
transform continuously a unimodal latent distribution?

So far, the trajectory forecasting community has bypassed this question, but it seriously
suspects the use of generative adversarial models in the field. Moreover, the generator
optimized during the GAN training learns a continuous transformation for samples
from a unimodal distribution (usually uniform or Gaussian distribution) into the target
distribution. This homeomorphic function can, therefore, not map the random samples
into disconnected manifolds. Consequently, the learned distribution generated by the
standard GAN models covers all modes by approximating the disconnected modes with
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Figure 8: Generated trajectories of a GAN for different input noise vectors given a single past
trajectory.

a single connected unimodal distribution. However, this produces out-of-distribution
samples in regions with practically no support in the target distribution. Thus, these
samples cannot be considered to be realistic. Strictly speaking, the previously proposed
methods have theoretical limitations for modeling trajectory distributions. This thesis
addresses these issues and proposes two solutions to generate multimodal predictions.

Modeling Interactions
Humans do not walk around in empty spaces. Therefore, other agents or the environment
affect their navigation and routing. Thus, trajectories are influenced by the interaction
with other pedestrians or the layout and objects in the scene. Consequently, accounting
for these types is essential to predicting pedestrians’ future paths.

As modeling interactions is an integral part of trajectory forecasting, we will introduce
the reader to relevant concepts in the following parts.

Human-Human Interaction
In crowded scenes, humans navigate to their final position while avoiding collisions
with other pedestrians. Their resulting trajectories can significantly differ from the
shortest path between the start and end positions. To predict realistic trajectories in the
presence of multiple agents, we must account for social interactions. Instead of treating
each trajectory separately, models must predict trajectories jointly. The idea of social
interactions was first formulated in the social force model [38] which interprets each
pedestrian as a repelling particle that aims to reach a goal while avoiding collisions.

Nowadays, deep learning methods have replaced hand-crafted models, and modeling
interactions between agents is usually done by applying social pooling to the latent
representation of the agents. The latent vector representing all features of the observation
of the scenario is commonly obtained by encoding the past trajectory with a recurrent
neural network. The basic idea behind these approaches is to share the latent information
across the agents in the scene.

In the following, we present some of the common social pooling layers presented in Table 1.
The first neural network architecture that introduced the concept of social pooling was
Social LSTM [1]. The model gathers the hidden states of neighboring pedestrians from a
defined grid surrounding the agent of interest. While social LSTM relies on a deterministic
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Table 1: Social pooling mechanism proposed in different models for pedestrian trajectory
prediction.

Model Social Pooling

Social LSTM [1] Grid Pooling
Social GAN [36] Feature max-pooling
Social Ways [2] Social Soft Attention
Social-BiGAT [45] Graph Attention Network (GAT)

ERD, Social-GAN [36] uses a generative adversarial network as a predictor and replaces
the social grid pooling with a global feature-wise max-pooling to compute the social
interactions. The social module in Social Ways [2] advances the max-pooling with a soft
attention [83] network. In contrast to max-pooling, the attention layer allows gradient
backpropagation through social pooling during training. To account for even higher-order
interactions and feedback responses in the interaction, Social-BiGAT [45] leverages a
graph attention network as the social pooling layer for modeling interaction.

Human-Scene Interaction
Human trajectories are not only influenced by social interactions but also by the environ-
ment and topology of the scene. Pedestrians adjust their motion to walk around spatial
obstacles such as trees, benches, and parked cars. Their trajectory is also determined by
social norms and physical constraints.

A common approach is to use the scene’s geometry and semantics to reason about the
long-term goal of the agent. Semantic aware models usually extract visual features
from a top-down scene image with a convolutional neural network (CNN) to extract
visual features. These visual features are combined with the trajectory encodings of the
pedestrian. Hence, models can learn the relation between the outline of the scene and its
effect on the resulting trajectory.

Various approaches exist to incorporate visual features into the prediction model. So-
Phie [73] fuses the visual features in an attention module to assign soft attention weights
to different spatial regions of interest in the scene image. These weights are then passed
to the decoder to generate the forecasting trajectories. Instead of soft attention, Social-
BiGAT [45] replaces the attention layer with a graph neural network.

In summary, forecasting models incorporate social and scene interactions using different
layer architectures. While agent-agent interactions rely on the exchange of individual
features across the set of pedestrians in a scene, scene-aware models use visual features
from a CNN to combine them with the position and motion of an agent for trajectory
prediction.

1.1.5 Evaluation Metrics

Evaluation metrics are crucial to measuring the performance and progress of any machine
learning method. There are several popular metrics for evaluating pedestrian trajectory
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Figure 9: Illustration of ADE, FDE, and BoN between the ground-truth trajectory 𝐲 (green)
and prediction �̂� (purple). While the FDE only evaluates the final position of the prediction, the
ADE averages the distance between all positions of the prediction and the ground-truth trajectory.
The BoN only considers the sample out of 𝑁 predictions with the lowest ADE or FDE.

prediction models. Metrics compare the ground-truth sample with the predictions for a
given observation. In the literature, many researchers report the average displacement
error (ADE) and final displacement error (FDE) as illustrated in Figures 9a and 9b.

• Average Displacement Error (ADE): Average 𝐿2 distance between the ground-
truth trajectory and the prediction.

• Final Displacement Error (FDE): The 𝐿2 distance between the final point of
the ground-truth trajectory and the prediction.

These metrics are unimodal and only consider one forecast per input sample. Instead
of predicting a single trajectory, stochastic methods (i.e., GANs or VAEs) can output
multiple predictions to account for the multimodality of human trajectories as they learn
a distribution of possible future trajectories. However, these methods do not provide the
distribution in a closed form and can only be evaluated by their empirical distribution.
To evaluate stochastic methods, we sample 𝑁 output trajectory forecasts {�̂�1,… , �̂�𝑁 }. We
evaluate these trajectories under the best-of-N (BoN) protocol. The BoN where 𝑁 = 3 is
illustrated in Figure 9c. Therefore, most benchmarks allow for multiple predictions per
input sample and report the following metrics:

• BoN ADE: Computes ADE of 𝑁 samples and reports the minimum ADE loss.

• BoN FDE: Computes FDE of 𝑁 samples and reports the minimum FDE loss.

In most evaluation protocols, researchers report 𝑁 = 20. However, we argue that we
must evaluate the model with fewer samples because most real-world applications cannot
usefully process 𝑁 = 20 trajectory predictions. Fixing the evaluation incentive is relevant
because it significantly affects the focus of the research effort. Consequently, many
methods have focused on producing highly diverse trajectories, reducing the BoN error.
Accordingly, [75] shows that one can construct a simple linear model that produces 𝑁
trajectories evenly fanning a cone in the direction of motion, yielding very competitive
results on the test benchmarks. This method caricatures current state-of-the-art methods
with an oversimplified model seriously questioning the merit of BoN metrics.

Besides 𝐿2-based methods, researchers occasionally evaluate the ground-truth trajectory’s
negative log-likelihood (NLL) wrt. the predicted sample distribution. For each timestep,
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a kernel density estimate [62] (KDE) of the sampled trajectories is computed to obtain
a probability density function of the predictions. Then, the estimated KDE is used to
compute the mean NLL of the ground-truth distribution.

As mentioned above, the downside of BoN metrics is that they primarily focus on the
recall of the ground-truth trajectory, i.e., creating highly diverse trajectories. The large
spatial variance of the predicted samples increases the chance of generating one trajectory
close to the ground-truth trajectory. That means only the trajectory with the lowest
error counts for this metric. As a result, very different prediction outputs can lead to the
same BoN performance as long as they all share one trajectory being the closest to the
ground-truth trajectory and having the same distance error. All other trajectories do not
affect the loss value.

While rewarding a high recall of the ground-truth trajectory, the overall performance of
all predictions is not evaluated. Primarily for real-world applications like autonomous
driving, this behavior is inappropriate because the system does not have knowledge of
the future and cannot select the trajectory closest to the ground truth. Therefore, it
considers all trajectories as possible future paths and needs to adjust its actions accordingly.
Unrealistic trajectories, however, confuse this process and may lead to disturbance or
dangerous situations. To overcome these shortcomings, we will propose an alternative
new recall-precision metric that measures the realism of all samples and not only the best
trajectory.

1.2 Multimodal Pedestrian Trajectory Prediction

Modeling stochastic trajectory forecasting methods is critical for multiple downstream
tasks where trajectory prediction is needed for planning and decision-making. With this,
modeling prediction uncertainty is an essential feature. While first generative methods
transform a known, connected distribution into the desired target distribution, they do
not consider the true multimodal nature of pedestrian trajectories.

Table 2: Our publications on multimodal trajectory prediction.

Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position
Estimation
Patrick Dendorfer, Aljoša Ošep, and Laura Leal-Taixé
Asian Conference on Computer Vision (ACCV). 2020.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution
Samples in Pedestrian Trajectory Prediction
Patrick Dendorfer*, Sven Elflein*, and Laura Leal-Taixé
International Conference on Computer Vision (ICCV). 2021.
(* denotes equal contribution)

In the previous part, we introduced generative models such as GANs as the solution at
hand when generating a distribution of future trajectories and modeling the uncertainty
of trajectory forecasts. State-of-the-art GAN-based trajectory prediction models [36,
45, 73] significantly improve the test error performance over deterministic models under
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Figure 10: Illustration of the multimodal nature of trajectory prediction and the ability of
different model architectures to learn a multimodal target distribution.

the best-of-many evaluation protocol. However, are these models eventually capable of
learning the underlying multimodal nature of the distribution of pedestrian trajectories?

A closer look at the generated samples and distribution reveals that these models also
tend to predict undesired out-of-distribution (OOD) samples. This phenomenon is not
broadly discussed in recent papers because many state-of-the-art methods still evaluate
their methods with the BoN protocol that primarily focuses on recall and does not punish
unrealistic predictions. Based on real-world downstream tasks, precision is as important
as recall because applications can only consider a limited number of predicted paths and
cannot select the best predictions a priori.

There are several explanations why this undesired behavior occurs: Certainly, the BoN loss
encourages the model to increase the diversity of the output for the sake of realism wrt. the
data distribution. Another relevant reason is that single-generator models are theoretically
incapable of learning a transformation that produces a multimodal distribution.

We already presented the concept of multimodality in the previous section. Limitations
of single generators arise as they are modeled as neural networks transforming a known
distribution. By construction, neural networks are continuous functions because they need
to be differentiable for training their weights. The random noise vectors usually come from
a multivariate unimodal Gaussian distribution on a connected topology. The generators
transform the connected manifold of random variables with a continuous transformation.
The resulting distribution preserves the topology of that manifold and hence is also
connected. Therefore, a connected manifold cannot be transformed by continuous functions
into a disconnected one. Consequently, the learned distribution smears over all modes and
still has non-zero probability mass at regions that are outside of the target distribution
(Figure 10b). Practically, there are only two ways to build a sophisticated model capable
of generating a multimodal distribution, as shown in Figure 10a.

Following [81], we can change the topology of the latent space by either (i) introducing
discrete latent variables (Figure 10c) or (ii) constructing a discontinuous transformation
consisting of multiple smaller generator networks (Figure 10d).
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Contribution
We explore the two possibilities to achieve a multimodal distribution. We discretize the
generator’s input (Figure 10c) or apply a discontinuous multi-generator model (Figure 10d)
to build a multimodal trajectory forecasting model.

As the first concept, we present Goal-GAN [21]. In this model, we decompose the
trajectory prediction into a two-stage process: (i) we estimate a goal position from an
estimated goal probability distribution and (ii) route the trajectory toward that goal.
The model estimates an interpretable probability distribution of the goal positions of
the trajectory. The categorical distribution allows a discrete sampling of goal positions
introducing a discontinuous process into the prediction models. The goal estimates
influence the decoding of the trajectory and fix the last point of the predictions.

Secondly, we propose MG-GAN [19], a multi-generator model for trajectory prediction. In
contrast to Goal-GAN, we use the idea of a discontinuous function to ensure a multimodal
target distribution. The key here is that we have a set of different generators with their
individual model parameters. Each of the generators produces a trajectory distribution
and represents one of the modes of the multimodal distribution. Furthermore, we introduce
the path mode network that outputs a discrete probability distribution over the different
generators conditioned on the observed trajectory and the scene image. The model
uses these probabilities to sample randomly or select the generators. Therefore, we can
efficiently cover all relevant modes of the distribution with as few samples as necessary.
Hence, there is a considerable advantage compared to vanilla GAN methods, where the
data distribution is only learned implicitly and can hardly be controlled to cover specific
modes.

The problem of out-of-distribution samples is not adequately addressed in existing works
because the standard metrics used in the field do not assess the quality of all samples
except the one closest to the ground truth. To address this issue, we additionally propose
a precision-recall metric for trajectory prediction, which is standard in studying GANs in
other research fields. While we can produce a distribution of generated trajectories, we only
have one observation of the ground-truth trajectory. To overcome this shortcoming, we
either synthetically simulate multiple possible future trajectories for the same observation
or try to cluster real ground-truth trajectories based on dynamic similarities of the
observation.

Conclusion
This part presents the relevance and challenges of predicting multimodal trajectories and
our contribution to solving this task. Once more, we want to emphasize the importance of
multimodal and high-precision predictions for many real-world applications. We improve
stochastic trajectory prediction methods by studying the multimodal nature of trajectory
distributions. Based on that knowledge, we choose accurate model architectures which
reflect these properties. Therefore, we derive our two proposed solutions from the first
principles and hope that our work encourages the community to think about multimodality
more carefully and consider other metrics, which include the idea of precision for their
methods.
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Figure 11: Visualization of a pedestrian tracking scenario. The multi-object tracking task
involves detecting and localizing objects of interest and associating them across different timesteps.

2 Multi-Object Tracking

2.1 Background

Multi-object tracking (MOT) is essential in studying human motion and defines one of
the core research fields of computer vision. In this section, we will introduce the reader
to the task of multi-object tracking. Along this line, we will present different tracking
paradigms and evaluation protocols, and outline open challenges and problems.

Overview
Tracking moving objects over space and time is fundamental for reasoning and acting in a
dynamic and visual world. Whether driving on a highway, walking in the streets or playing
team sports, one often maintains attention on multiple moving objects simultaneously.
To explore this ability with a computer system, researchers have established the task of
multi-object tracking as a core field of computer vision which already dates back to the
late 80s [67].

Today, multi-object tracking provides the technology for several applications in various
fields considering a wast spectrum of objects. Objects of interest include pedestrians,
vehicles, sports players, animals, organisms, or other moving objects like footballs or
airplanes. Moreover, following [53], more than 70% of current MOT research is towards
pedestrian tracking, whereas vehicle tracking has become increasingly important.

2.1.1 Problem Formulation

The task of multi-object tracking (MOT) involves detecting and localizing all objects
from a known set of classes as bounding boxes in each frame of a video sequence and
assigning unique IDs to each entity. These targets may enter and leave the scene at any
time. During the tracking period, the unique objects are assigned individual IDs that
must persist even after long-time occlusions and under appearance changes. The problem
of multi-object tracking can be split into object detection and detection association. A
tracking example is shown in Figure 11.

The concept of MOT also applies to segmentation (MOTS), for which each object is
not represented by a bounding box but by an instance segmentation mask. The target
objects can be from completely different classes. Datasets exist that target pedestrians
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(MOT16 [58], MOT17 [58], and MOT20 [26]), biological cells (CTMC [3]), human heads,
and zebrafish (3DZeF [63]).

Tracking Modes
Given a video stream, there are two different ways of tracking objects, namely offline and
online tracking. In online tracking, the tracker obtains the video frames sequentially and
outputs a prediction for each frame without information about the future. Online tracking
is relevant for any autonomous platform that navigates through a scene and interacts with
objects in real-time. In contrast, offline tracking can be seen as the postprocessing of a
sequence where the methods have access to the entire sequence information. The tracker
can optimize its predictions by using the past and future of a track. While unsuitable for
interacting systems, offline tracking can help analyze recorded scenarios, e.g., creating
motion profiles of pedestrians and groups in public areas.

2.1.2 Multi-Object Tracking Datasets

Data is indispensable for training and testing deep learning methods. The tracking
community has shown effort to create standardized datasets and benchmarks. These
datasets provide raw video sequences and annotations files for each frame containing the
location of the object bounding boxes and target IDs.

This thesis will present our benchmark for multi-object tracking, MOTChallenge, which
provides tracking datasets for various objects. The most relevant leaderboards in pedes-
trian multi-object tracking are the MOT15, MOT16, MOT17, MOT20, and MOTSynth
datasets. Additionally, there are other publicly available datasets for human tracking
such as DanceTrack [79] and open world tracking [18].

Autonomous driving datasets such as nuscenes [10], KITTI [34], Waymo [78], Argoverse [11]
and BDD100K [86] provide large-scale video data recorded from a driving vehicle in
various traffic scenarios, day times, and weather conditions. While these autonomous
driving datasets are very helpful in training trackers on visible objects and have more
and longer video sequences than MOTChallenge, we find that less than 0.6% of tracks in
BDD100K and 4% of tracks in KITTI contain occlusion gaps longer than 2s. In contrast,
in MOTChallenge, 19.4% of tracks contain long (over 2s) occlusion gaps. The low number
of annotated tracks containing long occlusions in the driving datasets is likely due to the
semi-automated annotation process. Reappearing objects in these large-scale datasets are
often assigned new identities. This limitation makes these datasets less insightful to work
on solving long-term occlusions, which is still a challenging problem.

Therefore, precise and temporal consistent annotation is necessary for model training
and testing, but highly accurate data is very costly and annotations are time-consuming.
The successive improvement in computer graphics allows us to generate synthetic data
mimicking real data to train tracking methods. Training the trackers with a large
amount of synthetic data actually achieves very competitive results compared to real data
training [32]. The benefit of synthetic data is that we can automatically generate the raw
data together with the annotation. At this end, we include MOTSynth containing 1.3M
frames and 33M person instances into MOTChallenge as we believe that synthetic data is
a promising approach to comply with the high data demand of state-of-the-art methods.
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Figure 12: Concepts of measuring track and bounding box associations.

2.1.3 Evaluation Metrics

Tracking evaluation metrics define a similarity between the tracker output and the
corresponding ground-truth track. As measuring the quality of the tracking output is
not well-defined and ambiguous, many different ways of scoring the similarity between
predictions and targets exist. The choice of the metric is significant as these metrics
assess different behavior and errors. The agreement in the community on particular
metrics to focus on also heavily dictates the research direction of future methods because
it becomes increasingly important to rank top on public benchmarks. All tracking metrics
measure detection and association performance but emphasize the importance of these
performances differently.

In the following, we will briefly introduce the reader to Hungarian matching [46], CLEAR
MOT [6], and IDF1 [69]. For most metrics, the first step usually involves matching
detected bounding boxes with ground-truth boxes. The matching is usually done with
a Hungarian algorithm that solves the linear assignment between the predicted objects
and the ground-truth targets. The algorithm computes a mapping that minimizes the
global matching score  of the bounding boxes. The similarity  is commonly the
intersection-over-union (IoU) between the two bounding boxes where we only consider
matches  ≤ 𝛼 for the matching. The IoU of two bounding boxes 𝐴 and 𝐵 is defined as

IoU (𝐴, 𝐵) =
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

(3)

and displayed in Figure 12a. A standard procedure in MOT evaluation is bijective
matching (one-to-one) between the ground-truth object and the detection. In Figure 12b
we illustrate different matching associations:

• True Positives (TP) are correct matches between ground-truth and detection pairs.

• False Negatives (FN) are ground-truth objects that are not matched (missed).

• False Positives (FP) are detections that are not matched to ground-truth objects.

TPs are correct matches, while FPs and FNs are two types of incorrect predictions. In
2006, the CLEAR (Classification of Events, Activities, and Relationships) Workshop
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collected existing metrics and unified them into the CLEAR MOT [6] framework. The
central metric in CLEAR MOT is MOTA (Multi-Object Tracking Accuracy) which
considers the sum of detection errors, i.e., FNs and FPs, as well as identity switches
(IDSW) divided by the total number of ground-truth objects (gtDet).

MOTA = 1 −
|FN| + |FP| + |IDSW|

|gtDet|
(4)

The metric has a maximum value of 1 but is unbounded for negative values. Identity
Switches (IDSW) define the association errors in MOTA. An IDSW occurs when a tracker
wrongfully associates a new detection with a different identity to an existing ground-truth
track.

In contrast to MOTA which matches on a detection level, IDF1 [69] calculates a matching
between a set of ground-truth (gtTrajs) and predicted tracks (prTrajs). Identity true
positives (IDTP) are matching bounding boxes, i.e., TP, of the overlapping part of the
trajectories. Identity false negatives (IDFN) are non-overlapping sections of matched
trajectories, and identity false positives (IDFP) are unmatched detections of the remaining
part of the prTraj. Hence, we can define the following scoring functions:

ID-Recall =
|IDTP|

|IDTP| + |IDFN|
(5)

ID-Precision =
|IDTP|

|IDTP| + |IDFP|
(6)

IDF1 =
|IDTP|

|IDTP| + 0.5 |IDFN| + 0.5 |IDFP|
(7)

CLEAR MOT and IDF1 metrics have served the MOT community over the past years.
However, there exist multiple drawbacks to these metrics that restrict tracking research.
The main shortcomings of MOTA include an imbalance between detection and association
performance, missing association precision (ID transfers), and unbounded values. IDF1
has a strong bias towards association but ignores the quality of associations outside of
matched sections. In Section 2.2, we resume the discussion about evaluation metrics and
present a new metric compensating for some of these shortcomings.

2.1.4 Multi-Object Tracking Methods

Before discussing different MOT methods, we want to motivate the object cues, which
enable a tracking system to preserve the same unique object identity across different
frames. If we try to track pedestrians as shown in Figure 11, we can either use the person’s
appearance or motion to associate the detections across different time steps.

Tracking Cues
At first, we discuss the Appearance Model. The appearance model consists of two
components: visual representation and statistical measuring. Visual representation
describes an object’s visual characteristics based on features extracted from the video
sequence. Here, the representation can consist of a single cue or a combination of multiple
cues. The space of features used for multi-object tracking is enormous, but standard
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Figure 13: Illustration of different multi-object tracking paradigms.

features include visual encodings from convolutional neural networks [13, 47], optical
flow [72], motion cues [7], or depth estimates [42]. Based on the set of different features,
statistical measuring provides a function or measure 𝐶(⋅) that compares and rates the
similarity 𝑆𝑖𝑗 of two features 𝑓𝑖 and 𝑓𝑗 .

𝑆𝑖𝑗 = 𝐶 (𝑓𝑖 , 𝑓𝑗) (8)

In addition, the frame-by-frame association can be supported by motion and location cues
of existing trajectory tracks and detections. The simplest motion model assumes constant
velocity for the object. The velocity is computed from the position displacements in
previous frames. Objects propagating with constant velocity move as

(𝑥, 𝑦)𝑡 = (𝑥, 𝑦)𝑡−1 + (𝑢, 𝑣)𝑡−1 ⋅ Δ𝑡 (9)

where (𝑥, 𝑦) and (𝑢, 𝑣) are the 2D image pixel positions and displacements, respectively.
To include uncertainty of the localization and motion of objects, researchers use stochastic
processes e.g., Kalman Filter [7]. The Kalman Filter provides an optimal estimator of a
linear system with Gaussian error. Most motion models operate in pixel space. While
these models are helpful for short-term predictions, long-term predictions in pixel space
are not very accurate due to the camera projection effects discussed in Section 3.1.

Dominant Tracking Paradigms
The field of multi-object tracking has rapidly evolved in the past, and modern state-
of-the-art methods can be classified into three different types of models, which are
demonstrated in Figure 13, namely tracking-by-detection, tracking-by-regression, and
tracking-by-attention. These paradigms differ in how they leverage object information
and cues for tracking.

In the last years, the tracking-by-detection [85, 84, 87, 82] paradigm has made considerable
progress in the field of multi-object tracking. This approach consists of two independent
steps, including (i) localizing and detecting objects in each frame and (ii) associating
these detections across frames. The first step is performed by state-of-the-art object
detectors [68, 50, 16]. In the association step, the model forms trajectories for each identity
utilizing motion, location, and appearance cues. The association can either be solved
frame-by-frame or track-wise optimized over the entire sequence in an offline application.
Trackers assume that object displacements are small for short-term preservation, given
two nearby frames. This assumption allows them to utilize spatial proximity for matching
by exploiting simple motion models.

The tracking-by-regression [5, 88] paradigm assumes that objects’ displacements between
two temporarily close frames are small. Under this assumption, these methods leverage
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Figure 14: Illustration of an occlusion scenario in a tracking sequence. The target pedestrian is
occluded to the camera by a static occluder i.e., car for 𝑘 timesteps. Therefore, the object is not
detected by the object detector. The longer the occlusion time, the further the object may have
traveled, and the harder the re-identification of the track after the occlusion.

the bounding box regression head of their object detectors to regress the bounding box
positions of a tracked object in the next frame. These methods only require the first
detection to initialize the track. All other bounding boxes of a particular track are then
directly regressed from the model. While this setup can already solve most simple cases,
advanced models are equipped with an additional re-identification Siamese network [31]
and simple motion models, significantly improving performance and resolving short-term
occlusions.

More recently, methods advanced to use transformer networks [83] for tracking and estab-
lished the tracking-by-attention paradigm [56]. This end-to-end MOT approach is based
on encoder-decoder transformer architecture and omits additional graph optimization,
matching, or motion modeling with identity-preserving track queries. These approaches
reach outstanding performance but require large amounts of training data.

Challenges in Multi-Object Tracking
Nowadays, object detectors have become very robust, and tracking visible objects can
be seen as a solved problem [5]. However, there are remaining challenges in multi-object
tracking. One of the main challenges states long-term occlusions where objects are not
visible for > 2𝑠. An occlusion scenario is illustrated in Figure 14. These occlusions occur
in crowded scenes with many objects (object-object occlusion) or when the target is
hidden behind objects like a tree or building (object-scene occlusion). With increasing
occlusion time, the positional uncertainty increases, and the appearance and size of the
lost objects change drastically, making the target re-identification harder.

Methods use appearance-based re-identification networks [5, 9, 43, 47, 72] to achieve better
performance in long-term association scenarios. These methods encode appearance cues
or simple motion models in pixel space to re-identify persons after occlusions. Building
appearance-based models require a large amount of training data for the model to learn
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a rich representation of the objects. Also, appearance-based re-identification becomes
computationally expensive as the number of possible matching combinations drastically
increases over time. Thus, an unconstrained search space for re-identification in crowded
scenes after long occlusions becomes intractable. Conversely, motion models can help to
decrease the re-identification search space. However, simple motion models in pixel space
are not accurate enough because the localization error caused by the effect of non-linear
camera projection (see Section 3.1) is significant for long-term occlusions.

To overcome these challenges, we analyze these scenarios and propose a tracking-by-
forecasting paradigm to solve long-term occlusion as one of our contributions in Section 3.2.

Table 3: Our publications on benchmarking, evaluating, and analyzing multi-object trackers.
Publications highlighted in gray do not count toward the list of publications of this cumulative
thesis but are mentioned in Section 2.2.

CVPR19 Tracking and Detection Challenge: How crowded can it get?
Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers,
Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé
arXiv. 2019.

MOT20: A benchmark for multi object tracking in crowded scenes
Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers,
Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé
arXiv. 2020.

MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking
Patrick Dendorfer, Aljoša Ošep, Anton Milan, Konrad Schindler, Daniel Cremers,
Ian Reid, Stefan Roth, and Laura Leal-Taixé
International Journal of Computer Vision (IJCV). 2020.

HOTA: A Higher Order Metric for Evaluating Multi-Object Track-
ing
Jonathon Luiten, Aljoša Ošep, Patrick Dendorfer, Philip Torr, Andreas Geiger,
Laura Leal-Taixé, and Bastian Leibe
International Journal of Computer Vision (IJCV). 2020.

MOTCOM: The Multi-Object Tracking Dataset Complexity Metric
Malte Pedersen, Joakim Bruslund Haurum, Patrick Dendorfer, and Thomas B.
Moeslund
European Conference on Computer Vision (ECCV). 2022.
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2.2 Benchmarking, Evaluating, and Analysing Multi-Object Trackers

Advancing deep learning multi-object trackers requires not only new model architectures
but also a performant and efficient data and evaluation infrastructure. Thus, the progress
goes hand-in-hand with the quality of available datasets and the ability to measure
performance accurately.

We contribute to the field of multi-object tracking by providing a platform for diverse
datasets, a centralized evaluation benchmark, novel tracking evaluation metrics, and a
measure to characterize the complexity of data sequences. The number of newly published
tracking methods has skyrocketed in the last few years. However, the number of new
datasets, metrics, and evaluation benchmarks only increases incrementally.

Contribution
The need for platform and infrastructure contributions is undisputed, but only a few
researchers tackle these challenges. In the following, we present our contributions to the
aforementioned challenges.

(a) MOT20 [26] (b) MOTSynth [32] (c) Pedestrian Head Tracking [80]

(d) Zebra Fish (3D-ZeF20) [63] (e) Cell Tracking [3] (f) TAO [18]

Figure 15: Visualization of different tracking challenges hosted on MOTChallenge.

MOTChallenge
The MOTChallenge benchmark was released in 2014, providing publically available
datasets and a centralized infrastructure to evaluate and benchmark multi-object trackers.
Since then5, more than 3500 users have registered who evaluated 9000 trackers. At this
date, MOTChallenge provides 13 open tracking benchmarks with varying target objects
and tasks as shown in (Figure 15). These challenges include tracking pedestrians, human
heads, zebrafish, cells, or other moving objects.

In particular, we recorded, annotated, and realized two challenges in 2019 [25] and 2020 [26],
providing challenging sequences under crowded conditions. MOT20 has scenarios with
more than 150 pedestrians at the same time aiming to evaluate methods on their ability
to deal with a large number of objects.

5Date: 25.10.2022
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In addition to the training datasets, users can download the raw test videos and produce
predictions for these sequences. We provide a centralized evaluation server where tracking
outputs can be uploaded and evaluate their tracking performance on unknown test data.
The results are displayed on publically accessible leaderboards, and we automatically
generate video sequences visualizing the tracking results.

By providing the MOTChallenge benchmark to the community, we collect much data from
different tracking methods that allow us to analyze the current model trends, performances,
and failure cases of state-of-the-art tracking methods. Furthermore, we have detailed
access to historical data on how methods’ performances improved over time for particular
scenarios and sequences. Therefore, we present an extensive analysis of 205 trackers on
the MOT15, MOT16, and MOT17 datasets in [22].

HOTA
Expressive metrics that measure performance on a particular task are essential for building
deep learning methods. The research community agrees that precision, recall, and average
precision clearly define the model performance for detection tasks. However, evaluating
the quality of multi-object tracking is ambiguous and not trivial. For this reason, there
exists more than one metric.

Generally, one can see multi-object tracking consisting of two subtasks: detection and
association. Different applications focus on either one or the other tasks and prioritize
different aspects of tracking. Hence, multiple metrics exist that emphasize different
aspects of the task.

The most prominent evaluation metric was the Multi-Object Tracking Accuracy (MOTA) [6]
and Identification F1 (IDF1) [69]. However, MOTA primarily focuses on detection and
completely ignores identity transfers. On the other hand, IDF1 has a strong bias toward
association. The problem with these two metrics is that they either focus on measuring
detection or association. As a means of creating a metric that better balances the subtasks
of detection and association, we propose the Higher Order Tracking Accuracy (HOTA) [52].
We extensively discuss the shortcomings of the metrics mentioned above and demonstrate
the advantages of HOTA. We also present a user experiment showing that HOTA agrees
more closely with human assessment of the quality of a tracking output than MOTA.
Since the publication of this paper in 2020, we see that the community accepts HOTA as
a new metric for multi-object tracking and reports it frequently in new publications. The
metric is now also implemented in evaluation platforms such as MOTChallenge [19] and
KITTI [34].

MOTCOM
In contrast to evaluation metrics for trackers, no comprehensive metrics exist for describing
the complexity of multi-object tracking sequences. Until now, sequences are described by
the number of tracks and object density. However, these numbers are not very informative
when it comes to describing the complexity of the tracking problem a priori. The absence
of complexity metrics decreases the explainability and comparison of tracking results
across different datasets. To overcome this limitation, we present a novel MOT dataset
complexity metric [65] (MOTCOM). In this metric, we investigate measurable properties
of tracking sequences that explain the complexity of the tracking sequence. To compare
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the complexity of different sequences, we use the average HOTA scores as a proxy for
the ground-truth sequence complexity. We identify three critical properties of tracking
sequences that strongly correlate with complexity: object occlusions, erratic motion, and
visual similarity between different objects. We develop a specific sub-metric to measure
each of the aspects mentioned above. Finally, we combine these metrics to compute the
final MOTCOM score. An experimental evaluation of MOTCOM on the comprehensive
MOT17, MOT20, and MOTSynth datasets shows a significant correlation between our
proposed MOTCOM metrics and the proxy complexity of the sequences.

We hope our metric can provide further insights into understanding and interpreting
tracking performance results, curating and collecting new datasets, and developing
specialized tracking methods.

Conclusion
Our presented projects provide the necessary infrastructure, insight, and tools for develop-
ing new tracking methods. Therefore, we hope that our work benefits future research and
helps to improve current state-of-the-art methods. By studying new evaluation metrics
for multi-object trackers and understanding the complexity of tracking sequences, we
can identify the challenges of current trackers and gain insights into scenarios that pose
difficulties for the models. This analysis can guide future research directions and new
model concepts for the tracking task.
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Figure 16: Illustration of a pinhole camera model projecting a real-world point to an image
position. The projection 𝐏 is defined by a rigid transformation 𝐄 that transforms the coordinates
into the camera reference system and the intrinsic matrix 𝐊 projecting a point from the camera
reference system onto the image plane.

In the previous section, we introduced the task of trajectory prediction. For this task,
objects are represented as 2D world coordinates on a plane in metric space. While lidar
sensors provide a 3D point cloud of objects, a single camera setup only captures objects
in an RGB-video sequence. Hence, we discuss how a 3D world object appears in the
two-dimensional image plane as illustrated in Figure 16.

3.1.1 Camera Projection

A monocular camera maps 3-dimensional real-world points to the 2-dimensional camera
plane. The pinhole camera model is a simple but effective model that explains this
transformation between the real world and the recorded image. Hence, researchers in
computer vision often consult this model. For the pinhole estimation, the image plane is
positioned at a distance 𝑓 from the camera’s center 𝑂𝑐 . A 3D-point (𝑋, 𝑌 , 𝑍 )𝑇 projects to
the image positions (𝑢, 𝑣)𝑇 as

(
𝑢
𝑣)

=
(

𝑓 ⋅𝑋
𝑍
𝑓 ⋅𝑌
𝑍 )

. (10)

The image projection from ℝ3 → ℝ2 leads to a loss of depth information. All world
coordinates along optical rays are projected to the same pixel position. Typically, the
image plane has its origin 𝑂𝐼 not in the principal point (center of the image), which is
why there is an offset 𝑝𝑥 and 𝑝𝑦 , respectively, for both axes added. The focal length,
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Figure 17: Illustration of projected motion into the image plane. The two segments 𝐗1 − 𝐗2
and 𝐗3 − 𝐗2 have the same euclidean length. As the object is moving towards the camera, the
segments 𝐱1 − 𝐱2 appear to be shorter than 𝐱3 − 𝐱2 in the image.

together with the offset parameters, defines the intrinsic matrix,

𝐊 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑓 𝑝𝑥
𝑓 𝑝𝑦

1

⎞
⎟
⎟
⎟
⎟
⎠

. (11)

The intrinsic matrix provides a projective mapping from camera coordinates into the
image plane.

The camera reference coordinates system is usually different from the world coordinates
system. Therefore, we must transform 3D-world points into the camera coordinate
reference frame. The relationship between these two coordinate systems is defined by a
3 × 1 translation vector 𝐭 and a 3 × 3 rotation matrix 𝐑. Combined, they define a rigid
transformation given by the extrinsic matrix

𝐸 =
(
𝐑 𝐭
0 1)

. (12)

A monocular camera technically projects 3D world points to 2D points in the image. Given
a 3D world coordinate 𝐗𝑊 , the camera projection matrix 𝐏 transforms the homogeneous
coordinates into the image points 𝐱 following

𝐱 = 𝐏𝐗𝑤 . (13)

The projection matrix 𝐏 is the product of the intrinsic matrix 𝐊 and extrinsic matrix

(𝐑 | 𝐭).

3.1.2 Motion Projection

Objects move around in the real world. In a video sequence, we can only observe the
projection of that motion. Depending on the orientation of the recording camera, the
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Figure 18: Illustration of the homography matrix transforming positions 𝐱𝑖 on the image plane
to the points 𝐗𝑖 on the scene plane.

motion of objects moving with the same speed but differently directed velocities appear
to be different depending on the projection matrix. An object moving orthogonally to
the image plane appears static in the image. Therefore, the projection depends on the
object’s position relative to the camera position.

The projection matrix 𝐏 influences the measurement of motion in the image plane. As
illustrated in Figure 17, the segments have the same euclidean distance in metric space;
however, the corresponding projection of 𝐗1 − 𝐗2 into the image space is shorter than
𝐗2 − 𝐗3. Here, the distance to the camera plays a role as 𝐗3 is closer to the camera than
𝐗1. The relative distance between the camera pose and the scene plane affects, as well as
the position of objects on that plane, the projected points. Consequently, even simple
linear motion in 3D appears to be non-linear in the projected image space.

3.1.3 Homography Transformation

We can restore the proper 3D world coordinates by reverting Equation (10). However,
this requires the knowledge of depth measurements, which are usually not recorded in
an RGB-camera setup. If we assume that objects are located and moving on a scene
plane, then there exists a transformation between the image and scene planes given by
the homography matrix 𝐻 [37]. The homography matrix is a 3𝑥3 matrix with 8 degrees
of freedom that transforms points from the image plane to the scene plane, as shown
in Figure 18. The homography matrix 𝐻 can be estimated using pairwise correspondence
between the two planes.

For this section, we want to emphasize the importance of understanding the effect of the
camera projection on the recorded motion. It is crucial to understand that the camera
projection distorts real motion and a description of trajectories in the image space is
insufficient. This insight is essential to building motion models for moving objects in
camera sequences. To do so, we must account for the projection effect to describe real
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Figure 19: Visualization of QuoVadis [29]. We bridge long-term occlusions by (a) localizing object
tracks in bird’s-eye view via the estimated homography and (b) forecasting future trajectories for
lost tracks. We (d) continually aim to match these inactive track predictions with new object
detections and remove incorrect predictions under a visibility constraint (c) of the tracking task.

motion.

As discussed in Section 2.1, many tracking methods rely on simple constant and linear
motion models operating in pixel space. As pixel space methods help to bridge short time
gaps for slowly moving objects, they are too inaccurate to predict large displacements
because they neglect the non-linearity of the trajectories in image space.

3.2 Solving Long-Term Occlusions with Trajectory Prediction

Developments in multi-object tracking have been very successful in tracking visible or
shortly occluded objects. Despite the advancement in solving short-term occlusion,
recovering track identities after long-term occlusions remain challenging. Nevertheless,
identity preservation is an important feature in multi-object tracking and essential for
video editing, surveillance, or autonomous navigation tasks.

Table 4: Our publication on solving long-term occlusions with trajectory prediction.

Quo Vadis: Is Trajectory Forecasting the Key Towards Long-Term Multi-
Object Tracking?
Patrick Dendorfer, Vladimir Yugay, Aljoša Ošep, and Laura Leal-Taixé
Conference on Neural Information Processing Systems (NeurIPS). 2022.

Most state-of-the-art methods rely on visual similarity and linear motion to re-identify lost
tracks after occlusions. However, these methods do not account for the projective camera
effect explained in Section 3.1. While sufficient for short-term predictions, simple linear
motion models are not sophisticated enough to predict complex multimodal trajectory
forecasts that are needed for long-term occlusions. Long-term occlusions are not the
primary concern of current research; these occlusions are generally rare and contribute only
little to the overall tracking performance on standard tracking datasets. Our performance
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analysis shows that state-of-the-art MOT trackers rarely solve occlusion gaps 𝑡 > 2𝑠. This
is a relevant problem that one must address.

Contribution
We aim to bridge long-term occlusions by leveraging trajectory forecasts of the objects.
At this end, we include state-of-the-art pedestrian trajectory forecasting in the tracking
pipeline. To establish our tracking-by-forecasting paradigm, we present Quo Vadis [29].
Our method consists of multiple steps, as shown in Figure 19.

In the first step, we additionally represent the objects in the image as two-dimensional
points on the scene plane in a bird’s-eye view representation. This transformation into
metric space resolves the non-linearity of the camera projection (discussed in Section 3.1).
We utilize semantic segmentation and depth estimates to compute the transformation
between the image positions and the world plane. The transformation into a bird’s-
eye view allows us to use sophisticated forecasting models. In contrast to models with
additional depth or lidar sensors, we focus on monocular tracking, where we only work
with 2D images without additional information. Therefore, we need to estimate the
homography matrix.

When an object is lost, we store that track in the memory and predict a set of future
trajectories in the bird’s-eye view representation. Whenever a new object appears, the
detection is matched to the existing prediction using the spatial position in the bird’s-eye
view and appearance features from the image space. In other words, the trajectory
prediction spatially decreases the area of the search space for the re-identification of the
object.

Our paper aims to improve the performance of multi-object tracking by applying trajectory
forecasting. On the other hand, we analyze the benefit of different trends in the trajectory
forecasting literature by using different prediction methods and sampling approaches.

Conclusion
We have shown how pedestrian trajectory prediction can benefit multi-object tracking to
solve long-term occlusions. The significant improvement comes from representing trajec-
tories in a bird’s-eye view that enables us to use state-of-the-art multimodal trajectory
prediction.

For tracking objects in the 2D image plane, it is advantageous to consult a 3D under-
standing of the motion and scenario since the 2D image is a projection of the underlying
3D reality. Contrarily, running motion models in pixel space completely ignores the
underlying physicality of the objects and their motion. Future work should continue
working on 3D motion and object representation supporting 2D tracking with a monocular
camera setup.
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iii Summary of Selected Publica-
tions

This publication-based dissertation comprises the following four publications:

multimodal pedestrian trajectory prediction
Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Esti-
mation
Patrick Dendorfer, Aljoša Ošep, and Laura Leal-Taixé
Asian Conference on Computer Vision (ACCV). 2020.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples
in Pedestrian Trajectory Prediction
Patrick Dendorfer*, Sven Elflein*, and Laura Leal-Taixé
International Conference on Computer Vision (ICCV). 2021.
(* denotes equal contribution)

benchmarking, evaluating, and analysing multi-object
trackers
MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking
Patrick Dendorfer, Aljoša Ošep, Anton Milan, Konrad Schindler, Daniel Cremers,
Ian Reid, Stefan Roth, and Laura Leal-Taixé
International Journal of Computer Vision (IJCV). 2020.

solving long-term occlusions with trajectory predic-
tion
Quo Vadis: Is Trajectory Forecasting the Key Towards Long-Term Multi-
Object Tracking?
Patrick Dendorfer, Vladimir Yugay, Aljoša Ošep, and Laura Leal-Taixé
Conference on Neural Information Processing Systems (NeurIPS). 2022.
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1 Goal-GAN: Multimodal Trajectory Prediction Based on
Goal Position Estimation

Citation

Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Esti-
mation
Patrick Dendorfer, Aljoša Ošep, and Laura Leal-Taixé
Asian Conference on Computer Vision (ACCV). 2020.

Author Contributions
The author of this dissertation significantly contributed to

• developing the main concepts

• implementing the algorithm

• evaluating the numerical experiments

• writing the paper

Summary
It appears to be intuitive that humans first determine a goal or an intention before they
route toward a goal in a scenario. However, this natural behavior does not reflect in
standard trajectory forecasting models, where the decoder usually generates the prediction
autoregressively without having a pre-determined goal.

Arguably, existing standard trajectory prediction models theoretically encode the final
location of the prediction inside the encoder-decoder bottleneck variable, but this is
neither enforced to the model during training nor during inference. The decoder uses
this latent information to create the expected trajectory. However, these predictions
can suffer from divergence where the hidden information modifies during the decoding
process, and the trajectory ends at an unfavorable end position. In general, these network
architectures do not allow deeper insight into the prediction processes and do not provide
much interpretation of the decisions.

In order to tackle the problem mentioned above, we closely follow the natural behavior of
human navigation and model the task of trajectory prediction as an intuitive two-stage
process: we first estimate a categorical probability distribution of future goals based on
the scene allowing us to sample different positions. Then, we condition a routing module
on the selected goal and generate the trajectory leading to this goal.

The goal module leverages information on the past trajectory and the surrounding scene
to determine the probabilities for future positions. The routing module is conditioned on
the preselected goal and generates feasible paths toward that goal. The module exists of a
recurrent neural network that uses local visual information to react to physical constraints
in the near surrounding. To this end, the model is capable of learning a multimodal
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distribution of final goal positions. Since the goal samples are from a discrete distribution
where some values will have zero probability, the model input can be seen as disconnected
and is, therefore, capable of solving the problem of generating out-of-distribution samples.
Furthermore, the estimated goal probability distribution is interpretable and provides a
solution for multimodal trajectory prediction. The two-stage prediction process stabilizes
the prediction process and prevents divergence of the trajectories.
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2 MG-GAN: A Multi-Generator Model Preventing Out-of-
Distribution Samples in Pedestrian Trajectory Prediction

Citation

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples
in Pedestrian Trajectory Prediction
Patrick Dendorfer*, Sven Elflein*, and Laura Leal-Taixé
International Conference on Computer Vision (ICCV). 2021.
(* denotes equal contribution)

Author Contributions
The author of this dissertation significantly contributed to

• developing the main concepts
• implementing the algorithm
• evaluating the numerical experiments
• writing the paper

Summary
Pedestrian trajectory prediction is challenging due to its uncertain and multimodal nature.
While generative adversarial networks can learn a distribution over future trajectories,
they tend to predict out-of-distribution samples when the distribution of future trajectories
is a mixture of multiple, possibly disconnected modes. These out-of-distribution samples
are particularly harmful to real-world applications when the system needs to act on all
forecasts and can only consider a small number of predictions. Therefore, it is necessary
to develop forecasting methods that cover all significant modes with as few samples as
possible.

Standard generative methods for pedestrian trajectory prediction are based on a single-
generator architecture. These models transform a sample from a known distribution
into a target trajectory. While trying to transform the unimodal distribution into a
multimodal distribution, they oversee the theoretical limitations of single-generator GANs.
The problem arises as the generator continuously transforms the probability density of a
distribution with connected support into the target distribution. As this transformation
cannot change the topology of the underlying unimodal input distribution, the output
itself is connected and will have non-zero probability mass at undesired out-of-distribution
regions.

This paper proposes a multi-generator model for pedestrian trajectory prediction to
overcome the limitations of single-generator GANs. Each generator specializes in learning
a distribution over trajectories of one mode of the distribution, while the path mode
network estimates a categorical distribution over these generators. As a consequence, the
overall model is a discontinuous function because each generator has its own set of model
parameters.
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The path mode network outputs scores dependent on the dynamics and scene input
that allow us to effectively sample the generators, Therefore, the model controls the
different modes of the learned distribution. It also provides an interpretable probability
distribution of each mode. This is especially useful when we only sample a small number
of trajectories because we can select the most suited generators for a specific scenario.
Sampling trajectories from specialized generators that cover only one mode reduces the
number of out-of-distribution samples compared to single-generator methods.

To train our network, we demonstrate an alternating training schema similar to the
expectation-maximization algorithm. Finally, we introduce recall and precision metrics for
pedestrian trajectory prediction to measure the quality of the entire generated trajectory
distribution. These metrics extend the current 𝐿2 based recall metrics and additionally
focus on measuring out-of-distribution samples.
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3 MOTChallenge: A Benchmark for Single-Camera Multiple
Target Tracking

Citation

MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking
Patrick Dendorfer, Aljoša Ošep, Anton Milan, Konrad Schindler, Daniel Cremers,
Ian Reid, Stefan Roth, and Laura Leal-Taixé
International Journal of Computer Vision (IJCV). 2020.

Author Contributions
The author of this dissertation significantly contributed to

• developing the main concepts

• implementing the algorithm

• evaluating the numerical experiments

• writing the paper

Summary
Standardized benchmarks have been essential in the development of deep learning com-
puter vision algorithms. Public leaderboards provide a fair and objective measure of
the performance of multi-object tracking methods. This paper discusses the need for
standardized benchmarks and the history of MOTChallenge.

MOTChallenge is a benchmark for single-camera multi-object tracking; it was launched in
2014 to curate existing datasets, collect new sequences for training, and create a framework
for the standardized evaluation of trackers. The benchmark focuses on multiple people
tracking since pedestrians are the most studied object class in the tracking community,
with applications ranging from robot navigation to self-driving cars. As part of the
benchmark, we provide a detailed overview of the different datasets and challenges.
We present the first release MOT15, along with numerous state-of-the-art results that
were submitted in the last years, MOT16, which contains new challenging videos, and
MOT17, which extends MOT16 sequences with more precise labels and evaluates tracking
performance on three different object detectors.

With the help of our collected data, we provide an extensive analysis of state-of-the-art
trackers. This investigation includes comprehensive error analysis and a discussion of
different trends in multi-object tracking. This will help newcomers to understand the
MOT community’s related work and research trends. Hopefully, it will shed light on
potential future research directions.
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4 Quo Vadis: Is Trajectory Forecasting the Key Towards
Long-Term Multi-Object Tracking?

Citation

Quo Vadis: Is Trajectory Forecasting the Key Towards Long-Term Multi-
Object Tracking?
Patrick Dendorfer, Vladimir Yugay, Aljoša Ošep, and Laura Leal-Taixé
Conference on Neural Information Processing Systems (NeurIPS). 2022.

Author Contributions
The author of this dissertation significantly contributed to

• developing the main concepts

• implementing the algorithm

• evaluating the numerical experiments

• writing the paper

Summary

Recent developments in monocular multi-object tracking have been very successful in
tracking visible objects and bridging short occlusion gaps, mainly relying on data-driven
appearance models. While performance in short-term tracking has advanced significantly,
bridging longer occlusion has remained a challenge. We find that state-of-the-art object
trackers bridge less than 10% of occlusions longer than two seconds. However, the
persistence of identities is essential for self-driving vehicles, safety cameras, and video
editing. Therefore, solving long-term occlusions is a necessary yet unsolved problem.

We suggest that the missing key is reasoning about the future trajectory of the occluded
object to rematch it again after the occlusion. Intuitively, the longer the occlusion gap,
the larger the search space for possible associations. In this paper, we demonstrate that a
small set of trajectory predictions for moving agents will significantly reduce this search
space and thus improve long-term tracking robustness. To do so, we show that it is crucial
to transform the objects’ tracks into a bird’s-eye view to compensate for the camera
projection effect on the recorded motion. The transformation normalizes the trajectories
across scenes and image positions into a common metric space. This representation
allows us to run state-of-the-art trajectory prediction models and leverage their benefits
over simple linear prediction models in pixel space. Moreover, we generate a small yet
multimodal set of forecasts while accounting for their localization uncertainty. Hence,
objects have representations in the image and bird’s-eye view, which enable matching in
both spaces.

The disciplines of pedestrian trajectory prediction and multi-object tracking have co-
existed with little interaction or exchange. Consequently, trajectory prediction has evolved
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as an isolated task working on idealized 2D trajectories without dealing with localization
uncertainty usually present in real data. The research mainly focuses on the recall of
the predictions and decreasing the best-of-N scores on the test data. Multiple trends
such as social and physical interactions or multimodality have evolved in the field. We
aim to evaluate these trends in prediction models to assess if they actually benefit or
even harm the application in a downstream task like tracking. We identify that the
best-of-N distance metrics currently used in the field lead to models generating highly
diverse trajectories. However, this behavior harms the tracking performance because
it does not decrease the search space significantly and increases the number of identity
transfers. Moreover, we do not find that a social module adds value to the prediction
model experimentally. A small number (𝐾 = 3 − 5) of multimodal trajectories covering
the distribution’s main modes, however, increases successful rematches of lost tracks after
occlusions.

This paper presents an approach that allows us to leverage state-of-the-art trajectory
forecasting methods to resolve long-term occlusions. This way, we can advance state-of-
the-art trackers on the MOTChallenge dataset and significantly improve their long-term
tracking performance.
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1 Integrated Real-World Trajectory Prediction

Most work published in the field of trajectory prediction still operates in an idealized
space without considering localization, measurement, and association uncertainty. As the
trajectories in the standard datasets are laboriously preprocessed and already transformed
into 2D metrics space, the actual task boils down to building a sequence-to-sequence
model while minimizing a target loss.

Although these simplifications have helped to develop the first deep learning prototypes
and allowed for the experimentation of different interaction modules, we argue that they
nowadays lead to a distracted focus in the field. Research primarily focuses on building
very complex models in these idealized and unrealistic settings. Most of the time, the
project’s goal is to boost the performance in some heavily used datasets. However, this
motivation loses sight of the big picture and the applicability of their methods. We
advocate that we need to look outside the prediction box and account for uncertainties in
incoming data (upstream) and outgoing predictions (downstream).

Given the perception system of an autonomous platform, it detects, classifies, and tracks
objects of interest from the raw sensor input. If one of these sequential processes produces
errors, the following tasks must consider the estimates’ uncertainties. Most trajectory
forecasting models are designed for a specific task in a well-defined environment and
confidently take upstream input. Nevertheless, when integrating trajectory forecasts into a
system pipeline, the question of probability and certainty of particular predictions becomes
relevant. There, errors in localization and measurement propagated by upstream tasks
can be arguably more significant than the incremental improvement in the performance
of even bigger state-of-the-art methods.

A similar argument holds for downstream tasks. Most trajectory prediction methods
do not propagate the estimated uncertainty but instead take the prediction’s mean or
maximum. Consequently, the perceptual uncertainties are not propagated through the
process, and predictions are overconfident. Missing confidence intervals are dangerous
because risk may be over or underrated.

To this end, we argue that the task of trajectory prediction should not be considered
isolated, and the uncertainty of an upstream task must be included. In the past, researchers
have developed their methods on public datasets that already provided extracted bird’s-
eye view trajectories. However, this is an artificial and not realistic setup. So far, we only
find [41] recently addressing this issue and we surely see a need for further investigation
into the integration of the uncertainty of the predictions.

Moving towards greater application of trajectory prediction, we also emphasize the need
for new evaluation metrics and training objects. As discussed in our publication [19],
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the current best-of-N 𝐿2 metrics encourage highly diverse trajectory predictions, which
show strong performance on these measures but also ignore out-of-distribution samples.
However, these samples can become very harmful as the system does not know which
prediction is finally correct, and resulting action to unrealistic predictions can cause
dangerous situations. This thesis proposes a precision-recall metric as the first step
towards a more comprehensive and accurate evaluation of the performance of prediction
algorithms. Nevertheless, future research can focus on improving and developing novel
formulations of this metric.

2 Tracking-by-Forecasting

Artificial neural networks have made enormous progress in multi-object tracking in
recent years. It is possible to track objects during short-term occlusions based on
visual appearance features and simple motion cues. For long-term occlusions, however,
sophisticated trajectory prediction models in bird’s-eye view space are necessary.

In this dissertation, we present in Section 3.2 our method Quo Vadis and establish
the concept of tracking-by-forecasting for which we combine state-of-the-art trajectory
prediction with tracking.

While our work encourages a proof-of-concept on how to integrate real-world trajectory
prediction into different tracking methods effectively, future work has to improve trans-
forming tracklets into a bird’s-eye view, dealing with track uncertainties, and combining
inactive tracks with forecasts. To this end, a line of work is trying to learn an automatic
transformation between an image and its bird-eye view representation.

Tracking and forecasting should not be handled separately and instead be trained in
an end-to-end and combined fashion. Especially track association matching requires
more contextual methods beyond simple Hungarian matching and hardcoded feature
thresholding.

The current integration of forecasting only uses the extracted positions of objects but
does not make use of the entire semantic information of the scene. Identified structures
like buildings, entrances, or bus stops can be regions where pedestrians enter or leave the
scene, even in the middle of the image. Scene information can also help resolve occlusions,
as these often happen during interactions with static objects like vegetation or buildings.
Intuitively, humans semantically understand a scene layout and anticipate where the
object most likely re-appears. However, tracking and forecasting methods so far lack this
ability. Semantic understanding can play a significant role to improve tracking scenarios
when dynamic observations are missing.

3 Alternative Data Sources for Training and Testing Models

To solve more complex tasks we increase the model capacity and size. The bigger we
build a model, the more important the availability of large data sources for training this
model becomes. The model’s training requires a large amount of annotated data when
trained in a supervised fashion. While novel research primarily studies more performant
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models, the urge for new datasets remains. Besides the quantity of data, the quality
and diversity of scenarios are essential to guarantee the model’s generalization to any
real-world scenario, as most datasets are still not very diverse.

Unfortunately, manual annotation of video sequences is very costly, so researchers must
explore alternatives. On the other hand, a vast amount of raw video data is available
that could be used for unsupervised methods. One can imagine a symbiosis between
trajectory prediction and multi-object tracking. Movement observation (tracking) and
trajectory prediction are fundamentally intertwined tasks. If we track an object across
a video sequence, we simultaneously obtain a trajectory of that object. The trajectory
can then be used for training the forecasting method. In reverse, we can better track
objects if we can predict their future positions. As a starting point for the unsupervised
approach, we can use pre-trained optical flow and detection models to extract the initial
positions of the object. Until now, [54] is the only work addressing this opportunity for
pedestrian trajectory prediction.

The lack of expensively annotated real-world data can also be substituted with synthetically
created data rendered by game engines such as GTA, Unity, or UnrealEngine. The
impressive development in computer graphics allows us to generate visually almost
indistinguishable sequences for the human eye compared to real recordings. These
sequences are especially effective for tracking methods that primarily work on appearance
features. However, simulating realistic motion, trajectories, and interactions of humans is
more challenging and still an ongoing problem. Future research needs to focus on how to
generate valuable trajectory data helping training of trajectory forecasting methods and
tracking-by-forecasting models.

4 “Epur si muove." – “And yet it does move."

This dissertation presents research in pedestrian trajectory prediction and multi-object
tracking to develop and combine new prediction and tracking methods to better understand
human motion for real-world applications.

Given the solo effort and progress in trajectory prediction and tracking, future research
must address problems jointly to achieve robust and applicable solutions. In that fashion,
we need to aim for the development of end-to-end deep learning models incorporating
tracking and prediction.

In the last few years, we have worked on the problems and solutions presented in this
dissertation. We spent many hours understanding, studying, and thinking about the
current challenges of these tasks. Despite the huge number of open problems, we hope
that we have advanced the field, at least a very small step. Computer systems are on a
promising path towards understanding and anticipating human motion, and academic
research is increasingly being applied to real-world applications. As there are many open
questions, we are excited to see what future research can achieve.
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Technical University Munich
{patrick.dendorfer,aljosa.osep,leal.taixe}@tum.de

Abstract. In this paper, we present Goal-GAN, an interpretable and
end-to-end trainable model for human trajectory prediction. Inspired by
human navigation, we model the task of trajectory prediction as an intu-
itive two-stage process: (i) goal estimation, which predicts the most likely
target positions of the agent, followed by a (ii) routing module which es-
timates a set of plausible trajectories that route towards the estimated
goal. We leverage information about the past trajectory and visual con-
text of the scene to estimate a multi-modal probability distribution over
the possible goal positions, which is used to sample a potential goal dur-
ing the inference. The routing is governed by a recurrent neural network
that reacts to physical constraints in the nearby surroundings and gen-
erates feasible paths that route towards the sampled goal. Our extensive
experimental evaluation shows that our method establishes a new state-
of-the-art on several benchmarks while being able to generate a realistic
and diverse set of trajectories that conform to physical constraints.

1 Introduction

Modeling human motion is indispensable for autonomous systems that oper-
ate in public spaces, such as self-driving cars or social robots. Safe navigation
through crowded scenes and collision prevention requires awareness not only of
the present position but also of the future path of all moving objects. Human tra-
jectory prediction is particularly challenging since pedestrian trajectories depend
primarily on their intention – and the destination of a pedestrian is inherently
unknown to the external observer. Consider the example of a pedestrian reaching
a crossroad such as the one depicted in Figure 1. Based solely on past observa-
tions, we cannot infer the future path of the pedestrian: turning right, left, or
going straight, are all equally likely outcomes.

For this reason, a powerful prediction model should be able to capture the
multimodality of this task, i.e., forecast trajectories that cover the distinctive
modes present in the scene. Furthermore, it should produce a diverse set of the
paths within each mode, reflecting inherent uncertainty in walking style, velocity,
and different strategies for obstacle avoidance.

To capture the stochastic nature of trajectory prediction, state-of-the-art
methods leverage generative the power of variational autoencoders (VAEs) [1,2,3]
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(a) Vanilla GAN (b) Goal Probabilities (c) Goal-GAN

Fig. 1: Visual comparison between predictions of our proposed Goal-GAN and
a vanilla GAN. In contrast to the baseline, our proposed model covers all three
modes and predicts diverse and feasible trajectories by explicitly estimating re-
alistic goals.

and/or generative adversarial networks (GANs) [4,5,6] to predict a set of trajec-
tories for every observation.

While generative methods are widely used to generate diverse outputs, they
are unable to explicitly capture the inherent multimodality of pedestrian tra-
jectories. Often, these methods generate highly diverse trajectories but tend to
neglect the physical structure of the environment. The resulting trajectories are
not necessarily feasible, and often do not fully cover multiple possible direc-
tions that a pedestrian can take (Figure 1a). A more natural way of capturing
all feasible directions is to first determine an intermediate goal sampled from a
distribution of plausible positions, as shown in Figure 1b. In the second step,
the model generates the trajectories reaching the sampled positions (Figure 1c).
While social interactions among agents [7,4,5,6] and local scene interaction have
been extensively studied, there are almost no methods tackling the challenge of
explicitly learning the inherent multimodal distribution of pedestrian trajecto-
ries.

In this paper, we aim to bridge this gap and explicitly focus on the under-
explored problem of generating diverse multimodal trajectories that conform to
the physical constraints. Influenced by recent studies on human navigation [8] we
propose an end-to-end trainable method that separates the task of trajectory pre-
diction into two stages. First, we estimate a posterior over possible goals, taking
into account the dynamics of the pedestrian and the visual scene context, fol-
lowed by the prediction of trajectories that route towards these estimated goals.
Therefore, trajectories generated by our model take both local scene informa-
tion and past motion of the agent explicitly into account. While the estimated
distribution of possible goal positions reflects the multimodality in the scene,
the routing module reacts to local obstacles and generates diverse and feasible
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paths. We ensure diversity and realism of the output trajectories by training our
network in a generative adversarial setup.

In summary, our main contribution is three-fold: (i) we propose Goal-GAN,
a two-stage end-to-end trainable trajectory prediction method inspired by human
navigation, which separates the prediction task into goal position estimation and
routing. (ii) To this end, we design a novel architecture that explicitly estimates
an interpretable probability distribution of future goal positions and allows us to
sample from it. Using the Gumbel Softmax trick [9] enables us to train the net-
work through the stochastic process. (iii) We establish a new state-of-the-art on
several public benchmarks and qualitatively demonstrate that our method pre-
dicts realistic end-goal positions together with plausible trajectories that route
towards them. The code for Goal-GAN1 is publicly available.

2 Related Work

Several methods focus on modelling human-human [4,7], human-space interac-
tions [10,2,11], or both [5]. Recent methods leverage generative models to learn
a one-to-many mapping, that is used to sample multimodal future trajectories.
Trajectory Prediction. Helbing and Molar introduced the Social Force Model
(SFM) [12], a physics-based model, capable of taking agent-agent and agent-
space interactions into account. This approach was successfully applied in the
domain of multi-object tracking [13,14,15,16]. Since then, data-driven models
[17,18,7,19,4] have vastly outperformed physics-based models. Encoder-decoder
based methods [2,7] leverage recurrent neural networks (RNNs) [20] to model
the temporal evolution of the trajectories with long-short term memory (LSTM)
units [21]. These deterministic models cannot capture the stochastic nature of
the task, as they were trained to minimize the L2 distance between the prediction
and the ground truth trajectories. This often results in implausible, average-path
trajectories.

Recent methods [22,11] focus on human-space interactions using bird-view
images [5] and occupancy grids [10,23] to predict trajectories that respect the
structural constraints of the scene. Our method similarly leverages bird-eye
views. However, we use visual information to explicitly estimate feasible and
interpretable goal positions, that can, in turn, be used to explicitly sample end-
goals that ease the task of future trajectory estimation.
Generative Models for Trajectory Prediction. Recent works [4,5,6] lever-
age generative models to sample diverse trajectories rather than just predict-
ing a single deterministic output. The majority of methods either use varia-
tional autoencoders (VAEs) [24,3,2,25,26,27,11] or generative adversarial net-
works (GANs) [28,4,5,6,29]. Social GAN (S-GAN) [4] uses a discriminator to
learn the distribution of socially plausible paths. Sadeghian et al. [5] extend the
model to human-environment interactions by introducing a soft-attention [30]
mechanism. GANs have shown promising results for the task of trajectory pre-
diction, but tend to suffer from mode collapse. To encourage the generator to

1 https://github.com/dendorferpatrick/GoalGAN
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produce more diverse predictions, [1] uses a best-of-many sampling approach dur-
ing training while [6] enforces the network to make use of the latent noise vector
in combination with BicycleGAN [31] based training. While producing trajecto-
ries with high variance, many trajectories are not realistic, and a clear division
between different feasible destinations (reflecting inherent multi-modality of the
inherent task) is not clear. To account for that, we take inspiration from prior
work conditioning the trajectory prediction on specific target destinations.

Goal-conditioned forecasting. In contrast to the aforementioned generative
models that directly learn a one-to-many mapping, several methods propose two-
stage prediction approaches. Similarly to ours, these methods predict first the
final (goal) position, followed by trajectory generation that is conditioned on this
position. Early work of [32] models the distribution over possible destinations
using a particle filter [33] while other approaches [34] propose a Bayesian frame-
work that estimates both, the destination point together with the trajectory.
However, these purely probabilistic approaches are highly unstable during train-
ing. The Conditional Generative Neural System (CGNS) [35] uses variational
divergence minimization with soft-attention [30] and [36] presents a conditional
flow VAE that uses a conditional flow-based prior to effectively structured se-
quence prediction. These models condition their trajectory generator on initially
estimated latent codes but do not explicitly predict a goal distribution nor sam-
ple an explicit goal position. Most recently, [37] proposes P2TIRL that uses a
maximum entropy inverse reinforcement learning policy to infer goal and trajec-
tory plan over a discrete grid. P2TRL assigns rewards to future goals that are
learned by the training policy which is slow and computationally expensive. In
contrast, we directly learn the multimodal distribution over possible goals using
a binary cross-entropy loss between the (discrete) probability distribution esti-
mate and the ground truth goal position. This makes our work the first method
(to the best of our knowledge) that directly predicts an explicit (and discrete)
probability distribution for multimodal goals and is efficiently end-to-end train-
able.

3 Problem Definition

We tackle the task of predicting the future positions of pedestrians, parametrized
via x and y coordinates in the 2D ground plane. As input, we are given their
past trajectory and visual information of the scene, captured from a bird-view.

We observe the trajectories Xi = {(xt
i, y

t
i) ∈ R2|t = 1, . . . , tobs } of N

currently visible pedestrians and a top-down image I of the scene, observed at
the timestep tobs. Our goal is to predict the future positions Yi = {(xt

i, y
t
i) ∈

R2|t = tobs + 1, . . . , tpred}.

In the dataset, we are only given one future path for tobs – in particular, the
one that was observed in practice. We note that multiple distinctive trajectories
could be realist for this observed input trajectory. Our goal is, given the input
past trajectory Xi, to generate k ∈ {1, . . . , K} multiple future samples Ŷ k

i for
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all pedestrians i ∈ {1, . . . , N}. These should cover all feasible modes and be
compliant with the physical constraints of the scene.

Fig. 2: Overview of model architecture: Our model consists of three com-
ponents: 1) Motion Encoder, 2) Goal Module, and the 3) Routing Module. The
Goal Module combines the dynamic features of the Motion Encoder and the
scene information to predict a final goal g. The Routing Module generates the
future trajectory while taking into account the dynamic features and the esti-
mated goal. During inference, we generate multiple trajectories i by sampling
goals from the estimated goal probability map.

4 Goal-GAN

When pedestrians walk through public spaces, they aim to reach a predetermined
goal [8], which depends on their intentions and the scene context. Once the goal
is set, humans route to their final destination while reacting to obstacles or
other pedestrians along their way. This observation motivates us to propose a
novel two-stage architecture for trajectory prediction that first estimates the
end-goal position and then generates a trajectory towards the estimated goal.
Our proposed Goal-GAN consists of three key components, as shown in Figure 2.

– Motion Encoder (ME): extracts the pedestrians’ dynamic features recur-
sively with a long short-term memory (LSTM) unit capturing the speed and
direction of motion of the past trajectory.

– Goal Module (GM): combines visual scene information and dynamic pedes-
trian features to predict the goal position for a given pedestrian. This module
estimates the probability distribution over possible goal (target) positions,
which is in turn used to sample goal positions.

– Routing Module (RM): generates the trajectory to the goal position sampled
from the GM. While the goal position of the prediction is determined by the
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GM, the RM generates feasible paths to the predetermined goal and reacts
to obstacles along the way by using visual attention.

Figure 2 shows an overview of our model. In the following sections, we mo-
tivate and describe the different components in detail.

4.1 Motion Encoder (ME)

The past trajectory of a pedestrian is encoded into the Motion Encoder (ME),
which serves as a dynamic feature extractor to capture the speed and direction of
the pedestrian, similarly to [7,4]. Each trajectory’s relative displacement vectors
(∆xt

i, ∆yt
i) are embedded into a higher dimensional vector et with a multi-layer

perceptron (MLP). The output is then fed into an LSTM, which is used to
encode the trajectories. The hidden state of the LSTM, hME , is used by the other
modules to predict the goal and to decode the trajectory for each pedestrian.

4.2 Goal Module (GM)

Fig. 3: Goal Module (GM) and Soft Attention (SA). The Goal Module
samples a goal coordinate g while the soft attention assigns attention scores to
spatial positions.

In our work, we propose a novel Goal Module (GM). The Goal Module com-
bines visual and dynamic features of the pedestrian to estimate a distribution
of possible end goals. As can be seen in Figure 1, the scene dictates the distinc-
tive modes for possible trajectories. Here, the pedestrian can go left, right, or
straight. The Goal Module is responsible for capturing all the possible modes
and predicting a final goal position, i.e., choosing one of the three options.
Architecture. In order to estimate the goal distribution, the network assesses
the visual scene and the dynamics of the pedestrian. The visual scene is repre-
sented as an RGB image (or a semantic map) of size H × W , captured from a
bird-eye view. This image is input to the goal module.
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The scene image is passed through an encoder-decoder CNN network with
skip connections similar to [38]. Before the decoder, the scene image features
in the bottleneck layer are concatenated with the motion features hME from
the Motion Encoder. Intuitively, the CNN decoder should analyze both the past
trajectory and the scene to estimate the future target positions – goals. The
module outputs a probability distribution that reflects the multimodal directions
for a given input trajectory and scene.
Training through sampling. The CNN decoder outputs a score map α =
(α1, α2, . . . , αn) for which each αi reflects the probability of a particular cell
being the end-goal location of the agent.

The discrete probability distribution α is used to sample an end-goal by using
the Gumbel-Softmax-Trick [9]. This allows us to sample a discrete distribution
over possible goal locations while being able to backpropagate the loss through
the stochastic process. The resulting two-dimensional goal position g is sampled
randomly from the 2D grid representing the scene,
Goal Sampling vs. Soft Attention. A major novelty of our work is the
Goal Module that replaces soft attention [30] to process the scene contextual
information [5,11]. Both approaches are illustrated in Figure 3. A soft attention
module assigns attention scores to spatially relevant positions based on the visual
CNN features. In [5], the attention values are combined with random noise and
fed to the trajectory decoder to generate scene-aware multimodal trajectories.
However, this often leads to unsatisfying results when the network simply ignores
the spatial attention scores or has difficulties combining the attention values with
the noise to capture all modes in the scene.

We argue that the attention module is useful when predicting the route to-
wards a goal (as we show in Section 4.3), as it encourages the feasibility of
the predicted trajectories. However, the model that solely relies on soft visual
attention mechanism tends to generate trajectories that do not capture the mul-
timodal nature of the task, as illustrated in Figure 1. Furthermore, in Section 5,
we experimentally confirm that stochasticity of the task is reflected better when
sampling from the learned probability distribution, produced by our Goal Mod-
ule, compared to merely relying on noise injection.

We can directly train the module for the goal position estimation using the
Gumbel Softmax trick [9], in combination with the standard cross-entropy loss,
which is directly applied to the estimated goal distribution based on the observed
(final) position of the ground truth trajectories. We emphasize that we do not
use nor need any other data than what is provided in the standard training set.

During the inference, we simply sample the goal from the learned probability
distribution and pass it to the decoder. This significantly eases the task for the
decoder, as the Goal Module already assesses the visual surroundings and only
passes a low dimensional input into the routing module.

4.3 Routing Module (RM)

The Routing Module (see Figure 2) is the third component of our method. It
combines the dynamic features and the global goal estimate to generate the final
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trajectory prediction. The RM consists of an LSTM network, a visual soft atten-
tion network (ATT), and an additional MLP layer that combines the attention
map with the output of the LSTM iteratively at each timestep.

First, we forward the goal estimate embedding eg and the object dynamics
embedding hME (given by the motion encoder, ME) to an MLP to initialise the
hidden state h0

RM of the RM.

Then, we recursively estimate predictions for the future time steps. To this
end, the LSTM in the RM obtains three inputs: the previous step prediction
Ŷ t−1, the remaining distance to the estimated goal dt−1 = g − Ŷ t−1 and the
current scalar timestep value t.

To assess the traversability of the local surroundings, we apply soft atten-
tion [30] on the image patch centered around the current position of the pedes-
trian. As shown in the Figure 3, we combine the output of the LSTM with the
attention map F t to predict the next step Ŷ t. The visual attention mechanism
allows the RM to react to obstacles or other nearby structures. Finally, we use
both the dynamic and visual features to predict the final prediction Ŷ t.

4.4 Generative Adversarial Training

In our work, we use a Generative Adversarial Network (GAN) to train our trajec-
tory generator to output realistic and physically feasible trajectories. The GAN
consists of a Generator and Discriminator network competing in a two-player
min-max game. While the generator aims at producing feasible trajectories, the
discriminator learns to differentiate between real and fake samples, i.e., feasible
and unfeasible trajectories. Adversarial training is necessary because, in contrast
to prediction accuracy, it is not possible to formulate a differential loss in a closed
mathematical form that captures the concept of feasibility and realism of the
generated trajectories.

The discriminator network consists of an LSTM network that encodes the
observed trajectory X. This encoding is used to initialize the second LSTM that
processes the predicted trajectory Y together with visual features (obtained from
the CNN network, that encodes the image patch centered around the current
position) at each time step. Finally, the last hidden state of the LSTMpred is
used for the final output of the discriminator.

4.5 Losses

For training our Goal-GAN we use multiple losses addressing the different mod-
ules of our model. To encourage the generator to predict trajectories, that are
closely resembling the ground truth trajectories, we use a best-of-many [1] dis-
tance loss LL2 = mink‖Y − Ŷ (k)‖2 between our predictions Ŷ and the ground
truth Y . As an adversarial loss, we employ the lsgan [39] loss:

LAdv =
1

2
E [(D (X, Y ) − 1)

2
] +

1

2
E [D(X, Ŷ )2], (1)
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due to the fact, the original formulation [28] using a classifier with sigmoid cross-
entropy function potentially leads to the vanishing gradient problem.

To encourage the network to take into account the estimated goal positions
for the prediction, we propose a goal achievement losses LG that measures the
L2 distance between the goal prediction g and the actual output Ŷ tpred ,

LG = ‖g − Ŷ tpred‖2. (2)

In addition, we use a cross-entropy loss

LGCE = − log (pi) , (3)

where pi is the probability that is predicted from the Goal Module for the grid
cell i corresponding to the final ground-truth position. The overall loss is the
combination of the partial losses weighted by λ:

L = λAdv LAdv + LL2 + λG LG + λGCE LGCE . (4)

5 Experimental Evaluation

In this section, we evaluate our proposed Goal-GAN on three standard datasets
used to assess the performance of pedestrian trajectory prediction models:
ETH [40], UCY [41] and Stanford Drone Dataset (SDD) [19]. To assess how well
our prediction model can cover different possible modes (splitting future paths),
we introduce a new, synthetically generated scene.

We compare our method with several state-of-the-art methods for pedes-
trian trajectory prediction and we qualitatively demonstrate that our method
produces multi-modal, diverse, feasible, and interpretable results.
Evaluation measures. We follow the standard evaluation protocol and report
the prediction accuracy using Average Displacement Error (ADE) and Final
Displacement Error (FDE). Both measures are computed using the L2 distance
between the prediction and ground truth trajectories. The generative models
are tested on these metrics with a N − K variety loss [1,4,5]. As in the previous
work [19,7], we observe 8 time steps (3.2 seconds) and predict the future 12 time
steps (4.8 seconds) simultaneously for all pedestrians in the scene.
Visual input and coordinates. As in [5], we use a single static image to
predict trajectories in a given scene. We transform all images into a top-down
view using the homography transformation provided by the respective datasets.
This allows us to perform all predictions in real-world coordinates.

5.1 Benchmark Results

In this section, we compare and discuss our method’s performance against state-
of-the-art on ETH [40], UCY [41] and SDD [19] datasets.
Datasets. ETH [40] and UCY datasets [41] contain 5 sequences (ETH:2, UCY:
3), recorded in 4 different scenarios. All pedestrian trajectories are converted



10 P. Dendorfer et al.

Table 1: Quantitative results for ETH [40] and UCY [41] of Goal-GAN and
baseline models predicting 12 future timesteps. We report ADE and FDE in
meters.

Baseline Ours

Dataset
S-LSTM

[7]
S-GAN

[4]
S-GAN-P

[4]
SoPhie

[5]
S-BiGAT

[6]
CGNS
[35]

Goal
GAN

K 1 20 20 20 20 20 20

ETH 1.09/2.35 0.81/1.52 0.87/1.62 0.70/1.43 0.69/1.29 0.62/1.40 0.59/1.18
HOTEL 0.79/1.76 0.72/1.61 0.67/1.37 0.76/1.67 0.49/1.01 0.70/0.93 0.19/0.35
UNIV 0.67/1.40 0.60/1.26 0.76/1.52 0.54/1.24 0.55/1.32 0.48/1.22 0.60/1.19
ZARA1 0.47/1.00 0.34/0.69 0.35/0.68 0.30/0.63 0.30/0.62 0.32/0.59 0.43/0.87
ZARA2 0.56/1.17 0.42/0.84 0.42/0.84 0.38/0.78 0.36/0.75 0.35/0.71 0.32/0.65

AVG 0.72/1.54 0.58/1.18 0.61/1.21 0.54/1.15 0.48/1.00 0.49/0.97 0.43/0.85

into real-world coordinates and interpolated to obtain positions every 0.4 sec-
onds. For training and testing, we follow the standard leave-one-out approach,
where we train on 4 datasets and test on the remaining one. The Stanford Drone
Dataset (SDD) [19] consists of 20 unique video sequences captured at the Stan-
ford University campus. The scenes have various landmarks such as roundabouts,
crossroads, streets, and sidewalks, which influence the paths of pedestrians. In
our experiments, we follow the train-test-split of [42] and focus on pedestrians.
Baselines. We compare our model to several published methods. S-LSTM [7]
uses a LSTM encoder-decoder network with social pooling. S-GAN [4] leverages a
GAN framework and S-GAN-P [4] uses max-pooling to model social interactions.
SoPhie [5] extends the S-GAN model with a visual and social attention mod-
ule, and Social-BiGAT [6] uses a BicycleGAN [43] based training. DESIRE [2]
is an inverse optimal control based model, that utilizes generative modeling.
CARNet [11] is a physically attentive model. The Conditional Generative Neu-
ral System (CGNS) [35] uses conditional latent space learning with variational
divergence minimization to learn feasible regions to produce trajectories. CF-
VAE [36] leverages a conditional normalizing flow-based VAE and P2TIRL [37]
uses a grid-based policy learned with maximum entropy inverse reinforcement
learning policy. As none of the aforementioned provide publicly available imple-
mentation, we outline the results reported in the respective publications.

ETH and UCY. We observe a clear trend – the generative models improve
the performance of the deterministic approaches, as they are capable of sampling
a diverse set of trajectories. Compared to other generative models, Goal-GAN
achieves state-of-the-art performance with an overall decrease of the error of
nearly 15% compared to S-BiGAT and CGNS. While SoPhie and S-BiGAT also
use visual input, these models are unable to effectively leverage this information
to discover the dominant modes for the trajectory prediction task, thus yielding
a higher prediction error. It has to be pointed out that Goal-GAN decreases the
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average FDE by 0.12m compared to the current state-of-the-art method. We ex-
plain the drastic increase in performance with our new Goal Module as we can
cover the distribution of all plausible modes and are therefore able to generate
trajectories lying close to the ground truth.
Stanford Drone Dataset. We compare our model against other baseline
methods on the SDD and report ADE and FDE in pixel space. As it can be seen
in Table 2, Goal-GAN achieves state-of-the-art results on both metrics, ADE and
FDE. Comparing Goal-GAN against the best non-goal-conditioned method, So-
Phie, Goal-GAN decreases the error by 25%. This result shows clearly the merit
of having a two-stage process of predicting a goal estimate over standard gener-
ator methods using only soft attention modules but does not explicitly condition
their model on a future goal. Further, it can be understood that multimodal tra-
jectory predictions play a major role in the scenes of the SDD. Also, Goal-GAN
exceeds all other goal-conditioned methods and is on par with P2TIRL (which
was not yet published during the preparation of this work).

Table 2: Quantitative results for the Stanford Drone Dataset (SDD) [19] of Goal-
GAN and baseline models predicting 12 future timesteps. We report ADE and
FDE in pixels.

Baseline Ours

S-LSTM
[7]

S-GAN
[4]

CAR-NET
[11]

DESIRE
[2]

SoPhie
[5]

CGNS
[35]

CF-VAE
[36]

P2TIRL
[37]

Goal
GAN

K 1 20 20 20 20 20 20 20 20

ADE 57.0 27.3 25.7 19.3 16.3 15.6 12.6 12.6 12.2
FDE 31.2 41.4 51.8 34.1 29.4 28.2 22.3 22.1 22.1

5.2 Assessing Multimodality of Predictions on Synthetic Dataset

In this section, we conduct an additional experiment using synthetically gener-
ated scenarios to study the multimodality of the predictions. We compare the
performance of Goal-GAN against two vanilla GAN baselines, with and without
visual soft attention [30]. The synthetic dataset allows us to explicitly control
multimodality and feasibility of the (generated) ground truth trajectories, as the
other datasets do not provide that information.
Dataset. We generate trajectories using the Social Force Model [12] in the hyang
4 scene of the SDD dataset [19]. To ensure the feasibility of the generated tra-
jectories, we use a two-class (manually labeled) semantic map, that distinguishes
between feasible (walking paths) from unfeasible (grass) areas. We simulate 250
trajectories approaching and passing the two crossroads in the scene.
Additional Evaluation Measures. In addition to ADE and FDE, we fol-
low [26,44] to measure the multimodality of the distribution of generated trajec-
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Table 3: Quantitative results on our synthetic dataset. We show results obtained
by a GAN baseline [4] and different versions of our Goal-GAN model, predict-
ing 12 future time steps. We report ADE, FDE, F (feasibility) and MC (mode
coverage) for k = 10 sampled trajectories for each scene. We also report the
negative log-likelihood (NLL) of the ground truth trajectory computed with the
KDE (Kernel Density Estimate), following [26].

Model Loss ADE ↓ FDE ↓ F ↑ MC ↑ NLL ↓
GAN w/o visual LL2 + LAdv 0.70 1.49 59.94 78.51 4.54
GAN w visual LL2 + LAdv 0.68 1.27 66.51 85.12 4.47

Goal-GAN LGCE + LG 2.09 1.27 76.78 88.22 3.76
Goal-GAN LL2 + LGCE + LG 0.62 1.20 85.05 89.27 3.90
Goal-GAN w/o GST LL2 + LAdv + LGCE + LG 0.84 1.45 76.84 86.27 4.18

Goal-GAN (full model) LL2 + LAdv + LGCE + LG 0.55 1.01 89.47 92.48 3.88

tories. Here we evaluate the negative log-likelihood (NLL) of the ground truth
trajectories using a Kernel Density Estimate (KDE) from the sampled trajec-
tories at each prediction timestep. In addition, we define a new mode coverage
(MC) metric. For each scene, MC assesses if at least one of the k generated tra-
jectories ŷ reaches the final position of the ground truth final up to a distance
of 2m:

MC =
1

n

n∑

i

S (ŷi) with S (ŷ) =

{
1 if ∃k, ‖ŷk − y‖2 < 2m

0 else.
(5)

To evaluate the feasibility of the trajectories, we report the ratio of trajectories
lying inside the feasible area F , i.e., predictions staying on the path:

F =
1

n

n∑

i,k

f
(
ŷk

i

)
with f (ŷ) =

{
1 if ŷ ∈ F
0 else.

(6)

Results. As can be seen in Table 3, the vanilla GAN baseline [4] that is not given
access to the visual information, yields ADE/FDE of 0.70/1.49, respectively.
Adding visual information yields a performance boost (0.68/1.27), however, it
is still not able to generate multimodal and feasible paths. When we add our
proposed goal module (Goal-GAN) and train it using our full loss, we observe
a large boost of performance w.r.t. multimodality (7.36 increase in terms of
MC) and feasibility (10.26 increase in terms of F). To ablate our model, we
train our network using different loss components, incentivizing the network to
train different modules of the network. A variant of our model, trained only
with goal achievement loss LG and adversarial loss LAdv can already learn to
produce multimodal trajectories (MC of 88.22), however, yields a high ADE
error of 2.09. The addition of L2 loss LL2 significantly increases the accuracy
of the predictions (1.47 reduction in ADE), and at the same time, increases
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the quality and feasibility (8.26 increase in F), of the predictions. This confirms
that our proposed goal module, which explicitly models the distribution over
the future goals, is vital for accurate and realistic predictions. Furthermore, we
note that the performance drastically drops if we train the full model without
the Gumbel-Softmax Trick (GST) (see Section 4.2) which seems to be crucial
for stable training, enabling the loss back-propagation through the stochastic
sampling process in the Goal Module.

(a) Goal-GAN

(b) Vanilla GAN

Fig. 4: Visualisation of multiple generated trajectories (orange) for past trajec-
tory (black) on the synthetic dataset. We compare the output of our Goal-GAN
against the performance of the vanilla GAN using visual attention for tpred = 12.
For Goal-GAN, the yellow heatmap corresponds to the goal probability map.

5.3 Qualitative Evaluation

In this section, we visually inspect trajectories, generated by our model, and
assess the quality of the predictions.
Synthetic Dataset: In Figure 4 we visualize trajectories of the synthetic dataset
for our proposed Goal-GAN (top) and the vanilla GAN baseline [4] (bottom).
Next to the predicted trajectories (orange circles), we display the probability
distribution (yellow heatmap) of goal positions, estimated by the Goal Module.
As shown in Figure 4, Goal-GAN predicts a diverse set of trajectories routing
to specific estimated modes. Here, we observe that Goal-GAN outputs an inter-
pretable probability distribution that allows us to understand where the model
“sees“ the dominant modes in the scene. Comparing the quality of the predic-
tions, we can demonstrate that Goal-GAN produces distinct modes while the
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GAN baseline tends to instead span its trajectory over a wider range leading to
unfeasible paths.

(a) Hotel (b) Zara 2 (c) Hyang 4 (d) Coupa 1

Fig. 5: Visualisation of generated trajectories (orange circles) and estimated
global goal probabilities (yellow heatmap). The figures show that the model
interacts with the visual context of the scene and ensures feasibility predictions.

Real Data: Furthermore, we present qualitative results of the datasets ETH/UCY
and SDD in Figure 5. The two figures show predictions on the Hotel (Figure 5a)
and Zara 2 (Figure 5b) sequences. Our model assigns high probability to a large
area in the scene as in Hotel sequence, as several positions could be plausible
goals. The broad distribution ensures that we generate diverse trajectories when
there are no physical obstacles. Note that the generated trajectories do not only
vary in direction but also in terms of speed. In Zara 2, the model recognizes
the feasible area on the sidewalk and predicts no probability mass on the street
or in the areas covered by the parked cars. In the scene Hyang 4 SDD dataset,
we observe that the model successfully identifies that the pedestrian is walking
on the path, assigning a very low goal probability to the areas, overgrown by
the tree. This scenario is also presented successfully with synthetic data which
shows that we can compare the results of the synthetic dataset to the behavior
of real data. The trajectories shown for Coupa 1 demonstrate that the model
generates solely paths onto concrete but avoids predictions leading towards the
area of the tree.

6 Conclusion

In this work, we present Goal-GAN, a novel two-stage network for the task
of pedestrian trajectory prediction. With the increasing interest in the inter-
pretability of data-driven models, Goal-GAN allows us to comprehend the dif-
ferent stages iduring the prediction process. This is an alternative to the current
generative models, which use a latent noise vector to encourage multimodality
and diversity of the trajectory predictions. Our model achieves state-of-the-art
results on the ETH, UCY, and SDD datasets while being able to generate mul-
timodal, diverse, and feasible trajectories, as we experimentally demonstrate.
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Abstract

Pedestrian trajectory prediction is challenging due to its
uncertain and multimodal nature. While generative adver-
sarial networks can learn a distribution over future trajec-
tories, they tend to predict out-of-distribution samples when
the distribution of future trajectories is a mixture of multi-
ple, possibly disconnected modes. To address this issue, we
propose a multi-generator model for pedestrian trajectory
prediction. Each generator specializes in learning a distri-
bution over trajectories routing towards one of the primary
modes in the scene, while a second network learns a cat-
egorical distribution over these generators, conditioned on
the dynamics and scene input. This architecture allows us
to effectively sample from specialized generators and to sig-
nificantly reduce the out-of-distribution samples compared
to single generator methods.

1. Introduction
To safely navigate through crowded scenes, intelligent

agents such as autonomous vehicles or social robots need to
anticipate human motion. Predicting human trajectories is
particularly difficult because future actions are multimodal:
given a past trajectory, there exist several plausible future
paths, depending on the scene layout and social interactions
among pedestrians. Recent methods leverage conditional
generative adversarial networks (GANs) [14, 16, 34, 22] to
learn a distribution over trajectories. These methods present
significant improvements over deterministic models [1, 18].
However, they suffer from limitations observed in the con-
text of GANs [38, 20] that manifest in mode collapse or pre-
diction of undesired out-of-distribution (OOD) samples, ef-
fectively yielding non-realistic trajectories. Mode collapse
can be tackled with best-of-many sampling [6] or regular-
izations of the latent space [22, 2] but the problem of OOD
samples remains unsolved. These OOD samples are par-
ticularly problematic in real-world applications where high

*Equal contribution.

precision of predictions matters. Imagine an autonomous
vehicle driving through crowded environments and interact-
ing with pedestrians. To ensure the safety of pedestrians, the
vehicle needs to anticipate their future motion and react ac-
cordingly, e.g., brake or turn. As a consequence, unrealistic
predictions may lead to sudden reactions that pose danger
to other traffic participants.

To understand why OOD samples are produced by state-
of-the-art GAN methods, we need to understand the un-
derlying geometry of the problem. Consider a pedestrian
reaching the junction in Figure 1a. There are three plausible
main directions that the pedestrian can take, namely, going
straight, left, or right. Furthermore, there exist several paths
that route towards these directions. While all recent works
agree that such trajectory distribution is inherently multi-
modal, we further observe that the distribution consists of
several disconnected modes. Each mode is shown in Fig-
ure 1c in different colors, and as we can observe, the three
modes are disconnected in space. Existing GAN models do
not consider this property, and hence generate undesirable
OOD samples in between modes, visualized as red trajec-
tories in Figure 1b. This is an inherent problem of single-
generator GANs, as they cannot learn a mapping from a
continuous latent space to a disconnected, multimodal tar-
get distribution [38].

In this paper, we address this issue and explicitly focus
on learning such disconnected multimodal distributions for
pedestrian trajectory prediction. To this end, we propose a
novel multi-generator GAN that treats the multimodal target
distribution as a mixture of multiple continuous trajectory
distributions by optimizing a continuous generator for each
mode. Unlike previous multi-generator models [19, 7], our
model needs to adapt to the selection of generators to differ-
ent scenes, e.g., two- and three-way junctions. For this, we
employ a fixed number of generators and allow the model
to learn the necessary number of modes directly from vi-
sual scene information. Towards this end, we train a sec-
ond module estimating the categorical probability distribu-
tion over the individual generators, conditioned on the input
observations. At test time, we first select a specific gener-
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Figure 1: The figure illustrates a pedestrian reaching a junction (black) including (a) the multimodal target distribution of
future paths, (b) learned future trajectory distribution by a single generator GAN predicting out-of-distribution samples (red),
and (c) learned trajectory distribution of multi-generator mixture model.

ator based on its categorical probability and sample then
trajectories specialized to that particular mode present in
the scene. For measuring the quality of the predictions, we
extend the concept of traditional L2 error measures with a
precision and recall metric [36, 23]. Our experimental eval-
uation shows that our proposed model overcomes state-of-
the-art and single-generator methods when comparing the
behavior of predicting OOD samples.

We summarize our main contributions as follows: (i)
we discuss the limitations of single generator GANs and
propose a novel multi-generator method that learns a mul-
timodal distribution over future trajectories, conditioned on
the visual input. To this end, we (ii) present a model that
estimates a conditional distribution over the generators and
elaborate a training scheme that allows us to jointly train our
model end-to-end. Finally, (iii) we introduce recall and pre-
cision metrics for pedestrian trajectory prediction to mea-
sure the quality of the entire predictive distribution, and in
particular OOD samples. We demonstrate our method’s ef-
ficiency and robustness through extensive ablations. The
source code of the model and experiments is available:
https://github.com/selflein/MG-GAN.

2. Related Work

Trajectory Forecasting. Since its inception, the field
of pedestrian trajectory prediction has moved from hand-
crafted [18] to data-driven [1] methods. While the
first learning methods used deterministic LSTM encoder-
decoder architectures (S-LSTM [1]), deep generative mod-
els [16, 34, 22, 2, 12, 8] quickly emerged as state-of-the-
art prediction methods. This development enabled the shift
from predicting a single future trajectory to producing a dis-
tribution of possible future trajectories. S-GAN [16] estab-
lishes a conditional Generative Adversarial Networks [14]
to learn the ground-truth trajectory distribution and S-GAN-
P [16]and SoPhie [34] extend S-GAN with visual and social

interaction components. Further, S-BiGAT [22] increases
the diversity of the samples by leveraging bicycle GAN
training [42] that encourages the connection between the
output and the latent code to be invertible. Goal-GAN [8]
circumvents the problem of mode collapse by conditioning
the decoder on a goal position estimated based on the topol-
ogy of the scene.

GANs [14] have well-known issues with mode collapse,
this is why many models [16, 34] use an L2 variety loss [6]
or modify the GAN objective [2] to encourage diversity of
the samples. While producing highly diverse samples en-
sures coverage of all modes in the distribution, we also ob-
tain many unrealistic out-of-distribution samples. The prob-
lem of OOD samples has been remained unnoticed partially
due to the evaluation metrics used in the field which only
measure the minimum L2 distance between the set of pre-
dictions and the ground truth, namely the recall. Nonethe-
less, the realism of predicted trajectories, equivalent to a
precision metric, is seldomly evaluated. We advocate that
trajectory prediction methods should be evaluated concern-
ing both of the aforementioned aspects.

Other work uses conditional variational autoencoders
(VAE) [21] for multimodal pedestrian trajectory predic-
tion [24, 35, 26, 5]. More recently, Trajectron++ [37]
uses a VAE and represents agents’ trajectories in a graph-
structured recurrent neural network. PECNet [28] proposes
goal-conditioned trajectory forecasting. Similar to GANs,
VAEs are also continuous transformations and suffer from
the limitations of generating distributions on disconnected
manifolds [32].

Lastly, P2TIRL [9] learns a grid-based policy with max-
imum entropy inverse reinforcement learning. In summary,
existing methods pay little attention to the resulting emer-
gence of out-of-distribution samples and do not discuss the
topological limitation in learning a distribution on discon-
nected supports.

13159



Generation of Disconnected Manifolds. Understanding
the underlying geometry of the problem is important when
training deep generative models [11]. More precisely,
learning disconnected manifolds requires disconnectedness
within the model. A single generator preserves the topol-
ogy of the continuous latent space and cannot exclusively
predict samples on disconnected manifolds [38].

For image generation, the problem of multimodal learn-
ing is well-known and widely studied. Addressing this is-
sue, [38] proposes a rejection sampling method based on the
norm of the generator’s Jacobian. InfoGAN [7] discretizes
the latent space by introducing extra dimensions. Other
works use mixtures of generators [40, 39, 41, 17, 13, 4] to
construct a discontinuous function. However, these mod-
els assume either a uniform or unconditional probability for
their discrete latent code or generators. As a result, these
methods are unable to adapt to different scenes and thus un-
suitable for the trajectory prediction task.

Our research is the first to address the problem of learn-
ing disconnected manifolds using multiple generators for
the task of pedestrian trajectory prediction by modeling a
conditional distribution over the generators.

3. Problem Definition
In this work, we tackle the problem of jointly predict-

ing future trajectories for all pedestrians in the scene. For
each pedestrian i, we generate a set of K future trajectories
{Ŷ k

i }k=1,...,K with t 2 [tobs + 1, tpred] for a given input
trajectory Xi with t 2 [t1, tobs]. This implies learning the
true distribution of trajectories conditioned on the input tra-
jectories and scene layout.

In many real-world scenarios such as in Figure 1, the
target distribution pD is multimodal and composed of dis-
connected modes.

Why do Single Generator GANs produce OOD Sam-
ples? State-of-the-art methods use the standard condi-
tional GAN architecture [14] and its modifications [29, 3]
to learn a distribution over future trajectories. These mod-
els learn a continuous mapping G : X ⇥ Z ! Y from the
latent space Z combined with the observations’ space X
to the space of future trajectories Y . The probability prior
p(z) on Z is mainly a standard multivariate normal distri-
bution with z ⇠ N (0, 1). When modeling G with a neu-
ral network, the mapping is continuous and preserves the
topology of the space. Hence, the transformation G (x, Z)
of the support of the probability distribution Z is connected
in the output space [38]. Therefore, theoretic work [38, 20]
discusses that learning a distribution on disconnected man-
ifolds is impossible; we also observe this phenomenon in
our experiments.

Why are OOD Samples problematic? Real world-
applications relying on trajectory predictions, e.g. au-

tonomous vehicles, have to treat every prediction as a pos-
sible future scenario and need to adjust their actions accord-
ingly. Thus, not only missed but also unrealistic predictions
may crucially hurt the performance of those applications.
As OOD samples without support in the ground-truth dis-
tribution are likely to be unrealistic, we aim to keep their
number small while still covering all modes.

How can we prevent OOD Samples? All single genera-
tor models will predict OOD if the target distribution lies on
disconnected manifolds. Theoretically, there are only two
ways to achieve disconnectedness in Y: making Z discon-
nected or making the generator mapping G : X ⇥ Z ! Y
discontinuous. We discuss both approaches in our paper but
find the latter to be more effective.

How to measure OOD Samples? Best-of-many L2 dis-
tance metrics focus on minimizing the error between a sin-
gle sample out of a set of predictions without assessing the
quality of the remaining trajectories. Therefore, we com-
pare our model on both, recall and precision [36, 23], which
are commonly used to assess the quality of generative mod-
els. While existing distance measures highly correlate with
recall, we are equally interested in precision that correlates
with the number of OOD samples.

4. Method
In this section, we present our multi-generator frame-

work for pedestrian trajectory prediction. Our model learns
a discontinuous function as a mixture of distributions mod-
eled by multiple generators (Section 4.1).

To adapt to different scenes, we train a second network
estimating the categorical distribution over generators (Sec-
tion 4.2) for new unseen scenes.

4.1. MG-GAN

Visual and Trajectory Encoders. We outline the archi-
tecture of our model in Figure 2. First, the feature encoders
extract visual and dynamic features di from the input se-
quences Xi and scene image patches Ii of each pedestrian
i. The attention modules combine these encodings to com-
pute the physical attention [34] features vi and social atten-
tion [2] features si. After the encoding and attention, we
concatenate the dynamic di, physical vi, and social si fea-
tures to ci = [di, vi, si]. In the following, we omit the index
indicating individual pedestrians to avoid notation clutter.
Note that we leverage established modules to model physi-
cal and social interactions [34, 2, 16], as our contribution is
the multi-generator framework. We provide more details on
these components in the supplementary.

Multi-generator Model. In our model, we leverage nG

different generators {Gg}, where each generator specializes
in learning a different trajectory distribution conditioned on
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Figure 2: Architecture of MG-GAN. The scene image Ii and observed trajectories X are encoded and passed to the physical
and social attention modules. The nG generators can predict different conditional trajectory distributions for the given scene
observation. The PM-Net estimates probabilities ⇡ for the generators. The model samples or selects a generator from ⇡ and
predicts a trajectory Ŷ conditioned on the features c and the noise vector z.

the input c. All generators share the same network archi-
tecture, however, they do not share weights. The generator
architecture consists of a LSTM decoder, initialized with
the features c and a random noise vector z ⇠ N (0, 1) as
the initial hidden state h0. The final trajectory Ŷ is then
predicted recurrently:

�Ŷ t = LSTMg

�
�Xt�1, ht�1

�
. (1)

Existing multi-generator modules proposed in the con-
text of image generation assume the distribution over the
generators to be constant [19, 17]. However, in the case
of trajectory prediction, the number of modes is unknown
a priori. Therefore, we train a module that adapts to the
scene by activating specific generators, conditioned on the
observations and interactions c.

4.2. Path Mode Network (PM-Net)

The Path Mode Network (PM-Net) parameterizes a dis-
tribution over the indices of the generators p(g|c) =
[⇡1, · · · ,⇡nG

] conditioned on the features c and is mod-
elled with a multi-layer perceptron MLP(c). The outputs
{⇡g} assign probabilities to each of the nG generators. Dur-
ing inference, we can sample different generators based on
the predicted distribution. Note, that this provides a major
advantage over existing methods [19, 20], where the dis-
tribution is fixed and cannot adjust to different scenes. In
comparison, our PM-Net is capable of selecting the relevant
generators for a given scene while deactivating unsuitable
ones.

4.3. Model Training

We now present a training algorithm that jointly op-
timizes the distribution over generators parameterized by
PM-Net and the multi-generator GAN model. For this,
we propose an alternating training scheme, inspired by
expectation-maximization [15, 20].

4.3.1 GAN Training

We train our model using a conditional generator, discrim-
inator network D [14] that distinguishes between real and
fake trajectories and a classifier C [19] learning to identify
which generator predicted a given trajectory. More details
on these networks’ architectures can be found in the supple-
mentary.

Adversarial Loss. We define each generator Gg as
Ŷg,z = Gg(c, z) inducing an implicit distribution pGg

(Ŷ |c).
All nG generators together describe a joint probability
distribution

PnG

g=1 ⇡g pGg (Ŷ |c), thus the established re-
sults [14] for GANs hold. We use the original adversarial
loss LAdv [14]. The discriminator D learns to distinguish
between real samples Y and samples Ŷ generated by the
model encouraging realism of the predictions. However, D
by itself does not prevent the generators from collapsing to
the same mode.

Classification Loss. To incentivize the generators to
cover different, possibly distinct modes occupying different
regions of the output space, we follow [19] and introduce
a classifier C which aims to identify the generator index g
that generated a sample Ŷg,z . The cross-entropy loss LCl

between the classifier output and the true generator label of
the predicted trajectory encourages the generators to model
non-overlapping distributions and drives the trajectories of
different generators spatially apart. This behavior is regu-
larized through the adversarial loss LAdv that constrains the
samples to be realistic and not diverge from the real distri-
bution. Overall, the training object reads as follows

min
G

max
D

LAdv + �TrajLTraj + �ClLCl, (2)

where we additionally apply a L2 best-of-many loss [6, 16]
LTraj with q samples to increase the diversity of predicted
trajectories. �Traj and �Cl are weighting hyperparameters.
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(a) GT (b) GAN L2 (c) InfoGAN (d) MGAN
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(e) MG-GAN (ours)

Figure 3: Predicted trajectories for two scenarios in the synthetic dataset. The upper row contains scene on a junction with
3 modes and an interacting pedestrian (white). The lower row shows a scenario with two modes. Figures (a) represent the
support of the conditional multimodal ground-truth distributions for these scenes. Figures (e) of MG-GAN also show the
probabilities ⇡ of the PM Network. We visualize trajectories of one generator/discrete latent variable in the same color.

4.3.2 PM-Net Training

To train PM-Net, we approximate the likelihood of a partic-
ular generator distribution pGg

supporting the trajectory Y

by the generated trajectories Ŷg,c,zi = Gg(c, zi) as:

p(Y |c, g) / 1

l

lX

i=1

exp

0
B@
�
���Ŷg,c,zi

� Y
���

2

2

2�

1
CA . (3)

Here, we marginalize the GAN noise z and assume a nor-
mally distributed and additive error ✏ ⇠ N(0,�I) between
Ŷ and Y as common for regression tasks [10]. We ob-
tain the conditional probability over generators by applying
Bayes’ rule:

p(g|c, Y ) =
p(Y |c, g)PnG

g0 p(Y |c, g0) . (4)

Finally, we optimize the PM-Net with the approximated
likelihood minimizing the cross entropy loss:

L⇧ = H(p(g|c, Y ),⇧(c)). (5)

Intuitively, the network is trained to weigh the generator that
generates trajectories closest to the ground-truth sample the
highest. We provide the full derivation of the objective in
the supplementary.

4.3.3 Alternating Training Scheme

Our training scheme consists of two alternating steps simi-
lar to an expectation-maximization algorithm [15]:

1. PM-Net Training Step: We sample l trajectories for
each generator and optimize the parameters of PM-Net us-
ing Equation (5) while keeping the rest of the network’s pa-
rameters fixed.

2. Generator Training Step: In the generator training
step, we use PM-Net to generate probabilities ⇡ and sam-
ple q generators predicting trajectories. With these predic-
tions, we update the model excluding PM-Net optimizing
Equation (2). We provide pseudo-code detailing our train-
ing procedure in the supplementary.

4.4. Trajectory Sampling

We can use the estimated probabilities ⇡ =
[⇡1, . . . ,⇡nG

] generated by the PM-Net to establish
different mechanisms to sample trajectories from the mul-
tiple generators. This helps us to cover all modes present
in the scene with as-few-as-possible predictions. In single
generator models [22, 34] the relation between regions in
the Gaussian latent space and different modes in the output
space is implicit and unknown. However, for MG-GAN
we can use the estimated probabilities ⇡ = [⇡1, . . . ,⇡nG

]
from the PM-Net to control and to cover predictions for all
modes present in the scene. Next to randomly sampling k
trajectories (Random) from ⇡ we introduce an additional
strategy (Expectation) where we compute the expected
number of samples for each generator as ng = k · ⇡g . We
round all ng to the nearest integer and adjust the number
of the generator with the highest score to ensure that all
numbers sum up to k.
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Figure 4: Precision vs. Recall on synthetic dataset.

5. Experimental Evaluation
We evaluate our model on four publicly available

datasets [30, 25, 31, 27] for pedestrian trajectory predic-
tion and compare our results with state-of-the-art methods.
Furthermore, we conduct experiments on synthetic datasets.
Compared to real data, synthetic data provides access to
the ground-truth trajectory distribution which enables us to
identify OOD samples by comparing ground-truth and gen-
erated trajectory distributions. Finally, we run an ablation
on the individual components of MG-GAN and study the
robustness of our model w.r.t. the number generators nG.

5.1. Experimental Setup

We follow prior work [31, 1] and observe 8 past time
steps (3.2 seconds) and predict the future 12 time steps (4.8
seconds) for every pedestrian in the scene.

Metrics. We evaluate results using the following metrics:
Average Displacement Error (ADE) is defined as a mean L2

distance between the prediction and ground-truth trajectory.
Final Displacement Error (FDE) is defined as the distance
between the prediction and ground-truth trajectory position
at time tpred.
For both metrics, ADE and FDE, we follow the Minimum
over k procedure [16, 34, 22] with k = 20. Note that
this approach only considers a single prediction with the
lowest ADE and FDE, but not the entirety of the set of k
generated output trajectories combined. Therefore, we in-
clude additional metrics commonly used in the GAN liter-
ature [36, 23], namely recall and precision. Recall mea-
sures the coverage of all ground-truth modes, while preci-
sion measures the ratio of generated samples in the support
of the ground truth distribution. Hence, the precision is di-
rectly related to the number of OOD samples. We also com-
pute the F1 score, combining recall and precision.

Datasets. We perform the evaluation using the following
datasets. ETH [30] and UCY datasets [25] contain five se-
quences (ETH: ETH and HOTEL, UCY: UNIV, ZARA1,
and ZARA2), recorded in four different scenarios. We fol-
low the standard leave-one-out approach for training and

Figure 5: Generated samples of our MG-GAN, Trajec-
tron++, and PECNet.

testing, where we train on four datasets and test on the re-
maining one. The Stanford Drone Dataset (SDD) [31] con-
sists of 20 video sequences captured from a top view at the
Stanford University campus. In our experiments, we follow
the train-test-split of [33] and focus solely on pedestrians.
The recently proposed Forking Paths Dataset (FPD) [27] is
a realistic 3D simulated dataset providing multi-future tra-
jectories for a single input trajectory. To study the ability
of our model to predict multimodal trajectories while pre-
venting OOD samples, we create a synthetic dataset where
we simulate multiple possible future paths for the same ob-
servation emerging due to the scene layout and social in-
teractions. Detailed information on the generated dataset is
provided in the supplementary material.

Baselines. We compare our method with several single
and multi-generator GAN baselines. We evaluate a (i)
vanilla GAN baseline, (ii) GAN L2 trained with variety
loss [6], (iii) GAN L2 Reject [38] that filters OOD samples
based on gradients in the latent space, and (iv) InfoGAN [7]
with discrete random latent variable. Furthermore, we com-
pare MG-GAN to multi-generator models MGAN [19] and
DMGAN-PL [20], proposed in the context of image gener-
ation, that we adapt for the task of trajectory prediction. To
ensure comparability, all models use the same base model
following SoPhie [34] with attention modules as described
in Section 4.1. For qualitative comparison, we evaluate our
method against state-of-the-art prediction models presented
in Section 2 on the standard benchmarks for trajectory fore-
casting.

5.2. Experiments on Synthetic data

We first study our model on a synthetic dataset in which
we have access to the ground-truth distribution of the future
trajectories. In this experiment, we show that MG-GAN
achieves better performance in learning a multimodal tra-
jectory distribution with disconnected support and is more
efficient than the baselines.

Results. The results in Figure 4 show that MG-GAN out-
performs the single-generator baselines and increases Re-
call by 0.28 and Precision by 0.32. To this end, we find that
all multi-generator methods have a similar recall but MG-
GAN achieves a 15% higher Precision corresponding to a
lower number of OOD samples.
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Figure 6: Comparison between single generator model GAN+L2 and MG-GAN. (a) recall for different number of samples
k and sampling methods. (b) - (c) compares ADE/FDE, recall/precision, and MACs (Multiply–accumulate operations) for
varying total number of model parameters.

Visual Results. In Figure 3, we visualize predicted tra-
jectories for two different scenarios where the white trajec-
tory represents another interacting pedestrian. The support
of the ground-truth distribution for each timestep is shown
as a red circle in Figure 3a. A model achieves low preci-
sion in Figure 4 if many trajectory points lie outside the
corresponding red circle for a particular timestep. Simi-
larly, a model has high recall if its samples cover most of the
area of red circles. Single generator models, GAN+L2 (Fig-
ure 3b), and InfoGAN (Figure 3c) produce many OOD sam-
ples leading to low precision. In particular, we find that In-
foGAN is not able to learn the correspondence between the
discrete latent space and the modes in the trajectory space.
While theoretically plausible, these results indicate that a
discretized latent space is not well-suited for learning dis-
tribution on disconnected support. Contrarily, MGAN can
learn the distribution but is incapable to adjust generators
resulting in OOD samples in Figure 3d when the number
of modes does not match the number of generators. Finally,
our MG-GAN is able to adjust to both scenarios in Figure 3e
as the PM-Net deactivates generators which are unsuitable
and prevents OOD samples explaining the high Precision in
Figure 4.

Effective Mode Covering. Figure 6a shows the recall de-
pending on the number of samples k. Our method covers
more modes of the ground-truth distribution than the single
generator model for the same number of samples as indi-
cated by the higher recall. Additionally, we observe signif-
icant improvements compared to random sampling by us-
ing expectation sampling leveraging PM-Net as described
in Section 4.4, especially for fewer samples.

Number of Parameters and Computational Cost. In
this experiment, we show that our MG-GAN does not
require more resources w.r.t. parameters or computations
compared to a single generator baseline. For this, we
compare MG-GAN using four generators with the single-
generator baseline while keeping the total number of param-
eters of both models fixed by only using approx. 1/4 of the
parameters for each generator. As can be seen in Figures 6b
and 6c, MG-GAN outperforms the single generator GAN
w.r.t. to ADE/FDE (50%) and recall/precision (30%) using

Dataset
S-LSTM

[1]
S-GAN

[16]
SoPhie

[34]
S-BiGAT

[22]
CGNS

[26]
GoalGAN

[8]
PECNet

[28]
Trajectron++

[37]
MG-GAN

(Ours)

ETH 1.09/2.35 0.81/1.52 0.70/1.43 0.69/1.29 0.62/1.40 0.59/1.18 0.54/0.87 0.39/0.83 0.47/0.91
HOTEL 0.79/1.76 0.72/1.61 0.76/1.67 0.49/1.01 0.70/0.93 0.19/0.35 0.18/0.24 0.12/0.21 0.14/0.24
UNIV 0.67/1.40 0.60/1.26 0.54/1.24 0.55/1.32 0.48/1.22 0.60/1.19 0.35/0.60 0.20/0.44 0.54/1.07
ZARA1 0.47/1.00 0.34/0.69 0.30/0.63 0.30/0.62 0.32/0.59 0.43/0.87 0.22/0.39 0.15/0.33 0.36/0.73
ZARA2 0.56/1.17 0.42/0.84 0.38/0.78 0.36/0.75 0.35/0.71 0.32/0.65 0.17/0.30 0.11/0.25 0.29/0.60

AVG 0.72/1.54 0.58/1.18 0.54/1.15 0.48/1.00 0.49/0.97 0.43/0.85 0.29/0.48 0.19/0.41 0.36/0.71

Table 1: Quantitative results on ETH [30] and UCY [25].
We report ADE (#) /FDE (#) in meters. Underlined results
denote the second best.

S-LSTM
[1]

S-GAN
[16]

CAR-NET
[35]

DESIRE
[24]

SoPhie
[34]

CGNS
[26]

CF-VAE
[5]

P2TIRL
[9]

GoalGAN
[8]

PECNet
[28]

MG-GAN (4)
(Ours)

ADE 57.0 27.3 25.7 19.3 16.3 15.6 12.6 12.6 12.2 10.0 13.6
FDE 31.2 41.4 51.8 34.1 29.4 28.2 22.3 22.1 22.1 15.9 25.8

Table 2: Quantitative results on Stanford Drone Dataset
(SDD) [31]. We report ADE and FDE in pixels.

the same number of total parameters across various param-
eter budgets. In Figure 6a, the computational cost measured
by MACs for the prediction of a trajectory is always lower
for MG-GAN compared to the baseline. The model only
runs one selected generator with 1/4 amount of parameters
during the forward pass while the cost of running PM-Net
is negligible.

5.3. Benchmark Results

In this section, we compare our method to the state-of-
the-art on the standard benchmarks ETH [30], UCY [25],
and SDD [31], as well as the recently proposed Fork-
ing Path Dataset (FPD) [27]. We report the performance
of the model with the lowest validation error as we train
our method with different numbers of generators nG 2
{2, . . . , 8}. We discuss the robustness w.r.t. the number of
generators in Section 5.4.

ADE & FDE. Our MG-GAN achieves competitive re-
sults for the ADE and FDE on the ETH/UCY and Stan-
ford Drone Dataset (SDD) shown in Table 1 and Table 2,
respectively. Even though our method does not achieve
SOTA performance on the ADE and FDE metrics on these
benchmarks, we still argue that our method provides signif-
icant improvement to the task. That is since the distance-
based L2 measures can be drastically reduced by increasing
the variance of the predictions for the price of producing
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ADE # FDE # Precision " Recall " F1 "
GAN+L2 28.81 58.37 0.55 0.87 0.67

PECNet 13.14 24.55 0.46 0.95 0.62
Trajectron++ 13.15 32.00 0.38 0.96 0.54

MG-GAN (Ours) 22.09 46.38 0.71 0.89 0.79

Table 3: Results on FPD. We report ADE/FDE in pixels.

more OOD samples. A visual comparison of the trajectories
produced by Trajectron++ and PECNet in Figure 5 shows
that these methods produce high variance predictions with-
out accounting for any constraints in the scene. Contrarily,
MG-GAN only predicts trajectories inside the ground-truth
manifold (red). While covering all modes, our predictions
remain in the support of the ground-truth distribution. To
quantify this observation, we compute the recall and preci-
sion metrics.

Precision & Recall. As ADE and FDE do not consider
the quality of the entire generated distribution, we add re-
sults using precision/recall metrics [36, 23] on the FPD
dataset [27]. This is possible on FPD as it contains mul-
tiple feasible, human-annotated ground-truth trajectories.

In Table 3, MG-GAN outperforms GAN+L2 by 29%,
PECNet by 54% and Trajectron++ by 86% in terms of Pre-
cision, while the difference in Recall with 0.02, 0.06, and
0.07 points is small. Single generator models predict overly
diverse trajectories, thus increasing Recall slightly and re-
ducing ADE/FDE, but produce OOD samples leading to
low Precision. These results confirm that MG-GAN is sig-
nificantly more reliably at predicting paths that align well
with the human-annotated future trajectories (high preci-
sion), while also covering a similar amount of modes in the
scene (high recall). Overall, we conclude that MG-GAN
does not match SOTA performance on traditional evaluation
metrics in Table 1 and Table 2. However, studying precision
and recall reveals that our model can lower the number of
OOD and achieves an overall better F1 than current SOTA
methods.

5.4. Ablation Studies

In this section, we ablate the key modules of MG-GAN.
We emphasize that the goal of the paper is to demonstrate
the need and effectiveness of a conditional multi-generator
framework for pedestrian trajectory prediction. Hence, the
study of attention modules used within our model described
in Section 4.1, is not the goal of this work and has been
extensively done in prior work [16, 2, 34, 22].

Effectiveness of Key Modules. We perform the ablation
on our synthetic dataset by removing key components from
our final model: multiple generators, the classifier C, and
the PM-Net in Table 4. Reducing the number of generators
to 1 results in a significant drop in performance of almost

M C PM ADE # FDE # Precision " Recall "
0.94 1.58 0.46 0.48
0.59 0.79 0.37 0.68
0.35 0.49 0.72 0.91
0.37 0.53 0.73 0.91

0.32 0.44 0.77 0.95

Table 4: Ablation experiments: (M) Multi-generator, (C)
Classifier, and (PM) Path Mode network.

2 3 4 5 6 7 8 Best

ADE 0.37 0.38 0.38 0.39 0.37 0.36 0.37 0.36
FDE 0.72 0.74 0.75 0.76 0.71 0.71 0.72 0.70

Table 5: Results for nG 2 {2, . . . , 8} on ETH/UCY.

50% in recall and 31% in precision.
As described in Section 4.1, the classifier C encourages

individual generators to specialize and increases precision
from 37% to 73%. Similarly, with PM-Net learning a dis-
tribution over generators, the precision increases from 37%
to 72%. Finally, leveraging PM-Net and classifier C, com-
bining the advantages of both, further improves the perfor-
mance on all considered metrics.

Robustness over the Number of Generators. The mul-
timodality over future trajectories depends on social inter-
actions and the scene layout, imposing a significant chal-
lenge when choosing the number of generators nG at train-
ing time. To this end, we introduced the PM-Net that learns
to activate generators depending on the observed scene fea-
tures. As can be seen in Table 5, PM-Net successfully
makes MG-GAN robust w.r.t. the choice of nG as results
only deviate 7% from the best reported values at maximum.

6. Conclusion
In this paper, we addressed the issue of single-generator

GAN models for pedestrian trajectory prediction. While ex-
isting generative networks learn a distribution over future
trajectories, they are fundamentally incapable of learning a
distribution consisting of multiple disconnected modes. To
overcome this problem, our proposed MG-GAN leverages
multiple generators that specialize in different modes and
learns to sample from these generators conditioned on the
scene observation. We demonstrated the efficacy of MG-
GAN at reducing out-of-distribution samples in comparison
to the existing state-of-the-art. Finally, we emphasized the
importance of precision next to recall metrics and hope to
encourage a discussion on preventing OOD in future work.
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Abstract
Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the
advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure
of performance and are therefore important guides for research. We present MOTChallenge, a benchmark for single-camera
Multiple Object Tracking (MOT) launched in late 2014, to collect existing and new data and create a framework for the
standardized evaluation of multiple object tracking methods. The benchmark is focused on multiple people tracking, since
pedestrians are by far the most studied object in the tracking community, with applications ranging from robot navigation to
self-driving cars. This paper collects the first three releases of the benchmark: (i)MOT15, along with numerous state-of-the-
art results that were submitted in the last years, (ii) MOT16, which contains new challenging videos, and (iii) MOT17, that
extends MOT16 sequences with more precise labels and evaluates tracking performance on three different object detectors.
The second and third release not only offers a significant increase in the number of labeled boxes, but also provide labels for
multiple object classes beside pedestrians, as well as the level of visibility for every single object of interest.We finally provide
a categorization of state-of-the-art trackers and a broad error analysis. This will help newcomers understand the related work
and research trends in the MOT community, and hopefully shed some light into potential future research directions.
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1 Introduction

Evaluating and comparing single-camera multi-target track-
ing methods is not trivial for numerous reasons (Milan
et al. 2013). Firstly, unlike for other tasks, such as image
denoising, the ground truth, i.e., the perfect solution one
aims to achieve, is difficult to define clearly. Partially vis-
ible, occluded, or cropped targets, reflections in mirrors or
windows, and objects that very closely resemble targets all
impose intrinsic ambiguities, such that even humans may not
agree on one particular ideal solution. Secondly, many differ-
ent evaluation metrics with free parameters and ambiguous
definitions often lead to conflicting quantitative results across
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the literature. Finally, the lack of pre-defined test and training
data makes it difficult to compare different methods fairly.

Even though multi-target tracking is a crucial problem in
scene understanding, until recently it still lacked large-scale
benchmarks to provide a fair comparison between tracking
methods. Typically, methods are tuned for each sequence,
reaching over 90% accuracy in well-known sequences like
PETS (Ferryman and Ellis 2010). Nonetheless, the real chal-
lenge for a tracking system is to be able to perform well on
a variety of sequences with different level of crowdedness,
camera motion, illumination, etc., without overfitting the set
of parameters to a specific video sequence.

To address this issue, we released the MOTChallenge
benchmark in 2014, which consisted of three main com-
ponents: (1) a (re-)collection of publicly available and new
datasets, (2) a centralized evaluation method, and (3) an
infrastructure that allows for crowdsourcing of new data,
new evaluation methods and even new annotations. The first
release of the dataset namedMOT15 consists of 11 sequences
for training and 11 for testing, with a total of 11286 frames
or 996 seconds of video. 3D information was also provided
for 4 of those sequences. Pre-computed object detections,
annotations (only for the training sequences), and a common
evaluation method for all datasets were provided to all par-
ticipants, which allowed for all results to be compared fairly.

Since October 2014, over 1,000 methods have been pub-
licly tested on theMOTChallenge benchmark, and over 1833
users have registered, see Fig. 1. In particular, 760 meth-
ods have been tested on MOT15, 1,017 on MOT16 and 692
on MOT17; 132, 213 and 190 (respectively) were published
on the public leaderboard. This established MOTChallenge
as the first standardized large-scale tracking benchmark for
single-camera multiple people tracking.

Despite its success, the first tracking benchmark,MOT15,
was lacking in a few aspects:

– The annotation protocol was not consistent across all
sequences since some of the ground truth was collected
from various online sources;

– the distribution of crowd density was not balanced for
training and test sequences;

– some of the sequences were well-known (e.g., PETS09-
S2L1) and methods were overfitted to them, which made
them not ideal for testing purposes;

– the provided public detections did not show good perfor-
mance on the benchmark, which made some participants
switch to other pedestrian detectors.

To resolve the aforementioned shortcomings, we intro-
duced the second benchmark, MOT16. It consists of a set of
14 sequences with crowded scenarios, recorded from differ-
ent viewpoints, with/without camera motion, and it covers
a diverse set of weather and illumination conditions. Most

importantly, the annotations for all sequences were car-
ried out by qualified researchers from scratch following a
strict protocol and finally double-checked to ensure a high
annotation accuracy. In addition to pedestrians, we also anno-
tated classes such as vehicles, sitting people, and occluding
objects. With this fine-grained level of annotation, it was
possible to accurately compute the degree of occlusion and
cropping of all bounding boxes, which was also provided
with the benchmark.

For the third release,MOT17, we (1) further improved the
annotation consistency over the sequences1 and (2) proposed
a new evaluation protocol with public detections. InMOT17,
we provided 3 sets of public detections, obtained using three
different object detectors. Participants were required to eval-
uate their trackers using all three detections sets, and results
were then averaged to obtain the final score. The main idea
behind this new protocol was to establish the robustness of
the trackers when fed with detections of different quality.
Besides, we released a separate subset for evaluating object
detectors,MOT17Det.

In this work, we categorize and analyze 73 published
trackers that have been evaluated on MOT15, 74 trackers on
MOT16, and 57 on MOT17.2 Having results on such a large
number of sequences allows us to perform a thorough analy-
sis of trends in tracking, currently best-performing methods,
and special failure cases.We aim to shed some light on poten-
tial research directions for the near future in order to further
improve tracking performance.
In summary, this paper has two main goals:

– To present theMOTChallenge benchmark for a fair eval-
uation of multi-target tracking methods, along with its
first releases:MOT15, MOT16, and MOT17;

– to analyze the performance of 73 state-of-the-art trackers
onMOT15, 74 trackers onMOT16, and 57 onMOT17 to
analyze trends in MOT over the years. We analyze the
main weaknesses of current trackers and discuss promis-
ing research directions for the community to advance the
field of multi-target tracking.

The benchmark with all datasets, ground truth, detections,
submitted results, current ranking and submission guidelines
can be found at:

http://www.motchallenge.net/.

1 We thank the numerous contributors and users ofMOTChallenge that
pointed us to issues with annotations.
2 In this paper, we only consider published trackers that were on the
leaderboard on April 17th, 2020, and used the provided set of public
detections. For this analysis, we focused on peer-reviewedmethods, i.e.,
published at a conference or a journal, and excluded entries for which
we could not find corresponding publications due to lack of information
provided by the authors.
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2 Related work

Benchmarks and challenges In the recent past, the computer
vision community has developed centralized benchmarks for
numerous tasks including object detection (Everingham et al.
2015), pedestrian detection (Dollár et al. 2009), 3D recon-
struction (Seitz et al. 2006), optical flow (Baker et al. 2011;
Geiger et al. 2012), visual odometry (Geiger et al. 2012),
single-object short-term tracking (Kristan et al. 2014), and
stereo estimation (Geiger et al. 2012; Scharstein and Szeliski
2002). Despite potential pitfalls of such benchmarks (Tor-
ralba and Efros 2011), they have proven to be extremely
helpful to advance the state of the art in the respective area.

For single-camera multiple target tracking, in contrast,
there has been very limited work on standardizing quantita-
tive evaluation. One of the few exceptions is the well-known
PETS dataset (Ferryman and Ellis 2010) addressing primar-
ily surveillance applications. The 2009 version consists of 3
subsets S: S1 targeting person count and density estimation,
S2 targeting people tracking, and S3 targeting flow analysis
and event recognition. The simplest sequence for tracking
(S2L1) consists of a scene with few pedestrians, and for
that sequence, state-of-the-art methods perform extremely
well with accuracies of over 90% given a good set of initial
detections (Henriques et al. 2011; Milan et al. 2014; Zamir
et al. 2012). Therefore, methods started to focus on tracking
objects in the most challenging sequence, i.e., with the high-
est crowd density, but hardly ever on the complete dataset.
Even for this widely used benchmark, we observe that track-
ing results are commonly obtained inconsistently, involving
using different subsets of the available data, inconsistent
model training that is often prone to overfitting, varying eval-
uation scripts, and different detection inputs. Results are thus
not easily comparable. Hence, the questions that arise are:
(i) are these sequences already too easy for current track-
ing methods?, (ii) do methods simply overfit?, and (iii) are
existing methods poorly evaluated?

ThePETS teamorganizes aworkshop approximately once
a year towhich researchers can submit their results, andmeth-
ods are evaluated under the same conditions. Although this is
indeed a fair comparison, the fact that submissions are eval-
uated only once a year means that the use of this benchmark
for high impact conferences like ICCV or CVPR remains
challenging. Furthermore, the sequences tend to be focused
only on surveillance scenarios and lately on specific tasks
such as vessel tracking. Surveillance videos have a low frame
rate, fixed camera viewpoint, and low pedestrian density. The
ambition ofMOTChallenge is to tackle more general scenar-
ios including varying viewpoints, illumination conditions,
different frame rates, and levels of crowdedness.

A well-established and useful way of organizing datasets
is through standardized challenges. These are usually in the
form of web servers that host the data and through which

results are uploaded by the users. Results are then evaluated
in a centralized way by the server and afterward presented
online to the public, making a comparison with any other
method immediately possible.

There are several datasets organized in this fashion: the
Labeled Faces in the Wild (Huang et al. 2007) for uncon-
strained face recognition, the PASCAL VOC (Everingham
et al. 2015) for object detection and the ImageNet large scale
visual recognition challenge (Russakovsky et al. 2015).

The KITTI benchmark (Geiger et al. 2012) was intro-
duced for challenges in autonomous driving, which includes
stereo/flow, odometry, road and lane estimation, object detec-
tion, and orientation estimation, as well as tracking. Some of
the sequences include crowded pedestrian crossings, mak-
ing the dataset quite challenging, but the camera position is
located at a fixed height for all sequences.

Another work that is worth mentioning is Alahi et al.
(2014), in which the authors collected a large amount of data
containing 42 million pedestrian trajectories. Since annota-
tion of such a large collection of data is infeasible, they use
a denser set of cameras to create the “ground-truth” trajecto-
ries. Though we do not aim at collecting such a large amount
of data, the goal of our benchmark is somewhat similar: to
push research in tracking forward by generalizing the test
data to a larger set that is highly variable and hard to overfit.

DETRAC (Wen et al. 2020) is a benchmark for vehicle
tracking, following a similar submission system to the onewe
proposed with MOTChallenge. This benchmark consists of
a total of 100 sequences, 60% of which are used for training.
Sequences are recorded from a high viewpoint (surveillance
scenarios) with the goal of vehicle tracking.

Evaluation A critical question with any dataset is how to
measure the performance of the algorithms. In the case of
multiple object tracking, the CLEAR-MOT metrics (Stiefel-
hagen et al. 2006) have emerged as the standardmeasures. By
measuring the intersection over union of bounding boxes and
matching those from ground-truth annotations and results,
measures of accuracy and precision can be computed. Pre-
cision measures how well the persons are localized, while
accuracy evaluates how many distinct errors such as missed
targets, ghost trajectories, or identity switches are made.

Alternatively, trajectory-basedmeasures byWu andNeva-
tia (2006) evaluate how many trajectories were mostly
tracked,mostly lost, and partially tracked, relative to the track
lengths. These are mainly used to assess track coverage. The
IDF1 metric (Ristani et al. 2016) was introduced for MOT
evaluation in a multi-camera setting. Since then it has been
adopted for evaluation in the standard single-camera setting
in our benchmark. Contrary to MOTA, the ground truth to
predictionsmapping is established at the level of entire tracks
instead of on frame by frame level, and therefore, measures
long-term tracking quality. In Sect. 7 we report IDF1 perfor-
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Fig. 1 Evolution ofMOTChallenge submissions, number of users reg-
istered and trackers created

mance in conjunction with MOTA. A detailed discussion on
the measures can be found in Sect. 6.

A key parameter in both families of metrics is the inter-
section over union threshold which determines whether a
predicted bounding box was matched to an annotation. It
is fairly common to observe methods compared under dif-
ferent thresholds, varying from 25 to 50%. There are often
many other variables and implementation details that differ
between evaluation scripts, which may affect results signif-
icantly. Furthermore, the evaluation script is not the only
factor. Recently, a thorough study (Mathias et al. 2014) on
face detection benchmarks showed that annotation policies
vary greatly among datasets. For example, bounding boxes
can be defined tightly around the object, or more loosely to
account for pose variations. The size of the bounding box
can greatly affect results since the intersection over union
depends directly on it.

Standardized benchmarks are preferable for comparing
methods in a fair and principledway. Using the same ground-
truth data and evaluation methodology is the only way to
guarantee that the only part being evaluated is the tracking
method that delivers the results. This is the main goal of the
MOTChallenge benchmark.

3 History of MOTChallenge

The first benchmarkwas released in October 2014 and it con-
sists of 11 sequences for training and 11 for testing, where
the testing sequences have not been available publicly. We
also provided a set of detections and evaluation scripts. Since
its release, 692 tracking results were submitted to the bench-
mark, which has quickly become the standard for evaluating
multiple pedestrian tracking methods in high impact confer-

ences such as ICCV, CVPR, and ECCV. Together with the
release of the new data, we organized the 1st Workshop on
Benchmarking Multi-Target Tracking (BMTT) in conjunc-
tion with the IEEE Winter Conference on Applications of
Computer Vision (WACV) in 2015.3

After the success of the first release of sequences, we
created a 2016 edition, with 14 longer and more crowded
sequences and a more accurate annotation policy which we
describe in this manuscript (Sect. C.1). For the release of
MOT16, we organized the second workshop4 in conjunction
with the European Conference in Computer Vision (ECCV)
in 2016.

For the third release of our dataset,MOT17, we improved
the annotation consistency over the MOT16 sequences and
provided three public sets of detections, on which trackers
need to be evaluated. For this release, we organized a Joint
Workshop on Tracking and Surveillance in conjunction with
the Performance Evaluation of Tracking and Surveillance
(PETS) (Ferryman and Ellis 2010; Ferryman and Shahrokni
2009) workshop and the Conference on Vision and Pattern
Recognition (CVPR) in 2017.5

In this paper, we focus on the MOT15, MOT16, and
MOT17benchmarks becausenumerousmethodshave already
submitted their results to these challenges for several years
that allow us to analyze these methods and to draw conclu-
sions about research trends in multi-object tracking.

Nonetheless, work continues on the benchmark, with
frequent releases of new challenges and datasets. The lat-
est pedestrian tracking dataset was first presented at the
4th MOTChallenge workshop6 (CVPR 2019), an ambitious
tracking challengewith eight new sequences (Dendorfer et al.
2019). With the feedback of the workshop the sequences
were revised and re-published as theMOT20 (Dendorfer et al.
2020) benchmark. This challenge focuses on very crowded
scenes, where the object density can reach up to 246 pedes-
trians per frame. The diverse sequences show indoor and
outdoor scenes, filmed either during day or night. With more
than2M boundingboxes and3833 tracks,MOT20 constitutes
a new level of complexity and challenges the performance of
tracking methods in very dense scenarios. At the time of this
article, only 11 submissions for MOT20 had been received,
hence a discussion of the results is not yet significant nor
informative, and is left for future work.

The future vision of MOTChallenge is to establish it
as a general platform for benchmarking multi-object track-
ing, expanding beyond pedestrian tracking. To this end, we
recently added a public benchmark for multi-camera 3D
zebrafish tracking (Pedersen et al. 2020), and a benchmark

3 https://motchallenge.net/workshops/bmtt2015/.
4 https://motchallenge.net/workshops/bmtt2016/.
5 https://motchallenge.net/workshops/bmtt-pets2017/.
6 https://motchallenge.net/workshops/bmtt2019/.
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(a) Detection performance
of [Dollár et al., 2014]

(b) ADL-Rundle-8 (c) Venice-1 (d) KITTI-16

Fig. 2 a The performance of the provided detection bounding boxes evaluated on the training (blue) and the test (red) set. The circle indicates the
operating point (i.e., the input detection set) for the trackers. b–d Exemplar detection results

for the large-scale Tracking any Object (TAO) dataset (Dave
et al. 2020). This dataset consists of 2907 videos, covering
833 classes by 17,287 tracks.

In Fig. 1, we plot the evolution of the number of users,
submissions, and trackers created since MOTChallenge was
released to the public in 2014. Since our 2nd workshop was
announced at ECCV, we have experienced steady growth in
the number of users as well as submissions.

4 MOT15 Release

One of the key aspects of any benchmark is data collec-
tion. The goal of MOTChallenge is not only to compile yet
another dataset with completely new data but rather to: (1)
create a common framework to test tracking methods on, and
(2) gather existing and new challenging sequences with very
different characteristics (frame rate, pedestrian density, illu-
mination, or point of view) in order to challenge researchers
to develop more general tracking methods that can deal with
all types of sequences. In Table 5 of the Appendix we show
an overview of the sequences included in the benchmark.

4.1 Sequences

We have compiled a total of 22 sequences that combine dif-
ferent videos from several sources (Andriluka et al. 2010;
Benfold and Reid 2011; Ess et al. 2008; Ferryman and Ellis
2010; Geiger et al. 2012) and new data collected from us.We
use half of the data for training and a half for testing, and the
annotations of the testing sequences are not released to the
public to avoid (over)fitting ofmethods to specific sequences.
Note, the test data contains over 10min of footage and 61,440
annotated boundingboxes, therefore, it is hard for researchers
to over-tune their algorithms on such a large amount of data.
This is one of the major strengths of the benchmark.

We collected 6 new challenging sequences, 4 filmed from
a static camera and 2 from a moving camera held at pedes-
trian’s height. Three sequences are particularly challenging: a
night sequencefilmed fromamoving camera and twooutdoor

sequences with a high density of pedestrians. The moving
camera together with the low illumination creates a lot of
motion blur, making this sequence extremely challenging.
A smaller subset of the benchmark including only these six
new sequenceswere presented at the 1stWorkshoponBench-
marking Multi-Target Tracking,7 where the top-performing
method reached MOTA (tracking accuracy) of only 12.7%.
This confirms the difficulty of the new sequences.8

4.2 Detections

To detect pedestrians in all images of the MOT15 edition,
we use the object detector of Dollár et al. (2014), which
is based on aggregated channel features (ACF). We rely on
the default parameters and the pedestrian model trained on
the INRIA dataset (Dalal and Triggs 2005), rescaled with a
factor of 0.6 to enable the detection of smaller pedestrians.
The detector performance along with three sample frames is
depicted in Fig. 2, for both the training and the test set of
the benchmark. Recall does not reach 100% because of the
non-maximum suppression applied.

We cannot (nor necessarily want to) prevent anyone from
using a different set of detections. However, we require that
this is noted as part of the tracker’s description and is also
displayed in the rating table.

4.3 Weaknesses ofMOT15

By the end of 2015, it was clear that a new release was due
for theMOTChallenge benchmark. The main weaknesses of
MOT15 were the following:

– Annotationswecollected annotations online for the exist-
ing sequences, while we manually annotated the new
sequences. Some of the collected annotations were not

7 https://motchallenge.net/workshops/bmtt2015/.
8 The challenge results are available at http://motchallenge.net/results/
WACV_2015_Challenge/.
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Fig. 3 An overview of the MOT16/MOT17 dataset. Top: Training sequences. Bottom: test sequences (Color figure online)

(a) DPM v5 (b) DPM v5 (c) Faster-RCNN (d) SDP

Fig. 4 The performance of three popular pedestrian detectors evaluated on the training (blue) and the test (red) set. The circle indicates the operating
point (i.e. the input detection set) for the trackers of MOT16 and MOT17 (Color figure online)

accurate enough, especially in scenes with moving cam-
eras.

– Difficulty generally, we wanted to include some well-
known sequences, e.g., PETS2009, in theMOT15 bench-
mark. However, these sequences have turned out to be too
simple for state-of-the-art trackers why we concluded to
create a new and more challenging benchmark.

To overcome these weaknesses, we createdMOT16, a col-
lection of all-new challenging sequences (including our new
sequences fromMOT15) and creating annotations following
a more strict protocol (see Sect. C.1 of the Appendix).

5 MOT16 andMOT17 Releases

Our ambition for the release of MOT16 was to compile
a benchmark with new and more challenging sequences
compared to MOT15. Figure 3 presents an overview of the
benchmark training and test sequences (detailed information
about the sequences is presented in Table 9 in the Appendix).

MOT17 consists of the same sequences as MOT16, but
contains two important changes: (i) the annotations are
further improved, i.e., increasing the accuracy of the bound-
ing boxes, adding missed pedestrians, annotating additional
occluders, following the comments received bymany anony-
mous benchmark users, as well as the second round of sanity
checks, (ii) the evaluation system significantly differs from
MOT17, including the evaluation of tracking methods using

three different detectors in order to show the robustness to
varying levels of noisy detections.

5.1 MOT16 Sequences

Wecompiled a total of 14 sequences, of whichwe use half for
training and a half for testing. The annotations of the testing
sequences are not publicly available. The sequences can be
classified according to moving/static camera, viewpoint, and
illumination conditions (Fig. 11 in Appendix). The new data
contains almost 3 times more bounding boxes for training
and testing than MOT15. Most sequences are filmed in high
resolution, and the mean crowd density is 3 times higher
when compared to the first benchmark release. Hence, the
new sequences present a more challenging benchmark than
MOT15 for the tracking community.

5.2 Detections

We evaluate several state-of-the-art detectors on our bench-
mark, and summarize the main findings in Fig. 4. To evaluate
the performance of the detectors for the task of tracking, we
evaluate them using all bounding boxes considered for the
tracking evaluation, including partially visible or occluded
objects. Consequently, the recall and average precision (AP)
is lower than the results obtained by evaluating solely on
visible objects, as we do for the detection challenge.
MOT16 Detections We first train the deformable part-based
model (DPM) v5 (Felzenszwalb and Huttenlocher 2006)
and find that it outperforms other detectors such as Fast-
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RNN (Girshick 2015) and ACF (Dollár et al. 2014) for the
task of detecting persons onMOT16. Hence, for that bench-
mark, we provide DPM detections as public detections.
MOT17 Detections For the new MOT17 release, we use
Faster-RCNN (Ren et al. 2015) and a detector with scale-
dependent pooling (SDP) (Yang et al. 2016), both of which
outperform the previous DPM method. After a discussion
held in one of the MOTChallenge workshops, we agreed
to provide all three detections as public detections, effec-
tively changing the way MOTChallenge evaluates trackers.
The motivation is to challenge trackers further to be more
general and work with detections of varying quality. These
detectors have different characteristics, as can be seen in
in Fig. 4. Hence, a tracker that can work with all three inputs
is going to be inherently more robust. The evaluation for
MOT17 is, therefore, set to evaluate the output of trackers on
all three detection sets, averaging their performance for the
final ranking. A detailed breakdown of detection bounding
box statistics on individual sequences is provided in Table 10
in the Appendix.

6 Evaluation

MOTChallenge is also a platform for a fair comparison of
state-of-the-art tracking methods. By providing authors with
standardized ground-truth data, evaluation metrics, scripts,
as well as a set of precomputed detections, all methods
are compared under the same conditions, thereby isolating
the performance of the tracker from other factors. In the
past, a large number of metrics for quantitative evaluation
of multiple target tracking have been proposed (Bernardin
and Stiefelhagen 2008; Li et al. 2009; Schuhmacher et al.
2008; Smith et al. 2005; Stiefelhagen et al. 2006; Wu and
Nevatia 2006). Choosing “the right” one is largely applica-
tion dependent and the quest for a unique, general evaluation
measure is still ongoing. On the one hand, it is desirable to
summarize the performance into a single number to enable a
direct comparison between methods. On the other hand, one
might want to provide more informative performance esti-
mates by detailing the types of errors the algorithms make,
which precludes a clear ranking.

Following a recent trend (Bae and Yoon 2014; Milan et al.
2014; Wen et al. 2014), we employ three sets of tracking
performance measures that have been established in the lit-
erature: (i) the frame-to-frame based CLEAR-MOT metrics
proposed by Stiefelhagen et al. (2006), (ii) track quality
measures proposed by Wu and Nevatia (2006), and (iii)
trajectory-based IDF1 proposed by Ristani et al. (2016).

These evaluationmeasures give a complementary view on
tracking performance. The main representative of CLEAR-
MOT measures, Multi-Object Tracking Accuracy (MOTA),
is evaluated basedon frame-to-framematchingbetween track

predictions and ground truth. It explicitly penalizes iden-
tity switches between consecutive frames, thus evaluating
tracking performance only locally. This measure tends to put
more emphasis on object detection performance compared to
temporal continuity. In contrast, track quality measures (Wu
and Nevatia 2006) and IDF1 Ristani et al. (2016), perform
prediction-to-ground-truth matching on a trajectory level
and over-emphasize the temporal continuity aspect of the
tracking performance. In this section, we first introduce the
matching between predicted track and ground-truth anno-
tation before we present the final measures. All evaluation
scripts used in our benchmark are publicly available.9

6.1 Multiple Object Tracking Accuracy

MOTA summarizes three sources of errors with a single per-
formance measure:

MOTA = 1 −
∑

t (FNt + FPt + IDSWt )
∑

t GTt
, (1)

where t is the frame index and GT is the number of ground-
truth objects. where FN are the false negatives, i.e., the
number of ground truth objects that were not detected by
the method. FP are the false positives, i.e., the number of
objects that were falsely detected by the method but do not
exist in the ground-truth. I DSW is the number of identity
switches, i.e., how many times a given trajectory changes
from one ground-truth object to another. The computation of
these values as well as other implementation details of the
evaluation tool are detailed in Appendix Sect. D. We report
the percentage MOTA (−∞, 100] in our benchmark. Note,
thatMOTA can also be negative in cases where the number of
errors made by the tracker exceeds the number of all objects
in the scene.
Justification We note that MOTA has been criticized in the
literature for not having different sources of errors properly
balanced. However, to this day, MOTA is still considered to
be themost expressivemeasure for single-cameraMOT eval-
uation. It was widely adopted for ranking methods in more
recent tracking benchmarks, such as PoseTrack (Andriluka
et al. 2018), KITTI tracking (Geiger et al. 2012), and the
newly released Lyft (Kesten et al. 2019), Waymo (Sun et al.
2020), and ArgoVerse (Chang et al. 2019) benchmarks. We
adopt MOTA for ranking, however, we recommend taking
alternative evaluation measures (Ristani et al. 2016; Wu and
Nevatia 2006) into the account when assessing the tracker’s
performance.
Robustness One incentive behind compiling this benchmark
was to reduce dataset bias by keeping the data as diverse as
possible. The main motivation is to challenge state-of-the-art

9 http://motchallenge.net/devkit.
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approaches and analyze their performance in unconstrained
environments and on unseen data. Our experience shows that
most methods can be heavily overfitted on one particular
dataset, and may not be general enough to handle an entirely
different setting without a major change in parameters or
even in the model.

6.2 Multiple Object Tracking Precision

The Multiple Object Tracking Precision is the average dis-
similarity between all true positives and their corresponding
ground-truth targets. For bounding box overlap, this is com-
puted as:

MOTP =
∑

t,i dt,i∑
t ct

, (2)

where ct denotes the number of matches in frame t and dt,i
is the bounding box overlap of target i with its assigned
ground-truth object in frame t . MOTP thereby gives the aver-
age overlap of td between all correctly matched hypotheses
and their respective objects and ranges between td := 50%
and 100%.

It is important to point out that MOTP is a measure of
localisation precision, not to be confused with the positive
predictive value or relevance in the context of precision /
recall curves used, e.g., in object detection.

In practice, it quantifies the localization precision of the
detector, and therefore, it provides little information about
the actual performance of the tracker.

6.3 Identification Precision, Identification Recall,
and F1 Score

CLEAR-MOT evaluation measures provide event-based
tracking assessment. In contrast, the IDF1 measure (Ristani
et al. 2016) is an identity-based measure that emphasizes
the track identity preservation capability over the entire
sequence. In this case, the predictions-to-ground-truth map-
ping is established by solving a bipartite matching problem,
connecting pairs with the largest temporal overlap. After the
matching is established, we can compute the number of True
Positive IDs (IDTP), False Negative IDs (IDFN), and False
Positive IDs (IDFP), that generalise the concept of per-frame
TPs, FNs and FPs to tracks. Based on these quantities, we
can express the Identification Precision (IDP) as:

IDP = IDTP

IDTP + IDFP
, (3)

and Identification Recall (IDR) as:

IDR = IDTP

IDTP + IDFN
. (4)

Note that IDP and IDR are the fraction of computed (ground-
truth) detections that are correctly identified. IDF1 is then
expressed as a ratio of correctly identified detections over
the average number of ground-truth and computed detections
and balances identification precision and recall through their
harmonic mean:

IDF1 = 2 · IDTP
2 · IDTP + IDFP + IDFN

. (5)

6.4 Track Quality Measures

The final measures that we report on our benchmark are
qualitative, and evaluate the percentage of the ground-truth
trajectory that is recovered by a tracking algorithm. Each
ground-truth trajectory can be consequently classified as
mostly tracked (MT), partially tracked (PT), and mostly lost
(ML).As defined inWu andNevatia (2006), a target ismostly
tracked if it is successfully tracked for at least 80% of its life
span, and considered lost in case it is covered for less than
20% of its total length. The remaining tracks are considered
to be partially tracked. A higher number of MT and a few
ML is desirable. Note, that it is irrelevant for this measure
whether the ID remains the same throughout the track. We
report MT and ML as a ratio of mostly tracked and mostly
lost targets to the total number of ground-truth trajectories.

In certain situations, one might be interested in obtaining
long, persistent tracks without trajectory gaps. To that end,
the number of track fragmentations (FM) counts how many
times a ground-truth trajectory is interrupted (untracked). A
fragmentation event happens each time a trajectory changes
its status from tracked to untracked and is resumed at a later
point. Similarly to the ID switch ratio (c.f. Sect. D.1), we also
provide the relative number of fragmentations as FM/Recall.

7 Analysis of State-of-the-Art Trackers

We now present an analysis of recent multi-object tracking
methods that submitted to the benchmark. This is divided
into two parts: (i) categorization of the methods, where our
goal is to help young scientists to navigate the recent MOT
literature, and (ii) error and runtime analysis, where we point
out methods that have shown good performance on a wide
range of scenes. We hope this can eventually lead to new
promising research directions.

We consider all valid submissions to all three benchmarks
that were published before April 17th, 2020, and used the
provided set of public detections. For this analysis, we focus
onmethods that are peer-reviewed, i.e., published at a confer-
ence or a journal.We evaluate a total of 101 (public) trackers;
73 trackers were tested onMOT15, 74 onMOT16 and 57 on
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Fig. 5 Graphical overview of the top 15 trackers of all benchmarks. The entries are ordered from easiest sequence/best performing method, to
hardest sequence/poorest performance, respectively. The mean performance across all sequences/submissions is depicted with a thick black line

MOT17. A small subset of the submissions10 were done by
the benchmark organizers and not by the original authors of
the respectivemethod. Results forMOT15 are summarized in
Table 1, forMOT16 in Table 2 and forMOT17 in Table 3. The
performance of the top 15 ranked trackers is demonstrated in
Fig. 5.

10 The methods DP_NMS, TC_ODAL, TBD, SMOT, CEM, DCO_X,
and LP2D were taken as baselines for the benchmark.

7.1 Trends in Tracking

Global optimization The community has long used the
paradigm of tracking-by-detection for MOT, i.e., dividing
the task into two steps: (i) object detection and (ii) data asso-
ciation, or temporal linking between detections. The data
association problem could be viewed as finding a set of dis-
joint paths in a graph, where nodes in the graph represent
object detections, and links hypothesize feasible associa-
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tions. Detectors usually produce multiple spatially-adjacent
detection hypotheses, that are usually pruned using heuristic
non-maximum suppression (NMS).

Before 2015, the community mainly focused on finding
strong, preferably globally optimal methods to solve the data
association problem. The task of linking detections into a
consistent set of trajectories was often cast as, e.g., a graph-
ical model and solved with k-shortest paths in DP_NMS
(Pirsiavash et al. 2011), as a linear program solved with the
simplex algorithm in LP2D (Leal-Taixé et al. 2011), as a
Conditional Random Field in DCO_X (Milan et al. 2016),
SegTrack (Milan et al. 2015), LTTSC-CRF (Le et al. 2016),
and GMMCP (Dehghan et al. 2015), using joint probabilistic
data association filter (JPDA) (Rezatofighi et al. 2015) or as
a variational Bayesian model in OVBT (Ban et al. 2016).

A number of tracking approaches investigate the efficacy
of using a Probability Hypothesis Density (PHD) filter-based
tracking framework (Baisa 2019a; Baisa 2019b; Baisa and
Wallace 2019; Fu et al. 2018; Sanchez-Matilla et al. 2016;
Song and Jeon 2016; Song et al. 2019; Wojke and Paulus
2016). This family of methods estimate states of multiple
targets and data association simultaneously, reaching 30.72%
MOTA on MOT15 (GMPHD_OGM), 41% and 40.42% on
MOT16 (PHD_GSDL and GMPHD_ReId, respectively) and
49.94% (GMPHD_OGM) on MOT17.

Newer methods (Tang et al. 2015) bypassed the need to
pre-process object detections with NMS. They proposed a
multi-cut optimization framework,whichfinds the connected
components in a graph that represent feasible solutions, clus-
tering all detections that correspond to the same target. This
family of methods (JMC (Tang et al. 2016), LMP (Tang et al.
2017), NLLMPA (Levinkov et al. 2017), JointMC (Keuper
et al. 2018), HCC (Ma et al. 2018b)) achieve 35.65%MOTA
onMOT15 (JointMC), 48.78% and 49.25% (LMP and HCC,
respectively) onMOT16 and 51.16% (JointMC) onMOT17.
Motion Models A lot of attention has also been given to
motion models, used as additional association affinity cues,
e.g., SMOT (Dicle et al. 2013), CEM (Milan et al. 2014),
TBD (Geiger et al. 2014), ELP (McLaughlin et al. 2015)
and MotiCon (Leal-Taixé et al. 2014). The pairwise costs
for matching two detections were based on either simple
distances or simple appearance models, such as color his-
tograms. These methods achieve around 38% MOTA on
MOT16 (see Table 2) and 25% on MOT15 (see Table 1).
Hand-Crafted Affinity Measures After that, the atten-
tion shifted towards building robust pairwise similarity costs,
mostly based on strong appearance cues or a combination of
geometric and appearance cues. This shift is clearly reflected
in an improvement in tracker performance and the ability for
trackers to handle more complex scenarios. For example,
LINF1 (Fagot-Bouquet et al. 2016) uses sparse appearance
models, and oICF (Kieritz et al. 2016) use appearancemodels
based on integral channel features. Top-performing methods

of this class incorporate long-term interest point trajectories,
e.g., NOMT (Choi 2015), and, more recently, learned mod-
els for sparse feature matching JMC (Tang et al. 2016) and
JointMC (Keuper et al. 2018) to improve pairwise affinity
measures. As can be seen in Table 1, methods incorporating
sparse flow or trajectories yielded a performance boost – in
particular, NOMT is a top-performing method published in
2015, achieving MOTA of 33.67% on MOT15 and 46.42%
on MOT16. Interestingly, the first methods outperforming
NOMT on MOT16 were published only in 2017 (AMIR
(Sadeghian et al. 2017) and NLLMP (Levinkov et al. 2017)).
Towards Learning In 2015, we observed a clear trend
towards utilizing learning to improve MOT.
LP_SSVM (Wang and Fowlkes 2016) demonstrates a sig-
nificant performance boost by learning the parameters of
linear cost association functions within a network flow track-
ing framework, especially when compared to methods using
a similar optimization framework but hand-crafted associa-
tion cues, e.g. Leal-Taixé et al. (2014). The parameters are
learned using structured SVM (Taskar et al. 2003). MDP
(Xiang et al. 2015) goes one step further and proposes to
learn track management policies (birth/death/association) by
modeling object tracks asMarkovDecision Processes (Thrun
et al. 2005). Standard MOT evaluation measures (Stiefelha-
gen et al. 2006) are not differentiable. Therefore, this method
relies on reinforcement learning to learn these policies. As
can be seen in Table 1, this method outperforms the majority
ofmethods published in 2015 by a largemargin and surpasses
30% MOTA on MOT15.

In parallel, methods start leveraging the representational
power of deep learning, initially by utilizing transfer learn-
ing.MHT_DAM(Kimet al. 2015) learns to adapt appearance
models online using multi-output regularized least squares.
Instead of weak appearance features, such as color his-
tograms, they extract base features for each object detection
using a pre-trained convolutional neural network. With the
combination of the powerfulMHT tracking framework (Reid
1979) and online-adapted features used for data association,
this method surpasses MDP and attains over 32% MOTA
on MOT15 and 45% MOTA on MOT16. Alternatively, JMC
(Tang et al. 2016) and JointMC (Keuper et al. 2018) use a pre-
learned deepmatchingmodel to improve the pairwise affinity
measures. All aforementioned methods leverage pre-trained
models.

Learning Appearance Models The next clearly emerging
trend goes in the direction of learning appearance models
for data association in end-to-end fashion directly on the tar-
get (i.e., MOT15, MOT16, MOT17) datasets. SiameseCNN
(Leal-Taixe et al. 2016) trains a siamese convolutional neu-
ral network to learn spatio-temporal embeddings based on
object appearance and estimated optical flow using con-
trastive loss (Hadsell et al. 2006). The learned embeddings
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are then combined with contextual cues for robust data asso-
ciation. This method uses similar linear programming based
optimization framework (Zhang et al. 2008) compared to
LP_SSVM (Wang and Fowlkes 2016), however, it surpasses
it significantly performance-wise, reaching 29% MOTA
on MOT15. This demonstrates the efficacy of fine-tuning
appearance models directly on the target dataset and utiliz-
ing convolutional neural networks. This approach is taken a
step further with QuadMOT (Son et al. 2017), which simi-
larly learns spatio-temporal embeddings of object detections.
However, they train their siamese network using quadruplet
loss (Chen et al. 2017b) and learn to place embedding vec-
tors of temporally-adjacent detections instances closer in the
embedding space. These methods reach 33.42% MOTA in
MOT15 and 41.1% onMOT16.

The learning process, in this case, is supervised. Differ-
ent from that, HCC (Ma et al. 2018b) learns appearance
models in an unsupervised manner. To this end, they train
their method using object trajectories obtained from the test
set using offline correlation clustering-based tracking frame-
work (Levinkov et al. 2017). TO (Manen et al. 2016), on the
other hand, proposes tomine detection pairs over consecutive
frames using single object trackers to learn affinity measures
which are plugged into a network flow optimization tracking
framework. Suchmethods have the potential to keep improv-
ing affinity models on datasets for which ground-truth labels
are not available.

Online Appearance Model Adaptation The aforemen-
tioned methods only learn general appearance embedding
vectors for object detection and do not adapt the track-
ing target appearance models online. Further performance
is gained by methods that perform such adaptation online
(Chu et al. 2017; Kim et al. 2015, 2018; Zhu et al. 2018).
MHT_bLSTM (Kim et al. 2018) replaces the multi-output
regularized least-squares learning framework ofMHT_DAM
(Kim et al. 2015) with a bi-linear LSTM and adapts both the
appearance model as well as the convolutional filters in an
online fashion. STAM (Chu et al. 2017) and DMAN (Zhu
et al. 2018) employ an ensemble of single-object trackers
(SOTs) that share a convolutional backbone and learn to
adapt the appearancemodel of the targets online during infer-
ence. They employ a spatio-temporal attention model that
explicitly aims to prevent drifts in appearance models due
to occlusions and interactions among the targets. Similarly,
KCF (Chu et al. 2019) employs an ensemble of SOTs and
updates the appearance model during tracking. To prevent
drifts, they learn a tracking update policy using reinforce-
ment learning. These methods achieve up to 38.9% MOTA
onMOT15, 48.8%onMOT16 (KCF), and 50.71%onMOT17
(MHT_DAM). Surprisingly, MHT_DAM out-performs its

bilinear-LSTM variant (MHT_bLSTM achieves a MOTA of
47.52%) on MOT17.

Learning toCombineAssociationCues Anumber ofmeth-
ods go beyond learning only the appearance model. Instead,
these approaches learn to encode and combine heterogeneous
association cues. SiameseCNN (Leal-Taixe et al. 2016) uses
gradient boosting to combine learned appearance embed-
dings with contextual features. AMIR (Sadeghian et al.
2017) leverages recurrent neural networks in order to encode
appearance, motion, pedestrian interactions and learns to
combine these sources of information. STRN (Xu et al. 2019)
proposes to leverage relational neural networks to learn to
combine association cues, such as appearance, motion, and
geometry. RAR (Fang et al. 2018) proposes recurrent auto-
regressive networks for learning a generative appearance and
motion model for data association. These methods achieve
37.57% MOTA on MOT15 and 47.17% on MOT16.

Fine-Grained Detection A number of methods employ
additional fine-grained detectors and incorporate their out-
puts into affinity measures, e.g., a head detector in the case
of FWT (Henschel et al. 2018), or a body joint detectors in
JBNOT (Henschel et al. 2019), which are shown to help sig-
nificantly with occlusions. The latter attains 52.63% MOTA
on MOT17, which places it as the second-highest scoring
method published in 2019.

Tracking-by-Regression Several methods leverage ensem-
bles of (trainable) single-object trackers (SOTs), used to
regress tracking targets from the detected objects, utilized
in combination with simple track management (birth/death)
strategies. We refer to this family of models as MOT-by-
SOT or tracking-by-regression. We note that this paradigm
forMOTdeparts from the traditional view of themulti-object
tracking problem in computer vision as a generalized assign-
ment problem (or multi-dimensional assignment problem),
i.e. the problem of grouping object detections into a discrete
set of tracks. Instead, methods based on target regression
bring the focus back to the target state estimation.We believe
the reasons for the success of these methods is two-fold: (i)
rapid progress in learning-based SOT (Held et al. 2016; Li
et al. 2018) that effectively leverages convolutional neural
networks, and (ii) thesemethods can effectively utilize image
evidence that is not covered by the given detection bounding
boxes. Perhaps surprisingly, themost successful tracking-by-
regression method, Tracktor (Bergmann et al. 2019), does
not perform online appearance model updates (c.f., STAM,
DMAN (Chu et al. 2017; Zhu et al. 2018) andKCF (Chu et al.
2019)). Instead, it simply re-purposes the regression head of
the Faster R-CNN (Ren et al. 2015) detector, which is inter-
preted as the target regressor. This approach is most effective
when combined with a motion compensation module and a
learned re-identification module, attaining 46% MOTA on
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Fig. 6 Overview of tracker performances measured by their date of submission time and model type category

Fig. 7 Tracker performance measured byMOTA versus processing efficiency in frames per second forMOT15,MOT16, andMOT17 on a log-scale.
The latter is only indicative of the true value and has not been measured by the benchmark organizers. See text for details

MOT15 and 56% on MOT16 and MOT17, outperforming
methods published in 2019 by a large margin.

Towards End-to-End Learning Even though tracking-by-
regression methods brought substantial improvements, they
are not able to cope with larger occlusions gaps. To com-
bine the power of graph-based optimization methods with
learning, MPNTrack (Brasó and Leal-Taixé 2020) proposes
amethod that leveragesmessage-passing networks (Battaglia
et al. 2016) to directly learn to perform data association via
edge classification. By combining the regression capabilities
of Tracktor (Bergmann et al. 2019) with a learned discrete
neural solver, MPNTrack establishes a new state of the art,
effectively using the best of both worlds—target regression
and discrete data association. This method is the first one to
surpass MOTA above 50% on MOT15. On the MOT16 and
MOT17 it attains a MOTA of 58.56% and 58.85%, respec-
tively. Nonetheless, this method is still not fully end-to-end
trained, as it requires a projection step from the solution given
by the graph neural network to the set of feasible solutions
according to the network flow formulation and constraints.

Alternatively, (Xiang et al. 2020) uses MHT framework
(Reid 1979) to link tracklets, while iteratively re-evaluating
appearance/motion models based on progressively merged

tracklets. This approach is one of the top onMOT17, achiev-
ing 54.87% MOTA.

In the spirit of combining optimization-based methods
with learning, Zhang et al. (2020) revisits CRF-based track-
ing models and learns unary and pairwise potential functions
in an end-to-end manner. On MOT16, this method attains
MOTA of 50.31%.

We do observe trends towards learning to perform end-
to-end MOT. To the best of our knowledge, the first method
attempting this is RNN_LSTM (Milan et al. 2017), which
jointly learns motion affinity costs and to perform bi-
partite detection association using recurrent neural networks
(RNNs). FAMNet (Chu andLing 2019) uses a single network
to extract appearance features from images, learns associa-
tion affinities, and estimates multi-dimensional assignments
of detections into object tracks. The multi-dimensional
assignment is performed via a differentiable network layer
that computes rank-1 estimation of the assignment tensor,
which allows for back-propagation of the gradient. They
perform learning with respect to binary cross-entropy loss
between predicted assignments and ground-truth.

All aforementionedmethods have one thing in common—
they optimize network parameters with respect to proxy
losses that do not directly reflect tracking quality, most com-
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monly measured by the CLEAR-MOT evaluation measures
(Stiefelhagen et al. 2006). To evaluate MOTA, the assign-
ment between track predictions and ground truth needs to
be established; this is usually performed using the Hun-
garian algorithm (Kuhn and Yaw 1955), which contains
non-differentiable operations. To address this discrepancy
DeepMOT (Xu et al. 2020) proposes the missing link—a
differentiable matching layer that allows expressing a soft,
differentiable variant of MOTA and MOTP.

Conclusion In summary, we observed that after an initial
focus on developing algorithms for discrete data association
(Dehghan et al. 2015; Le et al. 2016; Pirsiavash et al. 2011;
Zhang et al. 2008), the focus shifted towards hand-crafting
powerful affinity measures (Choi 2015; Kieritz et al. 2016;
Leal-Taixé et al. 2014), followed by large improvements
brought by learning powerful affinity models (Leal-Taixe
et al. 2016; Son et al. 2017; Wang and Fowlkes 2016; Xiang
et al. 2015).

In general, the major outstanding trends we observe in the
past years all leverage the representational power of deep
learning for learning association affinities, learning to adapt
appearance models online (Chu et al. 2019, 2017; Kim et al.
2018; Zhu et al. 2018) and learning to regress tracking targets
(Bergmann et al. 2019; Chu et al. 2019, 2017; Zhu et al.
2018). Figure 6 visualizes the promise of deep learning for
tracking by plotting the performance of submitted models
over time and by type.

The main common components of top-performing meth-
ods are: (i) learned single-target regressors (single-object
trackers), such as (Held et al. 2016; Li et al. 2018), and
(ii) re-identification modules (Bergmann et al. 2019). These
methods fall short in bridging large occlusion gaps. To this
end, we identified Graph Neural Network-based methods
(Brasó and Leal-Taixé 2020) as a promising direction for
future research. We observed the emergence of methods
attempting to learn to track objects in end-to-end fashion
instead of training individual modules of tracking pipelines
(Chu and Ling 2019; Milan et al. 2017; Xu et al. 2020). We
believe this is one of the key aspects to be addressed to fur-
ther improve performance and expect to seemore approaches
leveraging deep learning for that purpose.

7.2 Runtime Analysis

Different methods require a varying amount of computa-
tional resources to trackmultiple targets. Somemethods may
require large amounts of memory while others need to be
executed on a GPU. For our purpose, we ask each bench-
mark participant to provide the number of seconds required
to produce the results on the entire dataset, regardless of the
computational resources used. It is important to note that

the resulting numbers are therefore only indicative of each
approach and are not immediately comparable to one another.

Figure 7 shows the relationship between each submis-
sion’s performance measured by MOTA and its efficiency in
terms of frames per second, averaged over the entire dataset.
There are two observations worth pointing out. First, the
majority ofmethods are still far below real-timeperformance,
which is assumed at 25 Hz. Second, the average process-
ing rate ∼ 5 Hz does not differ much between the different
sequences, which suggests that the different object densities
(9 ped./fr. in MOT15 and 26 ped./fr. in MOT16/MOT17) do
not have a large impact on the speed themodels.One explana-
tion is that novel learning methods have an efficient forward
computation, which does not vary much depending on the
number of objects. This is in clear contrast to classic meth-
ods that relied on solving complex optimization problems at
inference, which increased computation significantly as the
pedestrian density increased. However, this conclusion has
to be taken with caution because the runtimes are reported
by the users on a trust base and cannot be verified by us.

7.3 Error Analysis

As we now, different applications have different require-
ments, e.g., for surveillance it is critical to have few false
negatives, while for behavior analysis, having a false pos-
itive can mean computing wrong motion statistics. In this
section, we take a closer look at the most common errors
made by the tracking approaches. This simple analysis can
guide researchers in choosing the best method for their task.
In Fig. 8, we show the number of false negatives (FN, blue)
and false positives (FP, red) created by the trackers on average
with respect to the number of FN/FP of the object detector,
used as an input. A ratio below 1 indicates that the track-
ers have improved in terms of FN/FP over the detector. We
show the performance of the top 15 trackers, averaged over
sequences. We order them according to MOTA from left to
right in decreasing order.

We observe all top-performing trackers reduce the amount
of FPs and FNs compared to the public detections. While the
trackers reduce FPs significantly, FNs are decreased only
slightly. Moreover, we can see a direct correlation between
the FN and tracker performance, especially for MOT16 and
MOT17 datasets, since the number of FNs ismuch larger than
the number of FPs. The question is then, why are methods
not focusing on reducing FNs? It turns out that “filling the
gaps“ between detections, what is commonly thought track-
ers should do, is not an easy task.

It is not until 2018 thatwe seemethods drastically decreas-
ing the number of FNs, and as a consequence, MOTA
performance leaps forward. As shown in Fig. 6, this is due
to the appearance of learning-based tracking-by-regression
methods (Bergmann et al. 2019; Brasó and Leal-Taixé 2020;
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Fig. 8 Detailed error analysis. The plots show the error ratios for track-
ers w.r.t detector (taken at the lowest confidence threshold), for two
types of errors: false positives (FP) and false negatives (FN). Values
above 1 indicate a higher error count for trackers than for detectors.

Note that most trackers concentrate on removing false alarms provided
by the detector at the cost of eliminating a few true positives, indicated
by the higher FN count

Chu et al. 2017; Zhu et al. 2018). Such methods decrease the
number of FNs the most by effectively using image evidence
not covered by detection bounding boxes and regressing tar-
gets to areas where they are visible but missed by detectors.
This brings us back to the common wisdom that trackers
should be good at “filling the gaps“ between detections.

Overall, it is clear that MOT17 still presents a challenge
both in terms of detection as well as tracking. It will require
significant further future efforts to bring performance to the
next level. In particular, the next challenge that future meth-
odswill need to tackle is bridging large occlusion gaps,which
can not be naturally resolved by methods performing target
regression, as these only work as long as the target is (par-
tially) visible.

8 Conclusion and FutureWork

We have introduced MOTChallenge, a standardized bench-
mark for a fair evaluation of single-camera multi-person
tracking methods. We presented its first two data releases
with about 35,000 frames of footage and almost 700,000
annotated pedestrians. Accurate annotations were carried out
following a strict protocol, and extra classes such as vehicles,
sitting people, reflections, or distractors were also annotated
in the second release to provide further information to the
community.

We have further analyzed the performance of 101 trackers;
73MOT15, 74MOT16, and 57 onMOT17 obtaining several
insights. In the past, at the center of vision-based MOT were
methods focusing on global optimization for data associa-
tion. Since then, we observed that large improvements were
made by hand-crafting strong affinity measures and leverag-
ing deep learning for learning appearance models, used for
better data association. More recent methods moved towards
directly regressing bounding boxes, and learning to adapt tar-
get appearance models online. As the most promising recent

trends that hold a large potential for future research, we iden-
tified the methods that are going in the direction of learning
to track objects in an end-to-end fashion, combining opti-
mization with learning.

We believe our Multiple Object Tracking Benchmark and
the presented systematic analysis of existing tracking algo-
rithms will help identify the strengths and weaknesses of the
current state of the art and shed some light into promising
future research directions.
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Appendices

A Benchmark Submission

Our benchmark consists of the database and evaluation server
on one hand, and the website as the user interface on the
other. It is open to everyone who respects the submission
policies (see next section). Before participating, every user
is required to create an account, providing an institutional
and not a generic e-mail address.11

After registering, the user can create a new tracker with a
unique name and enter all additional details. It is mandatory
to indicate:

– the full name and a brief description of the method
– a reference to the publication of the method, if already
existing,

– whether the method operates online or on a batch of
frames and whether the source code is publicly available,

– whether only the provided or also external training and
detection data were used.

After creating all details of a new tracker, it is possible to
assign open challenges to this tracker and submit results to the
different benchmarks. To participate in a challenge the user
has to provide the following information for each challenge
they want to submit to:

– name of the challenge in which the tracker will be par-
ticipating,

– a reference to the publication of the method, if already
existing,

– the total runtime in seconds for computing the results for
the test sequences and the hardware used, and

– whether only provided data was used for training, or also
data from other sources were involved.

The user can then submit the results to the challenge in the
format described in Sect. B.1. The tracking results are auto-
matically evaluated and appear on the user’s profile. The
results are not automatically displayed in the public ranking
table. The user can decide at any point in time to make the
results public. Results can be published anonymously, e.g.,
to enable a blind review process for a corresponding paper.
In this case, we ask to provide the venue and the paper ID or a
similar unique reference. We request that a proper reference
to the method’s description is added upon acceptance of the
paper. Anonymous entries are hidden from the benchmark
after six months of inactivity.

11 For accountability and to prevent abuse by using several email
accounts.

The trackers and challenge meta information such as
description, project page, runtime, or hardware can be edited
at any time.Visual results of all public submissions, aswell as
annotations and detections, can be viewed and downloaded
on the individual result pages of the corresponding tracker.

A.1 Submission Policy

The main goal of this benchmark is to provide a platform
that allows for objective performance comparison ofmultiple
target tracking approaches on real-world data. Therefore, we
introduce a few simple guidelines that must be followed by
all participants.

Training Ground truth is only provided for the training
sequences. It is the participant’s own responsibility to find
the best setting using only the training data. The use of addi-
tional training data must be indicated during submission and
will be visible in the public ranking table. The use of ground
truth labels on the test data is strictly forbidden. This or any
other misuse of the benchmark will lead to the deletion of
the participant’s account and their results.

Detections We also provide a unique set of detections (see
Sect. 4.2) for each sequence. We expect all tracking-by-
detection algorithms to use the given detections. In case the
user wants to present results with another set of detections
or is not using detections at all, this should be clearly stated
during submission and will also be displayed in the results
table.

Submission Frequency Generally, we expect one single sub-
mission for a particular method per benchmark. If for any
reason the user needs to re-compute and re-submit the results
(e.g. due to a bug discovered in the implementation), they
may do so after a waiting period of 72 h after the last sub-
mission to submit to the same challenge with any of their
trackers. This policy should discourage the use of the bench-
mark server for training and parameter tuning on the test
data. The number of submissions is counted and displayed
for each method. We allow a maximum number of 4 submis-
sions per tracker and challenge. We allow a user to create
several tracker instances for different tracking models. How-
ever, a user canonly create a new tracker every 30days.Under
no circumstances must anyone create a second account and
attempt to re-submit in order to bypass the waiting period.
Such behavior will lead to the deletion of the accounts and
exclusion of the user from participating in the benchmark.

A.2 Challenges andWorkshops

Wehave twomodalities for submission: the general open-end
challenges and the special challenges. The main challenges,
2D MOT 2015, 3D MOT 2015, MOT16, and MOT17 are
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always open for submission and are nowadays the standard
evaluation platform for multi-target tracking methods sub-
mitting to computer vision conferences such as CVPR, ICCV
or ECCV.

Special challenges are similar in spirit to thewidely known
PASCAL VOC series (Everingham et al. 2015), or the Ima-
geNet competitions (Russakovsky et al. 2015). Each special
challenge is linked to a workshop. The first edition of our
series was the WACV 2015 Challenge that consisted of
six outdoor sequences with both moving and static cam-
eras, followed by the 2nd edition held in conjunction with
ECCV 2016 on which we evaluated methods on the new
MOT16 sequences. The MOT17 sequences were presented
in the Joint Workshop on Tracking and Surveillance in con-
junction with the Performance Evaluation of Tracking and
Surveillance (PETS) (Ferryman and Ellis 2010; Ferryman
and Shahrokni 2009) benchmark at the Conference onVision
and Pattern Recognition (CVPR) in 2017. The results and
winningmethods were presented during the respective work-
shops. Submission to those challenges is open only for a short
period of time, i.e., there is a fixed submission deadline for
all participants. Each method must have an accompanying
paper presented at the workshop. The results of the methods
are kept hidden until the date of the workshop itself when the
winning method is revealed and a prize is awarded.

B MOT 15

We have compiled a total of 22 sequences, of which we
use half for training and half for testing. The annota-
tions of the testing sequences are not released in order to
avoid (over)fitting of the methods to the specific sequences.
Nonetheless, the test data contains over 10minutes of footage
and 61,440 annotated bounding boxes, therefore, it is hard
for researchers to over-tune their algorithms on such a large
amount of data. This is one of the major strengths of the
benchmark. We classify the sequences according to:

We classify the sequences according to:

– Moving or static camera the camera can be held by a
person, placed on a stroller (Ess et al. 2008) or on a
car (Geiger et al. 2012), or can be positioned fixed in
the scene.

– Viewpoint the camera can overlook the scene from a high
position, a medium position (at pedestrian’s height), or
at a low position.

Fig. 9 Comparison histogram between training and testing sequences
of static versusmoving camera, camera viewpoint: low,mediumor high,
conditions: normal, shadows, night or indoor

– Weather the illumination conditions inwhich the sequence
was taken. Sequences with strong shadows and saturated
parts of the imagemake tracking challenging, while night
sequences contain a lot of motion blur, which is often a
problem for detectors. Indoor sequences contain a lot of
reflections, while the sequences classified as normal do
not contain heavy illumination artifacts that potentially
affect tracking.

We divide the sequences into training and testing to have
a balanced distribution, as shown in Fig. 9.

B.1 Data Format

All images were converted to JPEG and named sequentially
to a 6-digit file name (e.g. 000001.jpg). Detection and anno-
tation files are simple comma-separated value (CSV) files.
Each line represents one object instance, and it contains 10
values as shown in Table 6.

The first number indicates in which frame the object
appears, while the second number identifies that object as
belonging to a trajectory by assigning a unique ID (set to −1
in a detection file, as no ID is assigned yet). Each object can
be assigned to only one trajectory. The next four numbers
indicate the position of the bounding box of the pedestrian in
2D image coordinates. The position is indicated by the top-
left corner as well as the width and height of the bounding
box. This is followed by a single number, which in the case
of detections denotes their confidence score. The last three
numbers indicate the 3D position in real-world coordinates
of the pedestrian. This position represents the feet of the per-
son. In the case of 2D tracking, these values will be ignored
and can be left at −1.
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An example of such a detection 2D file is:

1, -1, 794.2, 47.5, 71.2, 174.8, 67.5, -1, -1,
-1

1, -1, 164.1, 19.6, 66.5, 163.2, 29.4, -1, -1,
-1

1, -1, 875.4, 39.9, 25.3, 145.0, 19.6, -1, -1,
-1

2, -1, 781.7, 25.1, 69.2, 170.2, 58.1, -1, -1,
-1

For the ground truth and results files, the 7th value (con-
fidence score) acts as a flag whether the entry is to be
considered. A value of 0 means that this particular instance is
ignored in the evaluation, while a value of 1 is used to mark
it as active. An example of such an annotation 2D file is:

1, 1, 794.2, 47.5, 71.2, 174.8, 1, -1, -1, -1
1, 2, 164.1, 19.6, 66.5, 163.2, 1, -1, -1, -1
1, 3, 875.4, 39.9, 25.3, 35.0, 0, -1, -1, -1
2, 1, 781.7, 25.1, 69.2, 170.2, 1, -1, -1, -1

In this case, there are 2 pedestrians in the first frame of the
sequence, with identity tags 1, 2. The third pedestrian is too
small and therefore not considered, which is indicated with
a flag value (7th value) of 0. In the second frame, we can see
that pedestrian 1 remains in the scene. Note, that since this is
a 2D annotation file, the 3D positions of the pedestrians are
ignored and therefore are set to -1. All values including the
bounding box are 1-based, i.e. the top left corner corresponds
to (1, 1).

To obtain a valid result for the entire benchmark, a sepa-
rate CSV file following the format described above must be
created for each sequence and called
“Sequence-Name.txt”. All files must be compressed
into a single zip file that can then be uploaded to be evalu-
ated.

C MOT16 andMOT17 Release

Table 9 presents an overview of the MOT16 and MOT17
dataset.

C.1 Annotation Rules

We follow a set of rules to annotate every moving person or
vehicle within each sequence with a bounding box as accu-
rately as possible. In this section, we define a clear protocol
that was obeyed throughout the entire dataset annotations of
MOT16 and MOT17 to guarantee consistency.

C.1.1 Target Class

In this benchmark, we are interested in tracking moving
objects in videos. In particular, we are interested in evalu-
ating multiple people tracking algorithms. Therefore, people

Target Ambiguous Other
Pedestrian

On vehicle
Walking
Running
Standing
... Cycling

Skating
...

Static person
Sitting
Lying
...

Distractor
Mannikin

Poster
Statue

...Reflection
Bicycle

Car

Occluder
Lamp post
Trash bin
Pillar
Tree
Stroller

Motorbike

Fig. 10 Left: An overview of annotated classes. The classes in orange
will be the central ones to evaluate on. The red classes include ambigu-
ous cases such that neither recovering nor missing will be penalized
in the evaluation. The classes in green are annotated for training pur-
poses and for computing the occlusion level of all pedestrians. Right:
An exemplar of an annotated frame. Note how partially cropped objects
are also marked outside of the frame. Also note that the bounding box
encloses the entire person but not e.g. the white bag of Pedestrian 1
(bottom left)

will be the center of attention of our annotations. We divide
the pertinent classes into three categories:

(i) moving or standing pedestrians;
(ii) people that are not in an upright position or artificial

representations of humans; and
(iii) vehicles and occluders.

In the first group, we annotate all moving or standing
(upright) pedestrians that appear in the field of view and
can be determined as such by the viewer. People on bikes
or skateboards will also be annotated in this category (and
are typically found by modern pedestrian detectors). Fur-
thermore, if a person briefly bends over or squats, e.g. to pick
something up or to talk to a child, they shall remain in the
standard pedestrian class. The algorithms that submit to our
benchmark are expected to track these targets.

In the second group, we include all people-like objects
whose exact classification is ambiguous and canvary depend-
ing on the viewer, the application at hand, or other factors.We
annotate all static people that are not in an upright position,
e.g. sitting, lying down. We also include in this category any
artificial representation of a human that might fire a detection
response, such as mannequins, pictures, or reflections. Peo-
ple behind glass should also be marked as distractors. The
idea is to use these annotations in the evaluation such that
an algorithm is neither penalized nor rewarded for tracking,
e.g., a sitting person or a reflection.

In the third group, we annotate all moving vehicles such as
cars, bicycles, motorbikes and non-motorized vehicles (e.g.
strollers), as well as other potential occluders. These annota-
tions will not play any role in the evaluation, but are provided
to the users both for training purposes and for computing the
level of occlusion of pedestrians. Static vehicles (parked cars,
bicycles) are not annotated as long as they do not occlude
any pedestrians. The rules are summarized in Table 7, and
in Fig. 10 we present a diagram of the classes of objects we
annotate, as well as a sample frame with annotations.
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Table 6 Data format for the input and output files, both for detection and annotation files

Position Name Description

1 Frame number Indicate at which frame the object is
present

2 Identity number Each pedestrian trajectory is identified by
a unique ID (−1 for detections)

3 Bounding box left Coordinate of the top-left corner of the
pedestrian bounding box

4 Bounding box top Coordinate of the top-left corner of the
pedestrian bounding box

5 Bounding box width Width in pixels of the pedestrian
bounding box

6 Bounding box height Height in pixels of the pedestrian
bounding box

7 Confidence score Indicates how confident the detector is
that this instance is a pedestrian. For the
ground truth and results, it acts as a flag
whether the entry is to be considered.

8 x 3D x position of the pedestrian in
real-world coordinates (−1 if not
available)

9 y 3D y position of the pedestrian in
real-world coordinates (−1 if not
available)

10 z 3D z position of the pedestrian in
real-world coordinates (−1 if not
available)

Table 7 Annotation rules

What? Targets: all upright people including

+ walking, standing, running pedestrians

+ cyclists, skaters

Distractors: static people or representations

+ people not in upright position (sitting, lying down)

+ reflections, drawings or photographs of people

+ human-like objects like dolls, mannequins

Others: moving vehicles and other occluders

+ Cars, bikes, motorbikes

+ Pillars, trees, buildings

When? Start as early as possible

End as late as possible.

Keep ID as long as the person is inside the field of
view and its path can be determined
unambiguously

How? The bounding box should contain all pixels
belonging to that person and at the same time be as
tight as possible

Occlusions Always annotate during occlusions if the position
can be determined unambiguously

If the occlusion is very long and it is not possible to
determine the path of the object using simple
reasoning (e.g. constant velocity assumption), the
object will be assigned a new ID once it reappears

C.1.2 Bounding Box Alignment

The bounding box is aligned with the object’s extent as
accurately as possible. It should contain all object pixels
belonging to that instance and at the same time be as tight
as possible. This implies that a walking side-view pedestrian
will typically have a box whose width varies periodically
with the stride, while a front view or a standing person will
maintain a more constant aspect ratio over time. If the person
is partially occluded, the extent is estimated based on other
available information such as expected size, shadows, reflec-
tions, previous and future frames and other cues. If a person
is cropped by the image border, the box is estimated beyond
the original frame to represent the entire person and to esti-
mate the level of cropping. If an occluding object cannot be
accurately enclosed in one box (e.g. a tree with branches or
an escalator may require a large bounding box where most
of the area does not belong to the actual object), then several
boxes may be used to better approximate the extent of that
object.

Persons on vehicles are only annotated separately from
the vehicle when clearly visible. For example, children inside
strollers or people inside cars are not annotated, while motor-
cyclists or bikers are.
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C.1.3 Start and End of Trajectories

The box (track) appears as soon as the person’s location and
extent can be determined precisely. This is typically the case
when ≈ 10% of the person becomes visible. Similarly, the
track ends when it is no longer possible to pinpoint the exact
location. In other words, the annotation starts as early and
ends as late as possible such that the accuracy is not forfeited.
The box coordinates may exceed the visible area. A person
leaving the field of view and re-appearing at a later point is
assigned a new ID.

C.1.4 Minimal Size

Although the evaluation will only take into account pedestri-
ans that have aminimumheight in pixels, annotations contain
all objects of all sizes as long as they are distinguishable by
the annotator. In other words, all targets are annotated inde-
pendently of their sizes in the image.

C.1.5 Occlusions

There is no need to explicitly annotate the level of occlusion.
This value is be computed automatically using the anno-
tations. We leverage the assumption that for two or more
overlapping bounding boxes the object with the lowest y-
value of the bounding box is closest to the camera and
therefore occlude the other object behind it. Each target is
fully annotated through occlusions as long as its extent and
location can be determined accurately. If a target becomes
completely occluded in the middle of a sequence and does
not become visible later, the track is terminated (marked as
‘outside of view’). If a target reappears after a prolonged
period such that its location is ambiguous during the occlu-
sion, it is assigned a new ID.

C.1.6 Sanity Check

Upon annotating all sequences, a “sanity check” is carried
out to ensure that no relevant entities are missed. To that end,
we run a pedestrian detector on all videos and add all high-
confidence detections that correspond to either humans or
distractors to the annotation list.

C.2 Data Format

All images were converted to JPEG and named sequentially
to a 6-digit file name (e.g. 000001.jpg). Detection and anno-
tation files are simple comma-separated value (CSV) files.
Each line represents one object instance and contains 9 val-
ues as shown in Table 11.

The first number indicates in which frame the object
appears, while the second number identifies that object as

Fig. 11 Comparison histogram between training and testing sequences
of MOT16/MOT17: camera: static vs. moving camera, viewpoint: low,
medium or high, conditions: normal, shadows, night or indoor

belonging to a trajectory by assigning a unique ID (set to −1
in a detection file, as no ID is assigned yet). Each object can
be assigned to only one trajectory. The next four numbers
indicate the position of the bounding box of the pedestrian
in 2D image coordinates. The position is indicated by the
top-left corner as well as the width and height of the bound-
ing box. This is followed by a single number, which in the
case of detections denotes their confidence score. The last
two numbers for detection files are ignored (set to -1).
An example of such a 2D detection file is:

1, -1, 794.2, 47.5, 71.2, 174.8, 67.5, -1, -1
1, -1, 164.1, 19.6, 66.5, 163.2, 29.4, -1, -1
1, -1, 875.4, 39.9, 25.3, 145.0, 19.6, -1, -1
2, -1, 781.7, 25.1, 69.2, 170.2, 58.1, -1, -1

For the ground truth and result files, the 7th value (confidence
score) acts as a flag whether the entry is to be considered.
A value of 0 means that this particular instance is ignored
in the evaluation, while a value of 1 is used to mark it as
active. The 8th number indicates the type of object annotated,
following the convention of Table 12. The last number shows
the visibility ratio of each bounding box. This can be due to
occlusion by another static or moving object, or to image
border cropping.
An example of such an annotation 2D file is:

1, 1, 794.2, 47.5, 71.2, 174.8, 1, 1, 0.8
1, 2, 164.1, 19.6, 66.5, 163.2, 1, 1, 0.5
2, 4, 781.7, 25.1, 69.2, 170.2, 0, 12, 1.

In this case, there are 2 pedestrians in the first frame of the
sequence, with identity tags 1, 2. In the second frame, we can
see a reflection (class 12), which is to be considered by the
evaluation script and will neither count as a false negative
nor as a true positive, independent of whether it is correctly
recovered or not. All values including the bounding box are
1-based, i.e. the top left corner corresponds to (1, 1).

To obtain a valid result for the entire benchmark, a sepa-
rate CSV file following the format described above must be
created for each sequence and called
“Sequence-Name.txt”. All files must be compressed
into a single ZIP file that can then be uploaded to be evalu-
ated.
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Table 10 Detection bounding box statistics

Seq MOT16 MOT17
DPM DPM FRCNN SDP
nDet. nDet./fr. nDet. nDet./fr. nDet. nDet./fr. nDet. nDet./fr.

MOT16/17-01 3775 8.39 3775 8.39 5514 12.25 5837 12.97

MOT16/17-02 7267 12.11 7267 12.11 8186 13.64 11,639 19.40

MOT16/17-03 85,854 57.24 85,854 57.24 65,739 43.83 80,241 53.49

MOT16/17-04 39,437 37.56 39,437 37.56 28,406 27.05 37,150 35.38

MOT16/17-05 4333 5.20 4333 5.20 3848 4.60 4767 5.70

MOT16/17-06 7851 6.58 7851 6.58 7809 6.54 8283 6.94

MOT16/17-07 11,309 22.62 11,309 22.62 9377 18.75 10,273 20.55

MOT16/17-08 10,042 16.07 10,042 16.07 6921 11.07 8118 12.99

MOT16/17-09 5976 11.38 5976 11.38 3049 5.81 3607 6.87

MOT16/17-10 8832 13.50 8832 13.50 9701 14.83 10,371 15.86

MOT16/17-11 8590 9.54 8590 9.54 6007 6.67 7509 8.34

MOT16/17-12 7764 8.74 7764 8.74 4726 5.32 5440 6.09

MOT16/17-13 5355 7.22 5355 7.22 8442 11.26 7744 10.41

MOT16/17-14 8781 11.71 8781 11.71 10,055 13.41 10,461 13.95

Total 215,166 19.19 215,166 19.19 177,780 15.84 211,440 18.84

Table 11 Data format for the
input and output files, both for
detection (DET) and
annotation/ground truth (GT)
files

Position Name Description

1 Frame number Indicate at which frame the object is present

2 Identity number Each pedestrian trajectory is identified by a unique
ID (−1 for detections)

3 Bounding box left Coordinate of the top-left corner of the pedestrian
bounding box

4 Bounding box top Coordinate of the top-left corner of the pedestrian
bounding box

5 Bounding box width Width in pixels of the pedestrian bounding box

6 Bounding box height Height in pixels of the pedestrian bounding box

7 Confidence score DET: Indicates how confident the detector is that this
instance is a pedestrian.
GT: It acts as a flag whether the entry is to be
considered (1) or ignored (0).

8 Class GT: Indicates the type of object annotated

9 Visibility GT: Visibility ratio, a number between 0 and 1 that
says how much of that object is visible. Can be due
to occlusion and due to image border cropping

D Implementation Details of the Evaluation

In this section, we detail how to compute false positives, false
negatives, and identity switches, which are the basic units
for the evaluation metrics presented in the main paper. We
also explain how the evaluation deals with special non-target
cases: people behind a window or sitting people.

D.1 Tracker-to-Target Assignment

There are two common prerequisites for quantifying the
performance of a tracker. One is to determine for each
hypothesized output, whether it is a true positive (TP) that
describes an actual (annotated) target, or whether the output
is a false alarm (or false positive, FP). This decision is typ-
ically made by thresholding based on a defined distance (or
dissimilarity) measure d between the coordinates of the true
and predicted box placed around a target (see Sect. D.2). A
target that is missed by any hypothesis is a false negative
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Table 12 Label classes present
in the annotation files and ID
appearing in the 7th column of
the files as described in Table 11

Label ID

Pedestrian 1

Person on vehicle 2

Car 3

Bicycle 4

Motorbike 5

Non motorized vehicle 6

Static person 7

Distractor 8

Occluder 9

Occluder on the ground 10

Occluder full 11

Reflection 12

(FN). A good result is expected to have as few FPs and FNs
as possible. Next to the absolute numbers, we also show the
false positive ratio measured by the number of false alarms
per frame (FAF), sometimes also referred to as false positives
per image (FPPI) in the object detection literature.

The same target may be covered by multiple outputs. The
second prerequisite before computing the numbers is then
to establish the correspondence between all annotated and
hypothesized objects under the constraint that a true object
should be recovered at most once, and that one hypothesis
cannot account for more than one target.

For the following, we assume that each ground-truth tra-
jectory has one unique start and one unique endpoint, i.e.,
that it is not fragmented. Note that the current evaluation pro-
cedure does not explicitly handle target re-identification. In
other words, when a target leaves the field-of-view and then
reappears, it is treated as an unseen target with a new ID. As
proposed in Stiefelhagen et al. (2006), the optimal matching
is found using Munkres (a.k.a. Hungarian) algorithm. How-
ever, dealing with video data, this matching is not performed
independently for each frame, but rather considering a tempo-
ral correspondence. More precisely, if a ground-truth object
i is matched to hypothesis j at time t − 1 and the distance
(or dissimilarity) between i and j in frame t is below td , then
the correspondence between i and j is carried over to frame
t even if there exists another hypothesis that is closer to the
actual target. A mismatch error (or equivalently an identity
switch, IDSW) is counted if a ground-truth target i ismatched
to track j and the last known assignment was k �= j . Note
that this definition of ID switches is more similar to (Li et al.
2009) and stricter than the original one (Stiefelhagen et al.
2006). Also note that, while it is certainly desirable to keep
the number of ID switches low, their absolute number alone is
not always expressive to assess the overall performance, but
should rather be considered concerning the number of recov-
ered targets. The intuition is that a method that finds twice as

many trajectories will almost certainly producemore identity
switches. For that reason, we also state the relative number
of ID switches, which is computed as IDSW / Recall.

These relationships are illustrated in Fig. 12. For simplic-
ity, we plot ground-truth trajectories with dashed curves, and
the tracker output with solid ones, where the color represents
a unique target ID. The grey areas indicate the matching
threshold (see Sect. D.3). Each true target that has been suc-
cessfully recovered in one particular frame is represented
with a filled black dot with a stroke color corresponding to
itsmatchedhypothesis. False positives and false negatives are
plotted as empty circles. See figure caption for more details.

After determining true matches and establishing corre-
spondences it is now possible to compute the metrics. We
do so by concatenating all test sequences and evaluating the
entire benchmark. This is in general more meaningful than
averaging per-sequences figures because of the large varia-
tion on the number of targets per sequence.

D.2 Distance Measure

The relationship between ground-truth objects and a tracker
output is established using bounding boxes on the image
plane. Similar to object detection (Everingham et al. 2015),
the intersection over union (a.k.a. the Jaccard index) is usu-
ally employed as the similarity criterion, while the threshold
td is set to 0.5 or 50%.

D.3 Target-Like Annotations

People are a common object class present inmany scenes, but
should we track all people in our benchmark? For example,
should we track static people sitting on a bench? Or people
on bicycles? How about people behind a glass? We define
the target class ofMOT16 andMOT17 as all upright people,
standing or walking, that are reachable along the viewing
ray without a physical obstacle. For instance, reflections or
people behind a transparent wall or window are excluded.We
also exclude from our target class people on bicycles (riders)
or other vehicles.

For all these cases where the class is very similar to our
target class (see Fig. 13), we adopt a similar strategy as
in (Mathias et al. 2014). That is, a method is neither penal-
ized nor rewarded for tracking or not tracking those similar
classes. Since a detector is likely to fire in those cases, we
do not want to penalize a tracker with a set of false positives
for properly following that set of detections, i.e., of a person
on a bicycle. Likewise, we do not want to penalize with false
negatives a tracker that is based onmotion cues and therefore
does not track a sitting person.

To handle these special cases, we adapt the tracker-to-
target assignment algorithm to perform the following steps:
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GT Traj.

ID sw.

ID sw.

FP TP FN Tracked

Frag. ID sw.

(d)(c)(b)(a)

Frag.

654321 6543211 2 3 4 5 61 2 3 4 5 6
frame

Fig. 12 Four cases illustrating tracker-to-target assignments. a An ID
switch occurs when the mapping switches from the previously assigned
red track to the blue one. b A track fragmentation is counted in frame
3 because the target is tracked in frames 1–2, then interrupts, and then
reacquires its ‘tracked’ status at a later point. A new (blue) track hypoth-
esis also causes an ID switch at this point. cAlthough the tracking results
are reasonably good an optimal single-frame assignment in frame 1 is
propagated through the sequence, causing 5 missed targets (FN) and 4

false positives (FP). Note that no fragmentations are counted in frames 3
and 6 because tracking of those targets is not resumed at a later point. d
A degenerate case illustrating that target re-identification is not handled
correctly. An interrupted ground-truth trajectory will typically cause a
fragmentation. Also note the less intuitive ID switch, which is counted
because blue is the closest target in frame 5 that is not in conflict with
the mapping in frame 4

Fig. 13 The annotations include different classes of objects similar to
the target class, a pedestrian in our case. We consider these special
classes (distractor, reflection, static person and person on vehicle) to be
so similar to the target class that a tracker should neither be penalized
nor rewarded for tracking them in the sequence (Color figure online)

1. At each frame, all bounding boxes of the result file are
matched to the ground truth via the Hungarian algorithm.

2. All result boxes that overlap more than the matching
threshold (> 50%) with one of these classes (distractor,
static person, reflection, person on vehicle) excluded from
the evaluation.

3. During thefinal evaluation,only those boxes that are anno-
tated as pedestrians are used.
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Abstract
Recent developments in monocular multi-object tracking have been very successful
in tracking visible objects and bridging short occlusion gaps, mainly relying on
data-driven appearance models. While we have significantly advanced short-term
tracking performance, bridging longer occlusion gaps remains elusive: state-of-
the-art object trackers only bridge less than 10% of occlusions longer than three
seconds. We suggest that the missing key is reasoning about future trajectories
over a longer time horizon. Intuitively, the longer the occlusion gap, the larger the
search space for possible associations. In this paper, we show that even a small yet
diverse set of trajectory predictions for moving agents will significantly reduce this
search space and thus improve long-term tracking robustness. Our experiments
suggest that the crucial components of our approach are reasoning in a bird’s-eye
view space and generating a small yet diverse set of forecasts while accounting for
their localization uncertainty. This way, we can advance state-of-the-art trackers
on the MOTChallenge dataset and significantly improve their long-term tracking
performance. This paper’s source code and experimental data are available at
https://github.com/dendorferpatrick/QuoVadis.

1 Introduction
Multi-object tracking (MOT) is a long-standing research problem with applications ranging from
real-time dynamic situational awareness for robot navigation [21, 15, 77, 44, 62, 10], traffic monitor-
ing [69], studying animal behavior [52] and monitoring biological phenomena [3].
State-of-the-art MOT methods [75, 8, 4, 82, 74, 65] combine regression [75, 4] and combinatorial
optimization [8] in conjunction with identity re-identification (ReID) models [32, 59, 8, 75, 66, 4]
to track objects in the image space. Such approaches have been very successful for tracking visible
objects and bridging short-term occlusions. However, as can be seen in Figure 1b, long-term tracking
remains an open challenge: state-of-the-art methods successfully bridge 50% of occlusions within
one second, falling below 10% when the occlusion extends for more than 3 seconds. This is often not
reflected in standard benchmarks [15, 21, 69, 77], as long-term occlusions are statistically rare.
In the past, combining ReID models with simple motion models has been immensely helpful [15]
for short-term tracking. Nonetheless, as the occlusion time becomes longer, the set of possible
associations grows exponentially with the increasing gap length [54]. This combinatorial complexity
hinders the ability of visual-based ReID models to disambiguate between objects. Consequently, we
believe that ReID models are insufficient to resolve long-term occlusions. However, continued efforts
to develop stronger appearance models will remain an important research direction in vision-based
MOT. Tracking moving pedestrians during occlusions is challenging, and simple linear motion models
fail since human motion is complex and driven by non-observable factors such as goals, intent, or
simply preferences. Therefore, we propose an alternative in this work: using long-term trajectory
forecasting in order to prune down the combinatorial search space of feasible trajectory continuations.
As the main contribution of this paper, we carefully study what is needed to leverage trajectory
forecasting for multi-object tracking, as we have recently witnessed rapid progress in learning-based
36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Figure 1: State-of-the-art methods for vision-based MOT can successfully track visible objects and
bridge short occlusion gaps; however, they fail at long-term tracking. (a) To bridge occlusion gaps,
we lift monocular 2D detections to 3D world space, in which we reason about their possible future
locations. This transformation allows us to reconnect detections that undergo long occlusions. As
yellow track becomes occluded, our method predicts a small set of plausible future locations in
3D. In turn, we correctly associate red detection to the yellow track by accounting for the forecast
uncertainty area. (b) As can be seen from the ratio of correct track association after different occlusion
time lengths for the prior work and our method, this approach allows us to significantly improve
long-term tracking capabilities and gap longer occlusion gaps. Best seen in color.
trajectory forecasting [55, 38, 23, 1]. However, these methods operate in a fully-observed, metric
bird’s-eye view (BEV) space, effectively disentangling the effect of the perspective projection on
reasoning about motion. By contrast, monocular MOT methods only observe a projection of the
visible portion of our 3D space. Our analysis reveals that we can bridge this gap by localizing
trajectories in BEV-space, but crucially, the localization of 2D bounding boxes in BEV must be
temporally coherent. We achieve this by estimating a single homography per sequence in a data-driven
manner.
Forecasting methods can reason beyond simple linear extrapolations, predict multiple possible future
outcomes, and account for social interactions. But are these all necessary ingredients for bridging
complex and long-term occlusions? Our study suggests that the key ingredient is to estimate a set of
forecasts that can possibly cover several diverging future paths with only a handful of samples and
account for prediction uncertainty.
Our trajectory forecasting approach can be applied to improve the long-term tracking capabilities of
existing object tracking methods. In particular, by applying our framework on top of the state-of-
the-art method [80] of the MOTChallenge benchmark, we improve the performance on HOTA on
MOT17 by 0.09pp and MOT20 by 0.10pp and further decrease the number of IDSW by 93 and 36,
respectively. We hope our conclusions will encourage the community to continue investigating how
3D reconstruction and trajectory forecasting improve single-camera long-term tracking.
We summarize our main contributions as follows: we (i) present a study on how we can reconcile
two related fields of research on vision-based trajectory forecasting and monocular multi-object
tracking. Our study reveals that the core component of this interplay is temporally coherent reasoning
about motion in 3D space. We (ii) utilize a synthetic MOT dataset to study how to localize objects
in 3D BEV space in a manner that facilitates robust reasoning about plausible future motion and
which are the core forecasting components needed to bridge longer occlusion gaps; Finally, (iii) we
demonstrate that we can generalize our conclusions from synthetic sandbox to real-world monocular
MOTChallenge sequences and demonstrate that our recipe can be used to improve long-term tracking
performance for several object trackers.

2 Preliminaries
This section discusses the fundamentals of vision-based multi-object tracking and trajectory forecast-
ing, the current state-of-the-art, and analyzes failure cases.
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2.1 Multi-object Tracking
Monocular multi-object tracking (MOT) is the task of localizing objects as bounding boxes in image
sequences and assigning them an identity-preserving unique ID. State-of-the-art methods decompose
the problem into object detection and detection association.
Quantifying tracking errors. The detection aspect of the task is commonly quantified by counting
per-frame detection errors over the sequence. To quantify association errors, we count identity
switches (IDSW) (i.e., wrong ID swaps or re-initializing a ground-truth track with a different tracking
ID) and identity transfers (IDTR) (i.e., incorrectly linking two different objects with the same tracking
ID). While a successful association over occlusion gaps decreases the number of IDSW, a wrong
association between tracklets leads to an IDTR instead. Recently introduced HOTA [41] metric
separately evaluates object detection and temporal association aspects of the tracking task. Temporal
association is quantified via association accuracy (AssA) term, that quantifies association recall
(AssRe) and association precision (AssPr). The AssRe term accounts for IDSW errors, while AssPr
accounts for IDTR errors.
Are all identity errors created equal? Correct track association of objects that undergo longer
occlusion gaps is especially challenging because the appearance and position of an object may
drastically change. In MOT datasets [15, 21] the majority of occlusions are short occlusions (≤ 2s).
Hence, solving rare long occlusions (> 2s) does not significantly impact the model performance. As
a result, long-term tracking is commonly overlooked in the literature. This can be seen in Figure 1b:
state-of-the-art methods bridge less than 10% gaps beyond three-second-long occlusions.
Prior work. Early tracking methods focus on combinatorial optimization [79, 27, 36, 71, 49] and
hand-crafting visual and motion-based descriptors [48, 33, 11], especially beneficial in the era of
unreliable object detectors. State-of-the-art methods for monocular visual MOT are data-driven and
primarily rely on appearance. Regression-based methods [4, 75, 82] can localize objects even when
object detections are missing, often used in conjunction with ReID models to bridge short occlusions.
However, regression models fail when an occluded person appears at a distant image position. For
solving long-term occlusion, discrete optimization methods, combined with end-to-end learning
based on graph neural networks [8, 70, 78], construct large graphs stretching over multiple seconds
leading to high computational costs and complexity. Motion has always played an essential role
in visual tracking [5, 20, 4], especially beneficial in 3D where it is dis-entangled from projective
distortion [34, 50, 26]. The interplay between reasoning in 3D for monocular pedestrian tracking and
linear motion models was first investigated in [29].
Identity preservation is important in several applications, ranging from video editing, safety camera
analysis, and social robots interacting with humans to autonomous driving. We only have access
to a single RGB camera in several application scenarios. Exceptions are autonomous driving
datasets [21, 10] that generally provide 3D sensory data, together with 3D track information. However,
only a handful of object tracks contain occlusion gaps longer than 2s: 0.6% in BDD100K [77] and
4% in widely-used KITTI tracking [21] dataset. Therefore, autonomous driving datasets are, at the
moment, not well suited for studying long-term tracking. Instead we conduct our experiments and
analysis using MOTChallenge [15] dataset, where 19.4% of tracks undergo long (> 2s) occlusions
gaps.
We hypothesize that bridging long-term gaps requires understanding the projection geometry and
motion models that can reason about plausible diverging future paths and non-linear motion.
2.2 Trajectory Forecasting
Pedestrian trajectory forecasting has been studied independently of the closely related task of object
tracking. Forecasting is challenging because (i) human behavior and, therefore, future motion
underlies the effect of complex social and scene interactions and latent navigating intent. Moreover,
(ii) entire scene geometry is usually not directly visible to the observer, and in general, it is difficult to
localize past trajectories precisely. To this end, existing models use standard datasets [53, 35, 38, 55]
and study forecasting in idealized conditions: given an accurate bird’s-eye view of the scene and
perfectly-localized past trajectories to predict trajectory continuations in metric space.
Quantifying forecasting accuracy. Forecasting performance is measured in metric space as L2

distance between the prediction and ground-truth trajectory (as final displacement error, FDE, or
average displacement error, ADE) wrt. top-k forecasts (commonly k = 20). We note that this
approach mainly incentivizes high forecasting recall and neglects forecasting precision which is
important for the application of forecasting methods [13].
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Figure 2: Our method: we bridge long-term occlusions by (a) localizing object tracks in bird’s-eye
view via the estimated homography and (b) forecasting future trajectories for lost tracks. We (d)
continually aim to match these inactive track predictions with new object detections and remove
incorrect predictions under a visibility constraint (c).

Prior work. Early forecasting methods were deterministic, firstly based on physical models [25],
and later on data-driven LSTM-based encoder-decoder networks [1] methods, focusing on modeling
social [23, 1, 2] and scene [56, 31] interactions. The forecasting task is inherently uncertain, and
we need to express the stochasticity in the model. With learning a distribution of possible future
trajectories, generative models [23, 56, 31, 2, 14, 13] have emerged as state-of-the-art prediction
methods. Recent efforts have been explicitly focusing on conditioning forecasting on estimated
pedestrian goal/intent [14, 43, 42] and estimating multimodal posterior distributions [38, 13] that yield
diverse trajectories that cover different plausible directions. These deep neural network approaches
can model complex and non-linear trajectories beyond simple linear models.
Can we bring the two worlds together, and if so, how? Furthermore, which of the aforementioned
aspects of forecasting methods (i.e., stochasticity, non-linearity, multimodality, diversity, accounting
for interactions) are important in the context of multi-object tracking? These are the questions we
discuss in the following sections.

3 Methodology
In this section, we present our method for long-term multi-object tracking based on trajectory
forecasting in bird’s-eye view (BEV) scene representation. Simply applying trajectory prediction to
multi-object tracking is not trivially possible, as object trajectories observed in the image space break
multiple assumptions of real-world trajectory prediction. While trajectory prediction works in bird’s-
eye view coordinates, the motion and size of objects in image space depend on the camera’s intrinsic
parameters, orientation, and position. In addition, we face temporal (limited length of observation),
association (association errors along with observation), and measurement (imprecise localization
of objects) uncertainties of the trajectories. Contrarily, objects are represented as bounding boxes
in the image instead of single 2D positions for the object tracking task. To bridge the gap between
prediction and tracking, we must find a transformation from the image to the real space. We assume
objects move on a planar ground to formulate such a transformation. Thus, the bottom-center points
of detection bounding boxes p can be mapped to a 2D BEV coordinate x via an initially unknown
homography transformation H that relates the homogeneous coordinates as x ∝ H · p.
Overview. Given a monocular video sequence captured from a stationary camera from arbitrary
viewpoint, we first estimate the homography H , which maps the image plane to the 3D world ground-
plane for the whole sequence (Section 3.1). Then, we incorporate our model into an online tracker
that takes a monocular tracker output and localizes tracks and detections in BEV space (Figure 2a)
using the estimated homography. Next, we forecast lost tracks in BEV space (Figure 2b) using our
trajectory forecasting network (described in Section 3.2). Finally, we integrate forecasts into the
online tracker (Section 3.3) while accounting for the uncertainty in estimated forecasts, and match
new detections to existing tracks to resolve short- and long-term occlusions (Figure 2d).
3.1 Data-driven Homography Estimation
For combining monocular object tracking and forecasting, we first need to transform object detections
and tracks from the image sequence into points and trajectories in a bird’s-eye view representation.
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Figure 3: We estimate the homography H for a sequence by reconstructing a 3D point cloud using
a monocular depth estimator. We obtain ground image-to-point-cloud correspondences using a
semantic segmentation model that masks ground pixels as needed to estimate the homography matrix.
With the estimated homography matrix, we transform the bottom points of bounding boxes to 2D
BEV coordinates.

Given a set of 2D object detections represented as bounding boxes localized in the image plane, we
aim to find a homography H that maps their bottom-center positions to their corresponding 2D BEV
coordinates. In Figure 3, we outline our homography estimation method. We first train a monocular
depth estimator [6] on a synthetic dataset [19] to reconstruct a 3D point cloud (with estimated or
known intrinsics) of the first frame of a static sequence. Then, we leverage the semantic segmentation
network [73] to mask, select, and fit a plane to the ground pixels. We estimate the normal vector
of the ground plane in 3D and align the plane to the XY plane. Then, we project ground points
along the z-axis, leaving us with a pairwise correspondence between ground pixels in the image
and a 2D position in BEV, as needed to estimate the homography between the two planes. We also
linearize the homography transformation for pixel positions close to the plane’s horizon to prevent
the transformation from diverging (for more information, see Appendix A.1).
Static camera. We compute the homography only for the first frame of the sequence and use it
throughout the sequence, making our pedestrian localization robust to temporal fluctuations of the
depth estimator.
Moving camera. For moving camera sequences, we also need to account for the egomotion of
the camera, which we estimate between consecutive frames as follows. First, we compute a frame-
dependent homography Ht for each frame. Then, we compute pairwise pixel-correspondences
between (masked) ground pixels using optical flow [12] and compute a translation vector between
the two point sets (lifted to 3D via Ht).
Empirically, we observe that estimating only translation (without rotation) yields more robust egomo-
tion estimates.
3.2 Forecasting
Localization of object tracks in BEV enables us to leverage data-driven forecasting models beyond
simple linear motion to reason for future trajectories. However, these models expect ground-truth
fixed-size past trajectory observations, while our projected trajectories are noisy and of varying
lengths. As discussed in Section 2.2, prediction models are optimized for metrics that incentivize a
large number of predictions and minimize L2 distance to ground-truth trajectories. It is thus unclear
how different proposed concepts translate into real-world tracking scenarios. We, therefore, identify
the main design patterns proposed in the forecasting community and verify their impact directly in
the context of forecasting to track.
Preprocessing. Forecasting models encode trajectories using an LSTM encoder-decoder [1] archi-
tecture, which takes a fixed-size observed trajectory as input and predicts a future trajectory. We
construct input trajectories from temporally consecutive detections of the same track ID localized in
BEV. To account for localization noise, we smooth the noisy observations using the Kalman filter and
linearly extrapolate trajectories into the past to get trajectories of the required fixed-size input length.
Trajectory forecasting design patterns. In our experimental setup, we build on the LSTM encoder-
decoder architecture [1] and include the following key design patterns recently emerging in the
forecasting community.
Stochasticity. Stochastic trajectory predictors enable us to sample multiple plausible future trajectories
to account for the uncertainty in future positions. We follow the approach by [23] and learn a
generative GAN [22] model and train it with a best-of-many [7] loss. As a result, the network
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Figure 4: Endpoint matching recall of predictions and GT trajectories using a linear motion predictor.
A prediction is successfully matched when ∆IoU > 0.5 or ∆L2

distance < 2m. We also project the
prediction back to the image for forecasts in the bird’s-eye view. The model Pixel (L2) predicts
motion in pixel space and projects the endpoint into BEV for matching.

internally learns an observation-conditioned distribution of future trajectories, from which we can
sample.
Social Interactions. Social interactions impact future motion: pedestrians adapt their trajectories
on-the-fly to avoid collisions. Several methods [23, 1, 2, 31] account for interactions in the forecasting
literature. These methods leverage pooling [23], attention [56], or graph neural netwchecklorks [31]
to provide social context (i.e., trajectories of surrounding agents) to the trajectory decoder. To answer
whether modeling social interactions matters for tracking, we implement Social GAN (S-GAN) [23],
which uses pairwise interaction features between neighboring pedestrians by using max-pooling
before they are passed to the decoder.
Multimodality and Diversity. While the aforementioned generative models learn a distribution over
trajectories, they need to sample many trajectories to cover all modes present in the scene, as learning
a multimodal posterior with a single GAN is difficult [64]. To predict the scene’s main modes
with as few samples as possible, we implement a multi-generator GAN network [13], extending the
presented GAN architecture by training multiple decoder heads, where each decoder learns to focus
on a particular model. As a result, we get a set of plausible but maximally separated predictions by
sampling from these different generators.
3.3 Tracking via Forecasting
We assume we have an online object tracker capable of tracking visible objects (e.g., bounding box
regression-based tracker [4]). As long as tracks are being updated with new detections, we consider
them active and keep them in the active set SA. Once we cannot associate a detection, a track becomes
inactive and is stored in the set of inactive tracks SI . For each frame t the tracker outputs a set of
tracks O = (o1, . . . , oM ) with oi = (IDi, bi, fi) where ID ∈ N+ represents the track identity, b ∈ R4

denotes a bounding box in pixel space (see Figure 2a), and f ∈ RD represents a D-dim feature vector
encoding the appearance information obtained from a pre-trained convolutional network [24]. We
localize bounding boxes in BEV coordinates x ∈ R2 using our estimated homography H .
Quo Vadis? If an object track becomes inactive (i.e., temporally lost), we move the active track
into the memory bank and predict k trajectories of length τmax in BEV space using the trajectory
forecasting model as described in Section 3.2. As long as the track is inactive and not yet matched,
we move along the predicted trajectory and do not predict an entirely new trajectory in each frame.
Filtering and removing predictions. No prediction can live forever. When we use stochastic
trajectory predictors with multiple predictions, we need to limit the number of inaccurate or obsolete
predictions to decrease the chance of false re-association. In practice, we limit the lifetime of a
prediction to a maximal lifetime of τmax and try to filter out unlikely forecasts. We use spatial and
social context to determine the freespace [29] in which objects should be visible to the camera. We
assume that visible objects eventually are detected and, therefore, remove prediction branches that
should be visible for more than τvis frames.
We consider an object as visible if neither scene nor other pedestrians occlude the object. In particular,
this means that the predicted BEV position lies in an area of the projected ground mask (shown in
Figure 2c) and has no bounding box overlap ≥ 0.25 with any other object detection, closer to the
camera. Relative order can be determined based on bottom bounding box coordinates for amodal
detections. If all predictions from an inactive track are removed even before τmax, we also remove
the entire track.
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Matching predictions with new detections. Given the trajectory forecasts, we match them with
new detections via bi-partite matching, following the standard practice in tracking [81, 68, 39, 5].
This boils down to computing association costs cij between the predictions of an inactive track i and
new un-associated detections j:

cij = (∆IoU + max (τL2
−∆L2

, 0)) · (∆App ≥ τApp and∆IoU ≥ τIoU) , (1)

where ∆IoU is the IoU score between the two bounding boxes, ∆L2
is the Euclidean distance between

the prediction i and a detection j in BEV, and ∆App represents the cosine distance between visual
features fi and fj . τL2

, τIoU, and τApp denote thresholds for the matching. Therefore, we determine an
association in BEV metric space and in the image domain using IoU bounding box overlap between
the forecast and detected box.
Matching tracks based on spatial distance in real space leads to high recall and reduces the number
of ID switches (IDSW) but may also lead to an increase in ID transfer errors (IDTR), especially in
crowded scenes with many new detections close to each other. While forecasting significantly narrows
combinatorial search space for associations, verifying potential associations with an appearance
model is still beneficial in practice. To decrease the number of wrong associations, we require a
minimal visual similarity τApp and minimum IoU overlap of the bounding boxes τIoU for close objects.
These thresholds serve as a filter of visually incompatible matches but do not add to the value of the
cost function for the matching. In essence, we obtain a pre-selection of potential matching candidates
by using the trajectory forecast and filter those if the appearance drastically deviates between the last
observation and the new detection.

4 Experimental Evaluation
In this section, we first discuss our evaluation test-bed, followed by an experimental study on bird’s-
eye-view (BEV) trajectory reconstruction (Section 4.1). Then, we analyze different forecasting design
patterns applied to the domain of object tracking in BEV space and discuss the relevance of different
model modules for tracking (Section 4.2). Afterward, we demonstrate how our approach can be used
to improve several vision-based MOT methods on static sequences and to justify our design decisions.
Finally, we show that our forecasting model can be used to establish new state-of-the-art on the
real-world MOT17 and MOT20 datasets (Section 4.4). For visualization of our tracking method, we
refer the reader to Appendix C.
Datasets. We evaluate our trajectory prediction framework on different publicly available pedes-
trian tracking datasets, namely synthetic MOTSynth [19] and two real-world MOT17 and MOT20
datasets [15]. MOTSynth is a large synthetic dataset for multi-object tracking. It provides 764
diverse sequences with various viewpoints, lighting, and weather conditions. Importantly, it provides
ground-truth depth information and 3D key points for pedestrians, allowing us to study the suitability
of different methods for BEV trajectory reconstruction. MOT17 [47] and MOT20 [16] are real-world
tracking datasets commonly used to benchmark pedestrian tracking models. We use these datasets to
evaluate our method on real-world recordings. For our experiments, we utilize the commonly used
split of the MOT17 training set, where the first half of each sequence is used for training and the
second half for the evaluation [37, 80, 72].
Metrics. For measuring the quality of the bird’s-eye view reconstruction, we indirectly evaluate the
quality of the reconstruction by evaluating the forecasting and tracking performance.
To compare different models for trajectory forecasting, we report the standard L2 final displacement
error (FDE) for top-k predictions for 2s and 4s prediction horizons (see Section 2.2).
For multi-object tracking evaluation, we report higher-order tracking accuracy (HOTA) [41], with a
focus on the association aspect of the task. To this end, we also report AssA, AssPr, and the number of
ID switches IDSWs. Additionally, we report IDSW when the tracker loses an object and re-initiates a
new track for the same object when it re-appears. We call these errors as IDlost. For metric discussion,
we refer to Section 2.1. Metrics labeled with either S (short) or L (long) only consider prediction or
occlusion lengths shorter or longer than 2s, respectively
Hyperparameters. For all experiments, we use the following parameters for the matching of
detections with inactive tracks: τL2

= 2.5m, τApp = 0.8, τIoU = 0.2 The maximal lifetime of
prediction is τmax = 6s and maximal visibility τvis = 1s before it is removed. We refer the reader to
Appendix B for further information on implementation details.
Object trackers. We study and ablate our method on eight high-ranked state-of-the-art trackers
of MOTChallenge and refer to them as baseline. We use BYTE [80], JDE [68], CSTrack [37],
FairMOT [81], TraDes [72], QDTrack [51], CenterTrack [82] and TransTrack [63] for an evaluation
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Table 1: Which forecasting modules matter for tracking? Evaluated on MOT17 validation set.
Model Nr.

Samples
Deter -
ministic

Stoch-
astic Social Multi-

modal
Prediction Tracking

FDES ↓ FDEL ↓ HOTA ↑ AssA ↑ AssRe ↑ AssPr ↑ IDlost
S ↓ IDlost

L ↓
Baseline – – 50.71 46.87 51.80 78.11 0 % 0 %
Static 1 ✓ 1.59 2.09 53.84 53.51 60.04 72.95 -14.77 % -8.40 %
Kalman Filter (pixel) 1 ✓ – – 54.08 54.02 60.45 72.81 -22.37 % -8.99 %
Kalman Filter 1 ✓ 0.69 1.23 54.11 54.04 60.75 71.73 -19.50 % -16.07 %
GAN 3 ✓ 0.85 1.26 54.43 54.61 61.11 73.21 -17.99 % -8.64 %
GAN 20 ✓ 0.65 0.99 53.81 53.40 60.45 71.31 -18.03 % -15.63 %
S-GAN 3 ✓ ✓ 0.87 1.21 54.52 54.78 61.22 73.28 -16.92 % -8.57 %
MG-GAN 3 ✓ ✓ 0.67 1.03 54.52 54.80 61.35 73.13 -21.19 % -17.43 %

on the MOT17 validation set and BYTE and CenterTrack on the MOT20 training dataset. These
trackers use ReID similarity and/or simple motion cues for bridging short-term occlusions.
4.1 Bird’s-Eye View Estimation
This section discusses different approaches to obtaining scene BEV representations of detected
objects in the image for forecasting. We work with static sequences of the MOTSynth dataset (that
provides depth maps used for evaluating and training a monocular depth estimator). With this, we
test a linear motion model to gap occlusions of different durations, which we obtain by running a
CenterTrack [82] baseline tracker. We evaluate the ratio of successful matches between the target and
the linear prediction and count a match to be successful if the IoU of the predicted bounding box is
larger than 0.5 or the L2 distance in metric space is lower than 2m. We get the predicted bounding
box by translating the last observed bounding box by the predicted displacement in the image.
Baselines. We compare motion in (i) BEV and (ii) pixel space. We evaluate different approaches to
localize trajectories: (a) using ground truth (GT) 3D coordinates orthographically projected to BEV
(oracle), (b) the proposed homography estimation as described in Section 3.1, and (c) directly using
learned monocular depth estimates and resulting point clouds, followed by orthogonal projection of
points these representing an object.
Conclusions. As seen in Figure 4, GT 3D (oracle) based motion estimates solve 89.3% of the
gaps, suggesting that the motion in the synthetic dataset is dominantly linear. Our proposed data-
driven homography estimation approach only drops by 15% compared to using ground-truth 3D
keypoints. By contrast, estimating linear motion in pixels space only resolves 50.2%, and using
per-frame monocular depth estimates 43.1% of the occlusion gaps. This is likely because such depth
estimates are not temporally stable. As can be seen in Figure 4b, this performance is especially
apparent for longer occlusion gaps. Furthermore, we forecast motion in pixel space but transform the
prediction into BEV for matching. While increasing performance compared to exclusive forecasting
and matching in pixel space, we find that the results are inferior to predictions in BEV due to the
distortion of projecting real motion into the image plane. We conclude that our proposed homography
transformation is suitable for forecasting.
4.2 Trajectory Prediction Models
In this section, we evaluate different forecasting models and components (as discussed in Section 3.2).
We compare a constant-velocity model (Kalman filter) in BEV and pixel space, an identity (static)
model, and a stochastic GAN predictor generating k = 3 and k = 20 samples. Furthermore, we test
predicting social interactions with GAN and the multimodal trajectories with MG-GAN in BEV space.

𝑡 = 0.7𝑠 𝑡 = 15𝑠

𝑡 = 0.7𝑠

𝑡 = 15𝑠

Scores Threshold HOTA ↑ AssA↑ AssRe ↑ AssPr ↑ IDlost ↓L2 IoU τIoU τApp

✓ 53.89 53.56 60.43 72.21 -16.18 %
✓ ✓ 53.89 53.57 60.51 71.69 -16.26 %
✓ ✓ ✓ 54.10 53.92 60.43 73.36 -16.84 %

✓ 54.13 54.01 60.97 72.00 -24.06 %
✓ ✓ 53.75 53.35 61.17 69.27 -28.02%
✓ ✓ ✓ 53.97 53.75 61.08 70.73 -26.93 %
✓ ✓ ✓ 54.06 53.92 61.07 71.01 -21.40 %
✓ ✓ ✓ ✓ 54.27 54.29 61.08 72.36 −20.53%

Figure 5: Visualization of BEV reconstruction
for moving camera sequence and egomotion
estimation.

Table 2: Ablation of matching prediction and ef-
fect of different thresholds τ on different track-
ing metrics.

Forecasting. We observe in Table 1 that the linear model performs well for short-term windows
(0.69 FDES), suggesting that linear motion is suitable for short occlusions. We also do not find a
significant difference between GAN w/o social module (S-GAN). While FDE error suggests vanilla
GAN (k = 20) yields the best forecasting results (0.65 FDES and 0.99 FDEL), but this configuration
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Table 3: We improve tracking results of all top-8 state-of-the-art models (MOT17 validation set and
MOT20 training set). Differences to the baseline performance are shown in (·).

MOT17 (val, static scenes) MOT20 (train)

BYTE [80] CenterTrack [82] CSTrack [37] FairMOT [81] JDE [68] TraDeS [72] TransTrack [63] QDTrack [51] BYTE [80] CenterTrack [82]
HOTA 71.36 (+0.21) 61.78 (+3.56) 61.60 (+0.43) 58.42 (+0.09) 51.06 (+0.20) 62.45 (+0.67) 60.68 (-0.23) 58.87 (+0.54) 56.85 (+0.06) 32.71 (+0.62)
AssA 73.96 (+0.49) 66.18 (+7.54) 63.84 (+0.8) 59.21 (+0.37) 54.36 (+0.45) 67.41 (+1.6) 63.47 (-0.49) 60.14 (+1.22) 53.97 (+0.20) 28.94 (+1.34)
AssRe 79.21 (+0.66) 69.66 (+8.38) 69.15 (+1.07) 64.31 (+0.5) 60.82 (+0.89) 73.1 (+2.43) 69.19 (+0.02) 65.31 (+2.06) 59.89 (+0.4) 34.34 (+5.12)
AssPr 83.11 (-0.67) 81.75 (-5.47) 77.79 (-2.28) 74.45 (-1.71) 68.9 (-2.35) 80.0 (-1.91) 79.53 (-1.68) 77.4 (-2.98) 68.65 (-5.24) 52.37 (-21.06)
IDSW 84 (-3) 137 (-146) 269 (-28) 198 (-12) 316 (-19) 106 (-32) 112 (-3) 219 (-34) 1815 (-78) 5240 (-2700)
MOTA 80.09 (+0.01) 70.77 (+0.39) 71.31 (+0.05) 71.82 (+0.05) 59.57 (+0.06) 70.93 (+0.09) 69.5 (+0.01) 69.61 (+0.08) 73.38 (+0.0) 47.57 (+0.24)
IDF1 82.92 (+0.42) 74.46 (+7.13) 74.16 (+0.95) 73.93 (+0.59) 65.01 (+1.27) 76.36 (+1.21) 71.46 (+0.02) 70.41 (+0.77) 72.47 (+0.37) 45.85 (+4.13)
IDR 78.61 (+0.39) 65.25 (+6.25) 67.53 (+0.87) 66.23 (+0.53) 56.08 (+1.09) 67.12 (+1.06) 61.39 (+0.01) 62.17 (+0.68) 66.44 (+0.34) 35.87 (+3.23)
IDP 87.72 (+0.44) 86.71 (+8.3) 82.23 (+1.05) 83.65 (+0.67) 77.31 (+1.51) 88.55 (+1.4) 85.47 (+0.02) 81.17 (+0.89) 79.7 (+0.41) 63.53 (+5.72)

leads to the lowest association precision (71.31) and HOTA score (53.81) wrt. tracking performance.
This result suggests a misalignment of evaluation metrics used in forecasting and tracking; a better
forecaster in terms of ADE/FDE does not necessarily lead to a better tracker. This is a known
drawback of ADE/FDE metrics, which essentially measure only recall and not the precision of the
forecasting output. Furthermore, this shows the careful trade-off between the number of predictions
k and the recall/precision of the predictions and tracking results.
Tracking. To investigate the effect on long-term occlusions, we focus on the change of IDlost

L
for short (toccl ≤ 2s) and long (toccl > 2s) occlusion gaps. As can be seen in Table 1, even the
static motion model solves 8.4% (IDlost

L ), as many occluded objects do not move. By modeling
linear motion (Kalman filter in pixel space), we can improve short-term re-association for 0.59pp
(long-term IDSW) over the static model. We focus the discussion on long occlusion gaps. In terms of
the generative model, we observe that interaction-aware S-GAN (8.64% IDlost

L ) is on-par with vanilla
GAN (8.57% IDlost

L ) for k = 3; interestingly, both are below linear Kalman filter (BEV) performance,
suggesting that these models suffer from low precision. Only MG-GAN, explicitly trained to generate
multimodal trajectories, outperforms the linear model (17.43% IDlost

L ) and significantly outperforms
vanilla GAN with only three samples. These conclusions generalize to tracking metrics.
4.3 Tracking Evaluation
In this section, we study the impact of forecasting models on the valuation set’s tracking performance.
First, we discuss the impact of different design decisions on matching strategy, as explained in
Section 3.3.
Trajectory matching. First, we ablate the matching cost function (Equation (1)). As can be
seen in Table 2, we find that a combination of L2 and IoU without any threshold τ leads to the
highest decrease in terms of IDlost (−28.02%) and overall highest association recall (AssRe) (61.17).
However, this is at the cost of decreasing association precision (AssPr) (−4.09). We obtain the
highest AssPr (73.36) by only relying on L2 matching and thresholding, however, at the loss of
AssRe (−0.74). Adding appearance-based τApp and IoU τIoU thresholds provide the best trade-off and
overall highest AssA (54.29) and HOTA score (54.27) while still recovering 21% of lost trajectories.
Validation results. In Table 3, we present the performance of different state-of-the-art trackers
on the static sequences of MOT17-val and MOT20-train (trained on MOT17), equipped with our
trajectory forecasting model. As can be seen, our model brings stable improvements over all the key
metrics: HOTA, AssA, and IDSW. Our trajectory prediction model consistently reduces IDSW for all
models. This is also shown in Figure 1b where we demonstrate that our forecasting model improves
ID recall significantly for occlusion times > 1s.
While our focus was on sequences with stationary viewpoints, we show that our model is also
applicable to sequences with moving cameras by estimating the camera’s egomotion as described
in Section 3.1. In Table 4, we present results on the moving sequences of the MOT17 validation set
(excluding sequence MOT17-05 for which the quality and consistency of our depth estimator was too
low to construct time-consistent homographies). As can be seen, we improve 6 out of 8 trackers wrt.
HOTA score and even improve CenterTrack [82] by 3.07 pp. We visualize the traversed BEV map of
sequence MOT17-07 in Figure 5.
4.4 Benchmark Evaluation
In this section, we apply our method to state-of-the-art tracker ByteTrack [80] and, by improving its
long-term tracking capabilities, establish a new state-of-the-art on the MOT17 & MOT20 benchmarks.
We evaluate our method in the private detection regime, as these trackers use private detectors.
In Table 5, we compare our QuoVadis to the base tracker ByteTrack [80] and compare both to MOT17
benchmark published top-performers. We improve performance on key metrics overall top methods.
Notably, we reduce the number of identity switches by 93 compared to [80] and establish a new
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Table 4: Results of top-8 state-of-the-art models on dynamic scenes of the MOT17 validation set
excluding MOT17-05. Differences in the baseline performance are shown in (·)

MOT17 (val, moving scenes)

BYTE [80] CenterTrack [82] CSTrack [37] FairMOT [81] JDE [68] TraDeS [72] TransTrack [63] QDTrack [51]
HOTA 60.08 (+0.02) 51.77 (+3.07) 54.51 (0.0) 56.1 (0.0) 52.14 (+1.47) 53.36 (+1.27) 52.7 (+0.28) 52.28 (+0.76)
AssA 60.44 (+0.03) 53.18 (+6.49) 59.04 (+0.0) 61.15 (0.0) 55.32 (+3.06) 54.08 (+2.44) 51.99 (+0.54) 53.71 (+1.6)
AssRe 66.53 (-0.0) 58.21 (+8.32) 63.35 (+0.0) 65.87 (0.0) 61.52 (+3.75) 59.86 (+3.1) 59.13 (+0.79) 61.8 (+3.82)
AssPr 78.29 (+0.09) 76.98 (-4.66) 80.46 (-0.0) 79.21 (0.0) 73.5 (-0.98) 75.52 (-3.08) 72.45 (-0.32) 72.53 (-4.76)
IDSW 54 (+1) 131 (-62) 97 (-5) 86 (0) 122 (-10) 99 (-11) 120 (-5) 71 (-7)
MOTA 72.54 (-0.01) 59.46 (+0.46) 60.68 (+0.04) 63.78 (0.0) 60.52 (+0.07) 64.13 (+0.08) 63.64 (+0.04) 60.21 (+0.05)
IDF1 73.11 (0.0) 63.48 (+5.76) 70.69 (0.0) 73.1 (0.0) 68.23 (+1.85) 67.72 (+2.29) 64.08 (+0.79) 65.81 (+2.86)

Table 5: Comparison under the "private detector"
protocol on MOT17 test set.

Tracker HOTA IDF1 MOTA IDSW AssA

ReMOT [76] 59.73 71.99 77.01 2853 57.08
CrowdTrack [61] 60.26 73.62 75.61 2544 59.26
TLR [67] 60.72 73.58 76.48 3369 58.88
MAA [60] 61.98 75.88 79.36 1452 60.16
ByteTrack [80] 63.05 77.30 80.25 2196 61.97
QuoVadis (Ours) 63.14 77.71 80.27 2103 62.07

Table 6: Comparison under the "private detector"
protocol on MOT20 test set.

Tracker HOTA IDF1 MOTA IDSW AssA

FairMOT [81] 54.42 68.44 59.57 1881 56.6
CrowdTrack [61] 54.95 68.24 70.68 3198 52.57
MAA [60] 57.28 71.15 73.90 1331 55.14
ReMOT [76] 61.15 73.14 77.42 1789 58.68
ByteTrack [80] 61.34 75.20 77.76 1223 59.55
QuoVadis (Ours) 61.48 75.70 77.77 1187 59.87

state-of-the-art in terms of HOTA (63.14). We observe similar trends on MOT20, where we improve
over the base tracker ByteTrack [80] by +0.5 in terms of IDF1 and reduce the number of identity
switches by 36, similarly establishing a new state-of-the-art (61.48 HOTA).

5 Remarks and Limitations
The paper primarily focuses on the conceptual work of building an entire pipeline from video to tracks
studying different forecasting paradigms, and showing the benefit of leveraging trajectory forecasting
in BEV for the tracking task. Nevertheless, we want to outline further remarks and limitations of our
work.
Model complexity. Our model is complex, consisting of multiple sub-modules, as constructing object
trajectories in BEV space based on a monocular video and trajectory forecasting are challenging
problems. We foresee that future work will improve the end-to-end integration and efficiency of the
algorithms.
Bird’s-eye view reconstruction. A vital part of our approach is an accurate homography trans-
formation that allows us to project the objects in the image into the 3D ground plane. However,
the homography transformation depends on the quality of depth estimates, which makes the overall
approach sensitive to errors in 3D localization. Future work will benefit from further development of
time-consistent depth estimators. Furthermore, the presented trajectory prediction models do not yet
account for the BEV localization uncertainty, which results from errors in the transformation or the
simplified assumption of the ground plane. These limitations show the need to develop trajectory
forecasting models that account for the localization uncertainties of the upstream tasks.

6 Conclusion
This paper presents a study on how to bridge the gap between real-world trajectory prediction and
single-camera tracking. Throughout our paper, we identified challenges and solutions to leveraging
real-world trajectory prediction to benefit single-camera tracking. In particular, we focus on resolving
the re-identification of objects after long-term occlusions. Here, we start from the first principles,
questioning motion representation in pixel space and using a combination of models to construct
a more accurate BEV representation of the scene. We find that the key component is a forecasting
approach reasoning about multiple feasible future directions with a small set of multimodal forecasts.
We can substantiate our conclusion by achieving new state-of-the-art performance on the MOT17 and
MOT20 datasets.
Ultimately, we have showcased a novel way of combining state-of-the-art trajectory prediction models
and multi-object tracking task. We have outlined a new way of thinking about motion prediction in
tracking and motivating the beneficial symbiosis of both tasks. We hope that both fields start moving
towards each other and incorporate the requirements and needs of each other.
Acknowledgments. This research was partially funded by the Humboldt Foundation through the
Sofja Kovalevskaja Award.
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Quo Vadis: Supplementary Material
The supplementary material complements our work with additional information on the bird’s-eye-
view reconstruction in Appendix A. Furthermore, we provide implementation and training details on
different components and networks used in our method in Appendix B. Finally, we present visual
examples as visualizations and videos in Appendix C.

A Information on Bird’s-Eye View Reconstruction
The paper presents our approach to constructing a bird’s-eye-view (BEV) representation for a static
tracking sequence. Here, we extend the explanation by adding a description of moving cameras and
how we linearize the homography transformation for farther objects to avoid enormous distances and
unrealistic velocities.
A.1 Linearization of Homography
To get a bird’s-eye-view (BEV) representation of the tracking scene, we estimate the homography
H between the image and the ground plane. Hence, the homogenous pixel positions transform
accordingly to Equation (2) as follows:

s ·
(
x
y
1

)
= H ·

(
px
py
1

)
. (2)

This approach assumes that objects move on a perfect plane and object’s position in the image is
represented as the bottom mid-point of the object’s bounding box. Depending on the perspective
transformation of the camera, we find that minor changes in pixel value lead to enormous distances
in BEV. Given a homography matrix:

H =

(
h11 h12 h13

h21 h22 h23

h31 h32 h33

)
, (3)

the BEV coordinate y is computed as:

y =
h21 · px + h22 · py + h23

h31 · px + h32 · py + h33
. (4)

As the denominator in Equation (4) is approaching zero, the y-coordinate grows hyperbolically. This
behavior is undesired for trajectory prediction because these large jumps in the object’s position
result in unrealistic velocities for the object. Therefore, we define a threshold for which we linearly
extrapolate the transformation such that the transformed distance between two neighboring pixel
points is maximal 0.2m as shown as a red line in Figure 6b. This formulates the condition as

∥h21 · px + h22 · py + h23

h31 · px + h32 · py + h33
− h21 · px + h22 · (py + 1) + h23

h31 · px + h32 · (py + 1) + h33
∥ ≤ 0.2m (5)

We call the py value for which the inequality Equation (5) is equal, the linearization threshold pTy .
The pixel point where the denominator of Equation (4) becomes 0 is called the horizon because no
point on the plane is projected on a lower point in the image.
To prevent this hyperbolic growth for image points closer to the horizon, we linerarize Equation (4)
around pTy and apply the linear transformation for all py ≤ pTy as shown in Figure 6b. Thus, we
stabilize the distance between two points to prevent very unrealistic velocities, which would make
the transformed values pointless. To transform from pixel space to BEV and back, we also inverse
the linearized transformation to get a one-to-one mapping.

B Implementation Details
In this section, we provide additional information on the implementation of our method and its
key components. The source code is available at https://github.com/dendorferpatrick/
QuoVadis.
B.1 Synthetic Training Data
For training the trajectory predictor (Appendix B.2) and the depth estimator (Appendix B.3) we use
the MOTSynth dataset [19] which provides ground truth 3D positions of objects and image depth
information. We use the split suggested by Fabbri et al. [19] with 576 sequences in the training set
and 192 in the validation set.
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Figure 6: Demonstration of horizon and linearization threshold for sequence image. Linearization of
homography transformation is necessary to prevent enormous distances in the transformed coordinates
and unrealistic velocities.

B.2 Trajectory Predictor
For our trajectory model, we use the implementation of MG-GAN [13]. For studying the effect
of modeling social interactions on tracking, we implement a social max-pooling module following
S-GAN [23].
Model. The trajectory prediction model generates a set of K future trajectories {Ŷ k

i }k=1,...,K with
t ∈ [tobs + 1, tpred] given the input trajectory Xi with t ∈ [t1, tobs] for each pedestrian i. We use
tobs = 8 observation steps and tpred = 12 prediction steps as default for training the model. However,
input and output length can vary depending on the observed tracks during inference for the tracking
model.
For the multimodal MG-GAN implementation, we use nG = 3 generators from which we sample
one prediction from each generator during inference.
Training. We construct trajectories of the MOTSynth data with 8 observation and 12 prediction
steps, each step being 0.4s. The entire model is trained in a GAN framework using a prediction
model and a discriminator network. We train the network on the entire train dataset over 200 epochs,
with a learning rate λ = 10−3, and using a batch size scheduler [58].
B.3 Depth Estimator
Depth estimation is a crucial part of the BEV estimation in our model. Therefore, we use a vision
transformer-based [18] network [6] for monocular dense depth estimation.
Model. The transformer-based model regresses the depth prediction as a linear combination of depth
range bins of adaptive size. The network encoder-decoder extracts visual features from the image,
which are passed to the mVit block. mVit is a lightweight vision transformer based on [18]. The
model applies an MLP on top of the mVit’s output, predicting the size of the bins for the depth range.
The encoder computes the weights of the bins by passing the features through multiple convolutional
layers with a final softmax non-linear activation function.
Training. The network trains on the synthetic MOTsynth dataset to leverage a large number of
tracking scenes of varying perspectives, weather, and light conditions. To better generalize to real-
world data, we augment the scenes with ground reflections by mirroring surfaces in the image. This
results in better performance, especially for the indoor MOT sequences, with ground reflections. We
find the model trained on synthetic data performs well on real data even without fine-tuning.
To increase the default model depth map resolution from 640 × 480 to 960 × 576 we grow the
transformer positional embedding vector size from 500 to 1000.
We trained the model using AdamW optimizer [40] with weight decay 10−2. Following [57], the
maximum learning rate λmax was set to 3.5× 10−4 with linear warm-up from 1

4λmax → λmax for the
first 30% of the iterations followed by cosine annealing to 3

4λmax. We trained the model for 20 epochs
with an image resolution of 960× 576 on a training split of MOTSynth dataset with the batch size of
8 on 4 RTX8000 for one week. Then, we trained the model for 30 epochs with an image resolution
of 960× 576 on the full MOTSynth dataset with a batch size of 8 on 4 RTX8000 for ten days.
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(a) Projected MG-GAN prediction (b) MG-GAN predictions in BEV (c) Prediction of Kalman Filter in
Pixel Space

Figure 7: Demonstration of prediction for MG-GAN in BEV and Kalman filter in pixel space.

B.4 Image Segmentation
We run a pre-trained Detectron2 [73] segmentation network to get the segmentation masks of the
tracking scene images. Explicitly, we use the pre-trained COCO Panoptic Segmentation model with
Panoptic FPN [73]. The model outputs semantic labels for 134 COCO classes and panoptic object
ids, which are irrelevant to our task.
In our model, we use segmentation labels to mask ground pixels of the
scene. Therefore, we combine the following COCO classes to our ground class:
pavement, road, platform, floor, floor− wood, grass, sand, dirt.

B.4.1 Optical Flow
We estimate the optical flow using the implementation [12] of an attention-based GMA model[28].
We use the standard MMFlow configuration for the GMA pre-trained model on a mix of the datasets
[28, 17, 45, 9, 46, 30]. While the model was pre-trained on images with size (768, 368), we resized
the MOTChallenge images to (960, 540) at test time.

C Visual and Qualitative Results
This section shows a visual example of the difference between a BEV and a 2D image space prediction.
Furthermore, we want to point to the additional scene videos also provided in the Supplementary
material.
2D versus 3D. In Figure 7 we show the trajectory prediction of our MG-GAN projected into the
image (Figure 7a), the prediction in BEV (Figure 7b), and trajectory prediction in pixel space using a
Kalman Filter (Figure 7c). We find the problem of the model reasoning in pixel space and cannot
account for the effect of the camera perspective. As a consequence, this results in unrealistic motion
in image space.
In contrast, we see in Figure 7a that our model predicting in BEV understands the spatial structure
of the scene and is, therefore, able to predict the correct trajectory for the object and resolves the
long-term occlusion.
Example Videos. In addition to the written supplementary material, we provide brief video clips of
different MOT17 validation and test sequences with ByteTrack and Center Tracks.
In Figure 8, we give a brief description of the format of the provided video sequences. We show
our predictor output on the left side, the baseline tracker output in the middle, and the online BEV
prediction and reasoning on the right side. For our model, we show the tracker detection and
predictions in BEV, including their projection in the image.

D Information on computation of ID Recall
In the introduction, we present the performance of the baseline trackers compared to our trajectory
forecasting model on how well they can re-associate tracks after occlusion from occlusions. We
measure the performance as a fraction of ground-truth tracks detected and assigned correctly before
and after occlusion.
As the first step, we need to identify the ground-truth occlusion regions for every sequence. We use
the visibility scores of objects and threshold those into a binary visibility flag, stating whether an
object is visible in a given frame. Then, we apply a minimum rolling window on the visibility flags
to get connected components and to smooth the deviations of the visibility flag values. The rolling
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Figure 8: Description of supplementary sequence videos.

window also includes visible frames before and after the occlusion, where the actual IDSW may
happen. We compute the frame ids where an occlusion starts and ends by extracting all connected
components, with the visibility flag being 0. We only consider components where the object is visible
before and after the occlusion.
Finally, we check for every tracker if the tracker detected an object at the start and the end of the
occlusion component and if the track ids between the beginning and start match. We use τvis = 0.1
as visibility threshold and a temporal window size ws = 5 as hyperparameters.
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