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Abstract

Traffic flow/volume data are commonly used to calibrate and validate traffic simulation
models. However, these data are generally obtained from stationary sensors (e.g. loop
detectors), which are expensive to install and maintain and cover a small number of loca-
tions in the transport network. On the other hand, Floating Car Data (FCD) are readily
available at the network level, usually from a sample of vehicles. We present an indirect
traffic flow estimation approach using transfer learning to address the traffic flow data
scarcity and model generalization across cities. Using two cities (Paris and Madrid) as study
areas, we demonstrate the indirect estimation using only exogenous features for flow pre-
diction, mirroring limited predictive features without past link flows. Subsequently, we use
the model pre-trained on data from Paris city and test on data from Madrid city, and investi-
gate the scenarios for successful transfer learning. Overall, the training set must adequately
capture the flow-speed relationship for successful indirect flow estimation. Transfer learn-
ing is beneficial when the data for the target task is minimal, in which case transferred
models outperform newly trained models from scratch. Using real-world and publicly avail-
able data, our approach and models can help scale a smaller traffic flow dataset to a larger
sample across cities.

1 INTRODUCTION

Traffic forecasting is a prevalent task in traffic research with
applications in traffic management. Traffic state is character-
ized by the three main variables, that is, flow (or volume), speed,
and density. Researchers have developed a wide range of models
for traffic forecasting ranging from so-called white-box models
(statistical models such as simple moving average or autoregres-
sive regression) to black-box ones (deep learning models such
as feedforward or recurrent graph neural networks) [1]. The cur-
rent state of the art shows that deep learning models have been
successful in traffic prediction tasks [2]. These advanced models
can use spatial, temporal, contextual, and network/topological
information for forecasting. Developing algorithms, model test-
ing, and evaluation has been one of the core challenges in traffic
forecasting [1].

Data is the second pillar supporting traffic forecasting
research, apart from models. Traffic data come in many forms,
such as point data, point-point data, or area-wide data [3]. The
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form depends on the method of data collection and its source.
Fixed ground-based sensors, such as induction loop detectors or
street-side cameras, detect vehicles on or across a specific loca-
tion. They can only provide localized observations such as flow,
density, or spot speed. Traffic data from onboard devices, such
as smartphones or navigation systems, primarily use Global
Navigation Satellite System (GNSS) receivers to record the loca-
tion of vehicles during their trip and, thus, provide mobility
metrics (location, speed, travel time) for trip legs. This data,
when gathered from a larger fleet of vehicles, is also known as
Automatic Vehicle Location (AVL) data or Floating Car Data
(FCD), or Probe Vehicle Data (PVD). New drone-based data
collection methods can provide observations over an area or
part of the network since they have a wide field of view [4].
However, these methods are relatively new and not yet adopted
on a large scale for long-term data collection.

One of the main features of traffic flow forecasting meth-
ods is that time-lagged flow or speed data are used as
an input in autoregressive formulations [2, 5]. For instance,
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past/time-lagged values of a signal (flow or speed) or variable
are used to predict a future variable (speed or flow, respec-
tively). However, in some cases, such flow data is wholly or
partially unavailable or contains lag—thus, posing challenges for
deploying traffic prediction models and their applications in nat-
ural settings. Moreover, using benchmark datasets such as the
California Department of Transportation (2020) [6] does not
portray the data availability challenges, varying from region to
region. Hence, it could inhibit the practical deployment of traffic
forecasting models.

Another issue worth highlighting is the ease of collection and
data availability. Speed and flow (volume) data tell us different
aspects of the traffic state. Flow tells us about the load on the
link or the number of vehicles passing through a specific road
and has applications in highway and pavement design, highway-
side advertising, and commercial or real-estate investments. In
this work, we use the term link to imply road segments. Speed
depicts the link’s congestion, travel time, or time delay. Speed
does not directly represent the number of vehicles on the road.
Instead, speed data is used to provide travel time estimates or
the level of service on the road. Traffic flow data are more
challenging to collect than link speed data since the latter can
be approximated from a sample of vehicles [7, 8]. Speed data
are derived by aggregating the traces from a fleet of cars—
also known as PVD or FCD—or mobile phones via the GNSS
receivers. This is one of the reasons network-wide traffic speed
data are more prevalent for more cities than traffic flow data.
Many companies [9, 10] collect data from vehicle fleets or
smartphones, and some make it publicly available to a certain
extent [11]. For instance, Uber, a global ride-hailing company,
shared such data during 2016-2020 for many cities worldwide
under non-commercial use licenses [9]. The data is available for
download in bulk. In addition, navigation companies such as
TomTom provide link speed data with limited free API calls
followed by paid usage.

On the other hand, collecting traffic flow or count data
requires dedicated hardware or collection methods which
incur time and cost burdens. Specifically, traffic flow data is
primarily collected via magnetic loop detectors installed on
the streets. Such data collection infrastructure comes with
high installation costs, is not scalable, and is common in
many cities. As a result, traffic flow data are not available
for many cities worldwide and are scarce even for cities in
developed countries.

Due to the collection and coverage asymmetry between traf-
fic flow data and traffic speed data, there arises an opportunity
to use the speed data to infer the traffic flows. However, the
possible solutions exclude using autoregressive models since
time-lagged flow is assumed to be unknown and needs to be
indirectly estimated. Therefore, this is a problem of indirect
flow estimation. Here, we see the potential to use publicly avail-
able data to derive flow data from samples to larger parts of
networks. Our first research question is motivated to address
the data scarcity within a study area or city: “how accurately
can we indirectly estimate the dynamic link flows at the net-
work level given the link’s speed data from open data sources?”
The second research question is aimed to address the data

scarcity across cities: “What are the conditions when the pre-
trained model can successfully be applied to a new city?” We
use real-world study areas where this could contribute to tack-
ling data scarcity. For instance, traffic counting stations only
cover a limited part of the network and are expensive to
install. Thus, the proposed model could help scale the flow
of information from a few links to the whole network, pro-
vided the characteristics of the test data (link characteristics,
spatial-temporal conditions) have a similar distribution as the
training data.

Another downstream application of such an exogenous flow
prediction model will tackle the underdetermination encoun-
tered in the calibration of large-scale traffic simulation models.
Specifically, link counts are common data used to calibrate
traffic simulation models, but these data are often only avail-
able for a few links. Therefore, an increased number of flow
observations can help improve the dynamic origin-destination
demand estimation solution. The proposed model can help
overcome the challenges researchers and practitioners face
in traffic management and transportation modeling due to
data scarcity.

In this pursuit, we first identify prominent data that cap-
ture the relevant features and are determinants of the traffic
flow. We download and curate traffic data for Paris and Madrid
from heterogeneous and publicly available sources. We fuse the
collected data for training models to predict traffic flows. Sec-
ondly, we use machine learning (including deep learning) and
explore the effect of link types on prediction error, feature
combinations, the temporal distribution of errors, and models’
uncertainties. The use of open data in our work makes it easier
for researchers and practitioners to replicate and benchmark our
models. Our research using open data demonstrates exogenous
flow forecasting using deep learning. The results show that,
when combined with relevant geometric, temporal, and contex-
tual features, prevalent speed data from floating cars can help
reasonably forecast flows. In case of data insufficiency, transfer
learning helps obtain accurate flow predictions.

The rest of the paper is structured as follows: the next
section reviews the literature on traffic flow forecasting, esti-
mation, and transfer learning, the following section describes
the methodology of the study describing the data processing
and prediction methodology, and the following section presents
the data collection, followed by data analysis, the next sec-
tion presents the results of the study, followed by discussion
and conclusion.

2 LITERATURE REVIEW

This section is organized into two parts. First, we provide a
state-of-the-art overview of traffic forecasting research. For
a more thorough discussion of traffic forecasting, we refer
the reader to review by [1, 12]. Secondly, we discuss traffic
state estimation research. This structure is followed because
indirect/ exogenous flow prediction is at the junction of traf-
fic forecasting and traffic state estimation. Lastly, we discuss
transfer learning.
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MAHAJAN ET AL. 3

2.1 Traffic forecasting

Time series forecasting is the task of predicting the values of
a target given input covariates. Forecasting models, where the
input and target variable is the same yet time-lagged, are called
autoregressive models since the future values of the variables
are predicted using their past values. Time series forecasting can
be formulated or extended as non-linear time series forecast-
ing, multi-time step forecasting (predicting a sequence of future
values instead of a single value), and multivariate forecasting
(input features consist of multiple time-series or scalar vari-
ables). A generalized formulation for autoregressive multivariate
and multi-step forecasting is given below:

[
W , (X t−k f , … ,X t− f ,X t ), (Y t−k f , …Y t− f ,Y t )

]
→

[
Y t+ f ,Y t+2 f , … ,Y t+(p−1) f ,Y t+p f

]
,

(1)

where W and X are fixed and dynamic features, respectively, X

refers to time-varying exogenous features. Y is the target vari-
able. f is the fixed time interval or the granularity of the data;
k is the lookback length, that is, how much past data the model
has access to make a prediction; p is the prediction or future
horizon length; t denotes the current time instant.

In traffic forecasting, common features are traffic variables
such as traffic flow, link speed, trip travel-time, traffic den-
sity, occupancy, and congestion [12]. A dataset collected by
the California Transportation Agencies (CalTrans) Performance
Measurement System (PeMS), known as CalTrans PeMS is one
of the most popular datasets for traffic prediction. This data
is point-type data (from inductive loops, side-fire radar, and
magnetometers [6]) containing traffic volume, occupancy, and
speed. Other popular datasets are the Beijing point and tra-
jectory datasets [13]. Commonly, studies on short-term traffic
forecasting deal with forecasting horizons in the range of a few
minutes to a few hours [1].

Regarding targets, the main task in traffic prediction or fore-
casting is to predict traffic flow or speed. For our work, we
use traffic “flow” for the volume or number of vehicles pass-
ing a road section over time, whereas “speed” is the link speed
which could be space-mean speed or time-mean speed. While
researchers have used different predictors or features in their
models, one common feature is using a time-lagged target vari-
able as one predictor since most time-series forecasting models
use an autoregressive model formulation. Other features are
representations/metrics derived from trajectory data, covariates
(weather or time of the day), Spatio-temporal maps, or videos
[14].

Machine learning models have been widely used for traf-
fic prediction and forecasting. Specifically, deep learning has
recently outpaced the traditional time-series forecasting models
such as Autoregressive Integrated Moving Average (ARIMA),
as evidenced by recent studies [2, 5]. This development has
resulted in many innovative traffic forecasting model archi-
tectures using cross-domain concepts such as convolutional
neural networks and recurrent networks from computer vision
and Natural Language Processing (NLP). Recurrent Neural

Networks (RNN) are special neural networks with a chain-like
structure capable of learning time dependencies. Long-Short
Term Memory (LSTM) [15] and Gated Recurrent Units (GRU)
are specialized to learn long-term dependencies using a similar
chain-like structure with modified units. LSTMs and GRUs have
been successfully applied in various tasks such as language trans-
lation and image captioning. In traffic forecasting, too, LSTMs
have been used for extreme event forecasting [16] or network-
wide traffic speed prediction [17]. Lara-Benítez et al. (2021)
[18] conducted an experimental review of multiple deep learn-
ing models for time-series forecasting, including traffic datasets.
They found that LSTM and CNN are the best models, the
LSTM models obtaining the most accurate results. It is relevant
to point out that their analysis did not cover relatively new mod-
els such as Graph Neural Networks (GNN), transformers, or
models with attention mechanisms. RNN-based architectures
struggle to learn long-term dependence, and thus, attention
mechanisms were applied by Wu et al. (2018) [19] to address this
shortcoming. The attention mechanisms can identify and select
information in the input relevant to a specific task, even if it is
a long-term dependency. The attention layer assigns weights to
specific input sequence regions relevant to the prediction task.

GNNs have recently gained popularity due to their ability
to handle non-euclidean data. GNN models can also han-
dle topological correlations between entities in the data using
node and edge features in graphs. Further, GNN has been
applied on Spatio-temporal datasets, for example, by stacking
time-dependent graph snapshots leading to architectures such
as Graph RNN (GRNN) [20], diffusion convolutional RNN
(DC-RNN) [21], Temporal Graph Convolutional Networks
(T-GCN) [22], consisting of Graph Convolutional Networks
(GCN) to handle spatial features and either of the RNN, GRU
or LSTM units to handle the temporal features. Buroni et al.
(2021) [23] applied a multi-task learning strategy with GCNs
to predict flow and speed and tested their method on differ-
ent types of roads. Despite the benefits of GNNs, Zhao et al.
(2020) [22] found that graph networks struggle to predict peaks
because of averaging effects.

2.2 Traffic state estimation

The process of inferring traffic state variables using partially-
observed information is known as traffic state estimation [24].
In the comprehensive review by Seo et al. (2017) [24], authors
classified traffic state estimation methods into three categories:
model-driven, data-driven, and streaming-data-driven, based on
preliminary information and input data. When the target or the
predicted variable is traffic flow, it is called traffic flow esti-
mation. Since practitioners and researchers use different traffic
data for flow estimation, it can also be classified into direct and
indirect methods based on the applied data collection method-
ology. Direct methods refer to counting vehicles on the road
using manual or automatic techniques (magnetic loop detec-
tors, gantry cameras, or drone videography). Direct methods use
physical, visual (street cameras, drone videography, or satellite
imagery), acoustic [25], or other signals (Bluetooth or cellular) to
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4 MAHAJAN ET AL.

detect the presence of a vehicle. Indirect methods try to estimate
the flow using exogenously-correlated data. As shown by Aslam
et al. (2012) [8], indirect methods use analytical and data-driven
models for mapping predictor variables to the flow variables. A
generalized multivariate and multi-step formulation for indirect
state estimation is given in equation 2. A clear distinction from
equation 1 is that the time-lagged target variable is not available
as a predictor in the indirect traffic state estimation. Thus, for
a given domain and data, the indirect state estimation is more
challenging than traffic forecasting due to lesser information in
its predictors.

[
W , (X t−k f , … ,X t− f ,X t )

]
→

[
Y t+ f ,Y t+2 f , … ,Y t+(p−1) f ,Y t+p f

]
.

(2)

In this paragraph, we review some representative studies on
dynamic and indirect flow estimation. The traffic fundamental
diagram is one of the most popular and well-established models
relating traffic state variables (flow, speed, and density or occu-
pancy). Different fundamental diagrams, such as Greenshield’s
fundamental diagram [26], correlate traffic flow with speed [27].
Therefore, readily available speed data (together with other
covariates) can be used to predict traffic flows if the fundamen-
tal relationship is manifested. One drawback of the fundamental
diagram is that it lacks a time-dependent representation of traf-
fic state variables and, thus, requires suitable model extensions
for a dynamic representation. To handle this, Neumann et al.
(2013) [7] used Bayesian networks to model the time depen-
dencies and predict traffic flows (from six hundred detectors)
from speed data for the city of Berlin. Kumarage et al. (2018)
[28] used K-nearest neighbor regression with Spatio-temporal
attributes to predict flow at fewer locations. Pun et al. (2019)
[29] used topological and geometric features for traffic flow esti-
mation. Gkountouna et al. (2020) [30] used data from thirty-six
sensor locations for developing bi-level flow estimation models.
The novelty in their method was the use of principal compo-
nent analysis and clustering to identify road segment archetypes
in the first level. This information is used in the second-level
regression model. Rinaldi and Viti (2020) [31] used a Kalman
filtering framework for flow estimation. Zhang et al. (2020) [32]
used a geometric matrix completion model for network-wide
traffic flow estimation, using real-world (twenty-four road seg-
ments) and synthetic datasets. Recently, Abdelraouf et al. (2022)
[33] used speed and volume features from PVD as an input to
recurrent GCN to predict the traffic state parameters. In con-
trast to other indirect estimation works, using the flow from
PVD as an additional feature provides direct information for
accurate prediction but also makes the model dependent on
such data. Among the above, only few studies [7, 33] con-
sider data from more than a hundred detectors, whereas the
other studies use relatively minor datasets. Further, Neumann
et al. (2013) [7] note that their model performance was not
accurate enough for freeways or roads with higher speed lim-
its. Traffic flow estimation is complicated by static or dynamic
changes in link characteristics such as speed limit, the number
of lanes, data collection, data quality (presence of noise and

anomalies), and data processing (smoothing, aggregation).
Further, the methodological steps play a pivotal role when pro-
cessing raw FCD to obtain link speed data [34]. These factors
can distort and induce scatter in the fundamental diagram, thus
rendering indirect traffic flow estimation quite challenging.

2.3 Transfer learning

Machine learning models are developed under the assumption
that the training data and test data “must be in the same fea-
ture space and have the same distribution” [35]. However, this
does not generally hold true when applying models to the new
study area. Even if the same set of features is developed for the
data from two locations, the data distributions from two study
areas can differ. This will have an impact on the model perfor-
mance. This challenge is tackled using Transfer learning, which
is improving the learning of a new task (target task) using the
knowledge from an already learned related task (source task)
[36].

Transfer learning is defined formally in terms of domain and
task in the survey paper by Pan and Yang (2010) [35]. A domain
 consists of a feature space  (X = {x1, … , xn} ∈  ) and a
marginal probability distribution P (X ) [35]. A task consists of a
label space  and an objective predictive function f (⋅) (denoted
by  = { , f (⋅)} ) [35]. The objective predictive function is not
observed but can be learned from the training data. f (x ) can
be written as P (y ∣ x ). After the model is learned on the source
domain (S ) for a source task (S ), the aim is to transfer the
learned knowledge for learning the target predictive function
fT (⋅) for solving the target task (T ) in target domain (T ) [35],
where S ≠ T , or S ≠ T . For instance, two cities, even with
the same road links, could display different levels and patterns
of traffic flow, depending on local traffic conditions.

Pan and Yang (2010) [35] noted four transfer learning
algorithms based on how the knowledge is transferred from
the source task to the target task. These four types are
instance-based, feature-based, model-based, and relation-based
algorithms. In deep learning, using pre-trained models for sec-
ondary tasks is essentially the same as model-based transfer
learning [35]. In model-based transfer learning, it is assumed
that the model’s parameters learned from the source domain will
be helpful for the target task in the target domain. These param-
eters and hyperparameters are fine-tuned using the limited
training data from the target domain.

For short-term travel-time prediction, Luan et al. (2018)
[37] showed that link-to-link transfer of their model is pos-
sible but emphasized further research into factors that affect
transferability. Li et al., (2021) [38] and Mallick et al. (2021)
[39] used transfer learning techniques in short-term traffic
prediction using source and target links consisting of links
from different locations. Li et al. (2021) [38] found that transfer
learning can provide more accurate predictions when the
source and target links have consistent data patterns. When
sufficient labeled data is available, it makes sense to train the
model using that without any pre-trained model. Mallick et al.
(2021) [39] proposed the Transfer Learning-DCRNN model
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MAHAJAN ET AL. 5

FIGURE 1 Flow chart showing scenarios for traffic flow forecasting, indirect flow estimation and transfer learning, depending on data avaialbility

using a graph-partitioning-based transfer learning approach
for short-term traffic forecasting, which outperformed other
models. Using source knowledge through transfer learning can
help to reduce dependence on large datasets and improve the
existing models. We are also interested in investigating when
or at what levels of data transfer learning outperforms the new
models trained from scratch. Transfer learning for indirect
traffic flow estimation is still not explored.

2.4 Summary

With the help of the flow chart (Figure 1), we want to position
our study when there is no historical/ real-time flow data for the
links we want to make predictions. We divide the links into two
sets: training links and test links. If traffic flow data is available
for both sets, then traffic forecasting can be used, where time-
lagged traffic flow is used as one of the predictors. If past data
for test links are unavailable, the indirect traffic flow estimation
approach using conventional learning is applicable, where only
exogenous predictors are used to learn the traffic flow mapping
so that during the model testing, we do not need time-lagged
flow values as predictors. In the previous case, if sufficient flow
data for training links are unavailable, flow estimation is done
using transfer learning. Here, the pre-trained model is fine-tuned
using limited data. Finally, if no flow data for training and test
links are applicable, which means we only have predictors but
no targets, then it is a case of insufficient data.

From the above review, some research gaps are evident.
Firstly, deep learning models are not prevalent in dynamic and
indirect traffic state estimation, unlike in traffic forecasting. This
is true even though both approaches have inherent similari-
ties among input and target features. Apart from prediction,
quantifying the uncertainty in flow estimation is also vital. A
model which outputs a range of predictions can help us to judge
its preciseness. Lastly, the transferability of the indirect state
estimation models using real data is still unexplored.

Because of the above and the public availability of large lon-
gitudinal traffic data, we use LSTM, a sequential deep learning

model for dynamic indirect flow estimation with uncertainty.
Here, we also quantify the accuracy differences between dif-
ferent sets of features that correspond to traffic forecasting
or indirect state estimation problem formulations. We conduct
a systematic sensitivity analysis for different lengths of input
feature sequences and output flow sequences to identify the
best input-output length configuration. Finally, we transfer the
model to an entirely new location and identify the best transfer
learning configuration. We also show at what proportions of the
data transfer learning outperform training a machine learning
model from scratch.

3 METHODOLOGY

The overall methodology of the study is shown in Figure 2. As
mentioned above, We rely on the publicly available data in this
study. Our research needs traffic flow counts and speed data
to train and validate our models for the exact links. We iden-
tify prospective study areas based on availability and retrieve the
data to achieve this. Since it is expected that the traffic count and
speed data are in different formats, we fuse these datasets. Sam-
ples of links’ speed and traffic counts are matched according to
the link/ location in data fusion.

This paper aims to develop a model which predicts traffic
flow in transport networks exclusively from given link speeds
and other relevant time and contextual covariates. Thus, we
adopt a formulation for indirect traffic estimation and assume
the unavailability of time-lagged flow data as a predictor.
Inspired by [39], we borrow and adapt their problem formu-
lation for our case. Given, a set  of d links, the traffic flow
at time step t for a d th link is Y d

t ∈ ℝ1. For all the links in 

such as the d th link, given static predictors W d ∈ ℝE , where
E is the number of such predictors (length, number of lanes,
road width, type, speed limit) and H historical observations of
dynamic exogenous predictors (speed, time, speed deviation)
X d = (X d

t1
,X d

t2
, … ,X d

tH
) ∈ ℝH×F , H historical observations

of the traffic flow Y d = (Y d
t1
,Y d

t2
, … ,Y d

tH
) ∈ ℝH , P current

observations of the same predictors X d = (X d
t1
,X d

t2
, … ,X d

tP
) ∈
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6 MAHAJAN ET AL.

FIGURE 2 Methodological flow showing data collection, analysis and modeling

ℝP×F , where F is the number of such predictors and H >>

P , we want to forecast the traffic flow of all the links in 

for the next Q time steps, Ŷ d = (Ŷ d
tP+1

, Ŷ d
tP+2

, … , Ŷ d
tP+Q

) ∈

ℝQ . Thereafter, Let  ′ be the set of j links for which we do
not have the historical time series data. Given static predic-
tors W j′ ∈ ℝE , and P observations of the current exogenous
predictors for j th link X j′ = (X j′

t1
,X

j′
t2
, … ,X

j′
tP

) ∈ ℝP×F , the
goal is to develop a model that can forecast the traffic flow
of the next Q time steps for all the links in  ′, ̂Y j′ =

( ̂Y j′
tP+1

, ̂Y j′
tP+2

, … , ̂Y j′
tP+Q

) ∈ ℝQ .

3.1 LSTM model

Our task can be formulated as supervised machine learning
because the model learns the mapping from features to the
given targets. We select LSTM networks as our primary model.
LSTM is appropriate for modeling time-series data such as
traffic flow or speed, where correlations between time inter-
vals have a long lag. Recent studies have also used LSTMs
[38, 39] for comparing model performance. In studies [33, 39]

using GNN for short-term traffic forecasting, we observed
that even though graph-based models (DCRNN) give the best
performance, LSTM’s performance is still competitive.

LSTM is considered a more advanced version of the standard
vanilla RNN. Traditional RNNs model a sequence of events
by using the output from the previous time interval as an
input to predict the system’s state (ht ) at the current time inter-
val. The key aspect of an RNN is, therefore, that the hidden
state works similarly to the lagged variable in an autoregressive
model, meaning that the predictions at the current time inter-
val ht depend on the hidden state at the previous time interval
ht−1.

Although a successful architecture, RNNs suffer from van-
ishing/ exploding gradients and short-term memory problems.
To alleviate the issues above, LSTM introduces the cell state ct
in addition to the existing hidden state of RNNs. LSTM con-
sists of a memory cell that controls the flow of information
by using input, forget, and output gate layers that discard non-
essential information and memorize only essential information.
This architecture is used to update the cell state ct and select
which information should be preserved and which one should
be lost. The operations in the LSTM model [15, 40] can be
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MAHAJAN ET AL. 7

FIGURE 3 Architecture of the deep learning model using embedding and LSTM layers

represented by the following set of equations:

it = 𝜎(Wiixt + bii +Whiht−1 + bhi )

ft = 𝜎
(
Wi f xt + bi f +Wh f ht−1 + bh f

)
gt = tanh

(
Wigxt + big +Whght−1 + bhg

)
ot = 𝜎(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct )

, (3)

where ht : hidden state of layer, ct : cell state, xt : input, all at time
t ; ht−1: hidden state of layer at time t − 1; and it , ft , gt , ot are
the input, forget, cell, and output gates, respectively. 𝜎 is the sig-
moid function, and ⊙ is the Hadamard product. Equations are
sourced from [41].

3.2 Model architecture

The input data for the LSTM model can be static or dynamic
and continuous or categorical, leading to four different input
types (Figure 3): static categorical inputs (links type with N

classes), dynamic categorical inputs (hour with H classes, day
with D classes, month with M classes), continuous static inputs
(link length, number of lanes, maximum speed), continuous
dynamic inputs (hourly speed). In our model (Figure 3), we use
embedding layers to process the categorical features. Embedding
layers use a fixed-length continuous vector to represent a
categorical feature. The embeddings are learned during model
training, and similar feature categories will have closer rep-
resentations in the embedding space. To reduce the need to
learn the multiple embeddings for dynamic categorical features
such as hour, weekday, and month, we convert the dynamic
categorical features to static features by taking their average
value over the lookback length. This gives us single values
of these features for each training sample, irrespective of the
lookback length. The single value provides the time context
for the day, weekday, and month. The size of the feature’s
embedding layer (S ) is a minimum of s and half the number of
unique values of a feature, where s is a hyperparameter. This
step reduces the number of feature embeddings to be learned
and, thus, reduces the complexity of the model. The dynamic
features are provided for a certain past/lookback length, so
the static embeddings and features are expanded along the
time dimension. The concatenate layer combines then continuous
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8 MAHAJAN ET AL.

and embedding outputs to form a single time-dependent input
for the next LSTM layers. This input is passed through a
sequence of stacked n LSTM layer(s). LSTM layer(s) compute
the function in Equation 3 at each time step or hidden state
to produce the output equal to the latent dimension of hidden
state.

Dropout is applied to the output of the final LSTM layer to
randomly switch-off neurons with a probability p. Dropout is
a regularization technique to reduce overfitting [42] and helps
to improve the model’s robustness. Dropout can also be used
to understand the model’s uncertainty [43]. Later during the
model testing, we used dropout to obtain the uncertainty esti-
mates by running the model several times (e.g. ten times) and
obtaining the confidence intervals for the model predictions.
The output of the dropout layer is fed to the stacked m fully
connected or dense layer(s) to give a single output or a sequen-
tial output (in the case of multi-step forecasting), as shown in
Figure 3.

3.3 Feature sets

We construct three sets of features to observe the model perfor-
mance differences, as shown in Figure 3. The first set of features
for the primary model is only the exogenous features, which can
be either static or dynamic. This set of features is the main focus
of this paper. These features exclude flow and occupancy data
from the detectors and thus only use easily available data. In the
second set, we add time-lagged occupancy (o) data from detec-
tors to the exogenous set (exogenous covariates, o). In the third set,
we further add time-lagged flow (q) to the second set resulting in
(exogenous covariates, o, q). When using the third feature, our model
follows autoregressive formulation. We hypothesize that model
performance will improve with the inclusion of o and q into the
feature set since the model has direct and endogenous informa-
tion to predict the flow. However, this information cannot be
used when the objective is to predict traffic volumes on links
that are not equipped with sensors. Before training, features in
source and target data are standardized (removing the mean and
scaling to unit variance) independently.

3.4 Model evaluation

We use the XGBoost regression model as the benchmark since
it is not designed to handle sequential data. However, XGBoost
has shown superior performance on tabular datasets in research
and practice [44]. Therefore, we use XGBoost with non-
sequential inputs. This means we only provide the input data for
the current time step but not the past intervals while predicting
one step. The XGBoost model [45] is based on the Gradient
Boosting Machines (GBM) concept. In boosting, observations
with high residuals generally receive ever-increasing influence
with each iteration [46]. Boosting models are generally con-
sidered “off-the-shelf classifiers” [46] and need less feature
preprocessing and parameter tuning than other deep learning
models such as neural networks.

The dataset corresponding to all links is split into a train
set (85%) and a test set (15%). We use group-based splitting
(using detector ID) of the data, which means that data from
each detector can be into either a train set or test set to avoid
overestimating the model performance due to temporal cor-
relations within the data from one detector. This also mirrors
the scenario of data availability for partial links in the net-
work. The hyperparameters of the LSTM model used in this
paper are the size of the embedding layers, learning rate, batch
size, maximum epochs, number of LSTM layers (n), size of the
LSTM hidden state, dropout rate (p), and weight decay or L-
2 type regularization of weights (w), and number (m) and size
of the dense layers. The primary hyperparameters of the boost-
ing model are the number of iterations and the size of each
of the constituent trees (number of leaves in the tree) [46].
The model training is stopped when the validation error does
not improve for twenty iterations. This is also known as early
stopping. We use Bayesian optimization [47] to tune the hyper-
parameters of the XGBoost and LSTM models. During tuning,
the Monte Carlo cross-validation (MCCV) error is used. In
MCCV, the model is trained by randomly splitting the training
data into training (85%) and validation data (15%) for ten runs.
The average error on the validation data is used to select the
best hyperparameters.

Choice of forecasting metric is crucial and varies from task to
task. In our case, we have a time series corresponding to each
detector. The target variable (flow) scale can vary between links
belonging to different categories. Thus, we use percentage error
metric [48]. Mean Absolute Percentage Error (MAPE) is one of
the popular percentage error metrics. However, we do not use
MAPE because it has no upper bound and can be problematic
when the actual values are close to zero. Instead, we select Sym-
metric Mean Absolute Percentage Error (SMAPE), shown in
Equation 4, as the model training and evaluation criterion due
to the time-series nature of the input data.

SMAPEd =
1
n

N∑
i=1

|xi − x̂i |
(|xi | + |x̂i |)∕2

, (4)

where SMAPEd is the SMAPE for the d th link, x̂i is the pre-
dicted value, and xi is the observed value. In contrast to MAPE,
SMAPE has both lower and upper bound. It is noted that the
data within each detector is correlated. Thus we use mean error
over detectors instead of the sample means to prevent the dom-
inance of detectors with large samples. In other words, we first
estimate the error for each detector and then estimate the mean
error over all the detectors for reporting the model perfor-
mance. One of the drawbacks of SMAPE is that it does not
treat large positive and negative errors equally and thus is not
“symmetric” as its name suggests [49]. No single metric is suffi-
cient for forecasting, so we also use RMSE for model evaluation.
However, RMSE is only used when the target scale is similar, so
the evaluation is fair, for example, when the data for a single
link type is used. We use the Python frameworks XGBoost [45]
and Pytorch [40] for developing the XGBoost and the LSTM
model, respectively.
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MAHAJAN ET AL. 9

FIGURE 4 Full Road network within ring road of Paris (left), that is,
source domain and Madrid (right), that is, target domain. Maps created using
Python library OSMnx [51]

3.5 Model transferability

We select the best-trained model on the source data and check
its generalization ability if the model can be applied to study
areas without or insufficient traffic flow data. This is done using
transfer learning. We collect and prepare the source data (S ,
S ) and target data (T , T ) with same set of features (S =

T ) and same type of labels (S = T ). Still, there is no guar-
antee that the feature’s marginal distributions (PS (X ) ≠ PT (X ))
and the label conditional probability distributions (P (YS ∣ XS ) ≠
P (YT ∣ XT )) are similar among the source data and target data.
For instance, link attributes and traffic flow patterns can vary
between locations. Thus, this is a case of transductive transfer
learning [35], or domain adaptation [50]. We use model-based
transfer where a pre-trained model is used. This means that the
weights of parameters in the pre-trained model are used as pri-
ors or initial values for the target task. Further, the model can be
used for the target task without any changes or further retrain-
ing or fine-tuning on the sample of target data. We devise a
systematic method to transfer the trained model as listed below
and check model performances to find the best transfer learning
scenario.

1. Baseline model without transfer learning. Here, the model
with the same architecture as the source task but randomly
initialized parameters are used. This model is trained and
tested on the target data only; thus, it has no knowledge
transfer from the source task.

2. Transferring the model pre-trained for source task without
retraining on the target data. Model architecture is also not
changed.

3. Transferring the model trained for the source task by fine-
tuning one or more of the fully connected (FC) layers, LSTM
layers, and embedding layers, but the rest of the model is
frozen. For instance, LSTM layers with parameters from the
source task are fine-tuned on target data. In contrast, the
parameters of the rest of the layers remain fixed. Model
architecture remains the same as in the source task.

For the target domain, we test our model under different
proportions of training data, simulating the scenarios of limited

training data availability. For evaluating the model transferabil-
ity, we use twenty runs of MCCV. First, target data is divided
into training and test set. In each MCCV run, target training set
detectors are further divided into the training and validation set
according to the training proportion, for example, if the training
proportion is 0.65, then 65% of detectors (excluding detectors
corresponding to test links) are assigned for re-training the pre-
trained model, and rest are used for the model validation (e.g.
early stopping). After model training, a test set is used to eval-
uate all the models from all the runs. Thus, our approach can
capture the sampling variability during model transfer.

4 DATA COLLECTION

We use Paris (region within Paris’ ring road or Boulevard
Périphérique) as our primary study area or source domain/ city
(Figure 4), as the Paris open data portal [52] provides histor-
ical traffic flow/volume and occupancy data. For this study,
we assume we have a sufficient source dataset for training and
testing our model. We train our original model using these data.

Traffic flow data (dependent variable) are collected from the
traffic sensors (loop detectors) installed on the road. The data
for the full year 2019 was retrieved. We use these data for train-
ing our machine and deep learning models. The raw dataset
from the portal is at the aggregation interval of one hour, and
it defines the predictive resolution of our models. Our models
cannot predict for a horizon of less than one hour.

We use link speed data from the Uber Movement portal for
the same study area and period. Uber, a Transportation Net-
work Company (TNC), provides aggregated speeds by road
segments at hourly granularity [53]. The speed values are derived
from average speed readings from on-trip ride-hailing vehicles
associated with the Uber [53]. The raw data in GPS (Global
Positioning System) pings are ingested in real-time every four
seconds. Uber performs map matching based on a Hidden
Markov chain Model (HMM) to assign the GPS pings to a road
segment. This map-matched data are used to calculate traversal
speed per segment [53]. Speed is given by dividing the length
of the road by the time a vehicle takes to traverse it. Uber
does not publish speed if the number of traversals is below
a minimum threshold to safeguard privacy. Finally, the speed
traversals are aggregated into time windows during a time inter-
val. We retrieved the data from [9]. In the retrieved data, each
road segment has a mean speed and a speed deviation at hourly
granularity in 2019.

We use Madrid as the secondary study area or target domain/
city for investigating transfer learning performance. Open Data
Madrid provides historical data from flow, occupancy, and speed
(only for inter-city roads) at an aggregation interval of 15 min
[54]. The data are aggregated at the interval of one hour so that
the attributes are consistent with the model trained using Paris
data. Link speeds for Madrid are also available from Uber Move-
ment (one-hour interval). For Madrid, therefore, we have link
speed data from two sources, and we can compare these two
sources to check the plausibility of the FCD data (from Uber
Movement).
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10 MAHAJAN ET AL.

FIGURE 5 Average trends (top) of the speed, flow and occupancy for the links from source city, MFD shows average flow, occupancy, and speed for (middle)
all links from source (Paris) city. MFD (bottom) for links from source and target (Madrid) cities for trunk and motorway links, respectively

To match the flow and speed data, we use Shared Streets, a
standard for streets, that is, roads are assigned a unique identifier
for referencing. Shared Streets [55] also provides a tool to match
the geographic objects (in the form of points and edges) using a
probabilistic HMM map matching [56]. Since the flow and speed
datasets are geo-referenced, we utilize this tool to map traf-
fic flow and speed data to a common Shared Streets standard,
and then merge them. We also retrieve the road’s static features
from the OpenStreetMap (OSM). These features include length,
type, number of lanes, and speed limit. During data fusion, we
dropped the roads/ links if static features (number of lanes or
speed limit) were missing.

In the OSM data, highway segments are classified into motor-

way, trunk, primary, secondary and tertiary, unclassified and residential,
according to their importance in the road network. Further,
the segment or link types such as motorway_link, trunk_link, pri-

mary_link and secondary_link refer to the slip roads/ramps and
physically separated at-grade turning lanes in the OSM data.
For definitions of these links, we refer the reader to [57] and
[58]. Finally, we do not consider the effects of dynamic traffic
management on features (such as dynamic speed limits) derived
from OSM data because such data are unavailable. The flow-

speed-OSM matched data consist of a time series for each of
the road segments with static (geometric and contextual) and
dynamic (speed and flow) features (Figure 2).

5 DATA ANALYSIS

We show the trends of the mean flow, speed, and occupancy for
different link types during the day in Figure 5 (top row). Trunk
type links show the highest average flows. We also plot the
Macroscopic Fundamental Diagram (MFD) [59] or Network
Fundamental Diagram (NFD) [60] and traffic fundamental dia-
grams to understand the traffic state dynamics. We use the
weighted average formulation by [61] to represent the MFD
mentioned below:

qw
t =

Σi qit li

Σi li
(5)

ow
t =

Σi oit li
Σi li

(6)

sw
t =

Σi sit li
Σi li

, (7)
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MAHAJAN ET AL. 11

where qw
t , ow

t , and sw
t are average lane-flow, occupancy and speed,

respectively, at time t , li is link length, qit , oit , and sit are flow,
occupancy and speed for the ith link at time t . Separate MFD
is estimated for each link-type category. Factors such as spa-
tial distribution of the congestion and location of detectors can
affect the shape, scatter, and the existence of a well-defined
MFD [62].

Figure 5 (middle and bottom row) also shows the average
traffic states or MFD (flow, occupancy, speed) for all links
within the source city. Each point in the plot corresponds to a
time interval of one hour. In this figure, we have not adjusted
or filtered the data to account for the homogeneity of the
congestion since it is not the focus of this study. Still, the exis-
tence of MFD is evident, albeit some link types show more
scatter than others; for instance, the trunk type links show well-
defined MFD over a wide range of speed values and occupancy
(Figure 5). This is a crucial element for our experiment, as
we focus only on temporal aspects and do not explicitly con-
sider network characteristics (for example, through a GNN).
MFD for other link types (such as residential type links) shows
more scatter and is mostly confined over a narrow range of
speed values. We suppose this is typical for urban roads with
speed limits on the lower side (50 km/h or 30 km/h). Further,
the scatter is prominent in all link types during high average
occupancy or low average speeds. This could be due to hetero-
geneity in the congestion patterns leading to the loss of well-
defined MFD.

Data for time instances when any of the link’s dynamic (flow
or speed data) features were missing were also dropped. Low
importance roads have more missing speed data values. The
remaining Paris data has median completeness of 68%, 63%,
and 96% over a full year (8670 hours) for primary, secondary,
and trunk links (Table 1), respectively. For Madrid, the median
data completeness is 81% (motorway-type links). Due to the
generally high rate of data completeness for these link types, we
have enough samples (Table 1) for training and testing our mod-
els. Otherwise, as a pre-processing step, data imputation can be
needed if data completeness is low [63].

We provide the descriptive statistics for the selected links in
Table 1. For the source city, flow data from primary, secondary,
and trunk link types constitute 90% of the dataset, with about
8.2 million samples for 1290 unique links. Source data for Paris
consist of data of 809, 363, and 122 links for primary, secondary,
and trunk links, respectively.

Primary and secondary links show similar speed characteris-
tics with a mean speed of around 27–30 Km/h, whereas trunk
links have a mean speed of 58 Km/h. Trunk links belong to the
Boulevard Périphérique, an uninterrupted road system, but pri-
mary and secondary links are interrupted by traffic signals. Both
primary and secondary links are shorter than the trunk links and
have, on average fewer lanes. The mean hourly flow on primary
and secondary links is about 650 and 450 vehicles/h, respec-
tively, whereas trunk links have a significantly higher mean flow
of 4150 vehicles/hour. In Table 1, it can be seen that scale, as
seen from the mean and standard deviation (SD), of the flow
values, are different for the primary, secondary, and trunk link

types. Also, flow variance in primary (503 vehicles/h) and sec-
ondary (342 vehicles/h) links is lower than that of trunk links
(1865 vehicles/h). This is why we do not report RMSE when
all links are considered in the training data because RMSE is a
scale-dependent metric.

In the traffic fundamental diagram in Figure 6, it is evident
that primary and secondary type links have more scatter than
others. For instance, the trunk links display the evolving rela-
tionship between the flow and speed over a wide range of values
at different times.

From midnight to the early morning, traffic remains majorly
in a free-flow regime. We see the typical fundamental diagram
from the morning to the evening hours, wherein links are either
in free-flow, transitions, or congestion regime. This finding is
essential for exogenous flow modeling because speed is clearly
correlated with the flow for the trunk type links in the dataset.
On the other hand, the same is not valid for the primary and
secondary type links as their speed-flow plot is only confined
within a limited range. Possible explanations are the existence
of speed limits on the lower side (50 km/h or 30 km/h) and
traffic signals, which results in non-uniform traffic states and
restricted range of traffic state variables. Some scattering is also
because plots are not controlled for variables such as speed limit,
and number of lanes.

For the target data, we have data of 129 motorway links
belonging mostly to M30 orbital motorway (also an uninter-
rupted system). The fundamental diagram for these links is
shown in Figure 7. The mean speed on these links is higher
(75 Km/h), and the mean flow is lower (2300 vehicles/h) than
those on the trunk links in source data. This shows that features
in source and target data have different distributions. How-
ever, their standard deviation of flow (1561 vs. 1865 vehicles/h)
and speed (15.5 vs. 16.8 km/h) are similar. Although trunk and
motorway link features have different distributions, their ranges
have significant overlap (Figure 8). This makes us confident that
a model trained using source trunk links is a better candidate for
transfer than using a model trained with all link types.

5.1 Comparison of detector and FCD data

While comparing the speed data from detectors and FCD
sources for Madrid, we find that the data are not uniformly
consistent across the traffic states, as shown in Figure 9. The
mean error is high in regions of low data density (low speeds,
very low flows, and high occupancy). This shows that FCD
data is not reliable in these ranges. For flow values greater than
400 vehicles per hour, the mean percentage error stays within
−10% to 5%. Speed data from UBER movement is more
trustworthy in the flow higher than 400 vehicles per hour. The
high percentage error occurs for low values of the speed, that
is, less than 50 kmph, and for higher values of link occupancy,
that is, greater than 30%. We conclude that link speed data from
the UBER movement dataset is consistent with the detector
measured speeds for high flows and low occupancy or higher
speeds.

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12305 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 MAHAJAN ET AL.

TABLE 1 Descriptive statistics of the features in the pre-filtered Paris and Madrid data

Max. speed

(km/h) Length (m) Lanes (no.)

Hourly speed

(km/h)

Speed SD

(km/h)

Hourly flow

(vehicles/h)

Pre-filtered Paris data

Link type: Primary; detectors: 809; samples: 4.28x106

Min 30.00 10.05 1.00 0.39 0.07 0.00

Mean 48.85 187.94 2.77 29.89 10.27 654.19

Median 50.00 133.97 3.00 29.62 9.81 540.00

Max 60.00 933.01 5.00 126.36 70.99 11152.00

SD 4.33 153.59 1.05 10.24 3.84 502.94

Link type: Secondary; detectors: 363; samples: 1.88x106

Min 30.00 13.37 1.00 0.47 0.06 0.00

Mean 46.42 143.42 2.50 27.57 9.71 450.58

Median 50.00 108.87 2.00 27.71 9.32 364.00

Max 50.00 607.46 5.00 107.36 63.44 6152.00

SD 7.28 108.49 0.89 8.25 3.64 342.72

Link type: Trunk; detectors: 122; samples: 9.60x105

Min 50.00 97.20 2.00 0.83 0.11 0.00

Mean 69.80 609.13 3.77 58.13 10.28 4149.65

Median 70.00 581.63 4.00 65.17 9.38 4378.00

Max 70.00 1362.56 5.00 92.38 62.97 9021.00

SD 1.90 243.62 0.58 16.86 3.56 1865.58

Pre-filtered Madrid data

Motorway; detectors: 129; samples: 7.27x105

Min 50.00 27.06 3.00 3.06 0.27 0.00

Mean 81.84 843.82 3.41 75.02 11.04 2299.09

Median 90.00 558.58 3.00 78.89 9.67 2117.75

Max 100.00 4658.27 5.00 141.77 67.55 8632.00

SD 12.42 925.01 0.62 15.56 5.77 1561.87

5.2 Summary

Based on the above analysis, we conclude that it makes sense
to develop two types of models from source data based on the
link types in the input data. The first type of model considers
datasets from all three source link types for training. The second
model only uses data from source trunk-type links. Contrast-
ing between two models helps us confirm our belief regarding
the adverse effects of the scattering in the fundamental dia-
gram, distinct feature statistics, and speed data errors on the
flow prediction model’s performance.

6 RESULTS

The list of hyperparameters and their range of possible values
for search is shown in Table 2. The best parameters for the

XGboost and LSTM models are also shown in Table 2 and are
based on the best SMAPE on the validation dataset. When the
input data contains all links (primary, secondary, and trunk),
both models fail to achieve good SMAPE on the test data and
are under-fitting (Table 3). SMAPE of XGBoots and LSTM
models are 51.76% and 40.17%, respectively. This finding
was expected due to the lack of structure in the fundamental
diagram for primary and secondary links and thus a weak
correlation between speed and flow. Still, the LSTM model
fits better than the XGBoost. For the input data with only
trunk type links, the LSTM model again performs better than
the XGBoost model in terms of both SMAPE and RMSE on
test data (Table 3). LSTM model outperforms the XGBoost
in test SMAPE and RMSE by approximately 21% and 13%,
respectively. SMAPE and RMSE of the LSTM model on the
test data are comparable to those on the training data, showing
that the LSTM model can better generalize on the unseen
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MAHAJAN ET AL. 13

FIGURE 6 Traffic fundamental diagram for primary (top), secondary (middle), and trunk (bottom) links from source city (Paris) during the year 2019. The
fundamental diagram is more prominent for the trunk category links than the other links

FIGURE 7 Traffic fundamental diagram for motorway links from target city (Madrid)

FIGURE 8 Feature distributions for source and target data

data. Test SMAPE of the XGBoost model is much higher
than on the training set, indicating an overfitting problem.
Lastly, the confidence intervals of the LSTM model (Table 3)
are narrower than the confidence intervals of the XGBoost
model’s error, indicating that the LSTM model has low
variance.

We also show the effect of the lookback length and prediction
horizon on the performance of the LSTM model in Figure 10.
In Figure 10 and Table 4, model performance degrades with the
increase in the prediction horizon. This degradation is expected
since it becomes challenging to predict accurately with increas-
ing prediction horizons. The model shows good performance
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14 MAHAJAN ET AL.

FIGURE 9 Speed error between stationary detector data and FCD data

TABLE 2 Parameter ranges for tuning hyperparameters of machine
learning models using Monte Carlo cross-validation (MCCV)

Model Parameter Search range Best value

Learning rate (1e-4, 0.9) 0.4

Maximum depth of tree {2,3,4,5,6} 5

XGBoost Column sub-sampling [0, 1] 1

Sub-sampling [0, 1] 0.6

Iterations up to 4000 Varies1

Learning rate (1e-6, 1e-1) 1.8e-4

Batch size {1024,2048,4096,8192} 2048

Weight decay (1e-7, 1e-4) 1e-5

maximum size of
embedding

5,10,15 10

Dropout rate (0, 1) 0.5

LSTM Number of LSTM layers {1,2,3,4} 3

Size of LSTM hidden state {40,50,100,200} 50

Number of dense layers {1,2,3} 2

Size of penultimate hidden
layer

{30,50,100,200} 50

Size of last hidden layer {5,10,20,40} {5,10}2

Epochs up to 4000 Varies1

1early stopping based.
2based on output size.

with a prediction horizon shorter than three hours. However,
the error increases rapidly when the prediction horizon is more
than six hours, as shown in Table 4. On the other hand, an
increase in lookback length does not show a major change in the
model performance, but the lookback length of six steps shows
the best performance in our experimental setting (Table 4).

In Table 4, we compare the model’s performance (with
lookback length and prediction horizon of six steps and one
step, respectively) with the different feature compositions. We
show the effect of step-wise addition of features from the
loop detectors, namely, the occupancy (o) and flow (q), to the
exogenous set of features (link attributes, speed attributes). We

TABLE 3 Model performance on different metrics

Model

Link

types

Loss

criteria

Performance

Metric

Training

data Test data

XGBoost
All

SMAPE (%)
SMAPE (%) 45.15 ± 2.02 51.76 ± 5.28

Trunk SMAPE (%)
RMSE

14.04 ± 1.39
725 ± 88

21.65 ± 2.93
862 ± 157

LSTM
All

SMAPE (%)
SMAPE (%) 40.75 ± 0.51 40.17 ± 0.90

Trunk SMAPE (%)
RMSE

14.05 ± 0.47
634 ± 19

16.89 ± 0.31

743 ± 14

Note: RMSE is not reported for link types “all”, since the scale of target variable largely
varies across the primary, secondary, and trunk link types.

find that the model SMAPE reduces by approx. 41% when we
add o to the input features. When we use the past value(s) of
q as an input feature, the model formulation resembles autore-
gressive forecasting with exogenous inputs. In this setting,
SMAPE reduces by more than 61% over the baseline indirect
estimation model. This improvement is expected past target
variables provide direct information about the scale or range for
future predictions due to the autocorrelation among the target
variables. Thus, the autoregressive forecasting setting provides
more accurate predictions than the purely exogenous or indirect
estimation setting, indicating that the latter is more challenging.

In Figure 11, we show specimens of the model predictions for
different detectors. There are a few noticeable things. First, the
model can capture the flow periodicity, that is, the ascent and
descent of flow trend during the day. This signifies good pre-
dictions when the flow transitions from off-peak to peak flow
and vice-versa. The model shows good performance for detec-
tors 5380 and 5299, as the predicted peak flow is closer to the
true (actual or measured) value. The model performs reasonably
well with a SMAPE of less than 17% on the test data, consid-
ering exclusive exogenous input features. In a few instances,
the model struggles to capture peak and off-peak flow (e.g.
crests for detector 5169 and troughs for detector 5273), where
the model either over-predicts or under-predicts the flow com-
pared to the actual value. The dropout during the model testing
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MAHAJAN ET AL. 15

FIGURE 10 Cross-validation error and test error for different performance metrics, lookback length and prediction step

TABLE 4 Effect of lookback length and prediction horizon on test data.
Best test performance is shown in bold

Model - Input features

Lookback

length

(hour)

Prediction

horizon

(hour) SMAPE (%)

RMSE

(vehicles/

hour)

LSTM - (exogenous)

6 1 16.89± 0.31 743± 14

6 3 20.20± 1.06 919± 42

6 6 27.18± 0.60 1247± 20

6 9 77.80± 16.45 2602± 317

3 1 17.30± 0.47 751± 24

6 1 16.89± 0.31 743± 14

9 1 18.00± 1.38 815± 73

12 1 17.11± 1.08 777± 56

LSTM - (exogenous, o) 6 1 9.95± 2.01 466± 92

LSTM - (exogenous, o, q) 6 1 6.47± 0.97 321± 37

Note: o, occupancy; q, time-lagged flow.

provides insights into the prediction uncertainty. For this, we
show the 95% confidence interval of the model predictions.
The uncertainty is higher near the peak flows, as seen from the
wider prediction intervals at the peaks. During off-peak hours,
the predictions have low variance. The uncertainty estimates are
as important as the predictions since it helps understand how
much the model predictions can be trusted.

We also show the distribution of the errors, namely, SMAPE
and RMSE, across time of the day, weekday, and month to iden-
tify any error correlations. In Figure 12, it is seen that the mean
SMAPE for night and morning hours (during 2100–0900 h) are
higher than during the rest of the day. On the other hand, the
RMSE during the corresponding hours is lower than the rest of
the day. One of the plausible explanations is the small magni-
tude of the flows during the off-peak hours, which pushes the

SMAPE to higher values. Finally, the SMAPE and RMSE are
almost constant across different weekdays. For August, errors
are slightly higher than in the rest of the months, possibly due
to distinct traffic patterns during the vacation period in Paris.

6.1 Model transferability

In Table 5, we show the model performances on test data using
high (0.65) and low (0.10) proportions of training data for the
target domain. When using 65% of the target data for train-
ing, the baseline model with randomly initialized parameters
achieves a SMAPE of 22.24%. Pre-trained model without fine-
tuning the target data does not lead to accurate predictions,
as evident from its higher SMAPE. However, selective fine-
tuning of the pre-trained model on the target data helps achieve
even better results than the new model. Out of the different
combinations of unfrozen layers in the pre-trained model, the
model with all the unfrozen layers achieves the best SMAPE
of 20.5%, which is a marginal improvement of 8% over the
baseline model. A model with only LSTM layers as unfrozen
layers also performs well with a SMAPE of 21.49%. Thus,
fine-tuning the LSTM layer is essential when transferring the
knowledge from the source to the target domain. This is due to
the difference in temporal patterns between the target and the
source city. Thus, the model relearns the new patterns from the
target dataset.

The benefits of transfer learning are prominent in low data
availability scenarios. When using 10% of the target data for
training, the new model has a high bias and variance, as
seen from its higher SMAPE and 95% confidence interval.
Pre-trained model (with fine-tuned LSTM layer) can achieve
SMAPE of 27.4% even in the case of data insufficiency. In
Figure 13, we show the performance differences between the
baseline or new model and fine-tuned pre-trained model with
the different proportions (from 0.04 to 0.96 at a spacing of 0.04)
of the target data used for fine-tuning. We fine-tune only the
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16 MAHAJAN ET AL.

FIGURE 11 Examples showing flow predictions for detectors in test data from Paris

FIGURE 12 Trend of SMAPE and RMSE with time of day, weekday, and
month

LSTM layer since it is crucial for successful transfer learning.
We find that with sufficient training data, that is, when more
than 40% of the target domain data is used for re-training, both
models perform equally well with the test SMAPE of around
20%. When the proportion of training data falls below 40%,
we notice two trends. First, the variance of the performance
of the baseline model increases considerably. This is due to
the high variance in sampling training datasets at low propor-
tions since smaller training datasets do not capture complete
distribution over the target domain. In contrast, the variance
of the fine-tuned model is low and about consistent, which
points to the advantage of transfer learning over the baseline
model.

Second, when the proportion of training data is very low
such as less than 20% (Figure 13), the baseline model’s bias
also increases, and it performs poorly compared to the pre-
trained model. This is due to the model’s over-fitting of the small
training data distribution, which is very different from the test
data distribution. In contrast, the performance of the fine-tuned
pre-trained model is stable. Thus, we conclude that transfer

learning performs equally well when the data is sufficient.
More importantly, transfer learning outperforms the baseline
model when the data for the target domain is insufficient since
source knowledge helps overcome the lack of data in the target
domain.

Figure 14 shows example predictions on test target data from
the new and pre-trained models at different training data pro-
portions. When using less than 10% of the training data, the
pre-trained model’s predictions are more accurate and consis-
tent than the new model’s predictions. In these examples, when
using insufficient training data, high bias and high variance in
the predictions by the new model are evident. An increase in
training data helps the model to make accurate predictions. But
the pre-trained model can make accurate predictions using even
a small amount of data.

7 DISCUSSION

The objective of the proposed framework is to predict traffic
counts on links that are not equipped with a traffic sensor by
training and testing the model on the source links and then
transferring the model to target links. The transferred model
can help when the data is insufficient for developing models
from scratch. LSTM model outperforms the XGBoost model
in exogenous flow prediction with a test SMAPE of about 17%
for the source trunk links. The trunk type links belong to high-
speed category links, and thus our results somewhat address
the limitation of previous work by Neumann et al. (2013) [7],
where the model predictions for high-speed links were found
to be less accurate. It is fundamental not only to predict these
values but, even more notably, to estimate how precise these
predictions are. The proposed deep learning architecture also
answers this question using a dropout mechanism. Even though
all link types exhibit typical MFD curves to varying extents, the
LSTM model only fits well for trunk-type links. Models did not
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MAHAJAN ET AL. 17

TABLE 5 Performance comparison between training new model and fine-tuning pre-trained model with the change in the proportion of training data.

LSTM

Model-type

Weight

initialization

Proportion of

target data for

training

Unfrozen/

fine-tuned

layers

Test SMAPE

(%)

Improvement

over baseline

(%)

Baseline Random

0.65

All 22.24± 1.96 –

Transfer Pre-trained

None 65.82± 2.74 −195

FC3 46.54± 0.39 −109

FC2-3 46.55± 0.34 −109

FC1-3 45.87± 0.29 −106

LSTM, FC 21.24± 0.99 4

LSTM 21.49± 0.90 3

E 22.75± 0.73 −2

E, LSTM, FC 20.50± 1.10 8

Baseline Random

0.10

All 55.30± 16.06 –

Transfer Pre-trained

None 65.82± 2.74 −19

FC3 47.15± 1.30 15

FC2-3 47.29± 1.00 15

FC1-3 47.60± 1.00 14

LSTM, FC 29.07± 1.70 47

LSTM 27.41± 1.68 50

E 29.14± 1.61 47

E, LSTM, FC 30.92± 1.89 44

Note: FC, fully connected layer; E, embedding layer.

FIGURE 13 Comparison between training new model and fine-tuning
pretrained model with the change in the proportion of training data

perform as well in the case of primary and secondary type links,
possibly due to several reasons. If a fundamental diagram is
not well-formed, models will struggle to learn link speed and
flow mapping. Further, unreliable FCD speed data in specific
ranges of traffic variables will degrade the model performance.
We conclude that the manifestation of a traffic fundamental
diagram and reliable FCD data over a wide range of speed
and flow is essential for indirect dynamic flow estimation from
speed.

Our experiments conclude that the indirect traffic flow esti-
mation task has two components (a) transferable patterns and
(b) nontransferable patterns. Training a new model on minimal
target data will lead to high bias and high variance in predictions.
Thus, transfer learning can help to bridge this gap. Distributions
of source and target data are prone to be distinct across different
cities. Thus, applying a pre-trained model without fine-tuning on
target data does not give accurate results. The pre-trained model
contains the insights from the source domain, thus eliminating
the need for a model to re-learn the transferable patterns. For
learning the nontransferable patterns, some data is still required.
Nevertheless, the overall data requirements are lesser than the
scenario without transfer learning, and the pre-trained model
outperforms the newly trained model when data is scarce.

The study’s limitations can be categorized into relating to
either data or model. Data issues such as data inaccuracy due
to noise and anomalies, non-perfect data matching, informa-
tion loss due to aggregation, and heterogeneity of data sources
can lead to distortion of the same information coming from
different sources. This directly affects the quality of the train-
ing data and decreases the signal-to-noise ratio, thus making
it challenging for the model to learn the underlying correla-
tions. Further, the static features such as maximum speed and
the number of lanes ignore the effect of dynamic traffic man-
agement (such as dynamic speed limits or lane closures) in the
recorded flow values.
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18 MAHAJAN ET AL.

FIGURE 14 Flow predictions on test data in target domain using new model and fine-tuned pre-trained model. Both models are trained using different
training proportions of training data

On the model side, even though we tackled temporal correla-
tions using LSTM-based architecture, which is still competitive,
there is still scope for further research using state-of-the-art
deep learning models. For instance, GNNs [64, 65] or Tempo-
ral Fusion Transformer [66, 67] are more specialized to learn
network or topological data and temporal sequences, respec-
tively. Therefore, they can further help to reduce the forecasting
error. Lastly, our model does not establish causation between
link flows and link speeds but only uses their correlation
for prediction.

The practical implications of our research are that the exoge-
nous flow prediction can help fill the flow data unavailability
for traffic management or transport model validation. Further,
open data and transfer learning can help address this challenge
by reducing data acquisition costs. Flow predictions with uncer-
tainty estimates can help reduce the practitioners’ hesitancy to
apply these models.

8 CONCLUSION

In this work, we developed the indirect traffic state estimation
model (for predicting flow). Our model uses only exogenous
features as input for the prediction. This is motivated by the
fact that traffic flow data are sparse and the need to infer it from
other readily available data. We collected the publicly available
traffic data from heterogeneous sources for Paris and Madrid
to form a year-long longitudinal traffic dataset. Using data from
Paris, we trained an LSTM model, which performs well when
the fundamental diagram is well-formed, as in the case of trunk-
type links. We show that pre-trained models outperform the
new model using transfer learning when the data for the target
task is insufficient. The pre-trained model needs minimal data to
make accurate predictions. Thus transfer learning and indirect

flow estimation can help to tackle the traffic flow data scarcity
in transport modeling and traffic management applications.

We aim to integrate the model and predicted forecasts for
improving transport demand model calibration. Specifically, the
link flows provided by the model increase the transport net-
work observability; thus, we aim to analyze their impacts on the
calibrated demand estimates in future research. Here only reli-
able forecasts can be used, whereas the rest can be discarded.
Special events, planned or unplanned, lead to changes in the
traffic patterns [2] and thus can be added as an additional fea-
ture to improve the model performance. Future works should
explore other data sources such as real-time traffic updates and
extract the relevant features to augment the training data. Using
the enriched data, it can be possible to apply transfer learning
for long-term flow estimation like daily traffic flow estimation
[68] or Annual Average Daily Traffic (AADT) flows. Another
challenging work is investigating additional features, especially
for the primary and secondary type links, to address their scat-
ter in their fundamental diagram. Additional features that help
address the scatter can help obtain accurate predictions, espe-
cially for lower category link types (primary and secondary).
Additional features could help explain variance in the funda-
mental diagram and thus provide an improved signal to train
the model.
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G., Lugano, G., Cornet, Y., Lugano, N. (eds.) Intelligent Transport Systems
– From Research and Development to the Market Uptake, pp. 263–273.
Springer International Publishing, Cham (2018)

29. Pun, L., Zhao, P., Liu, X.: A multiple regression approach for traffic
flow estimation. IEEE Access 7, 35998–36009 (2019). https://doi.org/
10.1109/ACCESS.2019.2904645

30. Gkountouna, O., Pfoser, D., Züfle, A.: Traffic flow estimation using probe
vehicle data. In: 2020 IEEE 7th International Conference on Data Science
and Advanced Analytics (DSAA), pp. 579–588. IEEE, Piscataway (2020).
https://doi.org/10.1109/DSAA49011.2020.00073

31. Rinaldi, M., Viti, F.: A cascading kalman filtering framework for real-
time urban network flow estimation. In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pp. 1–
6. IEEE, Piscataway (2020). https://doi.org/10.1109/ITSC45102.2020
.9294175

32. Zhang, Z., Li, M., Lin, X., Wang, Y.: Network-wide traffic flow estima-
tion with insufficient volume detection and crowdsourcing data. Transport.
Res. Part C: Emerg. Technol. 121, 102870 (2020). https://doi.org/10.
1016/j.trc.2020.102870. https://www.sciencedirect.com/science/article/
pii/S0968090X20307701

33. Abdelraouf, A., Abdel Aty, M., Mahmoud, N.: Sequence-to-sequence
recurrent graph convolutional networks for traffic estimation and predic-
tion using connected probe vehicle data. IEEE Trans. Intell. Transp. Syst.
1–11 (2022). https://doi.org/10.1109/TITS.2022.3168865

34. Zhu, W., Chang, A., Jiang, G., Zhang, W.: Link average speed of traffic
flow estimation method based on floating car. In: Ninth International
Conference of Chinese Transportation Professionals, pp. 1–6. Ameri-
can Society of Civil Engineers, Reston, VA (2009). https://doi.org/10.
1061/41064(358)229. https://ascelibrary.org/doi/abs/10.1061/41064%
28358%29229

35. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.
2009.191

36. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques, pp. 242–264. IGI Global, Hershey, PA (2010). https://doi.
org/10.4018/978-1-60566-766-9.ch011. https://services.igi-global.com/
resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch011

37. Luan, J., Guo, F., Polak, J., Hoose, N., Krishnan, R.: Investigating the
transferability of machine learning methods in short-term travel time
prediction. In: Transportation Research Board 97th Annual Meeting.
Transportation Research Board, Washington DC (2018)

38. Li, J., Guo, F., Sivakumar, A., Dong, Y., Krishnan, R.: Transferability
improvement in short-term traffic prediction using stacked lstm net-
work. Transport. Res. Part C: Emerg. Technol. 124, 102977 (2021).
ISSN 0968-090X. https://doi.org/10.1016/j.trc.2021.102977. https://
www.sciencedirect.com/science/article/pii/S0968090X21000140

39. Mallick, T., Balaprakash, P., Rask, E., Macfarlane, J.: Transfer learning with
graph neural networks for short-term highway traffic forecasting. In: 2020
25th International Conference on Pattern Recognition (ICPR), pp. 10367–
10374. IEEE, Piscataway (2021)

40. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.:
Pytorch: An imperative style, high-performance deep learning library. In:
NIPS’19: Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems, pp. 8024–8035. Curran Associates,
Inc., Red Hook (2019). http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

41. Torch Contributors: Lstm. https://pytorch.org/docs/stable/generated/
torch.nn.LSTM.html. Accessed: 2021-09-02.

42. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/
v15/srivastava14a.html

43. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning (2016)

44. Shwartz-Ziv, R., Armon, A.: Tabular data: Deep learning is not
all you need. CoRR abs/2106.03253 (2021). https://arxiv.org/abs/
2106.03253

45. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794. ACM,
New York (2016). https://doi.org/10.1145/2939672.2939785

46. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.
In: Springer Series in Statistics. Springer, New York (2001)

47. Nogueira, F.: Bayesian Optimization: Open source constrained global
optimization tool for Python (2014). https://github.com/fmfn/
BayesianOptimization

48. Rink, K.: Time series forecast error metrics you should know.
https://towardsdatascience.com/time-series-forecast-error-metrics-
you-should-know-cc88b8c67f27. Accessed: 2021-12-02

49. Goodwin, P., Lawton, R.: On the asymmetry of the symmetric
mape. Int. J. Forecast. 15(4), 405–408 (1999). https://doi.org/10.
1016/S0169-2070(99)00007-2. https://www.sciencedirect.com/science/
article/pii/S0169207099000072

50. Redko, I., Habrard, A., Morvant, E., Sebban, M., Bennani, Y.: 2 -
Domain adaptation problem. In: Redko, I., Habrard, A., Morvant, E.,
Sebban, M., Bennani, Y. (eds.) Advances in Domain Adaptation The-
ory, pp. 21–36. Elsevier, London (2019). https://doi.org/10.1016/B978-
1-78548-236-6.50002-7. https://www.sciencedirect.com/science/article/
pii/B9781785482366500027

51. Boeing, G.: Osmnx: New methods for acquiring, constructing, analyzing,
and visualizing complex street networks. Comput. Environ. Urban Syst. 65,
126–139 (2017). https://doi.org/10.1016/j.compenvurbsys.2017.05.004.
https://www.sciencedirect.com/science/article/pii/S0198971516303970

52. Open Data Paris: Comptage routier - données trafic issues des cap-
teurs permanents. https://opendata.paris.fr/explore/dataset/comptages-
routiers-permanents. Accessed: 2021-09-02

53. Uber Movement: Uber movement: Speeds calculation methodology.
https://movement.uber.com/faqs?lang=en-US

54. Open Data Madrid: Tráfico. histórico de datos del tráfico desde 2013.
https://datos.madrid.es/portal. Accessed: 2022-04-05

55. Sharedstreets: sharedstreets-js (2018). https://github.com/sharedstreets/
sharedstreets-js. Accessed: 2021-09-02.

56. Sharedstreets: sharedstreets-matcher (2017). https://github.com/
sharedstreets/sharedstreets-matcher. Accessed: 2021-09-02

57. OpenStreetMap: Highway link. https://wiki.openstreetmap.org/wiki/
Key:highway/. Accessed: 2022-09-02

58. OpenStreetMap: Highway link. https://wiki.openstreetmap.org/wiki/
Highway_link/. Accessed: 2021-09-02.

59. Daganzo, C.F., Geroliminis, N.: An analytical approximation for
the macroscopic fundamental diagram of urban traffic. Transport.
Res. Part B: Methodolog. 42(9), 771–781 (2008). https://doi.org/10.
1016/j.trb.2008.06.008. https://www.sciencedirect.com/science/article/
pii/S0191261508000799

60. Mahmassani, H.S., Saberi, M., Zockaie, A.: Urban network grid-
lock: Theory, characteristics, and dynamics. Transport. Res. Part C:
Emerg. Technolog. 36, 480–497 (2013). https://doi.org/10.1016/j.
trc.2013.07.002. https://www.sciencedirect.com/science/article/pii/
S0968090X13001551

61. Geroliminis, N., Daganzo, C.F.: Existence of urban-scale macro-
scopic fundamental diagrams: Some experimental findings. Transport.
Res. Part B: Methodolog. 42(9), 759–770 (2008). https://doi.org/10.
1016/j.trb.2008.02.002. https://www.sciencedirect.com/science/article/
pii/S0191261508000180

62. Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic
fundamental diagram for urban traffic. Transport. Res. Part B: Method-
olog. 45(3), 605–617 (2011). https://doi.org/10.1016/j.trb.2010.11.004.
https://www.sciencedirect.com/science/article/pii/S0191261510001372

63. Chen, X., Zhang, C., Zhao, X.L., Saunier, N., Sun, L.: Nonstationary tem-
poral matrix factorization for multivariate time series forecasting (2022).
https://arxiv.org/abs/2203.10651

64. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: A survey.
CoRR abs/2101.11174 (2021). https://arxiv.org/abs/2101.11174

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12305 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [24/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/ACCESS.2019.2904645
https://doi.org/10.1109/ACCESS.2019.2904645
https://doi.org/10.1109/DSAA49011.2020.00073
https://doi.org/10.1109/ITSC45102.2020.9294175
https://doi.org/10.1109/ITSC45102.2020.9294175
https://doi.org/10.1016/j.trc.2020.102870
https://doi.org/10.1016/j.trc.2020.102870
https://www.sciencedirect.com/science/article/pii/S0968090X20307701
https://www.sciencedirect.com/science/article/pii/S0968090X20307701
https://doi.org/10.1109/TITS.2022.3168865
https://doi.org/10.1061/41064(358)229
https://doi.org/10.1061/41064(358)229
https://ascelibrary.org/doi/abs/10.1061/41064%28358%29229
https://ascelibrary.org/doi/abs/10.1061/41064%28358%29229
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.4018/978-1-60566-766-9.ch011
https://doi.org/10.4018/978-1-60566-766-9.ch011
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch011
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch011
https://doi.org/10.1016/j.trc.2021.102977
https://www.sciencedirect.com/science/article/pii/S0968090X21000140
https://www.sciencedirect.com/science/article/pii/S0968090X21000140
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2106.03253
https://arxiv.org/abs/2106.03253
https://doi.org/10.1145/2939672.2939785
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://doi.org/10.1016/S0169-2070(99)00007-2
https://doi.org/10.1016/S0169-2070(99)00007-2
https://www.sciencedirect.com/science/article/pii/S0169207099000072
https://www.sciencedirect.com/science/article/pii/S0169207099000072
https://doi.org/10.1016/B978-1-78548-236-6.50002-7
https://doi.org/10.1016/B978-1-78548-236-6.50002-7
https://www.sciencedirect.com/science/article/pii/B9781785482366500027
https://www.sciencedirect.com/science/article/pii/B9781785482366500027
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://www.sciencedirect.com/science/article/pii/S0198971516303970
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents
https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents
https://movement.uber.com/faqs?lang=en-US
https://datos.madrid.es/portal
https://github.com/sharedstreets/sharedstreets-js
https://github.com/sharedstreets/sharedstreets-js
https://github.com/sharedstreets/sharedstreets-matcher
https://github.com/sharedstreets/sharedstreets-matcher
https://wiki.openstreetmap.org/wiki/Key:highway/
https://wiki.openstreetmap.org/wiki/Key:highway/
https://wiki.openstreetmap.org/wiki/Highway_link/
https://wiki.openstreetmap.org/wiki/Highway_link/
https://doi.org/10.1016/j.trb.2008.06.008
https://doi.org/10.1016/j.trb.2008.06.008
https://www.sciencedirect.com/science/article/pii/S0191261508000799
https://www.sciencedirect.com/science/article/pii/S0191261508000799
https://doi.org/10.1016/j.trc.2013.07.002
https://doi.org/10.1016/j.trc.2013.07.002
https://www.sciencedirect.com/science/article/pii/S0968090X13001551
https://www.sciencedirect.com/science/article/pii/S0968090X13001551
https://doi.org/10.1016/j.trb.2008.02.002
https://doi.org/10.1016/j.trb.2008.02.002
https://www.sciencedirect.com/science/article/pii/S0191261508000180
https://www.sciencedirect.com/science/article/pii/S0191261508000180
https://doi.org/10.1016/j.trb.2010.11.004
https://www.sciencedirect.com/science/article/pii/S0191261510001372
https://arxiv.org/abs/2203.10651
https://arxiv.org/abs/2101.11174


MAHAJAN ET AL. 21

65. Lin, L., He, Z., Peeta, S.: Predicting station-level hourly demand
in a large-scale bike-sharing network: A graph convolutional neu-
ral network approach. Transport. Res. Part C: Emerg. Technolog. 97,
258–276 (2018). https://doi.org/10.1016/j.trc.2018.10.011. https://www.
sciencedirect.com/science/article/pii/S0968090X18300974
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