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Abstract

An interplay between genetic and environmental factors cause many common complex
diseases, such as asthma, diabetes or depression. While more and more of these
associations are identified in large human cohort studies, the molecular consequences
of genetic and environmental factors that lead to the diseases are often still poorly
understood. To explore the genetic consequences, association studies between genetic
variants and gene expression, called expression quantitative trait loci (eQTLs), could
successfully uncover part of the downstream genetic effects. The consequences of
environmental influence on cellular level can be captured by measuring epigenetic
factors, which regulate gene activation and are strongly influenced by environmental
stimuli. Also here, association analyses of epigenetic factors with other omics levels,
such as the transcriptome and the genome, help to uncover interactions and downstream
effects.

Nevertheless, only a small part of the phenotypic effects of genetic and environmental
factors could be explained on molecular level yet. At least part of this knowledge gap is
caused by the cell type specificity of molecular QTLs. Many associations are likely not
identified yet without a proper analysis in the relevant cell types. Until recently, most
analyses were performed with bulk tissue datasets, which capture only the average omics
levels across all measured cell types. For this reason, either specialized methods for cell
type specific analysis with bulk datasets are necessary or the use of single cell datasets
to increase the number of identified associations and improve their interpretability.
Both strategies are explored in this thesis. It covers in total three different projects, in
which current association strategies are applied and refined on both bulk and single cell
datasets with different omics.

In the first project, we analyzed DNA methylation, an important epigenetic mark,
and its relationship with genetics and gene expression to better understand its role in
gene regulation. We identified 11,165,559 methylation quantitative trait loci (meQTLs),
i.e. genetic variants which influence DNA methylation, in a large multi-ethnic bulk
cohort. To capture the cell type and context specificity of meQTLs with this bulk dataset,
we mapped interaction meQTLs (iQTLs), meQTLs whose effect sizes are influenced
by the cell type composition of the donors or environmental factors. Following this,
we investigated the influence of DNA methylation on gene expression via expression
quantitative trait methylations (eQTMs), again with specific focus on the cell types. The
number of eQTMs reduced drastically from 54,898,225 to 98,050 after correction for cell
type composition. To better understand which genes are affected by DNA methylation
in which genomic regions, we analyzed the genomic context for both types of eQTMs
using a combination of machine learning approaches and identified clear differences:
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Abstract

eQTMs before cell type correction were connected with DNA methylation in enhancer
regions, cell type corrected eQTMs with DNA methylation in promoter regions.

In the second project, we explored the use of single cell transcriptomics, a recent
technical development, for cell type specific eQTL analyses. However, only few single
cell cohorts currently exist. Sophisticated experimental design of future cohorts is crucial
to perform powerful studies without wasting resources. For this reason, we developed
of a statistical power analysis framework for multi-sample single cell transcriptomics
studies called scPower. In contrast to other existing tools, it takes single-cell specific
characteristics into account, while being very time and memory efficient. It is easily
applicable to different use cases because of cell type specific priors. The efficient
calculation allows optimization of experimental parameters given certain cost restrictions.
Our evaluation showed that in a large range of settings, microfluidics-based single
cell technologies, such as 10X Genomics and Drop-Seq, in combination with shallow
sequencing of many cells gave the best power.

On top of that, single cell transcriptomics studies allow new analysis approaches
compared to classical eQTL studies, which identify only the target genes affected by
genetic variants. The multiple measurement points per individual enable the recon-
struction of personalized gene regulatory networks and so also the identification of the
upstream regulatory processes disturbed by the eQTL variants. For this, we mapped
co-expression QTLs (co-eQTLs), genetic variants that change the co-expression relation-
ship between two genes, in the third project of the thesis. We developed a new strategy
to systematically detect co-eQTLs, while taking the large multiple testing burden into
account caused by the huge search space. Using this, we identified a robust set of
72 co-eQTL SNPs associated with 946 gene pairs in a human single cell cohort. We
interpreted the co-eQTLs with a combination of different enrichment analyses and found
so new insights into several disease-associated eQTLs. For example, we identified a
connection of the eQTL rs1131017-RPS26 with T cell activation, potentially explaining
its involvement in immune-related diseases.

Overall, we developed new methods and strategies around association studies, from
study design over identification of associations to their interpretation. Both the analysis
of DNA methylation and of single cell expression gave us new insights into the cell type
specificity of associations. All developed computational methods are publicly available
and will hopefully aid future users with their population analyses.
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Kurzfassung

Ein Zusammenspiel aus genetischen und umweltbedingten Faktoren ist die Ursache
vieler häufiger komplexer Erkrankungen, wie Asthma, Diabetes oder Depression. Ob-
wohl zunehmend mehr dieser Zusammenhänge identifiziert werden können in großen
menschlichen Kohortenstudien, sind die molekularen Ursachen der genetischen und
umweltbedingten Faktoren, die zu den Krankheiten führen, oft noch kaum verstanden.
Um die genetischen Konsequenzen besser zu untersuchen, konnten Assoziationsstudien
zwischen genetisch Varianten und Gen-Expression, genannt expression quantiative trait
loci (eQTL), einen Teil der genetischen Effekte erfolgreich aufdecken. Die Konsequen-
zen von Umwelteinflüssen auf zellulärer Ebene können eingefangen werden durch die
Messung epigenetischer Faktoren, die die Gen-Aktivierung regulieren und stark beein-
flusst werden von Umweltsignalen. Auch hier helfen Assoziations-Analysen zwischen
epigenetischen Faktoren und anderen omics Leveln, z.B. dem Transcriptome oder dem
Genome, dabei, Interaktionen und nachfolgende Effekte aufzudecken.

Dennoch konnte bisher nur ein kleiner Teil der phänotypischen Effekte von geneti-
schen und umweltbedingten Faktoren auf molekularer Ebene erklärt werden. Zumindest
teilweise wird diese Wissenslücke durch die Zelltyp-Spezifität von molekularen QTLs
verursacht. Viele Assoziationen sind wahrscheinlich noch nicht identifiziert, ohne eine
geeignete Analyse in den relevanten Zelltypen. Bis vor kurzem wurden die meisten Ana-
lysen mit bulk Gewebedaten ausgeführt, welche nur die durchschnittlichen omics Werte
über alle gemessenen Zelltypen erfassen. Deswegen sind entweder spezialisierte Metho-
den für Zelltyp-spezifische Analyse mit bulk Daten notwendig oder die Verwendung
von single cell Daten, um die Anzahl der identifizierten Assoziationen zu vergrößern
und ihre Interpretierbarkeit zu verbessern. Beide Strategien werden in dieser Doktor-
arbeit untersucht. Die Arbeit umfasst insgesamt drei verschiedene Projekte, in denen
aktuelle Assoziationsstrategien auf bulk und single cell Datensätze mit verschiedenen
omics angewendet und verbessert werden.

Im ersten Projekt analysierten wir DNA Methylierung, eine wichtige epigenetische
Modifikation, und ihre Interaktionen mit Genetik und Gen-Expression, um ihre Rolle
in der Genregulation besser zu verstehen. Wir identifizierten 11,165,559 methylation
quantitative trait loci (meQTLs), d.h. genetische Varianten, die DNA Methylierung
beeinflussen, in einer großen multi-ethnischen bulk Kohorte. Um Zelltyp- und Kontext-
Spezifität der meQTLs in diesem bulk Datensatz zu erfassen, identifizierten wir in-
teraction meQTLs (iQTLs), meQTLs, deren Effektgrößen beeinflusst werden von der
Zelltyp-Zusammensetzung der Spender oder Umweltfaktoren. Anschließend untersuch-
ten wir den Einfluss von DNA Methylierung auf Gen-Expression mithilfe von expression
quantiative trait methylations (eQTMs), wieder mit spezifischen Fokus auf die Zelltypen.
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Die Anzahl eQTMs reduzierte sich drastisch von 54,898,225 auf 98,050 nach Korrektur
für die Zelltyp-Zusammensetzung. Um besser zu verstehen, welche Gene von DNA
Methylierung in welchen Regionen beeinflusst werden, untersuchten wir den genomi-
schen Kontext für beiden Arten von eQTMs mithilfe verschiedener machine learning
Ansätze und identifizierten deutliche Unterschiede: eQTMs ohne Korrektur für die
Zelltypen konnten mit DNA Methylierung in Enhancer Regionen verknüpft werden, die
Zelltyp-korrigierten eQTMs mit DNA Methylierung in Promoter Regionen.

Im zweiten Projekt erforschten wir die Verwendung von single cell transcriptomics,
einer neuen technischen Entwicklung, für Zelltyp-spezifische eQTL Analysen. Jedoch
existieren aktuell nur wenige single cell Kohorten. Ein durchdachtes experimentelles
Design zukünftiger Kohorten ist entscheidend für die Durchführung aussagekräftiger
Studien ohne Verschwendung von Ressourcen. Deswegen entwickelten wir eine statis-
tische Power Analyse Software für single cell transcriptomics Studien mit mehreren
Individuen, genannt scPower. Im Gegensatz zu anderen Methoden berücksichtigt sie die
single cell spezifischen Eigenschaften und ist gleichzeitig sehr Laufzeit und Speicherplatz
effizient. Sie ist einfach anwendbar auf unterschiedliche Szenarien unter Berücksichti-
gung der Zelltyp-spezifischen Expressionsverteilung. Die effiziente Berechnung erlaubt
die Optimierung experimenteller Parameter unter Einschränkung auf vordefinierten
Gesamtkosten. Unsere Evaluation zeigte, dass für eine große Anzahl Einstellungen,
microfludics-basierte single cell Technologien, wie 10X Genomics und Drop-seq, in
Kombination mit flacher Sequenzierung vieler Zellen die beste Power gab.

Zusätzlich erlauben single cell Studien neue Analysen verglichen mit klassischen
eQTL Studien, die nur die Zielgene, beeinflusst von den genetischen Varianten, identi-
fizieren. Die vielen Messpunkte pro Individuum ermöglichen die Rekonstruktion von
personalisierten Gennetzwerken und so auch die Identifizierung von vorgelagerten regu-
latorischen Prozessen, die von den eQTL Varianten gestört werden. Dafür erfassten wir
co-expression QTLs (co-eQTLs), genetischen Varianten, die das Co-expressions-Verhalten
zwischen zwei Genen verändern, im dritten Projekt der Thesis. Wir entwickelten eine
neue Strategie zur systematischen Erfassung von co-eQTLs, die die große statistische
Einschränkung durch vielfaches Testen im großen Suchraum berücksichtigt. Unter Ver-
wendung dieser Methode identifizierten wir eine robuste Menge von 72 co-eQTL SNPs
assoziiert mit 946 Gen-Paaren in einer menschlichen single cell Kohorte. Wir interpre-
tierte die co-eQTLs durch eine Kombination verschiedener Enrichment-Analysen und
fanden so neue Erkenntnisse zu mehreren Krankheits-assoziierten eQTLs. Zum Bespiel
entdeckten wir eine Verbindung des eQTLs rs1131017-RPS26 zur T-Zell-Aktivierung,
die potentiell seine Verbindung zu immunabhängige Krankheiten erklärt.

Insgesamt entwickelten wir neue Methoden und Strategien rund um Assoziations-
Studien, vom Studiendesign über die Identifikation von Assoziationen bis zu ihrer
Interpretation. Sowohl die Analyse von DNA Methylierung als auch von single cell
Expression gab uns neue Einblicke in die Zelltyp-Spezifität der Assoziationen. Alle
entwickelten Methoden sind öffentlich verfügbar und werden hoffentlich zukünftige
Benutzer bei ihren Populations-Analysen unterstützen.
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1. Introduction

1.1. Understanding complex diseases through omics data

Many common diseases are so-called complex traits induced by a combination of genetic
variants and environmental factors. These factors individually have only a small effect
on the phenotype, but cause in combination the diseases [5]. While many of these
disease-associated genetic variants could be identified in large-scale association studies
in the last years [6], the mechanistic insights of how the variants influence diseases are
thus far often lacking [7], despite rapid technological developments in medicine and
biology over the last years.

On the cellular level, genetic variants as well as environmental factors typically
affect the downstream molecular levels, also called "omics" levels. The genome, the
collection of all genetic information in a cell, has an influence on the transcriptome, the
collection of all transcripts (and their transcription level), the proteome, the collection
of all proteins (and their level), and the metabolome, the collection of all metabolites,
i.e. small molecules [8]. Additionally, the epigenome, the collection of epigenetic
information, such as histone modifications and DNA methylation, needs to be taken
into account. Overall, the different omics levels are all connected in a complex and
context dependent regulatory network. Identifying these relationships is necessary for
the interpretation of genetic variants. In order to analyze these large and complex omics
datasets, specialized computational and statistical methods are required, which need to
be continuously adapted to new technological developments such as single cell omics
technologies. In the end, increasing the knowledge about disease-associated genetic
variants, their molecular consequences and the interplay with the environment is crucial
for a better understanding of diseases, leading ultimately to better prevention, diagnosis
and treatment.

1.1.1. Genome-wide association studies

The genome is the only stable omics layer, as opposed to the epigenome (anything else
by definition). This means that the genome is identical in all cells, except for somatic
mutations occurring during the lifetime of an individual. The genomic information is
encoded in the DNA of each cell. Only a small fraction of the genome, the genes, are
transcribed into RNA (Figure 1.1). On top of that, the genome harbors many regulatory
regions, such as promoters and enhancers, that are part of the regulatory machinery
guiding the time point and amount of transcription [9]. For many of these non-coding
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1. Introduction

Figure 1.1.: Molecular entities in a cell and their relationships
Schematic representation of different biological entities, their relationships
and how they can be studied in population genetics, focusing especially on
aspects that are covered in this thesis. RNA levels of (protein coding) genes
can be affected both by genetic factors (i.e. genetic variants) and epigenetics
factors such as DNA methylation, which in turn is influenced itself by
genetic factors and environmental factors, for example nutrition, medication
and lifestyle. These genetic and epigenetic effects on RNA level can be
propagated to the protein level (regulatory mechanisms might compensate
it to some degree) and affect so the phenotype of the individual in the end.
To study all these relationships, population genetic methods can be used:
the identification of expression and methylation quantitative trait loci (eQTL
and meQTL) measures the effect of genetic variants on gene expression and
DNA methylation, respectively. The identification of expression quantitative
trait methylation (eQTM) measures the effect of DNA methylation on gene
expression. The figure was created with BioRender.com.
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1.1. Understanding complex diseases through omics data

regions, especially the ones distal to genes, their exact function is not fully understood
yet.

Research on genetic variants often focuses on point mutations, so-called single nu-
cleotide polymorphisms (SNPs), which are very frequent and cost-efficient to measure in
large populations with arrays. In diploid organisms such as humans, a SNP is character-
ized by a combination of two nucleotides AA, where the value of one chromosome (A)
is called allele and the combination of both (AA) the genotype of a certain individual.
Other genetic variants include short regions of insertion or deletions (indels) and larger
structural changes such as copy number variants.

Almost all known diseases show associations with genetic variants. For a better
understanding of these relationships, disease-associated variants can be broadly clas-
sified into two different categories based on their minor allele frequencies (MAF) and
association strengths [7]. One part of the variants are rare variants with large effects,
causing Mendelian diseases such as Huntington’s disease [10]. Many of these variants
were detected in family-based genomic studies, that focused on a small group of patients
and their families [11].

Nowadays, technological improvements allow the measurement of genomic informa-
tion from large cohorts. This led to genome-wide association studies (GWAS), where all
measured genetic variants are tested for genotype frequency differences between cases
(i.e. patients with the diseases) and controls (i.e. healthy donors) [12]. GWAS with large
sample sizes identified numerous frequent variants with small effect sizes for many
common diseases such as asthma, diabetes or depression [5]. But not only binary (or
more general qualitative) traits, such as the disease status, can be associated with genetic
variants. Furthermore, continuous traits, for example the height of an individual, can be
associated with genetic variants [13], which are called quantitative trait loci. This shows
also that GWAS can be used to explore arbitrary phenotypic traits besides diseases, for
example educational attainment [14], and the same concepts hold true for all traits.

This distribution that variants with large effects are usually rare and variants with
small effects are more frequent is explainable by selective forces, as deleterious variants
causing diseases tend to be removed from a population [15]. Nevertheless, also frequent
variants with small effect sizes are important for studying the disease phenotype.
The omnigenic model proposes that complex diseases are driven by many variants
with weak effects that accumulate to few core genes that cause the diseases [16]. The
mathematical basis for this has already been laid by R.A.Fisher in 1918 who postulated
that a continuous, normally distributed trait is created by a linear combination of many
independent genes [17]. Therefore, many variants with weak effects can have together a
similar impact as one rare variant with a strong effect.

Of note, the categorization into rare variants with strong effects and common variants
with weak effects is in the end a trend and no discrete classification, and the same is
true for their connection with rare Mendelian diseases and common complex diseases,
respectively. Rare variants can also contribute to common diseases, and common variants
can influence rare diseases. Underreporting of these associations could be impacted by
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1. Introduction

the different methods to study rare and common diseases [7].
Exact mapping of causal genetic effects is complicated by the correlation structure

across neighboring variants within one population, called linkage disequilibrium (LD)
[18]. This correlation structure allows capturing information of larger genomic region
by measuring a selected set of representation SNPs with microarrays, but it makes
biological interpretation more difficult. Combination of populations with different
genetic ancestry and other fine-mapping techniques can reduce this issue and pinpoint
the causal variants [19].

The number of identified GWAS variants increased tremendously in the last years,
shown for example in the GWAS catalog [6] that contains currently over 400,000 variant
trait associations from over 6,000 studies (status November 2022 [20]). However, inter-
preting the downstream effects of these genetic variants remains challenging, as the
majority of GWAS variants can not be directly mapped to a gene [7]. Different studies
reported that about 90% of the disease- and trait-associated variants lie in non-coding
regions of the genome [21, 22]. However, enrichment of these variants in regulatory
regions, for example at enhancers, suggests that they still affect RNA and/or protein
levels by influencing their regulation, for example by perturbing transcription factor
binding [21, 22].

1.1.2. Epigenetics

The non-coding part of the genome contains many regulatory regions, such as promoters
and enhancers and more general transcription factor binding sites. The accessibility of
these regions is crucial for gene regulation. In open regions, regulatory factors can bind,
for example to initiate the transcription of a certain gene [23]. This accessibility of the
genome is regulated by epigenetic marks, which are in contrast to the genome flexible
and dynamic [24]. This way, each cell can obtain a distinct status, defined by its gene
expression program, despite all cells having the same genome. Epigenetic factors are
so especially important to define the cell type identity of each cell, based on cell type
specific modifications which regulate the cell type specific expression.

The most frequent epigenetic modifications are post-translational modifications of
histone proteins, around which the DNA is wrapped, and DNA methylation, mostly on
cytosines of cytosine-guanine dinucleotides (short: CpGs) [25]. In both cases, different
configurations regulate the accessibility of DNA and affect so the gene expression.
However, in contrast to genetic regulation, where the genetic variant is expected to be
always the causal factor, epigenetic variation can be both cause and consequence of
regulatory processes [26].

Important influencing factors of epigenetic marks are environmental exposures, for
example nutrition or smoking [27]. Furthermore, aging itself is strongly correlated
with certain DNA methylation patterns, allowing the prediction of the individual’s age
based on their DNA methylation [28]. This makes epigenetic studies interesting for the
exploration of environmental effects on molecular level. However, epigenetic patterns
are also affected by genetic effects, so different impact factors need to be distinguished
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1.1. Understanding complex diseases through omics data

carefully.
A related concept to GWAS are epigenome-wide association studies (EWAS), which

identify epigenetic associations with diseases, currently mostly focusing on DNA methy-
lation [27]. As the epigenome is dynamic, associations from EWAS depend on the
measured cell type and condition. Although the approach is more recent, the EWAS
catalog contained already over 2,600 EWAS at the beginning of 2022, highlighting the
relevance of connecting epigenetics with diseases [29].

1.1.3. Quantitative trait loci analysis

Nevertheless, the interpretation of a genetic variant, in particular in the non-coding
region of the genome, remains challenging, even with increasing epigenetic annotations.
A direct way to quantify, whether a genetic variant has an effect on the transcription
of a certain gene, is to test it for association with the gene expression level. Variants
associated with a gene are called expression quantitative trait loci (eQTLs) [30, 31, 32,
33]. Following the approach of quantitative traits in GWAS, eQTL analyses test for
associations between the genotype of a variant and the expression level of a gene (i.e.
using expression level as the trait), as visualized exemplarily in Figure 1.2.

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

AA AB BB
Genotype

E
xp

re
ss

io
n 

(lo
g)

Figure 1.2.: Expression quantitative trait locus (eQTL)
Example visualization of an eQTL where the genotype for a specific genetic
variant is significantly associated with the expression of a specific gene. Each
dot represents one individual in the cohort. The example was generated
using the simulation framework introduced in chapter 4, with a heritability
of 40% and log-normalization of the simulated counts.

Different studies showed that many GWAS variants are also eQTL variants and
vice versa [30, 31, 32, 33], proving the relevance of eQTL analyses for GWAS variant
interpretation. With information from eQTL studies, causal genes of the disease can be
identified, providing first a better understanding of the disease biology and leading in
the long run potentially to novel diagnosis options and drug targets.
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For the identification of eQTLs, the associations are commonly separated in two
classes: cis eQTLs are genetic variants that are in the vicinity of the gene and trans
eQTLs are variants that are farther away, potentially even on a different chromosome
as the gene. The interpretation of both types differs. Cis eQTL variants tend to be in
the gene body itself or the promoter region of the gene, hence, directly affecting the
expression level [34]. For trans eQTLs, either the genetic variant lies in a distal enhancer
region or it affects the expression of the gene indirectly by affecting the expression of a
regulatory factor of the gene, for example by acting at the same time as a cis eQTL for a
transcription factor of the gene [33].

In a systematic analysis of all eQTLs, all genetic variants need to be tested against all
genes. This creates however a large search space and requires stringent multiple testing
correction. For this reason, studies often focus only on cis eQTLs, which tend to have
larger effect sizes, and so maximize their detection power [30].

A large part of the genes, the protein-coding RNAs, are further translated into proteins
(Figure 1.1), in contrast to the non-coding RNAs, such as transfer RNAs, ribosomal
RNAs, long non-coding RNAs and micro RNAs [35]. As proteins are the final products of
gene expression, they are expected to give the best insight into phenotypic consequences
of genetic variants and environmental factors [8]. In general, proteins are important
regulatory and structural components of each cell, involved in a vast range of activities
including transcriptional regulation, metabolism and signal transduction [36]. Applying
the same association approach, protein quantitative trait loci (pQTLs) can be identified
[37]. However, many current studies, including the projects discussed in this thesis,
focus on the transcriptome, i.e. eQTLs, because the transcriptome can be quantified more
efficiently and accurately in high-throughput experiments compared to the proteome
until now. New and improved high-throughput methods for proteomics are currently
developed and will potentially provide additional important insights in the future [8].

In general, the concept of quantitative trait loci can be applied to any other omics level,
for example DNA methylation (meQTLs) [38, 2] (Figure 1.1), metabolite levels (mQTLs)
[39] and so on. While genetic variants tend to be enriched for associations with multiple
omics layers [34, 2], these other QTL types nevertheless give additional valuable infor-
mation about the variants. For example, genetic variants were identified as independent
pQTLs which affect protein levels, but not gene expression level [37]. This can happen
when the genetic variant lies in a region important for post-transcriptional regulation,
so that it affects only translation, but not transcription. Although several studies about
QTLs with other omics layers exist, these associations are still underexplored compared
to eQTLs.

Another underexplored type of association independent of genetics are expression
quantitative trait methylation (eQTMs) [38, 2], associations between DNA methylation
level and gene expression. With the exact role of DNA methylation in gene expression
not fully understood, eQTMs provide the opportunity to quantify and annotate this
relationship better. As both expression and DNA methylation are affected by genetics,
a combined analysis of meQTLs, eQTMs and eQTLs is most promising for an exact
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1.1. Understanding complex diseases through omics data

characterization of all dependencies.

1.1.4. Importance of cell type specific analysis

Despite the expectations for eQTL analyses, many GWAS variants remain whose func-
tional effects could not be explained [40]. In some cases, this might be caused by
power issues, as eQTL studies have usually smaller sample sizes. But also large-scale
consortia, such as the Genotype-Tissue Expression (GTEx) Consortium [32] and the
eQTLgen Consortium [33], could not overcome this knowledge gap completely. Another
substantial part of the gap is caused by the context specificity of the QTLs, with context
covering the relevant cell types, time points, stimulation and so on. Associations will
only be detected if the respective omics data are measured in the relevant tissues and
cell types, as all omics, except the genome, are highly cell type specific, as discussed
before. For this reason, effects of a disease can only be fully understood when analyzing
associations in relevant tissues and cell types.

Until today, many measurements of population genetics are "bulk" measurements.
This means that all cells of a sample (usually a tissue) are measured at once and
only one average value per gene/protein/CpG is taken. This leads to two potential
pitfalls: firstly, associations from rare cell types within a tissue are potentially missed
because they do not affect the average expression level in the whole tissue sufficiently
enough. Secondly, associations might be falsely identified that are in reality not based
on differences between individuals but instead caused by different cell proportions
between the individuals (i.e. cell type differences instead of individual differences).

Several studies showed that eQTLs are context dependent and many potential im-
portant associations are missed in classical bulk studies. One of them is the GTEx
Consortium, which measured RNA-seq in a large cohort of postmortem donors and 49
different tissues and provided so a large resource for tissue specific eQTLs [32]. Extend-
ing their analyses further, they detected a large number of cell type specific eQTLs, part
of them not identifiable in the tissue specific analyses, and showed the relevance of these
for interpreting GWAS results [41]. To get the necessary cell type specific information
from bulk data, they applied in silico cell type deconvolution methods followed by
an interaction analysis with the cell type proportion as interaction term (see Methods
section 2.2.4 for further details). The same strategy with an interaction model was also
successfully applied in other studies to identify cell type specific eQTLs, for example
neutrophil and lymphocyte specific eQTLs in whole blood [42]. However, this kind of
analysis crucially depends on the performance of the deconvolution approach and has
limited power compared to standard eQTL analyses, especially for less frequent cell
types. In the GTEx study, the authors therefore restricted their analyses to seven well
characterized cell types. Overall, this type of analysis can give interesting insights into
cell type specific eQTLs, but it is not able to systematically characterize all cell type
specific eQTLs.

An alternative approach for cell type specific analyses is the use of fluorescence-
activated cell sorting (FACS) sorted expression data, where cells of the chosen cell type
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are selected based on marker proteins before the sequencing. By comparing eQTLs from
different FACS-sorted bulk dataset, several studies identified cell type specific eQTLs,
for example in the BLUEPRINT project [43] and the ImmuNexUT project [44]. However,
also FACS-sorted eQTL analysis has several drawbacks. The cell types of interest need
to be selected before, measured separately and knowledge of suitable markers for the
FACS-sorting is required. Additionally, there is the danger of technical biases during
the FACS-sorting that change the expression level.

As discussed in the beginning, the biological context for the identification of eQTLs
comprises also other factors beside the relevant cell type. GTEx identified sex specific
eQTLs, with stronger effect sizes in male or female, and population specific eQTL [32].
Other factors that can result on context specific eQTLs are for example the stimulation
of cells or the respective time point during development [45, 46, 47].

Another important remark is that the cell type specificity - and more generally the
context specificity - affects not only eQTLs, but all molecular QTL analyses, as other
omics layers, such as DNA methylation and proteomics, also dependent on the cell type.
The same approaches can be applied to overcome this in bulk, using either deconvolution
or FACS sorting. For example, for DNA methylation, deconvolution into different blood
cell types can be performed by the Houseman algorithm [48].

1.1.5. Advantages of single cell omics technologies

A third option to study cell type specific and generally context specific QTLs emerged
very recently with the development of single cell omics technologies, which is a major
technological breakthrough for biological research in general [49]. They allow measuring
one or more omics layers separately in each cell and capture so the specific status of this
cell, including for example the (sub)cell type, the cell cycle status and changes upon
external stimuli. This way, single cell technologies quantify the cellular heterogeneity
within a sample. They provided already novel insights into various biological processes,
for example an improved reconstruction of developmental processes [50, 51] and a better
characterization of tumor heterogeneity for different cancer types [52, 53, 54]. Recently,
first studies started to apply single cell technologies in population studies [55, 56, 57,
58], in order to identify cell type specific eQTLs.

Transcriptomics was the first omics layer that was successfully measured at single
cell resolution in 2009 [59]. Following this, several technologies for single cell RNA
sequencing (scRNA-seq) were developed that vary in sensitivity and accuracy with
regard to the quantification of gene counts, scalability to a large number of cells and
experimental costs [60, 61]. For this reason, different approaches are most suitable for
different biological questions.

The scRNA-seq technologies can be broadly classified into plate-based and microflu-
idics-based assays, dependent on how the cells are captured [62]. Plate-based methods,
such as Smart-seq [63, 64, 65], CEL-seq [66] or MARS-seq [67], sort single cells in wells,
allowing accurate estimation of a small number of cells. In contrast, microfluidics-
based methods, such as Drop-seq [68], InDrop [69] or the 10X Genomics platform [70],
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separate cells in droplets, fluidics circuits or nanowells. This enables high-throughput
measurement of many cells at once, but with reduced accuracy compared to plate-based
methods.

ScRNA-seq technologies differ additionally with respect to the coverage: in some
cases, the full length of the transcript is sequenced, e.g. with Smart-seq [63, 64, 65],
in other cases only the 3’ end or 5’ end of the transcript, e.g. with Drop-seq [68],
InDrop [69] or 10X Genomics [70]. Measuring the full transcript allows additionally
the quantification of different splicing isoform on top of estimating the expression level
of the gene. In contrast, most of the methods that cover only the 3’ or 5’ end of the
transcript incorporate unique molecular identifier (UMI), which help to remove biases
during the PCR amplification and create more accurate count estimates [60]. However,
with Smart-seq3, there now exists a method that sequences full-length transcripts and
can incorporate UMIs [65].

ScRNA-seq is interesting for cell type specific analyses - for eQTLs and in general -
as it allows the unbiased characterization of all existing cell types and sub cell types
in a tissue, one of the major goals of the Human Cell Atlas [71]. Here, scRNA-seq has
already led to the detection of novel cell types and better understanding of existing cell
types in various tissues, generating healthy references, for example for lung tissue [72]
and heart tissue [73]. On top of the description of static cell types, the measurement of
many cells allows ordering them along trajectories to study differentiation and other
dynamic processes [50].

The research field around scRNA-seq is growing very fast, with already over 1000
scRNA-seq datasets in 2020 [74] and over 1000 related software tools in 2021 [75],
covering all analysis steps such as normalization, integration, clustering, differential
expression (DE) analysis and visualization. Single cell transcriptomics provides a wide
area of applications, besides its use for single cell eQTLs.

Also other omics layers can be captured at single cell resolution today, for example
single cell chromatin accessibility [76, 77] and single cell methylation [78]. Additionally,
single cell multi-omics technologies measure different omics layers together in the same
cell [79, 80, 81, 82]. While single cell transcriptomics is currently the most used technique,
other single cell omics nevertheless represent very promising technologies for future
studies.

1.1.6. Single cell eQTLs

Single cell eQTL (sc-eQTL) studies make use of scRNA-seq data in order to identify cell
type specific eQTLs. For this, the transcriptome of each individual is measured on single
cell level and this is combined with the genotype information, usually quantified in
bulk. The required cell type specific expression values for each gene and individual are
typically obtained with the so called pseudobulk approach. Here, each measured single
cell is annotated to a cell type and the counts of all cells per cell type and donor are
summed up to the three-dimensional pseudobulk matrix of genes times donors times
cell types (more in methods section 2.6). Using this, separate eQTL analysis of each cell
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type with classical eQTL strategies developed for bulk data is possible (more in methods
section 2.2).

Different recent studies have successfully applied the pseudobulk strategy to identify
cell type specific eQTLs, so far mostly measured in blood and with growing cohort sizes
from 45 donors [55] up to very recently close to 1,000 donors [57]. Other single cell
cohorts explored single cell eQTLs in different contexts, for example after stimulation
with different pathogens [83] or in Systemic lupus erythematosus cases [58]. Importantly,
among the sc-eQTLs identified in the different studies, several examples were found
that further characterized known disease-associated variants [83, 57, 58]. Compared to
previous bulk eQTLs studies, novel (cell type specific) eQTL associations were detected,
together with the disease-relevant cell types where these associations occurred.

On top of the pseudobulk approach to explore cell type specificity, single cell tran-
scriptomics enables additional novel strategies to characterize eQTLs more in detail. One
novel direction is the identification of dynamic eQTLs that change along differentiation
trajectories, for example in IPS differentiation [56], B cell maturation [57] and in T cell
state transitions [84]. For these analyses, the recently proposed statistical framework
CellRegMap can be used [85]. It applies linear mixed models to capture interactions
between genotype and context, i.e. eQTLs with changing effect size along discrete or
continuous cell states. These states are estimated via factor analysis on the scRNA-seq
data and can then be mapped to biological effects such as different (sub)cell types, cell
cycle and cell differentiation.

Another novel direction for eQTL analysis arises from the multiple measurements per
donor, which allow the construction of individual specific gene regulatory networks
[86]. Network construction from scRNA-seq is a fast-growing field with many methods.
Benchmarking studies showed however that none of the current construction methods is
performing best in all situations, but that the method performance depends strongly on
the specific dataset and task [87]. For population genetics, the identification of genetic
variants that are associated with network properties is a promising extension of classical
eQTL analysis, as it provides additional insights into how genetic variants can alter
regulatory mechanisms.

To identify genetic variants affecting edges in co-expression networks, the idea of
co-expression QTLs (co-eQTLs) was introduced [55]. These are genetic variants that
affect the co-expression of a gene pair. Biologically, this relationship can be caused
by genetic variants changing the binding affinity of a transcription factor at a certain
binding site and so the co-expression of the transcription factor and the respective target
gene (more in chapter 5). Therefore, co-eQTLs provide additional important insights
into the effects of genetic variants compared to eQTLs, not only which downstream
genes are affected, but also which upstream regulatory mechanisms are distorted.

While first studies with co-eQTLs provided already interesting results for a few
preselected example loci [55, 83], several open questions remained: which association
measure is working best to quantify the co-expression, how to identify a robust set of
significant co-eQTLs despite the multiple-testing burden caused by the huge search
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space and how to interpret the identified co-eQTLs properly.
Taken together, despite some open questions, all these studies already showed the

value of scRNA-seq for studying context specific eQTLs and more complex associations
such as dynamic eQTLs and co-eQTLs. The number of single cell eQTLs in the different
studies is still relative small compared to large bulk studies, probably due to the small
sample size of the cohorts. First consortia, such as the sc-eQTLgen consortium [88], have
recently been established to overcome this power issue with meta-analysis of multiple
cohorts together. The design of more well-powered studies is vital for the success of
single cell population studies, and appropriate power analysis methods are required for
this.

Likewise, best-practice analyses workflows for single cell eQTL studies are not yet
established. First efforts have been made for pseudo-bulk based analyses, with eval-
uating the optimal choice for normalization, aggregation of cells, covariate selection
and multiple testing correction [89]. However, for other analyses, such as co-expression
QTLs, this has not been done yet.

Another future direction that has yet to be explored are association studies with other
single cell omics layers besides transcriptomics. Currently, only single cell eQTL studies
have been performed, as other single cell omics layers are not that well established yet.
In general, the same kind of analyses are possible, for example for single cell meQTLs
or pQTLs, given that the corresponding cohorts are generated in the future.

1.2. Scope and structure of the thesis

1.2.1. Aim and scope of this thesis

As discussed in this chapter, population (epi)genetics provides valuable insights into
genetic and epigenetic gene regulation, which support the interpretation of molecular
causes of disease. While previous strategies, focusing on gene expression and bulk
analyses, led to the detection of important associations, novel approaches including other
omics layers and moving towards single cell measurements promise a more accurate
and complete picture of all associations. To aid this process, the goal of this thesis is the
extension of previous population genetic analyses towards other omics layers and single
cell data. Specifically, it covers the following three main aims:

• the identification of context specific meQTLs as well as cell type specific eQTMs,
followed by the implementation of machine learning models to predict specificity
of these eQTMs based on genomic features

• the development of a power and design framework for single cell multi-sample
transcriptomics studies in order to facilitate the generation of more and larger
single cell eQTL cohorts

• the exploration of novel approaches that use single cell transcriptome to study
individual specific co-expression and genetic variants affecting this co-expression,
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called co-eQTLs

1.2.2. Structure of the thesis

The three aims stated above are each addressed in one project chapter (3, 4 and 5) and
represent together the main scientific outcome of this doctoral thesis. Overall, the thesis
is structured into six chapters. First, this introduction chapter 1 gives a general overview
about population genetics and new applications of single cell transcriptomics in this
field to provide the required contexts for the work.

It is followed by a general method chapter 2 with important concepts and approaches
shared between the projects. These include especially linear regression models for QTL
analysis, the extension to generalized linear models, multiple testing correction, power
analysis and pseudobulk approaches for single cell data. Additionally, the concepts
of Random Forrest models are introduced. In the beginning of the methods chapter,
definitions for all statistical distributions used in the thesis are given.

The project chapters 3, 4 and 5 describe each the results of the respective analysis,
together with the applied methods, part of them newly developed by us.

The first project chapter 3 describes a large cohort study about DNA methylation
which explored genetic influences on DNA methylation (meQTLs) and effects of DNA
methylation on gene expression (eQTMs). For this, we identified context specific
meQTLs and cell type specific eQTMs. Additionally, we applied different machine
learning models to characterize genomic features specific for cell type dependent and
cell type independent eQTMs.

Studying cell type specificity is not only important for DNA methylation, but also
for gene expression. Single cell RNA-seq data provides new possibilities to study cell
type specific eQTLs and DE. To facilitate the design of such multi-sample single cell
transcriptomics studies, we developed in the second project a power analysis tool for it
called scPower, as described in chapter 4. We applied the tool to explore optimal design
combinations for different use cases and scRNA-seq technologies.

In the third project chapter 5, we made use of one of the first large scRNA-seq cohorts
and identified co-eQTLs, genetic variants affecting co-expression between two genes.
This new approach became possible because of the multiple measurement points for
each donor in scRNA-seq. As no best-practice workflow exists for co-eQTLs yet, we
evaluated different co-expression metrics, developed a novel approach to gain many
high confident co-eQTLs from scRNA-seq data and explored strategies to interpret the
identified associations.

The thesis ends with a common discussion for the three projects in chapter 6, including
current limitations and future directions.
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This chapter provides an overview over general methods used in this thesis. First,
several probability distributions, which are important in the projects, will be introduced,
followed by the description of linear regression models, the classical approach for eQTL
analysis, and the extension to generalized linear models. Next, different multiple testing
correction strategies and the estimation of experimental power are described, both
applied in all the projects. For the two single cell projects, the pseudobulk approach is
an important concept, also introduced here. At last, the Random Forest algorithm, an
alternative prediction method, is explained shortly.

Additional to this methods chapter, project-specific methods are explained in the three
projects chapters 3, 4 and 5, always at the end of each chapter.

2.1. Probability distributions

Describing the distribution of a variable in a certain dataset is an essential part of
all projects, for example to choose the appropriate statistical tests or to estimate the
experimental power. For this reason, different discrete and continuous probability
distributions are defined here that are used in the projects in the next chapters. The
probability distribution (also called density) will always be marked with a small f , the
cumulative density distribution with a F.

2.1.1. Normal distribution

The normal distribution is a frequently used continuous probability distribution, defined
by two parameters, the mean µ and standard deviation σ of the dataset. We will use it
to approximate the distribution of effect sizes for the eQTL model (more in chapter 4).
The density function is given by

fN(x, µ, σ) = N(x, µ, σ) =
1

σ
√

2π
exp(−1

2
(x − µ)2

σ2 ) (2.1)

with µ ∈ R and σ2 ∈ R+.

2.1.2. Binomial distribution

The binomial distribution is a discrete distribution that will be chosen in the following
projects to describe sampling processes: given an event occurs with a probability of p,
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fBin(x, n, p) describes the probability to observe the event x times out of n total trials.
The density function is given by

fBin(x, n, p) = Bin(x, n, p) =
(

n
x

)
px(1 − p)n−x (2.2)

with n ∈ N and p ∈ [0, 1].

2.1.3. Negative binomial distribution

The negative binomial distribution is an adaptation of the binomial distribution. We use
the definition, as implemented R, which describes the probability to observe x failures
before the r-th success happens, when each success occurs with probability p. The
density function is given by

fNB(x, r, p) = NB(x, r, p) =
(

x + r − 1
r − 1

)
(1 − p)x pr (2.3)

with r > 0 and p ∈ [0, 1].
In the following projects, we will describe negative binomial distributions with an

alternative parameterization based on the mean µ = r(1−p)
p and the dispersion ϕ = 1

r ,
where the dispersion is related to the variance σ2 of the distribution as σ2 = µ + µ2 ∗ ϕ.

The negative binomial distribution is especially important, as we apply it to describe
the expression distribution of a gene. Several studies showed that not only bulk RNA-
seq, but also microfluidic-based single cell RNA-seq data follow a negative binomial
distribution [90, 91]. For plate-based technologies such as Smart-seq, a zero-inflated
negative binomial distribution can be more appropriate.

2.1.4. Gamma distribution

The gamma distribution is a generalization of the exponential distribution. We will
use it to describe the distribution of gene expression mean values across all genes in
a dataset (more in chapter 4). It is parameterized by rate r and shape s. The density
function is given by

fΓ(x, r, s) = Γ(x, r, s) =
srxr−1e−sx

Γ(r)
(2.4)

for x ≥ 0 with r, s ∈ R+ and Gamma function Γ(r) defined as

Γ(r) =
∫ ∞

0
xr−1exp(−x)dx (2.5)

We will also use the alternative parameterization with mean µ = s
r and standard

deviation σ =
√

s
r2 .
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2.2. Linear regression models

More complex approaches are necessary to capture not only the distribution of a variable,
but model relationships between different variables. One of them is a linear regression
model. Linear regression models are typically used to identify eQTLs (and other QTL),
based on the assumptions that genetic variants have a linear effect on expression (and
other omics layers). While non-linear eQTL models exist, including generalized linear
and mixed models [92, 93, 94], they are usually very computationally intensive. In
contrast, linear regression models allow efficient testing of a large number of SNP-gene
pairs as required for systematic genome-wide analyses, for example implemented in the
tool Matrix eQTL [95].

In general, a linear regression model estimates linear effects between a response
variable y and a set with P predictor variables x1, ..., xP, based on observations from
N samples. The predictors are combined in a data matrix X = xi,p of size Nx(P + 1)
for sample i ∈ {1, ...N} and feature p ∈ {0, ..., P}, with xi,0 = 1 for the intercept of the
model (see below). For a sample i ∈ {1, ..., N} and the response vector y = (y1, ..., yN),
the linear regression model is defined as

yi = β0 + ∑
p∈{1,...,P}

βp ∗ xi,p + ϵi (2.6)

with the error term ϵi assumed to be independent and identically normal distributed
as ϵi ∈ N(0, σ2) with unknown variance σ2.

In the following, the matrix-vector notation of the model is used equivalently with
coefficient vector β = (β0, β1, ..., βp) and error term vector ϵ = (ϵ1, ..., ϵN) as

y = Xβ + ϵ (2.7)

Based on the Gaussian error assumption, the linear regression model can also be
formulated as

P(y|X, β, σ2) ∼ N(y|Xβ, σ2) (2.8)

This coefficient vector β, also called the effect sizes, can be estimated using Maximum
Likelihood Estimation (MLE) or equivalently Ordinary Least Square (OLS) [96].

In case of a classical eQTL analysis, yi represents the expression value of one specific
gene of the individual i. xi,1 is the genotype of this individual for one specific genetic
variant, which is numerically encoded: in diploid organisms, genetic variants are
numeric encoded with 0, 1 and 2, based on the number of minor alleles in the genotype,
i.e. the allele dosage. So 0 represents the homozygote with the major allele, 1 the
heterozygote and 2 the homozygote with the minor allele. Additionally, biological
and technical covariates can be added to the model as xi,2, ...xi,P, such as the age of
the donor or the experimental batch of the sample. The addition of covariates allows
removing spurious associations that are not caused by direct interactions between the
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genetic variant and the gene. One linear regression model is constructed for each tested
SNP-gene pair, resulting in a family of tests (more in section 2.4).

Besides the testing for associations (more in section 2.2.1), linear regression models
can be used to adjust a dataset for certain confounding factors, such as the covariates
named above. For this, the residuals ri of the model are calculated, which represent
estimates for ϵi:

ri = yi − (β̂0 + ∑
p∈{1,...,P}

β̂p ∗ xi,p) (2.9)

The residuals capture the variance of the response variable y that can not be ex-
plained by the predictor variables x1, ..., xP. For this reason, these residuals represent an
adjustment of the observations y for the confounding factors x1, ..., xP. We employed
this approach to adjust eQTMs for several confounding factors, namely a set of basic
covariates, genetic variants and the cell type composition (more in chapter 3).

2.2.1. Hypothesis testing

The linear regression models for eQTLs are used to test whether a certain SNP has a
significant effect on the expression of the gene. For this, the effect size β j of the variable
xj, representing the SNP, is evaluated: the null hypothesis H0 : β j = 0, i.e. no effect
of the SNP xj, is compared with the alternative hypothesis H1 : β j ̸= 0 [96]. The null
hypothesis can be evaluated via a t-test statistic, using the estimated effect sizes β̂ j and
its standard error se(β̂ j):

t̂ =
β̂ j

se(β̂ j)
(2.10)

The p-value under the null model is calculated based on the t-statistics with N − P − 1
degrees of freedom (for N samples and P predictors): P(|t| ≥ |t̂|) ∼ tN−P−1. If
this p-value is smaller than a chosen significance threshold α, H0 is rejected and the
association between xj and y, in our example the SNP and the gene, is called significant.
This approach with the t-test evaluates the effect size of one predictor variable xj.
Alternatively, more complex hypotheses, such as multiple effect sizes being 0, can be
evaluated using a F-test statistic (more in [96]).

2.2.2. Performance measures

The performance of the eQTL linear regression models is evaluated by comparing the
outcomes, i.e. the results of the statistical tests, with the ground truth, which needs to be
available for this evaluation. In general, the hypothesis testing in the eQTL models is a
specific case of a binary classification, which classifies SNP-gene pairs into significantly
associated pairs and not associated pairs, and can therefore be evaluated just like any
other binary classifier. For this evaluation, the test results (over all SNP-gene pairs) are
separated into four classes: true positives (TP), false positives (FP), false negatives (FN)

16



2.2. Linear regression models

and true negatives (TN), dependent if the null hypothesis H0 is accepted or rejected and
if the ground truth is true or false (explanation in the so-called confusion matrix of Table
2.1).

H0 rejected H0 accepted
H0 false True positives (TP) False negatives (FN)
H0 true False positives (FP) True negatives (TN)

Table 2.1.: Confusion matrix for hypothesis testing
The outcome of a statistical test can be classified into four categories: true
positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN).

With this categorization, the performance of a model can be evaluated under different
aspects. Commonly used performance metrics that are also used in this thesis are:

Sensitivity =
TP

TP + FN
(2.11)

Speci f icity =
TN

TN + FP
(2.12)

Precision =
TP

TP + FP
(2.13)

False positive rate =
FP

TN + FP
(2.14)

False discovery rate =
FP

FP + TP
(2.15)

Accuracy =
TP + TN

TP + FP + TN + FN
(2.16)

These metrics are generally used to evaluate the performance of classifications for all
kind of machine learning models. We also applied it for the Random Forest results in
chapter 3.

The disadvantage of the metrics is that they dependent on the chosen threshold for
the classification, in case of the linear regression models the p-value cutoff. A threshold-
independent alternative evaluation is the area under the receiver operating characteristic
(ROC) curve, short AUC [97]. The ROC curve plots the sensitivity of a classifier against
its false positive rate (1-specificity) (Figure 2.1). This is done systematically for all
possible thresholds of the classifier, so that a curve is created from (0,0) to (1,1). The
closer the curve gets to the optimal point of (1,0), which represents 100% sensitivity and
0% false positive rate, the better the classifier. To quantify this, the area under the ROC
curve (AUC) is calculated. AUC values range from 0 to 1, with the best performance
at 1. An AUC value of 0.5 represents a random classifier (a diagonal line in the ROC
curve). An AUC value clearly below 0.5 is an indication that the class labeling might be
wrong, swapping positive and negative class labels would result in a better performing
classifier.
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Figure 2.1.: Receiver operating characteristic (ROC) curve
Example visualization of a ROC curve to evaluate the prediction performance
of a classifier in a threshold-independent way. The shown example depicts
the performance of a logistic regression model that classifies CpG-gene pairs
into significant eQTMs and non-significant pairs (taken from chapter 3). The
area under the ROC curve (AUC) of the model is 91% in this example.

2.2.3. Meta analysis

Many of the first GWAS focused on individuals from European descent, which limited
the generalizability with regard to individuals from other ancestry and the detection
power in general [98]. For this reason, more and more current studies combine data from
individuals with diverse ancestry backgrounds, including also our meQTL and eQTM
study (chapter 3). Meta analysis is a frequently used approach in multi-population
studies to avoid an excess of false-positives caused by the population structure [98]. The
different cohorts, each comprising people with similar ancestry, are analyzed separately,
i.e. the association tests are performed within the cohorts. Afterwards, the summary
statistics from the different cohorts are combined to one general result. More broadly,
meta analyses can be used to increase power by combining results from different cohorts.
For this reason, we applied a meta analysis also in our co-eQTL project (chapter 5), where
different scRNA-seq protocols were used for the different cohorts to avoid technical
batch effects during the analysis.

In both studies (chapter 3 and 5), we applied a meta analysis approach that combined
the effect sizes of the separate studies. P-value based meta analyses have several
limitations, such as reduced interpretability (more in [99]). Meta analysis approaches
using effect sizes can be divided in fixed effect and random effect models. Fixed effect
models assume that the same (fixed) effect occurs in each cohort, only masked by power
issues, while random effect analysis assumes different effects for different cohorts, which
all follow a common distribution that can be identified in the meta analysis [99]. We
chose a fixed effect model which weights the effect sizes of each study by the inverse-
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variance of the study. This is beneficial, as it gives more weight to studies with lower
variance, for example caused by higher sample sizes [100].

The inverse-variance weighted fixed effect model works as follows for one hypothesis
test and a meta analysis of N studies: the weight wi for each study i ∈ {1, ..., N} is
estimated based on its standard error σ̂i:

wi =
1
σ̂2

i
(2.17)

The pooled effect size estimate of the meta analysis β̂ and the standard error σ̂ are
then estimated based on the weights wi and the estimated effect sizes β̂i of all studies:

β̂ =
∑N

i=1 wi ∗ β̂i

∑N
i=1 wi

(2.18)

σ̂ =
1√

∑N
i=1 wi

(2.19)

The p-value for the meta analysis can be estimated via the Z-score β̂/σ̂ as:

p = 2 ∗ Fnorm(−|β̂/σ̂|) (2.20)

2.2.4. Interaction models

Gene regulation is a very complex process, as a variety of both cellular and extrinsic
factors influence the expression level of a gene. The classical eQTL model that assume a
linear relationship between the expression level of a gene and the genotype of a genetic
variant is an over-simplification, which allows fast identification of eQTL associations.
However, it neglects that the eQTL effect size of a genetic variant is not always constant,
but often influenced by extrinsic factors. This relationship is called genotype environ-
ment interaction [101]. In these cases, linear regression models with an interaction
term can be used to evaluate interacting effect between two variables x1 and x2, with x1

representing the SNP and x2 an environmental factor for our use case [46]. For sample
i ∈ {1, ..., N}, the interaction model is defined as:

yi = β0 + β1xi,1 + β2xi,2 + β3xi,1 ∗ xi,2 (2.21)

If the hypothesis test with H0 : β3 = 0 and H1 : β3 ̸= 0 results in a significant p-value,
there is an interaction effect between the two variables. This means that the effect of the
SNP on the gene expression can be stronger or weaker, dependent on the environmental
factor. We applied this approach in two of our projects, to identify interaction meQTLs
(chapter 3) and to identify co-eQTLs in bulk datasets (chapter 5).
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2.3. Generalized linear models

Generalized linear models (GLMs) are an extension of classical linear regression models
[102]. The addition of a link function g(x) allows connecting the linear predictor
η = β0 + ∑p∈{1,...,P} βp ∗ xi,p to the expected mean of a distribution E(y|X) = µ:

η = g(µ) (2.22)

The error terms do not need to be normally distributed anymore, as was the case for
the classic linear regression, but instead can follow an exponential family of distributions.
The details behind GLMs are further introduced with two common variants of GLMs,
the logistic regression and the negative binomial regression.

2.3.1. Logistic regression

The logistic regression enables the prediction of a binary outcome (0,1) instead of a
continuous outcome, as is the case for the linear regression. For this, the logit function
logit(µ) = ln( µ

1−µ ) is used as the link function, which restricts the outcome values to
the range of 0 to 1 for µ ∈ R. The logit function as link function produces the following
generalized linear model for a set of P predictors:

ln(
P(yi = 1)

1 − P(yi = 1)
) = ln(

P(yi = 1)
P(yi = 0)

) = β0 + ∑
p∈{1,...,P}

βp ∗ xi,p (2.23)

This can be transformed using the inverse link function, which is in this case the
logistic function:

P(yi = 1) =
1

1 + exp(−(β0 + ∑p∈{1,...,P} βp ∗ xi,p))
(2.24)

This way, the logistic regression predicts the probability of a sample to be in class 1.
The effect sizes βp are log odds ratios in the logistic regression model. This means that
odds ratio P(yi=1)

P(yi=0) is increased by exp(βp) for each unit increase of the predictor variable
xp. We applied the logistic regression for the prediction of eQTMs in chapter 3, also
because of their good interpretability of the gained effect sizes.

2.3.2. Negative binomial regression

Another variant of generalized linear regression is the negative binomial regression,
which is the basis of several established differential expression (DE) analysis methods,
such as edgeR, DESeq and DESeq2 [103, 104, 105]. DE analysis is applied to identify genes
that show significantly different expression levels between two (or more) pre-defined
groups, for example disease patients vs healthy controls. The choice of negative binomial
regression for DE analysis follows directly from the assumption that the gene expression
counts are negative binomial distributed (section 2.1.3). In the following, the negative
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binomial regression is further introduced using the approach of DESeq [104] and DESeq2
[105], which we utilized for our own power analysis method in chapter 4.

As mentioned, the read counts of gene i and sample j are assumed to follow a negative
binomial distribution with mean qi,j and dispersion parameter ϕi: Ki,j ∼ NB(qi,j, ϕi).
The mean qi,j is affected by differences in read depth between samples. To corrected for
it, a scaling constant called size factor si,j is derived by the median-ratio method (default)
or an alternative normalization method and the normalized mean µi,j is estimated with
qi,j = si,j ∗ µi,j. Next, µi,j is used as the response variable in the generalized linear model
with log2 as link function to ensure only positive outcomes for the counts:

log2(µi,j) = βi,0 + ∑
p∈{1,...,P}

βi,p ∗ xj,p (2.25)

The variables xj,p of the model are defined in a so-called design matrix, which contains
the group distribution of the samples together with a set of covariates. The derived effect
size represents the log fold change between the two tested groups. Different default
hypothesis testing methods are specified in DESeq and DESeq2. In DESeq, a likelihood
ratio test is calculated with a reduced model, based on a reduced design matrix. In
DESeq2, a Wald test is done directly with the β values and their standard errors instead.

One limitation of the negative binomial regression models is that a reliable estimation
of the variance of each gene is difficult with the usually small sample size of the
datasets. For this reason, both edgeR and DESeq/DESeq2 model the variance dependent
on the mean across all genes to stabilize the estimation. We will utilize the function,
as implemented in DESeq, for our own algorithm in chapter 4. Further "tricks" that
are applied in DESeq and DESeq2, for example a shrinkage for the log fold change
estimation, can be found in the respective manuscripts [104, 105].

2.4. Multiple testing correction

Both DE and QTL analyses have in common that many tests are performed, as 10,000s
of genes are tested in the DE case and several millions of SNP-gene pairs in the eQTL
case. These high number of tests increases the probability of at least one false positive
within the experiment, i.e. the probability that the null hypothesis H0 is rejected in one
case, when H0 is true (Table 2.1) [106]. This is also called type I error. For a single test,
the significance threshold α controls the probability of a false positive. For a family of N
tests, the probability of at least one false positive - the family-wise error rate - increases
to 1 − (1 − α)N . In this context, family describes a group of tests, all performed on the
same dataset. For 100,000 tests, already 5,000 false positives are expected under a typical
uncorrected significance threshold of 0.05, which impedes the biological interpretation
of the results drastically.

To overcome this so-called multiple testing problem, either the significant threshold
can be adjusted or the p-values of the tests, both strategies being equivalent. Differ-
ent approaches have been developed for the multiple testing correction. One major
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difference between them is how strict they correct, as a very stringent multiple testing
correction reduces the overall number of positive tests and potentially also discards
true positive results. In the following, two of the most common methods are intro-
duced: Bonferroni correction, which controls the family-wise error rate (FWER), and
the Benjamini-Hochberg correction, which controls the false discovery rate (FDR). Both
are used in this thesis and their differences are shown in chapter 3. Furthermore, an
approach for FWER correction is explained that takes correlation structure between tests
into account and is used for multiple testing correction in chapter 5.

2.4.1. Family-wise error rate and Bonferroni correction

Bonferroni correction of the significance threshold α′ has the goal to reduce the FWER
to α [106], i.e. the probability of at least one false positive result in the family of tests
should be less than or equal α. For this, the adjusted threshold α is simply corrected for
the total number of tests N as

α =
α′

N
(2.26)

Alternatively, the p-values pi of each test i from the family of tests can be corrected to

p′i = max(pi ∗ N, 1) (2.27)

2.4.2. False discovery rate and Benjamini-Hochberg correction

In contrast, the FDR controls the fraction of false positives among the tests (section 2.2.2).
This is less strict than the FWER, as it allows a certain number of false positives as long
as they do not exceed the threshold. Benjamini-Hochberg correction is an established
method to correct for FDR [107]. It depends on the p-value distribution over all tests
and is performed as follows: the uncorrected p-values pi from all N tests are sorted in
increasing order so that 0 ≤ p1 ≤ ... ≤ pN ≤ 1. Next, the largest index k is identified so
that

pk ≤
k
N

∗ α (2.28)

The null hypothesis H0 is rejected for {p1, ..., pk} to reach an FDR rate of α.
Alternatively, the p-values can be again adjusted, which allows easier application of

different significance thresholds. For this, the adjusted p-values qi are calculated from
the ordered list of p-values, starting from the largest p-value, so in decreasing order:

qi = min(pi
N
k

, qi−1) (2.29)
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2.4.3. Permutation-based FWER correction

Due to the linkage disequilibrium between SNPs, tests in GWAS and eQTL studies are
strongly correlated. For this reason, correcting by the total number of tests, as done in
the Bonferroni approach, is too stringent for FWER correction in these cases. Because of
the correlation structure between tests, the actual number of independent tests, which
need to be corrected for, is smaller than the total number of tests. A more accurate FWER
correction, taking the correlation into account, can be achieved by permutation-based
approaches such as the Westfall-Young method [108].

Here, the outcome variable of the dataset - for eQTLs the expression - is permuted b
times. Each time, p-values of the family of tests are computed and the minimal p-value
is saved in a list {pmin,1, ..., pmin,b}. Afterwards, the adjusted p-value padj,i for each pi
from the original tests is calculated: it is inferred from the fraction of permuted minimal
p-values pmin,j which are smaller than the raw p-value pi, as the permuted p-values are
all false positives by design.

padj,i =
∑b

j=1 #(pmin,j ≤ pi)

b
(2.30)

For the eQTL use case, this permutation strategy is applied separately for each gene,
based on the assumption that the statistical tests between the genes are independent
and only the correlation structure between SNPs per gene needs to be considered.
This results in a two-step process: first, for each gene, the permutation-based p-values
across the SNPs are calculated to correct for multiple testing and to take thereby the
correlation structure between SNPs into account. Second, the eQTL results need to be
corrected for multiple-testing over the different genes. Here, a standard approach such
as Benjamini-Hochberg correction can be applied, given the independence assumptions
between the genes.

The disadvantage of this method is that it requires a large number of permutations
for accurate results, which causes long run times. The approach of FastQTL [109] can
reduce the number of permutations by extrapolating their general distribution and
still generates good estimations for the adjusted p-values. For this, they utilize the
assumption that the list of minimal p-values follows a beta distribution, which is well
established for independent uniformly distributed random variables [110].

The original permutation algorithm is adapted as follows: first, again b permutations
are run (but taking here a much smaller number) and the minimal p-values pmin,j of
each permutation are saved. Over these, a Beta-distribution is fitted:

pmin,j ∼ Beta(a, b) (2.31)

The adjusted p-values padj,i for each pi are estimated based on the cumulative density
distribution of the fitted Beta distribution FBeta:

padj,i = FBeta(pi, a, b) (2.32)
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An adaption of the FastQTL algorithm is used in chapter 5 to account for the correla-
tion structure between the co-eQTLs.

2.5. Power analysis

Both for experimental design and for interpretation of results, it is important to consider
the power of an experiment. The power is another term for sensitivity, the fraction
of true positives among all true observations of an experiment, i.e. the number of
tests where H0 is correctly rejected (Table 2.1). Reaching as high power as possible,
while properly controlling for the false discovery rate (section 2.4), is one of the main
goals when designing new experiments. In order to achieve this, power analysis can
estimate the expected power given the planned experimental parameters and certain
prior assumptions about effect sizes and similar. Additionally, power analysis can also
be helpful after the experiment was conducted to compare the found results with the
expected outcome. We applied power analysis methods in each project chapter, with
specific focus of course in chapter 4, where we developed an analytic power analysis
method called scPower. The differences between analytic and simulated power analysis
methods will be explained more in the following.

2.5.1. Analytic power analysis methods

Analytic power analysis methods estimate the power statistically given the expected
distribution for the test statistics under the null model and under the alternative model,
e.g. with a certain effect size [111]. For example, going back to the eQTL hypothesis
testing in section 2.2.1: we assume that the test statistics follow under both models a
normal distribution with the same variance var(β), only the mean is shifted by β̂ for the
alternative model:

P(β|H0) ∼ N(0, var(β)) (2.33)

P(β|H1) ∼ N(β̂, var(β)) (2.34)

The significance threshold α, chosen by the user, defines the cutoff c in the test statistic
that separates the cases where the null hypothesis is rejected and the cases where the
null hypothesis is accepted. For the eQTL example, it would be P(β > c|H0) ≤ α. The
area of the expected distribution (i.e. the probability mass) from the alternative model
where the null hypothesis is truthfully rejected, is equal to the power: P(β > c|H1).

Analytic power analysis methods are very time and memory efficient to apply com-
pared to the simulation-based methods, which are introduced next. However, an
analytic formulation of the power is not possible for every statistical test. For this reason,
simulation-based methods are an important alternative.
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2.5.2. Simulation-based power analysis methods

Simulation-based methods simulate the expected dataset directly, again given certain
assumptions about the distributions, and then exemplarily run the analysis workflow
on the simulated dataset to evaluate the power. For example, different single cell DE
power analysis methods [112, 113] simulated one instance of a potential single cell count
matrix and add a specified number of DE genes with certain effect sizes by shifting the
distribution of some genes before sampling the matrix.

Assumptions about effect sizes, number of DE genes etc., need to be made for any
power analysis method, analytic or simulation-based. Typically, data from previous
experiments or pilot data can be helpful here. The simulated count matrix with the
dimensions of the planned experiment (cells times genes) is then processed using the
planned workflow as for the real experiment. Because of the simulation, the ground truth
is known, i.e. which genes are the real DE genes. Using this, the power is calculated in
the end as the fraction of correctly identified DE genes (true positives) from all simulated
DE genes.

As the simulation produces only one potential instance of the count matrix, accuracy
of power estimation is increased by running this simulation multiple times in a row. This
process is time and memory consuming, making quick evaluations and the comparison
of different design options very tedious compared to analytic power analysis methods.
However, simulation-based methods have far greater flexibility, for example the single
cell DE power methods allow the easy comparison of different workflows, e.g. different
normalization and imputation methods. Overall, both types of methods, analytic and
simulation-based, give valuable information about the power and should be chosen
dependent on the use case.

2.6. Pseudobulk approach for single cell data

In contrast to bulk data, multi-sample single cell data contains multiple measurement
points per individual, as typically many cells are measured from each individual. While
this data structure allows interesting new analyses, methods developed for bulk, such
as the (generalized) linear regression models for the eQTL and DE analysis, can not
be applied directly. A common strategy to overcome this is the so-called pseudobulk
approach. The idea is to aggregate measurement points per individual and cell type to
one value, using either the sum or the mean function [89].

Given a count matrix xi,j of genes times cells, the counts for each gene i are aggregated
over all cells j annotated to cell type c and individual s (noted as j ∈ C with C the
set of all cells from cell type c and j ∈ S with S the set of all cells from individual s,
respectively). The result is a three-dimensional pseudobulk matrix yi,c,s of genes times
individuals times cell types with

yi,c,s = ∑
j∈C∧j∈S

xi,j (2.35)
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Two independent benchmarking studies showed that pseudobulk approach outper-
formed other methods for single cell DE analysis [113, 114]. It reduces the number of
false positives compared to approaches that do not account for multiple measurement
points per individual, and it is computationally far more efficient than mixed models,
an alternative strategy to accurately deal with the data structure. For these reasons, it is
also a frequently used method for single cell eQTL studies [55, 57, 58, 83].

We developed our power analysis framework for multi-sample single cell experiments
on the basis of the pseudobulk approach (chapter 4). Furthermore, we applied the
pseudobulk approach for single cell eQTL mapping in the co-eQTL project (chapter 5).

2.7. Random forest classification

Linear regression models are limited in the detection of more complex interactions, as
they assume linear relationships between the features and the outcome variable. Alterna-
tively, several other more sophisticated machine learning models became frequently used
for various biological applications in the last years due to the access to larger datasets,
for example Random Forest [115] and Artificial (Deep) Neural Networks [116]. In this
thesis, we applied a Random Forest classifier as an alternative to the Logistic Regression
classifier (chapter 3). This will be quickly introduced in the following paragraphs.

The Random Forest method is a collection of many classifiers, whose results are
combined to one final prediction. The approach is an extension of the classic Decision
Trees [115]. After a Decision Tree is built, each sample can be classified by following a
path from the root to the leafs in the tree. At each inner branching point, the sample
can be categorized into one of the subtrees based on a specific condition of a chosen
variable (e.g. a < 3 and a ≥ 3). At the end of the path, the sample gets the class label of
the corresponding leaf.

During the construction of the tree, the variable and split at each node is chosen
so that it reduces the heterogeneity of the training dataset in the subtrees, i.e. that as
many samples as possible belong to the same class in one branch. This is performed
recursively, so that the leafs contain homogeneously (or at least nearly homogeneously)
one class.

The Gini index is one possible metric to measure the purity within a node and so the
best split during the construction of the tree [117]. It is defined for a node N with J
classes and a relative frequency pi for each class i ∈ {1, 2, ..., J} at the node as:

Gini(N) = 1 −
J

∑
i=1

p2
i (2.36)

The Gini index is higher if there is more heterogeneity in the node. The best split A of
node N into m subtrees Ni with i ∈ {1, 2, ..., m} is the one with the highest ∆Gini(N, A):

∆Gini(N, A) = Gini(N)−
m

∑
i=1

|Ni|
|N| ∗ Gini(Ni) (2.37)
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The Gini index is used in the Random Forest implementation of the R package
randomForest [118], which we applied in our project (chapter 3). Other alternative metrics
exist to determine the best split, for example Information Gain [117].

While Decision Trees are efficient to train and easy to interpret, they tend to overfit
quickly. This risk is reduced in the Random Forest algorithm, which builds on multiple
Decision Trees, often hundreds of trees, each trained on a random subset of the data.
Typically, for each tree, a new training dataset is sampled with replacement from the
original dataset and at each node, the variable set is sampled which is tested for the best
split. The two randomization steps ensure that the individual trees in the Forest can be
regarded as independent classifiers. In the end, the predictions of all trees are combined
to one majority voting. We will apply Random Forest for classification, but Random
Forest regression is also possible.
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3. Studying the relationship of DNA
methylation with genetics and
transcriptomics

3.1. Increasing the knowledge about DNA methylation and its
complex interplay with the genome and transcriptome

DNA methylation is an important epigenetic mark connected with many diseases from
type 2 diabetes and obesity over asthma to cancer [119, 120, 121, 122, 123]. Interestingly,
DNA methylation captures environmental influences such as smoking or diet [124, 125],
which makes it a promising surrogate marker to study the effect of environmental
factors on diseases. As DNA methylation is also affected by genetic variants, called
methylation quantitative trait loci (meQTLs) [38], both genetic and environmental effects
need to be taken into account when studying DNA methylation. In contrast to eQTL
studies, meQTLs are not as extensively characterized in large cohorts yet.

For this reason, also the cell type specificity of meQTLs and more generally the context
specificity is not well studied yet. It is known that DNA methylation, similar to gene
expression, is very cell type specific [48]. However, currently only bulk cohorts with
DNA methylation data exist, which capture the average methylation levels across all
measured cell types and impede so cell type specific analyses.

Open questions exist not only about the upstream regulatory factors of DNA methy-
lation, but also about the downstream effects of DNA methylation variation on gene
expression. DNA methylation is associated with stable silencing of expression, including
processes such as X-chromosome inactivation, genomic imprinting and silencing of
repetitive DNA elements [126]. But also in general, methylation of promoter regions
is typically negatively correlated with gene expression [38]. However, the relationship
between DNA methylation and gene expression is more diverse: associations with gene
expression were found for methylation at enhancers [127, 128] and in the gene body, in
the second case even with positive associations, i.e. an increase in gene body methylation
is associated with higher expression levels [129]. The general rules, which types of DNA
methylation influences a specific gene in which way, are not understood yet [130]. The
diverse results indicate that genomic context of the CpG and maybe also the gene plays
a role, for example the position of the CpG, its distance to the gene or the promoter type
of the gene.

In the following, we studied both the connection of DNA methylation with genetics
and its influence on gene expression with different QTL approaches applied to two
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3. Studying the relationship of DNA methylation with genetics and transcriptomics

large cohorts with diverse ancestry, the KORA cohort with 3,799 European donors
and the LOLIPOP cohort with 3,195 South Asian donors. Both cohorts comprised the
three necessary omics layers, genotype information measured with Illumina genotyping
arrays, DNA methylation measured with the 450K array and gene expression measured
again with arrays. In the first step, we identified both cis and trans meQTLs in whole
blood via a large meta analysis of the KORA and LOLIPOP cohorts to increase our
knowledge about DNA methylation and genetics. Furthermore, the large sample size
enabled us to perform the first study of interaction meQTLs, called iQTLs, to explore
cell type and context specificity of meQTLs. In this analysis, the cell type composition,
BMI and cigarette smoking were tested as interaction terms, which potentially influence
the effect size of the meQTLs.

A QTL approach was also used to study the relationship with gene expression and
DNA methylation. For this, we mapped expression quantitative trait methylations
(eQTMs), i.e. DNA methylation influencing gene expression, via a meta analysis of
KORA and LOLIPOP. We studied especially which effect the additional adjustment for
cell type composition has on the identified eQTMs. Afterwards, to follow up on the
question of the genomic context of associated CpG-gene pairs, we predicted the eQTM
probability of CpG-gene pairs using a large set of genomic annotations as features. For
the prediction, we tested Logistic Regression and Random Forest and identified each
time the most important features that drive the eQTM probability. This way, we got
more insights of which CpGs influence the expression of which genes.

Overall, the study increased our knowledge about genetic effects on DNA methylation
as well as gene expression and DNA methylation and how all these relationships are
affected by cell types and environmental factors.

The methodology, results and figures of this project have previously been published
in Hawe et al. [2] (the first part covering meQTLs and eQTM detection) or are currently
prepared into a manuscript (the second part covering eQTM context analysis). All
code is published in two GitHub repositories, one associated with the publication of
Hawe et al. https://github.com/heiniglab/hawe2021_meQTL_analyses, and one for
the eQTM context analysis (currently unpublished) https://github.com/heiniglab/
eqtm_prediction.

Of note, the publication of Hawe et al. [2] contains an extensive evaluation of meQTLs.
The focus in this chapter is on the parts of the analyses that I contributed to during my
doctoral thesis, and does not cover the full content of the publication.

3.2. Association between genetic variants and DNA methylation

3.2.1. Genome-wide identification of meQTLs

We focused for the meQTL analysis on a set of cosmopolitan meQTLs that could be
identified in both the KORA and the LOLIPOP cohort, which means that the meQTLs are
present in samples of both the European and South Asian ancestries (see method section
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3. Studying the relationship of DNA methylation with genetics and transcriptomics

3.6.2). With our stringent approach, we identified 11,165,559 cosmopolitan meQTLs in
total (Figure 3.1 a). Most of them are cis meQTLs (n=10,346,172 with < 1Mb distance),
but also several trans meQTLs (n=467,915) were identified, where the SNP and the CpG
lay on different chromosomes. The trans meQTLs contained several so-called hotspots,
where one SNP is associated with a high number of CpGs across the whole genome
(Figure 3.1 b).

The meQTLs could be replicated in a small cohort (n=57 samples) of four different
isolated white blood cell types, namely CD4+ and CD8+ T cells, monocytes and neu-
trophils, with replication rates of 26-37% (Supplementary Figure A.1). On top of that,
many meQTLs seemed to be rather general instead of tissue specific, as 44% of meQTLs
were replicable in adipose tissue (n=603 samples), 19% in subcutaneous adipocytes
(n=47) and 19% in visceral adipocytes (n=47). Of note, the different sample sizes of the
replication cohorts are expected to have a strong influence on the replication rates, as
they affect the detection power. This can give an explanation for the higher replication
rate of the larger cohort, measured in adipose tissue.

We showed the functional relevance of the meQTLs in several enrichment analyses,
including enrichment for other QTLs, different genomic annotations and phenotypic
traits. Additional follow-up analyses included an evaluation of differences between cis

Figure 3.1. (preceding page): Summary of results for genome-wide association and repli-
cation testing
a Chessboard plot. Each dot represents a unique SNP–CpG
pair reaching genome-wide significance in discovery (p <

10−14) and showing both ancestry-specific and cross-ancestry
replication. CpG position and background CpG density
(450K array) are annotated on the x axis, and SNP position
and background SNP density are annotated on the y axis.
SNP–CpG pairs are color coded according to proximity of
the SNP and the CpG site: cis, within 1 Mb (n = 10,346,172,
green markers appearing as a diagonal line); long-range cis,
distance >1 Mb but on the same chromosome (n = 351,472,
purple markers); trans, SNP and CpG sites are on different
chromosomes (n = 467,915, black markers). b Manhattan
plot of trans acting SNP–CpG associations. Each marker rep-
resents the number of CpG sites associated in trans with the
identified trans acting SNPs. Results are for the cosmopoli-
tan set of SNP–CpG pairs, showing both ancestry-specific
and cross-ancestry replication. SNPs with the highest num-
ber of CpG sites in trans (top 1%) are highlighted in dark
blue, and the gene nearest the sentinel SNP is displayed.
Figure and legend taken from [2].
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and trans meQTLs and a random walk approach to identify the regulatory networks
around trans meQTL hotspots. All these analyses can be found in the publication [2],
but are not further elaborated in this thesis.

3.2.2. Interaction meQTLs

Another aspect of the meQTLs, which we further explored, is how the associations are
affected by the cell types, as the DNA methylation itself is very cell type specific. For
this, we mapped interaction QTLs (iQTLs) with the cell type proportions of CD4+ T cells,
CD8+ T cells and monocytes as interaction terms (more in section 3.6.4). The cell type
proportions of each individual were estimated from their DNA methylation patterns
using the Houseman algorithm [48]. Likewise, DNA methylation and so potentially
also the meQTLs can be influenced by environmental factors. For this reason, we
additionally analyzed iQTLs with BMI and cigarette smoking as interaction term, two
important environmental factors influencing DNA methylation [120, 131]. Due to the
increased multiple-testing burden of the interaction models, we tested two groups of
CpG-SNP pairs for each interaction term, first a targeted iQTL analysis focusing on the
cosmopolitan meQTLs and then a global cis iQTL analysis for all CpG-SNP pairs within
cis distance of 1 Mb.

The targeted analysis identified overall 139,552 iQTLs, which were associated with one
of the five interaction terms in one cohort and could be replicated in the second cohort
(Table 3.1). Most of them were associated with one of the cell types, especially with
CD8+ T cells (96,455 iQTLs). The cell proportion iQTLs showed overall high replication
rates across cohorts (between 25.8% and 89.4%, Figure 3.2 a). In contrast, only few
iQTLs associated with BMI or smoking could be identified, and the replication rates
were drastically lower (between 11.2% and 29.5%).

The global iQTL analysis, which was performed across all CpG-SNP pairs within cis
distance, found with a total of 16,135 iQTLs far fewer significant associations than the
targeted analysis of cosmopolitan meQTLs (Table 3.2). The reason for the fewer iQTLs
is probably the far stricter significance threshold after Bonferroni correction caused
by the large number of tests. The replication rate across cohorts remained high for
the iQTLs associated with CD8+ and CD4+ T cells. Of note, 64% of the global iQTLs
were independent of the cosmopolitan iQTLs (LD R2 < 0.2). This shows that in a more
well-powered iQTL analysis, more iQTLs are expected to be found than the cosmopolitan
iQTL set.

The iQTLs with a cell type proportion as interaction term are an indication for cell
type specific meQTLs, which are predominately present in one or a few cell types. When
we checked the replication rate of these iQTLs in the corresponding isolated cell type,
we obtained high replication rates between 59.9% and 70.4% for all tested cell types
(Figure 3.2 b), supporting this assumption.

The importance of iQTLs for understanding phenotypic variation could be shown in
GWAS enrichment analyses: the cell type associated iQTLs were enriched for several
GWAS associations, among them many blood cell traits and immune traits (Figure 3.2
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iQTL
Discovered

(KORA)
Replicated
(LOLIPOP)

Discovered
(LOLIPOP)

Replicated
(KORA)

Union

CD8+ T 29,128
26,052

(89.4%)
119,075

89,063
(74.8%)

96,455

CD4+ T 22,566
19,948

(88.4%)
37,638

28,225
(75%)

37,184

Monocyte 2,229
574

(25.8%)
6,504

3,557
(54.7%)

4,037

BMI 1,550
213

(13.7%)
3,647

408
(11.2%)

582

Smoking 2,496
736

(29.5%)
3,322

704
(21.2%

1,294

Total 139,552

Table 3.1.: Number and replication rates of iQTLs identified among the cosmopolitan
meQTL set.
The number of significant iQTLs for five different iQTL phenotypes identified
among the cosmopolitan meQTLs, discovered in either KORA or LOLIPOP
(columns 2 & 4). Additionally, the number of replicated iQTLs in the other
cohort is given (columns 3 & 5) (for iQTLs discovered in KORA, the replication
was done in LOLIPOP and vice versa) and, in parentheses, the ratio of
replicated iQTLs among all iQTLs. The last column 6 shows the union of
replicated iQTLs from KORA and LOLIPOP. Table taken from [2].

iQTL
Discovered

(KORA)
Replicated
(LOLIPOP)

Discovered
(LOLIPOP)

Replicated
(KORA)

Union

CD8+ T 13,254 10,451 (78.9%) 8,494 5,878 (69.2%) 14,120
CD4+ T 2,010 1,160 (57.7%) 2,516 998 (39.7%) 1,714

Monocyte 7,091 224 (3.2%) 4,569 77 (1.7%) 301
BMI 3,155 96 (3.0%) 3,713 43 (1.2%) 139

Smoking 2,345 123 (5.2%) 11,821 280 (2.4%) 403
Total 16,677

Table 3.2.: Number and replication rates of iQTLs identified in a global cis analysis of
all CpG-SNP pairs.
The number of significant iQTLs for five different iQTL phenotypes identified
in a global cis analysis of all CpG-SNP pairs, discovered in either KORA or
LOLIPOP (columns 2 & 4). Additionally, the number of replicated iQTLs in
the other cohort is given (columns 3 & 5) (for iQTLs discovered in KORA,
the replication was done in LOLIPOP and vice versa) and, in parentheses,
the ratio of replicated iQTLs among all iQTLs. The last column 6 shows the
union of replicated iQTLs from KORA and LOLIPOP. Table taken from [2].
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Figure 3.2.: White cell iQTL
a, Replication of effect sizes of significant iQTL (CD8+ T cells) between KORA
and LOLIPOP cohorts. Axes show genotype–cell type interaction effect sizes,
points individual associations. b, Replication of iQTL in isolated cells. The
y-axis shows the total number of associations, the x-axis the respective cell
types. Colors indicate the proportion of replicating associations (dark blue)
and non-replicating associations (light blue). c, Enrichment of iQTL SNPs
with GWAS information in diverse traits. The y-axis shows -log10 values of
QTLEnrich P values, the x-axis the log2 fold enrichment of observed GWAS
SNPs among iQTL compared to expected values. Plots are split by analyzed
cell types. Points reflect individual GWAS (colors represent the phenotype
category). d, Association plot for the rs174548-cg21709803 iQTL in KORA
data, separated into individuals with ‘high’ and ‘low’ abundance (above
and below the median) of CD8+ T cells. The y-axis indicates methylation
residuals, the x-axis the genotypes. Box plots indicate medians (center
lines) and first and third quartiles (lower and upper box limits; whisker
extents, 1.5-fold of interquartile ranges). Points indicate outliers. e, The same
association plot as in d but using data from isolated cells (different shades
of gray). f, Manhattan plot of meQTL, asthma GWAS and iQTL results for
the selected iQTL example show colocalization of association signals. The
x-axis indicates the genomic region around rs174548, the y-axis the -log10 of
association P values. Individual points represent SNPs in the locus. Coloc
prob., colocalization probability. Figure and legend taken from [2].
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3. Studying the relationship of DNA methylation with genetics and transcriptomics

c). One interesting example here is the iQTL of rs174548-cg21709803 with higher effect
sizes in individuals with high CD8+ T cells proportion (Figure 3.2 d). The analysis of the
isolated cell types identified the meQTL only in T cells, not in monocytes, supporting
the specificity of this meQTL (Figure 3.2 e). The SNP rs174548 is associated with several
metabolites in the fatty acid metabolism [132, 133], matching the position of the SNP
in the gene FADS1 (Fatty Acid Desaturase 1), but also with blood eosinophil counts
[134] and inflammatory diseases such as asthma [135]. The connection between the
asthma GWAS signal and the iQTL was strengthened in a colocalization analysis, which
indicated a shared causal variant (coloc PP4=0.63, Figure 3.2 e). Importantly, this SNP is
no cosmopolitan meQTL, the potential relationship of the meQTL rs174548-cg21709803
with asthma and its T cell specificity could only be made due to the iQTL analysis.

3.3. Association between DNA methylation and gene expression

In the previous sections, we successfully quantified the relationship between DNA
methylation and genetics using meQTLs and iQTLs. Next, we included the transcrip-
tomic information from the cohorts as an additional omics layer to get a more complete
picture of the role of DNA methylation. To analyze the relationship of DNA methylation
and gene expression, we performed an eQTM meta analysis on KORA and LOLIPOP
and classified the detected eQTMs again as cis and trans dependent on their distance.

We ran the eQTM analysis twice with different settings to explore the effect of the
cell type composition: once we corrected the expression and methylation data for basic
covariates and genotype effects and once we additionally corrected both for the cell
type proportions of the individuals (see section 3.6.6). With this strategy, we observed
that the number of identified eQTMs was strongly driven by the cell type proportions.
Without correction for cell type proportions, we found with 90,666 cis eQTMs and
54,807,559 trans eQTMs, called GTA eQTMs for "genotype adjusted" in the following
(Table 3.3). The additional correction reduced the numbers to 769 cis eQTMs and 97,281
trans eQTMs, called CPA eQTMs for "genotype and cell proportion adjusted" in the
following. The drastically lower number of CPA eQTMs compared to GTA eQTMs
highlights that the role of DNA methylation in establishing cell type identity: GTA
eQTMs, which are removed after the correction, represent differences between cell types
rather than differences between individuals, which become visible due to different cell
type composition in the different individuals.

For the stricter set of CPA eQTMs, we validated the replication rates between cohorts:
we saw high replication both for the eQTMs identified in KORA and the eQTMs
identified in LOLIPOP, especially when applying the stricter family-wise error rate
(FWER) adjustment compare to false discovery rate (FDR) adjustment for multiple
testing correction (Table 3.4, more about multiple testing in Method section 2.4).

36



3.3. Association between DNA methylation and gene expression

GTA eQTMs CPA eQTMs

cis eQTMs 90,666 769
trans eQTMs 54,807,559 97,281

Table 3.3.: Cis and trans eQTMs from meta analysis of cohorts.
Number of cis and trans eQTMs from the meta analysis of KORA and
LOLIPOP together, once without correction for cell type proportions (GTA
eQTMs) and once with the correction (CPA eQTMs). Significance threshold
of p<0.05 after FWER correction (Bonferroni). Table taken from [2].

KORA meQTLs LOLIPOP meQTLs
MT

corrected
Discovered

(KORA)
Replicated
(LOLIPOP)

Discovered
(LOLIPOP)

Replicated
(KORA)

cis FDR 1,006 684 (68%) 2,445 1,317 (54%)
trans FDR 213,182 81,684 (38%) 766,434 266,367 (35%)

cis FWER 301 246 (82%) 409 352 (86%)
trans FWER 20,989 10,993 (52%) 69,497 49,943 (72%)

Table 3.4.: Replication of eQTMs across cohorts
Number of eQTMs, either discovered in KORA and replicated in LOLIPOP
(called KORA eQTMs) or discovered in LOLIPOP and replicated in KORA
(called LOLIPOP eQTMs) with FDR or FWER multiple testing correction.
Focusing on CPA eQTMs here. Table adapted from [2].
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3.4. Identifying the context-specific relationship of eQTMs

We extended our analysis of the GTA eQTMs and CPA eQTMs with the goal to better
understand the differences between both classes and more broadly the general mecha-
nisms behind the associations of gene expression and DNA methylation. For this reason,
we explored the genomic context of both eQTM classes, for example the position of the
CpG, the distance between the CpG and the gene or the promoter type of the gene (full
set of tested annotations found in Table A.1). Using different machine learning (ML)
models, we tested whether we can predict the eQTM probability based on the genomic
context as features and which aspects were most important for the prediction.

3.4.1. Predicting the eQTM probability of a CpG-gene pair

During this evaluation, we focused on the set of cis eQTMs, with at least 1Mb between
the CpG and TSS of the gene. This allowed us to generate a more well-defined data set
for all downstream analyses. We used the eQTMs identified separately in both cohorts
(KORA and LOLIPOP) and repeated the multiple testing correction specifically for the
cis associations (adjusted eQTM found in Table 3.5). As described in the last section 3.3,
we distinguished again between GTA eQTMs, which were adjusted for basic covariates
and the genotypes, and CPA eQTMs, which were additionally adjusted for the cell
type proportions. In the following, we will additionally compare positively associated
eQTMs (effect size > 0) with negatively associated eQTMs (effect size < 0). While the
proportions between negative and positive eQTMs are very similar for the GTA eQTMs,
for the CPA eQTMs, a higher fraction of negative eQTMs was found. Replication rates
between cohorts remained high, as already observed in the previous section 3.3. The
GTA eQTMs showed overall slightly higher rates than the CPA eQTMs (Table 3.5).

Previous studies found distinct genomic features of eQTMs, such as an enrichment of
eQTM CpGs in promoter and enhancer regions, as well as differences between positively
and negatively associated eQTMs [38]. We can reproduce many of these findings: for
example, the distance between the CpG and the TSS of the gene is on average shorter in
negative eQTMs compared to positive eQTMs and non-significant pairs. Furthermore, a
higher fraction of CpGs lies in enhancer regions for eQTMs compared to non-significant
pairs (Supplementary Figure A.2). However, looking at individual features is insufficient
for a general, comprehensive model, describing the context-sensitivity of eQTMs.

To combine and compare the different genomic annotations, we applied ML models,
extending the idea of Bonder et al. [38], who built a model to predict the direction
of effect for eQTMs based on histone modifications. Our models predict whether a
CpG-gene pair is an eQTM or not based on a large set of genomic annotations of the
pair. Two aspects can be analyzed with the model: first, a good prediction performance
indicates that the eQTM probability of a CpG-gene pair is influenced by its genomic
context. Second, by evaluating the feature importance of the model, we can distinguish
which genomic annotations are more important for defining the genomic context of an
eQTM.
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KORA eQTMs LOLIPOP eQTMs
MT

correction
GTA CPA GTA CPA

Tested
pairs

7,721,357 7,721,357 7,721,357 7,721,357

eQTMs < 0.05 243,842 1,509 375,128 3,389
(72.2%) (57.7%) (59.0%) (47.5%)

eQTMs < 0.01 158,478 914 253,663 1,810
(82.4%) (68.8%) (70.0%) (61.8%)

positive < 0.05 118,197 421 186,020 1,106
eQTMs (72.0%) (34.2%) (58.2%) (35.0%)
positive < 0.01 76,397 205 125,432 463
eQTMs (82.0%) (44.9%) (69.2%) (46.7%)
negative < 0.05 125,645 1,088 189,108 2,283
eQTMs (72.3%) (66.7%) (59.8%) (53.6%)
negative < 0.01 82,081 709 128,231 1,347
eQTMs (82.7%) (75.7%) (70.8%) (67.0%)

Table 3.5.: Cis eQTMs per cohort, split after direction of effect.
Identification of cis eQTMs in the KORA and LOLIPOP cohort (FDR < 0.05 or
FDR < 0.01) with a cis distance of 1MB between TSS of the gene and the CpG.
Percentages below the numbers show the replication rates in the other cohort
(for eQTMs discovered KORA the replication in LOLIPOP and vice versa).
Again, GTA and CPA eQTMs were distinguished and, additionally, positively
correlated eQTMs (β > 0) and negatively correlated eQTMs (β < 0).

We selected annotations for the prediction that describe the CpG site and the gene
individually as well as the pair together (Figure 3.3 a,b). A full list of all annotations can
be found in Supplementary Table A.1. The position of the CpG was characterized by
annotating its chromatin state and whether there was a transcription factor binding site
(TFBS), a DNAse hypersensitivity site (DHS), a super-enhancer, a HiC contact or a CpG
island. Each of the features is binary, as the CpG is either inside the genomic annotation
or not, but the annotations differ between cell types. To apply our model on bulk data
containing a mixture of different cell types, such as whole blood, we transformed the
features into a weighted score based on the cell type proportions of the data set (section
3.6.7). For the gene, we annotated the promoter type, the chromatin state of its TSS
and whether it is a housekeeping gene. The CpG-gene pair together was described
by the distance between the CpG and the TSS of the gene, the relative position of the
CpG to the gene (before, inside or after the gene) and whether they are within the same
topological associated domain (TAD).

For our prediction models, we considered all CpG-gene pairs which we tested for
association in cis, i.e. all pairs with a maximum distance of 1Mb and measurements for
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a b

KORA − GTA eQTMs KORA − CPA eQTMs LOLIPOP − GTA eQTMs LOLIPOP − CPA eQTMs

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

0.00

0.25

0.50

0.75

1.00

Classes compared

A
U

C
 s

co
re

 −
 c

ro
ss

−
va

lid
at

io
n

Model type Logistic Regression Random Forest

c

LOLIPOP − Logistic Regression −
 GTA eQTMs

LOLIPOP − Random Forrest −
 GTA eQTMs

LOLIPOP − Logistic Regression −
 CPA eQTMs

LOLIPOP − Random Forrest −
 CPA eQTMs

KORA − Logistic Regression −
 GTA eQTMs

KORA − Random Forrest −
 GTA eQTMs

KORA − Logistic Regression −
 CPA eQTMs

KORA − Random Forrest −
 CPA eQTMs

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

po
sN

eg

po
sN

on
sig

n

ne
gN

on
sig

n

sig
nN

on
sig

n

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Classes compared

A
U

C
 s

co
re

 −
 c

ro
ss

−
co

ho
rt

 p
re

di
ct

io
n

Prediction data set Training data set Test data set

d

40



3.4. Identifying the context-specific relationship of eQTMs

both expression and methylation. We explore in our study both the difference between
eQTMs and non-significant pairs and on a more fine-grained level the difference between
positive and negative eQTMs. For this reason, we modeled four different two-class
comparison problems: we compared all significant eQTMs against the non-significant
pairs, then the positive and negative eQTMs separately against the non-significant pairs
and as a fourth option the positive eQTMs against the negative eQTMs. We applied
Logistic Regression (LR) as a baseline model for the classification and Random Forest
(RF) as a more sophisticated model, capturing also non-linear relationships.

For the prediction, we generated a data set of high confidence eQTMs with strict
FDR correction and filtered for high variance of methylation levels. The motivation
for the second filter was that only for CpGs with sufficient variation between samples,
the class can be assigned reliably. CpGs with (nearly) constant methylation could still
correlate with gene expression, but this is not visible in our dataset. For the threshold
selection, we trained LR and RF models with different thresholds for the prediction of
eQTMs vs non-significant pairs in a 10-fold cross-validation with the KORA dataset.
When evaluating their performance, we saw a clear improvement with stricter filtering
(Supplementary Figure A.3). We selected the thresholds separately for the GTA and the
CPA eQTMs, so that the performance of the model increased but the set of significant
eQTMs was not reduced too drastically. We set the FDR threshold to 0.01 for both eQTM
sets. The variance threshold was chosen to keep only the 6.25% most variable CpGs
for the GTA eQTMs and the 25% most variable CpGs for the CPA eQTMs. For these
and all following models, we chose a set-up with balanced classes by subsampling the
non-significant eQTMs, as otherwise the sensitivity of the model dropped drastically.

With these filtering criteria, all models performed well both cross-validations within
each cohort and in predictions across the cohorts (Figure 3.3 c,d). The cross-validation
results showed that the differentiation between non-significant CpG-gene pairs and

Figure 3.3. (preceding page): Predicting eQTMs with different ML models.
a Schematic description how the different eQTM classes are
annotated with example features. b Full set of all features
used for the eQTM prediction. c Performance of the the
Logistic Regression and the Random Forrest models on a
10-fold cross validation within the KORA and LOLIPOP co-
hort. Four different two-class comparisons were performed
each time (posNeg: positive eQTMs vs negative eQTMs,
posNonsign: positive eQTMs vs non-significant pairs, neg-
Nonsign: negative eQTMs vs non-significant pairs and sign-
Nonsign: all eQTMs against the non-significant), separately
for the GTA eQTMs and the CPA eQTMs. d Cross-cohort
performance between KORA and LOLIPOP, using the same
settings as in c.
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3. Studying the relationship of DNA methylation with genetics and transcriptomics

significant eQTMs (or a subclass of it) was easier for both ML models than the com-
parison of positive eQTMs against negative eQTMs (Figure 3.3 c), visible in higher
AUC scores. The best average performance in the cross-validation was reached for
the RF model with CPA eQTMs from KORA with an AUC of 95.8% for all eQTMs vs
non-significant pairs and an AUC of 96.9% for negative eQTMs vs non-significant pairs.
In contrast, the worst performance was reached for the LR model with GTA eQTMs from
KORA with an AUC of 58.8%. However, with Random Forest and the CPA eQTMs, the
prediction of positive vs negative eQTMs reached AUC values around 90%. In general,
the Random Forest classifiers performed better than the Logistic Regression models,
which was expected from the more sophisticated RF models. Furthermore, models with
CPA eQTMs performed better than the models with GTA eQTMs. The cross-validation
results between KORA and LOLIPOP were very close in all tested scenarios.

All models generalized across cohorts, as the performance for cross-cohorts prediction
remained high (Figure 3.3 d). For this, the models were trained on one cohort and
then used for prediction in the second cohort, which represents an independent test
set. Similar trends were visible as in the within cohort validation, e.g. that the models
with CPA eQTMs performed better than the ones with the GTA eQTMs (AUC values
on test set of 72.2% - 96.4% for the CPA eQTMs and 59.5%-91.8% for the GTA eQTMs)
and that the RF models performed better than the LR models (AUC values on test set of
76.6% - 96.4% for the RF models and 59.5%-92.8% for the LR models). Interestingly, the
LOLIPOP models performed better on the independent test set (the KORA cohort) than
vice versa. The reason might be the higher number of eQTMs in LOLIPOP compared to
KORA, which could improve the feature learning of the model. Of note, the performance
between predictions on the training cohorts and the test cohorts were very similar for
the LR models, while the prediction on the training sets performed clearly better for the
RF models. This could indicate a slight overfitting of the RF models.

3.4.2. Identification of important genomic features for prediction

The good model performances, both in the cross-validations and in the cross-cohort
predictions, strongly supports our hypothesis that eQTMs are context-specific. Following
this, we further utilized the models to identify which of the genomic annotations are the
most predictive features by evaluating the feature importance of each model. A high
importance score of a feature is an indication that it plays a role in the genomic context
of the eQTMs, i.e. that CpG-gene pairs with this feature are more likely associated with
each other.

The feature importance for Logistic Regression was evaluated using the log odds
ratios and p-values for each feature of the model (see Method section 2.3.1). The
feature importance for Random Forest was measured with the Mean Decrease in
accuracy (MDA), which shows how much the accuracy of the out-of-bag cross validated
predictions is decreased when this specific variable is permuted. In contrast to the log
odds ratios, the MDA does not show the direction of the effect, i.e. if an increase of
the feature value increases or decreases the eQTM probability. For Random Forest, we
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3.4. Identifying the context-specific relationship of eQTMs

generated models with all features together (as in the previous section 3.4.1), for Logistic
Regression, we trained bivariate models with each feature and the distance to evaluate
each feature independent of its correlation with other features.

An important aspect of our features to keep in mind is that they are correlated
(Supplementary Figure A.4). Therefore, we additionally applied feature selection to
validate how much redundancy currently exists in our model and whether a reduced
feature set can reach similar performance as the full model. For the feature selection, we
combined different methods for Logistic Regression and Random Forest and selected
all features chosen in at least 90% of the runs (details in section 3.6.10). Afterwards,
we combined both the results of the feature importance and the feature selection to
interpret the features (Figures 3.4 and 3.5).

The GTA model to predict eQTMs versus non-significant CpG-gene pairs reached
nearly the same performance with the reduced feature set, chosen in the feature selection
based on the KORA eQTMs, compared to a model with all features. The mean AUC
performance of the within cohort cross-validation was for the reduced model 98% of the
full model, both for RF and LR models and for both cohorts. The 13 selected features
described the position of the CpG using several ChromHMM states, super-enhancer
annotations, TFBS and CpG islands and whether the CpG-gene pair was within the
same TAD (Figure 3.4 a). The feature selection using the LOLIPOP instead of the KORA
dataset showed very similar results, with 10 of the 13 KORA features being selected
(only CpG.ChromHMM.12EnhBiv, CpG.ChromHMM.2TssAFlnk.far, pair.in.same.TAD
fell below the selection cutoff). In general, the feature interpretation of both cohorts
brought nearly the same results, also visible in the high concordance of the feature
importance scores (Figure 3.4 b,c).

Looking at the importance scores for the GTA model and the comparison of eQTMs vs
non-significant pairs, the effect of the selected features can be interpreted more (Figure
3.4 a). The different enhancer annotations - the ChromHMM states enhancer and genic
enhancer as well as the super-enhancer annotations - played overall an important role
with high importance score in both the Random Forest and the Logistic Regression
models. The positive log odds ratios show that CpGs lying in these regions have a
higher probability of being an eQTM. This finding is supported by previous work that
connected DNA methylation with enhancers [127, 128]. Furthermore, the chromatin
structure is predictive for eQTMs, represented by pairs located in the same TAD and
CpG positioned at a chromatin interaction point, both also with a positive log odds ratio.
In contrast, CpGs positioned in Polycomb repressed genomic regions are also important
features, but with a negative log odds ratio. Interestingly, CpG islands show a strong
significant negative log odds ratios, meaning that CpGs in these regions are less likely
to be part of eQTMs.

The important features of the CPA model changed completely compared to the GTA
model, but continued to replicate very well between the cohorts (Figure 3.5). Fewer
features were selected in the feature selection. Matching this, there were fewer significant
features in the LR models and lower MDA scores in the RF models. Only 4 features
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Figure 3.4.: Feature importance of the model eQTMs vs non-significant pairs for the
GTA eQTMs
a The feature importance of the KORA models with GTA eQTMs. For the
Logistic Regression, bivariate models were trained for each feature plus the
distance, for Random Forest, multivariate models. Feature names marked
in red were chosen in the feature selection for the reduced model (selected
in at least 90% of the cases). Only features occurring in at least 1% of the
CpG-gene pairs were shown here to increase visibility, a full version with
all features can be found in Supplementary Figure A.5. b,c Replication
of the feature importance in the LOLIPOP model for Logistic Regression
(b) and Random Forest (c). r values (top left of each plot) are the Pearson
correlations between the scores from LOLIPOP and KORA.
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3. Studying the relationship of DNA methylation with genetics and transcriptomics

exceeded the selection threshold (selected in at least 90% of the runs) compared to
13 features before, when analyzing the GTA eQTMs. From the selected features, only
the pair.in.same.TAD was selected in both the GTA and the CPA model. The CpG
annotations with ChromHMM states and CpG islands/shores were less important in
the CPA model. Instead, more structural features were selected, namely CTCF binding
sites between the pair, the distance of the pair and whether the CpG is before the gene.
The performance of the models with the reduced feature set reached still at least 93% of
the performance from the full model with all features.

The feature importance for the positive versus negative eQTM models needs to be
interpreted more carefully, as the models did not perform so well. This indicates that
the models are probably not capturing the biological context that well, compared to the
models for eQTMs vs non-significant pairs. One reason for this might be the feature
set, as all features represent broad categories and, for example, TF binding sites could
be both associated with activating and repressing TFs. Nevertheless, we looked at the
feature importance scores both for the GTA model and the CPA models (Supplementary
Figures A.7 and A.8). In contrast to the eQTM vs non-eQTM predictions, the GTA and
CPA models showed more similar feature importance scores, when predicting positive
vs negative eQTMs. For both models, the distance between the CpG-gene pair got
the highest importance score for the RF models. The positive log odds ratio of this
feature shows that pairs further apart from each other are more likely to be positively
correlated. Other important features were that the CpG is positioned in a TSS state from

Figure 3.5. (preceding page): Feature importance of the model eQTMs vs non-significant
pairs for the CPA eQTMs
a The feature importance of the KORA models with CPA
eQTMs. For the Logistic Regression, bivariate models were
trained for each feature plus the distance, for Random Forest,
multivariate models. Feature names marked in red were cho-
sen in the feature selection for the reduced model (selected
in at least 90% of the cases). Only features occurring in at
least 1% of the CpG-gene pairs were shown here to increase
visibility. A full version with all features can be found in
Supplementary Figure A.6. b,c Replication of the feature
importance in the LOLIPOP model for Logistic Regression
(b) and Random Forest (c). r values (top left of each plot) are
the Pearson correlations between the scores from LOLIPOP
and KORA. d,e Comparison of the feature importance be-
tween the GTA and the CPA model for Logistic Regression
(d) and Random Forest (e). r values (top left of each plot) are
the Pearson correlations between the scores from the GTA
and CPA models.
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3.4. Identifying the context-specific relationship of eQTMs

the ChromHMM model (active TSS, TSS flanking and bivalent TSS), which increases
the probability of negative correlation (matching the distance variable) and that the pair
is in the same TAD / no CTCF binding site is in between, which increases again the
probability of negative correlation.

3.4.3. Replication across tissues

After we evaluated our eQTM models in different blood datasets, we evaluated how
generalizable our eQTM prediction models are across tissues. For this, we explored
whether the prediction of eQTMs also performs well in other tissues, which do no match
the training dataset. We applied a model trained on the whole blood CPA eQTMs from
LOLIPOP to predict eQTMs in a data set from skeletal muscle [136]. When we collected
the necessary muscle-specific annotations, we restricted the feature set slightly, as not
all features available for whole blood could be found for skeletal muscle (see section
3.6.11).
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Figure 3.6.: Prediction performance cross-tissues and for prioritizing EWAS genes
a Prediction performance of the eQTM model trained on the whole blood
dataset (LOLIPOP CPA eQTMs) for the prediction of muscle eQTMs. b
Enrichment of DE genes after muscle training among genes, predicted to be
associated with EWAS CpGs from muscle training. Three different gene sets
were considered, either predicted genes from the Logistic Regression and
Random Forest eQTM model alone or the combined set of genes that was
predicted by both models.
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The cross-tissue prediction reached an AUC value of 80.7% for the LR model and of
82.4% for the RF model when predicting eQTMs against non-significant pairs (Figure
3.6 a). The good prediction performance of the skeletal muscle eQTMs proves that the
model captures general characteristics of eQTMs, which are not only specific for whole
blood. Importantly, the overlap between the whole blood eQTMs and the skeletal muscle
eQTMs is very small (only 19 eQTMs from 25,867 muscle eQTMs are also in the filtered
LOLIPOP CPA eQTM set). This highlights that the model can identify new tissue type
specific eQTMs based on the corresponding annotations, even when it was trained on a
different tissue. The performance of the cross-tissue prediction for positive vs negative
eQTMs was lower, with AUC values of 60.0% for the Logistic Regression and 66.7% for
Random Forest (Figure 3.6 a). This is in line with the general lower performance of
these models.

3.4.4. Application of eQTM model for the identification EWAS hits

Additional to the biological interpretation of eQTMs, our model gives us the ability
to predict candidate genes from Epigenome-wide association studies (EWAS). EWAS
associate CpGs with phenotypic traits, such as diseases. Connecting the EWAS CpGs
with genes is an important step in the interpretation of EWAS results. With our model,
this is possible solely based on EWAS summary statistics to select the significantly
associated CpGs and cell type specific genomic annotations as input for our model.

We showcased this application using an EWAS study that measured the effect of
endurance exercise training on DNA methylation in skeletal muscles [137]. As the study
additionally measured differential expressed genes between trained and untrained
muscle, we have a ground truth of genes that we expect to be connected with the
EWAS CpGs. We applied our eQTM model with skeletal muscle annotations and
combined the prediction of Logistic Regression and Random Forest, taking only genes
predicted in both models. This resulted in significant enrichment of the predicted
eQTM genes among the DE genes with an odds ratio of 1.14 (p=0.0019) (Figure 3.6
b). The predictions of the Logistic Regression and the Random Forest models alone
showed also positive odds ratios, but only the Random Forest odds ratio was significant
(p=0.026). The predicted eQTM genes were enriched for the GO terms of "actin binding"
and "transmembrane signaling receptor activity" (FDR<0.05), matching the biological
expectations after muscle training. The connection with actin was also found in the
original study [137].

This shows that our model can help to interpret EWAS results by connecting CpGs
to genes, which can then be mapped to specific biological pathways and functions.
Required annotations for the model are public available, leading to a quick evaluation
of the results without the need to generate further experimental data.
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3.5. Project summary and outlook

In this project, we showed how to analyze DNA methylation cohort data to better
understand the interactions between DNA methylation and genetic variants (meQTLs)
and DNA methylation and gene expression (eQTMs), both providing new helpful
insights into regulatory processes. The comprehensive catalog of meQTL and eQTM
associations generated from our large multi-ethnic cohort is a useful resource for all
further studies and available online at http://qtldb.helmholtz-muenchen.de.

In order to identify cell type and context specific effects in a bulk DNA methylation
cohort, we applied an interaction model for meQTLs with cell type proportions and
environmental factors as interaction terms. We proved so the existence of several cell
type and context dependent iQTLs and showed in the following also the relevance of
these iQTLs for interpreting disease variants. The small set of iQTLs in the genome-wide
cis analysis compared to the targeted analysis showed that our analysis was potentially
still underpowered. This can be overcome in the future by larger sample sizes or the use
of single cell data, as explained in the following two chapters 4 and 5.

The strong influence of the cell type proportions was even more visible during the
detection of the eQTMs, as the set of genotype and cell proportion adjusted (CPA)
eQTMs was drastically smaller than the genotype adjusted (GTA) eQTM set. The eQTM
prediction based on genomic features proved that GTA eQTMs and CPA eQTMs both
have a specific genomic context that drives the associations, which differs between
both classes. Importantly, these features are generalizable across cohorts and tissues.
For example, the GTA eQTMs were connected with enhancer methylation, while CPA
eQTMs were connected with promoter methylations. As GTA eQTMs capture mostly
the methylation differences between cell types, in contrast to donor differences for CPA
eQTMs, this highlights a connection between enhancer methylation and cell type identity.
In general, the eQTM models give valuable insights in the biological background behind
eQTMs and can easily be extended for new features that could be evaluated as part of
the genomic context, for example CpGs located at the position of non-coding RNAs or
splicing sites. As an additional second use case, the eQTM prediction model can be
applied to prioritize candidate genes associated with EWAS CpGs and facilitate so the
downstream interpretation of EWAS results.

3.6. Materials and additional methods

3.6.1. KORA and LOLIPOP study

The major analyses in this project were performed on a combination of two different
cohorts with whole blood samples, called KORA and LOLIPOP. KORA (short for:
Cooperative Health Research in the Region of Augsburg) contains data from individuals
with German nationality, who live in the region of Augsburg [138]. We selected a subset
of the study with data from follow-up examinations between 2004 and 2008, called
KORA F3 and F4 [139], where methylation and genotype data were available. This

49

http://qtldb.helmholtz-muenchen.de


3. Studying the relationship of DNA methylation with genetics and transcriptomics

subset contained 485 individuals from KORA F3 and 1,731 individuals from KORA F4
(no overlap between both). The KORA F4 cohort was used for meQTL discovery, the F3
cohort for meQTL replication (more in the next section 3.6.2). DNA methylation was
measured with Illumina Infinium HumanMethylation450K BeadChips, genotypes with
the Affymetrix Axiom platform and gene expression using the Illumina HumanHT-12
v3 BeadChip array.

The second cohort, LOLIPOP (short for: London Life Sciences Prospective Population
Study) contained individuals of Indian Asian and European descend recruited in West
London between 2003 and 2008 [119]. DNA methylation was measured for 1,851 donors
in the discovery phase and 1,354 donors in the follow-up phase with the Illumina
HumanMethylation450K array. This split was used for meQTL discovery and replication
(more in the next section 3.6.2). Their genotypes were obtained from a combination
of Illumina genotyping arrays (HumanHap3000, Human-Hap610, OmniExpress and
OmniExomeExpress). Gene expression values were measured for a subset of 693
individuals of South Asian descent and 159 individuals of European descent with the
Illumina HT-12 v4 BeadChip.

Detailed information about the processing of each omics dataset can be found in [2],
including standard quality control, filtering, normalization and genotype imputation.

3.6.2. Identification of cosmopolitan meQTLs

Before the analysis, we removed CpGs, where the probe-sequences contained SNPs
(MAF>1%) or were cross-hybridizing. The data of each cohort was normalized sepa-
rately. MeQTLs were estimated separately for the discovery dataset of the KORA and
LOLIPOP cohorts (section 3.6.1) using the linear regression models of CpG_residuals
∼ SNP_genotype. For this, the CpG_residuals of each CpG are obtained from linear
regressions of the percentage methylation against technical covariates (the first principal
components of the control-probe intensities) and biological covariates (age, gender and
cell type proportion estimates) (exact details in Supplement of [2]). The significance
threshold for meQTLs was set to P<0.05 after Bonferroni correction (raw P < 10−14).
Following this, we performed ancestry specific replication testing, separately for KORA
and LOLIPOP, with the respective replication data from KORA and LOLIPOP (section
3.6.1). A combined inverse-variance meta analysis of discovery and replication data was
run (R package meta) (more about meta analyses in Method section 2.2.3). MeQTLs were
defined as replicated if the direction of effect between the discovery and replication
analysis was consistent, the replication raw P-value < 0.05 and the meta analysis P-value
< 10−14. As a last step in the rigid testing, the meQTLs replicated in the ancestry specific
analysis were tested across ancestries using the same strategy as for the ancestry specific
analysis. Only the set of meQTLs that could be replicated across ancestries was kept as
the final set of cosmopolitan meQTLs.
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3.6.3. Replication of meQTLs in isolated blood cell types, adipocytes and
adipose tissue

Three additional datasets were generated to compare meQTLs across cell types and
tissues. In the first dataset, isolated blood cell types were measured, namely CD4+
T cells, CD8+ T cells, monocytes and neutrophils. For this, blood of 60 individuals
was measured, 30 of them obese with BMI > 35 and 30 of them healthy (BMI < 25).
The second dataset contained subcutaneous and visceral adipose tissue samples from
48 individuals undergoing surgery, 24 of them morbidly obese with BMI > 40 and 24
healthy (BMI < 30). For both datasets, more information on the data generation and
preprocessing is documented in [2]. For the meQTL testing, the linear regression model
were applied with covariates for age, sex, ancestry and obesity case-control status.

The third dataset contained 603 adipose tissues samples from the MuTHER study
(more information about the dataset again in [2]). Due to the relatedness of individuals,
linear mixed models were used for meQTL identification using the GEMMA software
[140], which estimated a kinship matrix between samples. As additional covariates,
age, sex, the first 20 methylation principal components and the first 5 genetic principal
components were added.

3.6.4. Identification of interaction meQTLs (iQTLs)

We tested interactions between the SNP and different phenotypes using linear regression
models with an interaction term (see Methods section 2.2.4). To reduce the multiple
testing burden, we chose first only CpG-SNP pairs from the set of cosmopolitan meQTLs.
For the phenotypes, we selected cell type proportions of CD4+ T cells, CD8+ T cells
and monocytes, estimated using the Houseman algorithm [48], and two environmental
factors, cigarette smoking (binary yes/no) and BMI. The linear regression model with
interaction term was built then as CpG ∼ SNP : phenotype + SNP + phenotype + covars
with covars representing standard covariates used in each model: age, sex, smoking
status, BMI, cell type proportions and 20 control probe principal components. iQTLs
were defined significant, when the p-value of the interaction term was smaller than 0.05
after Bonferroni correction (raw p-value < 4.5 ∗ 10−9). iQTLs were identified separately
in KORA F4 cohort and LOLIPOP and tested for replication in the other cohort (P<0.05
and same direction of effect). Only replicated iQTLs were used for downstream analyses.

In a second step, we extended the iQTL analysis genome-wide for all CpG-SNP pairs
in cis using tensorQTL (v1.0.3) [141] with age, sex, BMI and cell type proportions as
covariates. Otherwise, the setup was exactly the same, the p-values thresholds after
Bonferroni correction decreased to 2.0 ∗ 10−11 for LOLIPOP and 8.8 ∗ 10−11 for KORA.

Independence between global iQTLs and cosmopolitan meQTLs was tested by evalu-
ating the linkage disequilibrium of the global iQTLs SNPs in the KORA cohort. All iQTL
SNPs with R2 < 0.2 for all meQTL SNPs were defined as independent. As CpGs are
not considered here, this is potentially underestimating the real number of independent
iQTLs.
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3.6.5. Enrichment analysis of iQTLs among GWAS traits

iQTL SNPs were tested for GWAS enrichment using the tool QTLEnrich, which provides
also summary statistics from 114 GWAS [32]. Enrichment analysis was performed for
the global cis iQTLs and separately for each interaction phenotype, focusing on the three
cell type proportions, which showed more and better replicable results. Sampling based
empirical p-values were generated using an adaptive resampling scheme, which defined
null variants as variants which are no iQTLs, i.e. never associated with any interaction
phenotype. The significance threshold was set to FDR < 0.05 after Benjamini-Hochberg
correction.

3.6.6. Identification of eQTMs

The eQTM analysis of associations could only be performed on a subset of the dataset
(KORA: N=853, LOLIPOP: N=693), where also expression data was available. Gene
expression was corrected for biological and technical covariates of sex, age, RNA integrity
number, RNA-amplification plate (KORA), RNA-conversion batch (LOLIPOP), sample
storage time (KORA) and RNA-extraction batch (LOLIPOP) via linear regression of
gene expression levels against all the covariates (more in chapter 2.2). Additionally,
both gene expression and DNA methylation are adjusted for genetic influences, again
by linear regression (expression ∼ eQTL SNPs and methylation ∼ meQTL SNPs).
meQTL SNPs were taken from this project itself (the set of sentinel meQTL SNPs), eQTL
SNPs from a previous publication [142]. The resulting expression and methylation
residuals were tested for associations using Matrix eQTL [95] (expression residuals
∼ methylation residuals), separately in KORA and LOLIPOP, followed by inverse-
variance meta analysis to combine both. We repeated the eQTM association analysis
with additional adjustment of both expression and DNA methylation for cell type
proportions, estimated using the Houseman algorithm [48]. The two different eQTM
sets were called GTA eQTMs (genotype adjusted eQTMs) and CPA eQTMs (genotype
and cell type proportion adjusted eQTMs).

3.6.7. Annotating eQTMs with genomic features for the prediction

The features of the ML models described the CpG, the gene and the CpG-gene pair
in a way that information about the eQTM probability of the pair can be derived.
Annotations were taken from different public resources (full list in Supplementary Table
A.1). In total, 39 annotations were collected to describe the CpG, the gene and the
CpG-gene pair together, all based on genome version hg19 and scaled between 0 and 1.

All annotations used to describe the CpG are cell type specific. We selected the
annotations of the blood cell types separately and combined the binary annotations
(1=overlap and 0=no overlap) to a weighted average, weighted by the average cell type
proportion in each cohort. These cell type proportions were estimated based on the
Houseman algorithm [48]. For example, an enhancer score of 0.2 means that 20% of
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the cells have an enhancer annotated at the position of this CpG, on average across the
population.

3.6.8. Implementation and evaluation of different ML classifiers

To characterize the eQTMs, Logistic Regression and Random Forest models were trained
to predict four different two-class classification tasks: distinguishing significant eQTMs
from non-significant pairs, positive eQTMs from non-significant pairs, negative eQTMs
from non-significant pairs and positive eQTMs from negative eQTMs (more details
about the ML models in Method sections 2.3.1 and 2.7). To generate a high confidence
annotation set for the prediction, a strict FDR cutoff of 0.01 was used and only CpGs
with a high variance (top 6.25% most variable genes for the GTA model and top 25%
most variable genes for the CPA model). All thresholds were chosen after a comparison
of thresholds with a 10-fold cross-validation in the KORA dataset for the eQTM vs
non-significant pair comparison. Thresholds were selected so that the performance of
the model was increased, but the set of significant eQTMs not reduced too drastically.
Except the different variance filtering threshold, there were no differences in building
the model for the GTA eQTMs and the CPA eQTMs.

For the Logistic Regression, a probability cutoff of 0.5 was chosen for the classification
(not necessary for AUC calculations). For the Random Forest model, the R package
randomForest was used [118], with a subsample size of 62.5% times the complete data
size, one third of all variables as the number of randomly sampled variables and 500
trees for each model.

Due to the large imbalance of the data sets, with a huge majority of non-significant
pairs, the non-eQTM set was subsampled before training. This was performed 5 times
combined each time with the 10-fold cross-validation of the dataset to show the stability
of the performance for different negative sets. AUC, accuracy, sensitivity and specificity
were used to evaluate the performance in the cross-validation (more in Methods section
2.2.2).

Replication between KORA and LOLIPOP was performed by training the models on
one data set and predicting eQTMs on the same cohort (training data set) and on the
other cohort (test data set). The dataset to train the model was subsampled to contain
balanced classes, but not the dataset of the prediction.

3.6.9. Evaluation of feature importance

Random Forest and Logistic Regression were specifically chosen as two methods, where
a good interpretation of the features is possible. For the LR models, the effect sizes are
directly given by the model and represent the log odds ratios. Both the significance of a
feature and the direction of an effect can be obtained from it. For the RF model, we used
the Mean Decrease in Accuracy (MDA), as implemented in the randomForest package.
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3.6.10. Feature selection

Due to the correlation structure between our features, we tested how many of the
features are really necessary to build a similar well performing model compared to the
full model with all features. For this, we applied three different selection algorithms:
Lasso and step-wise regression for the LR models and Recursive Feature Elimination
(RFE) for the RF models.

Lasso adds a penalization term using the L1 norm to the log-likelihood function of the
Logistic Regression, so that the number of β values larger than 0 gets reduced during the
parameter estimation [143]. We used the implementation of the R package glmnet [144],
which identifies the optimal weight λ of the penalization term with a cross-validation.
We chose the model with λ1se whose performance is only one standard deviation worse
than the optimal performance, but that enforces more regularization than the optimal
model. For the feature selection, we counted all features with β > 0 as selected.

We tested the stepwise regression as an alternative feature selection strategy, specif-
ically the backwards stepwise regression. First, a model with all features is trained
and evaluated using the Akaike Information Criteria (AIC). The AIC rates the quality
of a model dependent on its maximum likelihood combined with the number of used
variables, so that a model with fewer features is rated better. Next, reduced candidate
models are trained, each with one of the features removed, and their AIC is compared
with the AIC of the full model. The model with the highest AIC is kept. If it was one of
the candidate models, the removal of one feature is continued recursively. We used the
implementation based on the R package MASS [145].

The third feature selection method, RFE, follows a very similar strategy than the
backwards regression, but specifically for Random Forest. Least important variables
are recursively removed from the dataset and the model quality is rated using the
Out-of-bag prediction error. We use the R package varSelRF for it [146].

We combined the results of all three feature selection algorithms and chose features
as top features which were selected at least 90% of times across the cross-validation
runs and algorithms. With this set, we repeated the within cohort cross-validation for
both KORA and LOLIPOP to see which performance can be reached with only the top
features.

3.6.11. Prediction of muscle eQTMs using the blood eQTM model

To evaluate the generalizability of our model across tissues, we applied our eQTM model,
trained on the whole blood CPA eQTMs from LOLIPOP to predict public available
eQTMs measured in skeletal muscle [136]. We obtained the same features for muscle, as
we did for the whole blood model, however, not all features were available. We collected
33 features in muscle from all 39 whole blood features, loosing mostly information
about chromatin structure (TADs and HiC contacts). We decided to not add the TF
annotations, as a far smaller set of TFs was measured for muscle compared to blood.
For this reason, we retrained the LOLIPOP model first with this reduced feature set.
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Afterwards, we ran the same performance evaluation as before.

3.6.12. EWAS interpretation with our eQTM model

As an additional application, the eQTM prediction model can support the interpretation
of EWAS, because it identifies the genes associated with EWAS CpGs. The associated
genes can then further be mapped to biological pathways using GO analysis or similar
approaches. We showcased this application on an example EWAS study from Lindholm
et al. [137], which studied methylation changes in muscle after regular exercise training
for 3 months. The dataset contained not only the EWAS CpGs, but also the corresponding
genes differential expressed after the exercise. First, we applied the eQTM model trained
on LOLIPOP whole blood data together with the muscle annotations to predict the
associated genes for the EWAS CpGs (same approach as in the last section 3.6.11). For
the prediction, we used the LR and RF models separately and explored, as a third set,
the intersection of predicted genes between both models. We validated all three sets
with enrichment analyses of the predicted genes among the DE genes, using Fisher’s
exact test and all genes in cis distance to an EWAS CpG as background. To further
explore the predicted EWAS genes, we ran GO enrichment analysis using the R package
clusterProfiler [53] with the same background set and an FDR cutoff of 0.05.
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4. Experimental design of multi-sample
single cell transcriptomics

4.1. Importance of power analysis for experimental design

The recent development of single cell transcriptomics has opened new avenues for
population genetics, as it facilitates the analysis of cell type specific eQTLs and enables
new types of QTL analyses (more in chapter 1.1.6). One of the limitations so far is the
lack of large cohorts with single cell transcriptomics data. For this reason, the generation
of such datasets is currently of high priority in the field, for example shown in the efforts
of the sc-eQTLgen consortium [88]. Single cell experiments are still very expensive
compared to bulk sequencing, which makes a proper experimental design of those
studies even more important. The generation of well-powered cohort datasets is crucial
for the success of all downstream analyses.

eQTL studies can be seen as a special case of DE analyses, where the group distribution
is defined by the genotypes of the individuals with regard to a certain genetic variant.
This means that the population is grouped differently for each tested genetic variant.
Because of this relationship between eQTL and DE studies, the corresponding power
analysis tools for the study design are very similar and can even cover both types of
studies in one (given a few small adaptations). However, for single cell multi-sample
transcriptomics studies in general, efficient power analysis tools are missing. Either
the tools were developed for bulk [147, 148, 149, 150] and lack the necessary adaptions
for single cell characteristics, such as the increased sparsity dependent on the number
of cells, or they are based on simulations [112, 113, 151], which makes them very
computational demanding, especially for the design of larger cohorts.

To fill this gap, we developed scPower, the first analytic power analysis framework for
single cell multi-sample transcriptomics data (Figure 4.1). It estimates the power for a
single cell DE or eQTL experiment based on the three main parameters - the number of
samples, the number of cells per samples and the read depth - in combination with a
set of priors, including the expected effect sizes and cell type specific expression priors.
The tool overcomes previous limitations: first, it takes single cell specific characteristics
into account by modelling the single cell specific expression probability of the genes,
dependent on the experimental parameters and prior information. Second, it is an
analytic tool, making it orders of magnitude faster and more memory-efficient compared
to simulation-based approaches. This way, it allows easily the design of large cohorts,
which are not feasible to simulate on a standard laptop. As a third important aspect, we
provided both an R package https://github.com/heiniglab/scPower and a website
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Figure 4.1.: Schematic overview of the power and design framework scPower
The main experimental parameters (purple) - the number of samples, the
number of cells per sample and the number of reads per cell - determine
the cost of the experiment and the overall detection power (blue). Addition-
ally, the power depends on prior knowledge or assumptions (green) and
further user-defined parameters such as the significance threshold and the
expression cutoff (gray). In contrast to previous power analyses tools, it
enables efficient computation of power and easy adaptation to new use-cases
through. The figure includes the most important parameters and the main
parts of the model. Figure and legend taken from [1].

http://scpower.helmholtz-muenchen.de to improve the usability of our tool, also for
interested users with less programming experiences.

The methodology, results and figures of this project have previously been published
in Schmid et al. [1]. All code, including a description on how the figures were
generated, is available in the GitHub repository associated with the publication https:
//github.com/heiniglab/scPower.

4.2. Description of the analytic power analysis framework

4.2.1. Statistical model behind DE and eQTL analyses for scPower

Our power analysis framework is specifically designed for cell type specific single cell
eQTL and DE studies that use the pseudobulk approach (see Methods section 2.6).
For multi-sample DE studies, two benchmarking studies showed that the pseudobulk
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approach in combination with established DE methods, originally developed for bulk
(e.g. edgeR [103] or limma-voom [152]), performed the best [113, 114]. For single
cell eQTL studies, applying pseudobulk is a widely-used strategy [55, 83, 57] and
also suggested in a best-practice single cell eQTL publication [89]. Importantly, the
pseudobulk approach differs from classical bulk RNA-seq, as the number of detected
genes depends on the number of aggregated cells. For this reason, we added the
number of cells per sample as a relevant additional parameter in our power analysis
model compared to bulk power analyses (more in subsection 4.2.3). Of note, every
power analysis tool is crucially dependent on the statistical testing procedure. Therefore,
scPower can only be applied for single cell eQTL and DE studies that use pseudobulk
aggregation.

For the DE power, the framework’s default implementation assumes the most common
setup with a two-group comparison. Additionally, the power for more complex designs
can be estimated with scPower, as long as they are described by general linear models.
An example, showing the comparison of three groups, is presented in the package
vignette "Extending scPower to complex designs".

The starting point for the multi-sample experiments is a count matrix of genes times
cells. The counts can be either based on UMIs or reads, dependent on the scRNA-seq
technology. An evaluation of technological details and differences is given in section
4.5, but the general model described in the first part is always the same. Our power
evaluation does not cover the preprocessing, it starts with a fully annotated count
matrix, where each cell is assigned to one cell type and one donor (see subsection
4.7.2 for how we processed our example dataset). Other studies have already covered
how experimental parameters affect accurate cell type annotations, which is a general
question for single cell design and not specific for multi-sample experiments [153]. On
top of that, different experimental covariates, for example age, sex and experimental
batch, describe each donor and are usually added into the models (see Method sections
2.2).

4.2.2. Modelling the power to detect a certain number of cells for the cell type

The main focus of scPower is the estimation of the so-called overall detection power of
an experiment. It describes the probability of detecting a set of DE or eQTL genes in a
specified cell type given the annotated count matrix and the experimental parameters.
Two of the parameters, the number of samples and the read depth, can be defined
directly in the experimental setup, the third parameter however, the number of cells
per sample and cell type, depends on the power to observe the cell type of interest. For
this reason, scPower covers the cell type detection probability additional to the overall
detection power (Figure 4.1).

The cell type detection probability describes the probability to detect at least nc,s

cells per individual from the cell type of interest c in each individual for a cohort of
size ns. It depends on the total number of cells per individual nc - independent of the
cell types - and the frequency of the cell type of interested fc. The model itself is an
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adaption from the website "How Many Cells" of the Satija lab [154], which did not cover
the multi-sample setting. Following this approach, we model the cell type detection
probability PCT based on a cumulative negative binomial distribution FNB parameterized
by nc, nc,s and fc and take the result to the power of ns to model the probability that we
detected nc,s cells in each individual of the cohort:

PCT = FNB(nc − nc,s, nc,s, fc)
ns (4.1)

Applying this model, we calculated the minimal number of cells nc that is required to
reach a cell type detection probability of 95% for different parameter settings (Figure
4.2). We explored the probabilities for different cell types that belong to the peripheral
mononuclear blood cells (PBMCs), matching our model dataset in the following sections.
The required cell type frequencies were taken from literature [155], estimating them to
be twice as high in PBMCs as in whole blood.

Figure 4.2.: Cell type detection probability
Required number of cells per individual (y-axis, log scale) to detect the
minimal number of cells from a target cell type per individual (x-axis) with
a probability of 95%. The probability depends additionally on the total
number of individuals (subfigure header) and the frequency of the target
cell type (line color). Figure and legend taken from [1].

The cell type frequency had a large influence on the required number of cells, high-
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lighting the difficulty to capture enough cells from rare cell types. For example, 72 cells
per individual are required to get at least 10 CD4+ T cells with a frequency of 30%, but
1,574 cells per individual are needed to get at least 10 Dendritic cells with a frequency
of 1.5%. As expected, the more cells of the cell type one wants to capture, the more cells
need to be measured in total (e.g. 72 cells to capture 10 CD4+ T cells, but 241 cells to
capture 50 CD4+ T cells). In contrast, the cohort size had only a minor influence on the
cell type detection probability.

4.2.3. Modelling the general detection power

Given that a certain number of cells per cell type and individual is detected, the overall
detection power of the experiment can be estimated. It depends on the three main
experimental parameters, the number of samples, number of cells per sample and the
reads per cell, in combination with a set of priors (Figure 4.1). The overall detection
power Pi of a gene i can be further deconstructed into two parts: first, a gene needs
to be detected in the dataset, i.e. a certain number of counts for this gene needs to be
measured in a certain fraction of individuals of the population. We call this part the
expression probability P(i ∈ E) in the following, so the probability that the gene i is
in the set of expressed genes E. As single cell RNA-seq data is currently considerably
sparser than bulk experiments, this provides a bottleneck for multi-sample analyses,
because part of the lowly expressed genes will not be measured [156].

The second part of the overall detection power is the DE or eQTL power itself, so the
power of the statistical test for gene i. In the following, we denote it as P(i ∈ S), the
probability that the gene i is in the set of significantly differentially expressed genes S.

Both the expression probability and the DE/eQTL power are affected by the expression
distribution of the gene i, which is modelled as a negative binomial distribution with
mean µ and dispersion ϕ (see Methods section 2.1.3). We will show in section 4.2.5,
how the mean µ and dispersion ϕ of the distribution can be inferred for a specific
experimental setting based on the number of cells nc, the read depth r and an expression
prior Θe that captures the cell type specificity. For the expression probability, additionally
the sample size ns plays a role, as the gene needs to be detected in a certain number of
individuals. For the DE/eQTL power, additionally the expected effect size between the
groups Θp, the chosen significance cutoff α (multiple-testing corrected) and again the
sample size ns are additional dependent factors.

We can decompose the overall detection power Pi into the product of the expression
probability and the DE/eQTL power because Pi is conditioned on the aforementioned
priors Θe and Θp as well as the three main experimental parameters (ns, nc, r):

Pi = P(i ∈ E ∧ i ∈ S|ns, nc, r, Θe, Θp, α)

= P(i ∈ E|ns, µ(nc, r, Θe), ϕ(nc, r, Θe))·
P(i ∈ S|ns, µ(nc, r, Θe), ϕ(nc, r, Θe), Θp, α)

(4.2)
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The overall detection power P of the complete experiment is then defined as the
average over all DE/eQTL genes in the set D:

P =
1
|D| ∑

i∈D
Pi (4.3)

4.2.4. Estimating the expression prior

As explained in the last paragraph, the expression probability is an important component
for the overall detection power. For this, we developed a new model that estimates the
expression probability of a gene in a pseudobulk matrix (Figure 4.3 a). We define a gene
as expressed if it has at least n counts in a fraction of k individuals. Alternatives to this
expression definition are also covered by our model (discussed in section 4.2.6).

To estimate the expression probability for each gene in a planned experiment, the
count distribution of the gene needs to be modelled. scPower does this based on the
three main experimental parameters and a cell type specific expression prior that is
derived from a matched pilot dataset with as similar conditions as possible, such as
the same tissue and scRNA-seq technology. Furthermore, the matched pilot dataset
should contain at best only samples from one group, usually the healthy control samples.
Differences between the DE groups will then be modelled on top of the expression
distribution in the second step, when the DE/eQTL power is estimated.

Figure 4.3 a shows how the expression prior can be inferred from a pilot dataset
that consists of an annotated UMI count matrix with donor and cell type information.
The goal of this process is to describe the general count distribution for each cell type
with a small set of hyperparameters. The following steps describe this approach for
UMI count matrices. For full-length read-based count matrices, a few small adaptations
are necessary, discussed in section 4.5. Exemplarily, for visualization and evaluation
purposes, expression priors were fitted for a pilot data set from the BECOME study [157],
containing PBMC data of 14 healthy controls (Supplementary Figure A.9, preprocessing
described in Method section 4.7.2).

First, the expression distribution for each gene i in each cell type c is estimated by
fitting a negative binomial distribution over all corresponding single cell counts (see
Methods section 2.1.3), leading to two parameters, mean µi,c and dispersion ϕi,c, per
gene and cell type. Modelling the distribution separately for each cell type ensures to
capture the distribution differences between the cell types [158]. To further abstract
the parameters across the genes in one cell type, the distribution of mean values µi,c
is modelled as a mixture distribution based on a zero component Z(x) and two left
censored gamma distributions Γ(x, r, s) parameterized by their mean and standard
deviations (see Methods section 2.1.4):

fµc = p1Z(x) + p2Γ(x, µG1, σG1) + p3Γ(x, µG2, σG2) (4.4)

This mixture distribution is an adaption of the distribution used in the single cell
simulation tool Splatter [75], which applies a second gamma distribution to capture
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highly expressed gene outliers. In contrast to Splatter, we model non-expressed or very
lowly expressed genes more accurately by adding the zero component Z(x) and the left
censoring for both gamma distributions. The censoring point depends on the number of
measured cells for the cell type nc, as the smallest expression level that is measurable
for the cell type is 1

nc
. This means that the more cells from a cell type we capture, the

more lowly expressed genes we can detect. This is also visible in the gamma fits of the
PBMC pilot dataset (Supplementary Figure A.10).

The mixture distribution captures the gene expression means for a certain read depth.
To apply the expression prior for different read depths, we subsampled the original
count matrices and explored the effect on the mixture distribution. This showed clearly
that the parameters of the mixture distribution - the mean and standard deviations of the
two gamma distributions (µG1, σG1, µG2, σG2) and the probability of the zero component
and first gamma distribution (p1, p2) - were linearly dependent on the mean UMI
counts per cell (Supplementary Figure A.11), while the probability of the second gamma
distribution (p3) that captures the highly expressed outliers stays constant.

The relationship between the mean UMI counts per cell and the mean number of reads
per cell showed a logarithmic fit when we subsampled different datasets (Supplementary
Figure A.12). This represents the saturation curve of the single cell experiment: the
more reads are sequenced, the fewer new UMIs are detected. The exact parameters
of this logarithmic fit are however specific to the experimental setting and difficult to
generalize. scPower provides saturation fits for different datasets, from which the users
can choose.

In the last step of the expression prior generation, the dispersion parameters ϕi,c are
also further abstracted, by modelling them dependent on the mean parameters µi,c. For
this, we applied the method from DESeq [104]. All these hyperparameters together (the
mixture parameters modelled dependent on the UMI counts, the UMI-read depth fit
and the dispersion-mean fit) comprise the expression prior.

4.2.5. Modelling the expression probability

Based on these approximated expression priors, the expression probabilities for all genes
of a newly planned experiment can be estimated dependent on the chosen experimental
parameters. As a short reminder, genes are defined as expressed if they have at least n
counts in a fraction k individuals in the pseudobulk matrix.

In the pseudobulk approach, the single cell count matrix with counts xi,j for gene i
and cell j is aggregated to a three-dimensional matrix of genes times individuals times
cell types with the count yi,s,c for gene i, individual s and cell type c calculated as:

yi,s,c = ∑
j∈C∧j∈S

xi,j (4.5)

with C the set of all cells assigned to cell type c and S the set of all cells assigned to
individual s.
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As in the previous section 4.2.4, we assume for each cell type c a negative binomial
distribution for all counts xi,j. We can infer the corresponding parameters µi,c and ϕi,c
from the expression prior of the cell type and the parameters of the new experiment.
Based on this, the pseudobulk counts yi,s,c are also negative binomial distributed with
shifted parameters dependent on the number of cells for this cell type and individual
nc,s = |j ∈ C ∧ j ∈ S|:

µ′
i,c,s = nc,s ∗ µi,c (4.6)

ϕ′
i,c,s =

ϕi,c

nc,s
(4.7)

After estimating the parameters of the pseudobulk distribution for the cell type, the
probability that the pseudobulk count yi,c,s for one individual s is greater than n can be
inferred from the cumulative negative binomial distribution as:

pi,s = P(yi,c,s > n) = 1 − FNB(n, µ′
i,c,s, ϕ′

i,c,s) (4.8)

So, pi,s represents the expression probability of the gene i for one individual. The
general expression probability for the whole cohort requires that this is true for at least
a fraction of k individuals, so k ∗ ns individuals in total. This follows a cumulative
binomial distribution (Methods section 2.1.2):

P(i ∈ E) = 1 − FBin(k ∗ ns, ns, pi,s) (4.9)

Afterwards, the expected number of expressed genes E(E) can be directly derived
from the expression probability of all genes

E(E) = ∑
i∈G

P(i ∈ E) (4.10)

with G the set of all genes.
We applied this formula to estimate the number of expressed genes in our pilot PBMC

dataset for different read depths. The expected number of expressed genes matched
well with the measured numbers across the different cell types and read depths. We
evaluated both an expression cutoff of more than 0 counts in 50% of the individuals and
more than 10 counts in 50% of the individuals and got correlation values of r2 = 0.994
and r2 = 0.997 for the depicted experimental batch in Figure 4.3 b. Also for the other
batches, the concordance was very high (r2 between 0.983 and 0.997).

Additionally, we predicted the number of expressed genes in an independent valida-
tion dataset, which had not been used for the expression prior generation [159]. Again,
the number of expected and measured expressed genes matched quite well (for count >
0 r2 = 0.934 and for count > 10 r2 = 0.971) (Figure 4.3 c), despite being measured with
a different read depth and for a different sample size as the pilot dataset for the prior.
This supports the generalizability of our model across different datasets. In the scPower
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Figure 4.3.: Expression probability model parameterized by UMI counts per cell
a The expression probabilities for genes in pseudobulk of a newly planned
experiment are estimated based on the expression prior and the planned
experimental parameters. For this, the expression prior is derived from the
mean and dispersion of gene-wise negative binomial distributions fitted from
a matching pilot data set. b Using this approach, the number of expressed
genes expected under our model (dashed line) closely matches the observed
number of expressed genes (solid line) dependent on the number of cells
(cell type indicated by point symbol) for one batch of the training PBMC data
set. The data is subsampled to different read depths. The r2 values between
estimated and expressed genes were highly significant for both expression
thresholds. c The model performed similarly well for the three batches of an
independent validation PBMC data set. Used expression threshold: count >
10 (right panels of b, c) or count > 0 (left panels of b, c) in more than 50% of
the individuals. Figure and legend taken from [1].
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R package, we provided priors for 25 cell types in 3 different tissues and easy to use
functions to extend the expression prior for all other cell types of interest.

4.2.6. Alternative parameterization of the expression probability

Of note, the exact thresholds to define a gene as expressed are debatable and users might
prefer other definitions dependent on the use-case. Instead of an absolute threshold for
the number of counts in the cell type, a percentage value could be used, for example
defining genes as expressed if they are present in at least 50% of the cells with a value
larger than 0. Vice versa, for the number of individuals that need to fulfill the count
threshold, the percentage value could be replaced with an absolute value. Our tool
covers additionally these cutoff definitions, which makes it overall very flexible.

For the first variation - updating the absolute expression cutoff with a relative one
- the estimation needs to be done slightly differently. The probability that a gene is
expressed with a count larger than 0 in a cell of a cell type c can be estimated based on
the fitted negative binomial distribution µi,c and ϕi,c (the initial fit, not the transposed
parameters from the pseudobulk):

pcell = 1 − FNB(0, µi,c, ϕi,c) (4.11)

The probability that this happens in a certain fraction of cells q represents the expres-
sion probability for one individual pi,s. It can be modelled using a cumulative binomial
distribution dependent on the number of cells for this cell type and sample nc,s:

pi,s = 1 − FBin(q ∗ nc,s, pi,s) (4.12)

This probability pi,s can then be used to get the expression probability P(i ∈ E) as
defined before.

The second variation - updating the definition of how many individuals need to
express the gene - is very straightforward. Looking at the final cumulative binomial
distribution to calculate the expression probability, only the first parameter needs to be
changed:

P(i ∈ E) = 1 − FBin(x, ns, pi,s) (4.13)

with x = k ∗ ns if a percentage cutoff k should be used or setting x directly to an
absolute number if an absolute cutoff should be used.

For all downstream analyses, we will use the initially proposed model that the gene
needs to be expressed in a certain fraction of samples with a certain absolute number
of counts, as we recommend this parameterization in general. In contrast, the cutoff of
"expressed in a certain percentage of cells" tends to define more expressed genes for less
frequent cell types compared to more frequent ones, as fewer cells in total increase the
probability that a gene is expressed in a certain fraction of these cells (Supplementary
Figure A.13). This is conflicting with the empirical and statistical intuition that more
measurement points (i.e. cells) will lead to more accurate estimations and so more genes
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that can be looked at. Shallow sequencing of a large number of cells has been shown
before to be beneficial for scRNA-seq experiments [153, 160]. Using a percentage cutoff
would reverse this effect.

For the second part, defining a gene as expressed if it is expressed in a certain fraction
of the population is a common strategy, used already in bulk. Genes that are expressed
in only one individual or very few individuals have very low statistical power to be
detected as DE or eQTL genes, but increase the multiple testing burden. For this reason,
we propose to follow the suggestion as implemented edgeR [103]. They keep only genes
that are expressed in at least one of the comparison groups of the DE study. This leads
to the 50% cutoff for balanced groups with the same sample size, which we will use in
the following.

As an equivalent for eQTL studies, we suggest that the gene should be expressed at
least in the heterozygotes. Depending on the chosen minor allele frequency fma for the
study, this leads to an expression cutoff of 2 ∗ fma ∗ (1 − fma). We assume a MAF of 0.05,
a typical value for an eQTL study, and set therefore in the following the percentage
threshold for eQTL studies to 0.095.

4.2.7. Modelling the DE/eQTL power

After having established the model to calculate the expression probability, including
different definitions of it, we can estimate the DE/eQTL power and combine both to
get the overall detection power (see section 4.2.3). For the DE/eQTL power, the large
advance of scPower is that it is an analytic power analysis method, as opposed to the
simulation-based methods previously published [112, 113]. This makes our tool by
orders of magnitude faster and memory efficient (more in Methods section 2.5).

To calculate the analytic power, the expected count distributions for a planned exper-
iment need to be known, which depend on the chosen experimental parameters. We
covered this issue already for our expression probability model, which provides us the
cell type specific mean and dispersion parameters of the pseudobulk negative binomial
distributions. Based on this information, analytic models developed for bulk can be
applied also for pseudobulk models.

Other necessary prior information for the power estimation are the expected number
of DE/eQTL genes combined with their expected effect sizes and the chosen significance
threshold. While the general setup is the same for the DE and eQTL power, there are a
few small differences: for the DE power, the underlying model is a negative binomial
regression and the effect size is estimated as fold change between the groups (see
Methods section 2.3.2). This regression type matches the count distribution for gene
expression and is commonly used in established tools such as DESeq [104] and edgeR
[103], which perform well in single cell DE benchmarking studies [113, 114]. We use
the corresponding method to get the analytic power for negative binomial regressions
developed by Zhu et al. [161].

For eQTL analyses, typically linear models are used on log-transformed count matrices,
as these can be computed far more efficiently and facilitate testing a large search space
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with many SNP-gene pairs (see Methods section 2.2 for details). For this reason, the
power calculation needs to be changed to linear models [111]. Importantly, we observed
that the analytic solution can be inaccurate for genes with small expression means
(Supplementary Figure A.14), as the normalization via log-transformation does not work
effectively here in all cases. Therefore, we simulate the power for genes with small mean
values < 5 instead of using the analytic solution (details in section 4.7.8). As this affects
only a small number of genes and the corresponding values can be precalculated, this
is still far faster than pure simulation-based methods. Effect sizes are estimated based
on R2 values, which combine the allele frequency of the SNP and the beta value of the
linear regression, both affecting the eQTL power.

DE and eQTL studies have in common that multiple testing correction of the signif-
icance threshold is required to control the number of false positives due to the larger
number of tests (more in Methods section 2.4). scPower covers different approaches
for this, either correcting the family-wise error rate (FWER) or the false discovery rate
(FDR), which influence the significance threshold and so the resulting power.

For eQTL studies, FWER correction has been established. We follow the estimation
of the GTEx consortium [32], that approximates 10 independent SNPs are tested per
gene in a genome-wide cis eQTL analysis. This results in 10 ∗ E(E) tests with E(E) the
expected number of expressed genes estimated from our expression probabilities. This
leads to a Bonferroni corrected threshold of

α =
α′

10 ∗ E(E)
(4.14)

for α′ being the uncorrected significance threshold.
For DE studies, FDR correction is established. Here, the correction of the significance

threshold is not as straightforward, because the p-value distribution of all tests is
required, which is not obtained in the power analysis. Nevertheless, the correction is
possible following the method of Jung [162]:

As discussed in Method section 2.4, the FDR is the fraction of false positives among
all positive predicted tests. We assume that the p-values under the null hypotheses
are uniformly distributed according to the probability integral transform. These p-
values are derived from the tested non-DE/eQTL genes and their number is calculated
based on the expected number of expressed genes and expressed DE/eQTL genes as
m0 = E(E)− E(EDEG/eQTL). This leads to an expected number of m0 ∗ α′ false positives
for a corrected significance threshold of α′. The expected number of true positives can
be taken from the power itself, abbreviated in the following r1(α

′). Together, the true
positives and false positives make up the positive predicted, leading to an FDR of:

FDR(α′) =
m0 ∗ α′

m0 ∗ α′ + r1(α′)
(4.15)

The unknown raw p-value of α′ which leads to an FDR value of α = FDR(α′) is
inferred via numerical optimization in scPower.
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In the following examples, we will use a significance threshold of 0.05 that we will
correct for the DE cases using FDR correction and for the eQTL cases using FWER
correction assuming 10 independent SNPs per gene.

4.2.8. Exploring the general detection for a few chosen examples

We tested the power analysis model, explained in the previous sections, in several
example scenarios to explore the effect of different experimental parameter combinations
on the power. In these use cases, we applied our expression priors from the PBMC
training dataset and gathered realistic cell type specific effect sizes from FACS sorted
bulk DE and eQTL studies.

For the DE cases, we used a study comparing chronic lymphocytic leukemia (CLL)
subtypes [163] and a study exploring systemic sclerosis in macrophages [164]. scPower
estimated an overall detection power of 74% for the CLL study (comparing iCLL vs
mCLL), when measuring 3000 cells per cell type, a sample size of 20 (with balanced
groups) and 20,000 reads per cell (Figure 4.4 a). The DE power in this scenario would
be even higher with 98%, but the expression probability is only 74%. This means that
only 74% of the DE genes are likely to be detected in the single cell dataset, reducing
the overall detection power.

When exploring a range of parameter combinations, both an increase of the sample
size and an increase of the number of cells led to a higher overall detection power, but
increasing the number of cells had the far bigger effect (Figure 4.4 a). The weak effect
of the sample size is probably caused by the small sample size of the reference study
used for the prior (N = 6). A general limitation of using references studies to estimate
the effect sizes is the power of the reference study. Potential reference studies with a
higher sample size would have found additional DE genes, which in turn could reduce
our power estimations for newly planned experiments.

We estimated with scPower similar power values for the comparison of the other CLL
subtypes in the same study. Contrary, the power for the systemic sclerosis study was
far lower with a power of maximum 30%, probably driven by the smaller absolute fold
changes in this study (Supplementary Figure A.15).

For the eQTL effect sizes, we obtained values from a FACS sorted study of the
BLUEPRINT consortium, which identified eQTLs in T cells and Monocytes [43]. We
observed a maximal power of 64% for T cells (Figure 4.4 a) and 65% for Monocytes
(Supplementary Figure A.15), when measuring 3,000 cells, 200 samples and 20,000 reads
per cell. Here, the increase in power with more cells is again visible and additionally
the effect of a larger sample on increasing the power is more pronounced.
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Figure 4.4.: Estimating overall detection power and validation in simulation studies
a,b Power estimation using data driven priors for DE genes (a) and eQTL
genes (b) dependent on the sample size and the number of cells. The
effect sizes and expression ranks of the DE/eQTL genes were taken from
published studies (a: the BLUEPRINT CLL study, b: BLUEPRINT T cell
study). c,d,e The probabilities calculated in a were verified by the simulation-
based methods powsimR and muscat with each point representing one
parameter combination. f The eQTL power of b could be replicated with a
self-implemented simulation. g,h Runtime (g) and memory requirements (h)
were drastically higher in the simulations than for our tool scPower during
the evaluations of c–e, showing the strength of our analytic model. Figure
and legend taken from [1].
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4.3. Comparison with simulation-based tools for validation and
benchmarking

4.3.1. Validating the DE power calculation based on simulation

To validate our DE power analysis results, we compared the estimations of scPower
with the published simulation-based tools powsimR [112] and muscat [113]. For both,
small adaptions were necessary, for powsimR to incorporate the multi-sample setting
and for muscat to input the same set of priors (see section 4.7.11). Following the optimal
workflow identified in multiple benchmarking studies [113, 114], we processed the
simulated pseudobulk matrices with established DE methods, namely edgeR [103],
DESeq2 [105] and limma [152].

The power estimations from our analytic solutions of scPower were very close to the
simulated results of both powsimR and muscat with edgeR across different parameter
combinations (Figure 4.4 c-e). We evaluated the different parts of our model separately
and proved that all align well: the expression probability, here shown as number of
expressed genes, the DE power and the overall detection power. Of note, the simulation-
based methods can simulate at most the number of genes that were in their training
dataset, while scPower can extrapolate how many additional genes could be identified
with more cells/higher read depth. This causes the deviation in Figure 4.4 c, that scPower
estimates in some cases more than 16,000 genes in this example.

Combining powsimR and muscat with different DE methods showed the influence of
the analysis pipeline on the power (Supplementary Figure A.16). Despite these small
differences in power depending on the DE method, all simulated power estimations
were close to our estimations with scPower and the trends of how the power develops for
different parameter combinations were accurately captured. These trends are essential
to decide on the best parameter combination for an experiment. We included both
parameter settings with FWER multiple testing correction and FDR correction in our
evaluation, both worked well (Supplementary Figure A.16).

Notably, there were power differences between powsimR and muscat when using
the same DE method, highlighting methodological differences between the different
simulation-based methods. scPower lay in most cases between the estimations of both.

4.3.2. Validating the eQTL power calculation based on simulation

The first approach to simulate eQTL power, called splatPop [151], has been published
only very recently, no method was available during the development of scPower. For this
reason, we used our own simulation-based tool to validate the eQTL power (described
in section 4.7.8). The expression probability model is the same as for the DE part,
so this part was already validated before, and we focused on the eQTL power itself.
When we compared the power of eQTL from scPower to our simulated values, we saw
high concordance. Overall, the comparison with simulation-based power estimations
supports our analytic model, both for DE and eQTL analyses.
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4.3.3. Runtime and memory advantages of scPower

We quantified the computational advantage of our analytic model over the simulation-
based approaches, by measuring the runtime and memory consumption for computing
all parameter combinations shown in Figure 4.4 c-e. scPower was orders of magnitude
faster (less than one minute compared to multiple days) (Figure 4.4 f) and had far lower
memory requirements (Figure 4.4 e). This highlights scPower as a very user-friendly tool
that can be quickly run on any personal computer. Furthermore, the fast calculation
allows easy comparison of different experiment designs, which we will further explore
in the next sections.

4.4. Optimization of experimental design with scPower

4.4.1. Extending the power framework to budget restricted optimization

In a realistic use case, the experimentalist is constrained by certain resources, often the
budget. The question arising from this is how to choose the experimental parameters
in a way to maximize the power while staying within the budget. The fast analytic
calculations of scPower allow these optimizations of parameters under restricted budget.

For this, the costs need to be calculated dependent on the experimental parameters
(sample size, number of cells per person and read depth). We estimated the total cost
Ct of a 10X Genomics experiment by adding up the library preparation costs, which
depend on the number of used 10X kits times the cost of a kit Ck, and the sequencing
costs, which depend on the number of used flow cells times the cost of one flow cell
C f . A classical 10X kit has 6 lanes, so the number of kits is determined by the total
sample size ns divided by the number of samples loaded on one lane ns,l , a parameter
the user can choose (dependent on how much he wants to overload one lane). Higher
overloading creates more doublets, but can still be more cost-efficient. We modelled
the effect of doublets in scPower, as they reduce the number of usable cells and reads
(section 4.4.2). For the sequencing costs, the number of reads per flow cell determine
the number of used flow cells. Combing all parts together, this leads to a cost function
parameterized by the experimental costs as:

Ct = ⌈ ns

6 ∗ ns,l
⌉ ∗ Ck + ⌈ns ∗ nc ∗ r

r f
⌉ ∗ C f (4.16)

Realistic cost estimations for 10X Genomics experiments, which are used in the
following, can be found in Table 4.1.

During the power optimization, two of the experimental parameters can be freely
chosen, and the third one is uniquely defined given the other two parameters and the
overall budget. The cost function is always solved with regard to one of the parameters,
e.g. the sample size ns as:

ns = ⌊Ct/(
Ck

6 ∗ ns,l
+

nc ∗ r ∗ C f

r f
)⌋ (4.17)
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This leads to a grid of possible parameter options given a certain budget, as visualized
in Figure 4.5 a,b for a DE study and an eQTL study, respectively. Figure 4.5 a depicts an
example evaluation for a DE study with an experimental budget of 10,000€, choosing the
priors as in the previous evaluations (expression prior from T cells and effect sizes from
the CLL study [163]). The highest power was reached with a high number of 12,000 cells
per sample measured in 4 samples and a medium read depth of 30,000 reads per cell.
Increasing the number of cells raised mostly the expression probability, while the DE
power was actually decreasing slightly, probably due to the lower number of samples
that can be measured within the same budget (4.5 c). As the expression probability grew
much faster than the DE power declined, the overall detection power increased with
higher number of cells. A similar trend, but with weaker effects, is visible for the read
depth. More reads increased the expression probability, but lowered the DE power (4.5
d).

The same optimization was applied for an eQTL study (4.5 b) with a budget of
30,000€ in total (effect sizes from the BLUEPRINT T cells study [43] with corresponding
expression priors). Here, the optimal parameter combination was a medium number of
1,500 cells and read depth of 10,000, but a high sample size of 242. In contrast to the
example DE study, here the eQTL power dropped drastically with lower sample sizes
(Figure 4.5 e,f), so a balance between the eQTL power and the expression probability
was identified that led to the highest overall detection power. The users can easily run
a customized version of this analysis with the corresponding plots over our web tool
http://scpower.helmholtz-muenchen.de, where they can specify the desired priors
and budget.

4.4.2. Overloading of cells per lane

As mentioned before, the number of cells that can be loaded on a 10X Genomics lane is
not fixed, but instead a further parameter that can be chosen by the user. Loading more
cells on one lane reduces the costs, but it leads to more doublets, so a larger fraction of
cells will be lost for the analysis. We added this effect explicitly to our model, following
the approach as implemented by Hafemeister et al. for the website "How Many Cells"
[154]: the doublet rate d is estimated as a linear function of the number of cells per lane,
which are the product of the number of samples per lane ns,l and the number of cells per
sample nc, and a scaling factor. We derived this scaling factor from the 10X Genomics
User guide for the version 3 chemistry [165] as 7.67 ∗ 10−6. Combining this leads to a
doublet rate d of

d = 7.67 ∗ 10−6ncns,l (4.18)

This reduces the number of usable cells per individual to nu = (1 − d) ∗ nc. Assuming
a cell type frequency of fc for your cell type of interest, this leaves fc ∗ (1 − d) ∗ nc cells
for the analysis itself and so the power estimation.

Of note, we realized that the doublet rates estimated by other studies [159, 55] and
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Figure 4.5.: Parameter optimization for constant budget
Maximizing detection power by selecting the best combination of cells per
individual and read depth for a DE study with a budget of 10,000€ (a)
and an eQTL study with a budget of 30,000€ (b). Sample size is uniquely
defined given the other two parameters due to the budget restriction and
visualized using the point size. c–f Overall detection power dependent on
cost determining factors. Influence of the cells given the optimized read
depth (c,e) and of the read depth given the optimized number of cells (d,f).
(c,d) corresponds to the DE study in (a), visualized in (a) by the red frames
around the row with the optimal number of cells (for (c)) and around the
column with the optimal read depth (for (d)). Same frames for (e,f) in the
eQTL study (f). The optimal sample size values are shown in the upper x
axes for ((c-f). Vertical lines in the subplots mark the optimal parameter
combination. Effect sizes were chosen as in Figure 4.4. Gene expression
is defined as detected in >50% (DE analysis) or >9.5% (eQTL analysis) of
individuals. Figure and legend taken from [1].
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also by us, were above the doublets measured in the 10X Genomics user guide, so the
exact doublets during overloading might be slightly higher than estimated in scPower,
but we decided to use the official reference numbers in our tool.

Another point to take into consideration for the overloading is the effect on the
read depth: during the sequencing, more reads will originate from doublets as from
singlets, because doublets contain two cells. For this reason, the mean number of reads
is diminished the more doublets are measured. We again followed the approach of
Hafemeister et al. to model this [154]. They estimated a doublet factor fd of 1.8 to
describe the rate of reads from doublets and reads from singlets. The number of reads
for singlets rs will be reduced compared to the target read depth r as

rs =
rnc

nu + fd(nc ∗ nu)
(4.19)

The total number of usable reads per cell in the end depends on the mapping efficiency,
which we set to 80%, leaving 0.8 ∗ rs reads in the power analysis.

For all budget analyses, we fixed the number of cells per lane nc,l instead of samples
per lane nd,l to control the overloading rate directly. Then, the number of samples per
lane is ns,l = ⌊nc,l/nc⌋, expecting that all cells from one sample are measured together on
one lane and are not split into multiple lanes. If most doublets are successfully detected
and the analysis is not falsified by them, overloading the cells is more cost-efficient,
despite loosing some cells and reads. We validated the doublet detection in our pilot
dataset using sex-specific genes and saw that their expression was very concordant with
the sex of the donor after the removal of doublets (Supplementary Figure A.9 b). For
this reason, we assume that a combination of different doublet detection tools performs
well enough to identify most doublets. For the previous budget analysis in subsection
4.4.1 and all following budget analyses, we overloaded the lanes in our power analyses
with 20,000 cells per lane, which leads to a doublet rate of 15.4%.

4.4.3. Exploring optimal parameters for different budgets

Building on this implementation for power optimization, we explored which experi-
mental parameters were increasing if a higher budget was available (Figure 4.6). We
included a large variety of different priors, exploring simulated priors (Figure 4.6 a,b)
additionally to the observed priors used before (Figure 4.6 c,d). The simulated priors
allowed us to explore the difference between high and low effect sizes as well as high
and low expression ranks in specific prototypic scenarios. The same analysis was done
for the DE cases (Figure 4.6 a,c) and the eQTL cases (Figure 4.6 b,d).

The detection power (first column of Figure 4.6) rises in all scenarios with higher
budget, but the difference between the effect sizes is clearly observable. The detection
power was higher for the same budget when the effect sizes are larger and/or the
expression ranks are higher. The number of cells (second column) is either at the chosen
maximum level already at the beginning or rises clearly when more budget is available,
highlighting the value of a large number of cells for the detection power. For the eQTL
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Figure 4.6.: Optimal parameters for varying budgets and 10X Genomics data.
The maximal reachable detection power (column 1) and the corresponding
optimal parameter combinations (columns 2–4) change depending on the
given experimental budget (x-axis). The coloured lines indicate different
effect sizes and gene expression rank distributions. Different simulated effect
sizes and rank distributions for DEG studies (a) and eQTL studies (b) with
models fitted on 10X PBMC data. highES = high effect sizes, lowES = low
effect sizes, highRank = high expression ranks and unifRank = uniformly
distributed expression ranks (always relative to effect sizes observed in
published studies). Effect sizes and rank distributions observed in cell type
sorted bulk RNA- seq DEG studies (c) and eQTL studies (d) with model fits
analogously to (a,b). Expression thresholds were chosen as for Figure 4.5.
Figure and legend taken from [1].
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4.5. Generalization of scPower to other scRNA-seq technologies and tissues

cases, the number of cells is rising, but not as extreme as for the DE cases, probably
because here a high sample size is essential for a high detection power, especially for
low effect sizes (fourth column, Figure 4.6 b). The read depth is increased in the DE
cases before the sample size, showing that for the chosen priors a relative small sample
size is sufficient (third column, Figure 4.6). In contrast, shallow sequencing of a large
number of cells and samples is most beneficial for the eQTL cases, as already suggested
by Mandric et al. [160].

4.5. Generalization of scPower to other scRNA-seq technologies
and tissues

While all previous analysis were based on 10X Genomics, one of the most frequently
used single cell transcriptomics platforms, scPower can be likewise applied for power
analysis and design optimization of experiments performed with other technologies.
Other microfluidics-based methods can be used fully interchangeably, using expression
priors fitted on a corresponding pilot dataset from the same technology. We showed
this based on a lung cell dataset measured with Drop-Seq [72]. The only adaption we
did here was setting the doublet rate to a constant factor, since we did not have the
information on how overloading influences the doublet rate for Drop-seq.

Additionally, we chose a Smart-seq2 dataset from pancreas for testing scPower [166].
It is a plate-based method based on read counts instead of UMI counts, so a few more
changes in our model were required. We adjusted for the gene-length bias by defining
the expression threshold relative to one kilobase of the transcript, so taking a threshold
of n∗1000

li
for a gene of length li. These normalized counts are used to estimate the gamma

mixed distributions, which are parameterized directly dependent on the reads per cell.
The doublet rate was set to a constant factor, matching the technological differences to
microfluidic-based systems with overloading.

For both datasets, the lung dataset measured with Drop-Seq and the pancreas dataset
measured with Smart-seq, we fitted expression priors and validated the expression
probabilities (Supplementary Figure A.17). It showed high concordance between the
estimated and observed number of expressed genes (r2 = 0.995 for the lung Drop-seq
dataset and r2 = 0.991 for the pancreas Smart-seq dataset). Furthermore, the power
estimations for both technologies matched well the results of the simulation-based tools
powSimR and muscat (Supplementary Figure A.18).

With the validated expression priors, we repeated the parameter optimization for
different budgets, again with simulated and observed effect sizes (Figure 4.7; estimated
costs in Table 4.1). For the simulated priors, we chose the same prototypic scenarios
as in Figure 4.6. The observed effect sizes were taken from FACS sorted DE studies,
covering asthma in lung cells [122] and aging in pancreas [167].

Across the different scenarios, the overall detection power for Smart-seq2 was not
as high as it was for the same budget for Drop-seq (Figure 4.7). The Drop-seq curves
showed in general very similar outcomes as for the 10X PBMC dataset, probably due
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Figure 4.7.: Optimal parameters for varying budgets and Drop-seq and Smart-seq2
data
Maximal reachable detection power (y-axis, first column) for a given ex-
perimental budget (x-axis) and the corresponding optimal parameter com-
binations for that budget (y-axis, second till fourth column). The colored
lines indicate different effect sizes and gene expression rank distributions.
a,b Different simulated effect sizes and rank distributions for DE studies
with models fitted on Drop-seq lung data (a) and Smart-seq2 pancreas data
(b). highES = high effect sizes, lowES = low effect sizes, highRank = high
expression ranks and unifRank = uniformly distributed expression ranks
(always relative to effect sizes observed in published studies). c,d Effect
sizes and rank distributions observed in cell type sorted bulk RNA-seq DE
studies with model fits analogously to (a-b). Figure and legend taken from
[1].
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4.6. Project summary and outlook

Technology
Library preparation

costs per cell
Sequencing costs

per 1 million reads

10X Genomics 0.05€ - 0.12€ 3.42€
Drop-Seq 0.09€ 3.42€

Smart-Seq2 13.00€ 3.42€

Table 4.1.: Experimental cost per technology.
Library preparation cost estimation (per cell) and sequencing cost estimation
(per 1 million reads) for three of the most common single cell RNA-seq
technologies in Euro (€). For 10X Genomics, the cost depends on the number
of cells per lane, an overloading of each lane with 20,000 cells generates costs
of 0.05€ per cell, a loading with 8,000 cells per lane costs of 0.12€ per cell.
Table and legend taken from [1].

to the large technological similarities. The number of cells per individual was the first
parameter to be increased in most cases. In contrast, far fewer cells were determined
as optimal for Smart-seq2 experiments and the sample size was far lower. Instead, the
number of reads was increased.

We observed that the restriction of Smart-seq2 is not that the experiment is less
powerful, but that it is less cost-efficient: measuring large number of cells and samples
is far more expensive according to our estimated costs per cell (Table 4.1). In general,
the evaluation showed that high-throughput technologies, such as 10X Genomics and
Drop-seq, which can cheaply process large quantities of cells, are well suited for these
large-scale multi-sample single cell transcriptomics experiments.

4.6. Project summary and outlook

In this chapter, we described scPower, a power analysis method for multi-sample single
cell transcriptomics experiments that covers both interindividual DE analysis and eQTL
analysis. The tool is specifically designed for single cell experiments because it takes
the sparsity of the data into account by modelling the expression probability of a gene
depended on the experimental parameters and the cell type prior. We validated the
accuracy for different tissues and technologies, proving its generalizability to new
settings.

scPower - as an analytic method - allows fast and memory-efficient evaluation of
different scenarios in contrast to alternative simulation-based tools. This allowed us
to incorporate budget optimization, which selects the optimal experimental design for
a certain budget, without any large computational costs. In the end, we envision that
scPower facilitates for all users the planning of powerful experiments, which are crucial
for increasing the number of significant discoveries in future single cell DE and eQTL
studies.
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4. Experimental design of multi-sample single cell transcriptomics

Run Donors
Target number

of cells
Target reads

per cell
Number
of cells

Mean reads
per cell

Run 1 1 - 14 8,000 50,000 7,491 40,650
Run 2 1 - 7 8,000 50,000 5,989 127,685
Run 3 8 - 14 8,000 50,000 8,144 13,949
Run 4 1 - 14 8,000 50,000 7,429 35,417
Run 5 1 - 14 8,000 50,000 7,765 21,057
Run 6 1 - 14 25,000 50,000 20,126 51,792

Table 4.2.: Experimental parameters of the 6 PBMC runs.
In Run 1, 4, 5 and 6 all 14 donors were measured, in Run 2 only donor
1-7 and in Run 3 only donor 8-14. Run 6 was overloaded with 25,000 cells.
The number of cells and mean reads per cell are taken from the cell ranger
summary statistics. Table and legend taken from [1].

4.7. Materials and additional methods

4.7.1. Generation of the single cell RNA-seq PBMC dataset

The PBMC dataset that we used as a pilot dataset while building and evaluating
scPower was generated by our collaboration partners at the Max Planck Institute of
Psychiatry, Munich. It comprised 14 healthy individuals (7 male and 7 female) of the
Biological Classification of Mental Disorders study (BeCOME; ClinicalTrials.gov TRN:
NCT03984084) [157]. Six 10X Genomics runs (Chromium Single Cell 3 library and gel
bead kit v2) were generated with different distributions of individuals, five aiming for
8,000 cells and one overloaded aiming for 25,000 cells (Table 4.2). The target read depth
for all runs was 50,000 reads per cell, using HiSeq4000 from Illumina (150bp paired-end
sequencing). Further information on the recruitment and dataset generation are found
in the clinical trail protocol [157] and in the publication of scPower [1].

4.7.2. Processing the PBMC dataset

The sequenced reads from the 10X Genomics experiments were processed with Cell-
Ranger (v2.0.0 and v2.1.1) [70], using the hg19 reference genome for mapping. We
annotated cells to individuals using Demuxlet (v1.0) [159] after discarding doublets
identified by either Demuxlet, which captures only doublets between individuals, and
Scrublet, which captures all neotypic errors, i.e. doublets arising from cells with different
expression profiles, e.g. originating from different cell types [168]. For Demuxlet, genes
annotated as "doublet" or "ambivalent" were removed, for Scrublet, all cells above a
doublet threshold of 0.28. Additionally, we discarded cells with less than 200 genes
or more than 2,500 genes and with more than 10% counts from mitochondrial genes,
following best practice suggestions for setting the thresholds [169]. We processed the
single cell data for the filtering and the following cell type identification with Scanpy
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4.7. Materials and additional methods

Cell type Markers

CD4+ T cells IL7R, CD3D
CD14+ Monocytes CD14, LYZ

B cells MS4A1, CD79A
CD8+ T cells CD8A, CD8B, CD3D

NK cells GNLY, NKG7
FCGR3A+ Monocytes FCGR3A, MS4A7

Dendritic cells FCER1A, CST3
Megakaryocytes PPBP

Plasma cells CD79A

Table 4.3.: Marker genes for cell type identifcation.
Marker genes used to assign the Louvain clusters to the cell types. Annota-
tions taken from van der Wijst et al., 2018 [55]. Table and legend taken from
[1].

(v1.4) [170].

4.7.3. Cell type identification

After the initial filtering of cells, we annotated cells to different cell types. We started by
discarding genes counted in less than 3 cells, normalized cells to 10,000 counts per cell
and logarithmized them. We restricted the analysis to highly variables genes, followed
by regression of total counts per cell and the mitochondrial percentage. We clustered
cells by taking the first 40 principal components of the PCA on all cells, identifying the
nearest neighbor graph with these, and performing Louvain clustering on the graph
[171]. In the end, the Louvain clusters were assigned to nine main PBMC cell types
based on marker gene expression (Table 4.3), as applied in van der Wijst et al., 2018 [55].

4.7.4. Subsampling counts for expression probability model

To parameterize our expression probability model on the read depth, we downsampled
the fastq files of the 6 runs from the 10X Genomics PBMC pilot dataset to 75%, 50% and
25% of th reads using fastq-sample from fastq-tools (v0.8) [172]. Count matrices were
again obtained by running CellRanger and all annotations - donors, doublets and cell
types - were transferred from the results of the full count matrix.

4.7.5. Fitting expression prior from pilot data

The formulas to estimate the expression probability for a set of experimental parameters
- sample size, number of cells and read depth - and the rationale behind are described
in sections 4.2.4, 4.2.5 and 4.2.6.
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We fitted an expression prior to validate our model on the processed PBMC pilot
dataset. First, we estimated negative binomial distributions for each gene and cell type
using DESeq [104]. Following this approach, the raw counts from the filtered UMI count
matrix were normalized for library size using either the DESeq standard method or
"poscounts" from DESeq2 [105] that was specifically designed for sparser data. The
normalization method was selected based on the quality of the fit. We chose the standard
normalization for the 10X Genomics PBMC dataset, but "poscounts" for the Drop-seq
lung dataset and the Smart-seq2 pancreas dataset. We focused on cell types with at
least 50 cells for robust parameter estimation and fitted each batch separately to avoid
overdispersion by batch effects.

Afterwards, we fitted a mixture distribution over all gene-wise mean values. The
mixture distribution was made of a zero-component and two left-censored Gamma
distributions, each censored at 1/nc with nc the number of cells in the cell type, as
described in section 4.2.4. One mixture distribution is obtained for each cell type and
subsampling step, represented in seven parameters: three parameters for the proportions
between the distributions p1, p2 and p3 and four parameters describing the two Gamma
distributions (two mean and standard deviations).

The different mixture distributions for one cell type are combined when parameteriz-
ing the model via the mean UMI counts per cell: a linear regression is fitted for each
mean and standard deviation of the two gamma distributions to explain it via the mean
UMI count. The probability parameter p3 that describes the frequency of the second
Gamma distribution of highly expressed genes is kept constant, independent of the
subsampling step. Here, the mean value over the different subsampling runs is chosen.
The probability parameter p1 is also modelled via a linear regression, with a minimal
value of at least 0.01 to allow no negative values. The third mixture proportion can be
inferred from the other two as p2 = 1 − p1 − p3.

To incorporate the read depth in the end, we fitted a logarithmic curve to model the
relationship between the mean UMI counts per cell nUMI and the number of transcrip-
tome mapped reads r as nUMI ∼ log(r). This results in one curve per dataset. The UMI
count - read depth function is difficult to transfer to other settings, as it is affected by
many biological and technical factors. Nevertheless, the collection of functions from
scPower help to assess how sequence saturation curves typically look like in different
example studies.

The required mean-dispersion function is taken directly from DESeq. As the pa-
rameters are not affected by the mean UMI counts, i.e. are nearly constant over the
subsampling steps, we average the parameters of the dispersion function across all runs
and subsampled runs for one common mean-dispersion curve per cell type.

4.7.6. DE power

For the DE power, we used the analytic power analysis method for negative binomial
models as implemented in the R package MKmisc [161]. The authors provided three dif-
ferent approaches, from which the third proved to be most accurate in their publication.
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For this reason, we used method 3 for the power calculations. The mean and dispersion
parameter for the power calculation are inferred based on our expression probability
model (section 4.2.5), the dispersion parameter is thereby assumed to be the same for
both groups. Other input parameters are taken from priors, in case of the fold change,
or are chosen directly by the user, in case of the sample size, the significance threshold
and the sample size ratio between both groups. In the following examples, a balanced
design with a sample size ratio of 1 is chosen, but other ratios are possible without any
adaptations.

4.7.7. eQTL power - Analytic power calculation

The eQTL power analysis is based on linear regression, the most frequently used
approach here. In order to apply linear regression models, the residuals need to be
normally distributed. This is ensured for the negative binomial counts through log-
transformation which results in a constant variance independent of the mean [152].
However, we observed that the corresponding analytic power analysis method for linear
regression models achieved only reliable results for genes with large mean values, which
were obtained from simulations (both methods described in detail below; Supplementary
Figure A.14). For lowly expressed genes, the analytic power was overestimated compared
to simulation-based results, as the log-transformation did not work properly due to
many zero values. For this reason, scPower applies the analytic power analysis only for
genes with an expression mean > 5 and simulation-based power analysis for all other
genes, which were too lowly expressed. The expression threshold of 5 was chosen based
on the aforementioned comparison.

The analytic power analysis method is based on the F-test, as implemented in the
function pwr.f2.test from the R package pwr. Effect sizes are quantified by the coefficient
of determination R2. It can be derived from a pilot study, using the regression parameter
β, its standard error se(β) and the study sample size N:

t =
β

se(β)
(4.20)

R2 =
t2

N − 2 + t2 (4.21)

Other input parameters for the power are the sample size of the newly planned study
ns and the chosen significance threshold α.

4.7.8. eQTL power - Simulation for small means

The eQTL power simulation framework was implemented to benchmark the analytic
power analysis solution (section 4.7.7) and is used in the final version of scPower for
lowly expressed genes with means < 5, as discrepancy were visible here.

The same input parameters are required as for the analytic method, the effect size R2,
the planned sample size ns and the significance threshold α. On top of that, the mean
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count value µc of the gene is necessary, assuming that this is the mean of the genotype
with the lower expression. The following simulation is performed 100 times to ensure a
stable estimate:

First, the allele frequency fa is sampled from a uniform distribution with the interval
[0.1, 0.9]. The corresponding genotype vector g with gi ∈ {0, 1, 2} of length ns is created,
by following the Hardy-Weinberg equilibrium with f 2

a times 0, 2 ∗ fa ∗ (1 − fa) times 1
and (1 − fa)2 times 2.

Next, the regression parameter β and its standard error σ̂ can be inferred as:

β =

√
R2

2 fa(1 − fa)
(4.22)

σ̂ =
√

1 − R2 (4.23)

The count vector x is sampled dependent on the genotype vector g. For each element
xi, the simulated count value is drawn from a negative binomial distribution with mean
µi and dispersion ϕi. The mean is shifted dependent of the genotype:

µi = elog(µc)+β∗gi (4.24)

The dispersion parameter ϕi needs to be set in a way that variance of the log trans-
formed counts is σ̂. The Taylor approximation of the parameter did not work due to
the small mean values [152], therefore the dispersion was estimated based on numerical
optimization. To accelerate this part, scPower contains a table with precalculated values.

A linear regression model was calculated for the log-transformed simulated counts
(plus one pseudocount) as log(xi + 1) ∼ gi. The resulting p-value pi for H0 : β = 0 was
used to estimate the simulation based power as

B

∑
i=1

(pi < α) (4.25)

4.7.9. Overall detection power

As stated in section 4.2.3 in detail, the expression probability and the DE/eQTL power
are combined to the overall detection power via multiplication, as both are conditionally
independent given the expression mean and dispersion. For each DE/eQTL gene, the
overall detection power is calculated as follows: from the pilot dataset, not only the effect
size were taken as prior, but also the expression rank i. The mean expression of the gene
µc was estimated as the quantile i/|G| of the gamma mixture model parameterized by
the mean UMI counts, with G the set of all genes. In our example cases, we focused on
a total gene set of G of size 21,000. Based on the mean µc, the corresponding dispersion
ϕc can be inferred from the expression prior and together the expression probability
is calculated. For the DE/eQTL power, µc and ϕc are again required, together with
the effect size of the gene and the significance threshold α. Importantly, α needs to be
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corrected for multiple testing (more in section 4.2.7). We applied FWER adjustment for
the eQTL scenarios and FDR adjustment for the DE scenarios, always using an α value
of 0.05. Afterwards, both the expression probability and DE/eQTL power are multiplied
to the overall detection power of the respective gene. The overall detection power of
the complete experiment is then the average over the genewise overall detection power
values.

4.7.10. Processing public pilot data sets for priors

Priors, which contain effect sizes and expression ranks of DE/eQTL genes, are required
for the power calculations. We chose different public datasets to get realistic estimates,
focusing on FACS-sorted studies for cell-type specific results [163, 164, 122, 167, 43].
In every study, expression ranks were obtained from FPKM normalized values and
FDR<0.05 was chosen as the significance threshold for the DE/eQTL definition. When
available, we took the published effect sizes, otherwise we reran the analysis with
DEseq2 [105].

4.7.11. Adaptions for powsimR and muscat

The simulation-based power analysis methods powsimR and muscat were applied on the
CD4+ T cells of the PBMC pilot dataset for different parameter combinations to validate
the analytic power estimations from scPower [112, 113]. Both tools were run with 25
simulation rounds for accurate power estimations. The simulated count matrices were
analyzed with the pseudobulk approach in combination with established DE methods.
For powsimR, the median-ratio normalization of DESeq2 was used followed by DE
identification with edgeR-LRT, DESeq2 and limma-voom. For muscat, DE identification
was performed using edgeR, DESeq2, limma-voom and limma-trend. Both for powsimR
and muscat, small adaptions were necessary to make their results comparable with
scPower. Input parameters were changed so that the methods took a log-fold change
vector together with a matching expression rank vector, instead of randomly selecting
genes as DE genes. Furthermore, a pseudobulk version was added in case of powsimR,
as it was not design for multi-sample power analysis.

To enable pseudobulk calculations with powsimR, we added a sample size parameter
ns for a balanced design (ns/2 samples per group). The individual level effect sizes
were set to the same values as the cell level effect sizes. After simulating the count
matrix, the cells were distributed equally between the samples under consideration of
the group structure. The counts per sample were summed up to the pseudobulk matrix,
which was afterwards processed the same way as the single cell matrix for DE calling in
powsimR.

muscat was run with specific settings to increase comparability with scPower: originally,
one negative binomial distribution is fitted per sample in muscat to capture donor-specific
differences. However, for our dataset, the reduced number of cells for the negative
binomial fits decreased the number of expressed genes drastically and provided far
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fewer genes for the simulation. For this reason, we decided to fit only one negative
binomial distribution over all samples together, matching the approach of powsimR and
scPower. Another point to consider was the DE simulation: muscat allows the simulation
of more complex differential expression scenarios, for the comparison we used only the
classical "DE" scenario with shifted mean expression between groups.

Accuracy of scPower was estimated using three different criteria: first, the expression
probability of scPower was evaluated by comparsion of the expected number of expressed
genes from scPower with the simulated number of expressed genes from powsimR and
muscat. The expression probability threshold of scPower was set to more than zero
minimal counts in order to match the expressed genes of powsimR and muscat.

Second, the DE power between the methods was compared. For powsimR and muscat,
only the power of expressed genes can be estimated, because the simulated counts are
required. For this reason, we restricted the DE power for scPower also to expressed genes
by selecting only DE genes with an expression rank smaller than the expected number
of expressed genes.

Third, the overall detection power is compared. This value is not automatically given
by powsimR, as it focuses on the DE power for expressed genes and overestimates so the
general experimental power. However, it can be derived easily, when by averaging the
DE power over all simulated genes (including the not expressed ones, setting their DE
power to 0). The same strategy was applied for muscat.

4.7.12. Evaluating doublet rate using sex-specific genes

In order to validate the donor assignment of Demuxlet and the doublet detection we
performed using Demuxlet and Scrublet, we tested if sex-specific genes were only ex-
pressed in cells whose donor had the right sex. For male cells, we calculated the fraction
of cells with an expression of Xist > 0 as the male-specific error. For female cells, we
calculated the fraction of cells with more reads mapped to the Y chromosome than the
q f quantile of all cells as the female specific error. q f is the fraction of cells assigned
to a female donor among all cells. We normalized the reads mapped to chromosome
Y in this step using transcripts per million (TPM), i.e. counting all reads mapped to
chromosome Y except reads mapped to pseudoautosomal regions of the chromosome
divided by the total read counts per cell times 1,000,0000. The female-specific error rate
was defined a bit more lenient, as also in female cells, mis-mapping of single reads to
the Y chromosome happens. We evaluated the male-specific and female-specific error
once before the removal of doublets and once after, comparing if the values improved.

4.7.13. Generation of prototypic scenarios for budget evaluation

We extended our set of tested priors for the budget optimization to create additional
prototypic scenarios. For this, we simulated effect sizes and expression ranks of different
magnitudes, both for the DE and eQTL analysis. Specifically, we tested effect sizes
that were higher or lower than our observed effect sizes from the prior studies and
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expression ranks that were higher or lower. In each setting, we simulated priors for 250
DE genes or 2000 eQTL genes, respectively.

We sampled the DE log fold changes from a normal distribution with a standard
deviation of 1, for the high effect sizes with a mean of 2 and for the low effect sizes with
a mean of 0.5. R2 values for eQTL scenarios were sampled from normally distributed
Z-scores with a mean of 0.5 for high effect sizes and 0.2 for low effect sizes. The standard
deviation was always 0.2. In each case, the normal distribution was truncated to contain
only values above the mean, matching the observed distributions from the pilot datasets,
and the values were afterwards transposed via inverse Fisher Z Transformation. The
expression ranks sampled from an uniform distribution over the first 10,000 genes for the
high ranks and over the first 20,000 genes otherwise. We combined effect sizes and rank
distributions to four scenarios in total, called "highES_highRank", "lowES_highRank",
"highES_unifRank" "lowES_unifRank". The abbreviations "highES" and "lowES" stand
for high and low effect sizes, the abbreviations "highRank" and "unifRank" for a high
rank distribution and a uniform rank distribution.

4.7.14. Applying scPower to Drop-seq and Smart-seq2 data

The general adaptions to run scPower with a Drop-seq and a Smart-seq2 dataset are
already described in section 4.5. In the following, more details on how to deal with
the gene length bias for Smart-seq2 datasets are given: negative binomial distributions
were fitted on the raw counts without gene length normalization. Afterwards, the
length normalized mean values were taken to fit the gamma mixed distribution. In
order to derive the gene-length dependent mean and dispersion values for a newly
planned experiment, the gene length was taken as an additional prior from the reference
datasets together with the effect sizes and the expression ranks. Another change for the
Smart-seq expression model is that the mean-dispersion function parameters displayed
a linear relationship with the read depth for this dataset, in contrast to the droplet-based
methods, which we additionally modelled for this reason.

Subsampling was applied again to incorporate the effect of the read depth. For the
Drop-seq dataset, the same approach could be used as for the 10X Genomics dataset
with fastq-tools [172] (see section 4.7.4). Following this, the pipeline described in [68]
was used to create the count matrix. For the Smart-seq dataset, the step of modelling the
relationship between the UMI counts and read depth could be skipped. Therefore, the
read count matrix could be downsampled directly via the function downsampleMatrix
from the R package DropletUtils [173].

A necessary assumption for our cohort level expression model is that the cell type
frequencies of the different individuals are all in the same range. Further simulation
studies for this and adjustment possibilities are shown in the publication [1]. Unfortu-
nately, this assumption was not true for both the Drop-seq and the Smart-seq dataset
and the cohort level expression probability could not be calculated accurately here.
Instead, we used a simplified version of the expression probability: a gene is expressed
if it has a certain number of counts per cell type over all individuals together.
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5. Analyzing genetic influence on
personalized networks with single cell
transcriptomics

5.1. Advancing genetic variant interpretation through
co-expression QTLs

The last two chapters 3 and 4 covered how population studies can be used to interpret
the downstream effects of genetic variants, and how single cell data can improve these
analyses, because they facilitate cell type specific analyses. On top of that, single cell data
allows additional new approaches that were not possible with bulk (more in introduction
chapter 1). One of these novel approaches is the identification of co-expression QTLs
(co-eQTLs), genetic variants that influence the co-expression of two genes [55, 83]. Single
cell data provides multiple measurement points per individual (and cell type), so the
necessary individual specific co-expression values can be inferred from it. Previous
analyses in bulk with only one measurement point per individual tried to overcome this
with linear models including an interaction term of genotype times gene [46]. However,
the bulk approach requires cohorts with extremely large sample sizes to gain enough
power. Additionally, cell type specific analyses are generally difficult with bulk data, as
discussed already before. For these reasons, performing co-eQTL studies in single cell
data is a large improvement.

The identified co-eQTLs allow connecting the effects of genetic variants with the
complex gene regulatory network. Standard eQTL analyses identify the downstream
consequences a genetic variant has on the expression of a gene. However, the upstream
regulatory processes that are disturbed by the variant can often not be pinpointed. In
contrast, co-eQTLs identify which gene associations are changed dependent on the
genetic variants and find so also the corresponding upstream regulators. Especially for
disease-associated variants, it supports the identification of disease-associated biological
processes and might in the future also help for drug development and personalized
medicine. For example, if a co-eQTL affects an edge in the gene regulatory network that
is crucial for the effectiveness of the drug, patients can be divided into two groups based
on the co-eQTL: one group, where the drug will be effective, and one group, where it
will not [174].

Recently, the first few small-scale and targeted co-eQTL analyses have been performed
with single cell data [55, 83], but many open questions remain: first, the development
of gene regulatory networks from scRNA-seq data is a very active research field with
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many new algorithms in the last years [175, 176, 177]. However, a recent benchmarking
study showed that the performance is very dataset specific [87]. In general, these
evaluations have the issue that no ground-truth network exists for comparison, making
all benchmarking studies difficult. A specific analysis that covers which association
metric should be used for the co-eQTL identification is currently lacking and would be
beneficial.

Second, the best workflow for the co-eQTL mapping itself has not been established.
The search space of all possible triplets (SNP - gene - gene) is even larger than for a
classical eQTL analysis and requires proper multiple testing correction. This limits
however the detection power. To identify still many co-eQTLs, either large sample sizes
are required, which are so far limited in the first single cell cohorts, or sophisticated
filtering strategies to test only those triplets that are probably most relevant or interesting.

Third, the interpretation of co-eQTLs has never been done systematically before.
Strategies how to best annotate the upstream regulatory processes and the regulating
transcription factors need to be developed.

In this study, we addressed those questions and explored how to best identify and
interpret co-eQTLs by conducting a cell type specific co-eQTL meta analysis with 173
scRNA-seq samples from PBMCs. For, this we combined three studies, naming each
in the following after the first author of the study: the Oelen study with 104 healthy
individuals [83], the van der Wijst study with 45 healthy individuals [55] and the van
Blokland study with 38 individuals 6-8 weeks after hospital admission due to a heart
attack [178] (Figure 5.1 a). All three studies measured PBMCs with 10X Genomics.
Because the Oelen and the van Blokland study analyzed part of the samples with
version 2 chemistry from 10X Genomics and part with version 3, we split both studies
in two separate datasets each (called Oelen v2 and v3 dataset, and, respectively, van
Blokland v2 and v3 dataset). The van der Wijst study was measured completely with
version 2 chemistry.

Preprocessing of each dataset was done already in the corresponding studies, includ-
ing cell type annotation. We performed all analyses in a cell type specific way, splitting
the dataset into the six major cell types: CD4+ and CD8+ T cells, natural killer (NK)
cells, monocytes, B cells and dendritic cells (DCs) (Figure 5.1 a).

We chose Spearman correlation as the association metric for the co-eQTLs as it
showed robust results when comparing between different single cell and bulk datasets.
Furthermore, highly correlated gene pairs matched well with associations identified
from a CRISPR knock-out dataset (Figure 5.1 b). Comparison of Spearman correlation
values between the cell types and between individuals within each cell type gave us
insights into the general observed correlation structure identified with scRNA-seq.

For the co-eQTL mapping itself, we combined a stringent filtering of tested triplets
with a permutation-based multiple testing correction, to increase the robustness of our
results. For the filtering, first we identified cis eQTLs in the dataset and focused on
these pairs of eQTL SNP and the associated gene, which is called eGene in the following.
Then, we tested the SNP-eGene pair together with all other genes that are significantly
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Figure 5.1.: Study Overview
a) Overview of the three PBMC scRNA-seq studies used in our analysis,
including the chemistry version (v2/v3), number of individuals involved
(number in the parenthesis), and relative composition of the major blood cell
types used in this study. b) We first benchmarked co-expression patterns
among the scRNA-seq studies and compared them to co-expression pattern
in different bulk datasets and associations from a CRISPR knockout dataset.
After benchmarking, we evaluated differences in co-expression patterns
among cell types and among individuals within a cell type. c) Cell type
specific co-eQTL mapping based on a novel strategy with strict filtering of
tested SNP–eGene–co-eGene triplets: the SNP is required to be an eQTL
for one of the genes and the genes show significant correlation in at least a
certain number of individuals. d) Identified co-eQTLs were replicated in a
bulk dataset. To evaluate technical influences, we assessed the impact of cell
number, number of tests and the number of individuals on the number of
significant co-eQTLs. Lastly, we interpreted the biological relevance of the
co-eQTLs. Figure and legend taken from [3].
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correlated with the eGene in at least 10% of the individuals. These selected genes are
called co-eGenes in the following (Figure 5.1 c). This allows a large-scale co-eQTL
analysis with sufficient power by decreasing the search space.

The identified co-eQTL associations can be caused by different biological scenarios
that need to be distinguished for the interpretation (Figure 5.1 c). In Scenario 1 of
Figure 5.1 c, it is depicted how co-eQTLs can represent upstream regulators of eQTLs: if
the genetic variant is located in a TF binding site and changes its binding affinity, the
co-expression between the TF and its target gene will become weaker for one genotype,
resulting in a co-eQTL. Additionally, indirect interactions can be captured with genes in
high correlation with the TF, for example genes that are also regulated by the TF or are
at least part of the same pathway. These correlated genes will show the same correlation
behavior as the TF and can therefore also be observed in co-eQTL triplets together with
the eQTL (Scenario 2 in Figure 5.1 c).

Other scenarios are also possible that result in co-eQTLs. For example, if a genetic
variant is associated with the sub cell type composition in a cell type, it can be associated
with changes in correlation structure for sub cell type specific genes. This can be
prevented by sub-cell type specific analysis, requiring however accurate annotations
and a sufficient number of cells from each sub-cell type to gain enough power. For this
reason, we explored sub-cell type effects only for Monocytes, and ran analyses otherwise
on cell type level.

We explored the identified co-eQTLs with comparison between different cell types and
replication in a large bulk study. Additionally, we analyzed technical factors influencing
the detection power, such as the number of samples and cells (Figure 5.1 d). At last, we
combined several enrichment analyses to identify the upstream regulatory pathways
and the associated direct regulators from the set of co-eQTLs per eQTL, in order to
differentiate better between the different scenarios described before (Figure 5.1 c).

The methodology, results and figures presented of this project have previously been
published as a preprint in Li et al. [3] and are currently under review in Genome
Biology (status November 2022). All code, including a description on how the figures
were generated, is published in the GitHub repository associated with the publication
https://github.com/sc-eQTLgen-consortium/co-expressionQTLs.

5.2. Benchmarking co-expression pattern obtained from single
cell data

5.2.1. Exploring different association metrics for single cell data

The first step, before running the co-eQTL mapping itself, is choosing an association
measure for the gene pairs. Previous analyses used Spearman correlation [55, 83],
which is easy to apply and interpret. Different benchmarking studies identified however
alternative measures that might work better specifically for single cell data [179, 87].
For this reason, we compared Spearman correlation with Rho proportionality [180] and
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GRNboost2 [181], two of the suggested methods.

For Rho proportionality [180], we saw high correlation with Spearman values for
genes expressed in at least 5% of the cells (r=0.68) (Supplementary Figure A.19 a).
However, for some gene pairs, where both genes were very lowly expressed, very
high Rho propensity values were calculated in contrast to Spearman correlation values
around 0 (Supplementary Figure A.19 b). The authors of Rho propensity warned that
the log-transformation during the estimation of Rho values can cause problems for
sparse data with many zero values, potentially falsifying the results [180]. Additionally,
the calculation of Rho values was far more computational demanding, so we decided
that the Spearman correlation was the better choice.

Next, we evaluated GRNBoost2 [181] and Spearman correlation, by estimating how
robust the gene pair associations were between similar datasets, which measured the
same cell type (done later more extensively, see section 5.2.2). For this, we compared the
Spearman correlation values identified in monocytes from the Oelen v2 dataset with
the correlation values identified in a FACS-sorted bulk dataset of classical monocytes
from the BLUEPRINT consortium [43]. Then we repeated the same for GRNBoost2 edge
values. The correlation between single cell and bulk results was drastically lower for
GRNBoost2 (r=0.17) (Supplementary Figure A.20) than for Spearman correlation (r=0.34)
(Supplementary Figure A.21), suggesting that Spearman is more robust across datasets.

Many other single cell specific association measures could not be applied, as they
required pseudotemporal ordering of cells [87], which was not possible to reliably infer
for our adult PBMC datasets. We tested different methods for pseudotime ordering,
RNA velocity [182] and SCORPIUS [183], on an extended version of the Oelen v3
dataset, which contained two additional measurement points, 3 hours and 24 hours
after stimulation with pathogens. The inferred ordering from both algorithms did not
agree well and separated only the time points clearly (Supplementary Figure A.22). This
aligns with other studies that stated that the estimation of RNA velocity is difficult with
a PBMC dataset [184]. Overall, as we could not validate any results and there are no
large trajectories to expect in the untreated adult cells, we decided to not follow-up
further on this.

Furthermore, we tested if a reduction of the single cell sparsity improves the Spearman
correlation results. To achieve this, we grouped neighboring cells to meta-cells using
both the original MetaCell algorithm [185] and our own implementation based on Leiden
clustering [186] (see section 5.7.6). In both cases, we calculated the average expression
for each gene per meta-cell and then performed Spearman correlation on the meta-cells.
As planned, the sparsity was clearly reduced in the meta-cells. However, this led not to a
better concordance with the correlation pattern estimated in BLUEPRINT [43], which we
used again for validating the robustness (Supplementary Figure A.23). For this reason,
also the meta-cell grouping was not used for the following co-eQTL analysis.
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5. Analyzing genetic influence on personalized networks with single cell transcriptomics

5.2.2. Evaluating robustness of Spearman correlation across datasets

We extended the evaluation of the Spearman correlation values and explored how robust
they were across different scRNA-seq and bulk RNA-seq datasets. In each comparison,
we estimated the correlation values separately for each dataset and also separately per
cell type, in case of the single cell datasets. Afterwards, we compared them across two
datasets by calculating the Pearson correlation over the gene-pairwise correlation values,
getting so one value for each comparison. A strict threshold was chosen thereby for the
gene selection, with genes expressed in at least 50% of the cells in both datasets for each
pairwise comparison. The influence of this expression cutoff is evaluated later in this
section.

Across the five scRNA-seq datasets, we observed median correlation values between
0.86 for CD8+ T cells and 0.69 for monocytes (Figure 5.2 a, Supplementary Figure A.24).
This high concordance was observable for all scRNA-seq datasets, for example for CD4+
T cells the correlations between datasets lay between 0.67 and 0.86.

For the comparison of single cell datasets with bulk datasets, we selected three large
published bulk datasets, two with FACS sorted expression data from the BLUEPRINT
consortium [43] and the ImmuNexUT consortium [44] and one whole blood dataset
from the BIOS consortium [33]. The concordance across datasets was in general a bit
lower than for the within single cell comparison. For the ImmuNexUT dataset, which
covered all cell types annotated in our single cell datasets, the median correlation ranged
between 0.570 for CD8+ T cells and 0.259 for DCs (Figure 5.2 b, Supplementary Figure
A.21). Similar results were found for the comparison with the BLUEPRINT dataset,
which contained only CD4+ T cells (median r= 0.356) and monocytes (median r=0.339).
Likewise, the whole blood BIOS dataset got correlation estimates in a similar range
(median r between 0.265 and 0.458 per cell types). Of note, the BIOS dataset did not
contain cell type specific expression values, but had the largest sample size, which can
improve the correlation estimates.

We identified different factors that influenced the concordance between bulk and
single cell data: firstly, a stricter gene expression cutoff increased the concordance
between Oelen v3 and ImmuNexUT for CD4+ T cells (r=0.71 for genes expressed in 90%
of the cells) and vice versa, a less strict cutoff reduced it (r=0.21 for genes expressed in
10% of the cells) (Figure 5.2 c). As current single cell datasets tend to be sparser and
noisier than bulk, a strict cutoff improves the correlation by selecting highly expressed
genes that can be quantified more accurately. The drawback is, however, that only few
genes could be analyzed here, at a cutoff of 90% only 172 genes remain. The cutoff of
50% that we applied in our previous analyses balances both extremes, so that part of the
noisiest estimates was removed, but still several gene pairs could be explored.

Secondly, the cell type specific measurements did not match exactly between our single
cell and bulk datasets, as the BIOS dataset is a whole blood dataset and BLUEPRINT
and ImmuNexUT both captured only a subtype of CD4+ T cells and monocytes (naive
CD4+ T cells and classical monocytes). Furthermore, due to the different processing
steps, technical biases can lead to gene expression changes, for example during the
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5.2. Benchmarking co-expression pattern obtained from single cell data
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5. Analyzing genetic influence on personalized networks with single cell transcriptomics

FACS sorting.

Thirdly, as bulk expression counts are average values across many cells, the correlation
values estimated from bulk can differ from correlation values obtained from the individ-
ual single cells. This divergence is called Simpson’s paradox [187]. We aggregated our
single cell values to pseudobulk to explore if this effect is visible in our data. Indeed,
we identified several cases of highly expressed genes where the correlation was only
visible in the pseudobulk data and not in the single cell data or the other way round
(Supplementary Figure A.25). However, combing data points to pseudobulk can also
reduce noise and lead to more accurate co-expression estimations, especially for lowly
expressed genes. For this reason, identifying the Simpson’s paradox for lowly expressed

Figure 5.2. (preceding page): Evaluation of correlation metrics
a) Spearman correlation of different single cell datasets were
compared with each other, always taking the CD4+ T cells
and genes expressed in at least 50% of the cells in the corre-
sponding datasets (number of tested genes in parentheses
below Spearman correlation value). b) Comparison of the co-
expression profiles between the single cell datasets and with
the bulk RNA-seq datasets from BLUEPRINT, ImmuNexUT
(both measuring FACS-sorted naive CD4+ T cells) and BIOS
(whole blood). Again, we only assessed genes expressed in
at least 50% of the cells for the single cell dataset (number
of tested genes shown in parentheses below the Spearman
correlation value). c) Relationship between the co-expression
similarity between the ImmuNexUT naive CD4+ T cells and
Oelen v3 dataset CD4+ T cells and increasing gene expres-
sion cutoffs (the ratio of cells with non-zero expression for
a given gene). The number of genes tested are indicated by
color scale and the numbers in the bar plot. d) Compari-
son of the co-expression profiles between the bulk RNA-seq
datasets, taking the same gene subset as in a,b (number of
tested genes in parentheses below the exact Spearman corre-
lation value). e) Enrichment of correlated genes in scRNA-
seq (Oelen v3 dataset) among associated genes identified by
CRISPR knockout. For the enrichment, genes differentially
expressed after knockout were identified and tested for en-
richment. P-values in the plot show the significance level
of the Wilcoxon rank-sum test. f) Enrichment of correlated
genes in bulk RNA-seq (ImmuNexUT) among associated
genes identified by CRISPR knockout. Figure and legend
taken from [3].

96



5.3. Exploration of cell type and donor specific co-expression

genes is not always that clear, and we decided to not quantify the paradox overall.
As a last point, we observed that the gene-pair correlation estimates differed also

between the bulk datasets (r=0.47 and 0.52 for CD4+ T cells and r=0.35 and 0.42 for
monocytes) (Figure 5.2 d, Supplementary Figure A.26). This highlights that the bulk
datasets are not the perfect ground truth to capture all gene relationships correctly.
Putting it into perspective, the correlation between single cell and bulk datasets were in
a similar range as the ones of bulk vs bulk datasets.

5.2.3. Evaluating Spearman correlation compared to associations from
CRISPR knock-out data

Because the bulk datasets were not the perfect ground truth for the validation of the
single cell correlation values, we additionally included associations from a published
CRISPR-knockout scRNA-seq dataset in CD4+ T cells [188] in the comparison with
the Spearman correlation values. In the CRISPR dataset, successfully perturbed cells
were identified via single cell RNA barcodes using a tool called Mixscape [189] and
afterwards differentially expressed genes between wild type cells and perturbed cells
were analyzed. We restricted the analysis then to five knockout genes that had at least
10 DE genes.

In four of the five cases, we detected significantly higher correlation values between
the DE genes and the knock-out gene compared to the non-DE genes and the knock-out
gene using Wilcoxon rank sum test (p<0.05) and the CD4+ T cell correlation values from
the Oelen v3 dataset (Figure 5.2 e). When comparing it with bulk correlation values
from ImmuNexUT (naive CD4+ T cells) instead, only for two of the five knockout genes,
the correlation distribution was significantly higher for the DE genes (Figure 5.2 f).

Additionally, we applied the same approach for comparing gene pairs listed in the
STRING database [190] (i.e. who interact on the protein level) if their correlation
values were higher than for non-interacting pairs. For both, single cell and bulk
correlation values, the shift was significant based on Wilcoxon rank-sum test (p < 0.05)
(Supplementary Figure A.27).

5.3. Exploration of cell type and donor specific co-expression

After we showed in the validation that the Spearman correlation values were robust
across different datasets and matched associations identified in CRISPR data and in
the STRING database, we analyzed the biological differences of the correlation values
between cell types and donors within one cell type. We followed the same approach as
for the comparison between the datasets: the gene-pair correlation values between two
cell types were compared by calculating Pearson correlation across them. The identified
pattern matched the biological relationships, with high correlation across the different
lymphoid cell types (B, T and NK cells; r > 0.73), and lower correlations between the
lymphoid and myeloid cell types (monocytes, DCs; r < 0.45) (Figure 5.3 a). The relatively
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5. Analyzing genetic influence on personalized networks with single cell transcriptomics

low correlation between monocytes and DCs might be caused by the low cell type
frequency of the DCs, leading to less accurate co-expression estimates.

In general, the different scRNA-seq datasets showed more similar correlation pattern
(median r=0.80, Figure 5.2 a, Supplementary Figure A.24) than the different cell types
within the same dataset (e.g. for Oelen v3 dataset median r=0.64, Figure 5.3 a). This fur-
ther assured us that the correlation values capture meaningful biological characteristics,
such as cell type differences.

The overall correlation distribution differed slightly between cell types (Figure 5.3 b),
but in general only few gene pairs had correlation values above 0.1 (median 12.4%). The
DCs represented an outlier here with 32.3% gene pairs with r > 0.1.

As introduced in the beginning, multiple measurement points per donor in scRNA-seq
data allow the calculation of donor-specific correlation values. Within one cell type, the
concordance of correlations from different donors was quite high for the more frequent
cell types (e.g. median r=0.56 for CD4+ T cells), but far lower for less frequent cell types
(e.g. median r=0.06 for B cells) (Figure 5.3 c).

When we subsampled the cell types, we identified a clear association between the
number of cells and the correlation between individuals (Figure 5.3 d). Hence, most of
the differences between cell types were introduced by different number of cells, leading
to more robust estimates for the more frequent cell types and so better concordance
across donors. Some differences remained: when subsampling all cell types to the same
level, the NK cells showed lower concordance than the CD4+ and CD8+ T cells. A
logarithmic model that we trained for the four most frequent cell types (adjusted R2

values between 0.86 and 0.98) predicted median correlation levels > 0.80 for 1,000 T cells
or monocytes per donor and levels of 0.65 for 1,000 NK cells per donor (Supplementary
Figure A.28). This highlights the importance of a sufficient number of cells from each
donor to estimate cell type specific correlation values.

5.4. Approach for systematic identification of co-eQTLs

Following all these evaluations for the single cell Spearman correlation, we confidently
applied the donor-specific correlation values in our co-eQTL analysis. To identify these
genetic variants that change the correlation of a gene pair, we developed our own
strategy that deals with the sparsity of the single cell data and the large multiple testing
burden due to the large search space.

Previous co-eQTL analyses focused on a small set of preselected triplets (SNP-gene-
gene) to avoid a large multiple testing burden [55, 83]. The goal of our analysis here
was, however, a large-scale co-eQTL analysis to get a more comprehensive picture of
the occurrence of co-eQTLs in different cell types. We estimated that our power would
drop to 1.4% for a co-eQTL with a heritability of 10% if we test all genes expressed in
monocytes and one SNP per pair (in total 1.98 ∗ 108 tests). For this reason, we pre-selected
triplets for testing that we assumed are generally more likely to be co-eQTLs.

In the first step of our filtering strategy, we identified between 51 cis eQTLs for B
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Figure 5.3.: Comparison of correlation across cell types and donors
Each analysis was performed in the Oelen v3 dataset for all genes expressed
in at least 50% of the cells of the respective cell type. a) Comparing co-
expression patterns across cell types within the Oelen v3 dataset for genes
expressed in 50% of the cells for both cell types in each pair-wise com-
parison. The number of tested genes is shown in parenthesis below the
Spearman correlation value. b) Correlation distribution within each cell
type. c) Correlation between different individuals within each cell type
showing the distribution of all pair-wise comparisons between individuals.
d) Relationship between the number of cells per individual and cell type
and correlation between individuals separately for each cell type. In each
subsampling step, we assessed all individuals who have at least this number
of cells and subsampled to exactly this number (this leads to removal of
some individuals for higher number of cells and thus, a direct comparison
with the correlation values in c) is not possible). Figure and legend taken
from [3].
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5. Analyzing genetic influence on personalized networks with single cell transcriptomics

Cell type Number of eQTLs

CD4+ T cells 917
CD8+ T cells 527
Monocytes 625

NK cells 376
DCs 145

B cells 51

Table 5.1.: Significant eQTLs
Number of significant eQTLs (FDR<0.05) identified via meta analysis in each
cell type. Table adapted from [3].

cells and 917 cis eQTLs for CD4+ T cells (Table 5.1) via a cell type specific meta analysis
(FDR<0.05; more in Methods section 2.2.3). We used here four of the five scRNA-seq
datasets. The van Blokland v3 dataset was left out of this and all following analysis, as
the small sample size led to very few variants that passed the minor allele frequency
(MAF) cutoff of 10%. The motivation for this first filtering step was that variants that
are co-eQTLs are expected to influence the expression of one of the genes also directly
as an eQTL.

Selecting only variants that are eQTLs together with the associated gene as the eGene
is not sufficient alone to reduce the testing burden enough. For example, it would still be
over 12 million tests for CD4+ T cells. For this reason, we filtered additionally the second
tested genes, the co-eGenes, and tested only genes significantly correlated (nominal p <
0.05) with the eGene in at least 10% of the individuals. The 10% cutoff was chosen based
on the MAF filter, so that at least the individuals of one genotype group would have
significant correlation values. The rationale behind was that we are interested in changes
in correlation for co-eQTLs, but these changes are only meaningful if the correlation is
significant in at least one group. In general, the filtering criteria were selected so that the
approach balance both extremes, reducing the multiple testing burden but nevertheless
still testing many potentially interesting gene pairs. Therefore, we chose a less strict
filtering cutoff as for the first part, where we selected genes expressed in at least 50% of
the cells (Figure 5.2, 5.3).

The co-eQTL mapping was performed again as a cell type specific meta analysis of
our four selected single cell datasets in combination with a customized permutation
approach per eQTL to deal with the correlation structure between the tests. We identified
between 500 co-eQTLs for CD4+ T cells, containing 30 unique co-eQTL SNPs, and 35
co-eQTLs for B cells, all caused by the same co-eQTL SNP (Table 5.2).

Across all cell types, this led to a total of 72 unique co-eQTL SNPs associated with 946
unique gene pairs. The overlap between the cell types was rather small (Supplementary
Figure A.29). However, reliable statements about the cell type specificity of co-eQTLs
can not be inferred from this, as also the tested set of triplets differed between cell types
due to our strict filtering strategy (Figure 5.4 a). The power issue for less frequent cell
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5.4. Approach for systematic identification of co-eQTLs

Cell type Number of tests
Number of
co-eQTLs

Number of unique
co-eQTL SNPs

CD4+ T cells 179,841 500 30
CD8+ T cells 73,017 420 22
Monocytes 304,707 281 24

NK cells 25,998 123 10
DCs 41,655 58 9

B cells 2,936 35 1

Table 5.2.: Significant co-eQTLs
Number of tested triplets (SNP-eGene-co-eGene) and number of significant
co-eQTLs (FDR<0.05) identified via meta analysis in each cell type. Table
adapted from [3].

types is again observable, with fewer eQTLs and co-eQTLs for the less frequent cell
types.

When limiting the pairwise comparisons between cell types to triplets tested in both
cell types, relatively high concordance of co-eQTL effect sizes is visible across cell types,
with a median rb value [191] of 0.85 (Figure 5.4 a, see section 5.7.16). The concordance
was especially high between CD4+ and CD8+ T cells with values of 0.97 and 0.99.

The effect sizes across the different datasets of our meta analyses matched very well,
supporting the robustness of our results (Supplementary Figure A.30). Moreover, the
co-eQTLs replicated well in an independent dataset. We chose the large bulk dataset
from the BIOS consortium [33] for the replication (n=2,491, removing samples also part
of our single cell analysis), as the availability of other large-scale single cell datasets
is still very limited. To get co-eQTLs from bulk, a linear regression model with an
interaction term was applied on the BIOS dataset (more in Methods section 2.2.4). We
found high concordance of effect sizes between the datasets with rb values between 0.30
and 0.61 dependent on the cell type (Figure 5.4 b) The replication was especially high for
the more frequent cell types, the highest for CD4+ T cells with an rb value of 0.61. For
the least frequent cell type, the B cells, the calculation of the rb values was not possible,
as only one co-eQTL SNP was identified here. This provided not enough independent
measurement points for the calculation.

After we have proven that our chosen strategy with strict filtering provided us a set of
robust co-eQTLs that replicated well in BIOS, we explored the effect of different technical
factors. First, we skipped the last step of our filtering and tested each SNP-eGene pair
against all other expressed genes. The higher number of tests led to a higher absolute
number of co-eQTLs for the more frequent cell types, but to fewer co-eQTLs for B cells
and DCs (Table 5.3). The replication rate in the BIOS dataset was drastically reduced
in all cell types (Supplementary Figure A.31), highlighting that our original approach
including the filtering step produced a more robust set of co-eQTLs.

We observed that the distribution of correlation values differed between co-eQTLs and
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Figure 5.4.: General characteristics of identified co-eQTLs a)
a) Replication of discovered co-eQTLs across the major cell types. Correlation
of the effect sizes in replications among different cell types, measured by rb
value. Text inside each block indicates the rb value and number of replicated
co-eQTLs. Color intensity indicates rb value. b) Replication in BIOS dataset
for different cell types, indicated by the rb values. Scatter plot shows the
detailed Z-score comparison between the co-eQTL meta analysis and the
Z-score from the BIOS replication for CD4+ T cells. c) Number of significant
co-eQTLs for varying cell numbers. Dot color indicates the cell type, as
indicated in the text next to each dot. “cMono” means classical monocytes.
“ncMono” means non-classical monocytes. “CD4+ T Subsampled cells”
means that this analysis was done for CD4+ T cells, but for every individual
we randomly downsampled cells to the desired cell number as indicated in
the x-axis. d) Number of significant co-eQTLs for varying sample numbers.
“CD4+ T Subsampled Individuals” indicates that this analysis was done for
CD4+ T cells, but we randomly subsampled for the individuals. Figure and
legend taken from [3].
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Cell type Number of tests
Number of
co-eQTLs

Number of unique
co-eQTL SNPs

CD4+ T cells 12,137,281 15,433 249
CD8+ T cells 6,390,963 2,561 123
Monocytes 7,323,138 425 63

NK cells 4,261,756 960 79
DCs 1,272,690 8 1

B cells 390,150 20 1

Table 5.3.: Significant co-eQTLs from the unfiltered approach
Number of tested triplets (SNP-eGene-co-eGene) and number of significant
co-eQTLs (FDR<0.05) identified via meta analysis in each cell type, when
applying the unfiltered approach instead of the filtered. Table adapted from
[3].

non-significant triplets, especially for the co-eQTLs identified with our original strategy
including the co-eGene filtering step (Supplementary Figure A.32). The correlation mean
and variance of these co-eQTLs were higher than for the non-significant triplets, as
were the non-zero rates of the significant eGenes and co-eGenes. This further supports
that we identified true biological associations here. The differences could be utilized in
alternative filtering strategies to preselect triplets for co-eQTL mapping.

Furthermore, we evaluated potential confounding by sub-cell type composition in
our co-eQTL set, exemplarily for monocyte co-eQTLs. The monocytes can be classified
into two large subgroups, classical and non-classical monocytes. The assumption we
tested was the following: genetic variants that change the distribution between classical
and non-classical monocytes within an individual could potentially be identified as
co-eQTL associated with sub-cell type specific genes, even without a direct relationship
between the SNP and the genes. These sub-cell type specific co-eQTLs would only
be detectable in the complete set of monocytes, not in the sub cell types separately.
However, we found no general strong confounding of sub-cell type composition, as
co-eQTL effect sizes were highly concordant between sub-cell types and all monocytes
(rb ≥ 0.9) (Supplementary Figure A.33). Nevertheless, some individual co-eQTLs might
still be explainable due to sub-cell type confounding.

At last, we explored the effects of different experimental parameters on the number
of identified co-eQTLs by subsampling the number of cells and the number of samples
(Figure 5.4 c,d) (methods in section 5.7.18). We observed that a higher number of cells
led not only to more robust co-expression estimates, as shown before (section 5.3), but
also to a higher number of co-eQTLs (Figure 5.4 c). The impact of increasing the number
of samples was even stronger (Figure 5.4 d), highlighting the benefit of planned consortia
with very large sample sizes such as sc-eQTLgen [88] to potentially identify far more
co-eQTLs.
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5. Analyzing genetic influence on personalized networks with single cell transcriptomics

5.5. Interpretation of co-eQTLs

5.5.1. General results of enrichment analyses

The biological interpretation of the co-eQTLs can pinpoint upstream regulatory pro-
cesses and direct regulators, which are disrupted by genetic variants. This gives very
valuable insights into genetic regulation, especially also for disease variants. However,
as discussed in the beginning (Figure 5.1), the interpretation is complicated by the
mixture of direct regulators and indirectly associated co-eGenes in the co-eQTL set.
As these indirectly associated co-eGenes are supposed to be strongly correlated with
the unknown direct regulator, we made use of all co-eGenes and tried to identify the
common upstream pathways via a combination of different enrichment analyses. We
explored common gene ontology (GO) terms, TF binding sites and GWAS annotations
separately for all co-eGenes associated with the same SNP-eGene pair (details in section
5.7.19).

We focused on the 25% of SNP-eGene pairs (in total 19 pairs) with at least five co-
eGenes in at least one cell type. Most of them (18 of 19) were significantly enriched for
at least one GO term, showing potential common biological functions or pathways for
the co-eGenes. For seven SNP-eGene pairs, we additionally identified enrichment of TF
binding sites in the promoter region of the co-eGenes using ChIP-seq annotations from
the ReMap database [192]. These TFs represent likely common regulators of the shared
processes. In four of the cases, part of the enriched TFs overlapped the co-eQTL SNP
directly (or a SNP in high LD), strengthening the hypothesis that these TFs could be the
direct regulators affected by the SNP.

Furthermore, we identified that many of the co-eQTL SNPS (41 out of 72) were
associated with a GWAS loci (either directly or over a SNP in high LD). For two of these
co-eQTL SNPs, the associated co-eGenes were enriched for the same GWAS traits, after
annotating co-eGenes to GWAS traits via MAGMA [193]. These GWAS traits, mostly
blood cell counts and immune-mediated diseases, support again a potential shared
biological mechanism of the co-eGenes and a connection with the co-eQTL SNP itself.

In the following, we focused on different example SNP-eGene pairs where we found
convincing evidence for a better interpretation of affected upstream processes of the
SNP over GO and TF enrichment and downstream consequences based on GWAS
annotations.

5.5.2. Interpretation of co-eQTLs associated with rs1131017–RPS26

The SNP-eGene pair rs1131017–RPS26 was associated with the highest number of co-
eGenes in total and was the only pair with significant associations in all six tested
cell types. While co-eQTLs for rs1131017–RPS26 were identified before in CD4+ T
cells [55] and monocytes [83], our study, which combines a new approach with a large
sample size, enabled a more in depth study of rs1131017–RPS26 in all cell types. The
rs1131017–RPS26 eQTL is especially interesting, as rs1131017 was associated with several
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autoimmune diseases before, including Type 1 diabetes [194]. If and how the eQTL gene
RPS26, which is a ribosomal gene, is involved in this relationship remained unknown in
previous studies [195].

Interestingly, the direction of effect differed between the cell types. Most co-eQTLs
showed a positive direction of effect in monocytes, NK cells and B cells, i.e. the
correlation increased for the less frequent genotype, concordant with the eQTL direction
(Figure 5.5 a,b,c). In contrast, co-eQTLs with positive and negative direction of effects
were nearly balanced in T cells (46% negative direction of effect in CD4+ T cells and 43%
in CD8+ T cells) (Figure 5.5 a,c,d).

This was not only driven by different detection power across the cell types, as the
replication of positively associated co-eQTLs was high across cell type, but not the nega-
tively associated co-eQTLs (Figure 5.5 c, Supplementary Figure A.34). When running
the GO enrichment analyses separately for positive and negative co-eQTLs, different
functions turned up (Figure 5.5 e,f): positive co-eGenes were enriched for functions
associated with translation (Figure 5.5 f), matching the fact that many positive co-eGenes
were ribosomal genes as RPS26 itself. Contrary, negative co-eGenes were enriched for
immune response and T cell activation, further strengthening their specificity for T cells.

Six TFs were found in the TF enrichment analysis among co-eGenes that showed
also binding directly at the genomic region of the co-eQTL SNP rs1131017 and that
were co-eGenes themselves. From this set of potential direct regulators for the eQTL,
five are involved in lymphocyte activity. Furthermore, MAF and CD74, two of them,
were specifically enriched in the subset of negative co-eGenes. These two are especially
interesting candidates for follow-up analyses.

Enrichment for different blood cell count traits were found in multiple cell types
via our GWAS enrichment analysis. Additionally, only in T cells, there was significant
enrichment of multiple immune-related diseases, among them rheumatoid arthritis (RA),
Crohn’s disease (CD), multiple sclerosis (MS) and hay fever. This matched the GWAS
annotations of rs1131017. Taken together, the co-eQTLs and the different enrichment
analyses indicate a role of RPS26 in lymphocyte activation, which could explain how
the downstream effects of rs1131017 are related to autoimmune diseases.

5.5.3. Other co-eQTL results

Also for other SNP-eGene pairs, the co-eQTLs provided additionally valuable insights
into the genetic regulation. One of them is the SNP rs7806458 associated with the
eGenes TMEM176A in monocytes (11 co-eGenes) and TMEM176B in monocytes (6
co-eGenes) and DCs (1 co-eGene). The SNP was associated with MS in previous studies
[196]. Matching this, the GWAS enrichment of co-eGenes associated with rs7806458-
TMEM176A showed an enrichment for MS. Additionally, the co-eGenes of rs7806458-
TMEM176B in monocytes were enriched for the GO term complement component C3b
binding. This is noteworthy, as MS was related to disturbances in blood coagulation
before [197], with which complement component C3b binding is closely connected. Even
though the TF enrichment analysis brought up no potential direct regulators for the
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process, these co-eGenes provided further information about the mechanistic connection
between rs7806458 and MS.

Another interesting example is the SNP-eGene rs393727-RNASET2. We did not run
an enrichment analysis for it, as it contained only four co-eGenes and we set a threshold
of five for all enrichment analyses in general. Still, we found several connections with
immune-mediated diseases for the co-eQTL set: based on our GWAS analysis, the SNP
is connected with CD and inflammatory bowel diseases (IBD) over GWAS SNPs in
high LD with it. The eGene is associated with IBD [198], one co-eGene ITGB1 with
CD [199] and another co-eGene CRIP1 with gut immunity [200]. Especially interesting
for this example is that all four co-eGenes are also negatively associated co-eGenes for
rs11311017–RPS26. This might reveal common upstream regulatory pathways for both
eQTLs and in general for the different immune diseases.

The interpretation of co-eQTLs is not always that straightforward, as shows the
example of several co-eQTLs in the HLA locus. One of them is the SNP-eGene pair
rs9271520–HLA-DQA2, which could be identified in T cells, monocytes and DCs (7-17
co-eGenes dependent on the cell type). The SNP was associated with several immune
diseases that were also enriched among the co-eGenes. The exact mapping of causal
relationships in this example is however challenging due to the LD structure in the HLA
region. Proofing this, a removal of HLA genes from the GWAS enrichment analysis led
to a loss of the signal.

Further SNP-eGene examples and their interpretation can be found in the publication
[3] and its supplementary text.

Figure 5.5. (preceding page): Annotation of co-eQTLs
a) Union network constructed with co-eQTLs found in CD4+
T cells or monocytes that are associated with the SNP–eGene
rs1131017–RPS26. The two circled clusters contain co-eGenes
that are in those corresponding GO terms. b) Example of
one co-eQTL: rs1131017–RPS26-CD74. Left plot indicates the
co-expression patterns from all individuals in the Oelen v3
dataset. Each regression line was fitted with expression data
from one individual. Right plot indicates the co-expression
values from the three genotype groups. c) Comparison
between z-scores from monocytes and z-scores from CD4+
T cells, Red dots indicate positive co-eQTLs from CD4+ T
cells and blue dots negative co-eQTLs. d) Example of one co-
eQTL: rs1131017–RPS26-RPL11 with the same layout as (b).
e) GO term enrichment results for the co-eGenes in negative
co-eQTLs from CD4+ T cells. f) GO term enrichment results
for the co-eGenes in positive co-eQTLs from CD4+ T cells.
Figure and legend taken from [3].
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5.6. Project summary and outlook

In this project, we explored the value of co-eQTL analysis, a new system genetics
approach becoming now possible with growing scRNA-seq cohorts. Importantly, we
evaluated the best way to map co-eQTLs. This included that we benchmarked the use of
Spearman correlation as an association measure, we showed the effect of filtering tested
SNP-gene-gene triplets to identify more robust co-eQTLs and highlighted the influence
of number of cells and sample size on the detection power. With our selected strategy,
we were able to identify 72 unique SNP co-eQTLs associated with 946 unique gene pairs
in a cell type specific analysis for the six major cell types. At last, we showed strategies
to interpret these co-eQTLs and identified with this for example a connection of the
eQTL rs1131017-RPS26 with T cell activation that can help to explain its association with
immune-related diseases.

Rapid developments in the field of scRNA-seq are likely to improve co-eQTL results
in the future. We hope that our experimental parameter and methods evaluation
will support future studies, and we expect far more co-eQTLs from larger sample
sizes. This will aid the identification of cell type specific co-eQTLs and the mechanistic
interpretation of co-eQTL, which are both currently limited by the power of our study.
Newer scRNA-seq technologies are likely to have a better capture efficiency and will
extend the number of genes that can be considered, which is currently still restricted
because of the sparsity of the data. Additionally, multi-omics technologies have the
potential to advance association analysis of gene pairs and to allow the development of
new methods on top of Spearman correlation. They enable an extended study of genetic
regulation, which can not be completely captured at the transcript level.

5.7. Materials and additional methods

5.7.1. Single cell datasets

Three different studies were combined for the co-eQTL mapping and the preceding
evaluation analyses to increase the total sample size and so the detection power. All
three were published before in other studies (or are currently under review) and named
after the first author: the Oelen dataset [83] with 104 healthy donors in total, the van
der Wijst dataset [55] with 45 healthy donors and the van Blokland dataset [178] with
38 cardiac patients. Further information can be found in the respective publications,
including technical specifications of the experiment and quality control. We used the
already preprocessed datasets from each publication, but selected only one time point
for the Oelen dataset (untreated) and the van Blokland dataset (6-8 weeks after hospital
admission of the patients), choosing the time points that are expected to match the best.

For all downstream processes, count matrices normalized with sctranform are used
[201]. Cell type annotations were obtained from the original publication in case of the
Oelen dataset and inferred with Azimuth for the van Blokland and van der Wijst dataset
[202]. Sub-cell type annotations were taken from Azimuth for all datasets.
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5.7.2. Bulk datasets for evaluations

Three large published bulk dataset were taken for evaluation of the single cell associa-
tion results, two of them containing cell type specific expression measurements from
FACS sorting and one whole bulk measurements. The dataset from the BLUEPRINT
consortium comprises FACS-sorted data from naive CD4+ T cells and classical mono-
cytes from 197 individuals [43]. We regressed out the first principal component for
the monocyte data to correct for unknown covariates. The second FACS-sorted dataset
from the ImmuNexUT consortium is larger with 28 different cell types from 337 donors
[44]. We followed the preprocessing as described in the publication. Briefly, we filtered
lowly expressed genes, normalized using TMM with edgeR and corrected for batch
effects via combat and removed outlier samples. The whole blood dataset from the
BIOS consortium is the largest with 3,198 donors [33] and was corrected for 20 RNA
alignment metrics before the analysis.

5.7.3. Rho proportionality

We estimated Rho proportionality values in Oelen v3 dataset monocytes for all genes
expressed in at 5% of the cells (8,634 genes) using the propr R package [180] and
compared the Rho values to Spearman correlation values by calculating one Pearson
value across the gene pairwise association values. Additionally, we analyzed the
concordance between both measures specifically for lowly expressed genes, which are
especially critical for single cell data. To reduce the very high computational demand
for Rho estimation here, we randomly selected 50 genes expressed in 0-5% of the cells
and 50 genes expressed in at least 90% of the cells. We estimated Rho proportionality
and Spearman correlation within the lowly and highly expressed genes and between
each the groups.

5.7.4. GRNBoost2

GRNBoost2 [181] was applied on the Oelen v2 dataset monocytes for genes expressed
in 50% of the cells and on the bulk dataset from BLUEPRINT classical monocytes.
Edge weights between both were correlated using Pearson correlation. The result was
compared to the Pearson correlation value when using Spearman correlation instead of
the GRNBoost2 edge weights.

5.7.5. Temporal ordering of cells

Two different approaches for pseudotemporal ordering were applied on the subset of
classical monocytes from the Oelen v3 dataset. The extended dataset with untreated
and stimulated cells from the Candida stimulation was taken for this specific analysis to
increase the differences between the cells in the dataset and obtain a ground truth of
known time points.
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The first method we tested is RNA velocity as implemented in scVelo [182] with
dynamical mode and the 2,000 highest variable genes. The required input matrices with
spliced and unspliced counts were produced with velocyto [203]. The second method
was SCORPIUS, where we followed the default workflow as described in the manuscript
[183]. Both temporal orderings were compared afterwards with each other.

5.7.6. Grouping cells to meta-cells

We tried to reduce the sparsity in our single cell data by grouping similar cells to
metacells for the Oelen v3 dataset monocytes. First, we tested the original algorithm
MetaCell [185], running it separately for each sample, but including also the stimulated
conditions (in contrast to other analyses) to obtain larger heterogeneity for the clustering.
As planned, the meta-cells divided the cells from different conditions nicely, and we
could clearly assign the metacell condition dependent on the majority condition of the
grouped cells. Average expression values across all cells in each metacells were taken as
the expression values of the metacells.

We calculated the Spearman correlation across the untreated meta-cells, grouping the
gene sets thereby in different expression bins (expressed in 20%-40% of the meta-cells, in
40%-60%, in 60%-80% and in 80%-100%). These values were compared with Spearman
correlation values from the BLUEPRINT dataset classical monocytes. We repeated the
same analysis using the single cell dataset directly instead of the meta-cells and explored
which version had the higher concordance with BLUEPRINT.

As changing the granularity of the metacells, i.e. how many cells are grouped to
one metacell, was limited in the original algorithm, we tested additionally our own
implementation of a metacell algorithm using Louvain clustering of cells [186] with
different resolution parameters.

5.7.7. Validation of Spearman correlation via comparison across datasets

Single cell correlation values were obtained separately for each of the five single cell
dataset (split into study and 10X chemistry version) and per cell type, but combining all
individuals. For the comparison across datasets, only gene expressed in at least 50% of
the cells in both datasets were taken for each pairwise comparison. A summary value
for each comparison was generated by calculating the Pearson correlation over all gene
pairwise Spearman correlation values.

For the bulk correlation values, the same approach was chosen. The same set of genes
was taken for a fair comparison: genes were required to be expressed both in the bulk
dataset and in at least 50% of the cells in the compared single cell dataset.

Other thresholds from 10% to 90% were evaluated in the comparison of ImmuNexUT
and Oelen v3 dataset and the comparison of BLUEPRINT and Oelen v3 dataset, both
times for CD4+ T cells. The 50% threshold represented a good trade-off to capture a
certain number of genes and still maintain some correlation between single cell and
bulk results. For this reason, 50% was applied for all other evaluations.
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5.7.8. Investigating the occurrence of the Simpson’s paradox

We evaluated if we can find examples for Simpson’s paradox with our single cell datasets.
For this, we calculated the Spearman correlation once separately for each individual
based on the single cells and once we first build a pseudobulk matrix, by averaging
the counts per individual, and then calculated the Spearman correlation across donor.
Then second approach mimics how a bulk version of the dataset would look like. We
applied this strategy for genes expressed in at least 50% of the cells in monocytes from
the Oelen v3 dataset. We explored the gene pairs with the largest difference between
the pseudobulk correlation and the single cell correlation values.

5.7.9. Validation of Spearman correlation values using a CRISPR dataset

To define gene pair association from the CRISPR knockout dataset [188], successfully
perturbed cells were identified using Mixscape [189]. We continued with five knockout
genes that were expressed in at least 50% of the cells from the reference dataset (Oelen
v3 dataset, CD4+ T cells) and had a sufficient number of perturbed cells. We defined
genes as associated with the knockout gene if they were in the DE set of perturbed vs
control cells (identified by Mixscape, FDR < 0.05), but not in the DE set of unperturbed vs
control cells (again Mixscape, FDR < 0.05). We applied a one-sided Wilcoxon rank-sum
test to identify if the correlation of these DE genes with the knock-out gene was higher
than for other expressed genes. The same was repeated with naive CD4+ T cells from
ImmuNexUT as a bulk reference set.

5.7.10. Validation of Spearman correlation values using the STRING database

Following the same logic as for the CRISPR dataset, we used a one-sided Wilcoxon
rank-sum test to identify differences between Spearman correlation from gene pairs
in the STRING database [190], i.e. pairs where the corresponding proteins interact,
and other expressed gene pairs. We tested correlation estimates from single cell (Oelen
v3 dataset, CD4+ T cells) and bulk (ImmuNexUT, naive CD4+ T cells). We chose the
version 11 of the STRING database, downloading a preprocessed version of it curated
by a benchmarking study [87].

5.7.11. Comparing Spearman correlation values across cell types

We followed the same strategy to compare the different cell types as we did to compare
the different datasets for the same cell type. We calculated gene pairwise Spearman
correlation values separately for each cell type, and then one Pearson correlation value
across all gene pairwise correlations for the comparison in the end. We focused again
on genes expressed in 50% of the cells for both cell types and chose the two larger
single cell datasets for the evaluation, the Oelen v2 and v3 datasets. Furthermore, we
compared the absolute distribution of correlation coefficients across cell types.
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5.7.12. Comparing Spearman correlation values between donors

The approach to compared donors was the same as described in the last subsection 5.7.11
for the comparison of cell types, but splitting the dataset additionally per donor, i.e.
calculating Spearman correlation values per donor and cell type. Every donor was then
compared with every other donor within each cell type, which results in one correlation
distribution over all donor comparisons per cell type.

We subsampled the number of cells per donor several times to evaluate what drives
the differences between cell types. Donors that had less than the chosen number of
cells were omitted from the comparison in each step. We started the subsampling at 25
cells per donor, increased the number in steps of 25 cells, and stopped when 75% of the
donors had fewer cells than the subsampling number. The trend could be approximated
by a logarithmic curve mean(rindividuals) ∼ log(ncells) for the four most frequent cell type
(CD4+ and CD8+ T cells, monocytes and NK cells).

5.7.13. Power calculation

We estimated the power to detect a co-eQTL with a heritability of 10% (value selected
based on previous study [83]) in our combined cohort with 173 samples based on the
F-test, as implemented in scPower [1]. The significance threshold of 0.05 was corrected
for multiple testing via the Bonferroni approach (see Methods chapter 2.4). The required
number of tests was approximated assuming that we test one SNP per gene pair, but
all combination of genes that are expressed in at least one cell in monocytes Oelen v3
dataset. Setting a higher expression threshold increases the detection power, in contrast,
testing more SNPs per gene pair would decrease it.

5.7.14. eQTL mapping

For the cell type specific single cell eQTL mapping, we tested all SNP-gene pairs that
were significant eQTLs in a very large bulk whole blood study [33], taking only the top
SNP for each gene. This way, we limited the search space and increased the power. We
performed the analysis separately for each cell type and for all genes expressed in this
cell type. The eQTLPipeline v1.4.9 [204] was used, which combines results from the
different cohorts using a fixed effect meta analysis (see Methods chapter 2.2.3), with a
cis-window of 100 kb, 10 permutations for FDR calculation (strategy described in [33])
and a MAF of 0.1. Due to the small sample size, we omitted the van Blokland v3 dataset
in this and all following analyses, as very few variants were above the MAF filter. This
left us with four single cell datasets for the meta analysis (Oelen v2 and v3 dataset, van
der Wijst dataset, van Blokland dataset).

5.7.15. Co-eQTL mapping

We explored two different strategies to select gene pairs to test in the co-eQTL mapping,
which was always done separately for each cell type. In both cases, we restricted the
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test set to SNP-eGenes that were significant in the corresponding eQTL analysis for the
cell type. In the first approach, we tested these SNP-eGene pairs against all other genes
that had significant Spearman correlation in at least 10% of the individuals (nominal
p-value < 0.05). This additional filtering step was skipped for comparison later, taking
instead all other expressed genes without any correlation requirements.

During the co-eQTL mapping, we decided to keep missing correlation values as
missing instead of imputing them with 0. Our reasoning was that due to the sparsity
of the single cell data, it is not clear if they represent really uncorrelated genes or are
caused by lowly expressed genes not captured accurately.

We performed a meta analysis across the four single cell datasets (same strategy as
for the eQTL meta analysis) followed by a sophisticated multiple testing strategy that
considers the correlation structure among the tested gene pairs. For this, the permutation-
based strategy from fastQTL [109] was adapted as follows: for each SNP-eGene pair, the
SNP-eGene-co-eGene triplets were permuted between samples and the lowest p-value
over all co-eGenes selected per SNP-eGene. This permutation was repeated 100 times,
resulting in 100 p-values per SNP-eGene from which a beta distribution Beta(n, k) is
fitted. This is used as the extreme tail of the null distribution to get empirical p-values pe

for the nominal p-values pn of the real (non-permutated) co-eQTL tests as pe = FBeta(pn)

(see original algorithm [109] and Methods chapter 2.4 for more details).
The smallest p-value for each SNP-eGene pair over all co-eGenes was taken, trans-

formed into an empirical p-value and Benjamini-Hochberg correction was performed
over these p-values. To map this FDR correction back to all other p-values of the SNP-
eGene pairs, which are not the smallest, the empirical p-value that is closest to FDR of
0.05 is selected. Over the respective inverse-beta distributions, this p-value is transferred
back to a nominal p-value threshold, that will be different for each SNP-eGene pair, as
each has another beta distribution. Afterwards, all co-eQTLs lower than this specific
p-value threshold in the corresponding SNP-eGene are defined as significant.

5.7.16. Evaluation of concordance of effect sizes across cell type specific
co-eQTL

The concordance of effect sizes between co-eQTLs of different cell types was quantified
using the rb measure [191]. We followed an approach to estimate the errors across gene
pairs re, as suggested in the original manuscript [191] with

re = rp ∗
ns√ni ∗ nj

(5.1)

Here, rp represents the correlation of co-expression levels between two cell types in
the overlapping samples, ns the number of overlapping samples, ni and nj the number
of samples in cell type i and j.

As we did not test all SNP-eGene-co-eGene triplets in all cell types due to our filtering
strategy, we additionally reported the number of triplets that were tested in both cell
types to put the rb values into context. In cases, where less than 10 co-eQTLs were tested
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in both cell types, all connected with the same SNP-eGene, no robust estimation of the
rb was possible, and instead the value was set to missing (NA).

5.7.17. Replication in BIOS

To replicate the single cell co-eQTLs in the whole blood bulk dataset from BIOS [33], we
applied a linear regression approach with an interaction term as used previously [46]
(see also Methods section 2.2.4).

eGene = β0 + β1 ∗ SNP + β2 ∗ co-eGene + β3 ∗ SNP ∗ co-eGene (5.2)

The model was solved via the statsmodel Python package [205], using an ordinary
least squares model. Effect sizes and Benjamini-Hochberg corrected p-values from
the interaction term were taken for the co-eQTL evaluation. We again applied the rb
values as defined above (subsection 5.7.16) to quantify the replication with the single
cell co-eQTLs. Donors that were part of the single cell datasets were removed from the
BIOS dataset before the analysis.

5.7.18. Co-eQTL subsampling

We investigate the impact of the experimental parameters when we randomly subsam-
pled the number of cells (to 50, 150 and 250 cells) and number of samples (to 50 and
100) for CD4+ T cells. For the number of cells, we kept all individuals with fewer cells
than the subsampling cutoff and subsampled the other individuals to that level. Nine
individuals with fewer than 10 CD4+ T cells were excluded in general. We then repeated
the co-eQTL mapping on the subsampled datasets, including all filtering steps.

5.7.19. Enrichment analyses

Results from three different enrichment analyses were combined to interpret the iden-
tified co-eQTLs, GO enrichment, TF enrichment and GWAS enrichment. All analyses
were conducted separately for each SNP-eGene pair over all co-eGenes and per cell type,
including all pairs with at least five co-eGenes. Each time, multiple testing correction
was done separately per SNP-eGene using FDR and a significance threshold of 0.05 was
chosen.

GO enrichment was performed via the R package clusterProfiler (version 4.0.5) [53]
using as background set all genes that were tested in the co-eQTL analysis of the
corresponding cell type.

TF annotations for the enrichment were obtained from all blood-associated cell lines
in the ReMap 2022 database [192], which contains processed ChIP-seq peaks. TFs were
annotated to co-eGenes by checking for an overlap of the TF peaks with the promoter
region of the co-eGenes (+/- 2 kB of the transcription start site). Fisher’s exact test was
used for enrichment with a background set containing all genes tested in the co-eQTL
analysis of the corresponding cell type. We took as additional evidence for TFs to be
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direct regulators if the enriched TF was a co-eQTL itself and if the co-eQTL SNP lies in
a TF peak (or a SNP in high LD with R2 ≥ 0.9). We used SNiPA (1000 Genomes Project,
Phase 3 v5, European population, GRCH37 and genome annotations from Ensembl 87)
to extract the necessary LD information for this [206].

For the GWAS analysis, we first identified GWAS loci among the SNPs and SNPs
in high LD (R2 ≥ 0.8) in the GWAS catalog (update from 3/1/2022) [6]. The LD
information was obtained with LDtrait (1000 Genomes Project CEU, GRCH37) [207].

Afterwards, we analyzed if the co-eGenes were enriched for common GWAS traits
using MAGMA [193]. The required GWAS annotations were taken from a GWAS analysis
of the GTEx consortium, which processed summary statistics for 114 traits uniformly
[208]. MAGMA analysis was run separately for each trait, conditioned on default gene-
level covariates and using again the 1000 Genomes Project, European population, for
LD information. The background set contained all genes tested as co-eQTLs.

Specifically for the co-eGenes of rs11311017–RPS26 we tested the positively associated
co-eGenes and negatively associated co-eGenes independently for enrichment in all
three analyses, as we observed differences in direction between the cell types.
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Understanding molecular consequences of genetic variants and epigenetic factors and
how they interact to form complex phenotypes remains a key question in systems
genetics. In this thesis, we showed that both the analysis of DNA methylation in a
large bulk cohort and the use of single cell technologies lead to the discovery of novel
associations and allow the analysis of cell type specific effects. During the projects, we
developed new strategies and computational methods, considering in particular the cell
type specificity of associations:

In our DNA methylation study, we have done the first bulk deconvolution iQTL anal-
ysis for DNA methylation, which identified several cell type dependent meQTL effects,
and we highlighted the large influence of cell type proportions on the identification of
eQTMs. In the next project, we developed the first generally applicable and fast tool
for cell type specific single cell eQTL and DE power analysis, called scPower, which we
expect to be an important method for experimental design in the future. Finally, we
benchmarked and improved the strategies to identify co-eQTLs with single cell data, a
new analysis direction that identifies upstream regulatory processes affected by eQTLs
and facilitates so the connection between eQTL effects and gene regulatory networks.

Additional to the rigid analysis and careful interpretation of the different biological
datasets, the public accessibility of the developed computational methods was very
important for us in all projects, visible for example in the R package for scPower.

In the following, we will discuss the challenges and opportunities of each project in
more detail and give an outlook on future research directions based on them.

6.1. Uncovering cell type specificity of DNA methylation

In the first project, we explored the relationships between DNA methylation, genetic
variants and gene expression. DNA methylation is an important epigenetic mark,
associated with various disease [119, 120, 121, 122, 123] and affected by different
environmental factors [124, 125], however its exact mechanistic role in gene regulation
is not fully uncovered yet [130]. Associations between DNA methylation and genetic
variants (meQTLs) as well as between DNA methylation and expression (eQTMs) have
already been mapped in previous studies [209, 38, 191, 210], but we improved the
identification and interpretation of these associations with our large multi-ethnic cohort
and with our cell type specific analyses. Our strategies, the use of interaction models
for iQTL detection and the adjustments of expression and methylation for cell type
proportions, are important examples of how to overcome a large shortcoming of many
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bulk datasets, the combined measurement of different cell types in a tissue. For eQTLs, it
is generally established that these associations are often tissue and cell type specific [43,
32, 44] and therefore masked in classical bulk studies. In contrast, the cell type specificity
of meQTLs is not well explored yet and requires further research. First comparative
studies, which showed a high overlap across tissue, have limited explanatory power due
to small sample sizes [191, 211, 212].

Overall, we identified 11,165,559 meQTLs using stringent statistical thresholds and
replication testing across populations. A large fraction of the meQTLs seem to be
generally found across tissues, evident in good replication rates also in non-blood
tissues, in line with results from previous studies [191, 211, 212]. Nevertheless, we
still identified several interaction meQTLs (iQTLs), where the effect sizes changed
dependent on the cell type proportion of the individuals. Such interaction models were
successfully applied for eQTL studies before [42, 46, 41], but we were the first to utilize
this approach for interaction meQTLs. The iQTL of rs174548-cg21709803 is a good
example of the additional value of iQTLs: the iQTL showed the T cells specificity of the
meQTL rs174548-cg21709803 and provides a potential link of the meQTL with asthma,
over which the fatty acid metabolism can be connected with the disease.

For the eQTMs, the cell type composition played an even larger role than for the
meQTLs, likely because both DNA methylation and gene expression pattern are cell type
specific. When we corrected for basic covariates and genetic background, we identified
90,666 cis eQTMs and 54,807,559 trans eQTMs, which we called genotype adjusted (GTA)
eQTMs. However, when we corrected additionally for the cell type proportion, only 769
cis eQTMs and 97,281 trans eQTMs remained, which we called cell proportion adjusted
(CPA) eQTMs. This shows that most of the eQTMs in the GTA set were driven by cell
type composition. They capture not differences between individuals in the population,
but instead differences between cell types visible due to different cell type compositions
of the individuals. Previous eQTM studies typically focused only on CPA eQTMs, using
our approach or likewise adjustment strategies [38, 136]. However, both sets of eQTMs
give valuable insights into gene regulation, given that the context is considered in the
interpretation: the GTA eQTM set shows how the interplay between DNA methylation
and gene expression is important for the cell type identity, while the set of CPA eQTMs
captures the actual variability in the cohort between donors.

In follow-up analyses of the GTA and CPA eQTMs, we analyzed the context-specificity
of eQTMs in order to identify general rules which CpGs are associated with which genes,
a currently open question [130]. We found strong evidence for a context-specificity of
both GTA and CPA eQTMs, because our machine learning models that predict eQTMs
based on different genomic features had high performance values both across cohorts
and tissues. The idea of the eQTM prediction model is an adaption and extension of
the prediction model from Bonder et al. [38], which we improved in several points. We
evaluated not only the prediction of positively versus negatively associated eQTMs, but
also of eQTMs vs non-eQTMs. Additionally, we extended the set of eQTMs by using a
larger cis distance, compared to Bonder et al., so that for example more positive eQTMs
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and more eQTMs with CpGs outside the promoter region were included. On top of that,
we use a different feature set for the prediction. Bonder et al. used histone modifications
as features, while we changed to ChromHMM states, which are derived from histone
modifications and easier to interpret biologically [24]. We also incorporated additionally
other types of annotations, for example the 3D chromatin structure and gene specific
features, to get a more complete picture of potential influences. Finally, we extended
the analysis also for cross-tissue prediction of muscle eQTMs based a model trained
on PBMC eQTMs. This gave important insights in the generalizability of our model,
suggesting that the general mechanisms of eQTMs are similar in all cell types, when
taking cell type specific genomic annotations into accounts.

With our extended sets of eQTMs and features, we inferred several interesting bi-
ological relationships: for the CPA eQTM models, a strong connection of promoter
methylation and gene expression was visible, matching previous studies [130]. For
the GTA eQTMs, we identified a connection between enhancer methylation and gene
expression. For both CPA and GTA eQTM sets, the models indicated an impact of
the 3D chromatin structure on the eQTM probability of CpG-gene pairs, with pairs
in the same TAD being more likely to be associated. Overall, the feature importance
evaluation of our models highlighted large differences between the genomic context of
GTA eQTMs and CPA eQTMs. The prediction performance was high for both types of
eQTMs, showing that both types are connected with certain genomic contexts. Following
our interpretation, that GTA eQTMs represent mostly differences between cell types,
our analyses showed that cell type differences are associated with enhancer methyla-
tion. This finding is supported by previous studies that identified enhancers as crucial
elements to drive cell type identity and showed how DNA methylation is defining the
enhancer activation status [213].

Finally, our prediction models provide not only useful information about the genomic
context of eQTMs, but can also be used to identify candidate genes connected with EWAS
CpGs. These candidate genes can facilitate the interpretation of EWAS CpGs, as gene
functions are much better annotated and understood than CpGs, allowing for example
pathway enrichment analyses. Our model could successfully prioritize candidate genes
that are likely associated with EWAS CpGs from a study about methylation changes in
muscle after regular exercise training [137]. We showed the credibility of the identified
candidate genes, as they were enriched among associated DE genes from the same study
and for GO functions associated with muscle activity. Considering the fast-growing
number of EWAS studies [29], this is an additional valuable use-case for our eQTM
models.

The models that predicted the direction of effect of the eQTMs did not perform as well
as the models that distinguished between eQTMs and non-significant CpG-gene pairs.
We assume that this might be caused by the very general feature set that differentiates
not enough between activating and repressing factors, for example for the transcription
factors. Furthermore, the eQTM set contains not only directly interacting CpG-gene
pairs, but also indirectly associated pairs. While the restriction on cis eQTMs probably
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reduces the number of indirect interactions, these might nevertheless exist and make the
prediction of the effect direction more difficult.

Another limitation of the current study is the detection power, despite the already
large size of our cohort with in total nearly 7,000 samples. This is especially visible
in our iQTL analysis, which is affected by a larger multiple testing burden of testing
different interaction terms and many weak effect sizes of iQTLs. The global iQTL
analysis with the larger multiple testing burden found fewer meQTLs than the targeted
testing of cosmopolitan meQTLs. The large number of 64% independent global iQTLs
suggests power limitations of our current dataset that hinder the identification of more
iQTLs. This also needs to be considered when interpreting the small number of iQTLs
associated with BMI and smoking, despite the known connection of DNA methylation
and both environmental traits [124, 125]. Larger, more well-powered follow-up studies
might identify additional associations and give a more complete answer, which fraction
of meQTL associations is cell type specific and which is generally identifiable in all
tissues.

For the future, the eQTM prediction models show great potential for the application
in follow-up projects. While our models comprised already a large and diverse genomic
feature set, further annotations could be included. For example, we focused on gene
level quantification in our project. A similar model with transcript level quantification
could investigate the potential role of DNA methylation in splicing and include splice
sides and the intron-exon structure as features.

The rise of single cell data opens new possibilities for cell type specific analysis (more
in the next sections), also in case of single cell DNA methylation [78]. However, large
single cell cohorts are still scare and the coverage of single cell DNA methylation does
currently not reach reliable quantification on CpG level. For these reasons, we expect
that the cell type specific analysis approaches for bulk cohorts, introduced in this project,
will remain very valuable in the next years to make use of the extensive resource of bulk
datasets, with increasing sample sizes.

6.2. Development of a novel single cell power analysis method

The previous section about our DNA methylation study highlighted the importance
of the cell type specific analyses when studying gene regulation, as was shown before
already for eQTL analyses [41, 43, 44]. Compared to bulk studies, single cell transcrip-
tomics facilitates cell type specific analysis clearly, as shown in several recent single
cell eQTL analyses [57, 58, 83]. However, single cell analysis has currently still some
drawbacks, in particular the higher sparsity of the datasets and higher costs during
the cohort generation. Both issues can be compensated (to some degree) with proper
experimental design, for which an appropriate power analysis method is required.

For this purpose, we developed scPower, the first analytic power analysis method for
single cell multi-sample experiments, which enables fast and user-friendly calculations.
Other single cell power analysis methods are based on simulations, for example powsimR
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[112] and muscat [113] for single cell DE studies and splatPop [151] for single cell eQTL
studies. The results of the different approaches match very well, as shown in our
comparison of scPower, powsimR and muscat. However, the analytic approach of scPower
makes it far more efficient than comparable simulation-based approaches. This allows
also the estimation of power for large cohorts, where resource requirements are very
extensive for simulation-based methods, as well as the easy and fast comparison of
different parameter settings. Of note, the simulation-based methods have the advantage
of greater flexibility, for example testing the effect of different normalization methods
or additional batch effects on the data. For this reason, both power analysis strategies,
analytic and simulation-based, have their application areas.

We designed scPower to be very flexible for a large variety of use cases. It covers
both DE and eQTL analysis with data from different single cell technologies and can
be easily customized with priors dependent on the analyzed cell type and expected
effect sizes. We recommend the use of pilot datasets to estimate these priors, where
possible. Alternatively, scPower provides the functions to simulate priors. In the end,
the selection of appropriate priors by the user is crucial for good power estimations, a
general requirement for all power analysis tools.

We leveraged scPower’s efficiency by including a parameter optimization function.
It finds the parameter combination for a certain budget that maximizes the detection
power. While the exact optimal parameters depend on the experimental priors, the
technology and the costs, we saw in our evaluations a general trend that measuring a
large number of cells at low read depth is in many cases the best setting. This is in line
with the findings of Mandric et al. [160] who did a first analytic investigation of effective
sample sizes for single cell eQTL studies. In contrast to Mandric et al., scPower estimates
the power directly instead of the effective sample size and provides a generalizable
method for a wide range of adjustable settings. Additionally, we saw in our evaluations
that microfluidics-based single cell technologies, such as 10X Genomics and Drop-Seq,
reached higher power for the same budget compared to plate-based technologies, such
as Smart-seq, because a high number of cells can be measured more cost-efficiently. In
the end, the optimal experimental design depends on the specific experimental question
and given resources of the user, which all can be easily adjusted in scPower.

scPower was designed specifically for multi-sample single cell transcriptomics experi-
ments based on the pseudobulk approach. This restriction to pseudobulk analyses is
necessary, as each power analysis method is tightly coupled with a certain statistical
testing procedure. Other analyses, for example the co-expression QTLs (chapter 5), and
also other omics layers, for example single cell ATAC-seq data, are currently not covered
by scPower. The same is true if a continuous cell type definition should be used, as
pseudobulk analysis requires discrete cell types. Here, linear mixed models, such as
CellRegMap [85], provide an alternative.

To further increase the usability of our tool, we plan to extend the default set of cell
type specific expression priors of our R package by integrating the large collection of
tissues from the Human Cell Atlas [71]. Other possible extensions for our tool in the
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future would be the inclusion of power calculations for allele specific expression analysis
and perturbation experiments, both of course again specifically for single cell data.

Currently, many new single cell cohorts for different contexts and with larger sample
sizes are generated, for example within the sc-eQTLgen consortium [88]. We expect
scPower to be here an important support for experiment design of these studies. The
value of our tool is also visible in several review articles about best practices in single cell
studies that recommend scPower for study design [214, 215]. All together, we envision
that scPower will further promote the design of more well-powered single cell cohort to
facilitate cell type specific analysis of gene regulation.

6.3. Detection and interpretation of single cell co-eQTLs

Simplified cell type specific eQTL analysis based on the pseudobulk approach is an
important new direction that becomes possible with single cell technologies. On top of
that, single cell data allows completely new types of analysis, such as the construction
of individual specific gene regulatory networks using the multiple measurement points
per individual [86]. This can improve the interpretation of genetic variants, because
regulatory processes influenced by the variants can be better pinpointed. Exploring
these new possibilities, we mapped of co-expression QTLs (co-eQTLs), i.e. genetic
variants that change the correlation between two genes, in a large single cell cohort, in
order to identify upstream regulators affected by eQTLs.

First targeted co-eQTL analyses that focused on a small number of selected loci have
been done before [55, 83], but a more broad systematic identification of co-eQTLs has
not been performed so far. Several open methodological questions hindered a large-scale
co-eQTL analysis: although benchmarking studies evaluated single cell association
metrics and network construction algorithms, no clear best performing method was
identified there [179, 87]. In particular, nobody explored the methods for the specific use-
case of co-eQTL identification yet. Additionally, sophisticated pre-selection strategies,
which choose SNP-gene-gene triplets for co-eQTL testing, are necessary to reduce the
huge search space and so the very large multiple testing burden. Furthermore, proper
approaches for the downstream interpretation of the identified co-eQTLs have not been
determined yet.

For this reason, we developed a novel strategy to identify and interpret co-eQTLs
large-scale, addressing the aforementioned questions. We tested it on a single cell cohort
of 173 human PBMC samples, where we identified 72 independent co-eQTL SNPs
associated with 946 gene pairs in the six major cell types.

We chose Spearman correlation as the association metric to quantify the gene co-
expression, as we got very robust results across different datasets, including single
cell RNA-seq, bulk RNA-seq and CRISPR knockout associations. Additionally, it was
very efficient to calculate for many gene combinations and easy to interpret. Other
association methods could not improve our results, when we tested Rho proportionality
[180] and GRNboost2 [181], which were both among the top performing methods in
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different benchmarking studies [179, 87]. The same is true for alternative strategies, in
particular merging cells to meta-cells [185] and ordering cells by pseudotime [183, 182].
However, a full benchmarking of all existing association metrics was beyond the scope
of this project and all validations were specifically tested for our dataset.

An interesting result during the association benchmarking was that the single cell
datasets correlated better with each other than the bulk datasets. We identified different
aspects influencing these observations: first, single cell data needs to be strictly filtered
for these results, as robust correlation estimates depend crucially on the removal of lowly
expressed genes. Second, we showed how the Simpson’s paradox could potentially
falsify part of the bulk correlation results. Third, also the cell type composition is
expected to influence the results, but the associations from the FACS-sorted, i.e. cell type
specific, bulk datasets were not closer to the single cell associations than the associations
from the whole-blood dataset. This could be caused by technical effects during FACS
sorting, which can distort the expression quantification, or by mismatches in the sub cell
types between the FACS sorted datasets and the single cell datasets, e.g. Naive CD4+
T cells and CD4+ T cells. In general, it needs to be kept in mind that scRNA-seq and
bulk RNA-seq capture different types of variability, between-cell and between-person
variability, respectively. A previous study showed that this can lead to the identification
of different gene modules [216]. A full overlap of found associations between bulk and
single cell is therefore not expected.

After choosing Spearman correlation, we added to our co-eQTL detection approach a
strict filtering of SNP-gene-gene triplets, based on eQTL associations and the correlation
strengths of gene pairs. The value of this filtering was proven by higher replication rates
of the filtered co-eQTL set in a second independent cohort. Dependent on the co-eQTL
analysis goal, other filtering approaches could be applied, e.g. using prior knowledge
on gene-TF pairs, or targeting a certain subset of SNP-gene-gene triplets associated to
a specific biological question. However, our goal was a broad analysis of co-eQTLs
without requiring additional prior information.

The interpretation of the co-eQTLs is complicated by the fact that Spearman correlation
captures both direct and indirect interactions. However, we utilized these associations
and identified common pathways and TF binding sites using enrichment analyses. In
the case of rs1131017-RPS26, we found so a potential explanation for the relationship
between the SNP rs1131017, which is associated with several autoimmune diseases, and
the ribosomal gene RPS26. Co-eGenes with positive effect sizes were associated with
translation and well replicable across cell type. In contrast, co-eGenes with negative
effect sizes were associated with lymphocyte activity and only found in T cells, several
of them also directly linked to autoimmune diseases. Furthermore, we identified five
co-eQTLs that could potentially be direct regulators of the process, as their binding sites
were enriched among all co-eQTLs of the T cells. Taken together, this indicates that
RPS26 plays not only a role in translation, but is also involved in T cell regulation, as
supported by another current study [217]. This additional function of RPS26 provides a
logical connection of the eQTL with autoimmune disease, which was debated before
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[195]. All this information can only be gained by the additional knowledge about the
co-eQTLs, not by the eQTL alone, proving the value of co-eQTL analysis to analyze
genetic variants.

In many of the other cases, the interpretation of co-eQTLs was less clear. Overall,
we see that our study is still underpowered, as we found a relatively small number of
co-eQTLs compared to the expectations based on the targeted co-eQTL analyses [55, 83]
and large eQTL analyses [33]. This complicates the enrichment analyses, which were
in many cases not possible at all. Furthermore, the sparse scRNA-seq data restricted
the set of tested genes. Specifically, TFs are often lowly expressed and might not be
included in the co-eQTL analysis. Because of this, the TFs that are the direct regulators
of the eQTL might have been missed. Nevertheless, we can still infer information about
it and the underlying biological pathways over our enrichment analyses.

A disadvantage of our strict filtering approach is that a different set of triplets is
tested in each cell type, which makes the comparison between cell types quite difficult.
However, we saw that already the different cell type frequencies have a huge impact
on the number of significant co-eQTLs, i.e. far fewer co-eQTLs are detected for less
frequent cell types. Hence, the small overlap of co-eQTLs between cell types can not be
interpreted reliable and larger cohorts with higher power are needed.

We plan to apply our improved co-eQTL strategy in future single cell studies. To
generally aid the experimental design of future single cell co-eQTL cohorts, we explored
the effects of different experimental parameters on the number of co-eQTLs using a
subsampling approach. Both a higher number of cells and a higher sample size led to
a clear increase of the number of identified co-eQTLs. This can also explain the low
number of co-eQTLs for less frequent cell types as a power limitation of our current
analysis. Of note, the subsampling showed also that the number of cells was important to
get more robust correlation estimates for each sample, as a higher cells numbers resulted
in higher concordance between individuals. The experimental design considerations for
co-eQTLs matched with our observations for eQTL power analysis from scPower, which
showed the large importance for both sample size and number of cells to increase the
number of identified eQTLs.

For this reason, we expect that a far larger number of co-eQTLs is detectable with
larger cohorts in the future, for example with data from the OneK1K cohort [57] and the
sc-eQTLgen consortium [88]. We envision that our first evaluations in this project will
provide the groundwork to properly design new cohorts, identify more robust co-eQTLs
and interpret the found associations.

6.4. Conclusion and outlook

When comparing the different projects, both analysis directions - the integration of
multiple omics layers and the advance from bulk to single cell technologies - have shown
their value to increase our understanding of genetic and epigenetic gene regulation. A
combination of both, single cell multiomics analysis, is expected to bring everything
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together and enable far better insights into the molecular set-up of each cell.
Single cell transcriptomics alone is not sufficient to capture the full picture of all

regulatory processes within each cell. As shown in our co-eQTL project, association
measures such as Spearman correlation can be used to identify connections between
genes, but the identification of direct regulating transcription factors remains difficult. It
was recently shown that the combination of single cell RNA-seq and single cell ATAC-
seq data can improve the construction of regulatory networks, as it includes information
about open chromatin and so about likely active TF binding sites for each gene [218,
219]. Similar strategies could be used to improve our co-eQTL pipeline, for example to
preselect gene-TF pairs for testing or to validate identified associations. While currently
mostly single cell transcriptomics datasets are generated on population level, promising
developments have been made for single cell ATAC-seq to measure open chromatin
for large number of individuals [76, 77] and even to measure both scATAC-seq and
scRNA-seq simultaneously in the same cell [82].

Furthermore, the combination with single cell methylation data, for which no cohort
level datasets exist yet, will improve our understanding of genetic regulation. DNA
methylation is an important epigenetic regulator for gene expression and very cell type
specific, as shown in our DNA methylation project. With single cell data, this can be
taken better into account and the set of cell type specific meQTLs and eQTMs can be
extended.

For each new analysis, proper power analysis methods, such as scPower, are crucial for
the success. The current algorithm behind scPower can build the basis for scATAC-seq
power analysis and others.

The different projects in the thesis highlight many promising novel developments: the
technical improvements of measuring omics layers on single cell level, followed by new
computational methods to make use of these large and complex data sets. Together, they
have the potential to increase our understanding about genetic and epigenetic regulation
in healthy individuals and disease patients drastically in the coming years.
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A.1. Supplementary Figures and Tables for chapter 3

Annotation Resource
Described

component
Cell type
specificity

ChromHMM states
(15 state model)

Roadmap Epigenomics
Project [24]

CpG yes

DHS sites ENCODE [35] CpG yes
TFBS ENCODE [35] CpG yes
TFBS ReMap [220] CpG yes

Chromatin interaction
points

4DGenome
data base [221]

CpG yes

Super-enhancers Hnisz et al. [222] CpG yes
CpG islands and

CpG island shores
UCSC genome
browser[223]

CpG no

TATAbox and
CpG island promoter

FANTOM5 project [224] gene no

House-keeping genes Eisenberg et al. [225] gene no
TSS ChromHMM

state
Roadmap Epigenomics

Project [24]
gene yes

Distance between
CpG and TSS

Biomart [226] pair no

CpG within
the gene body

Biomart [226] pair no

Pair within the same
TAD or connected

via HiC contact
Javierre et al. [227] pair yes

CTCF binding site
between the CpG

and the gene
ENCODE [35] pair yes

Table A.1.: Overview over genomic annotations for ML models
Genomic annotations used for the machine learning models with their source,
the component of the eQTM they describe (the CpG, the gene or the CpG-
gene pair together) and if it is a cell-type specific annotation.

127



A. Supplement

cis meQTLs long−range cis meQTLs trans meQTLs
Rep: 34%

Dir: 84%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50
E

ff
e

c
t−

S
iz

e
 C

D
4

Rep: 26%

Dir: 80%

−0.50 −0.25 0.00 0.25 0.50

Rep: 32%

Dir: 85%

−0.50 −0.25 0.00 0.25 0.50

Rep: 26%

Dir: 80%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

E
ff
e

c
t−

S
iz

e
 C

D
8

Rep: 21%

Dir: 77%

−0.50 −0.25 0.00 0.25 0.50

Rep: 27%

Dir: 81%

−0.50 −0.25 0.00 0.25 0.50

Rep: 37%

Dir: 88%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

E
ff
e

c
t−

S
iz

e
 N

E
U

T Rep: 28%

Dir: 81%

−0.50 −0.25 0.00 0.25 0.50

Rep: 37%

Dir: 89%

−0.50 −0.25 0.00 0.25 0.50

Rep: 36%

Dir: 87%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

E
ff
e

c
t−

S
iz

e
 M

O
N

O Rep: 28%

Dir: 81%

−0.50 −0.25 0.00 0.25 0.50

Rep: 36%

Dir: 89%

−0.50 −0.25 0.00 0.25 0.50

Rep: 19%

Dir: 72%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

E
ff
e

c
t−

S
iz

e
 V

A

Rep: 18%

Dir: 73%

−0.50 −0.25 0.00 0.25 0.50

Rep: 29%

Dir: 79%

−0.50 −0.25 0.00 0.25 0.50

Rep: 19%

Dir: 73%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

E
ff
e

c
t−

S
iz

e
 S

A

Rep: 19%

Dir: 75%

−0.50 −0.25 0.00 0.25 0.50

Rep: 27%

Dir: 80%

−0.50 −0.25 0.00 0.25 0.50

Rep: 44%

Dir: 81%

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

E
ff
e

c
t−

S
iz

e
 S

A
T

Rep: 48%

Dir: 84%

−0.50 −0.25 0.00 0.25 0.50

Rep: 49%

Dir: 86%

−0.50 −0.25 0.00 0.25 0.50

low high

Density
Effect−Size Whole Blood

Figure A.1.: Replication of meQTLs in different cell types and tissues.
Replication of meQTLs in a-d isolated white cell subsets (CD4+ and CD8+
T cells, neutrophils and monocytes), e,f isolated visceral and subcutaneous
adipocytes (VA and SA) and g whole subcutaneous adipose tissue (SAT).
Figure taken from [2].
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Figure A.2.: Distribution of machine learning features among the eQTM classes.
a Distance distribution (CpG to TSS of the gene) for positive eQTMs, nega-
tive eQTMs and Non-eQTMs (non-significant eQTMs) based on the GTre-
gressed eQTMs of the KORA cohort and an FDR threshold < 0.05. b
Distribution of CpGs over the 15 different ChromHMM states for the same
eQTM set. A CpG is defined to be in a state if it is in the state in at least
one of the investigated cell lines.
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Figure A.3.: Effect of FDR and variance filtering on the model performance.
a AUC performance for the eQTM prediction (eQTM vs non-significant
pairs) in a 10-fold cross validation on the KORA dataset for different FDR
thresholds (colors) and variance filtering thresholds (x axis). The variance
filtering threshold represents the fraction of highly variable genes, which
is kept after the filtering. The box plots show the AUC values across the
different folds of the cross-validation. Models were trained for both the
Logistic Regression and Random Forest, as well as for the GTA eQTMs and
the CPA eQTMs b The total number of CpG-gene pairs and the number of
significant eQTMs that remain after the variance filtering.
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Figure A.4.: Correlation matrix between all features
The correlation is calculated on the full set of CpG-gene pairs (not filtering
on significant eQTMs), but considering only pairs where the CpG was
selected after the variance filtering (for the KORA cohort, GTA model).
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Figure A.5.: Feature importance of the model eQTMs vs non-significant pairs for the
GTA eQTMs
Extended version of Figure 3.4, showing all features (without filtering the
rare features).
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Figure A.6.: Feature importance of the model eQTMs vs non-significant pairs for the
CPA eQTMs
Extended version of Figure 3.5, showing all features (without filtering the
rare features).
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Figure A.7.: Feature importance of the model positive eQTMs vs negative eQTMs for
the GTA eQTMs
a The feature importance of the KORA models with GTA eQTMs. For the
Logistic Regression, bivariate models were trained for each feature plus
the distance, for Random Forest, multivariate models. b,c Replication of
the feature importance in the LOLIPOP model for Logistic Regression (b)
and Random Forest (c). r values (top left of each plot) are the Pearson
correlations between the scores from LOLIPOP and KORA.
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Figure A.8.: Feature importance of the model positive eQTMs vs negative eQTMs for
the CPA eQTMs
a The feature importance of the KORA models with CPA eQTMs. For the
Logistic Regression, bivariate models were trained for each feature plus
the distance, for Random Forest, multivariate models. b,c Replication of
the feature importance in the LOLIPOP model for Logistic Regression (b)
and Random Forest (c). r values (top left of each plot) are the Pearson
correlations between the scores from LOLIPOP and KORA.
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A.2. Supplementary Figures for chapter 4

Figure A.9.: Pilot PBMC data set to show expression prior estimation
a UMAP visualization of all 6 runs, clustered using Louvain and annotated
to cell types using marker genes. b Evaluation of Demuxlet assignment
to the different individuals by testing the expression of sex specific genes
per run. The error rate "Xist expressing male" shows which fraction of
cells is assigned to a male donor from all cells expressing Xist. The "Y
expressing female" shows which fraction of cells is assigned to a female
donor from all cells having more reads mapped to chromosome Y than
the median value. Both error rates decrease when Demuxlet and Scrublet
doublets are removed. c Cell type frequencies for each individual (n=14
biologically independent samples). Box plots show medians (center lines),
first and third quartiles (lower and upper box limits, respectively), 1.5-fold
interquartile ranges (whisker extents) and outliers (black circles). d Marker
gene distribution over the Louvain clusters. The color of the point visualizes
its mean expression in the cluster, the size of the dot in how many cells
of the cluster it is expressed (expression level larger than 0). Figure and
legend taken from [1].
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Figure A.10.: Evaluation of gamma mixture fits for the expression means
Gamma mixture fit (components in violett, green, orange) over all gene
expression means for one batch of the PBMC pilot dataset compared to
the observed distribution (blue). Fitted separately for each cell type (see
panel titles), showing the 21,000 highest expressed genes for each cell type.
Figure and legend taken from [1].
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Figure A.11.: Relationship between the parameters of the mixture distribution and
the mean number of UMI counts per cell
The two left censored gamma components of the mixture distribution are
parametrized over their means and standard deviations (row 1 and 2),
additionally there are three probability parameters (row 3 and 4) showing
the proportion of each of the three components, the zero component and
the two gamma components. The fits were performed for each cell type
separately, here shown for the CD4 T cells. There is a linear relationship
between the mean and standard deviation parameters of the gamma
components and the mean UMI counts (row 1 and 2). The probabilities
of the zero component and the first gamma component show a linear
relationship to the mean UMI counts (row 3). The probability parameter
of the second gamma component stays constant (row 4). The other cell
types show the same pattern. Figure and legend taken from [1].
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Figure A.12.: Relationship between UMI counts per cell and average number of reads
that were uniquely mapped to the transcriptome per cell
Visualizing the relationship between the mean UMI counts per cell and
number of reads for the different runs from the PBMC pilot dataset. The
relationship can be described with a logarithmic fit. Figure and legend
taken from [1].

Figure A.13.: Expression model with percentage cutoff
Expression model when applying a percentage cutoff (expressed in x%
of the cells) instead of an absolute cutoff (> x counts in pseudobulk) for
the individual level threshold. Calculated for the same data set as in
Figure 4.3 B-C. The observed number of expressed genes (solid lines)
closely match the ones estimated with scPower (dashed lines). Curves
were calculated once with a population cutoff of expressed in > 50% of the
individuals (blue lines) or once without any population level filtering (red
lines). Figure and legend taken Reviewer’s Response of [1].
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Figure A.14.: Relation between eQTL power and expression mean in a simulation
study
a The simulated eQTL power is compared to the analytic power calcu-
lated with scPower for a range of effect sizes (R2 between 0.1 and 0.6),
sample sizes (between 20 and 150) and FWER-corrected p-values (between
0.05/(10*1,000) and 0.05/(10*10,000)). The color coding shows the mean
count value. b The deviation between the analytic power and the simu-
lated power is stratified by the expression mean used in the simulation.
Box plots show medians (center lines), first and third quartiles (lower
and upper box limits, respectively), 1.5-fold interquartile ranges (whisker
extents) and outliers (black circles). Figure and legend taken from [1].
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Figure A.15.: Detection power using observed priors from reference studies
Detection power for DE genes (a) and eQTL genes (b) dependent on the
study, total sample size and the number of measured cells per cell type for
a transcriptome mapped read depth per cell of 20,000. The fold change
for DE genes and the R2 for eQTL genes is taken from published studies,
together with the expression rank of the genes (studies shown in panel
titles). The expression profile and expression probabilities in a single cell
experiment with a specific number of samples and measured cells was
estimated using our expression prior, setting the definition for expressed
to > 10 counts in more than 50% of the individuals. Figure and legend
taken from [1].
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Figure A.16.: Comparison of scPower with the simulation-based methods powsimR
and muscat in combination with different DE methods
Difference in number of expressed genes (a,b), DE power (c,d) and overall
detection power (e,f) between scPower and simulations. The adapted
version of powsimR was run with DESeq2, edgeR-LRT and limma-voom,
using the mean-ratio method (MR) for normalization. The adapted version
of muscat was run with DESeq2, edgeR, limma-trend and limma-voom. The
power was evaluated for sample sizes of 4, 8 and 16 (see panel titles) and
for 200, 1000 and 3000 cells per person (x axis). Both FWER adjusted
power (a,c,e) and FDR adjusted power (b,d,f) were evaluated. The bar
plots represent the mean power over n=25 simulation runs of powsimR
and muscat, the error bar shows the standard deviation and the points
represent each individual simulation run. scPower as an analytic solution
always provides the same result (so n=1 here). Figure and legend taken
from [1].
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Figure A.17.: Gene curve fits for different single cell technologies
Evaluation of the expression probability from scPower for a lung data set
measured with Drop-seq (a) and for a pancreas data set measured with
Smart-seq2 (b), both subsampled to different read depths (represented by
line color). The solid lines represent the observed gene curves, the dashed
lines the fitted curves. The point symbol visualizes the cell type. Gene
expression criteria are chosen as UMI counts > 10 in all cells for Drop-seq
(a) and read counts > 10 per kilobase transcript in all cells for Smart-Seq2
(b). Figure and legend taken from [1].
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Figure A.18.: Comparison of scPower with the simulation-based methods powsimR
and muscat for other single cell technologies
Evaluating expression priors of a lung dataset measured with Drop-seq
(a-c) and a pancreas dataset measured with Smart-seq2 (d-f) by comparing
difference in number of expressed genes (a,d), DE power (b,e) and overall
detection power (c,f) between scPower (y axis) and simulations of powsimR
and muscat (x axis). The adapted version of powsimR was run with edgeR-
LRT using the mean-ratio method (MR) for normalization and the adapted
version of muscat with edgeR. The power was evaluated for sample sizes of
4, 8 and 16 and for 200, 1000 and 3000 cells per person, always using FDR
adjusted p-values. Figure and legend taken from [1].
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A.3. Supplementary Figures for chapter 5

Figure A.19.: Comparison between Rho proportionality and Spearman correlation
a) Comparison for genes expressed in at least 5% of the monocytes in Oelen
v3 dataset. Colors indicate the density (light color for higher density). b)
Comparison for very highly expressed genes (expressed in at least 90%
of the cells) and very lowly expressed genes (expressed in 0-5%), both
times sampling 50 examples to increase visibility of the scatter plot. Colors
represent type of gene pair (either both highly expressed, both lowly
expressed or one highly and one lowly expressed). Figure and legend
taken from [3].

Figure A.20.: Comparison of GRNBoost2 correlation between single cell and bulk
Comparison of the co-expression profiles (edge weights) gained from
GRNBoost2 between the single-cell monocytes from Oelen v2 dataset with
the bulk RNA-seq dataset from BLUEPRINT (classical monocytes). Only
genes were taken that were expressed in at least 50% of the cells for the
single-cell dataset. Figure and legend taken from [3].
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Figure A.21.: Comparison of Spearman correlation between single cell and bulk
datasets for different cell types
Extension of Main Figure 5.2 b for other cell types: Comparison of the co-
expression profiles between the single-cell datasets with the bulk RNA-seq
datasets from BLUEPRINT, ImmuNexUT (both measuring FACS sorted
cell types) and BIOS (whole blood). For BLUEPRINT, classical monocytes
were measured, for ImmuNexUT, the compared cell types were naive B
cells, naive CD8+ T cells, myeloid DCs, classical monocytes and NK cells.
Again, only genes were taken that were expressed in at least 50% of the
cells for the single-cell dataset. The number of tested genes is shown in
brackets in each square below the exact Spearman correlation value. Figure
and legend taken from [3].
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Figure A.22.: Exploring different pseudotime methods
Comparison of sampled time points during the stimulation experiment (a),
temporal ordering from RNA velocity with scVelo (b) and ordering from
SCORPIUS (c), plotting cells each time in the same UMAP. Estimated for
Oelen v3 dataset, classical monocytes. Abbreviations for the stimulation
experiment: UT: untreated, 3hCA: 3 hours after CA stimulation, 24hCA:
24 hours after CA stimulation. Figure and legend taken from [3].
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Figure A.23.: Grouping cells to meta-cells
Similar cells were grouped to meta-cells, using either the original MetaCell
algorithm (parameters shown in the plot: K=20, minCells=10) or our own
implementation based on the Leiden algorithm (parameters shown in the
plot: resolution=20) (see Methods for detail). All methods were applied
to the Oelen v3 dataset, Monocytes. a) Both meta-cells generated from
Leiden clustering and from the MetaCell algorithm lead to more genes
expressed in at least x% of the cells compared to the original single cell
data (visualized here via a cumulative density function). b) In contrast, the
number of (meta)cells per sample is reduced with both algorithms drasti-
cally, this way reducing the number of measurement points to infer the
correlation per sample. c) To benchmark the performance, the correlation
with the BLUEPRINT bulk data set was calculated. To evaluate how lower
expressed genes are affected by the meta-cell grouping, the correlation is
calculated separately for gene pairs were the non-zero expression level of
both genes is between 20%-40%, 40%-60%, 60%-80% and 80%-100% of the
cells (showing the first number on the x- axis). Figure and legend taken
from [3].
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Figure A.24.: Comparison of Spearman correlation across single cell datasets for dif-
ferent cell types
Extension of Main Figure 5.2 a for other cell types, comparing different
single-cell datasets. Spearman correlation of the Oelen v3 and v2 datasets,
the van Blokland v2 and v3 datasets and the van der Wijst dataset were
compared with each other, taking genes expressed in at least 50% of the
cells in the corresponding datasets. Figure and legend taken from [3].
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Figure A.25.: Simpson’s paradox in expression data
a) A simulated example showing how Simpson’s paradox can appear in ex-
pression data. The colors of the dots represent the sample. Each small dot
represents a cell, and the large dots represent the average expression across
cells for that individual. The line in the left figure is the regression line
for the sample-averaged dots, and the lines on the right are the regression
lines for all cells for each of the three samples. b) An example showing
a false positive correlation identified by the pseudobulk expression data
but not identified in the personalized manner c) An example showing a
false negative correlation not identified if aggregating the scRNA-seq data
with the pseudobulk approach, but a true correlation identified by the
personalized expression data. Figure and legend taken from [3].
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Figure A.26.: Comparison of Spearman correlation across bulk datasets for monocytes
Extension of Main Figure 5.2 d for monocytes: Comparison of the co-
expression profiles between the bulk RNA-seq datasets from BLUEPRINT,
ImmuNexUT (both measuring FACS sorted classical monocytes) and BIOS
(whole blood). In all datasets, only genes expressed in 50% of the cells
from the Oelen v3 dataset were selected, to make it comparable with
Supplementary Figures A.24 and A.21. The number of tested genes is
shown in brackets in each square below the exact Spearman correlation
value. Figure and legend taken from [3].
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Figure A.27.: Validation of correlation pattern with the STRING database
Enrichment of correlated genes among gene pairs whose proteins are
interacting according to the STRING database, taking correlation values
from Oelen v3 single-cell dataset in a) and ImmuNexUT bulk dataset in b).
P-values in the plot show the significance level of the Wilcoxon rank sum
test. Figure and legend taken from [3].
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Figure A.28.: Relationship between number of cells and concordance between donors
Fitting a logarithmic curve (based on the natural logarithm) for the four
most frequent cell types (CD4+ T cells, CD8+ T cells, monocytes, NK cells)
to explain the correlation value between individuals by the number of
cells per individuals (estimated curves and adjusted R2 values for each
cell type in the text). The dotted line shows the extrapolation of this fit to
predict correlation when increasing the number of cells up to 1,500 cells
per individual and cell type. Figure and legend taken from [3].
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Figure A.29.: Overlap of significant co-eQTLs between cell types
Number of significant co-eQTLs after filtering and meta-analysis and
overlap between all cell types, showing that only a small fraction of co-
eQTLs is identified in more than one cell type. Figure and legend taken
from [3].
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Figure A.30.: Comparison of Z-scores across datasets within the meta-analysis
Distribution of significant co-eQTL Z-scores per dataset, that was included
in the meta-analysis, for the CD4+ T cells. The plot shows scatter density
plots between datasets (lower triangle), distributions within each dataset
(diagonal) and correlations between datasets (upper triangle). Figure and
legend taken from [3].
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Figure A.31.: Replication rates for co-eQTls from filtered and unfiltered strategy
Comparison of rb values from BIOS replication analysis between co-eQTLs
identified with the filtering strategy and that without the filtering strategy
(filled vs unfilled dots). Figure and legend taken from [3].
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Figure A.32.: Correlation distribution of co-eQTLs and non-significant triplets
Comparing the correlation distributions of co-eQTLs and non-significant
triplets, obtained with approach including the filtering step (a,c,e,g) and
without the filtering step (b,d,f,g). Comparison of co-expression mean
(a,b), co-expression variance (c,d), non-zero rate of the eGenes (e,f and
of the co-eGenes (g,h) between co-eQTLs and non-significant triplets. All
analyses done for Oelen v2 dataset and separately for each cell type. Figure
and legend taken from [3].
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Figure A.33.: Impact of sub-cell type composition on monocyte co-eQTLs
Replication rates of co-eQTLs identified in monocytes, classical monocytes
(cMono) and non-classical monocytes (ncMono) compared with each other,
measuring the ratio of tested co-eQTLs in both (sub)cell types (a) and the
rb values for each replication (b). Figure and legend taken from [3].

Figure A.34.: Replication of co-eQTLs associated rs1131017–RPS26 in CD4+ T cells in
other cell types
Effect sizes from rs1131017–RPS26 co-eQTLs that were significant in CD4+
T cells were compared across cell types. Each panel shows the replication
performance in the corresponding cell type as indicated in the panel titles.
Figure and legend taken from [3].
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