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Abstract

The goal of the project is to explore the possibilities of multi-fidelity machine learning
for wheel-soil interactions. The scarcity of high-fidelity data in the problem leads to
attempts to enhance models based on lower-fidelity data, which is easier to obtain.
With multiple overlapping features present in the Mars rover dataset, dimensionality
reduction techniques are implemented to enhance performance and combat memory
problems. The correlation between low and medium fidelity data we explore to assess
the propriety of multi-fidelity methods along with various Gaussian Processes kernels’
fitness for the task. Along with Gaussian Processes, a Neural Network approach we
introduce for the multi-fidelity regression task of predicting the force of the Mars rover
incorporating both tabular and image data. The models we benchmarke and compare
according to their accuracy, the number of required data points, and possible further
improvements.
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1 Structure of the report

In chapter 1 we give a problem introduction. In chapter 2 we discuss background,
meaning doing a literature overview and analysing work previously done at TUM on
this topic. In chapter 3 write about all our work done. Firstly we in detail describe the
exploratory data analysis process, after that our experiments with distinction between
neural networks and Gaussian process regression. At the end in chapter 4 we write
our conclusions and ideas for future work.
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2 Problem introduction

The problem of wheel-soil interactions has been present since the first developments of
unmanned rovers used in the space research. Mars has been a major point of interest
for space exploration since the 1960s [Dra20]. With the technological development,
the goal has become closer as the Mars Pathfinder was deployed on December 4, 1996
successfully landing on Mars 7 months later. Since then multiple rovers have explored
the Mars’ soil. The latest being the Perseverance vehicle which is still traversing the
planet since landing on February 18, 2021. A major challenge for successful travel on
the planet is the uncertainty of wheel interactions with soft soils such as sand or mud.
With the latest rover landing in the Jezero crater, the problem of efficient traversal
became crucial [Dra22].

Figure 2.1: Mars Science Laboratory (MSL) engineering model tested on dry, loose
sand [Con+12].
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2 Problem introduction

With the experience gained from multiple previous missions as well as experiments
performed on Earth, the physics model and properties of wheel interactions are be-
ing analysed utilising multiple ground contact models in various level of detalization.
The scarcity of high fidelity data leads to exploring alternative prediction methods.
Machine learning and models combining could provide useful, real-time locomotion
predictions [Guo+22].

3



3 Background and related work

3.1 Literature overview

The following topics are crucial for the project and are described in this overview.

• Wheel locomotion,

• Overview of the terramechanical models such as: DEM, SCM and TeRRA that
we will be using throughout the project,

• Gaussian processes,

• Kernels and kernel selection,

• Multi-fidelity approach to resolving problems.

As described by Cheng et al. [Hu+21], the process of rover movement is a compli-
cated procedure that requires not only precision, but also knowledge about the surface
that the vehicle is moving on. Gallina et al. [Gal+14] states that we have to take into
account the torque and force generated in both perpendicular and parallel directions
to the soil in the point of contact with the rover’s wheel.

In our application project we are combining a lot of approaches, one of those is
multi-fidelity, meaning that we are combining results of different fidelities. Which
means simulations of different level of precision and computational cost. In the work
of Guo et al. [Guo+22], it is shown that joining multi-fidelity data can be effective in
enhancing the performance of the model as shown in Lee et al. [Lee+19a]. We will try
this approach with the data from multi-fidelity simulations that are described in the
works of Hawker et al. [Haw+18], Tasora et al. [TMN18], and Barthelmes [Bar18].

An approach to utilise neural networks in solving multi-fidelity problems has been
described by Guo et al. [Guo+22]. The process of interactions and both forces and
trajectories within runs can be described with Gaussian processes [HW21]. Combining
the statistical approach of Gaussian modelling with machine learning allows for more
complex models creation. This will enhance the search for the best model possible.

Kernel manipulation is an advanced fitting method. It is shown in the work of
Abdessalem et al. [Abd+17] that selecting right kernel is a problem itself. We will try
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3 Background and related work

to unveil the underlying trend in data and find the best kernel for this task. Lee et al.
[Lee+19b] states that the process of selecting the right kernel can be automated. We
will try this approach to see if it is suitable for task at hand.

From further analysis we can see that neural networks can be a valid options to
model Gaussian processes both in single-fidelity as in multi-fidelity regression prob-
lems [Guo+22]. We will try and use this fact to enhance our performance on the
multi-fidelity data obtained from DEM, SCM and TeRRA models [Haw+18], [TMN18].
Similarly to the approach by Guo et al. [Guo+22], we will use multiple architectures of
networks, as well as try to fit different kernels for the data to get as much information
from it as possible.

3.2 Previous work at TUM

The problem itself has been already explored in the master thesis of Chang [Cha22].
The theoretical basis of rover mechanics and the usage of machine learning to enhance
already existing models has already been laid out. The crucial finding from the paper
that can enhance results with further work is the way to compose the data to highlight
it’s importance. This allows to find connections between different levels of fidelity and
can lead to finding important features.

The EDA has been conducted and produced meaningful results to build on. The
goal of finding a better performing model is easier to benchmark thanks to the in-
troduction of evaluation measures in the thesis [Cha22]. The finding has led to the
introduction of time as a measure to ensure real-time capabilities. The metrics of
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Certainty of Prediction
(CoP) have been used as performance indicators.

In the thesis a basic Multilayered Perceptron (MLP) model has been used. This has
led the basis of utilizing deep learning in the problem with a single layer. To deal with
all the available input data including surface images Convolutional Neural Networks
(CNN) have been utilized. An approach to include such deep networks in the analysis
of numeric data proved inefficient. A Gaussian Process Regression model has been
also included and experimented with using different kernels. The approach has been
used to create a non linear multi-fidelity model that is linked using the Gaussian
process. With the combination of such models and both MLP and CNN the author
has achieved meaningful results.

The thesis is concluded with a complete benchmark of all approaches, setting a
standard to be challenged in this project.
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4 Methodology

4.1 Exploratory Data Analysis

4.1.1 Introduction to data

The first part of this project is exploratory data analysis in which we closely examine
the data and look for correlations between the variables. Data from both models
[TMN18; Bar18] is created in the same way. Simulations of runs of the Mars Rover
have been conducted using different terramechanical models [Hu+21]. One simulation
consists of 151 rows of data and each row is composed of physical parameters of
the rover at given moment and a height map of the surface below. Each record has
parameters that describe output forces, output torques, coordinates, velocities, angular
velocities and gravity normal, all of those are in each of the x, y and z directions. This
means that there is a total of 18 variables. Additionally to that columns from 18th to
the 4112 are the image, which is a 64 x 64 picture of a 15 cm x 15 cm surface below the
wheels with example shown in figure 4.1.

Figure 4.1: Example of soil photo
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4 Methodology

TeRRa method [Bar18] has been used to generate the low fidelity data. Despite
that fact it can be valuable to the final model, that is because it was proven that low
computational power is required to work with data coming from this model.

Soil contact model [TMN18] was used to produce the medium fidelity data. This
model results in more reliable and more accurate data points, but because of that
working with them requires more computational power. Hence in our modelling there
are fewer medium fidelity points, than low fidelity.

For this part of work we have decided to use 100 simulations from each fidelity. This
comes up to 30200 records used. For all the experiments described below we will be
using *to be filled* data points of low fidelity and *to be filled* data points of medium
fidelity.

In this task we decided to predict the force along x coordinate. As forces and torques
are correlated with coefficient one, we decided to drop all three variables describing
torque, to avoid overfitting of the models.

4.1.2 Analysis for TerRa data

In the given Terra data, the following statistical values have been analysed.

• Mean

• Standard deviation

• Minimum

• First quartile

• Median

• Third quantile

• Maximum

7



4 Methodology

Table 4.1: Positional statistics for low fidelity data
force_x force_y force_z

mean -1.96 0.35 39.38
std 7.2 5.82 9.31
min -10.68 -43.91 0.0
max 14.74 14.33 76.68

torque_x torque_y torque_z
mean 0.04 0.24 -0.0
std 0.73 0.9 0.0
min -5.49 -1.84 -0.0
max 1.79 1.33 0.0

coordinate_x coordinate_y coordinate_z
mean -0.01 0.0 0.12
std 0.01 0.0 0.0
min -0.02 -0.0 0.11
max 0.02 -0.0 0.13

velocity_x velocity_y velocity_z
mean 0.09 0.0 -0.0
std 0.08 0.0 0.01
min -0.01 0.0 -0.02
max 0.25 0.0 0.02

anqular_velocity_x anqular_velocity_y anqular_velocity_z
mean 0.0 0.8 0.0
std 0.0 0.71 0.0
min 0.0 0.0 0.0
max 0.0 2.0 0.0

gravity_x gravity_y gravity_z
mean 0.05 0.0 -0.99
std 0.1 0.0 0.0
min -0.14 0.0 -1.0
max 0.19 0.0 -0.98
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4 Methodology

This analysis resulted with table 4.1, it helped detecting variables that had zero
or close to zero variance, meaning they would not be of much help in the models.
Hence we decided to eliminate: coordinate_y, coordinate_z, velocity_y, velocity_z, an-
gular_velocity_x, angular_velocity_z and gravity_y from further work. Next step was
to visualise the distributions of all the chosen variables, it is presented in figure 4.2.
We opted for density plots, as they depict the tendencies in the data in a good manner.

(a) Density for forces (b) Density for coordinates

(c) Density for velocities (d) Density for forces and torques

Figure 4.2: The result of density analysis

From 4.2 subplot a we can see that there is a lot of change in all three of the forces.
Both in velocity and coordinate variables, nearly all the mass for the z coordinate is
concentrated and for the x coordinate it is spread out. The last subplot d is placed
here to show why we decided to opt out of working with torques, they are to similar
to the forces for us to get meaningful results.
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4 Methodology

For further analysis of the relationships between variables we decided to do a corre-
lation analysis of the remaining dataset. We present the results in figure 4.3.

Figure 4.3: Correlation plot low fidelity data

This allowed us to make a decision on the final set of features we will choose from
this level of fidelity. Those are: coordinate_x, coordinate_z, velocity_x, velocity_z,
angular_velocity_y, gravity_x, gravity_z.
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4 Methodology

4.1.3 Analysis for SCM data

For the medium fidelity data we decided to take the same steps. First were the posi-
tional statistics to determine which variables have no variance.

Table 4.2: Positional statistics for medium fidelity data
force_x force_y force_z

mean -0.75 0.69 38.91
std 5.78 0.39 21.58
min -11.56 0.0 -0.0
max 16.71 1.83 112.94

torque_x torque_y torque_z
mean 0.06 -0.78 0.02
std 0.15 1.04 0.02
min -0.58 -3.51 -0.04
max 0.62 0.99 0.07

coordinate_x coordinate_y coordinate_z
mean -0.0 0.0 0.1
std 0.01 0.0 0.0
min -0.02 0.0 0.09
max 0.03 0.0 0.13

velocity_x velocity_y velocity_z
mean 0.09 -0.0 -0.0
std 0.08 0.0 0.02
min -0.01 -0.01 -0.19
max 0.25 0.0 0.04

anqular_velocity_x anqular_velocity_y anqular_velocity_z
mean -0.0 0.8 -0.0
std 0.0 0.71 0.0
min -0.0 0.0 -0.0
max 0.0 2.0 0.0

gravity_x gravity_y gravity_z
mean 0.02 -0.02 -0.99
std 0.14 0.0 0.01
min -0.28 -0.02 -1.0
max 0.17 -0.02 -0.96

From table 4.2 we can deduce that variables: coordinate_y, anqular_velocity_x, an-
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4 Methodology

qular_velocity_z and gravity_y have no variance or variance close to zero, thus we will
move forward without considering them.

The next step is to look at the density plots. They are presented in figure 4.4.

(a) Density for forces (b) Density for coordinates

(c) Density for velocities (d) Density for forces and torques

Figure 4.4: The result of density analysis

In this case the behaviour is different. For force_y nearly all the mass is around zero,
meaning that it is often equal or close to zero, but the other forces are more spread out.
Also in the case of velocities and coordinates variables are more spread out in case
of the z coordinate, but in the other one the values seem to be more focused around
certain interval of values. Once again subplot d shows enormous correlation between
forces and torques.
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4 Methodology

The last part of this step was to look at the correlations between the variables to once
again choose those that are well suited for the problem, we keep in mind the variables
already chosen in previous analysis. We present the results in figure 4.5.

Figure 4.5: Correlation plot medium fidelity data

This allowed us to make a decision on the final set of features we will choose from
this level of fidelity. Those are: coordinate_x, coordinate_z, velocity_x, velocity_z,
anqular_velocity_y, gravity_x, gravity_z.
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4 Methodology

4.1.4 Multi-level exploratory analysis

In this step we decided to look closely at the correlation between variables across the
fidelity levels. For all the chosen variables we calculated the correlation coefficient
between datasets. The results are presented in figure 4.6.

Figure 4.6: Correlation plot between the levels of fidelity

From this figure 4.6 we can deduce that there in fact is a correlation between some
of the variables between datasets of different levels of fidelities.
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4 Methodology

4.1.5 Correlation of force in each simulation

In order to test the correlation of the predicted variable in both fidelity levels, we
selected 250 random runs and visualised the correlation in a density plot between the
force x variable in SCM and Terra datasets.

Figure 4.7: Density of correlations between f orcex of both fidelity levels

The figure depicts correlation for between a single run of 151 rows. From this we can
see that most of the runs are highly correlated. There are however long tails, mostly
on the negative side hence removing the outliers can provide more meaningful results.
With the percentile outlier removal method, we filtered out the results to only retain
percentiles between the 25th and the 75th.
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4 Methodology

Figure 4.8: Density of correlations between f orcex of both fidelity levels without out-
liers

Not we can clearly see that with the removal of less than 4 percent of runs, the
distribution is a slightly skewed normal distribution with a mean around 0.75. This
means that the experiments with multi-fidelity models will be meaningful in most
cases and should provide decent results.

The problem with models that should operate in real-time on incoming data is that
filtering outliers might prove difficult, hence it is important to look at them and see
why the correlation can differ so much from the mean in such cases. With exploring
and comparing the distribution of forces on both datasets for the highest and lowest
correlation outliers might provide answers.
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4 Methodology

Figure 4.9: Density of f orcex of both fidelity levels for the highest correlation outlier
(blue = scm, orange = terra)

For the highest correlation outlier we can see as intended that the force distributions
have similar shape.

Figure 4.10: Density of f orcex of both fidelity levels for the lowest correlation outlier

For the lowest correlation sample, we can see that both the shapes of the distribution
are incorrect and the values appear much lower for the medium fidelity case. The key
to understanding the differences between those two outliers might be in the shape of
the force x from the SCM model. In most highly correlated cases force x in medium
fidelity data has a double apex distribution, while in the lowest correlated ones it has
a single apex.
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4 Methodology

4.1.6 PCA

After consideration we decided to try and reduce the amount of data that we give to
the model without reducing the amount of information. To do that we looked into
several dimensionality reduction techniques and choose to use principal component
analysis (PCA) 4.1.6.

Principal components of a specific data are a sequentially defined unit vectors that
are calculated step by step with the usage of the previous one. The i-th vector is the
one parallel to the line that best fits the points and also is orthogonal to all the previous
vectors. In this case the task of best fitting line is defined as the one that minimizes the
mean squared distance form the points to the line. By minimizing this value it also
maximizes the variance. Thanks to the fact that all the components are orthogonal we
get that the new data is linearly uncorrelated.

In previous step we have selected seven variables to be the input of our mod-
els. Those variables are: coordinate_x, coordinate_z, velocity_x, velocity_z, angu-
lar_velocity_y, gravity_x, gravity_z.

To maximize the potential reduction of dimensionality we decided to run the algo-
rithm on both the low fidelity level data and medium fidelity level data. This will
allow to potentially decrease the size of input data in both parts of the model, also
it will help in searching for the best suited neural network, as any reduction in the
number of variables will mean a great reduction in the calculations needed to train a
network.

4.1.7 PCA on low fidelity data

The first input is the low fidelity level data. After running the algorithm on the training
set without the target variables we get the following results, presented in figure 4.11.

From the closer examination we can get that the percentage of explained variance in
the data is the following:

• 89% - if we take first four principal components,

• 98,8% - if we take first five principal components,

• 99,6% - if we take first six principal components.

4.1.8 PCA on medium fidelity data

The next input is the medium fidelity level data. After running the algorithm on the
training set without the target variables we get the following results, presented in
figure 4.12.

18



4 Methodology

Figure 4.11: Semilogy plot of variance explained by principal components in low fi-
delity data

Figure 4.12: Semilogy plot of variance explained by principal components in medium
fidelity data

From the closer examination we can get that the percentage of explained variance in
the data is the following:

• 94% - if we take first four principal components,

• 99,8% - if we take first five principal components,

• 99,99% - if we take first six principal components.
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4 Methodology

4.2 Image data analysis

After examination of numeric features present in the dataset, we analysed the images.
For each timestamp in a run, there is a photo of the soil below the wheel captured
by the rover. It provides information about the terrain and the distance to the surface.
The analysis was conducted to assess a possible information gain for the prediction
task from including photos in the model architecture.

The images are saved as 64 by 64 pixel matrices and hence it was possible to find
the most distinct photos from the mean in terms of distance. The mean is set on pixel-
level and the two outliers presented in Figure 4.13 are analysed further to asses their
properties.

Figure 4.13: Two images present in a single run depicting the most distant datapoints
from the mean image, labelled min and max accordingly. Along them the
connected rover force direction at that timestamp is presented.

Based on the rover movement fitting the image in Figure 4.13, it can be observed that
they proceed in opposing directions basing strictly on pixel values. This led to further
investigation based on that values. For a single run the force x values were plotted to
see where the min and max images stack up when compared to all datapoints. This
can be observed in Figure 4.14 as they are on the opposing sides of the mean line.
While that covers only a single run and two outliers, it provides a support for a claim
that crucial information is present in the image data.

For further correlation testing, data over multiple runs has been collected. The mean

20



4 Methodology

Figure 4.14: A graph presenting the force values in x direction at all timestamps in a
single run. Images labelled as min and max in Figure 4.13 are presented
on the graph along with a dotted line presenting the mean value of force.

and minimum values have been calculated for the matrices of pixel values along with
the force x. The values have then been normalised to allow for better comparisons
on a similar value scale. The results seen in Figure 4.15 show a inverse correlation
between the force and pixel metrics, which is stronger in the first 8 seconds of the
runs. Based on that result and previous plots, we found images to have potential
in adding information to the model and decided to experiment on them, which is
explained in the latter part of the report.
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4 Methodology

Figure 4.15: A graph presenting the force x, pixel mean, and pixel minimum values
aggregated over multiple runs for a timestamp.

4.3 Convolutional Neural Networks

The next step was to try and find a right architecture of neural network for solving
the problem of our prediction. In this section of our report, unless stated otherwise
we are working on the variables that we have chosen before. The work with neural
networks consists of several parts, that at the end come together to create one final
neural network model.

4.3.1 Low fidelity neural network

The first thing that was done, was creating a low fidelity model with neural networks.
It predicts the force based on the input from the low fidelity data. First we tried a
standard architecture with parameters presented in table 4.3:

Parameter Values
Dropout 0.2
Learning rate 0.005 with Adam optimiaztion
Number of epochs 80
Batch size 32
Initialization from Normal distribution
Hidden layers 256 nodes, 512 nodes, 256 nodes

Table 4.3: Hyper-parameters of the first network
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4 Methodology

This setup resulted in the Mean Squared Error (MSE) of 201.4 when tested on the
medium fidelity dataset and the training and validation errors presented in figure 4.16.

Figure 4.16: Training and validation errors of a basic neural network

We found this result to be promising and decided to do a grid search for the best
parameters.

4.3.2 Grid search for parameters

The idea of grid search is creating a grid of parameters and then training and testing
a neural network for every possible set created from those parameters. It can be seen
that this gets problematic as the number of test runs grows exponentially with the
number of parameters. Hence we need to pick important parameters for our search.

As a starting architecture we took the same as in the previous section. The parame-
ters of the grid are presented in table 4.4:

All the networks were thought on 80 epochs and batch size equal to 32. The best
sets of parameters are presented in table 4.5.

4.3.3 Neural Networks with PCA

As the next step we decided to try the neural network approach on the data from
PCA transformation. We assumed that 80% of explained variance will be a good value

23



4 Methodology

Parameter Values
Dropout 0.2 or 0.5
Learning rate 0.001, 0.002, 0.005, 0.01, 0.02 or 0.1
Initialization normal distribution N(0, 0.05) or Xavier

Table 4.4: Grid for hyper-parameters search

Parameter Values
Dropout 0.2
Learning rate 0.002
Initialization normal distribution N(0, 0.05)

Table 4.5: Best parameters found in grid search

to cut of the principal components. The problem of different PCA vector spaces in
low and medium fidelity levels however led to a diminishing return after applying
the transformation. We decided to not pursue the idea further and rather focus on
enhancing the model itself as our selected feature-space is already low dimensional.

4.3.4 Image Regressor

For Neural Networks we decided to also include image data along with numerical
features to really test whether the argument made in 4.2 was true. For the first tests,
a very simple Convolutional Neural Network was created with pooling. This proved
to not capture the data too well and hence we opted to utilise the autokeras package
with the function of ImageRegressor. This method searches for the best model and
parameters. This way we found a final architecture of a modified ResNet-50 [He+15].
It is a residual framework based method that is proven to work on a number of use
cases.

This model allowed us to make predictions on the force output based on images.
For training of the model we utilised the images for 1500 low fidelity datapoints. This
model achieved a MSE of 40.2 when tested on the medium fidelity test set. This shows
that when compared to a low fidelity model based strictly on features, the image model
outperforms it. It might be due to less of a difference in images between fidelity levels
when compared to numeric features.

24



4 Methodology

4.3.5 Medium and low fidelity neural networks

With all the low fidelity models created and tuned, a multi-fidelity neural network was
created. As depicted in the figure 4.17, the architecture is based on the Feed-Forward
Neural Network described in 4.3.1 as well as the image regressor described in 4.3.4.
The flow of the model starts with the image regressor being trained on the TerRA low
fidelity image data. The prediction based on this model is than added to the feature set
of the low fidelity set. On this updated features, a low fidelity feed-forward network
is than trained. This concludes the low fidelity part of the model. Now adding onto
that the medium fidelity level, the SCM train data is evaluated on the SCM model,
which produces an output to be added to the SCM train feature space. This allows for
the final low fidelity model to be evaluated on the medium fidelity data. The output
of this model is stacked with the input features of SCM train, which creates a new
set for the medium fidelity network to be trained on. This network is of the same
architecture as the one described in 4.3.1 but has tuned parameters to fit the lower
number of datapoints. This mostly came down to decreasing the learning rate to 0.001.
This final model is than tested on a SCM test set to benchmark the results.

Figure 4.17: The graph presents the architecture of a final multi-fidelity neural network
model used in experiments.

The loss of the final models’ training process is depicted in the figure 4.18 and
shows that the increase of epochs from 80 for the low fidelity model to 150 for the
final medium fidelity model was a correct decision as the loss keeps declining after
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the 80 epoch mark.

Figure 4.18: The graph presents the train and validation loss change during the train-
ing process.

This final model was trained on 1500 low fidelity, 150 medium fidelity, and 50 test
points from the SCM dataset, but different from the data used in training. The re-
sults in the table 4.6 show that the final multi-fidelity model using images is much
better than without images as it shows better performance on a lower number of data.
Generally in our experiments the neural networks benefited from a higher number of
datapoints yet the final benchmark was made on 1500 low fidelity points to ensure
real-world usability.

Features Features + Images
Data size 10k low, 1.5k medium fidelity 1.5k low, 150 medium fidelity
MAE 6.86 2.57
MSE 63.61 11.5

Table 4.6: The table shows the comparison of the multi-fidelity Neural Network results
using numerical features only (left column) and a mixture of both numeric
and photo data (right column).

A medium-fidelity only model was also created to test the impact of using multi-
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fidelity data. It is the same in architecture as the final multi-fidelity model without the
low fidelity part. It resulted in a MAE of 3.49, which is a much worse result than the
final 2.57 achieved using multi-fidelity.
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4.4 Gaussian process regression

The next approach we took while modelling data was Gaussian process regression. In
our case the relation between the input and output can not be mapped with a simple
linear function, hence a simple regression model will not be sufficient. This is the
reason why during our modelling phase we are also searching for the optimal kernel.

Kernel is a positive-definite function that maps one space to another. It allows to
change spaces, dimensions and relations between data, with does properties we can
model non-linear relationships with linear models.

In our case we are searching for a suitable kernel that will give the best results. We
are also using combinations of several kernels at once.

4.4.1 Single-fidelity Gaussian process regression

The whole idea of the project was to see how multi-fidelity affects the results of the
model. To see that there is a need for a base single-fidelity model. We decided to
create a medium-fidelity Gaussian process regression to achieve this goal.

In this case we used and RBF kernel. It is given by: K(x, y) = exp(−γ∥x − y∥2).
This results in the following errors presented in table 4.7:

MAE MSE
5.87 54.33

Table 4.7: Single-fidelity Gaussian process results

We can see those results do not even come close to those that were achieved by fully
trained neural networks. Next we can see what multi-fidelity gives us in terms of
results.

28



4 Methodology

4.4.2 Multi-fidelity Gaussian process regression

The next step was to use multi-fidelity and try better our results. The whole process is
based on two predictions that go with the following flow presented in the figure 4.19.

Figure 4.19: Workflow of the system

Firstly we wanted to see how does the results look in a situation comparable to the
one from only medium-fidelity model. This means that we will use in both prediction
the RBF kernel.

This results in the following errors presented in table 4.8:

MAE MSE
5.70 53.17

Table 4.8: Multi-fidelity Gaussian process results

We can see there is a slight improvement when compared to 4.7.

29



4 Methodology

Next we will analyse how does the kernel selection impacts the results. From our
testing phase it become clear that the first kernel has to be RBF.

To find the best suitable kernel we modelled the relationship between force along the
x axis between the data from low-fidelity model with the data from medium-fidelity
model. This can not be done explicitly, so we decided to use a smoothing operation.
This operation is based on normal distribution and convolutions. Once we found the
best parameters we got the following graph presented in figure 4.20.

Figure 4.20: Relationship between targets in different datasets after smoothing

After that we listed all suitable kernels from the GPY package. We choose the two
that we found closest and also two common ones to broaden the search area. Those
are listed below with equations, function examples and covariance visualisation.
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The kernels that we were looking at in this situation were:

1. Linear kernel, with equation: K(x, y) = xTy + c

2. Radial basis function kernel, with equation: K(x, y) = exp(−γ∥x − y∥2)

3. Matern 3/2 kernel, with equation: K(r) = σ2(1 +
√

3rexp(−
√

3)), where r =√
∑

inputdim
n=1

(xi−yi)2

l2
i

4. Rational Quadratic kernel, with equation: K(r) = σ2(1 + r2

2 )
−α
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(a) Linear kernel function and covariance (b) RBF kernel function and covariance

(c) Matern32 kernel function and covari-
ance

(d) RatQuad kernel function and covari-
ance

Figure 4.21: The result of density analysis

We tried looking for the best possible combination of kernels using the four listed
above and operations of summation and multiplication.

We tested two varieties of data. Used 500 low-fidelity points and 1500 low-fidelity
points, to see if the amount of low-fidelity data has a big impact on the performance
of the model.
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The best results were achieved for the following combination: Linear+RBF+RatQuad
+Matern32+Linear*RBF*RatQuad*Matern32. The results are presented in the table 4.9.

MSE MAE
500 points 51.35 5.27
1500 points 28.26 3.84

Table 4.9: The best Gaussian process

We can see there is a big improvement, while using a bigger number of low-fidelity
data points. This proves that even low quality data can be very helpful when it comes
to multi-fidelity.

An observation that the when compared to the medium-fidelity a significant im-
provement of around 35% can be made. Demonstrating the fact that even if data is of
low quality it can be really helpful if used correctly.

In table 4.10 there are presented the results of different kernels and how they impact
the performance of Gaussian process regression model. From the values in the table
4.10 we can deduce that adding another level of fidelity into the model can in fact
improve the performance, even if as in this case only a little. Another thing that we can
deduce is the fact that finding the best kernel is crucial for the optimisation task. One
more interesting observation is that for different cases we can observe a decrease in
MAE, but increase in MSE and in other we can observe increase in MSE, but decrease
in MAE. It is important to declare the most important goal function and follow it, as
the situation stated above can be misleading. From table 4.9 we can deduce that the
amount of data in the training set has a high impact on the performance, but it is
important to remember that the whole purpose of multi-fidelity machine learning is
to use a small amount of computationally costly data to achieve the best result. We
have also not been able to test all the possible combinations of kernels in the package,
so there can be a better solution to this problem that the one we have found.

Kernel MAE MSE
RBF only on medium fidelity 5.87 54.33
RBF on multi-fidelity 5.70 53.17
Best found kernel 3.84 28.26

Table 4.10: Overview of Gaussian process performance
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In our project we have utilised a lot of techniques such as: Exploratory data analysis,
principal components analysis, neural networks, Gaussian process regressions and
more to try and improve the performance of our final model. In this paragraph we
will describe all the positives that come from them in our opinion.

In section 4.1 we described the exploratory data analysis of our low and medium-
fidelity datasets. This step is a must if one thinks seriously about the project. It will
uncover a lot of important characteristic about the data. Point to important variables,
show which are irrelevant for our future model. In our case it helped us eliminate the
variables that were constant, which allowed us to cut down on computations in a great
manner. Apart from that we also visualised densities to get familiar with the data, in
cases where some familiar functions show up it can be helpful. Also it may indicate if
there is a need to use transformations on data to change the distribution to some more
familiar or easier for the model to predict. Another thing that is of value in this type
of project is seeing how all the variables correlate with the target, it indicates which to
keep and which to discard.

Approach described in section 4.1.6 is very important for the project. This was trying
using principal components analysis to try and even more reduce the dimensionality
of the data. This step may be useful in cases when we have a lot of dimensions, but
we suspect that some of them do not carry a lot of information with them. In our
case it actually helped reduce the number of dimensions, if we decided to keep 80% of
the variance then in both datasets we would need only four variables instead of seven.
Another interesting fact is that if we actually could discard one or two dimensions
from each dataset with near zero loss of information.
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From the literature overview it become clear that the right kernel can make a lot
of difference. In section 4.4.2 we describe multiple approaches and results on finding
the correct kernel. During our test phase we discovered a lot of facts among others
that combinations of kernels matter and that the more complicated the kernel or com-
bination it does not necessary mean it will yield better results. We suspect that if the
computation power did not restrict us we would be able to find even better solution
with the usage of summation and multiplication combination techniques.

We have also demonstrated that even if we keep the number of medium-fidelity
points the same we can change the performance with manipulation of the number of
low-fidelity points. It shows that the idea of multi-fidelity is valid and can help with
computation problems and hardship of obtaining high quality data.

Furthermore, we compared the two common approaches to multi-fidelity modelling
and found the differences and advantages of both methods. Neural Networks during
the presented experiments proved to be the best performing on the benchmarked set.
When we decrease the number of low or medium fidelity data to a third - 500 TerRA
and 50 SCM datapoints, we can see the trend reversing. In that case, Gaussian Process
Regression outperforms the Neural Network as it reaches a MAE of 5.27 in comparison
to 9.16 achieved by the NN. On the other hand, when the number of low fidelity
datapoints gets bigger than 3000, the GPR gets very expensive to compute, while the
NN remains computable within a reasonable time-frame.

The impact of images was also examined, demonstrating that they provide a lot
of additional information for the task of force prediction. The models based only on
them managed to outperform some of the numeric feature based on their own. This
leads to a conclusion that they should be included in the predictions and their weight
on the final predictions should be high.
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5.1 Future work

There are many steps that can be done further in this work. Firstly and in our opinion
the most important step is to incorporate high-fidelity data into the model. It will
mean that there will be a need for more hyper-parameters and also more kernels. It
will result in a need for a new model.

Once all three levels of data are taken into account, all the steps have to be repeated.
We start with the exploratory data analysis for high-fidelity data, then we do the neural
network steps and Gaussian process regression.

Good improvement would be doing a bigger search of hyper-parameters and ker-
nels, but for that there would be a need of machines with better computation capabili-
ties than our personal computers.

As we have demonstrated the images can make a lot of difference in the quality
of prediction. We suspect time spent working with the photos, maybe doing more
exploratory steps or trying to use manipulations to produce more images.
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