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Zusammenfassung

Im Laufe der letzten Jahre wurden zahlreiche Verbindungen zwischen Kernelmaschinen
und neuralen Netzen entdeckt und untersucht. Vor allem die Beziehung zwischen un-
endlich breiten bayessche neuronalen Netzen und einer bestimmten Form von Gaußprozesses
war Quelle einer Vielzahl von wissenschaftlichen Beiträgen. Diese Korrespondenz macht
es möglich neuronale Netze mittels des entsprechenden Gaußprozesses zu untersuchen und
besser zu verstehen.
In dieser Arbeit werden von tiefen Faltungsnetzwerken abgeleitete Gaußprozesse beschrieben
und im Speziellen auf das Konvergenzverhalten der entprechenden Kernelfunktion bezüglich
der Anzahl von Netzwerkschichten untersucht. Um das zu bewerkstelligen, werden oberer
und untere Schranken der Kernelfunktion ermittelt. Während der Untersuchung dieser
Schranken wird die Beobachtung gemacht, dass die Kernelfunktion für eine große An-
zahl von Schichten gegen die obere Schranke zu konvergieren scheint. Diese Beobachtung
bildet die Grundlage für eine Erklärung des Phänomens der abnehmenden Genauigkeit
des ConvNet-GP-L-Prädiktors.



Abstract

In the last few years, several connections between kernel machines and neural networks
have been established. Specifically, the relationship between infinitely wide Bayesian neu-
ral networks and special Gaussian processes has been a source of many research contri-
butions. This connection can be used to better understand deep neural networks through
the lens of the corresponding Gaussian process.
In this thesis, we describe Gaussian processes derived from convolutional networks and
specifically investigate the scaling behavior of their kernel function with respect to the
number of layers. In doing so, we will derive a lower and an upper bound of the kernel
function. Interestingly, we make the observation that the true kernel function converges
against the derived upper bound of the kernel for large a number of layers. We use this fact
to propose that the reason for the deteriorating accuracy of a standard ConvNet-GP-L
predictor with many layers lies in this convergence behavior.
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1 Introduction

In recent years, machine learning has become an increasingly popular tool to aid and
create modern software systems. Neural networks have been at the forefront of this devel-
opment by being able to solve highly complex problems. The use cases for these modern
algorithms range from autonomous driving systems to protein folding applications [1].
Neural networks come in many flavors: There are fully connected networks (FCNs), re-
current neural networks (RNNs), convolutional neural networks (CNNs), and many more
special architectures created for specific use cases [2]. Especially convolutional networks
have become one of the most widely used algorithms in the field of deep learning. Com-
puter vision and natural language processing are just two examples of the many areas of
application [3]. Although there has been a lot of progress in the field of deep learning, the
inner workings of these neural network-based systems are still not fully understood [4].
Fortunately, there are approaches to equate neural networks to other machine learning
methods with a much broader mathematical foundation. One of these methods is the
so-called Gaussian process (GP). GPs are used in GP predictors that are a type of kernel
machine, i.e., they compare new data to stored information from old data using a similar-
ity measure called the kernel. These predictors naturally provide an uncertainty estimate,
which allows for the implementation of a Bayesian framework [5, 6].
It is possible to derive Gaussian processes from infinitely wide Bayesian fully connected
networks [7,8]. This principle can be extended to infinitely wide CNNs and RNNs [9,10].
Analyzing Gaussian processes derived from neural networks might therefore open a new
understanding of how varying specific hyperparameters changes the behavior of the sys-
tem.
In this thesis, we want to explore the change of certain system properties with respect
to the number of layers. In section 2, the current state of the art is presented. In the
first block, we give an introduction to deep convolutional neural networks and describe a
mathematical formalism to efficiently use these types of networks. In the second block,
we introduce Gaussian processes in general, show how they can be used for supervised
learning and derive the connection to neural networks. Our main contribution can be
found in section 3. Firstly, we derive bounds for the kernel of a Gaussian process derived
from a standard CNN with and without a ReLU activation function. We test the valid-
ity of these results in multiple experiments. Secondly, we relate these scaling results to
the performance of the underlying Gaussian process. In the last section, we formulate a
conclusion and present possible future work.
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2 State of the Art

2.1 Convolutional Neural Networks

This thesis focuses on Gaussian processes derived from convolutional neural networks
(CNNGPs). To understand these special Gaussian processes it is important to fully com-
prehend CNNs first.
Neural networks are functions dependent on a large number of parameters. By effectively
adapting and tuning those parameters using gradient-based optimization methods like
stochastic gradient descent or Adam [11], neural networks are able to represent compli-
cated functions. CNNs are a special type of neural network. Convolution-based networks
are usually built by stacking multiple layers of different types on top of each other. In
this thesis, we will focus on fully connected layers as well as convolutional layers. Other
frequently used layer types like residual layers [12], as well as pooling layers [3], will not
play any role in this work.
This section will introduce neural networks superficially and describe a consistent for-
malism for the rest of this thesis. For a deeper introduction readers are referred to the
literature cited in this section.

2.1.1 Fully Connected Layers

In fully connected layers, the neurons of the current layer are connected with all neu-
rons/components of the preceding layer. The i-th output component z(l)i of a single fully
connected layer l ∈ N⩾1 can be written for i ∈ {1, ..., Nl+1} as

z
(l)
i (x) = b

(l)
i +

Nl∑
j=1

W
(l)
ij x

(l)
j (x), x

(l)
j (x) = ϕ(z

(l−1)
j (x)), (1)

where ϕ is the activation function, W (l)
ij the weights, b(l)i the biases of each component

and Nl the number of outputs of the previous layer [8]. We write the post-activation
x
(l)
j (x) and the output component z(l)i (x) explicitly as a function of a single input sample

x = (x1, x2, ..., xN0)
⊤ of the full network which will become relevant later.

Using this recursive formula with the base case z
(0)
i (x) = b

(0)
i +

∑N0

j=1 W
(0)
ij xj, we can

define a fully connected neural network recursively [8]. The activation function should be
a nonlinear function otherwise the result in the last layer would only represent a linear
combination of the input. Well-known nonlinearities like the ReLU or the Sigmoid acti-
vation function might be suitable depending on the use case. In literature, the activation
function often represents a separate layer. In contrast to that, we will include the activa-
tion function always in a layer.
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If we write the post-activation function for a single input as vector x(l)(x) = (x
(l)
1 (x),

x
(l)
2 (x), ..., x

(l)
Nl
(x))⊤, the sum (1) can be simplified as a simple matrix multiplication,

z(l)(x) = b(l) +W(l)x(l)(x), x(l)(x) = ϕ
(
z(l−1)(x)

)
, (2)

with W(l) = (W
(l)
ij )i=1,...,Nl+1,j=1,...,Nl

and b(l) = (b
(l)
1 , ..., b

(l)
Nl+1

)⊤ [8]. In fully connected
layers all weights and biases are not directly related to each other or fixed to a certain
value. This differentiates fully connected layers from convolutional layers as we will see
next.

2.1.2 Convolutional Layers

Figure 1: Procedure of two-dimensional convolution with zero-padding using a 3×3 kernel
with stride 2 [3].

When working with pictures, audio data, or similar data forms, it is often the case that
neighboring elements of a single data point are correlated.
Take for example a natural picture. In this picture, we will find hierarchical structures,
e.g., in a picture of a house we will find edges, these edges form higher-order structures
like rectangles and these rectangles form again higher-order objects [3]. These structures
introduce correlation between neighboring pixels. This well-known property is exploited
in several applications like compression or error correction [13]. A type of neural network
that makes use of this property is a CNN.
Compared to fully connected layers, convolutional layers possess the following character-
istics: 1) Local connections: Each neuron is only connected to a subset of neurons of
the previous layer. 2) Weight sharing: Groups of connections share weights. Both these
properties enable a large reduction of trainable parameters which simplifies the training
procedure. Without correlation, this would not be a useful implementation [4].
Convolutional layers are implemented using a convolution operation [3]. In the case of
two-dimensional convolution, an n × n convolutional filter window slides over the two-
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dimensional object with stride size s. Each element of the 2D object is multiplied by the
weights in the filter and summed up. Each shift of the filter window results in a new
number in the output of the convolution operation. As a result, each convolutional filter
can contain n2 trainable parameters, where n is the filter size. It is often the case that the
two-dimensional objects are padded to achieve compatibility of the input size with the
convolutional operation or to achieve a certain output size. The most common padding
type is zero-padding although other methods are possible. In Figure 1, you can find an
example of a convolution operation with 3× 3 filter. This operation works in one or more
than two dimensions analogously.
It is often the case that a data point has multiple channels or that multiple channels in
hidden layers improve the performance. A channel might represent a color channel (RGB-
Channel) in a picture or an audio frequency channel for audio data. To accommodate
for multiple input channels, one applies the convolution operation for each input chan-
nel separately and sums up the corresponding results of the convolution operations [3].
Multiple output channels would then correspond to doing this for different filters with dif-
ferent weights independent of each other. Afterward, it is common to apply an activation
function to introduce nonlinearity. One can summarize the filters of one layer within a
4-dimensional object U ∈ RC(l+1)×C(l)×n×n, where C(l+1) is the number of output channels
and C(l) the number of input channels of the current layer.
We now want to formalize this mathematically. An image Xpic is a C × H × D dimen-
sional object, where C is the number of channels, H the height and D the width. We now
can write a single convolutional layer with activation function for each output channel
i ∈ {1, ..., C(l+1)} as

Z
(l)
pic,i(Xpic) = b

(l)
i I+

C(l)∑
j=1

U
(l)
i,j ∗X

(l)
pic,j(Xpic), X

(l)
pic(Xpic) = ϕ(Z

(l−1)
pic (Xpic)), (3)

where ∗ denotes the convolutional operation, U(l)
i,j describes the used filter for the j-th

input channel and i-th output channel, Z(l)
pic,i describes the output of the convolution op-

eration of the i-th output channel of layer l and X
(l)
pic,j describes the j-th channel of the

input of l-th layer. Using this we can implement a multi-layer system recursively with the
base case Z

(0)
pic,i(Xpic) = b

(0)
i I+

∑C(0)

j=1 U
(0)
i,j ∗Xpic,j [3, 4, 9].

The convolutional operation itself can also be implemented using standard matrix mul-
tiplication [9]. To do this, we have to reorder the input first. Here we transform
Xpic ∈ RC(0)×H(0)×D(0) to X ∈ R(H(0)D(0))×C(0) by ordering each channel i in row-major
order into the i-th column Xi of X. Analogously, we can proceed with the reordering
process for all post-activations of all layers. In the next step, we can create a Toeplitz
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matrix Wi,j from the filter Ui,j by ordering the weights of the filter into the corresponding
positions. An example of this can be found in Figure 2. As a side note, in literature, the
Toeplitz matrix is usually introduced for a standard convolutional operation. Although
this operation is similar to the convolution in CNNs it is not the same [14]. After this is
done, we can rewrite equation (3) for i ∈ {1, ..., C(l+1)} as

Z
(l)
i (X) = b

(l)
i 1+

C(l)∑
j=1

W
(l)
i,jX

(l)
j (X), X(l)(X) = ϕ(Z(l−1)(X)). (4)

Figure 2: Creation of Toeplitz Matrix W
(l)
i,j from filter [9].
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2.2 Neural Network Gaussian Processes

In this thesis, we will analyze Gaussian processes based on convolutional networks. There-
fore it is necessary to gain a solid grasp of Gaussian processes first. In this section Gaussian
processes are introduced and we describe how they can be utilized for prediction purposes.
Afterward, we show that infinitely wide Bayesian neural networks are equivalent to a spe-
cial case of Gaussian process. Based on this, we will extend this notion to convolutional
networks which are the focus of this work.

2.2.1 Gaussian Processes

Gaussian processes (GPs) can be thought of as an extension of the Gaussian distribution
to real functions. A good definition of GPs is given in definition 1 from [5].

Definition 1. A Gaussian Process is a collection of random variables, any finite number
of which have (consistent) joint Gaussian distributions.

Like Gaussian distributions, Gaussian processes are fully determined by a mean function
m(x) and a co-variance or kernel function k(x, x′) [5, 15]. Since Gaussian processes are
essentially distributions over functions, we will write

f ∼ GP(m, k), (5)

denoting that the function f is sampled from a GP with mean function m and kernel
function k.
Since infinite-dimensional vectors like functions are hard to work with and we are often
only interested in output values of the function at a finite number N of positions, we
can use the fact that according to its definition any finite number of output values has a
Gaussian distribution [15]. Given the finite number N of x-values indexed by i we get a
corresponding mean vector m and kernel matrix K with entries

mi = m (xi) , i = 1, . . . , N and

Kij = k (xi, xj) , i, j = 1, . . . , N.
(6)

Using m and K we can write the distribution of the function output at the N x-values as
follows:

f ∼ N (m,K), (7)

where f = (f(x1), ..., f(xN))
⊤.

The kernel function and the mean function determine the shape and type of function
generated from its GP. For regression tasks, the mean function is often set to zero while
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the kernel function is the focus of the engineering task [5]. Probably the most well-known
kernel function is the radial basis function kernel [16] given by

k (x, x′) = σ2
y exp

(
−(x− x′)2

2ℓ2

)
, (8)

with parameters ℓ and σy. Other commonly used kernels are linear and periodic kernels.
Another way to generate kernels is to derive them from neural networks which we focus
on in section 2.2.3. The kernel matrix between two sets of samples will be written as
follows:

Kx,x′ = k(x,x′) =


k(x1, x

′
1) . . . k(x1, x

′
m)

... . . . ...
k(xn, x

′
1) . . . k(xn, x

′
m)

 . (9)

2.2.2 Gaussian Process Regression and Classification

Gaussian processes can be used for regression and classification tasks. The GP predictor
is considered a non-parametric predictor, that is, it is not defined by a finite number of
parameters θ but instead by an infinite-dimensional object, which we usually think of as
functions [15]. A big advantage of the GP predictor is the fact that Gaussian processes
deliver an uncertainty distribution instead of a single prediction value which makes the
GPs particularly interesting for predictions within a Bayesian framework [15].
In the last section, we showed how a GP can be considered a distribution over functions.
For prediction tasks, we will now use this Gaussian process as a Bayesian prior [15]. By
definition, the prior itself does not depend on the training data but describes the proper-
ties of the class of possible functions. In a prediction task, we want to update this prior
information based on training data.
Let f and f∗ be the function values corresponding to the training data and test data respec-
tively. Since both are generated from the same GP they are jointly Gaussian distributed,
i.e., [

f

f∗

]
∼ N

([
m

m∗

]
,

[
Kx,x Kx,x∗

Kx∗,x Kx∗,x∗

])
. (10)

Because we want to predict the test function values based on the training data, it makes
sense to derive a conditional distribution of f∗ given f ,

f∗ | f ∼ N
(
m∗ +Kx∗,xK

−1
x,x(f −m),Kx∗,x∗ −Kx∗,xK

−1
x,xKx,x∗

)
, (11)
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which is the posterior distribution for the test set [5]. The corresponding posterior GP is
given as follows:

f | D ∼ GP(mD,kD),

mD(x) = m(x) +Kx,xK
−1
x,x(f −m)

kD(x, x
′) = k(x, x′)−Kx,xK

−1
x,xKx,x′ .

(12)

A prediction for a single test case x∗ can be is given by a Gaussian distribution
N (mD(x

∗), kD(x
∗, x∗)). It is therefore possible to not only generate a single point output

prediction but an uncertainty distribution over that output [5].
If prediction tasks are performed as above, the predictor would interpolate known test
inputs. However, since observations are often noisy and to ensure proper convergence in
the limit of a large data a noise term must be included. Under the assumption of i.i.d.
Gaussian noise we can accommodate for this by adding variance to the kernel function
resulting in

y(x) = f(x) + ε, ε ∼ N
(
0, σ2

)
,

f ∼ GP(m, k), y ∼ GP
(
m, k + σ2δii′

)
,

(13)

where δi,i′ is the Kronecker’s delta [15]. The corresponding GP predictor can be evaluated
via

f∗ | f ∼ N
(
µ,Σ)

µ = m∗ +Kx∗,x(Kx,x + σI)−1(f −m)

Σ = Kx∗,x∗ −Kx∗,x(Kx,x + σI)−1Kx,x∗

(14)

To improve the GP, we can choose kernel and mean function based on the data. The
kernel function, as well as the mean function, are often parameterized. The optimal
way to choose these hyper-parameters is to maximize the log marginal likelihood with
respect to the hyper-parameters. Under the assumption of data sampled from a Gaussian
distribution, the log marginal likelihood is given by

L = log p(f | X, θ) = −1

2
log |Kx,x| −

1

2
(f −m)⊤K−1

x,x(f −m)− n

2
log(2π), (15)

where θ is the hyper-parameter vector [5]. For complicated kernel functions, cross-
validation should be applied, otherwise, gradient-based methods can be used to maximize
L [5].
Because we will perform an image classification task, we will quickly introduce classifi-
cation. In classification tasks, the likelihoods are not Gaussian and we also cannot just
use a Softmax function as is commonly done for neural networks [5]. One can resort to
approximations, the Laplace approximation and projections on the closest Gaussian are
just two methods to be useful here [15].
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In this thesis we will not use any of these techniques, instead, we perform the classification
directly with exact regression as done in [9]. Here we encode the class labels as one-hot-
negative vectors and perform a simple multi-class regression on yi ∈ {−1;+1}C where C

is the number of classes and where 1 corresponds to "is the class" and -1 corresponds to
"not the class".

2.2.3 Neural Networks Gaussian Processes

Neural networks have become a very important tool in many fields of machine learning.
In computer vision, speech recognition, and machine translation, they dominate the in-
dustry [17]. As a contrasting approach, GPs have been used as a traditional tool with a
natural capability for Bayesian inference. In 1994, Neal derived in his seminal disserta-
tion an equivalence between the two methods for the case of single-layer infinitely wide
Bayesian neural networks [7]. This idea has been extended to deep fully connected neural
networks by Lee et al. [8]. Later on, this equivalence has been shown for other neu-
ral network architectures like convolutional networks [9] and recurrent networks [10]. A
huge advantage of this equivalence is that this might give a natural way of implementing
Bayesian inference for neural networks, which has long been inaccurate and computa-
tionally demanding [18]. We will call Gaussian processes derived from neural networks:
neural network gaussian processes (NNGPs).
We briefly introduce the correspondence for single-layer neural networks, move on to deep
neural networks, and at last review the relationship between GPs and convolutional net-
works.

Single Layer Networks

We now want to derive this correspondence for the single-layer case following [7]. The
i-th component of the single layer network output, z(1)i , is given using equation (1) for
l = 1 as follows:

z
(1)
i (x) = b

(1)
i +

N1∑
j=1

W
(1)
ij x

(1)
j (x), x

(1)
j (x) = ϕ

(
b
(0)
i +

N0∑
j=1

W
(0)
jk xk

)
, (16)

where W
(l)
ij and b

(l)
j are i.i.d. drawn with variance σ2

ω/Nl and σ2
b respectively. Because the

parameters are i.i.d., x(1)
j and x

(1)
j′ are independent for j ̸= j′. Therefore z

(1)
i is the sum of

i.i.d. terms and it follows by the central limit theorem that for N1 → ∞, z(1)i assumes a
Gaussian distribution. As a result, any finite collection of {z(1)i (x) : x ∈ RN0} has a joint
Gaussian distribution, which is exactly the definition of a Gaussian process [7].



10 2 STATE OF THE ART

In conclusion, we have z
(1)
i ∼ GP(m, k(1)) with mean function m(x) = E[z(1)i (x)] = 0 and

kernel function

k1(x,x′) ≡ E[z(1)i (x)z
(1)
i (x′)] = σ2

b + σ2
ωE[x

(1)
i (x)x

(1)
i (x′)], (17)

independent of i [8]. The expectation value E[x(1)
i (x)x

(1)
i (x′)] can be obtained by integrat-

ing over the distribution of W(0) and b(0). Note that, any outputs z
(1)
i , z(1)i′ with i ̸= i′

are independent from each other, despite using the same features.

Deep Fully Connected Networks

Now we want to extend this to deep fully connected networks by induction following [8].
Suppose that z

(l−1)
i is an identical and independent GP for every i and hence x

(l)
i (x) is

i.i.d.. To calculate z(l−1)
i we use equation (1). Similar to the case of a single layer network,

z
(l−1)
i is again a sum of i.i.d. terms. As before, for Nl → ∞ by the central limit theorem

any finite collection of {z(l)i (x) : x ∈ RN0} has a Gaussian distribution, which means
z
(l)
i ∼ GP(0, k(l)) with kernel function

k(l)(x,x′) ≡ E[z(l)i (x)z
(l)
i (x′)] = σ2

b + σ2
ωEz

(l−1)
i ∼G(0,k(l−1))

[ϕ(z
(l−1)
i (x))ϕ(z

(l−1)
i (x′))]

= σ2
b + σ2

ωFϕ(k
(l−1)(x,x′), k(l−1)(x,x), k(l−1)(x′,x′)),

(18)

where the form of function Fϕ is completely determined by the activation function. This
gives us an recursive formula to determine the kernel function. The base case l = 0 is
determined by

k(0)(x,x′) = E[z(0)j (x)z
(0)
j (x′)] = σ2

b + σ2
ω

(
x · x′

dN0

)
. (19)

At last, since this is a very important case, for the ReLU-activation function there is a
close form representation of Fϕ given in [8] as

Fϕ(k
(l−1)(x,x′), k(l−1)(x,x), k(l−1)(x′,x′)) =

=

√
k(l−1)(x,x)k(l−1)(x′,x′)

2π

(
sin θ

(l−1)
x,x′ + (π − θ

(l−1)
x,x′ ) cos θ

(l−1)
x,x′

)
,

(20)

with

θ
(l)
x,x′ = cos−1

(
k(l)(x,x′)√

k(l)(x,x)k(l)(x′,x′)

)
. (21)
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Convolutional Networks

Finally, we want to extend this to convolutional networks. Since the derivation is quite
extensive and not of particular importance for this thesis, we refer to [9] for an in-depth
proof and instead present only the important results.
We assume the weights and biases to be i.i.d. Gaussian, that is,

U
(ℓ)
i,j,x,y ∼ N

(
0, σ2

ω/C
(ℓ)
)
, b

(ℓ)
i ∼ N

(
0, σ2

b

)
, (22)

with the corresponding Toeplitz matrix representation Wi,j,x,y. If we apply C(l) → ∞
iteratively for every layer we can show again by using the central limit theorem that
the resulting output Z

(l)
i with channel i is an independent GP with zero-mean, i.e.,

Z
(l)
i ∼ GP(0, k(l)). The corresponding kernel function in the l-th layer can be calculated

recursively for µ ∈ {1, ..., H(l+1)D(l+1)} with

k(l)
µ (X,X′) = Cov[Z(l)

µ,i(X),Z
(l)
µ,i(X

′)] =

= σ2
b +

C(l)∑
j=1

H(l)D(l)∑
ν=1

E[W (l)
i,j,µ,νW

(l)
i,j,µ,ν ]E[ϕ(Z

(l−1)
ν,i (X))ϕ(Z

(l−1)
ν,i (X′))]

= σ2
b + σ2

ω

∑
ν∈µ-th patch

Fϕ(k
(l−1)
ν (X,X′), k(l−1)

ν (X,X), k(l−1)
ν (X′,X′)),

(23)

where the µ-th patch corresponds to the set of non-zero positions of the µ-th row of the
Toeplitz matrix W

(l)
i,j . The base case l = 0 is simply given by

k(0)
µ (X,X′) = σ2

b +
σ2
ω

C(0)

C(0)∑
i=1

∑
ν∈µ-th patch

Xν,iX
′
ν,i. (24)
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3 Deep Convolutional Networks as Gaussian Processes

In the previous section, we introduced Gaussian processes derived from convolutional
networks. We now want to specifically look at the behavior of GPs that are based on
very deep convolutional networks. In the first part, we will present the main contribution
of this thesis which can be summarized as bounds on the scaling of the kernel function
with respect to the number of layers. We will prove these bounds, show their interesting
properties, and test them experimentally. In doing so, we will introduce the MNIST data
set and the ConvNet-GP-L architecture used in our implementation. If not stated other-
wise, all operations and comparisons except the multiplication "·", which is calculated as
always, are performed element-wise.

3.1 Linear Convolutional NNGP

In this section, we want to start the main part of this thesis by introducing the case of a
linear convolutional network as GP, i.e., a Gaussian process derived from a convolutional
network without activation functions. This will give us a better grasp of how we can
easily transform CNN matrix representation into a corresponding matrix representation
of the kernel function.

3.1.1 Kernel Functions in Matrix Representation

Equations (23) and (24) can be rewritten as a convolutional operation. In comparison to
the convolution operation in a normal convolutional network, we use a constant single-
channel filter of size nl × nl given by

Ũ(l) = σ2
ω ·


1 . . . 1
... . . . ...
1 . . . 1

 ∈ Rnl×nl . (25)

Since calculations with matrix multiplication are a lot easier to handle mathematically,
we implement the convolution with the corresponding Toeplitz matrix W̃(l). Remember,
in case of zero-padding the columns corresponding to the zeros are removed from W̃(l).
As a result, we can re-represent (23) and (24) with a single operation as

k(l)(X,X′) = σ2
b I+ Ũ ∗ Fϕ(k

(l−1)(X,X′),k(l−1)(X,X),k(l−1)(X′,X′)), (26)

where k is the matrix representation with entries corresponding to the patches as is done
for F and ∗ is the convolution operation. We translate this using the Toeplitz matrix as
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follows:
K(l)(X,X′) = σ2

b1+ W̃(l)V(l−1)(X,X′), (27)

where K(l)(X,X′) = vec(k(l)(X,X′)) and
V(l−1)(X,X′)) = vec(Fϕ(k

(l−1)(X,X′),k(l−1)(X,X),k(l−1)(X′,X′))).
The full kernel can be reconstructed recursively with the base case

K(0)(X,X′) = σ2
b1+

1

C(0)
W̃(0)

C(0)∑
i=1

Xi ⊙X′
i, (28)

where ⊙ is the Hadamard-product.

3.1.2 Linear Convolutional Kernel

Based on the representation derived in the previous section, we can simplify the kernel
function for a CNNGP based on a network with only convolutional layers and no activation
functions, i.e., V(l) = K(l). The results are given in theorem 1.

Theorem 1. Given a linear L-layer CNNGP with kernel function K(L) and W̃(l) for
l ∈ {0, 1, ..., L} Toeplitz transformation matrices, then K(L) can be written for all X,X′ ∈
R(H(0)D(0))×C(0) as

K(L)(X,X′) = σ2
b ·

(
L∑

k=0

k−1∏
i=0

W̃(L−i)

)
1+

1

C(0)

(
L∏

k=0

W̃(L−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
.

Proof. The result can be easily shown by induction.
Base case: L = 1

K(1)(X,X′) = σ2
b1+ W̃(1)K(0)(X,X′)

= σ2
b1+ σ2

bW̃
(1)1+

1

C(0)
W̃(1)W̃(0)

(
C(0)∑
i=0

Xi ⊙X′
i

)

= σ2
b ·

(
1∑

k=0

k−1∏
i=0

W̃(1−i)

)
1+

1

C(0)

(
1∏

k=0

W̃(1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
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Induction step: Suppose the induction hypothesis is true for a single step L. It follows:

K(L+1)(X,X′) =

= σ2
b1+ W̃(L+1)K(L)(X,X′)

= σ2
b1+ W̃(L+1)

(
σ2
b ·

(
L∑

k=0

k−1∏
i=0

W̃(L−i)

)
1+

1

C(0)

(
L∏

k=0

W̃(L−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

))

= σ2
b1+ σ2

b

(
L+1∑
k=1

k−1∏
i=0

W̃(L+1−i)

)
1+

1

C(0)

(
L+1∏
k=0

W̃(L+1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)

= σ2
b ·

(
L+1∑
k=0

k−1∏
i=0

W̃(L+1−i)

)
1+

1

C(0)

(
L+1∏
k=0

W̃(L+1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
,

that is, the hypothesis holds true for L+1, establishing the induction step. Therefore by
induction, the theorem holds.

This theorem just illustrates what was to be suspected, i.e., that the kernel of a linear
convolutional NNGP is essentially an affine transformation of the Hadamard product of
the input data.

3.2 ReLU Convolutional NNGP

3.2.1 Preliminary Work

We now want to move on to nonlinear CNNGPs and specifically look at GPs based on
convolutional networks with a ReLU-activation applied in each layer. In this case, V(l) is
given following equation (20) by

V(l)(X,X′)) =

√
K(l)(X,X)⊙K(l)(X′,X′)

2π
⊙
(
sin θ(l) + (π − θ(l))⊙ cos θ(l)

)
, (29)

with

θ(l) = cos−1

(
K(l)(X,X′)√

K(l)(X,X)⊙K(l)(X′,X′)

)
, (30)

where all operations are applied element-wise. To simplify this equation we introduce the
Person correlation between two samples

ρ(l)(X,X′) =
K(l)(X,X′)√

K(l)(X,X)⊙K(l)(X′,X′)
, (31)
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where ρi ∈ [−1, 1].
With the identity sin(cos−1(x)) =

√
1− x2 for x ∈ [−1, 1] equation (29) simplifies to

V(l)(X,X′) =

√
K(l)(X,X)⊙K(l)(X′,X′)

2π

⊙
(√

1− ρ(l)(X,X′)2 +
(
π − cos−1

(
ρ(l)(X,X′)

))
⊙ ρ(l)(X,X′)

)
︸ ︷︷ ︸

f(ρ(l)(X,X′))

.
(32)

In case of X = X′, i.e., ρ(l)(X,X) = 1, (32) reduces to

V(l)(X,X) =
K(l)(X,X)

2
. (33)

Since the bias-variance introduces a lot of extra complexity, we will set it to zero for the
time being. We will justify this in section 3.4.1. If we have a zero bias-variance (σ2

b = 0),
the kernel function for self-interaction is just a linear transformation of the squared input
data. Following theorem 1, the self-interaction kernel function is given by

K(l)(X,X) =
1

2l · C(0)

(
l∏

k=0

W̃(l−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
. (34)

Leading up to the main results of the thesis we will define the l-level transformed covari-
ance in definition 2.

Definition 2. The l-level transformed covariance P (l) for all X,X′ ∈ R(H(0)D(0))×C(0) is
defined as

P(l)(X,X′) := 2l ·
√
K(l)(X,X)⊙K(l)(X′,X′)

=
1

C(0)

√√√√(( l∏
k=0

W̃(l−k)
)( C(0)∑

i=0

Xi ⊙Xi

))
⊙

(( l∏
k=0

W̃(l−k)
)( C(0)∑

i=0

X′
i ⊙X′

i

))
.

This definition will become relevant later. Expressing a ReLU network without recursion
to directly analyze the scaling of the kernel function is either impossible or too challenging
for this thesis. Instead, we have to determine a lower and upper bound of the kernel
function to investigate its scaling behavior. We first formulate the lower bound and re-
express it in a usable way. Afterward, we move on to the upper bound.
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3.2.2 Lower Bound

A lower bound of the kernel function K(L)(X,X′) of a convolutional NNGP without bias-
variance is given in theorem 2. Figure 3 illustrates the approximations used in both lower
and upper bound derivations.

Figure 3: The read straight line represents the function f as determined in equation (32)
defined on the interval [−1, 1]. The dotted green line serves as a representation of the
function t as used in the proof of theorem 2. The dashed black line shows the function u
as used in the proof of the theorem 4.

Theorem 2. Given a L-layer ReLU CNNGP without bias-variance, i.e., σ2
b = 0, a lower

bound of the corresponding kernel function K(L)(X,X′) for all X,X′ ∈ R(H(0)D(0))×C(0) is
given by

K
(L)
low(X,X′) = W̃(L)

( 1

2π

1

2L−1
P(L−1)(X,X′) +

1

4
K

(L−1)
low (X,X′)

)
,

with base case K
(0)
low(X,X′) = K(0)(X,X′).

Proof. The kernel function for a L-layer ReLU convolutional NNGP without bias-variance
is given by

K(L)(X,X′) = W̃(L)

√
K(L−1)(X,X)⊙K(L−1)(X′,X′)

2π︸ ︷︷ ︸
≥0

⊙f(ρ(L−1)(X,X′)).

Since f is an element-wise monotone increasing convex function for all ρi ∈ [−1, 1], we
can lower bound it with its first order Taylor approximation at position ρ = 0 given by
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t(ρ) = 1+ π
2
ρ, i.e., t(ρ) ≤ f(ρ) for all ρi ∈ [−1, 1].

Therefore a first lower bound is given by

K
(L)
low,inter(X,X′) = W̃(L)

√
K(L−1)(X,X)⊙K(L−1)(X′,X′)

2π
⊙ t(ρ(L−1)(X,X′))

= W̃(L)
( 1

2π

1

2L−1
P(L−1)(X,X′) +

1

4
K(L−1)(X,X′)

)
.

We can easily show by induction that K(l)(X,X′) ≥ K
(l)
low,inter(X,X′) for all l ≤ L. Since

K
(L)
low,inter is element-wise monotone increasing in K(L−1) it follows K(L)

low ≤ K
(L)
low,inter, which

proofs the result.

Unfortunately, this lower bound is still only in its recursive form. To analyze the scaling
behavior properly we must rewrite it as a sum expression. The next theorem delivers this
result.

Theorem 3. Given a L-layer ReLU CNNGP without bias-variance, i.e., σ2
b = 0, and the

lower bound K
(L)
low of its kernel function, then for all X,X′ ∈ R(H(0)D(0))×C(0)

K
(L)
low(X,X′) =

2

π

1

2L

L∑
k=1

1

2k

(
k−1∏
i=0

W̃(L−i)

)
P(L−k)(X,X′)

+
1

C(0)4L

(
L∏

k=0

W̃(L−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
.

Proof. The result can be easily shown by induction.
Base case: L = 1

K
(1)
low(X,X′) = W̃(1)

( 1

2π

1

21−1
P(1−1)(X,X′) +

1

4
K

(1−1)
low (X,X′)

)
=

1

2π

1

21−1
W̃(1)P(1−1)(X,X′) +

1

4C(0)
W̃(1)W̃(0)

(
C(0)∑
i=0

Xi ⊙X′
i

)

=
2

π

1

21

1∑
k=1

1

2k

(
k−1∏
i=0

W̃(1−i)

)
P(1−k)(X,X′)

+
1

C(0)41

(
1∏

k=0

W̃(1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
.

Induction step: Suppose the induction hypothesis is true for a single step L. It follows
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that:

K
(L+1)
low (X,X′) = W̃(L+1)

( 1

2π

1

2L+1−1
P(L+1−1)(X,X′) +

1

4
K

(L+1−1)
low (X,X′)

)
=

2

π

1

2L+1 · 2
W̃(L+1)P(L)(X,X′)

+
2

π

1

2L+1 · 2
W̃(L+1)

L∑
k=1

1

2k

(
k−1∏
i=0

W̃(L−i)

)
P(L−k)(X,X′)

+
1

C(0)4L+1

(
L+1∏
k=0

W̃(L+1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
=

2

π

1

2L+1

1

2
W̃(L+1)P(L+1−1)(X,X′)

+
2

π

1

2L+1

L+1∑
k=2

1

2k

(
k−1∏
i=0

W̃(L+1−i)

)
P(L+1−k)(X,X′)

+
1

C(0)4L+1

(
L+1∏
k=0

W̃(L+1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)

=
2

π

1

2L+1

L+1∑
k=1

1

2k

(
k−1∏
i=0

W̃(L+1−i)

)
P(L+1−k)(X,X′)

+
1

C(0)4L+1

(
L+1∏
k=0

W̃(L+1−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
,

that is, the hypothesis holds true for L+1, establishing the induction step. Therefore by
induction, the theorem holds.

3.2.3 Upper Bound

Now we want to derive an upper bound of the kernel function, which, as you will see later,
is the more important bound. Theorem 4 describes the recursive formula of the upper
bound.

Theorem 4. Given a L-layer ReLU CNNGP without bias-variance, i.e., σ2
b = 0, an upper

bound of the corresponding kernel function K(L)(X,X′) for all X,X′ ∈ R(H(0)D(0))×C(0) is
given by

K(L)
up (X,X′) = W̃(L)

(1
4

1

2L−1
P(L−1)(X,X′) +

1

4
K

(L−1)
low (X,X′)

)
,

with base case K
(0)
up (X,X′) = K(0)(X,X′).
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Proof. Since f is an element-wise monotone increasing convex function for all ρi ∈ [−1, 1]

we can upper bound it with the straight line u from (−1, 0) to (1, π), that is, u(ρ) = π
2
1+π

2
ρ

for ρi ∈ [−1, 1].
Therefore a first upper bound is given by

K
(L)
up,inter(X,X′) = W̃(L)

(1
4

1

2L−1
P(L−1)(X,X′) +

1

4
K(L−1)(X,X′)

)
.

We can easily show by induction that K(l)(X,X′) ≤ K
(l)
up,inter(X,X′) for all l ≤ L. Since

K
(L)
up,inter is element-wise monotone increasing in K(L−1) it follows K

(L)
up ≥ K

(L)
up,inter, which

proofs the result.

Again, we can again rewrite this recursive formula as an iterative sum.

Theorem 5. Given a L-layer ReLU CNNGP without bias-variance, i.e., σ2
b = 0, and the

upper bound K
(L)
up of its kernel function, then for all X,X′ ∈ R(H(0)D(0))×C(0)

K(L)
up (X,X′) =

1

2L

L∑
k=1

1

2k

(
k−1∏
i=0

W̃(L−i)

)
P(L−k)(X,X′)

+
1

C(0)4L

(
L∏

k=0

W̃(L−k)

)(
C(0)∑
i=0

Xi ⊙X′
i

)
.

Proof. The result can be easily shown by induction.
The proof can be performed analogously to theorem 3.

An interesting observation we can make is that the second term of the upper bound is
the same as the second term of the lower bound. Furthermore, the first term is also very
similar only a factor of 2

π
distinguishes both. As a result, the type of scaling of the kernel

function as determined via the upper and lower bound for a large number of layers can
be roughly determined by using just one of these bounds.

3.3 Dataset and Methods

We want to verify the result of the last two sections. To do that, we first introduce the
type of convolutional GP and the data set used in the experimental process.

3.3.1 MNIST Dataset

The dataset used for our experiments is the MNIST data set [19]. It is a set of 28 × 28

gray-scale images of handwritten digits. These images are labeled with the corresponding
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digit represented in the image. Since it is grey-scaled we have therefore 784 input features
per prediction and a single output corresponding to the digit represented in the picture.
The total data set consists of about 70.000 samples. These samples are usually split up
into roughly 60.000 samples for training and 10.000 samples for testing. Most of our
calculations will require a lot of training time since the calculation of GP kernel matrices
requires extensive computational resources. Because of that, we will reduce the size of
the training set substantially depending on the task at hand. The only preprocessing
we will apply is scaling the images originally ranging from 0 to 255 to the range [0, 1].
Transformations like centering will not be applied. In Figure 4, you will find a few samples
of the used data set.

Figure 4: Sample of the MNIST data set [19].

3.3.2 ConvNet-GP-L

In this section, we will introduce the type of CNNGP used in this thesis. The architec-
ture of the underlying CNNs is very simple and based on the ConvNet-GP architecture
introduced in [9].
The CNN architecture described in [9] has seven convolution layers, where each convolu-
tional operation uses a 7×7 filter. The input data of each layer is padded with zeros such
that the output dimension is equal to the input dimension, i.e., zero-padding is applied
such that the input and output dimension is 28× 28. Each of the convolutions is followed
by a ReLU nonlinearity. The final layer is a fully-connected layer with no nonlinearity
following. To implement this we use a 28× 28 filter with no padding. The GP based on
this architecture is called ConvNet-GP. For classification, the labels are one-hot-negative
encoded, that is, yi ∈ {−1, 1}10. No transformations like a Softmax-activation function
are used. Instead, we perform just a multi-class regression as described in 2.2.2.
Since we want to vary the number of layers used, we call a convolutional NNGP with L
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layers which has a ConvNet-GP-based architecture ConvNet-GP-L, e.g., ConvNet-GP-7
is equivalent to ConvNet-GP.
We now want to derive some properties for a ConvNet-GP-L. First of all, since all layers
except the last perform the same operation, the first L Toeplitz matrices with removed
padding columns are equal and we write W̃ for the first L matrices, that is, W̃(i) = W̃

for all i ∈ {0, 1, ..., L− 1}. The last layer is a fully-connected layer with a Toeplitz matrix
that is just a row vector with only σ2

ω entries denoted by W̃(L). Furthermore, since the
MNIST Dataset has only one channel, C(0) = 1. Based on this, we can simplify the bound
equations. First, we rewrite the l-level transformed covariance as

P(l)(X,X′) =

√(
W̃l+1

(
X⊙X

))
⊙
(
W̃l+1

(
X′ ⊙X′

))
, (35)

where the matrix power is not applied element-wise. For the lower bound, we can now
write

K
(L)
low(X,X′) =

2

π

1

2L

L∑
k=1

1

2k
W̃(L)W̃k−1P(L−k)(X,X′)

+
1

4L
W̃(L)W̃L

(
X⊙X′

)
,

(36)

and for the upper bound

K(L)
up (X,X′) =

1

2L

L∑
k=1

1

2k
W̃(L)W̃k−1P(L−k)(X,X′)

+
1

4L
W̃(L)W̃L

(
X⊙X′

)
.

(37)

An interesting observation we can make is that each sum element of the first term, as
well as the second term, contributes roughly W̃L, although the transformations applied
in P(l) skew that a bit. Furthermore, the resulting bounds are scalar values since W̃(L) is
a row vector and P(l) a column vector.
W̃ is a positive real quadratic symmetric matrix that results in two interesting proper-
ties: First, there is a real orthogonal matrix Q and a real diagonal matrix Λ such that
W̃ = QΛQ⊤. And second, W̃k = QΛkQ⊤.
The scaling of W̃L with respect to L is therefore mostly determined by its spectral ra-
dius ρ(W̃) = max{|λ| : λ is eigenvalue of W̃}, which is equal to the highest eigenvalue
λmax ≈ 46.9σ2

ω for matrices with only positive entries. In case of W̃, the eigenspace cor-
responding to the eigenvalue λmax is one dimensional. As a result, for high values of L,
W̃ is approximately

W̃L ≈ λL
maxq1q

⊤
1 , (38)
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where q1 is the normalized eigenvector corresponding to λmax.
Based on the results of the last paragraph, we can roughly approximate the upper bound
for very high values of L as follows:

K(L)
up (X,X′) ≈ λL

max

2L

L∑
k=1

1

2k
W̃(L)q1

√
q⊤
1

(
X⊙X

)
· q⊤

1

(
X′ ⊙X′

)
+

λL
max

4L
W̃(L)q1q

⊤
1

(
X⊙X′

)
=

λL
max

2L
(1− 1

2L
)W̃(L)q1

√
q⊤
1

(
X⊙X

)
· q⊤

1

(
X′ ⊙X′

)
+

λL
max

4L
W̃(L)q1q

⊤
1

(
X⊙X′

)
≈ λL

max

2L
W̃(L)q1

√
q⊤
1

(
X⊙X

)
· q⊤

1

(
X′ ⊙X′

)
.

(39)

Essentially, the upper bound degenerates to a very simple expression only dependent on
the first eigenvector of the Toeplitz matrix.

3.4 Computational Results

In this section, we want to test the derivations made in the previous segments of this
thesis. All computations will be performed using the ConvNet-GP-L architectures on an
i7-6700k Intel CPU. Since the calculations are usually made for only small amounts of
data, the used hardware does not play any limiting role in calculating the kernel matrix.
We will first justify why the derivation was made with a zero bias-variance. Secondly,
we will show the correctness of the derived bounds. After that, we will investigate the
convergence of the kernel function and determine the usefulness of the approximations
made in equation (39). At last, we want to determine how these results can be used to
predict the accuracy of ConvNet-GP-L with a large number of layers.

3.4.1 Bias Contribution

In the previous section, derivations were made without the use of a bias-variance. In this
section, we want to justify why these results are also useful for biased ConvNet-GP-L
architectures.
Interestingly, we can observe that a bias-variance introduces a linear component to the
scaling behavior of the kernel function as visible in Figure 5. In case weight-variance and
bias-variance are of similar magnitude, this linear contribution only plays a minor role
in the scaling behavior of the kernel function. However, if σ2

ω ≪ σ2
b the contribution is

clearly visible. To make it more noticeable, σ2
ω with some abuse of notation is chosen to be
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σ2
ω = 2

λmax(W̃(σ2
ω=1))

. As we will see later, in this case, a zero bias-variance system converges
against a constant value. Furthermore, we normalize the covariance with respect to this
constant such that the bias contribution becomes more clear.
The approximately linear bias contribution is a function described by roughly b(L) =

a ·σ2
b ·L, where a is dependent on most of the parameters determining the ConvNet-GP-L

architecture except L.
In conclusion, if weight-variance and bias-variance are of similar magnitude we can mostly
ignore the bias contribution. Choosing weight-variance and bias-variance to be of similar
magnitude is a common choice performed also in [9]. Moreover, if σ2

ω ≪ σ2
b , the bias

contribution can simply be modeled by a linear contribution b(L). It can be therefore
justified to only look at the scaling behavior of a zero bias-variance system.

(a) Bias-variance σ2
b = 20 (b) Bias-variance σ2

b = 40

Figure 5: The dotted black line represents normalized covariance of ConvNet-GP-L for
some X ̸= X′ with weight-variance σ2

ω ≈ 2
46.9

and with respective bias-variance with
respect to number of layers L. The red line represents the linear contribution of the
bias-variance determined via linear regression of covariance values for L > 200.

3.4.2 Validity of Bounds

Now we want to verify the correctness of both bound theorems 3 and 5. In Figure 6, one
can see the bounds on the kernel function K(L)(X,X′) for some X ̸= X′ as a fraction of
the upper bound. After a short convergence period, the normalized lower bound converges
to 2

π
which is exactly what was to be expected, i.e., the first term of both bounds in their

series representation dominates for large L, which differ by a factor of 2
π
. Furthermore,

the kernel function stays within the determined bounds of the system. Interestingly, the
kernel function also seems to be converging against the upper bound. Similar observations
can be made for a non-zero bias-variance ConvNet-GP-L system shown in Figure 7.
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Figure 6: The straight black line shows the covariance of ConvNet-GP-L for some X ̸= X′

with weight-variance σ2
ω = 0.25 and with zero bias-variance divided by the upper bound

with increasing L. The dotted red line represents the lower bound as a fraction of the
upper bound. The green dashed line shows the upper bound divided by the upper bound
itself which is therefore always 1.

Figure 7: The straight black line shows the covariance of ConvNet-GP-L for some X ̸= X′

with weight-variance σ2
ω = 0.25 and with σ2

b = 20 divided by the upper bound with
increasing L. The dotted red line represents the lower bound as a fraction of the upper
bound. The green dashed line shows the upper bound divided by the upper bound itself
which is therefore always 1.
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3.4.3 Convergence Behavior of the Kernel Function

We now want to study the convergence behavior of the kernel function in more detail.
As we have seen in the last section, the kernel function seems to converge against the
upper bound stated in theorem 4. As visible in Figure 8, for σ2

ω = 2

λmax(W̃(σ2
ω=1))

the upper
bound resembles - after a short convergence phase - a constant function. This constant is
approached by the kernel function for large values of L.
A question that comes to mind: Is the GP predictor based on calculations of the kernel
matrix via the upper bound delivering similar results as the corresponding ConvNet-GP-L
predictor for large L? Because it is surely possible that small differences in the values of
the kernel matrix result in large differences in predictions, this should be investigated.
To better analyze this, we developed GP predictors with kernel functions calculated via the
upper bound and compared the predictions with the respective ConvNet-GP-L predictor.
Clearly, as shown in Figure 9, the convergence for increasing L holds equally true for the
corresponding predictions.
To conclude, for large L the kernel function as well as the predictor seem to converge
against its equivalent calculated via the upper bound.

Figure 8: The straight black line shows the covariance of ConvNet-GP-L for some X ̸= X′

with weight-variance σ2
ω = 2

λmax(W̃(σ2
ω=1))

and zero bias-variance with increasing L. The
the dashed green line represents the corresponding upper bound.
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(a) Mean Absolute Error (b) Root Mean Squared Error

Figure 9: (a) MAE between the prediction Y of using the ConvNet-GP-L predictor and
the prediction Yb of using the GP predictor based on the upper bound. (b)RMSE between
the prediction Y of using the ConvNet-GP-L predictor and the prediction Yb of using the
GP predictor based on the upper bound.

3.4.4 Convergence Limit

As we have seen in the last section, the kernel function seems to converge against the
upper bound as derived in theorem 4. Although the validity of this convergence should be
mathematically proven, we will assume that the convergence holds true to at least some
extent as demonstrated by the experimental data. But what are the conclusions we can
formulate from this?
As we have derived in equation (39), the upper bound can be approximated for large
values of L as follows:

K(L)
up (X,X′) ≈ K(L)

approx,up(X,X′) =
λL

max

2L
W̃(L)q1

√
q⊤
1

(
X⊙X

)
· q⊤

1

(
X′ ⊙X′

)
. (40)

As visible in Figure 10, the upper bound converges rather quickly against this approxi-
mation from below. For large L, we can therefore use this approximation to describe the
upper bound. This translates into a good convergence of the true kernel function against
the approximation of the upper bound as shown in Figure 11.
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Figure 10: Dotted black line describes the upper bound divided by itself for σ2
ω =

2

λmax(W̃(σ2
ω=1))

. The straight red line corresponds to the approximation divided by the
upper bound. The approximation converges to the upper bound of the kernel function
from above.

Figure 11: Black line describes the upper bound divided by the approximation for X ̸= X′

and σ2
ω = 2

λmax(W̃(σ2
ω=1))

. The dashed red line corresponds to the approximation divided
by itself.
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So we can assume with some certainty that the kernel function converges against the
approximation (39). The first observation we can make is that only the prefactor of (39)
is dependent on L. As has been stated earlier, if σ2

ω = 2

λmax(W̃(σ2
ω=1))

the approximation
becomes a constant independent of L.
Furthermore, we also know that the predictor itself is independent of any prefactors even
if the weight-variance is not chosen such that the prefactor is independent of L. Therefore,
the relevant part of the approximation reduces to

K
(L)
approx, rel(X,X′) =

√
q⊤
1

(
X⊙X

)
· q⊤

1

(
X′ ⊙X′

)
. (41)

Since this is the relevant part sufficient for describing the predictor for large values of L, it
might be beneficial to examine this formula a little more. First, we can see that under the
square root two inner product operations are performed, i.e., we take the standard inner
product of the square of X with q1 and we take the standard inner product of the square
of X′ with q1. The inner product calculation essentially behaves as a similarity measure,
that is, the more similar the squared vectors are to q1 the higher the corresponding values
of the inner product. After the two inner products are calculated, the geometric mean of
the two is determined resulting in K

(L)
approx, rel(X,X′). So to summarize, we compare both

input images with the image shown in Figure 12 and take their geometric mean.
As visible in Figure 12, the eigenvectors measure very different properties of the image.
The 2D representation of q1 is a nearly radial symmetric image with its highest point in
the middle and decreasing with distance to this center. The other lower-level eigenvectors
do not play any role for large values of L. As a result, this lower level, finer-grained
information is lost and values in the center of the input images are just promoted via q1.
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Figure 12: Representation of the first 20 normalized eigenvectors corresponding to the
largest absolute eigenvalues of W̃ reshaped as a 28 × 28 2D representation ordered by
decreasing absolute eigenvalue in row-major order starting with q1 in the left upper corner.
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3.4.5 Accuracy

At last, we want to analyze how this convergence behavior translates into accuracy change.
As visible in Figure 13, the accuracy first increases until 7 layers and after that peak is
achieved decreases with an increasing number of layers in both cases. Again we can see
that the bias-variance has close to no influence on the GP prediction as seen by the full
overlap of both graphs.
The first increase in accuracy can probably be explained by the fact that too shallow
convolutional systems are not able to capture features at various levels of abstraction [20].
At the peak, the number of layers seems to be enough to allow the ConvNet-GP-7 to
understand these features. However, we see a decrease in accuracy after this peak has
been reached. The convergence limit of the ConvNet-GP-L system explored in the last
sections might be an explanation for this.
As we have seen in the last section, the true kernel function of a zero bias-variance system
seems to converge against K

(L)
approx,up(X,X′). Since σ2

ω and σ2
b are of similar magnitude,

this property can be adopted also for the system with non-zero bias-variance.
Incidentally, K(L)

approx,up(X,X′) is a very low information kernel function only capable of
capturing similarity features of the inputs using q1. This might be the reason for the poor
performance of the corresponding ConvNet-GP-L for large L.
To summarize, a large number of layers with convolution operations seems to blur low-
level interaction information between X and X′ which then deteriorates the performance
of the kernel machine.

(a) σ2
ω = 2.79 and σ2

b = 7.86 (b) σ2
ω = 2.79 and σ2

b = 0

Figure 13: Accuracy of ConvNet-GP-L with σ2
ω = 2.79 and σ2

b = 7.86 as proposed by [9]
train on 100 MNIST images with increasing number of layers L.
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4 Conclusion and Outlook

In this thesis, we have investigated Gaussian processes derived from Bayesian infinite
channel convolutional networks. We first introduced the convolutional networks as well
as Gaussian processes and presented how convolutional neural network Gaussian processes
(CNNGP) can be derived from infinitely wide Bayesian convolutional networks in section
2. In the main part of the thesis, the focus was specifically on the scaling behavior of
kernel functions of CNNGPs. In section 3.1 and 3.2, we first introduced a formalism to
more efficiently describe the kernel function of CNNGPs using constant Toeplitz matrices.
Using this formalism, upper and lower bounds on the kernel function for zero bias-variance
systems were derived and proofed resulting in a simple, easy-to-handle sum representa-
tion of the bounds. In the computational section 3.4, we tested the derived theorems and
analyzed the convergence behavior of the kernel function with respect to the number of
layers experimentally.
As a starting point, we first tried to justify the neglect of bias-variance in our derivations.
By plotting the kernel function of a ConvNet-GP-L architecture with and without bias-
variance, we saw that non-zero bias-variance contributed only a small linear contribution
added to the kernel function. This contribution was neglectable for bias- and weight-
variance with the same order of magnitude. Based on this, we verified the correctness
of both bounds for the case of the ConvNet-GP-L architecture. To do this, we analyzed
the scaling of the kernel function ConvNet-GP-L against the scaling of both upper and
lower bounds. During this process, we made the interesting observation that the kernel
function seems to converge against the derived upper bound for a large number of layers
L. This fact influenced us to examine the upper bound more closely. We showed that
for the ConvNet-GP-L architecture, the upper bound itself degenerates to a very simple
expression for large L and essentially matches this expression already at about 20 layers
(L = 20). This simple expression is determined by the geometric mean of the inner prod-
uct of the normalized eigenvector of the largest eigenvalue of the corresponding Toeplitz
matrix with the squared input image X and the squared input image X′. This degenerate
kernel function promotes high values for images with a strong central focus and is not
sufficiently useful as a similarity measure between the two images. At last, we tried to
translate this convergence behavior into predictions about the accuracy of the ConvNet-
GP-L architecture for large values of L. Incidentally, the accuracy of a ConvNet-GP-L
predictor degenerates for a large number of layers. We proposed that the convergence of
the kernel function against the degenerate form of the upper bound can be used as an
explanation for this phenomenon. Although, further research is needed to validate this
claim.
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There is still a lot of research to be done. First of all, even though we somewhat justi-
fied the zero bias-variance as a condition for the validity of the bounds, it would still be
interesting to extend these bounds to CNNGPs with non-zero bias-variance rigorously.
Furthermore, since the witnessed bias contributions were minor at best, the actual effect
of bias-variance would be an interesting question to analyze. In addition to this, other
types of layers should also be evaluated and their contributions should be investigated.
A residual or a batch normalization layer might be able to avoid some convergence ef-
fects witnessed in this thesis. Furthermore, experiments should also be extended to other
convolution-based architectures different from ConvNet-GP-L to analyze whether conver-
gence and accuracy results can be generalized. Last and most importantly, it should be
analyzed how the convergence results for the CNNGP can be used for a better under-
standing of the underlying convolutional networks.
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