TUTl

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis

Solving partial differential equations in
high dimensional spaces using Deep
Sparse Grids

Ahmet Ege Semiz

0

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis

Solving partial differential equations in
high dimensional spaces using Deep
Sparse Grids

Losung von partiellen Differentialgleichungen in hochdimensionalen Rdumen
mit Deep Sparse Grids

Author: Ahmet Ege Semiz
Supervisor: Dr. Felix Dietrich
Advisor: Dr. Felix Dietrich

Submission Date: August 15th, 2022

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, August 15th, 2022 Ahmet Ege Semiz

Acknowledgments

I would like to thank my advisor and supervisor, Dr. Felix Dietrich, as his insight and
feedback throughout the writing of this thesis has helped me immensely.

Abstract

Partial differential equations (or PDEs) are a type of problem that comes up in diverse
areas of mathematics and engineering. From the heat equation to the wave equation,
they are an obstacle that frequently needs to be tackled. While PDEs in low-dimensional
base spaces are mostly well understood, those in high-dimensional base spaces are a
lot more complicated yet still common, and require better methods to deal with.

PDEs are not unique in this regard, as problems such as regression, classification,
and more also suffer from this so-called "curse of dimensionality”, e.g. the difficulty
spike while dealing with problems with higher dimensions. Some approaches to
this problems are sparse grids and neural nets, both ways of approximating high-
dimensional functions in a more efficient way. Sparse grids attempt do accomplish
this by describing the function in terms of hierarchical basis functions, and leave out
to ones that contribute less to the function sum. Neural nets, similarly approximates
the function, but by using parameterized functions instead. Both techniques have been
combined in the past as "Neural Sparse Grids" or "Deep Sparse Grids" in order to solve
the previously mentioned problems.

In this thesis, we will attempt to use Deep Sparse Grids in order to solve a type
of PDE, the heat equation, and for a specific case, namely, when the domain of the heat
equation is a lower dimensional manifold embedded on a higher dimensional domain.
This method will be derived, tested, and discussed.

v

Contents

Acknowledgments iii
Abstract iv
1 Introduction 1
2 State of the Art 2
2.1 Partial Differential Equations 2
2.1.1 Variables and Initial Conditions 2
212 TheHeat Equation 3
213 SolvingPDEs 4
2.2 Autoencoders e 4
221 Neural Networks 4
222 Autoencoder e 6
2.2.3 Dimensional Reductionof PDEs 6
23 SparseGrids 7
2.3.1 Nodal Basis Functions and Full Grids 7
2.3.2 Hierarchical Basis Functions and Sparse Grids 8
2.3.3 PDE Solving with Sparse Grids 11

3 Solving partial differential equations in high dimensional spaces using
Deep Sparse Grids 12
3.1 Solving the 1D Heat Equation 12
3.2 Autoencodersand the2D Case 14
3.3 Domain Change and its Consequences. 17
3.4 Solving the Modified 1D Heat Equation 18
3.5 Deep Sparse Gridsand theCode 20
3.6 Experimentsand Results 22
3.6.1 ExampleProblem 22
3.6.2 FakeEncoder 22
3.63 RealEncoder 24

Contents

4 Conclusion

41 Summary
411 Summary
4.1.2 DiscusSion i i e e e e e e e e e e
413 Outlook

List of Figures
List of Tables

Bibliography

26
26
26
26
26

28

29

30

Vi

1 Introduction

Many complex processes in diverse areas of science involve multiple variables, and
deal with how these variables change with relation to one another. These complex pro-
cesses have been modelled and studied for decades, using partial differential equations
[Pen05]. As science developed into more and more into more complicated settings, so
did the models to study, and thus, the equations. In recent years, with the boom in
machine learning and other areas of modelling with high dimensional structure, this
increase in complexity has forced the partial differential equations to involve even more
variables, and also increase in dimensionality. However, this process has resulted in
the emergence of the "Curse of Dimensionality", that is, the higher the dimension of
the problem, the more resources needed to solve the problem within the same error
margins [Pfl10].

Sparse grids were developed to solve this problem, and in fact, to solve partial differen-
tial equations, and they were quite successful [Zen91]. However, as the dimensionality
of the data within these problems increases ever more, new methods must be developed
to deal with them.

Luckily, in some cases, only the ambient dimension space of the data is high, and can
be reduced without most loss. For this purpose, a special kind of neural network is
used, the autoencoder. Autoencoders have been used in many diverse areas, to reduce
the dimensionality of data, and have proven themselves useful [IC16].

A combination of an autoencoder to reduce the dimensionality of data, and a sparse
grid to solve a partial differential equation on the latent space created by the encoder is
the main concept developed in this thesis.

Section 2 will introduce the diverse yet interrelated concepts of partial differential
equations (PDEs), autoencoders, and sparse grids. Afterwards, Section 3 will introduce
the main topic of the thesis, that is, a Deep Sparse Grid structure involving an autoen-
coder and a sparse grid for solving a specific PDE, namely, the heat equation. We will
derive a method to solve the equation using sparse grids, introduce the autoencoder to
the system and study its effects, and finally, obtain and discuss results.

2 State of the Art

This section will serve as a brief introduction to the diverse background topics of
this thesis, namely: partial differential equations in Section 2.1, autoencoders as a
neural network for dimension reduction in Section 2.2, and sparse grids and all related
interpolation tools such as hierarchical basis functions in Section 2.3.

2.1 Partial Differential Equations

Partial differential equations, or PDEs for short, are a special type of equation describing
specific functions. The "differential" part indicates that such equations are constructed
using the derivatives of functions, and the "partial" part indicates that the resulting
functions and the relationships involve multiple variables. They are used to model a
variety of real world phenomena, finding the solution allows one to understand and
predict these phenomena better [Bor16].

2.1.1 Variables and Initial Conditions

In the traditional sense, and also for our purposes, the (multi)variables of the equations
are time (f), and some spatial coordinates (x,y,z). So a time-dependent function based
in 1 dimensions can be described as u(t, x).

Aside from the equation itself, another important part of PDEs are the initial and
boundary conditions. As the solutions of these equations are usually a family of
functions, these families generally need to be narrowed down. The most common way
of doing this is by using initial conditions, that is, the value of the function at points
where t equals zero. Other conditions such as nonzero values or values of derivatives
are also common.

Unless stated otherwise, we will use f, to indicate the partial derivative of a function f
with respect to the variable x.

2 State of the Art

2.1.2 The Heat Equation
An example of a PDE is the so-called heat equation, which can be written as

ou

— = aAu. 2.1

5 (2.1)
Here, the A stands for the Laplace operator, a sum of all spacial partial second deriva-
tives. In other words, the function u must satisfy the property where its partial
derivative with respect to time is equal to the sum of its spacial partial derivatives,
times a constant a. In 3 dimensions, the equation would like

ou ?u *u *u
(4 o+ o). 2.2
o~ gzt ot o) @2)
But in this thesis, we will focus on the one dimensional case,
ou o*u
The PDE must be solved in a domain, for simplicity, we will assume that
u:[0,1] - R. (2.4)

Also, as mentioned in the previous subchapter, PDEs are generally to be solved using
some conditions. As for the heat equation, we will assume the so-called Dirichlet
boundary conditions [Lan15], or

u(x,0) =ug, u(0,t) =u(l,t)=0. (2.5)

So, we will have some initial input vector 1y, which will describe the state of the domain
at t = 0. In addition, the two boundary points at the edge of the domain will always be
0.

The heat equation, as can be understood by its name, is a way of simulating the
heat flow on some kind of surface or object. For example, the one dimensional heat
equation is a way of representing the heat flow on an uniform rod, where «a is a product
of certain physical coefficients, although the derivation and exact implications of this
equivalency will not be the topic of this thesis.

2 State of the Art

2.1.3 Solving PDEs

There are many ways of solving PDEs. One way is solving the PDE analytically, that is,
finding an explicit expression for the solution. However, solving the PDE analytically is
not always possible.

In this thesis, we will attempt to solve the heat equation numerically, generally using
finite differences. Instead of obtaining a closed form representation of the resulting
functions, we will use an algorithm that can generate the values of this function at
specific points.

For this, we will use the weak formulation of the heat equation [Glo11], which can be
written as

/ up - vdx :/ Uyy - VAX. (2.6)
Q Q

Here, () is our domain, and v is a so-called test function. A solution satisfying this
equation for all test functions v will also satisfy the original equation. Using other
techniques, this integral equality can be turned into a system of equations, the exact
details of which will be explained later.

2.2 Autoencoders

An autoencoder, a type of neural network, is a key component of this thesis, and will
be the tool used to reduce the dimensionality of our PDE domains. Before they could
be explained in detail, neural networks must be introduced.

2.2.1 Neural Networks

A neural network, or NN for short, is a computational structure consisting of artificial
neurons, which are connected to each other in certain way, and all have inputs and
outputs in a domain, generally in [0, 1]. These neurons are arranged in layers, where
the inputs of a neuron consist of all the outputs of the neurons of the previous layer
[VU96]. See 2.1 for an example. For the output o0; of a neuron i, we have

0j =24 (E w;jo; + bi) . (2.7)
j

Where j are the neurons of the previous layer, w;; are weights of the connections, and b;
is the bias of neuron i. a is an activation function, which keeps the output within the

2 State of the Art

Figure 2.1: A neural network with a 2D input, 1D output, and 2 hidden layers.

interval [0, 1]. An example of an activation function is

(2.8)
also called the Sigmoid function.

The layers of a neural network consist of an input an layer, an output layer, and
the hidden layers. Between each layer, the above calculation occurs, where in the end,
we obtain the output of the whole neural network based on the input. This whole
process is called a forward pass. The number of neurons in a neural network’s input
layer is also called its input dimension, and describes the shape of its input. Similarly,
a NN also has an output dimension.

The main point of neural networks is that they can be trained to solve a specific problem.
The idea is to prepare inputs and correct outputs of the problem, calculate the outputs
of the neural network, and then compare these, using a so-called loss function. An
example is the Mean Squared Error, which can be calculated as
1 n
MSE = =Y (0; — 6;)*.

)y (2.9)

Where 7 is the number of outputs, o; is the correct output, and 9; is the output of the
neural network.

Based on the result of this function, we can adjust the weights and the biases of
the neural network to decrease the value of the loss function, and thus reduce the error
rate of the neural network. This is done using a technique called back propagation, the
details of which will not be explained very in depth in this thesis.

2 State of the Art

Figure 2.2: An autoencoder with 2D inputs/outputs, and a 1D encoding domain.

For the purposes of building and training a neural network, the Python library Tensor-
Flow will be used [Mar+15].

2.2.2 Autoencoder

An autoencoder is a special type of neural network [IC16]. It consists of two neural
networks adjoined, such that the output of the first neural network becomes the input
of the second neural network. The input dimension of one NN is equal to the output
dimension of the other, and vice versa. This means that the input dimension and the
output dimension of the whole structure are the same. See 2.2 for an example.

Autoencoders are used in dimensional reduction [IC16]. For example, an autoencoder
can be used to reduce the dimension of an image, to compress it. A monochrome
image with 16x16 pixels can be understood as a 256-dimensional data point, which we
might attempt to reduce to 64 dimensions, and then reconstruct. So, the input/output
dimension of the autoencoder would be 256, and the middle dimension between the
NNs would be 64.

The first NN is called the encoder, and the second NN is called the decoder. The
encoder can be used to compress the input data and obtain the coded data, whereas
the decoder can decompress the code and get the original input. So ideally, the encoder
and the decoder should be inverses of each other.

2.2.3 Dimensional Reduction of PDEs

As mentioned in the previous section, PDEs generally involve multivariable functions,
another way of imagining the multiple variables is by examining them in multiple
dimensions. For example, a heat equation u(t, x,y, z) can be visualized, and explained,

2 State of the Art

in a three-dimensional space, and also time as a possible fourth dimension.

This approach is useful in specific cases, one that we will consider in this paper
is if the interval that the PDE is defined on is a lower-dimensional manifold. What this
means is that, the PDE is actually defined on a, for example, one-dimensional interval,
but this interval is "twisted" and "moved around" on a 2-dimensional plane. In such
cases, reducing the dimensionality of the PDE helps immensely, as it also reduce the
work and increases accuracy.

An autoencoder can be used to compress the domain of the original PDE, after which
it will be solved on the encoded domain, and then we can decode the solution. The
exact process will be explained later.

2.3 Sparse Grids

Sparse grids are the second key component of our PDE solver, and constitute the way
in which the PDE will actually be solved. However, nodal / hierarchical basis functions
and full grids must be explained before we can get to sparse grids.

2.3.1 Nodal Basis Functions and Full Grids

Let u be a 1-dimensional scalar-valued function defined on the domain [0,1] For
simplicity, we will also assume that #(0) = u(1) = 0. The goal is to approximate u
using a sum of n weighted basis functions, where

u(x) =~ ,Z:Ci - pi(x) = u/(x). (2.10)

Here, ¢ are the basis functions, and c are the weights [Pfl10]. u’ is our interpolant. To

do this, we divide the domain into mesh-lengths of equal size h = n~1.

The same approach can be used for a d-dimensional function, for this, the domain must
now be divided into d-dimensional segments. This structure is also called a full grid
[Pf110]. Afterwards, the d-dimensional basis functions would need to be calculated
from their one dimensional counterparts. So we would have

d
¢ (%) 114’@-(%‘% (2.11)
i

2 State of the Art

1.2+ -

1 [|
=

Kk 08} -
=
195

R 0.6 1
=

< 04| 8

02 -

0 | | | |
0 0.2 04 0.6 0.8 1

X

Figure 2.3: Interpolation of the function sin(7x) by a nodal basis
and then the interpolant can be constructed as before using

u'(¥) ~ Zci - i(x). (2.12)

One possibility is to use nodal basis functions, with
i
n+1

i(x) =1— |2 —il, a=ul—=). (2.13)

While these are simple to understand and use, a problem occurs in higher dimensions:
The number of points to interpolate increases exponentially with respect to the dimen-
sion. This is also called the curse of dimensionality. To combat this, we will introduce
hierarchical basis functions and sparse grids.

2.3.2 Hierarchical Basis Functions and Sparse Grids

Before introducing sparse grids, we need to take a look at hierarchical basis functions,
which are constructed as

¢ri(x) =1—[2'x —2i +1]. (2.14)

So each function has a level | € [n] in addition to its index i € [2'~1]. The hierarchy
comes from the fact that each level is constructed by taking the previous level, and

2 State of the Art

®3,1 2,1 ®3,3 oL

Figure 2.4: Interpolation of a parabola using hierarchical basis functions. [Gar13]

Grid Points Error
Full Grids O(h=) on?)
Sparse Grids | O(h~!log(h=1)%"1) | O(h*log(h~1)*"1)

Table 2.1: Comparison between full grids and sparse grids

dividing the nonzero domain of a basis function into half, where each subdomain
gets its own basis function. Note that all possible function constructed from the basis
functions (its span) is equal to the one for nodal basis functions [Pfl10]. Also note that
the smaller the nonzero domain of a basis function, the less it contributes to the total
sum.

In the d-dimensional case, during the construction of the d-dimensional basis functions,
we are multiplying hierarchical basis functions of many different levels together. These
products can be categorized into multiple subspaces. The idea behind sparse grids is
that, since the high-level basis functions contribute less, and thus their products as well,
we can ignore them in the final sum. This results in a sparse grid, which can also be
represented as a diagonal cut of subspaces (see 2.5).

It can be shown that, while sparse grids have, in comparison with full grids, a logarith-
mically exponential number and not exponential number of points, the error rate does
not change significantly (2.1) [Pfl10].

2 State of the Art

;=1 ° ° ° e|lo oo
| °
° ° ° . : °
=2 | TY Y YY)
] ° ° :) : °
™
——
L ,
t | ‘/3(1)
1,=3 : |
I
Ly hd |

Figure 2.5: Sparse grids are obtained from full grids using a diagonal cut. [Pf110]

10

2 State of the Art

08— 5 " " |

0.6 k . —

(SN # RN

0.4 / -—--

TDUDO
o

L . o\ . .
0z2f- f N . N 4 N / \
7’ /, ’ R
L \

- %
0.0 kY ')
-1.0 -0.5 0.0 0.5 1.0

Figure 2.6: Polynomial functions p for basis functions, note that they are not scaled yet.
[BD98]

2.3.3 PDE Solving with Sparse Grids

Sparse grids were originally developed to solve PDEs [Zen91]. While they are generally
used to solve elliptic partial differential equations such as the Poisson equation [BD98],
and not parabolic ones like the heat equation, the main techniques used are still similar,
and we will use these in the main part of this thesis.

Since partial differential equations involve derivatives so heavily, in many cases, it is
important for the hierarchical basis functions to have derivatives which are continuous
and defined for higher than the first, both of which are not the case for the linear basis
functions we have defined. To solve this problem, we define the polynomial hierarchical
basis functions, which are defined as [Bun98]

pij(x)
pij((2-i—1)-271)

where the polynoms p can be defined recursively as

(2.15)

¢ii(x) =

Pl,l(x) = .’X,'(X — 1), pill(x) = pi/,l/(x) . (x — ((2 -1 — 1) . 271)). (216)
Here, the terms i/ and !’ refer to the index and level of the parent basis function, and
'=1-1, i'=|%] (2.17)

holds.

11

3 Solving partial differential equations in
high dimensional spaces using Deep
Sparse Grids

The main idea goal of the thesis, solving a PDE using a Deep Sparse Grid, will be
explained in this section. Section 3.1 will devise a way of solving the heat equation
using sparse grids. The autoencoder will be added to the solver in Section 3.2, and its
effects will be explained in Section 3.3. Due to these effects, a new equation for the
sparse grids solver will be created in Section 3.4. Afterwards, Section 3.5 will briefly
explain deep sparse grids and the code, and finally, in Section 3.6 the numerical results
of an example problem will be discussed.

3.1 Solving the 1D Heat Equation

In the following, we will attempt to construct a method to solve the 1 dimensional heat
equation (with Dirichlet boundary conditions) using sparse grids. While the sparsity
of the structure will not be useful in the 1 dimensional case, the hierarchical basis
functions will be, which can be extended into multiple dimensions using the Up-Down
principle [Bun98], which will not be explained in detail here.

The solution to the heat equation must satisfy
U = & Uyy, (3.1)

where « is a constant. For simplicity, we will assume that the function # must be
defined on the domain [0, 1], if this is not the case, we can easily transform the domain
to [0,1] using a linear transformation. We also have the initial condition ug, and the
boundaries are always 0. Note that the following technique is derived from [Glo11].
We start with constructing the weak form of the equation, which also incorporates a
weakening function v:

1 1
/ uodx = / KUy vdX. (3.2)
0 0

12

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

The second step is to divide the interval [0, 1] into 2" meshes of length 27", and assume
that an interpolant of u constructed using hierarchical basis functions exists, which we

will call u':
n 2-1

Z 2 Cll (Pll (33)

I=

Note that the coefficients c¢;; only depend on the time, as they are constant for a specific
basis function, and as such do not depend on t. Similarly, the basis functions ¢;; only
depend on x. The linearity of the differential operator results in the following partial
derivatives of u':

n 2— n 2l—1 o)
ut E)t Z Z Cll (le Z 2 g (Pll) (34)
=1 i=1
and
2 X 2l n 211 92
uxx axz 2 2 Cll ¢1l - 2 E Ci,l(t)(ﬁ(,bi,l(x))- (35)
=1 i=1

We can then use these definitions in the integrals of the weak equality, to get

1 n 2-1 n 2—
/Outvdx—/ Z cll))pii(x vdx—zz Clz /Cle x)vdx, (3.6)

=1 i=
and

1 n 2l— 2 n 2l— 1 a
/0 uxxvdx—/ Z chl a 2<le vdx—z chl / axchll(x))odx.

(3.7)
Now, if we choose another hierarchical basis function ¢y ; for v, and we use integration
by parts on the second integral, we obtain the following:

2
LG = (s (1) ~ (i (0 (1)~ [(a0 s ()

(3.8)
Since ¢y was a basis function, its value is 0 on the boundaries, and so we only have
the final integral remaining.

Finally, the end result of the equation is as follows:

a 1 18 l a l'/ !
Cl /4’:1)i i (x tch /o (Pélx(x) (Pa’lx(x)dx. (3.9)

zl

13

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

With an ordering of hierarchical basis functions j, this equation can be represented in
matrix form as

Ct - IStz’ff =cC- IMass- (310)
With the so-called stiffness and mass matrices defined as [BD98]
Iy ',":/ () (%), 3.11
stiff(joJ') 0,00, @i (x) iy (x) (3.11)
nd () ()
Tvinee (i 7 :/ (%) O (x) 1
Mass (]]) Qi,inl/’/ ox 0 dx (3)

Note the integral boundaries, per definition of hierarchical basis functions, most func-
tions will not have a common domain, and the integral will evaluate to zero.

Now, if we use the polynomial basis functions introduced earlier, then the deriva-
tives and integrals will be trivial to compute, and the matrices describes above can be
computed easily. This computation is implemented in the code using the Polynomial
library from NumPy.

In the end, the equation describes a linear relationship between a n-dimensional
function c(t) and its derivative ¢;(t), and thus, can be as an ordinary differential equa-
tion, the details of which would be too large for the scope of this thesis. We simply
solve this equation by using a least squares solver from NumPy, which calculates the
correct coefficients at certain times, and uses the coefficients ¢(0) of the initial condition
while doing so.

3.2 Autoencoders and the 2D Case

We now consider a 1 dimensional domain embedded on a higher dimensional domain,
for example, 2. Such an embedding is also called a manifold. Intuitively, this can be
understood as a line on a plane, for example, a chalk drawing of a line on a blackboard.

Our plan would be, then, to solve the heat equation on this domain, as opposed
to the simple 1 dimensional case from the previous chapter. While it is possible to solve
the heat equation on the 2 dimensional plane, in fact, using a method similar to the
previous one, by using the hierarchical structure of sparse grids; since the underlying
structure is actually one dimensional, another, simpler method could be possible using

14

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

u(t,x) for t between 0 and 25

1.0 A

0.8 A

0.6 A

exp(-(4x-2)"2)

0.4 A

u(x)

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3.1: Solution of the heat equation used to predict some values, with the initial
condition e~ (4x-2)°

this one dimensional structure could be possible. Especially considering the case of
potentially higher dimensional problems, this reduction becomes crucial.

First of all, since the object is actually one dimensional, there must be a mathematical
function E, that can map the 2 dimensional points of the manifold to some 1 dimen-
sional space, and a function D that must do the inverse. Specifically, let X C R?
be the original domain, and Y C R be some encoded domain, then we have, for all
(X1 ,XZ) € X:

E(x1,x2) €Y, D(E(x1,x2)) = (x1,x2)

So the functions E and D must be inverses of each other, and E and D must both be
bijective. Also, we require both functions be continuous.

After finding such functions E and D, we can map the initial conditions to the encoded
domain using the function E, solve a modified problem on this domain, then transform
them back using D, and we would be done. However, we must first find such functions.

For an example of one such function, consider the arc length of the curve, that is,
the length of the curve between the point to encode, and a start point. Since each point

15

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

x =y *y, color=u(0,x,y) = sin(xpi) Encoded u
1.04 1.04
0.84 / N

0.6

u(0,x,y)

0.41

029 \ N

0.0 0.04

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X E(x,y)

Figure 3.2: The initial conditions on a manifold on 2D, and the domain encoded on 1D
using an autoencoder.

on the manifold can be uniquely identified by its arc length, we can choose for E the
function that calculates the length, and for D its inverse. The problem, however, is that
these functions are not easy to define. For example, the arc length of the curve of a
function f between the x values a and b can be calculated as

5= /b J1+ f1(x)2dx. (3.13)

However, our curve must not be a function, nor should the derivative be easily calcula-
ble, so it would not be as easy to define a E. And even after coming up with a way to
compute E efficiently, D must also be formed.

Instead, for the purposes of creating functions E and D, an autoencoder can be used. As
explained in the State of the Art section, an autoencoder already consists of two neural
networks, the encoder and the decoder, that reduce and increase the dimension of input
data respectively. For this, we would need to set the dimensions of the input/output to
our original domain, which is 2, and the encoded dimension to the dimension of the
manifold, which is 1. The rest of the variables such as number of layers or neurons per
layer can be chosen as one desires, but will have consequences, which will be explained
in a little bit.

In order to produce the desired functions E and D, the autoencoder must be trained.
To do this, the autoencoder must be fed a set of points on the manifold, which will
produce outputs. Depending on the difference between these outputs and the inputs,
the weights and biases of the artificial neurons of the autoencoders will be adjusted,
and in the end of the training process, the encoder will serve as E, and the decoder as D.

Note that, since the functions are the result of training, and not analytical calcula-

16

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

tions, they will not be perfect. Specifically, D will not be the inverse of E, but only
approximate it. The level to which this approximation is correct can be increased by
many ways, but usually at a trade-off: For example, one way is to increase the number
of points to train the autoencoder, but then the training will take more time, or it might
not be that easy to generate many points in certain cases. Similarly, more layers or
neurons per layers may also make the Encoding and Decoding functions more accurate,
however, more training would then be needed to fine tune these parameters, thus again,
increasing time or resources.

3.3 Domain Change and its Consequences

Now, as a reminder, we have our original 2D domain X, and the new, 1D code domain
Y. Our goal was to solve the heat equation, formulated on X, instead on Y. The naive
approach would be, then, to use the exact method introduced in Section 2.1 on Y,
however, this is incorrect. The problem is that, while this does solve the heat equation
on Y, there is no guarantee that it will also solve it on X.

The reason for this discrepancy lies within the functions E and D. While convert-
ing one domain to the other, these functions inevitably change the stretch and warp the
points. For example, two sets of points that had different distances between them in
the 2D domain, might have the same distance in the 1D domain. This results in the
need of a different PDE to solve in the encoded domain [BD98].

Once this point is formulated, afterwards, we will no longer consider the 2D-1D au-
toencoder, but instead a 1D-1D autoencoder. While a 1D-1D autoencoder, that is, an
autoencoder that does not actually reduce a dimension at all, might not be a useful
idea at first sight, it is nonetheless a very useful concept to understand the underlying
problems and combat them, as will be seen in the next section. Moreover, a 1D-1D
autoencoder still causes the aforementioned changes between the domains, despite
the fact that both domains have the same dimension. In fact, most research on this
subject has been done on transformations between domains of the same dimensionality
[BD9S].

Note that, while the resulting PDE on the new domain will be different from the
heat equation, it should still be similar to it, in fact, it must equal the heat equation for
the specific case of E(x) = x, as that would mean that solving the equation on X is no

17

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

1.0 A

0.8 A

0.6 A

0.4 A

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3.3: Example relationship between values in input domain X and coded domain
Y, it is not linear.

different than solving it on Y.

3.4 Solving the Modified 1D Heat Equation

In the following, we will attempt to construct and solve a PDE on a domain changed
by encoding and decoding functions, where the solution of the PDE decoded on the
input domain will solve the heat equation.

Let E be the encoding function, and D the decoding function. Furthermore, let u
be our original function as it was defined on the input domain X, we have the function
v defined on the encoded domain Y as

o(t,y) = u(t, D(y)). (3.14)

Our original function must fulfill the heat equation, so we have

ou(t, o%u(t,
(taltD(y)):“ l()t(;?)gy)). (3.15)

18

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

Since we are changing the domain of x/y and not the time ¢, the left side is simply
equal to ;. On the right side, we can use the chain rule:

Pu(t,D(y)) _ 9 (au(t,D(y))) __ 9 (uy(t,D(y))) _ Dytyy — Dyyoy. (3.16)
D(y)? dD(y)" 9D(y) aD(y)" Dy (Dy)?
The PDE can then be redescribed by using
9 Y
Dyvt DC@(D*]/) (317)

The term Dy, to explain in words, is the partial derivative of the decoding function with
respect to time t. It can be calculated using a GradientTape from Tensorflow, which is
implemented in the code.

The techniques used in solving the 1D heat equation in the first subsection can then be
used to get the following weak formulation equation:

Z aCia,lt(t) /01 Dy(y)¢il()(Pl’ I = -« ch / D

il

1 a‘le y) ¢y 1 (y)
e LYy, (318)

Which results in the same equation as the one for the simplified case, but with the
stiffness/mass matrices:

Isigs (o) = [DyW)gu(y)per(y)dy, (319)
Q,-Jﬁﬂi/,,/
nd s (x) s (x)
Ivtass (7, 1) = / D i\X) 9P \X) 4, 3.20
Mass (') 0,00y y(Y) dy y y (3.20)

While it is possible to explicitly calculate these integrals, for example by using methods
from NumPy or TensorFlow, since we are already discretizing the domain using meshes,
we can also discretize the domain for the function D, and redefine the matrices as

L, D, (ki +1) — D, (k) ki+1
g = 3 2D Z DA gy, G
k<2!
and
B 1) = ¥ 2 /kh“ 0p;(y) 9y (y) | (322)
Missi/J)= Lo Dy (kh+ 1) — Dy(kh) Jouw —— ay ay 0 '

Now the integrals are again of polynoms, and can be computed easily. Afterwards,
solving the PDE follows exactly as it was in the 1D normal case, with the exception of

19

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

having to encode the initial conditions.

As mentioned in the previous section, the resulting PDE is indeed similar to our
original heat equation, with the only difference being the terms D,.. Also, in the case of
the identity encoder E(x) = 1, the derivative of the decoder equals 1, so we do obtain
the classical heat equation.

Note that, in the case of an autoencoder with multidimensional inputs and outputs,
the equation would look different. Specifically, the partial derivative D, would be a
multidimensional vector as well, a Jacobian to be specific. But actually constructing
and solving the resulting PDE is not within the scope of this thesis.

3.5 Deep Sparse Grids and the Code

Deep / Neural Sparse Grids, or DSGs / NSGs for short, are a type of combination
of neural networks and sparse grids [Zha21]. The exact nature of this structure can
differ, for example, the sparse grid can be embedded within the Neural Network, or
appended to the end of it, however, the core principle of the structure remains the
same in each use case: To use both methods in unison, in order to be able to use each
methods strengths, and remedy their weaknesses. Our use case is also similar, where
we are using the autoencoder’s strength of dimensional reduction, and the sparse grid’s
strength in solving PDEs reliably. As such, our structure would also qualify as a Deep
Sparse Grid.

Deep Sparse Grids have been previously used to tackle problems such as regres-
sion, classification, and image recognition, with varying success. In contrast to these
problems, which are classical problems in Neural Network research, the problem we
are dealing has to do more with sparse grids, as such, the implementation of a Sparse
Grid PDE Solver is more prominent in the codebase, where the implementation of the
autoencoder is more by-the-books and not particularly innovative.

Due to the difference in nature with other Deep Sparse Grid projects, their code-
base was not used, instead, most sparse grids code were written anew, see the code
on the next page for an example. And, since the problems that were dealt with were 1
dimensional in nature, most algorithmic classics such as the Up-Down principle or the
sparse structure of the grids themselves were not relevant, however, the code itself was
written in a scalable and open-ended way, to allow to implement these features in the
future.

20

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

Listing 3.1: Python example

#array of polynomial basis functions
polys = [poly.Polynomial([0, -1, 1])] * (nx - 2)
for i in range(spl - 1):
for j in range(nx - 2):
if (3 +1) % (2 % (spl -1 - 1)) !=0:
polys[j] *= poly.Polynomial([-2 *x (-i - 1) *
(2 * int((j + 1) / (2 *x (spl - i))) + 1), 11)
for i in range(nx - 2):
polys[i] #*= poly.Polynomial([1 / polys[i](2 ** -spl * (i + 1))]1)

#function for calculating interpolant
def sparse(x, 1):
if x >= 1 or x < 0:
return O
ret = 0
for i in range(1):
ind = int(2 ** i * x) * 2 *x (1 - i) + 2 *x (1 -1 -1) -1
ret += polys[ind] (x) * ct[ind]
return ret

#adjusting weigths
ct = uxO[1:(nx - 1)]
for i in range(spl - 1):
for j in range(2 **x (i + 1)):
ind = j * 2 #x (spl - i - 1) + 2 ** (spl - 1 -2) -1
ind2 = 2 ** (spl - 1) - 1
for k in range(i + 1):
ct[ind] -= polys[ind2] ((ind + 1) * dx) * ct[ind2]
if ind2 > ind:
ind2 -= 2 ** (spl - k - 2)
else:
ind2 += 2 *x (spl - k - 2)

sg_dx 0.001
sg_nx = int(1 / sg_dx) + 1
sgx0 = np.asarray([sparse(0 + i * sg_dx, spl) for i in range(sg_nx)])

21

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

3.6 Experiments and Results

In this section, we will how the Deep Sparse Grid PDE Solver behaves based on a
specific example, the accuracy of solutions will be discussed based on error rates.

3.6.1 Example Problem

As an example for solving the heat equation, we consider the following initial condition:

u(0,x) = sin(r - x). (3.23)
on the domain [0, 1]. Also, let « = 0.001.

The reasoning behind choosing this example is that an analytical solution exists:
u(t,x) = sin(rm- x) LT, (3.24)

We want to calculate u(#,x") at t € {10,20,30,40,50} and x’ =273 .i,i € N, x’ € [0,1].
In other words, we will be using hierarchical basis functions with level up to 3.

3.6.2 Fake Encoder

First, we consider a fake encoder, which was not trained, yet still warps the input
domain. The encoding and decoding functions are defined as

E(x) = v2x +0.25—0.5, (3.25)

and

_yly+1)
Dy) = =5—

Note that D, is never zero, so the necessary matrices are always calculable.

(3.26)

The results can be seen in 3.5 and 3.6. The solution that was calculated seems to
match the analytical solution almost perfectly, despite the relative large size of t. Also,
it can be seen that, as t increases, so does the relative error. Similarly, a higher level of
basis functions has an inverse correlation with the error rate.

22

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

u(t,x) fort = 0,10,...,50

1.0 A

0.8

0.6 1

sin(xpi)

0.4 4

0.2 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3.4: Analytical solution of the heat equation for the given example.

v(ty) fort = 0,10,...,50 Analytic and SPG Solutions Comparision (t = 50, mesh level 3)

1.0 0.6

0.8 0.5
g
3
= 0.4
706 -
2 X
ES S
z 2 0.3
‘G’ 0.4
= 0.2
3
> 0.2

) 0.1
0.01 0.0
U‘.O 0.‘2 014 0.‘6 018 1.‘0 0.‘0 0‘,2 0.‘4 04‘6 0‘.8 14‘0
Yy X

Figure 3.5: Solution of the first case on the encoded domain, and comparison of final
solution with actual solution for ¢ = 50.

23

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

10-3 . Error relative to r. Error relative to SGL

o
—_
T
I

relative Error
[o)}
T
Il
relative Error
o
N
T
Il

0 10 20 30 40 50 1 2 3 4 5
t Sparse Grid Level

Figure 3.6: Relative error rates in relation to t with a sparse grid level of 3, and relative
to sparse grid level with t = 50.

3.6.3 Real Encoder

Now, we train an actual autoencoder. For this, 10000 random points were generated as
initial conditions. 7000 were used to train the autoencoder, and the rest was used for
testing. The autoencoder had 3 hidden layers between the input and the encoded layer,
as well as between the encoded layer and the output layer, and these layers consisted
of 16 neurons each. As an activation function, the Sigmoid function was used at the
end of each layer. The training rate was 0.01, the optimizer was Adam, and the loss
function was Mean Squared Error.

After 8 epochs of 216 examples each, the autoencoder reached a loss rate 1.96 - 10~%. In
contrast to the previous example, this autoencoder was not perfect, and the decoding
function was not the exact inverse of the encoding function, which was the cause of
this loss rate. Note that the encoder and decoder functions were also normalized to
fully contain the domain [0, 1] with the following formula:

E(X) — Emin

E'(x) =% (3.27)

max — Emin ‘
The formula for the decoder is the analogous. Here, E,;x refers to the highest value
the encoding function has given to a point, and E,,;, the lowest. This normalization
ensures that E;,,, becomes 1, and E/ ; becomes 0.

Also, in order to calculate D, the GradientTape method mentioned earlier was used,
whereas in the previous case, D, was exactly known and calculated analytically.

The results can be seen in 3.7 and 3.8 in contrast to the previous case, the error rate

24

3 Solving partial differential equations in high dimensional spaces using Deep Sparse Grids

v(ty) for t = 0,10,...,50 Analytic and SPG Solutions Comparision (t = 50, mesh level 3)
1.0

0.6 1

0.5

sin(pi * D(y))

viy) =
o
S

0.0 0.2 0.4 0.6 0.8

Figure 3.7: Solution of the second case on the encoded domain, and comparison of final
solution with actual solution for t = 50.

r. Error relative to ¢ r. Error relative to SGL

025 T T T T] T T T
) B
//// \\
02 — | 0a
g / g
g 015 , 1 i
g / ,°:>J \
g o1 / 1 5 02 I
E / g
/ \
5.1072 / 1
,/’/ 02 I \\
0 I I I I I [L L | L L
0 10 20 30 40 50 1 2 3 4 5

Sparse Grid Level

Figure 3.8: Relative error rates in relation to t with a sparse grid level of 3, and relative
to sparse grid level with t = 50.

seems to be much higher. Furthermore, while the relative error rate does increase
with ¢ like the previous case, the relation the sparse grid level seems to be all over the
place, with decreasing first, and afterwards increasing. This instability can maybe be
attributed to the imperfection of the encoding and the decoding functions, or maybe an

error in the normalization process. Further study and analysis is required to understand
the exact reason of this discrepancy.

25

4 Conclusion

4.1 Summary

In this section, we will summarize the previous sections, discuss the results obtained in
Section 3.6, and list some possible additions to the project in the future.

4.1.1 Summary

This Bachelor’s thesis introduces a method with which an autoencoder and a sparse
grid could be combined as a Deep Sparse Grid for the purposes of solving partial
differential equations, specifically the heat equation, all of which were introduced in
section 2. Section 2.1 defined and explained partial differential equations, Section
2.2 dealt with neural networks and autoencoders, finally, Section 2.3 described the
underlying principles of hierarchical basis functions and sparse grids. In Section 3.1,
we devised a way of solving a specific PDE, the heat equation, using Sparse Grids. In
Section 3.2, we introduced the Autoencoder to the system, and explained the resulting
changes in Section 3.3, with which we have developed a different PDE in Section 3.4.
Section 3.5 included a brief detour to Deep Sparse Grids and our codebase, and lastly,
Section 3.6 described the results of these techniques with an example.

4.1.2 Discussion

The topic of solving the heat equation using sparse grids was not particularly popular
among sparse grid research compared to other equations, and the involvement of
neural networks such as autoencoders was even less prominent. With this thesis, an
attempt was made to combine these topics, and a technique was devised. In the end,
the codebase is capable of solving the one dimensional heat equation, even despite
interference of domains by an autoencoder, albeit admittedly, with high error rates in
the case of trained autoencoders.

4.1.3 Outlook

There are many options to further develop the codebase for solving partial differential
equations using deep sparse grids. One possibility is to expand the partial differential

26

4 Conclusion

equation solver to solve other well-known equations, especially elliptic equations
such as the Poisson equation, as sparse grid research involving them are already
quite common. Another possibility would be to increase the dimensions of the input
and encoded domains. Autoencoders and sparse grids both shine when working on
domains higher than one dimensional, so it would make sense to adapt the code in
this direction. Finally, sparse grids also have interesting techniques developed for them,
such as the combination technique, or adaptivity, which may be integrated into the
codebase.

27

List of Figures

2.1
2.2
23
24
2.5
2.6

3.1

3.2

3.3

34
3.5

3.6

3.7

3.8

A neural network with a 2D input, 1D output, and 2 hidden layers.

An autoencoder with 2D inputs/outputs, and a 1D encoding domain. .
Interpolation of the function sin(7rx) by anodalbasis
Interpolation of a parabola using hierarchical basis functions. [Gar13] .
Sparse grids are obtained from full grids using a diagonal cut. [PfI10] .
Polynomial functions p for basis functions, note that they are not scaled
yet. [BDO8]

Solution of the heat equation used to predict some values, with the initial
condition e=4¥=2% L
The initial conditions on a manifold on 2D, and the domain encoded on
1D using an autoencoder. L.
Example relationship between values in input domain X and coded
domain Y, itisnotlinear.
Analytical solution of the heat equation for the given example.
Solution of the first case on the encoded domain, and comparison of
final solution with actual solution for t =50.
Relative error rates in relation to t with a sparse grid level of 3, and
relative to sparse grid level with t =50.
Solution of the second case on the encoded domain, and comparison of
final solution with actual solution for t =50.
Relative error rates in relation to t with a sparse grid level of 3, and
relative to sparse grid level with t =50.

O O O\ Q1

10

28

List of Tables

2.1 Comparison between full grids and sparse grids

29

Bibliography

[BD98] H.-]. Bungartz and T. Dornseifer. “Sparse Grids: Recent Developments for
Elliptic Partial Differential Equations.” In: Multigrid Methods V 3 (1998),
pp. 45-70.

[Borl6] D. Borthwick. Introduction to Partial Differential Equations. 2016.
[Bun98] H.-J. Bungartz. Finite elements of higher order on sparse grids. 1998.

[Gar13] J. Garcke. “Spatially Adaptive Sparse Grids for High-Dimensional Prob-
lems.” In: Lecture Notes in Computer Science and Engineering 8 (2013), pp. 57—
80.

[Glo11l] M. S. Glockenbach. Partial Differential Equations. Analytical and Numerical
Methods. 2011.

[IC16] Y. B. Ian Goodfellow and A. Courville. Deep Learning. http://wuw.deeplearningbook.
org. MIT Press, 2016.

[Lan15] H. P. Langtangen. The 1D Diffusion Equation. 2015. URL: https://hplgit.
gtang q p plg
github . io/num-methods - for-PDEs/doc/pub/diffu/sphinx/._main_
diffu001.html.

[Mar+15] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaogiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.

[Pen05] B. Pentenrieder. “Finite Element Solutions of Heat Conduction Problems in
Complicated 3D Geometries Using the Multigrid Method.” In: (2005).

[P£110] D. Pfltiger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. 2010.

30

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://hplgit.github.io/num-methods-for-PDEs/doc/pub/diffu/sphinx/._main_diffu001.html
https://hplgit.github.io/num-methods-for-PDEs/doc/pub/diffu/sphinx/._main_diffu001.html
https://hplgit.github.io/num-methods-for-PDEs/doc/pub/diffu/sphinx/._main_diffu001.html

Bibliography

[VU96] R.D. de Veaux and L. H. Ungar. “A Brief Intro duction to Neural Networks.”
In: (1996).

[Zen91] C. Zenger. “Parallel Algorithms for Partial Differential Equations.” In: Notes
on Numerical Fluid Mechanics 31 (1991), pp. 241-251.

[Zha21] Z. Zhang. “Neural Sparse Grids for High-Dimensional Data.” In: (2021).

31

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Partial Differential Equations
	Variables and Initial Conditions
	The Heat Equation
	Solving PDEs

	Autoencoders
	Neural Networks
	Autoencoder
	Dimensional Reduction of PDEs

	Sparse Grids
	Nodal Basis Functions and Full Grids
	Hierarchical Basis Functions and Sparse Grids
	PDE Solving with Sparse Grids

	Solving partial differential equations in high dimensional spaces using Deep Sparse Grids
	Solving the 1D Heat Equation
	Autoencoders and the 2D Case
	Domain Change and its Consequences
	Solving the Modified 1D Heat Equation
	Deep Sparse Grids and the Code
	Experiments and Results
	Example Problem
	Fake Encoder
	Real Encoder

	Conclusion
	Summary
	Summary
	Discussion
	Outlook

	List of Figures
	List of Tables
	Bibliography

