
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Question Generation and Answering in the
Electrical Power System Components

Domain

Aarav Malik

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Question Generation and Answering in the
Electrical Power System Components

Domain

Erstellung und Beantwortung von Fragen im
Bereich der Komponenten elektrischer

Energiesysteme

Author: Aarav Malik
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Dr. Felix Dietrich (TUM) and Dr. Rakebul Hasan (Siemens)
Submission Date: 16/08/2022

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 16/08/2022 Aarav Malik

Acknowledgments

I would like to thank Prof. Dr. Hans-Joachim Bungartz for giving me this opportunity
to work on my thesis under his supervision.

I am very grateful to Dr. Felix Dietrich for being a great guide and an advisor. His
support throughout the this work has extremely helped me structure it.

Without Dr. Rakebul Hasan this work would not have come to fruition. He helped
me build this work by introducing me to various ideas and research approaches. He
guided me whenever I was stuck and supported me to explore ideas.

Abstract

Obtaining training data for the Question Answering (QA) task is time-consuming and
resource-intensive. While there are some domains for which such datasets exist, there
are no such datasets for Electric Power System Components domain. Siemens has use
cases where they can use QA models to extract relevant information from the manuals
of such components. In this work, we explore the possibility of synthetically generating
Question and Answer pairs using an unsupervised NMT model in a low resource
setting. We approach this by building a paragraph corpus in Electric Power Systems
Components domain. We use the UNMT model to generate context, question, and
answer triples that make up our synthetic training dataset. UNMT model does so by
randomly sampling paragraphs and then randomly sampling named entities or noun
phrases as answers. It then masks the answers and turns them into "fill-in-the-blank"
cloze questions, and finally, it translates them into a natural question. Then we fine-tune
three state-of-the-art pre-trained transformer-based models on this synthetic training
data for the downstream question answering task. We also curate a ground truth
dataset of manually labeled question and answer pairs to evaluate our approach. QA
models trained on synthetic training data answer natural questions quite well. With
this approach, all three models achieved between 83.5 F1 and 85 F1 scores.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 State of the Art 2
2.1 Transformer . 2
2.2 BERT . 5
2.3 RoBERTa . 7
2.4 SpanBERT . 11
2.5 MiniLM . 13
2.6 SQuAD . 16
2.7 Unsupervised Question Answering by Cloze Translation 20

2.7.1 Context and Answer Generation 22
2.7.2 Question Generation . 22
2.7.3 Unsupervised Cloze Translation 24

2.8 Summary . 26

3 Question Generation and Answering in the Electrical Power System Com-
ponents Domain 27
3.1 Use Case . 28
3.2 Data . 31

3.2.1 Data Selection . 31
3.2.2 Data Download . 32
3.2.3 Data Cleaning and Extraction . 34
3.2.4 Data Processing . 38
3.2.5 Data Split for Ground Truth . 40

3.3 Methodology . 40
3.3.1 Experiment Setup . 41
3.3.2 Synthetic Data Generation . 41
3.3.3 Training . 44
3.3.4 Evaluation . 45

v

Contents

3.3.5 Baseline Experiment . 45
3.3.6 Ground Truth Generation . 45

3.4 Result and Discussion . 49
3.4.1 Impact of Data Generation Approaches 49
3.4.2 Synthetic Test Set Performance . 50
3.4.3 Ground Truth Evaluation . 52

4 Conclusion 54
4.1 Future Work . 54

List of Figures 55

List of Tables 57

Bibliography 58

vi

1 Introduction

Question Answering (QA) is a discipline in computer science concerned with building
systems to answer questions posed by humans in a natural language. In the Information
Retrieval discipline, a QA system uses a combination of techniques from computational
linguistics, information retrieval, and knowledge representation to find answers. In
Natural Language Processing (NLP) discipline, a QA system is built using models,
such as BERT, which are then trained on the downstream task of question answering.
In this work, we focus on extractive question answering; extractive QA focuses on
extracting spans of answers in a given context. Extractive question answering systems
are supervised systems, and a question answering system for a specific domain needs
labeled training data for that specific domain.

Question-answering research has gained increasing momentum recently due to the
emergence of transformer-based models such as BERT[Dev+18]. There has been a
major upward momentum in their performance since September 2018, when the early
transformer-based QA systems were published. A transformer is a deep learning model
that adopts the attention mechanism. These models are first trained to learn the
language (language models) and then trained on specific downstream tasks such as
question answering, paragraph summarization, and more for a specific application.

Although these models are accessible, there are still challenges to their successful
application. These models need labeled training data to train on the downstream
question-answering task. It is expensive to annotate data with human annotators, and
human annotators are required to have high domain knowledge.

A recent paper Unsupervised Question Answering by Cloze Translation [LDR19] demon-
strates that training data can be generated in an unsupervised manner for Extractive
QA. Our goal is to investigate unsupervised question generation method to generate
labeled data for a specific domain. We subsequently produce pre-trained extractive
question answering model for that domain which could be used for specific use cases.

1

2 State of the Art

In this chapter, we will review the previous research done on the problem of unsuper-
vised question answering. We will also examine contemporary Language Models (LMs)
that we use in our work.

2.1 Transformer

The transformer is a model architecture proposed by [Vas+17] that does away with
recurrences and entirely relies on the attention mechanism to draw global dependencies
between inputs and outputs. Before transformer models, RNNs were a popular model
architecture choice for NLP tasks like machine translation. Recurrence-based architec-
tures struggle with storing long-term dependencies in a sequence of input. The hidden
state at every step depends on (usually) the most recent word in the sequence in the
encoder. When the decoder accesses the last hidden state of the encoder, it loses most
of the relevant information from the words at the start of the sequence. The attention
mechanism helps deal with this challenge.

In the attention mechanism, at each step of the decoder, hidden state of all previous
encoder steps is assigned a weighed sum; this allows the decoder to assign greater
weight to certain elements of inputs for every output. Although attention is helpful, it is
still computationally inefficient as both encoder and decoder have to wait for sequential
computations at every step and cannot leverage parallelization. The transformer only
uses a self-attention mechanism and extracts features for every word using other words
in the sentence that are important to encode the word.

Figure 2.1 shows the model architecture of transformer. It has an encoder-decoder
architecture. The encoder encodes the input sequence of symbol representation to
continuous representation, and the decoder decodes this continuous representation to
a symbol representation, one element at a time.

1. Encoder-decoder stacks: The model comprises an encoder and a decoder with
six identical layers. Each layer is divided into two sub-layers, multi-head self-
attention and a position-wise fully connected feed-forward network. The decoder

2

2 State of the Art

has an additional third sub-layer that performs multi-head attention over the
output of the encoder stack.

Figure 2.1: Transformer architecture. Encoder on the left and decoder on the
right. Blocks of attention and feed forward networks N-times.

2. Attention: Attention is a mapping between query Q, key K, and value V to an
output. Output is calculated as the weighed sum of values where the weight
for a value is computed using the compatibility function on a query and its
corresponding key.

• Scalar dot-product attention: Q is the matrix of query vectors, K is the
matrix of key vectors, and V is the matrix of value vectors. Attention for
queries is calculated using the following equation. Queries and Keys have
dimension dk and values has dimension dv.

3

2 State of the Art

Attention(Q, K, V) = so f tmax(
QKT
p

dk
)V (2.1)

• Multi-head attention: At different positions, the model attends to informa-
tion from different representation sub-spaces using multi-head attention.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (2.2)

and
headi = Attention(QWQ

i , KWK
i , VWV

i) (2.3)

Figure 2.2: Scalar dot-product attention on the left. Multi-head atten-
tion on the right.

3. Position-wise feed-forward network: A feed-forward network (FNN) is applied
to every position separately and identically, using two linear transformations and
ReLU activation in between, in both encoder and decoder.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.4)

4. Positional encoding: Transformer only uses attention, so in order to store relation
between sequence of tokens the authors of [Vas+17] use positional encodings.

4

2 State of the Art

2.2 BERT

BERT [Dev+18] stands for Bi-directional Encoder Representations from Transformer.
BERT was developed by Google AI Language in 2018 with the idea to leverage the pre-
trained language representation for downstream tasks like question answering, sentence
classification, named entity recognition, and more. Then state-of-the-art, Generative
Pre-trained Transformer (OpenAI GPT) [Rad+18] is made by stacking decoder from
the transformer [Vas+17] and pre-training on the task to predict the next word in the
sequence. It would take a sequence of words in the English language that makes it
unidirectional (left to right).

BERT used a similar idea of pre-training like OpenAI GPT, but instead of training for
the next word prediction task in a sequence of words, it masked the tokens and trained
on the task of predicting masked tokens. This allows the transformer to leverage both
directions (left to right and right to left) to understand the context and predict the
masked tokens. This is referred to as Masked Language Modeling (MLM). As BERT
only encodes the language, it only uses the encoder part of the original transformer
and encodes the language by training for MLM task. Figure 2.3 shows the pre-training
architectures for BERT and OpenAI GPT. BERT, besides training for MLM objective,
is also trained on the task of predicting whether two sentences are consecutive or not
(Next Sentence Prediction).

Figure 2.3: Pre-training model architectures for BERT and OpenAI GPT. BERT
uses bi-directional transformer and OpenAi GPT uses left to right
transformer.

5

2 State of the Art

Pre-training tasks are not very useful for both BERT and GPT. Their utility lies in
fine-tuning them to the downstream tasks in NLP like question-answering, named
entity recognition, and more. GPT, because of its unidirectional nature, is not able to
utilize pre-trained embeddings. Training GPT for a specific downstream task requires
updating pre-trained embeddings specific to the downstream task. On the other hand,
BERT can be trained for a specific downstream task by just training the final layer.
Figure 2.4 shows the training and fine-tuning procedure for BERT.

Figure 2.4: Bert pre-trainig and fine-tuning procedure. For both procedures
same architecture is used, only the output layer is different.

6

2 State of the Art

2.3 RoBERTa

RoBERTa [Liu+19] stands for: A Robustly Optimized BERT Pre-training Approach.
Facebook AI published it in 2019. Authors found that BERT [Dev+18] is significantly
under-trained, so they proposed various updates to BERT’s training procedure and
called it RoBERTa. RoBERTa either matches or exceeds the performance of other
post-BERT approaches.

Following are the five modifications in RoBERTa’s approach:

1. Data: BERT is known to perform better when trained on larger datasets. [Bae+19]
reported that using more training data can improve the performance on down-
stream NLP tasks. RoBERTa uses 160 GB of uncompressed data for training.
RoBERTa uses the following four corpora in the English language of varying sizes
and domains.

a) BookCorpus [Zhu+15] and English Wikipedia (16 GB). This is the same
dataset used for training BERT.

b) CC-News (76 GB). This is English portion of Common Crawl data-set [Nag].
It has 63 M news articles crawled between September 2016 and February
2019.

c) OpenWebText (38 GB). This is the data extracted from Reddit URLs with
more than three upvotes.

d) Stories (31 GB). It is a subset of CommonCrawl data after filtering to match
the story-like style of Winograd schemas.

Table 2.1: Comparison between static and dynamic masking for BERTBASE. F1 scores
reported by authors for SQuAD 2.0, MNLI-m and SST-2. RoBERTaDYNAMIC
performs comparable or slightly better compared to BERTBASE.

Masking SQuAD 2.0 MNLI-m SST-2

BERTBASE 76.3 84.3 92.8

RoBERTaSTATIC 78.3 84.3 92.5
RoBERTaDYNAMIC 78.7 84.0 92.9

2. Masking: In BERT’s MLM pre-training objective, tokens are masked randomly,
and the model predicts the missing tokes. Masking is done only once in pre-
processing. This results in static masking as the same mask is seen in every training

7

2 State of the Art

epoch. Authors of [Liu+19] applied ten different masks to the dataset, and each
sentence was seen four times, i.e., the model was trained for 40 epochs. They
also implemented dynamic masking by generating a random mask for the sentence
before feeding it to the model. As shown in table 2.1, dynamic masking performs
better, so RoBERTa uses dynamic masking.

3. Next Sentence Prediction (NSP): BERT model is trained on the objective of
predicting whether two document segments belong to the same document (NSP
Objective). During training, the model sees two contiguous document segments,
either sampled from the same or different documents with equal probabilities.
[Dev+18] emphasized that this training objective improved the performance on
downstream NLP task while some research [CL19] [Yan+19] [Jos+20] points out
that NSP objective is not necessary.

Authors of [Liu+19] compared the following approaches and found that the
NSP training objective is unnecessary for NLP downstream tasks with their
implementation.

a) SEGMENT-PAIR+NSP: This is the input format used in BERT [Dev+18].
Input consists of two segments, either from the same document or different
documents. Each segment can have multiple full sentences. Input is bound
in length by 512 tokens.

b) SENTENCE-PAIR+NSP: Input is a pair of two sentences, either from a
contiguous part of the same document or from a different document. This
input is obviously less than 512 tokens (input length for BERT), so batch size
is increased to match the input length of SEGMENT-PAIR+NSP. Model is
trained with NSP objective.

c) FULL-SENTENCES: Full sentences are sampled contiguously from one or
more documents as input. At the end of the document, if there are less than
512 tokens, sentences are sampled from the next document. Training is done
without the NSP objective.

d) DOC-SENTENCES: Full sentences are sampled only from the same doc-
ument. Batch size is adjusted dynamically to match the tokens used in
FULL-SENTENCES. Training is done without the NSP objective.

Table 2.2 shows the performances reported by authors of [Liu+19] in various

8

2 State of the Art

settings. Authors find that between SEGMENT-PAIR+NSP and SENTENCE-
PAIR+NSP, the model performs worse in individual sentence setting. This is
due to the reason that model is unable to learn the long-term dependencies.
Between FULL-SENTENCES and DOC-SENTENCES setting, performance on the
downstream task is better for inputs where sentences do not cross the document
boundaries. Removing the NSP objective in pre-training improves performance.

Table 2.2: Models’ performance on various Data-sets. F1 scores reported for SQuAD
1.1/2.0 [Raj+16][RJL18] and accuracy scores for MNLI-m, SST-2[Soc+13] and
RACE [Lai+17]. Results are medians over five random initializations (seeds).

Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE

RoBERTaSEGMENT�PAIR(withNSP) 90.4/78.7 84.0 92.9 64.2
RoBERTaSENTENCE�PAIR(withNSP) 88.7/76.2 82.9 92.1 63.0

RoBERTaFULL�SENTENCES(withoutNSP) 90.4/79.1 84.7 92.5 64.8
RoBERTaDOC�SENTENCES(withoutNSP) 90.6/79.7 84.7 92.7 65.6

BERTBASE 88.5/76.3 84.3 92.8 64.3

4. Large Batch Size: Work of [Ott+18] in neural machine translation has demon-
strated that training with a large batch size can improve optimization speed and
downstream task performance. Work of [You+19] has shown that BERT is respon-
sive to batch sizes. When batch size increases, the training steps decrease. BERT
was trained for 1M steps with a batch size of 256. As batch size increases, the
number of steps required for training decreases. Suppose batch size is increased
from 256 to 2k, then the steps decrease from 1M to 125k and for a batch size of 8k
steps further reduce to 31. Large batch sizes are easy to parallelize via distributed
data parallel training. In table 2.3 we see the comparison between perplexity and
downstream task performance as reported by the authors for BERTBASE.

Table 2.3: BERTBASE accuracy performance for various batch sizes
(bsz). Learning rate is fine-tuned for every batch size.

bsz steps lr MNLI-m SST-2

256 1M 1e-4 84.7 92.7
2k 125K 7e-4 85.2 92.9
8k 31 1e-3 84.6 92.8

9

2 State of the Art

5. Tokenization: RoBERTa uses byte-level BPE (Byte Pair Encoding) vocabulary con-
taining 50K sub-word units, whereas BERT uses a character-level BPE vocabulary
of size 30K.

RoBERTa is trained with dynamic masking, large batch sizes, full sentences without
NSP objective, larger training data, and uses byte-level BPE with a larger vocabulary.
Table 2.4 shows the development set results reported by the authors in various settings.

Table 2.4: Devevelopment set results for RoBERTa. Training is done over more data
(16GB ! 160GB) and done for longer time (steps100k ! 300k ! 500k).

Compared to the other models, it is clear that training choices made by authors of
[Liu+19] have a clear positive impact on the model’s performance.

10

2 State of the Art

2.4 SpanBERT

SpanBERT [Jos+20] is a variant of BERT [Dev+18] with a pre-training method that better
represents and predicts text spans. NLP downstream tasks like question answering
require a better understanding of the relationship between one or more spans of words.
To answer the question "Which country has the highest GDP?", the model needs to
understand the relationship that the answer, "United States of America", is a country. It
is easier to predict America when the previous known words are United States of.

Compared to BERT, SpanBERT uses a different masking scheme and training ob-
jectives. BERT masks random individual tokens, whereas, SpanBERT masks random
contiguous spans of tokens. Also, SpanBERT uses a new training objective, span bound-
ary objective (SBO), that is not used in training BERT. In SBO, the model learns to
predict whole spans by just observing the boundary words. Figure 2.5 demonstrates
this approach. SpanBERT is trained on only single segments instead of two segments
with the NSP objective.

Figure 2.5: Illustration of training spanBERT. Model learns to predict the masked span
an American footbal game by using x4 and x9 tokens (SBO loss). The equation
shows the MLM and SBO loss to predict the term football.

• Span Masking: SpanBERT iteratively samples masked tokens till it fills its
masking budget of 15%. At every iteration, span length is sampled from a
geometric distribution skewed towards smaller span lengths, and then a random

11

2 State of the Art

position is selected from the text for starting position of the mask. Like BERT,
SpanBERT also replaces 80% of masked tokens with [MASK], 10% with random
tokens, and 10% with original tokens. SpanBERT does this at span level, so all
tokens in span are either replaced with [MASK] or random tokens.

• Span Boundary Objective: Span selection models usually create fixed length
spans using boundary tokens [Lee+16][He+18]. Authors approach this issue by
storing the maximum content of internal span in the boundary tokens. This is
done using span boundary objective where each token of the masked span is
predicted using boundary token.

• Single-Sequence Training: Authors find that single sequence input compared to
BERT’s two sequences with NSP objective performs better, so they train SpanBERT
with single sequences from the same document without NSP objective.

Table 2.5: Test results of SpanBERT and other baselines on SQuAD1.1 and SQuAD2.0

As seen in table 2.5, SpanBERT beats all the baseline models on extractive question
answering task on both SQuAD 1.1 and SQuAD 2.0. Authors also found that their
training approach resulted in similar gains on other benchmark datasets like NewsQA,
TriviaQA, SearchQA, HotpotQA, and Natural Questions.

12

2 State of the Art

2.5 MiniLM

Microsoft Research published a model, MiniLM [Wan+20] in 2020, that works by mim-
icking the self-attention module of a large transformer-based Language Model (LM),
also referred to as teacher model. LMs have shown noteworthy success in various NLP
downstream tasks [HR18] [Rad+18] [Dev+18] [Jos+20] like question answering, text
summarization etc. Pre-trained LMs, like BERT, learn the contextualized representations
by predicting missing tokens; next, they are fine-tuned for a downstream task with a
task-specific layer. The size of these models is large such that they contain hundreds of
millions of parameters, making fine-tuning them challenging. This makes it difficult
to deploy these models online for real-life applications due to latency and capacity
constraints.

Authors of [Wan+20] adopt an approach of distillation where a small student model
is trained to compress a large pre-trained LM (teacher model) [Agu+20] [Sun+19a]
[MA20]. This results in a smaller number of parameters with performance still being
competitive on the downstream NLP tasks. First, the LM is trained on a specific
downstream task, and then the student model is trained through distillation. This is
task-specific distillation. This is still expensive because it requires fine-tuning a large
LM on a specific task.

Table 2.6: MiniLM comparison with other task agnostic distillation approaches.

Authors of [Wan+20] take a different approach. They distill the LM itself and then fine-
tune the student model on a specific downstream task. This is task agnostic distillation.
In similar approaches (DistilBERT [MA20], TinyBERT [Jia+19] and MOBILEBERT
[Sun+19b]), as shown in table 2.6 student model do not have flexibility in terms of

13

2 State of the Art

architecture or number of layers. Instead, MiniLM is trained to deeply mimic the
self-attention modules of the teacher model, specifically the self-attention modules of
the last transformer layer. The challenge of doing layer-to-layer mapping between the
student and teacher model is resolved by mimicking only the last transformer layer.
This also allows the student model to have a flexible number of layers. In addition
to attention distribution, MiniLM uses scaled dot-product between values in the self-
attention module as the new deep self-attention knowledge. MiniLM also shows that
using a teacher assistant model helps with distillation when the size difference between
student and teacher is large.

Figure 2.6: Deep self-attention distillation. MiniLM is trained to mimic self-
attention module of last transformer layer of teacher model. Au-
thors also use self-attention value-relation transfer to achieve deeper
mimickry.

Figure 2.6 shows the overview of deep self-attention distillation. Authors introduce
three key ideas:

1. Self-Attention Distribution Transfer: Self-attention module on the last layer
of the teacher transformer model is an important component. [JSS19] shows
that the last layers of BERT encode semantic features and capture long-distance
dependency knowledge that is important for downstream NLP tasks. Like [Jia+19]
and [Sun+19b], MiniLM uses self-attention distributions in student training. It
minimizes the KL-divergence between self-attention distributions of student and

14

2 State of the Art

teacher.

LAT =
1

Ah|x|

Ah

Â
a=1

|x|

Â
t=1

DKL(AT
L,a,t||AS

M,a,t) (2.5)

|x| represents the sequence length, Ah is the number of attention heads, L repre-
sents the number of teacher layers, M is the number of student layers, AT

L and
AS

M are attention distributions of last transformer layers of teacher and student
model respectively. They are computed by a scaled dot product of queries and
keys.

Distilling just the last transformer layer allows flexibility in terms of layer mapping
and the number of layers.

2. Self-Attention Value-Relation Transfer: Queries, keys, and values are three
vital vectors that comprise the self-attention module. Queries and keys are
transferred through attention distributions, but authors achieve deeper mimicry
by transferring value relation. Value relation is computed by a multi-head scaled
dot product between values. KL-divergence between the teacher and student
model uses value relation the training objective.

VRT
L,a = so f tmax(

VT
L,aVTT

L,ap
dk

), VRS
M,a = so f tmax(

VS
M,aVST

M,aq
d0k

) (2.6)

LAT =
1

Ah|x|

Ah

Â
a=1

|x|

Â
t=1

DKL(VRT
L,a,t||VRS

M,a,t) (2.7)

3. Teacher Assistant: Authors use a teacher assistant [Mir+20]. It acts as a bridge
between the teacher and the final student. Teacher with L layers and dh hidden
size is first used to train a student model with M layers and d0h hidden size
(M <= 1

2 L and d0h <= 1
2 dh). Then a final student model is trained using this

student model as teacher.

15

2 State of the Art

2.6 SQuAD

SQuAD [Raj+16] stands for Stanford Question Answering Dataset. It is a collection of
107,785 question and answer pairs from 536 Wikipedia articles that have been crowd-
sourced. SQuAD has been developed for reading comprehension task, other datasets
for same task fall short either due to their size or the quality of their questions [RBR13]
[Ber+14a] [Ber+14b] [Hil+15]. Unlike other datasets, SQuAD does not provide answer
choices for the question. A system learns to find the correct span from all possible
spans in the context, thus increasing the complexity of the dataset. Although choosing
answer spans restricts the type of questions that can be answered, SQuAD still shows a
wide variety of question and answer types.

Figure 2.7: Crowd facing web-interface to collect questions
and answers. Workers are encouraged to make
question in their own words.

SQuAD was curated in three stages: passage curation, question and answer collection
and additional answer collection:

16

2 State of the Art

1. Passage Curation: Passages were collected from English Wikipedia. 536 articles
were chosen at random from the top 1000 articles. Articles varied in the topics
from musical celebrities to abstract concepts. 22,315 paragraphs were extracted
and paragraphs under 500 characters were rejected. Paragraphs are split in
80-10-10 ratio as training, development, and test set, respectively.

2. Question and Answer Collection: Crowdworkers only from Canada and USA
were selected with a 97% HIT acceptance rate and at least 1000 HITs. Corwdwork-
ers were tasked to spend 4 minutes on every paragraph and create 5 questions for
every paragraph (at least 3 questions in case it was hard to form questions). Figure
2.7 shows the the crowd facing web-interface. Workers had a sample paragraph
with a set of good and bad questions and the reason for their categorization for
guidance. They were encouraged to frame questions in their own words and
enter them in the text field, and answers were highlighted in the paragraph.

3. Additional Answer Collection: Two additional answers were generated for
questions from the development test and test set paragraphs. Workers were
shown the question alongside paragraphs and were asked to mark the shortest
span from the paragraph. They were recommended 2 minutes for 5 questions.
2.6% of the questions were marked unanswerable by at least one worker. This
also gave a benchmark of human performance on the data.

Authors analyzed three criteria to analyze SQuAD, (i) diversity of answer types, (ii)
the difficulty of questions in terms of the type of reasoning required to answer them,
and (iii) the degree of syntactic divergence between the question and answer sentences.

1. Diversity of answer types: Answers are automatically categorized. First numeric
and non-numeric answers are split, then non-numeric answers are tagged using
POS tags using Stanford CoreNLP. Finally, nouns are tagged using NER (Named
Entity Recognition) tags. Table 2.7 shoes the distribution of answer types.

2. Reasoning required to answer questions: Authors sampled 4 questions from all
the 48 articles in the development set and manually categorized the questions
and answers based on syntactic or lexical divergence as shown in table 2.8.

3. Stratification of syntactic divergence: Authors use another automatic method to
measure the difficulty of questions and use it to stratify the dataset. They find
the anchor word that is present in both question and answer. They pick two
unlexicalized paths, one from anchor to wh* word and another from anchor to
answer, and then calculate the edit distance between the two paths. Syntactic

17

2 State of the Art

Table 2.7: Distribution of answer types in SQuAD dataset where answers are categorized
automatically using POS and NER tags.

Table 2.8: Manually categorized development set SQuAD questions. Crowd sourced
answers are underligned and words relevant to reason type are bolded.

18

2 State of the Art

divergence is defined as minimum edit distance over all anchors. Figure 2.8 shows
an example of how the edit distance is calculated for an anchor.

Figure 2.8: Example of computing edit distance between
question and answer for syntactic divergence.

19

2 State of the Art

2.7 Unsupervised Question Answering by Cloze Translation

Extractive question answering is a task to answer a question assuming that the answer
can be found in the given context paragraph. There has been substantial progress in this
task in NLP (Natural Language Processing). BERT [Dev+18] based ensemble models
already beat the human performance on benchmark data-sets like SQuAD [Raj+16].
Training these models requires large training data, only available in a few domains
or languages. Authors of Unsupervised Question Answering by Cloze Translation[LDR19]
came up with an unsupervised approach to train question answering model using
the methods of cloze translation and techniques used in language translation models
- like French to English. They leverage the existing models, their architectures, and
pre-training routines, making this approach flexible and scalable for various use cases.

Figure 2.9 represents the schematic of unsupervised question answering by cloze
translation approach. The approach works in four steps.

1. Step 1 - Randomly sample a context paragraph from a certain domain.

2. Step 2 - Randomly sample candidate answers from the selected paragraph in the
previous step using pre-trained systems like NER (Named Entity Recognition) or
non-chunkers.

3. Step 3 - Extract the cloze question (cloze question is nothing but a statement with
the answer masked).

4. Step 4 - Translate the cloze question to a natural language question using the cloze-
to-natural language translator model that has been trained in an unsupervised
way.

Translating a cloze question to a natural question is the most important and difficult
task of this approach. Rule-based approaches exist in the English language to convert
statements to questions. Authors tested the rule-based approach of [HS10] and reported
a weaker performance compared to their approach. Also, building such a system
requires considerable engineering effort. Supervised systems like [DSC17],[DC18] and
[HR19] for this task exist, but they require parallel question and answer corpus for
training, and such data is not available in an unsupervised learning setting. Authors
borrow the ideas from [Lam+18], [CL19] and [ALA18] to convert cloze questions to
natural questions. It uses translation techniques similar to the one used for translating
one language to another, like French to English.

20

2 State of the Art

Figure 2.9: Schematic of Unsupervised Question answering using cloze trans-
lation. Right side of the image with dotted arrows represents
traditional extractive question answering. Left side of the image
with solid arrows represents the process of generating unsuper-
vised training data, which is used to train the extractive question
answering model.

21

2 State of the Art

Extractive question answering models are expected to find answer span a = (b, e)
given the question q and context c (here b and e represent the start and end position
of answer in the context c). Authors of [LDR19] model the problem of unsupervised
extractive question answering in two stages. The first stage is the generative model
p(q, a, c) that generates the question-answer pairs, and the second stage is training
a discriminative model p(a|q, c) using the training data generated by p. Generator
p(q, a, c) = p(c)p(a|c)p(q|a, c) generates the training data in reverse direction. Context
is sampled using p(c), then answer is sampled using the model p(a|c) and finally a
natural question is generated using the model p(q|a, c).

2.7.1 Context and Answer Generation

Model (context generator) p(c) samples a context paragraph uniformly from the given
corpus of documents from a specific domain, and model (answer generator) p(a|c)
samples answers from the sampled paragraph. Model p(a|c) incorporates any prior
belief of what makes up a good answer. The answer can be sampled in the following
ways:

• Noun Phrase (NP): Model extracts all the noun phrases as possible answers from
the sampled paragraph c and samples answer a from the extracted list of possible
answers.

• Named Entities (NE): NER (Named Entity Recognition) system selects the possi-
ble answer candidates, and then answer a is sampled uniformly from the possible
answer candidates.

2.7.2 Question Generation

Model (question generator) p(q|a, c) generates the question from sampled context c
and answer a. It can be modeled as p(q|a, c) = p(q|q0) where q0 = cloze(a, c).

Cloze Generation

When we mask the answer in a statement, it represents a cloze. To generate a cloze
question from a paragraph, q0 = cloze(a, c), first step is to reduce the scope of context.
In extractive question answering, answers are spans of a few words. By reducing scope,
the idea is to match the detail of context to the detail of the question that needs to be
generated. Sentence boundary represents a natural choice for this. The scope can be
further reduced to a sub-clause around the answer as well. Figure 2.10 and figure 2.11
demonstrate cloze generation for the example from figure 2.9.

22

2 State of the Art

Figure 2.10: Cloze generation with sentence boundary. Scope of the context is
reduced to the whole sentence around the answer.

Figure 2.11: Cloze generation with sub-clause boundary. Scope of the context
is reduced to the sub-clause around the answer

Cloze Translation

To translate cloze question q0 to a natural question q, authors of [LDR19] explored four
approaches.

1. Identity Mapping: The idea here is that the cloze question itself provides some
signal to learn the question answer behavior. The masked token (place holder
for answer) is replaced with a wh* word. The wh* word can either be randomly
chosen, or it can be chosen with heuristics.

2. Noisy Cloze: The relationship between the cloze question q0 and the natural

23

2 State of the Art

question q can be seen as some form of perturbation. Noisy cloze is generated in
four steps:

a) Remove the mask token from the cloze.

b) Apply a noise function, like one in [Lam+18], to the cloze. The noise function
includes word dropout or word-reorder, or both.

c) Add a wh* word in the front to match the natural question syntax as most
natural questions begin with a wh* word.

d) Add a ’?’ at the end as in the English language, all questions must end with
a ’?’.

As evident, this approach does not produce natural sounding questions.

3. Rule Based: In the rule-based approach, a system uses a set of rules designed for
a specific language to generate a list of questions and order them by their ranks
to select the best candidate. Rules comprise syntactic transformations, choosing
fitting wh* word and its movement within the cloze. Authors used statement-to-
question generator from [HS10] for their work. This approach requires lots of
engineering effort as one needs to build a system that adheres to rules specific to
a language.

4. Seq2Seq: This approach can be implemented by training a seq2seq model in
an unsupervised way. While this approach does not produce perfect questions,
it is much cheaper as it does not require significant engineering effort like the
rule-based approach, and it produces much better natural questions compared to
noisy cloze and identity mapping.

2.7.3 Unsupervised Cloze Translation

Unsupervised cloze translation is based on the recent work of Unsupervised Neural
Machine Translation in the field of NLP. A translation model is trained between non-
parallel corpora of source and target language sentences [Lam+18]. In [LDR19], authors
use cloze corpus as source language sentence and question corpus as target language
sentence and train a model to learn a mapping between the two corpora.

• Cloze Corpus

The cloze corpus C was prepared by randomly sampling Wikipedia paragraphs
and using the cloze generation approach in section 2.7.2. The authors chose

24

2 State of the Art

Named Entities (NE) and Noun Phrases (NP) as answer spans. Clozes were
either generated using the Sentence (SE) boundary or Sub-clause (SC) boundary.
Also, type-specific mask tokens were used to mask the answer spans (PER-
SON/ORG/NORP, THING, TEMPORAL, NUMERIC, PLACE) when named entity
mentions were chosen as answers. Cloze corpus of 5M was generated this way.

• Question Corpus

To generate question corpus questions were collected from Common Crawl with
the following selection criteria:

1. Questions must start with one of the wh* word, how much/many, what, when,
where and who.

2. Question must end in a single ’?’.

3. Question must be less than 20 tokens.

100M deduplicated questions were collected this way and 5M question were
randomly chosen to curate the question corpus Q.

Similar to [Lam+18], authors train two models ps!t(q|q0) and pt!s(q0|q) to trans-
late cloze to natural question and natural question to cloze question, respectively.
This is done by in-domain and cross-domain training. In-domain training is done
using denoising-autoencoding, and cross-domain training is done using online-back-
translation. The natural questions are chosen using argmaxq ps!t(q|q0) at inference.

Wh* Heuristics

To assign appropriate wh* word a mapping of MASK TOKEN to wh* word is used.
PERSON/ORG/NORP is mapped to who, TEMPORAL to when, NUMERIC to how
much/many, THING to what and PLACE to where.

Table 2.9 are some examples of close translations generated using Unsupervised
Neural Machine Translation (UNMT) model. The model generates well-formed ques-
tions. Authors reported that 68% of translations generated by the UNMT model were
classified as well-formed; this number rose to 7.5% when pre-training was used for
the language model. This performance is significant compared to 75.6% classified as
well-formed questions for rule-based question generator and 92.3% of SQuAD questions

25

2 State of the Art

Table 2.9: Examples of cloze translations generated using Unsupervised Neural
Machine Translated (UNMT) model. These sample are generated
using wh* heuristic and sub-clause cloze generation.

classified as well-formed. This signals that the synthetic data generated is of good
quality. We use the UNMT model in our work to generate the synthetic data.

[LDR19] approach achieves a 56.4% F1 on SQuAD and the performance increases
to 64.5% F1 when it is calculated on a subset of SQuAD where the answer is a named
entity mention.

2.8 Summary

In this chapter, we reviewed the transformer architecture and attention mechanism.
We learned about architecture and training approaches for various state-of-the-art
transformer-based models. We discussed unsupervised question answering using cloze
translation. We learned how unsupervised question answering addresses the lack
of training data by generating synthetic data to train transformer-based models for
the question answering task. While there is still scope for improving the quality of
generated questions for future work, we notice that the quality of synthetic training
data is good enough to teach transformer models the required question-answering
behavior.

26

3 Question Generation and Answering in
the Electrical Power System Components
Domain

The goal of our task here is, given a question and context in the Electrical Power System
Components (EPSC) domain, to retrieve the correct answer. As our task description
is the same as extractive question answering (EQA) with an additional constraint on
context and question to belong from a specific domain, one might think to replicate
[LDR19]’s UNMT model approach for electrical power system component domain.
Although the UNMT model is trained in an unsupervised way, i.e., no aligned question
and answer pairs were used for training, it still requires unaligned cloze corpus and
question corpus. While cloze corpus is straightforward to build as described in section
2.7.2, building a question corpus is resource intensive task. There are no publicly
available datasets in this domain that could be leveraged for the question-answering
task.

In this chapter, we will first discuss the specific use cases at Siemens, where the work
of this thesis was performed. We will then discuss the choice of data and its processing.
Further, we elaborate on our experiments and methodologies. Next, we will discuss
a dataset we manually prepared as ground truth data for the final evaluation of our
trained models. Finally, we will discuss the results and future work.

27

3 Question Generation and Answering in the Electrical Power System Components Domain

3.1 Use Case

Answering questions from users in an enterprise domain is a challenging task. Busi-
nesses rely increasingly on automated systems for customer, or technical support
[Rou19]. Historically, the task of answering questions has been performed by building
complex information retrieval systems. The establishment cost of these systems is
high, and a user is expected to have some IT knowledge to run and interact with such
systems. Also, the quality of answers retrieved depends on the quality of query user
inputs in the system; users cannot interact and ask questions in their natural language.

When the context paragraphs are available and the question is given, users can read
the context and look for an answer. This approach only works if the given context
paragraph is small. Even though this works for some use cases, this approach is slow
and requires manual effort. It does not scale when trying to find answers to more than
a few questions.

We can distinguish the type of question-answering problems based on the charac-
teristics of both questions and answers. Short questions (up to a dozen words long)
differ from the long form of questions, with word lengths ranging from 10 to 50 or
more words. We can also categorize based on answer lengths. Answers can be one to
a few words long contiguous spans from the provided context. This is factoid-based
question answering. Answers can also be long, non-contiguous, and spanning over
multiple paragraphs. In our work, we focus on factoid-based question answering. We
can see examples of factoid-based question answering in Figure 3.1. We see that the
posed questions here are short and can be answered with a contiguous span of a few
words from the provided context.

In natural language processing (NLP), transformer-based models like BERT [Dev+18]
allow users to ask questions in their natural language. They can be used to extract
information from a large corpus of documents like technical and scientific manuals.
These state-of-the-art models are very powerful and easy to use. These models are
readily available as pre-trained models from open source libraries like Hugging Face
[22] that can be fine-tuned for the downstream task of question answering by training
them on a few thousand question and answer pairs. We will later describe in this
chapter how simple it is to fine-tune and use these models. These models may be simple
to use, but they still require training data that is expensive and resource-intensive to
gather. The publicly available datasets like SQuAD cannot be used because of domain
mismatch. These datasets are built using data from sources like Wikipedia and can not
be used for specific domains like EPSC. Building our own training data is one option; it

28

3 Question Generation and Answering in the Electrical Power System Components Domain

is a time-consuming and resource-intensive task, as we will discuss later in the section
3.3.6 in detail.

Figure 3.1: Image illustrating question answering. (Left) Question answering on
Wikipedia articles. (Right) Question answering on manuals and support
forums.

Siemens engages in the production and supply of systems for power generation,
power transmission, and medical diagnosis. These power systems contain electrical
components. A user has to go through the technical manual for each component, which
is 10s of pages long. There are 100s of such components in a large electrical power
system. One of the use cases at Siemens is to look up specific information about these
components. As we discussed earlier, the manual way is time-consuming that does not
scale, and building an information retrieval system is complex and resource intensive.
Also, it would be required to build multiple such information retrieval systems for
every large electrical power system.

We use pre-trained question-answering systems to tackle the challenges. The idea
behind our approach is to use the pre-trained question answering models like RoBERTa
[Liu+19] and fine-tune them on questions and answers from a specific domain, for
example, electrical power system components. This allows the question answering
system to learn and adapt to that specific domain. We will see in further sections that

29

3 Question Generation and Answering in the Electrical Power System Components Domain

fine-tuning these question-answering systems is straightforward; we will also discuss
the number of training samples required for training. One of the challenges that still
remains is finding quality training data to fine-tune the models.

Another use case at Siemens involves building question answering systems for
various clients for client-specific use cases. Clients usually do not provide training
samples for the training question answering system. It requires them to dedicate subject
matter experts to generate question-answer pairs, and that is expensive. They still
expect good performance for the models without providing quality training samples.
In our approach, we circumvent the challenges associated with generating training
data by using state-of-the-art unsupervised machine translation (UNMT) approach as
discussed in section 2.7.

We use [LDR19]’s UNMT model to generate question and answer pairs. We use
the generated question-answer pairs as synthetic training data for fine-tuning the
pre-trained question-answering models. We evaluate the performance of the trained
models on a test set from synthetic training data. This evaluation tells us how well the
fine-tuned models generalize to the synthetic test set. We also evaluate our fine-tuned
models on a hand-curated EPSC dataset. This dataset serves as the ground truth, and
we do our final model evaluation on this dataset. We argue that if models trained on
synthetic data perform well on ground truth, we can use this approach for training
question-answering models for the above-mentioned use cases where a labeled dataset
is not available. We can fine-tune the models and test their performance on synthetic
data and use that as the indicator for their performance on use-case-specific data.

30

3 Question Generation and Answering in the Electrical Power System Components Domain

3.2 Data

In section 3.1 we learned about the two use cases of question answering systems at
Siemens. We discussed the challenges associated with getting quality training data for
fine-tuning question-answering models. In our approach, we use the UNMT model to
generate synthetic question and answer pairs, but we need to gather and process the
raw data before we can do that. This section will discuss the steps and factors involved
in the data pipeline. We will use a Wikipedia page as a running example to understand
the evolution of data at every step. Figure 3.2 shows all the steps involved in the data
processing pipeline.

Figure 3.2: Data Processing Pipeline. Raw data goes through all the steps in
sequence.

3.2.1 Data Selection

In this thesis, we choose to work with Wikipedia data. We chose Wikipedia data over
data specific to previously discussed use cases at Siemens because the specific data is
hard to acquire. At Siemens, due to its large organization size, processes and approvals
are involved for accessing company data. Technical manuals for the electrical power
systems components are owned by teams at a subsidiary of Siemens that are different
from the subsidiary where the work of this thesis is being performed. Getting access to
this data would have been time-consuming and out of the time scope of this thesis.

We used the tool PetScan [Met21] to collect the data from Wikipedia. PetScan is a
tool for querying Wiki-media databases and editing Wiki data. It allows users to apply
various filters like selecting all articles belonging to a certain category, all items with a
certain property, etc. Figure 3.3 depicts the query we use. We collect all the pages that
belong to the "Electric power systems components" category and all its subcategories.
We do not collect pages that belong to the "Liquid dielectrics" category. The depth field
specifies how deep the tool recursively looks for pages in the subcategories. The depth
of 6 returned the maximum number of results.

31

3 Question Generation and Answering in the Electrical Power System Components Domain

Figure 3.3: PetScan Query Tool to filter Wikipedia data. Our query sets lan-
guage to ’en’ (English), depth to 6 (maximum depth we found for
our requirement), categories to ’Electric power system components’
and negative categories to ’Liquid dielectric’. Combination field is
not significant to use as we only have one category.

We retrieved 15861 results for our specified query. We can see the snapshot of
the results in Figure 3.4. All the listed pages belong to "Electric power systems
components" or one of its subcategories, but they do not belong to "Liquid dielectrics"
or its subcategories.

3.2.2 Data Download

We use Wikipedia’s special export 2 feature to download the retrieved pages. The
special export wraps the set of retrieved pages in XML and exports it as an XML dump.
It also allows users to select the revision of the articles required. We only select the
current revisions of the retrieved articles for this work.

1Results mentioned here, and the results shown in the image do not match because Wikipedia data is
continuously being updated. This image was taken a few months after the data was extracted for this
project.

2https://en.wikipedia.org/wiki/Wikipedia:Special:Export

32

3 Question Generation and Answering in the Electrical Power System Components Domain

Figure 3.4: List of articles (top 18) returned for PetScan query in figure 3.3.

Figure 3.5: Wikipedia Special Export. User can add page titles and export them
as Wikipedia dump.

33

3 Question Generation and Answering in the Electrical Power System Components Domain

3.2.3 Data Cleaning and Extraction

As we are primarily interested in the text data of Wikipedia articles, we need to
further extract and clean the text from the downloaded Wikipedia dump. Figure
3.6 is a sample example depicting the structure of a Wikipedia dump file. Each of
the <page> ... </page> tags represents a Wikipedia article. The text data of articles
resides within the <text> ... </text> tags. We are interested in the text data, and in
this subsection, we elaborate on the steps involved in extraction and cleaning.

<mediawiki xml:lang="en">
<page>

<title>Page title</title>
<restrictions>edit=sysop:move=sysop</restrictions>
<revision>

<timestamp>2001−01−15T13:15:00Z</timestamp>
<contributor><username>Foobar</username></contributor>
<comment>I have just one thing to say!</comment>
<text>A bunch of [[Special:MyLanguage/text|text]] here.</text>

</revision>
<revision>

<timestamp>2001−01−15T13:10:27Z</timestamp>
<contributor><ip>10.0.0.2</ip></contributor>
<comment>new!</comment>
<text>An earlier [[Special:MyLanguage/revision|revision]].</text>

</revision>
</page>

<page>
<title>Talk:Page title</title>
<revision>

<timestamp>2001−01−15T14:03:00Z</timestamp>
<contributor><ip>10.0.0.2</ip></contributor>
<comment>hey</comment>
<text>Sample article text!!!</text>

</revision>
</page>

</mediawiki>

Figure 3.6: An example showing structure of a wikipedia dump file. Each Wikipedia
page in the dump is contained in <page>...</page> tags.

34

3 Question Generation and Answering in the Electrical Power System Components Domain

There are python modules like wiki_dump_reader or open source tools like wikiex-
tractor that can be used to extract text data from Wikipedia dumps. We used a python
module called wikipedia_dump_reader for our work because of its ease of use. Figure
3.7 is an example code snippet for using this module to extract text from the Wikipedia
dump file downloaded in the data download step.

from wiki_dump_reader import Cleaner, iterate

cleaner = Cleaner()
for title, text in iterate('wiki−dump.xml'):

text = cleaner.clean_text(text)
cleaned_text, links = cleaner.build_links(text)

Figure 3.7: Illustration showing the use of wiki_dump_reader in data cleaning and
extraction.

iterate allows to traverse through XML element tree one page at a time and extract
the raw text within the <text> ... </text> tags. Cleaner removes all the markups,
image links, reference links, etc., and returns the plain text. Figure 3.8 illustrates
the Wikipedia dump of one Wikipedia article titled Common control belonging to
Electric Power System Components domain. Figure 3.9 shows the text after cleaning and
extraction.

For further processing, we remove the headers and all the text below See Also header
that contains links to other Wikipedia articles and references. It does not make up for
meaningful text that models can learn from, so we remove it. We also removed the line
breaks and returned the whole article as one text blob. Figure 3.10 shows the text after
data cleaning and extraction step in the data processing pipeline.

35

3 Question Generation and Answering in the Electrical Power System Components Domain

<mediawiki xmlns="http://www.mediawiki.org/xml/export−0.10/" xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance" xsi:schemaLocation="
,! http://www.mediawiki.org/xml/export−0.10/ http://www.mediawiki.org/xml/export−0.10.xsd" version="0.10" xml:lang="en">

<page>
<title>Common control</title>
<ns>0</ns>
<id>40911</id>
<revision>

<id>1023606745</id>
<parentid>981816460</parentid>
<timestamp>2021−05−17T09:32:18Z</timestamp>
<contributor>

<username>John of Reading</username>
<id>11308236</id>

</contributor>
<minor/>
<comment>Typo/[[WP:AWB/GF|general]] fixes, replaced: DIrector Director</comment>
<model>wikitext</model>
<format>text/x−wiki</format>
<text bytes="2884" xml:space="preserve">{{more citations needed|date=January 2013}}

In [[telecommunications]], '''common control''' is a principle of switching [[telephone call]]s in an automatic [[telephone exchange]] that employs shared
,! control equipment which is attached to the circuit of a call only for the duration of establishing or otherwise controlling the call.<ref>{{Cite
,! book

|url=http://archive.org/details/bellsystem_No5CrossbarVol1EquipmentApplicationsMay63
|title=No. 5 Crossbar Volume 1: Equipment Applications May 63|last=Western Electric Co.
|date=1963−05−01
}}</ref> Thus, such control equipment need only be provided in as few units to satisfy overall exchange traffic, rather than being duplicated for every

,! subscriber line.

In contrast, ''direct control'' systems have subsystems for call control that are an integral part of the switching network. [[Strowger exchange]]s are usually
,! direct control systems, whereas crossbar, and electronic exchanges (including all [[stored program control]] systems) are common control
,! systems. Common control is also known as indirect control or register control.

== History ==
Early semi−mechanical installations with common control components existed, for example [[rotary system|rotary]] systems in Sweden and France in 1915,

,! and the first [[panel switch]]es in Newark, New Jersey, also in 1915. The first large−scale, fully automatic, common control switching system
,! deployed in commercial production service was the ''ATlantic'' central office in Omaha, Nebraska, a panel system cut over on December 10, 1921.
,! Other panel offices for Kansas City and New York CIty (''PENnsylvania'') were in planning at the same time and opened shortly after.

In 1922, common control was introduced in [[Strowger switch|Strowger−type]] step−by−step systems,<ref>Automatic Electric Company, ''The
,! Automatic Director in Strowger Metropolitan Telephone Systems'', in ''Automatic Telephone'', Volume 10(11−12), November 1922, p.116

</ref> resulting in the first installations of [[Director telephone system|Director]] systems in Havanna, Cuba in 1924, and in London, England in 1927.

By the mid−1920s, common control ideas had extended to include [[Marker (telecommunications)|marker]] systems for testing for idle [[Trunking#
,! Telecommunications|trunks]].{{citation needed|date=February 2019}}

During the 1960s, common control exchanges became [[stored program control exchange|stored program control]] exchanges,<ref name=bosse2007>J.
,! G. Van Bosse, F.U. Devetak, ''Signaling in Telecommunication Networks'', 2nd edition (2007), p.111</ref> and by the 1970s they used [[
,! common−channel signaling]] in which the channels that are used for [[signaling (telecommunication)|signaling]] are not used for [[message]]
,! traffic (out of band signaling).<ref name=bosse2007/>

== References ==
{{reflist}}
{{FS1037C MS188}}

[[Category:Telephone exchange equipment]]
{{telephony−stub}}</text>

<sha1>0bixwk0cfaedagn2ktjxe51gtjblmj7</sha1>
</revision>

</page>
</mediawiki>

Figure 3.8: Wikipedia dump with one page titled "Common control". Text before
cleaning consists of markups, links, images etc. that is not useful for
training models.

36

3 Question Generation and Answering in the Electrical Power System Components Domain

In telecommunications, common control is a principle of switching telephone calls in an automatic telephone
,! exchange that employs shared control equipment which is attached to the circuit of a call only for the
,! duration of establishing or otherwise controlling the call. Thus, such control equipment need only be
,! provided in as few units to satisfy overall exchange traffic, rather than being duplicated for every
,! subscriber line.

In contrast, direct control systems have subsystems for call control that are an integral part of the switching network.
,! Strowger exchanges are usually direct control systems, whereas crossbar, and electronic exchanges (
,! including all stored program control systems) are common control systems. Common control is also known
,! as indirect control or register control.

== History ==
Early semi−mechanical installations with common control components existed, for example rotary systems in

,! Sweden and France in 1915, and the first panel switches in Newark, New Jersey, also in 1915. The first large
,! −scale, fully automatic, common control switching system deployed in commercial production service was
,! the ATlantic central office in Omaha, Nebraska, a panel system cut over on December 10, 1921. Other panel
,! offices for Kansas City and New York CIty (PENnsylvania) were in planning at the same time and opened
,! shortly after.

In 1922, common control was introduced in Strowger−type step−by−step systems, resulting in the first installations
,! of Director systems in Havanna, Cuba in 1924, and in London, England in 1927.

By the mid−1920s, common control ideas had extended to include marker systems for testing for idle trunks.
During the 1960s, common control exchanges became stored program control exchanges, and by the 1970s they used

,! common−channel signaling in which the channels that are used for signaling are not used for message
,! traffic (out of band signaling).

== References ==
Telephone exchange equipment

Figure 3.9: Wikipedia dump with one page titled "Common control" after cleaning and
extraction.

In telecommunications, common control is a principle of switching telephone calls in an automatic telephone
,! exchange that employs shared control equipment which is attached to the circuit of a call only for the
,! duration of establishing or otherwise controlling the call. Thus, such control equipment need only be
,! provided in as few units to satisfy overall exchange traffic, rather than being duplicated for every
,! subscriber line. In contrast, direct control systems have subsystems for call control that are an integral part
,! of the switching network. Strowger exchanges are usually direct control systems, whereas crossbar, and
,! electronic exchanges (including all stored program control systems) are common control systems. Common
,! control is also known as indirect control or register control. Early semi−mechanical installations with
,! common control components existed, for example rotary systems in Sweden and France in 1915, and the
,! first panel switches in Newark, New Jersey, also in 1915. The first large−scale, fully automatic, common
,! control switching system deployed in commercial production service was the ATlantic central office in
,! Omaha, Nebraska, a panel system cut over on December 10, 1921. Other panel offices for Kansas City and
,! New York CIty (PENnsylvania) were in planning at the same time and opened shortly after. In 1922,
,! common control was introduced in Strowger−type step−by−step systems, resulting in the first installations
,! of Director systems in Havanna, Cuba in 1924, and in London, England in 1927. By the mid−1920s,
,! common control ideas had extended to include marker systems for testing for idle trunks. During the 1960s,
,! common control exchanges became stored program control exchanges, and by the 1970s they used
,! common−channel signaling in which the channels that are used for signaling are not used for message
,! traffic (out of band signaling). Telephone exchange equipment.

Figure 3.10: Final text blob extracted for "Common control" page by removing headers
and new lines.

37

3 Question Generation and Answering in the Electrical Power System Components Domain

3.2.4 Data Processing

Our aim at this step is to build the paragraph corpus from the cleaned Wikipedia
text. We split the Wikipedia text blob obtained after data cleaning and extraction into
paragraphs of appropriate word length for it to be consumed by the UNMT model
to generate synthetic training data. As we focus on factoid-based extractive question
answering, the answers are expected to be a few words long at the most. On average, a
paragraph word length is 200 words, we chose to set paragraph length to 150 words as
our expected answers are not more than a few words, and 150 words are enough to
provide context for the extracted answers.

We used PreProcessor module by Haystack to split the Wikipedia text blob into
paragraphs. Haystack is an open source framework built to bridge the gap between
research and industry in the field of NLP. The PreProcessor module provides various
options for cleaning and splitting the text. It takes one single document as input and
returns paragraphs as a list of documents. In the Figure 3.11 we see the available
parameters for PreProcessor and our implementation of it.

from haystack.preprocessor.preprocessor import PreProcessor
preprocessor = PreProcessor(

clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=False,
split_by="word",
split_overlap=50
split_length=150,
split_respect_sentence_boundary=True

)

Figure 3.11: Illustration of how we use haystack PreProcessor module. We split by
’word’, with a split overlap of 50 words and create paragraphs of 150 words
long while respecting the sentence boundary.

split_respect_sentence_boundary parameter when set to True, it does not split a
paragraph mid-sentence even if it gets longer than the specified split length. When
word_overlap is set to 0, then the two adjacent output paragraphs have no overlap. If
it is set to a positive number, then the two adjacent paragraphs overlap by that amount
in word count. In figure 3.12 we can see the final paragraph corpus generated for our
running example. Our paragraph corpus is ready at this stage, and the UNMT model
can utilize the prepared paragraphs to generate synthetic question-answer pairs.

38

3 Question Generation and Answering in the Electrical Power System Components Domain

1 {"text": "In�telecommunications,�common�control�is�a�principle�of�switching�telephone�calls�in�an�automatic�telephone�exchange�
,! that�employs�shared�control�equipment�which�is�attached�to�the�circuit�of�a�call�only�for�the�duration�of�establishing�
,! or�otherwise�controlling�the�call.�Thus,�such�control�equipment�need�only�be�provided�in�as�few�units�to�satisfy�overall�
,! exchange�traffic,�rather�than�being�duplicated�for�every�subscriber�line.�In�contrast,�direct�control�systems�have�
,! subsystems�for�call�control�that�are�an�integral�part�of�the�switching�network.�Strowger�exchanges�are�usually�direct�
,! control�systems,�whereas�crossbar,�and�electronic�exchanges�(including�all�stored�program�control�systems)�are�common�
,! control�systems.�Common�control�is�also�known�as�indirect�control�or�register�control.�Early�semi-mechanical�
,! installations�with�common�control�components�existed,�for�example�rotary�systems�in�Sweden�and�France�in�1915,�and�the�
,! first�panel�switches�in�Newark,�New�Jersey,�also�in�1915.", "paragraph_id": "576fe293-cf36-437a-acf9-53d54b855fb8"}

2 {"text": "Strowger�exchanges�are�usually�direct�control�systems,�whereas�crossbar,�and�electronic�exchanges�(including�all�stored�
,! program�control�systems)�are�common�control�systems.�Common�control�is�also�known�as�indirect�control�or�register�
,! control.�Early�semi-mechanical�installations�with�common�control�components�existed,�for�example�rotary�systems�in�
,! Sweden�and�France�in�1915,�and�the�first�panel�switches�in�Newark,�New�Jersey,�also�in�1915.�The�first�large-scale,�
,! fully�automatic,�common�control�switching�system�deployed�in�commercial�production�service�was�the�ATlantic�central�
,! office�in�Omaha,�Nebraska,�a�panel�system�cut�over�on�December�10,�1921.�Other�panel�offices�for�Kansas�City�and�New�
,! York�CIty�(PENnsylvania)�were�in�planning�at�the�same�time�and�opened�shortly�after.�In�1922,�common�control�was�
,! introduced�in�Strowger-type�step-by-step�systems,�resulting�in�the�first�installations�of�Director�systems�in�Havanna,�
,! Cuba�in�1924,�and�in�London,�England�in�1927.", "paragraph_id": "7a36fb04-b7a9-46b7-8259-5a69b8225eca"}

3 {"text": "Other�panel�offices�for�Kansas�City�and�New�York�CIty�(PENnsylvania)�were�in�planning�at�the�same�time�and�opened�
,! shortly�after.�In�1922,�common�control�was�introduced�in�Strowger-type�step-by-step�systems,�resulting�in�the�first�
,! installations�of�Director�systems�in�Havanna,�Cuba�in�1924,�and�in�London,�England�in�1927.�By�the�mid-1920s,�common�
,! control�ideas�had�extended�to�include�marker�systems�for�testing�for�idle�trunks.�During�the�1960s,�common�control�
,! exchanges�became�stored�program�control�exchanges,�and�by�the�1970s�they�used�common-channel�signaling�in�which�the�
,! channels�that�are�used�for�signaling�are�not�used�for�message�traffic�(out�of�band�signaling).�Telephone�exchange�
,! equipment", "paragraph_id": "d781d42b-08b6-47d9-933d-304b5a5392b7"}

Figure 3.12: Paragraphs generated using split overlap from "Common control" page.

We experimented to see the impact of split overlap on models’ performance. Details
of the experiment are detailed in the next section. Although the results in both cases
were comparable, we chose to split with overlap for two reasons. First, the number of
paragraphs generated is significantly more than the number of paragraphs generated
with no overlap. Second, intuitively models get a better signal to learn due to overlap.
In figure 3.13 we can see the paragraphs generated when split_overlap=0. Here the
number of paragraphs is less, meaning less synthetic training data would be generated.

1 {"text": "In�telecommunications,�common�control�is�a�principle�of�switching�telephone�calls�in�an�automatic�telephone�exchange�
,! that�employs�shared�control�equipment�which�is�attached�to�the�circuit�of�a�call�only�for�the�duration�of�establishing�
,! or�otherwise�controlling�the�call.�Thus,�such�control�equipment�need�only�be�provided�in�as�few�units�to�satisfy�overall�
,! exchange�traffic,�rather�than�being�duplicated�for�every�subscriber�line.�In�contrast,�direct�control�systems�have�
,! subsystems�for�call�control�that�are�an�integral�part�of�the�switching�network.�Strowger�exchanges�are�usually�direct�
,! control�systems,�whereas�crossbar,�and�electronic�exchanges�(including�all�stored�program�control�systems)�are�common�
,! control�systems.�Common�control�is�also�known�as�indirect�control�or�register�control.�Early�semi-mechanical�
,! installations�with�common�control�components�existed,�for�example�rotary�systems�in�Sweden�and�France�in�1915,�and�the�
,! first�panel�switches�in�Newark,�New�Jersey,�also�in�1915.", "paragraph_id": "27a114ba-3077-489e-831c-b51690142beb"}

2 {"text": "The�first�large-scale,�fully�automatic,�common�control�switching�system�deployed�in�commercial�production�service�was�
,! the�ATlantic�central�office�in�Omaha,�Nebraska,�a�panel�system�cut�over�on�December�10,�1921.�Other�panel�offices�for�
,! Kansas�City�and�New�York�CIty�(PENnsylvania)�were�in�planning�at�the�same�time�and�opened�shortly�after.�In�1922,�common�
,! control�was�introduced�in�Strowger-type�step-by-step�systems,�resulting�in�the�first�installations�of�Director�systems�
,! in�Havanna,�Cuba�in�1924,�and�in�London,�England�in�1927.�By�the�mid-1920s,�common�control�ideas�had�extended�to�include�
,! marker�systems�for�testing�for�idle�trunks.�During�the�1960s,�common�control�exchanges�became�stored�program�control�
,! exchanges,�and�by�the�1970s�they�used�common-channel�signaling�in�which�the�channels�that�are�used�for�signaling�are�not�
,! used�for�message�traffic�(out�of�band�signaling).�Telephone�exchange�equipment", "paragraph_id":
,! "702e419e-8ef4-4c09-91e5-0615b244d7bb"}

Figure 3.13: Paragraphs generated from "Common control" page dump without using
split overlap.

39

3 Question Generation and Answering in the Electrical Power System Components Domain

3.2.5 Data Split for Ground Truth

As there are not any benchmark question answering data-sets available in electric power
system components domain, we created a data-set of 453 manually annotated samples to
evaluate our models. We describe our process of ground truth annotation in section
3.3.6. We obtained a corpus of 13845 clean and processed paragraphs, and out of that,
we held out 8% of the paragraphs for manual annotation. Manual annotation is time
intensive task; only a limited number of samples could be annotated in the time and
scope of this thesis. We tried to maximize the paragraphs available for synthetic data
generation, and at the same time, we annotated as samples as we could for ground
truth generation.

3.3 Methodology

The question answering (QA) system must find spans of answers for a given question
from the provided context in factoid-based extractive question answering. Traditionally,
QA systems are trained in a supervised fashion using datasets like SQuAD [Raj+16].
SQuAD has 100,000+ question-answer pairs from 500+ articles. These questions are
posed by crowd workers on a set of Wikipedia articles. The size and resources required
to build such a dataset make it a resource-intensive task.

SQuAD like datasets have enabled researchers to propel the research in general
question answering task, even beating human accuracy. While this is impressive, these
datasets cannot be used for training QA models in a specialized domain like Electric
Power System Components. One approach is to build domain specific question-answering
dataset and use the new dataset to train and test the models. This is what researchers
are doing in the domain of medicine and law. Texts in such domains have a distinctly
different language and vocabulary. Institutions are putting in lots of resources to carry
forward research in those domains. For a low-resource setting like ours, this approach
is not ideal.

In our approach, we use [LDR19]’s UNMT model to generate synthetic training data.
Our idea is that if the UNMT approach produces quality training data, then using
this data, we can train state-of-the-art transformer models on the downstream task
of question answering. Apart from pre-trained QA models in Electric Power System
Components domain, we also curated a manually annotated dataset to evaluate models
trained with our approach.

40

3 Question Generation and Answering in the Electrical Power System Components Domain

3.3.1 Experiment Setup

Figure 3.14 shows the schematic representation of our experiment setup.

1. Step 1 - Data processing: We discussed this step in detail in the section 3.2 of
this chapter. In this step, we download and sanitize the data. We also prepare a
paragraph corpus that can be consumed by the UNMT model.

2. Step2 - Ground truth data spilt: We split our paragraph corpus into two parts,
one part is used for generating synthetic data for training, and another part is
used for creating ground truth data.

3. Step 3 - Synthetic data generation: We use the UNMT model made available by
authors of [LDR19] to generate synthetic data.

4. Step 4 - Synthetic Data Split: We split the synthetic data into three parts; Train
set, Dev set, and Synthetic Test set, in a random 60-20-20 split, respectively.

5. Step 5 - Training QA models: We train three state-of-the-art transformer models,
RoBERTa, MiniLM, and SpanBERT, on synthetic training data on the downstream
task of question answering. We fine-tune the models till we see good performance
on the dev set.

6. Step 6 - Ground Truth Generation: We use the UNMT model to generate
question-answer pair from held-out paragraphs from step 2. Then we manually
annotate question-answer pairs, and that represents our ground truth.

7. Step 7 - Evaluation: We evaluate the best performing models on the synthetic
test set.

8. Step 8 - Ground Truth Evaluation: Lastly, we evaluate the models on the ground
truth and report their performance.

3.3.2 Synthetic Data Generation

The authors of [LDR19] have taken one of the first steps in NLP towards unsupervised
question answering. They developed an approach that achieves a 64.5% F1 score
when an answer is a named entity mention without using the SQuAD dataset. We
use their UNMT model to generate the synthetic data from the paragraph corpus we
curated. Figure 3.15 shows the bash script we use generate synthetic data 3. UNMT

3Further details can be found on their GitHub page.

41

https://github.com/facebookresearch/UnsupervisedQA

3 Question Generation and Answering in the Electrical Power System Components Domain

Figure 3.14: Schematic of our experiment setup. The indicated steps show the flow of
data from its raw form to synthetic (on right branch) question-answer pairs
and ground truth (on left branch).

42

3 Question Generation and Answering in the Electrical Power System Components Domain

model outputs question and answer pairs for the context paragraphs that we provide
as input in the SQuAD format. We chose the UNMT model with the parameters
use_named_entity_clozes (NE), use_subclause_clozes (SC), and use_wh_heuristic (Wh*)
because the authors demonstrated that this model had the best performance on the
downstream tasks.

python −m unsupervisedqa.generate_synthetic_qa_data input.jsonl output \
−−input_file_format "jsonl" \
−−output_file_format "squad" \
−−translation_method unmt \
−−use_named_entity_clozes \
−−use_subclause_clozes \
−−use_wh_heuristic

Figure 3.15: Script used to generate question-answer pairs using UNMT model.

While we pick the model with the best performance on the downstream task, i.e.,
the model with NE, SC, and Wh* parameters set to true, we also wanted to maximize
the number of synthetic training samples that we generate. If we generate a paragraph
corpus without any split overlap, we will generate less number of paragraphs, and
fewer paragraphs mean the UNMT model generates less synthetic training data. As
we can see in the 3.1 that Config Id number 4 generates almost 5000 more samples
than Config Id 1, we choose the former of the two configurations to generate synthetic
training data to train our models.

Table 3.1: Synthetic Data Generation Configurations.

Config
Id

Paragraph
Generation
Approach

Named
Entity

Cloze (NE)

Sub-
clause
(SC)

Wh*
Heuristics

(WH)

Time
(mins.)

Number of
Training
Samples

1 FL T T T 58 6304
2 FL T T F 47 8970
3 FL T F F 74 10261
4 SW T T T 100 11187
5 SW T T F 77 15493
6 SW T F F 128 17506

One might question that what the impact of synthetic data generated from the six

43

3 Question Generation and Answering in the Electrical Power System Components Domain

configurations listed in Table 3.1. We did a study to investigate that, and we report our
findings in section 3.4.

3.3.3 Training

For Training, we use Haystack by Deepset 4, an open-source framework for building
search systems that work intelligently over large document collection. It implements the
Framework for Adapting Representation Models (FARM) that makes transfer learning
with transformer-based models fast and enterprise ready. One of its core features is the
easy finetuning of language models to one’s task and domain language. FarmReader
module provides a straightforward way to download pre-trained models from Hugging
Face and finetune them for our task. Figure 3.16 shows simple three line code to
download and fine-tune pre-trained models.

load a pre−trained model
from haystack.reader.farm import FARMReader
reader = FARMReader(model_name_or_path=model, use_gpu=True)
reader.train(train_data, train_filename, save_dir=save_dir, n_epochs=2, dev_split=.25, test_filename=test_filename)

Figure 3.16: Illustration to show usage of FARMReader module by Haystack. We use
pre-trained language models from HuggingFace and train them for 2
epochs.

We trained three models (MiniLM, RoBERTa, and SpanBERT) on the synthetic
question-answer pairs generated by the UNMT model. We split the synthetic data in
60-20-20 split where 60% is the training set, 20% is the development set, and 20% is
the synthetic test set. We train all three models for two epochs on the training set
and evaluate their performances on the synthetic dev set after training for every 300
samples. After the training, we do two evaluations of the fine-tuned models. The
first evaluation is on the synthetic test set, and the second evaluation is on manually
annotated ground truth data. We perform training on Google Colab with Nvidia SMI
GPUs.

4https://haystack.deepset.ai/overview/intro

44

3 Question Generation and Answering in the Electrical Power System Components Domain

3.3.4 Evaluation

We perform two evaluations of the trained models. We evaluate models on the synthetic
test set and the manually annotated ground truth. Good performance on the synthetic
test set indicates that the model is able to learn the question-answering behavior and
generalize well on the synthetic data. But through this work, we want to evaluate
the quality of synthetic data generated by the UNMT model. To achieve that, we
evaluate models on manually annotated ground truth data. Our idea is that if the
model performs well on real-world ground truth data, it would indicate that the quality
of synthetic data used for training is good and matches real data. For use cases at
Siemens, it can be very helpful in low resource settings where we do not have ground
truth data available, and we can only train and evaluate models only on synthetic data.
If the model generalizes well to synthetic data and if the quality of synthetic data is
comparable to real-world data, as we establish in this work, then we can reliably use
the UNMT approach to generate training data in low-resource settings.

3.3.5 Baseline Experiment

In order to establish baselines to analyze the model’s performance with respect to
UNMT synthetic data generation method, we conducted two experiments where we
generated synthetic data by identity mapping and noisy cloze translation method and
trained the QA models on that data. Figure 3.17 is a schematic representation for
experiment setup for the baseline experiments. Identity mapping considers that the
cloze questions themselves provide a signal to learn question-answering behavior. The
noisy cloze method characterizes the difference between the cloze question and the
natural question in the form of perturbation. We have provided more details about
both the approaches in section 2.7.2.

3.3.6 Ground Truth Generation

Annotation is a very expensive and resource-intensive task. We had one annotator to
read and prepare question answers for ground truth data. We took an approach where
we used the output of the UNMT model and refined those samples. After preparing
the paragraph corpus, we split it into two parts. We use around 8% of the paragraphs
and generate synthetic question-answer pairs using the UNMT model and manually
refine them. We take this approach because synthetic questions already provide a good
starting point for the annotator. Starting from scratch would have required a lot more

45

3 Question Generation and Answering in the Electrical Power System Components Domain

Figure 3.17: Our baseline experiment setup. We use Identity Mapping model and Noisy
cloze model to generate synthetic training data.

time to prepare ground truth data, so that put it out of the time scope of this thesis.
Table 3.2 summarizes the manual effort required to process 500 samples for annotating
factoid-based question answers while using synthetic questions and answers generated
by the model as a starting point.

46

3 Question Generation and Answering in the Electrical Power System Components Domain

Table 3.2: Summary of our effort to generate ground truth dataset.

Amount of Time 75 hr (approx.)
Number of Samples 500
Number of Annotations 453

We spent 8-9 minutes per sample on average for annotation. We used the open source
annotation tool, Haystack Annotation Tool, to perform the annotations. We completed
about 26 annotations per day, spending around 4 hours in one sitting. Annotation of
500 samples took 23-25 days spread over 1.5 months. We created 1 question-answer
pair per paragraph. In cases where no valid question-answer pair could be found, the
sample was removed.

We only create questions starting with Who, What When, Where and How much/many
and ending with a question mark. We specifically chose these question words because
synthetic training data generated by the UNMT model only contains the mentioned
question words. Adding other question words would guarantee a bad performance on
those test examples. In the figure 3.18 and figure 3.19 we can see the distribution of
question types before and after annotation.

Figure 3.18: Distribution of type of
questions in synthetic data
before annotation.

Figure 3.19: Distribution of question
types in ground truth data
after annotation.

We see a huge change in the number of questions for What and Who question types.
Most new questions created pertained to THINGS, and What question type was most
appropriate compared to Who question type. This shift in numbers makes sense because,

47

3 Question Generation and Answering in the Electrical Power System Components Domain

Figure 3.20: Pie chart showing type of updates done during annota-
tion. More than 2/3rd of samples needed both question
and answer update.

in the context of the electrical power system components domain, it is more likely that
a what question type fits compared to Who question type. Fewer person entities are to
show up in the electrical power system components context where Who question type
would fit.

There were five types of updates made while generating ground truth using synthetic
data. No update is the category for question-answer pairs that were selected without
any changes to either question or answer. Only 6% samples were such that required no
update. The major category is Question and Answers; we updated both the question
and the answer for that sample, and in most cases, that meant creating new questions
and answers. For these samples, synthetic questions and answers did not prove to be
useful. Figure 3.20 shows the types of updates and their percentages.

48

3 Question Generation and Answering in the Electrical Power System Components Domain

3.4 Result and Discussion

3.4.1 Impact of Data Generation Approaches

We study the impact of various data generation configurations on the training of
RoBERTa and MiniLM. We fine-tune these models on the data generated with each of
the configurations in table 3.1. In table 3.3 we report the F1, EM and Top_4 accuracy
scores of our fine-tuned models on synthetic test data generated from respective
configuration. We report the scores before fine-tuning and after fine-tuning. We see that
both the models achieve a very high score on synthetic test data for all configurations,
meaning they generalize well on synthetic data. As there is no significant impact on
the performance of models due to the various configurations of paragraph generation,
Named Entity (NE), Sub-clause (SC), or Wh heuristics used to generate synthetic
training data, we optimize for the size of the training data that can be generated, and
we pick the configuration of [LDR19]’s best-performing model.

Table 3.3: Synthetic test set performance with respect to various data generation con-
figurations from table 3.1. UNMT model is used to generate question and
answer pairs in all these configuration

Config Id Model Before Finetuning After finetuning
EM F1 Top-4 EM F1 Top-4

1 MiniLM 31.5 37.7 59.6 93.5 96.3 97.6
RoBERTa 34.2 42.8 62.7 94.6 97.0 98.1

2 MiniLM 19.4 25.8 58.9 93.6 96.2 97.6
RoBERTa 21.7 29.8 59.9 95.3 97.3 98.5

3 MiniLM 20.4 28.8 60.9 96.9 98.0 98.6
RoBERTa 22.0 32.3 59.5 97.3 98.3 98.8

4 MiniLM 31.6 38.0 60.1 95.8 97.6 98.7
RoBERTa 34.4 42.9 62.6 97.2 98.3 99.1

5 MiniLM 34.2 42.8 62.7 94.6 97.0 98.1
RoBERTa 19.0 25.6 58.4 95.5 97.4 98.5

6 MiniLM - - - - - -
RoBERTa - - - - - -

49

3 Question Generation and Answering in the Electrical Power System Components Domain

3.4.2 Synthetic Test Set Performance

We evaluate our fine-tuned models on the synthetic test set. We report the performance
of models of pre-trained models from HuggingFace before fine-tuning in table 3.4, table
3.5 and table 3.6 for UNMT, Identity Mapping and Noisy Cloze approaches, respectively.
We see that out-of-the-box pre-trained models have low F1 scores for UNMT and the
noisy cloze approach, which is expected because models have not fine-tuned to the
question-answering task. Performance for the Identity Mapping approach is higher,
and we reason that in Identity Mapping question answering task is reduced to finding
the fill-in-the-blank masked token. Pre-trained models are trained on Masked Language
modeling objective, and predicting a masked token is an easy task for them.

Table 3.4: Model performance on synthetic test set for UNMT ap-
proach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM unmt 31.7 38.3 60.4
RoBERTa unmt 34.7 43.1 62.4

SpanBERT unmt 27.7 34.9 61.9

Table 3.5: Model performance on synthetic test set for Identity Map-
ping approach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM ident 71.7 81.7 93.0
RoBERTa ident 69.5 77.1 92.6

SpanBERT ident 61.4 73.2 88.2

We report the performance of our fine-tuned models on synthetic test data in table
3.7, table 3.8 and table 3.9 for UNMT, Identity Mapping and Noisy Cloze approaches,

50

3 Question Generation and Answering in the Electrical Power System Components Domain

Table 3.6: Model performance on synthetic test set for Noisy Cloze
approach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM noisy cloze 12.3 15.9 59.9
RoBERTa noisy cloze 9.0 11.5 60.4

SpanBERT noisy cloze 7.3 9.5 58.3

respectively. All three models achieve a high F1 score for all three approaches. Models
are able to generalize well on synthetic data and learn the question-answering behavior.
We observe that the models trained with the UNMT approach beat our baseline Noisy
Cloze approach by around 6% F1. However, the UNMT approach lags little behind the
Identity Mapping approach.

Table 3.7: Performance of our fine-tuned models on synthetic test set
for UNMT approach

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM unmt 94.6 96.9 98.2
RoBERTa unmt 96.5 97.9 98.7

SpanBERT unmt 95.7 97.4 98.6

Table 3.8: Performance of our fine-tuned models on synthetic test set
for Identity Mapping approach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM ident 98.7 99.1 99.4
RoBERTa ident 99.0 99.3 99.5

SpanBERT ident 99.0 99.3 99.5

51

3 Question Generation and Answering in the Electrical Power System Components Domain

Table 3.9: Performance of our fine-tuned models on synthetic test set
for Noisy Cloze approach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM noisy 84.2 89.2 92.2
RoBERTa noisy 88.4 91.8 93.8

SpanBERT noisy 86.8 90.6 93.3

3.4.3 Ground Truth Evaluation

We evaluate our fine-tuned models on the manually annotated dataset of 453 samples.
We report our results in table 3.10, table 3.11 and table 3.12 for UNMT, Identity Mapping
and Noisy Cloze approaches, respectively. We note that all three models for all three
approaches achieve more than 80% F1 score. All the models are able to generalize well
on our ground truth (real world) data. This is a positive result in the argument for
synthetic data generation in a low-resource setting.

We compare the models trained with the UNMT approach and models trained with
our baseline noisy cloze approach. We find that the UNMT approach exceeds in
performance by 1%-3% in the F1 score. We argue that the UNMT approach does show
promise of application in use-cases similar to ours. We do not find much difference
comparing UNMT, and Identity Mapping approaches. While UNMT is slightly ahead
in performance for MiniLM and SpanBERT, it lags behind by 0.3% F1 score for RoBERTa.
Although, the UNMT approach gives a better Exact Match score for all three models.

Table 3.10: Performance of our fine-tuned models on ground truth
dataset for UNMT approach

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM unmt 61.5 84.9 92.8
RoBERTa unmt 61.5 83.7 92.2

SpanBERT unmt 62.4 84.2 92.8

52

3 Question Generation and Answering in the Electrical Power System Components Domain

Table 3.11: Performance of our fine-tuned models on ground truth
dataset for Identity Mapping approach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM ident 56.8 84.2 94.2
RoBERTa ident 55.3 84.0 94.0

SpanBERT ident 57.1 83.9 93.7

Table 3.12: Performance of our fine-tuned models on ground truth
dataset for Noisy Cloze approach.

Model Syn. Data
Generation
Approach

Exact
Match
(EM)

F1
Score

Top_4

MiniLM noisy 59.5 83.9 92.0
RoBERTa noisy 57.1 81.7 92.6

SpanBERT noisy 57.1 81.0 90.8

53

4 Conclusion

Question answering task in an enterprise setting poses a tough challenge due to the
lack of annotated training data due to domain mismatch. In this problem setting, unsu-
pervised data generation for training question answering models is a good approach
compared to the resource-intensive process of annotating training data. We explored
Unsupervised Question Answering using Cloze Generation and used its UNMT model
to generate synthetic training data for question-answering models. We also explored
three state-of-the-art transformer-based models to understand their training approaches.
We chose RoBERTa, SpanBERT, and MiniLM to pick different training approaches and
model sizes from the best available performing models to evaluate their performance
on our approach.

From the results we have seen so far, we can say that the unsupervised approach to
generate synthetic data for question-answering tasks shows promise. It is significantly
useful in use cases at Siemens where domain-specific training data is unavailable. We
propose a simple approach to train a question-answering system specific to Electric
Power System Component Domain. Our approach can also work with any domain in
the English language by using a different source of raw data.

We also contributed a manually labeled small dataset of 453 samples in the Electric
Power System Component Domain. We reiterate that effort required to generate quality
data is resource intensive and not feasible in an enterprise setting due to high costs.

4.1 Future Work

While we see a promise in unsupervised approach to generate data for training question
answering system, we propose further work in building a larger dataset using annota-
tors with expert domain knowledge. Another experiment that can be undertaken will
be to try the approach on other domains and validate the applicability of unsupervised
question answering in low resource setting. We also recommend experiment with few
shot learning and study the impact on performance when question answering systems
are trained on synthetic dataset and additionally trained on a small real world.

54

List of Figures

2.1 Transformer architecture. Encoder on the left and decoder on the right.
Blocks of attention and feed forward networks N-times. 3

2.2 Scalar dot-product attention on the left. Multi-head attention on the right. 4
2.3 Pre-training model architectures for BERT and OpenAI GPT. BERT uses

bi-directional transformer and OpenAi GPT uses left to right transformer. 5
2.4 Bert pre-trainig and fine-tuning procedure. For both procedures same

architecture is used, only the output layer is different. 6
2.5 Illustration of training spanBERT. Model learns to predict the masked

span an American footbal game by using x4 and x9 tokens (SBO loss). The
equation shows the MLM and SBO loss to predict the term football. . . . 11

2.6 Deep self-attention distillation. MiniLM is trained to mimic self-attention
module of last transformer layer of teacher model. Authors also use
self-attention value-relation transfer to achieve deeper mimickry. 14

2.7 Crowd facing web-interface to collect questions and answers. Workers
are encouraged to make question in their own words. 16

2.8 Example of computing edit distance between question and answer for
syntactic divergence. 19

2.9 Schematic of Unsupervised Question answering using cloze translation.
Right side of the image with dotted arrows represents traditional ex-
tractive question answering. Left side of the image with solid arrows
represents the process of generating unsupervised training data, which
is used to train the extractive question answering model. 21

2.10 Cloze generation with sentence boundary. Scope of the context is reduced
to the whole sentence around the answer. 23

2.11 Cloze generation with sub-clause boundary. Scope of the context is
reduced to the sub-clause around the answer 23

3.1 Image illustrating question answering. (Left) Question answering on
Wikipedia articles. (Right) Question answering on manuals and support
forums. 29

3.2 Data Processing Pipeline. Raw data goes through all the steps in sequence. 31

55

List of Figures

3.3 PetScan Query Tool to filter Wikipedia data. Our query sets language
to ’en’ (English), depth to 6 (maximum depth we found for our require-
ment), categories to ’Electric power system components’ and negative
categories to ’Liquid dielectric’. Combination field is not significant to
use as we only have one category. 32

3.4 List of articles (top 18) returned for PetScan query in figure 3.3. 33
3.5 Wikipedia Special Export. User can add page titles and export them as

Wikipedia dump. 33
3.6 An example showing structure of a wikipedia dump file. Each Wikipedia

page in the dump is contained in <page>...</page> tags. 34
3.7 Illustration showing the use of wiki_dump_reader in data cleaning and

extraction. 35
3.8 Wikipedia dump with one page titled "Common control". Text before

cleaning consists of markups, links, images etc. that is not useful for
training models. 36

3.9 Wikipedia dump with one page titled "Common control" after cleaning
and extraction. 37

3.10 Final text blob extracted for "Common control" page by removing headers
and new lines. 37

3.11 Illustration of how we use haystack PreProcessor module. We split by
’word’, with a split overlap of 50 words and create paragraphs of 150
words long while respecting the sentence boundary. 38

3.12 Paragraphs generated using split overlap from "Common control" page. 39
3.13 Paragraphs generated from "Common control" page dump without using

split overlap. 39
3.14 Schematic of our experiment setup. The indicated steps show the flow of

data from its raw form to synthetic (on right branch) question-answer
pairs and ground truth (on left branch). 42

3.15 Script used to generate question-answer pairs using UNMT model. . . 43
3.16 Illustration to show usage of FARMReader module by Haystack. We use

pre-trained language models from HuggingFace and train them for 2
epochs. 44

3.17 Our baseline experiment setup. We use Identity Mapping model and
Noisy cloze model to generate synthetic training data. 46

3.18 Distribution of type of questions in synthetic data before annotation. . . 47
3.19 Distribution of question types in ground truth data after annotation. . . 47
3.20 Pie chart showing type of updates done during annotation. More than

2/3rd of samples needed both question and answer update. 48

56

List of Tables

2.1 Comparison between static and dynamic masking for BERTBASE. 7
2.2 Models’ performance on various Data-sets 9
2.3 BERTBASE performance for various batch sizes. 9
2.4 Development set results for RoBERTa. 10
2.5 Test results of SpanBERT and other baselines on SQuAD1.1 and SQuAD2.0

. 12
2.6 MiniLM comparison with other task agnostic distillation approaches. . 13
2.7 Distribution of answer types in SQuAD dataset. 18
2.8 Manually categorized development set SQuAD questions 18
2.9 Examples of cloze translations generated using Unsupervised Neural

Machine Translated (UNMT) model. 26

3.1 Synthetic Data Generation Configurations ablation study record number
of samples generated as well . 43

3.2 Ground Truth Generation Effort . 47
3.3 Synthetic test set performance with respect to various data generation

configurations. 49
3.4 Model performance on synthetic test set for UNMT approach. 50
3.5 Model performance on synthetic test set for Identity Mapping approach. 50
3.6 Model performance on synthetic test set for Noisy Cloze approach. . . . 51
3.7 Performance of our fine-tuned models on synthetic test set for UNMT

approach. 51
3.8 Performance of our fine-tuned models on synthetic test set for Identity

Mapping approach. 51
3.9 Performance of our fine-tuned models on synthetic test set for Noisy

Cloze approach. 52
3.10 Performance of our fine-tuned models on ground truth dataset for UNMT

approach. 52
3.11 Performance of our fine-tuned models on ground truth dataset for Iden-

tity Mapping approach. 53
3.12 Performance of our fine-tuned models on ground truth dataset for Noisy

Cloze approach. 53

57

Bibliography

[22] Hugging Face – The AI community building the future. May 3, 2022. url:
https://huggingface.co/ (visited on 05/03/2022).

[Agu+20] G. Aguilar, Y. Ling, Y. Zhang, B. Yao, X. Fan, and C. Guo. “Knowledge
distillation from internal representations.” In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. Vol. 34. 05. 2020, pp. 7350–7357.

[ALA18] M. Artetxe, G. Labaka, and E. Agirre. “Unsupervised statistical machine
translation.” In: arXiv preprint arXiv:1809.01272 (2018).

[Bae+19] A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and M. Auli. “Cloze-driven
pretraining of self-attention networks.” In: arXiv preprint arXiv:1903.07785
(2019).

[Ber+14a] J. Berant, V. Srikumar, P.-C. Chen, A. Vander Linden, B. Harding, B. Huang,
P. Clark, and C. D. Manning. “Modeling biological processes for reading
comprehension.” In: Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP). 2014, pp. 1499–1510.

[Ber+14b] J. Berant, V. Srikumar, P.-C. Chen, A. Vander Linden, B. Harding, B. Huang,
P. Clark, and C. D. Manning. “Modeling biological processes for reading
comprehension.” In: Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP). 2014, pp. 1499–1510.

[CL19] A. Conneau and G. Lample. “Cross-lingual language model pretraining.”
In: Advances in neural information processing systems 32 (2019).

[DC18] X. Du and C. Cardie. “Harvesting paragraph-level question-answer pairs
from wikipedia.” In: arXiv preprint arXiv:1805.05942 (2018).

[Dev+18] J. Devlin, M. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding.” In: CoRR
abs/1810.04805 (2018). arXiv: 1810.04805.

[DSC17] X. Du, J. Shao, and C. Cardie. “Learning to ask: Neural question generation
for reading comprehension.” In: arXiv preprint arXiv:1705.00106 (2017).

58

https://huggingface.co/
https://arxiv.org/abs/1810.04805

Bibliography

[He+18] L. He, K. Lee, O. Levy, and L. Zettlemoyer. “Jointly predicting predi-
cates and arguments in neural semantic role labeling.” In: arXiv preprint
arXiv:1805.04787 (2018).

[Hil+15] F. Hill, A. Bordes, S. Chopra, and J. Weston. “The goldilocks principle:
Reading children’s books with explicit memory representations.” In: arXiv
preprint arXiv:1511.02301 (2015).

[HR18] J. Howard and S. Ruder. “Universal language model fine-tuning for text
classification.” In: arXiv preprint arXiv:1801.06146 (2018).

[HR19] T. Hosking and S. Riedel. “Evaluating rewards for question generation
models.” In: arXiv preprint arXiv:1902.11049 (2019).

[HS10] M. Heilman and N. A. Smith. “Good question! statistical ranking for
question generation.” In: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. 2010, pp. 609–617.

[Jia+19] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu.
“Tinybert: Distilling bert for natural language understanding.” In: arXiv
preprint arXiv:1909.10351 (2019).

[Jos+20] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. “Span-
bert: Improving pre-training by representing and predicting spans.” In:
Transactions of the Association for Computational Linguistics 8 (2020), pp. 64–
77.

[JSS19] G. Jawahar, B. Sagot, and D. Seddah. “What does BERT learn about the
structure of language?” In: ACL 2019-57th Annual Meeting of the Association
for Computational Linguistics. 2019.

[Lai+17] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. “Race: Large-scale reading com-
prehension dataset from examinations.” In: arXiv preprint arXiv:1704.04683
(2017).

[Lam+18] G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ranzato. “Phrase-
based & neural unsupervised machine translation.” In: arXiv preprint
arXiv:1804.07755 (2018).

[LDR19] P. Lewis, L. Denoyer, and S. Riedel. “Unsupervised question answering by
cloze translation.” In: arXiv preprint arXiv:1906.04980 (2019).

[Lee+16] K. Lee, S. Salant, T. Kwiatkowski, A. Parikh, D. Das, and J. Berant. “Learn-
ing recurrent span representations for extractive question answering.” In:
arXiv preprint arXiv:1611.01436 (2016).

59

Bibliography

[Liu+19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. “Roberta: A robustly optimized bert
pretraining approach.” In: arXiv preprint arXiv:1907.11692 (2019).

[MA20] S. Mukherjee and A. Awadallah. “XtremeDistil: Multi-stage distillation for
massive multilingual models.” In: arXiv preprint arXiv:2004.05686 (2020).

[Met21] Meta. PetScan/en — Meta, discussion about Wikimedia projects. 2021. url:
https://meta.wikimedia.org/w/index.php?title=PetScan/en&oldid=
21883648 (visited on 03/01/2010).

[Mir+20] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H.
Ghasemzadeh. “Improved Knowledge Distillation via Teacher Assistant.”
In: Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (Apr.
2020), pp. 5191–5198. doi: 10.1609/aaai.v34i04.5963.

[Nag] S. Nagel. News Dataset Available – Common Crawl. https://commoncrawl.
org/2016/10/news-dataset-available/. (Accessed on 08/09/2022).

[Ott+18] M. Ott, S. Edunov, D. Grangier, and M. Auli. “Scaling Neural Machine
Translation.” In: Proceedings of the Third Conference on Machine Translation: Re-
search Papers. Brussels, Belgium: Association for Computational Linguistics,
Oct. 2018, pp. 1–9. doi: 10.18653/v1/W18-6301.

[Rad+18] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. “Improving
language understanding by generative pre-training.” In: (2018).

[Raj+16] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. “SQuAD: 100, 000+
Questions for Machine Comprehension of Text.” In: CoRR abs/1606.05250
(2016). arXiv: 1606.05250.

[RBR13] M. Richardson, C. J. Burges, and E. Renshaw. “Mctest: A challenge dataset
for the open-domain machine comprehension of text.” In: Proceedings of
the 2013 conference on empirical methods in natural language processing. 2013,
pp. 193–203.

[RJL18] P. Rajpurkar, R. Jia, and P. Liang. “Know What You Don’t Know: Unanswer-
able Questions for SQuAD.” In: Association for Computational Linguistics
(ACL). 2018.

[Rou19] S. Roukos. Question Answering for Enterprise Use Cases | by Salim Roukos
| Towards Data Science. Nov. 4, 2019. url: https://towardsdatascience.
com/question-answering-for-enterprise-use-cases-70ed39b74296
(visited on 05/03/2022).

60

https://meta.wikimedia.org/w/index.php?title=PetScan/en&oldid=21883648
https://meta.wikimedia.org/w/index.php?title=PetScan/en&oldid=21883648
https://doi.org/10.1609/aaai.v34i04.5963
https://commoncrawl.org/2016/10/news-dataset-available/
https://commoncrawl.org/2016/10/news-dataset-available/
https://doi.org/10.18653/v1/W18-6301
https://arxiv.org/abs/1606.05250
https://towardsdatascience.com/question-answering-for-enterprise-use-cases-70ed39b74296
https://towardsdatascience.com/question-answering-for-enterprise-use-cases-70ed39b74296

Bibliography

[Soc+13] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts. “Recursive deep models for semantic compositionality over a sen-
timent treebank.” In: Proceedings of the 2013 conference on empirical methods
in natural language processing. 2013, pp. 1631–1642.

[Sun+19a] S. Sun, Y. Cheng, Z. Gan, and J. Liu. “Patient knowledge distillation for
bert model compression.” In: arXiv preprint arXiv:1908.09355 (2019).

[Sun+19b] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou. “Mobilebert: Task-
agnostic compression of bert by progressive knowledge transfer, 2019.” In:
URL https://openreview. net/pdf (2019).

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention is all you need.” In: Advances in
neural information processing systems 30 (2017).

[Wan+20] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. “MiniLM: Deep
Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained
Transformers.” In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 5776–5788.

[Yan+19] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xl-
net: Generalized autoregressive pretraining for language understanding.”
In: Advances in neural information processing systems 32 (2019).

[You+19] Y. You, J. Li, J. Hseu, X. Song, J. Demmel, and C.-J. Hsieh. “Reducing
BERT pre-training time from 3 days to 76 minutes.” In: arXiv preprint
arXiv:1904.00962 (2019).

[Zhu+15] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler. “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books.” In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 19–27.

61

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Transformer
	BERT
	RoBERTa
	SpanBERT
	MiniLM
	SQuAD
	Unsupervised Question Answering by Cloze Translation
	Context and Answer Generation
	Question Generation
	Unsupervised Cloze Translation

	Summary

	Question Generation and Answering in the Electrical Power System Components Domain
	Use Case
	Data
	Data Selection
	Data Download
	Data Cleaning and Extraction
	Data Processing
	Data Split for Ground Truth

	Methodology
	Experiment Setup
	Synthetic Data Generation
	Training
	Evaluation
	Baseline Experiment
	Ground Truth Generation

	Result and Discussion
	Impact of Data Generation Approaches
	Synthetic Test Set Performance
	Ground Truth Evaluation

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

