TuTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Light Microscopy Image Segmentation
using Gaussian Processes

Zayneb Miri

0

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Light Microscopy Image Segmentation
using Gaussian Processes

Segmentierung von
Lichtmikroskopiebildern mit
Gauss-Prozessen

Author: Zayneb Miri
Supervisor: Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich

Submission Date: 15.05.2022

0

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.05.2022 Zayneb Miri

Acknowledgments

First, I would like to thank my advisor Dr.Felix Dietrich and my supervisor Prof.
Christian Mendl for allowing me to write my bachelor’s thesis at the Chair of Scientific
Computing in Computer Science. A special thanks to Felix for guiding me through the
journey by receiving invaluable feedback.

Secondly, Thank you to the best cosine in the world, Wiwi, for supporting me emo-
tionally and mentally. A big thanks to Eli, Macha, and Bibi for your friendship and
support.

Finally, a special thanks to my parents and siblings for the guidance, love, and everyday
support.

I am grateful for all teachers, Professors that believed in me. I would not be here
writing this thesis without you.

Abstract

In computer vision (CV), image segmentation is one of the most critical problems. A
wide range of applications, including medical imaging and robotics, make it highly
appealing. One of the applications where computer vision can help automate human
labor is the segmentation of microscopy images. As deep learning models have gained
considerable traction across a range of vision applications, there has been much research
into building deep learning approaches to image segmentation. Convolutional Neural
Networks have succeeded and are widely used, particularly for computer vision tasks.

Compared with state-of-the-art classifiers, the Gaussian process classifier offers several
noticeable advantages. For example, its Bayesian nature allows any prior information
to be used in the classification process. They also yield a posterior probability estimate
and a variance estimate, which can be exploited as a confidence value for the predicted
decision. By definition, a Gaussian process (GP) is a distribution over functions
determined by its mean and kernel function. Therefore, it is essential for GP modeling
to select an appropriate kernel function for a particular problem. Surprisingly, there
is a direct connection between convolutional networks and Gaussian processes with
specifically designed kernels. These kernels can be constructed in the limit of infinite
kernels of the original convolutional networks.

The first aspect of this thesis will explain Gaussian processes, how they can be deduced
from Convolutional Neural Networks, and how they can be used for classification. As
segmentation is a form of labeling in which every pixel is assigned to a label, we will
tirst train a Gaussian Process Classifier to perform pixel-level classification and then
use the classifier to generate semantic segmentations. First, to illustrate the GP-CNN
kernel’s capability, we perform semantic segmentation of several images from the
MNIST data set. Then, we focus on the light microscopy images. As a result, we found
that contrary to the segmentation of MNIST images, the Gaussian process performed
poorly on microscopy images.

v

Contents

Acknowledgments
Abstract
1 Introduction

2 Related Work

2.1 Arbuscular Mycorrhiza Fungi
2.2 3D Model of fungus-colonized root section
2.3 Gaussian Processes
2.3.1 Multivariate Gaussian distribution
2.3.2 Definition of Gaussian Processes
2.3.3 Gaussian Processes for Regression
2.3.4 Gaussian Process for Classification.
2.4 Neural Networks as Gaussian Processes
24.1 Convolutional Neural Networks
242 Convolutional kernel
243 ReLUactivation.
2.5 Image Segmentation
2.5.1 Introduction to Image Segmentation
2.5.2 State-of-the-art of Image Segmentation

Light Microscopy Image Segmentation using Gaussian Processes

3.1 Light Microscopy DataSet
3.1.1 Building the patches dataset
3.12 Data Pre-processing

32 OurApproach

3.3 Evaluationmetrics oL

34 Implementation

3.5 Performance Evaluation,
351 MNISTResults
3.5.2 Microscopy Data SetResults

O OO W W

10
10
10
12
13
13
13
14

Contents

353 Visualresults
4 Conclusion
List of Figures
List of Tables

Bibliography

41

42

44

46

Vi

1 Introduction

In biomedical applications, microscopy images help researchers analyze genetic pertur-
bations, seek drug discovery, and phenotype cells [2]. Nevertheless, manual microscopy
image analysis can be a complicated process that is susceptible to human error. On
the other hand, machine Learning can segment, recognize specific objects of interest,
and learn patterns in images to collect quantitative information. Consequently, image
analysis could be optimized and expedited by applying machine learning techniques.
For instance, Achim Hekler et al. [9] proved that automated image analysis employing
Convolutional Neural Networks (CNNs) outperforms domain experts in classifying
histopathological melanoma images. Image segmentation is currently one of the most
challenging tasks of microscope image analysis since it is time-consuming to generate
ground truth labels manually [13].

Furthermore, neural networks have the drawback that they require large training data
set to generalize well [23]. In applications such as light microscopy image segmentation,
where availability of training data is minimal, kernel-based methods are the recuse
since they need fewer data to train. In this thesis, we propose a semantic segmentation
approach using a Bayesian kernel method. The kernel method called Gaussian process
derived from a CNNSs in the limiting case of infinitely many channels. The GP-CNN
kernels achieve state-of-the-art image classification results [6]. Therefore, our approach
is based on pixel-wise classification, where we deploy a Gaussian process classifier to
perform the task.

The thesis is organized as follows: In Chapter 2, we will introduce state of the art. It
consists of five parts. In part 1, we will explain the biological background of Arbuscular
Mycorrhiza Fungi (AMF). We will describe the development of the render pipeline that
will be used to generate synthetic microscopy data in part 2. In part 3, we will explain
Gaussian processes. In part 4, we will explain the equivalence between Gaussian
processes and Convolutional Neural Networks (CNNs). In the last part of the chapter,
we will define what image segmentation is and review some image segmentation
techniques.

In the main part of the thesis, chapter 3, we will start by describing the steps of
building the light microscopy data set. Next, we will explain our Gaussian processes

1 Introduction

classification approach used to predict the image segmentation maps. Afterward, we
will present the used evaluation metrics and give implementation details, where we
will mention which libraries are used and outline the technical environment of the
machines used for the training. Subsequently, we will provide an overview of the
performance of our approach on the MNIST and light microscopy data sets.

Finally, in chapter 4, we will overview the thesis and highlight our key findings.
Then, we will give suggestions for future work.

2 Related Work

This thesis aims to perform semantic segmentation on microscopy images using Gaus-
sian processes. This chapter contains an explanation of the biological background and
how the synthetic images of the data set are created. Then we introduce Gaussian
processes and how they can be used for supervised machine learning tasks such as
regression and classification. Lastly, we provide an overview of the methods employed
to solve the image segmentation task.

2.1 Arbuscular Mycorrhiza Fungi

Arbuscular mycorrhiza fungi (AMF) are soil microorganisms that symbiotically interact
with 90% of agricultural plants and 80-90% of vascular plant species [24].

Fungal hyphae are long filamentous branches that form arbuscules enclosed by the
plant cell’s plasma membrane, develop inside the root, and pierce its cell walls to create
arbuscules. These arbuscules facilitate nutrient transfer by creating a more excellent
contact surface between the fungus and the plant. The fungus helps the nutrient
transfer with the uptake of nitrogen, water, phosphorus, and amino acids. In return,
the plants furnish carbon [30].

The AMF development process can be decomposed into a few steps: first, the symbiotic
partners exchange molecules for mutual recognition. The fungus is then guided into
deeper cell layers by an intracellular accommodation structure formed by the contacted
plant cells. Ultimately, the fungal hyphae move lengthwise through the root cortex’s
gaps between the cells. These hyphae generate other branches, which leads to the
creation of arbuscles within plant cells. The distinction of vesicles that store oil-rich
products are part of the post-arbuscular evolution [30]. A visualization of AMF is
shown in Figure 2.1. Arbuscules, hyphae, and vesicles are the objects that have to be
segmented with our approach in section 3.2.

2 Related Work

[l Fungal hyphae
[] Root cells

e N D
Root cortex Intraradical hyphae Septate hyphae

Root endodermis ‘ ‘ f W
K L

Figure 2.1: AMF structure, taken from [30].

2.2 3D Model of fungus-colonized root section

To prepare the AMF images, the Lotus japonicus ecotype Gifu plant seeds were first
scarified and surface sterilized. Then, these imbibed seeds were grown for 10 to 14 days
before being cultivated in quartz sand as a substrate. Next, the roots were inoculated
with 500 spores per plant for colonization with the fungus Rhizophagus irregularis and
collected five weeks later. Afterward, the fungal structures were stained to make them
visible under the microscope. Finally, a Leica DM6 B wide-field microscope was used to
image colonized root sections. The obtained images can then be pixel-wise annotated
by a plant biologist [30], as shown in figure 2.2.

2 Related Work

Figure 2.2: Annotated colonized root section. Hyphae are annotated with yellow lines,
arbusclues with red circles, and vesicles with green circles, taken from [30].

Since it is challenging to obtain ground truth pixel-wise annotations, we will use
generated synthetic images for our experiments. Jan Watter [30] used a 3D model
of the fungus-colonized root section developed using the software Blender. We will
describe the simulation pipeline shortly. It was broken down into various stages: object
modeling, rigging, shading, compositing, and rendering. Initially, the object, which
is, in this case, the plant root anatomy, was modeled. The model consists of a surface
representation (a mesh) until now. Hence, the ringing technique was applied to add
bones (a set of interconnected parts) that can deform the 3D mesh. The generation
of new configurations was done using the blender Python API. A python script was
created, which produced different configuration files and ran the blender rendering
on them. Employing a random number of configurations, the model’s mesh will be
slightly rotated, scaled, and translated for each rendering process. Then materials, the
background of the scene, and lights (shading nodes) were used to build a network
of connected nodes, and the renderer then used their resulting output to create the

2 Related Work

final rendered image and the corresponding segmentation map. Figure 2.3 shows an
example of render and its corresponding segmentation map.

Figure 2.3: Render image on the left, segmentation map on the right. Vesicles (blue),
arbuscules (yellow) and hyphae (red).

2.3 Gaussian Processes

In this section, we first make the mathematical intuition behind Gaussian processes
more approachable 2.3.1. Secondly, we explain what a Gaussian process is 2.3.2. Finally,
we clarify how we use Gaussian processes for regression 2.3.3 and classification 2.3.4.

2.3.1 Multivariate Gaussian distribution

Definition 2.3.1 (Gaussian Process) A Gaussian process is a generalization of the Gaussian
probability distribution. Whereas a probability distribution describes random variables which
are scalars or vectors (for multivariate distributions) [21].

From the definition above 2.3.1, we note that before exploring Gaussian processes, there
are underlying mathematical concepts we need first to understand.

Each random variable is distributed normally in a multivariate distribution, and their
joint distribution is Gaussian. A multivariate Gaussian distribution is defined by a mean
vector p and a covariance matrix X. For X = [Xj, ... ,Xn]T set of random variables, we
say X follows a normal distribution:

X~ N, X). 2.1)

2 Related Work

The diagonal of T refers to the variance ¢? of the i-th random variable and the off-
diagonal elements (712,]. corresponds to the variance between the i-th and j-th random
variable [5].

To explain two essential concepts, the marginal and conditional distribution, we consider
a simple example, a random vector Z = [X, Y]" where X and Y are subsets of Gaussian
jointly random variables, with parameters:

_ px| [Zxx Xxy
Py ~ N (1, 2) = N <[w] , [ZYX ZWD . 2.2)

Marginal Distribution
A multivariate probability distribution can be marginalized to extract partial informa-

tion. Every marginal distribution of a Gaussian distribution is itself gaussian given by:

X~ N (px, Zxx)
Y ~ N (}ly,Zyy) .

More specifically, given the above normal probability distribution, the marginal distri-
bution of X and Y is defined as follows:

(2.3)

px(x) = /y pxy (%) dy = /y pxy(x | ¥)py () dy,

(2.4)
py(y) = /pr'X (v, x) dx:/xpyp((y | x)px(x) dx.

Conditional Distribution

We use conditional distribution to determine the probability of a variable depending
on another variable. Every conditional distribution of a Gaussian distribution is again
Gaussian, and it can be defined as follows:

Py ~ N (Hx + Zxy Zyy (Y — py) , Zxx — Zxy Zoy ZYX) ,

1 2.5)
Pyx ~ N (VY + Zxx Zyx (X = 1x) , Zyx — Zyx Zyy ZYY) .

The four equations in 2.4 and 2.5 are driven from [16].

2 Related Work

2.3.2 Definition of Gaussian Processes

A Gaussian Process is a set of random variables, of which any finite subset is jointly
Gaussian distributed [21]. Like Gaussian distributions, a Gaussian process is fully
specified by mean and covariance function.

Let f(x) be a GP with m(x) the mean function and k(x, x') covariance function, also
called kernel function. Then we express a GP as follows:

f(x) ~GP (m(x),k(x, x’)) (2.6)
where,
m(x) = E[(f(x))] and
k(x,x') = E[(f(x) —m(x))(f(x) = m(x))].
Gaussian processes can represent distributions over functions. So, in this case, each

random variable in a Gaussian process could stand for a function value at a different
input value.

(2.7)

Consider a linear regression model f(x) = ¢(x)Tw with prior w ~ GP(0,%,) . We can
calculate its mean and covariance with equation 2.7 as follows:

E[f(x)] = ¢(x)"E[w] and
E[f(x)f(x)] = ¢(x) Elww|p(x) = ¢(x) Zpp(x).

To sum up, the function output for two inputs, f(x) and f(x'), are jointly Gaussian
distributed with mean 0 and covariance (])(x)Tqub(x/). Function values for all inputs
are related in this way.

(2.8)

As a well-known example of the kernel function, we represent the square exponential
(SE), which is given by

cov(f(x), f(x)) = k(x,x) = exp (—;\ x—x |2> . (2.9)

SE covariance is smaller when input values are farther apart and more significant when
input values are closer together.

2.3.3 Gaussian Processes for Regression

The Gaussian process regression is a supervised learning method in which we seek
a function f that relates the input to the output. For example, let us assume that f is

2 Related Work

distributed with a zero-mean Gaussian process prior and SE covariance, a training data
set X for which we know the output values, and a testing data set X* for which the
output values are unknown. The aim is to predict the test outputs f* for the testing
dataset X* by combining the prior and the knowledge provided by the training dataset
about the function. We denote the joint distribution of f and f* as:

m ~N (0’ [Ifg)% If(())(”)(())}) : (2.10)

This equation represents a prior since it does not reflect information learned from the
training data, where:

e K(X,X): covariance matrix over the entries of X.

e K(X*,X) and K(X, X*): covariance matrix between entries of X and X*.

e K(X*,X*): covariance matrix over the entries of X*.

Marginalizing out the points where the targets are given, we compute the conditional
posterior distribution as described in 2.5, we get:

fOIX X f~ N(K(X X)K(X,X) 7,
K(X*, X*) — K(X*, X)K(X, X)'K(X, X*)). (2.11)

The posterior distribution in equation 2.11 estimates function values for the unseen data
points. The mean K(X*, X)K(X, X)~!f corresponds, in fact, to the most likely value.
Besides, the standard deviation values found in the covariance matrix can quantify how
confident we are in the predictions. A lower standard deviation indicates a narrower
overall distribution, and we may be more confident about our predictions.

In more realistic situations, the data set includes noisy observations. Let y = f(x) + ¢
be the noisy observations with variance ¢2, where ¢ is the added Gaussian noise.
Consequently, we can rewrite the join distribution of functions values for training and
testing points as follows:

[/y} ~N <O’ [K(i()@;;f ! 15;??%]) : (2.12)

Likewise, we can derive a new distribution conditioned corresponding to equation 2.5
on the information provided in y to get the predictive equations for Gaussian process
regression as:

FIXy X5~ NK(X, X)[K(X,X) +0p1] 7y,
K(X*, X*) — K(X*, X)[K(X, X) + o2I] 'K(X, X*)). (2.13)

2 Related Work

2.3.4 Gaussian Process for Classification

A regression model predicts a single output given an input, while a Multi-output
regression predicts numerous outcomes to a given input. The target is binary in a
classification model, whereas it is real-valued in a regression model [26]. Section
2.3.3 explained GP regression, which has a real-valued output. Thereby, we need to
transform the classification task to a multi-output regression task as performed by
Adria Garriga-Alonso [6]. For a given training data set X and the corresponding labels
vector Y, the predicted labels for the unseen data set X*, corresponds to a row-wise
maximum of K(X*, X)K(X, X)~1Y [6].

Another option would be to use multi-class classification with Gaussian processes
directly. Nevertheless, the non-Gaussian likelihood has to be approximated using
techniques such as Laplace approximation, which is time-consuming [21].

2.4 Neural Networks as Gaussian Processes

There are numerous and reasonable kernel functions. However, we will focus on
the GP kernel induced by a Convolutional Neural Network (CNN). Adria Garriga-
Alonso showed the equivalence between CNN and GPs in the limit of infinitely many
convolutional kernels, and the proof can be studied in [6]. In this section, we explain
CNNs (2.4.1). Then we represent the mean and covariance function of the convolutional
kernel (2.4.2). Ultimately we present the ReLU activation (2.4.3).

2.4.1 Convolutional Neural Networks

CNN differs from other classical neural networks in that the input is a multichannel
image rather than a vector format [7]. Given an input image X for the CNN with
height H(®), width D), and channels C(®) (C(®) = 1 for gray-scale image and 3 for
RGB images). X is represented as a matrix of the size C(%) x (H® D). Each row
X1,X2,...,Xc) of the matrix corresponding to a channel of the image is flattened to
a one-dimensional vector. We will consider a convolutional neural network with L
hidden layers. The first layer transforms the input image linearly. Fori € 1,...,C OF

c©
al(X) :=b{"1+ Y Wix;. (2.14)
j=1

10

2 Related Work

(0)

Figure 2.4 shows a 2D convolutional U; ;" * x; that can be expressed as matrix multipli-

cation. U!]) is transformed to W() by takmg the 2 x 2 kernel filter U]) and sliding it
horizontally and vertically over the input image’s jth channel, and x; is flattened into a

vector. By applying the filter to the y’th convolutional patch of the input image’s j'th
(0) (0)

channel x;, we obtain j’th row of Wi, . The empty positions of W;, jj arezeros where
the filter is not applied. Of course, in the case of multiple channels, the convolutional
operation has to be applied to each channel, and then the result of matrix multiplication

has to be summed up Z]C:(()l) Wl(;)xj. In the end, a bias term bfl) is added [6].

11213
Input image’s jth channel: 4[5]6
718(9 Resulting
Filter U'Y- ":‘* B * convolution
bd ClD 1]
¥ 2 5
3 =
= [A[B] |C|D o . &
e[Iale] IclD = - >
= AlB| |C|D o . g
- AlBl [C[D] E =
/] =4
CIN
{0
W_‘_J 9]
Xj

Figure 2.4: 2D Convolutional, where the kernel Ul(.,(]).)

taken from [6].

is applied to an input image x;,

The layers that follow are applied to the created feature maps from the previous layer.
Thus, we define feature maps of the layers as:

al™V (x) == bV 1+2w’+” (al(X)). (2.15)

Each row of al(lﬂ) is the flattened j’'th channel of the image after the convolutional filter
was applied to ¢(A/(X)) with A/(X) of a shape C) x (HOD®) where, i € 1,...,CIHY),
and j € 1,..,C"). The output of CNN is the last feature map A'*1(X). In the case
of Cla551ﬁcat10n or regression, we have H'*! = D'*1 = 1. Consequently, the pseudo-

weights have one row, and the resulted activations Wl(] b

[6].

are a one-element vector

11

2 Related Work

2.4.2 Convolutional kernel

for the above defined convolutional neural network lets the weight and biases be
normally distributed and denoted as follows:

0 2 I
Ui,].,x,y ~N (0,0*W/C()) and

(2.16)
D N(0,02).
The CNN from now on will be expressed as:
H!D!
I+1 l 1) (1+1)
A () = +-Q%2Wﬁw L)),)
] v

where I and [+ 1 are the input, and output layers, i and j € 1,..., C*1) denote the input
and output channels, and v and v € 1, ..., CU+1) index the location within the feature
maps.

Mean function of the convolutional kernel

The mean function is equal to zero since the weights and the biases have zero mean,
and last but not least, the weights are independent of the results of the previous layer

c H'D!

E[AL(X)] = U“+ZZE Wi g(al (X)) =o. (2.18)
j=1v=1

Covariance function of the convolutional kernel

The covariance function between two different inputs, X and X can be computed as
follows:

C [Agﬂl)(X),Af};U(X')} -
ch) c) ghp) ghp
I+1 1+1 1 1 /
Y Y E[WWE [Ele@al 0@l)] 219)

Since the weights WfJ]rl and Wf?l are independent for j # j. Additionally, each row

u of Wﬁl has only zeros or independent values, as illustrated in figure 1 for v # v’
Hence, we can simplify 2.19 to:

C [Al (0, Al (x }—%+2 ZiH Wi E el 0)p(AL (X)].

12

2 Related Work

From here, the sum over v can be limited over the non-zeros values, for the reason that
for the p’th patch, the weights W(Y are zeros at the locations v, which do not belong
to the p’th patch. The variance of the first layer can be expressed as follows:

2 co

1 ! 1 1 / W ’

KPxX)=c [AZ(,”) (%), Al (X)} 7(7 Z Y XX, (2.21)
=1veuth patch

For any other layer, the variance can be described as follows:

K(”l)(X X) = C [Az(,l;erl)(X)’Az(,lerl)(Xl)] =cg+oz Y VIXX), (222
veuth patch

where

VIOOX) = E[p(Al) 00)¢(A])(X)] (2.23)

is the covariance of the activations.

2.4.3 ReLU activation

We need to compute equation 2.23 in a closed form with an activation function. For
instance, for ReLU activation, we obtain the closed form of equation 2.23 as:

Ky’ (X, X)K X X'
\/) (sin 0, + (7 — 01(,1)) os Gv(l)) : (2.24)

2.5 Image Segmentation

In this section, we explain image segmentation (2.5.1), followed by a brief description
of existing image segmentation techniques (2.5.2).

2.5.1 Introduction to Image Segmentation

We can group image segmentation tasks into semantic, instance, and panoptic segmen-
tation categories. Semantic segmentation assigns each image pixel to a label such as a
car, person, tree... It treats different objects of the same class as a single entity. Contrary
to instance segmentation treats the objects with the same class label as individual other
instances. Panoptic segmentation assigns two labels, a semantic label and an instance

13

2 Related Work

id, to each pixel. In this manner, it is simply a combination of semantic and instance
segmentation. Figure 2.5 shows an example of the three different above explained
segmentation techniques.

(a) image (b) semantic segmentation
m E
(c) instance segmentation (d) panoptic segmentation

Figure 2.5: Example of a semantic, instance and panoptic segmentation. Taken from
[12].

2.5.2 State-of-the-art of Image Segmentation

Before the coming of deep learning, we used classical methods such as modified SVM
[31] and k-clustering [11] to solve the image segmentation task. Regardless, deep
learning models achieved significant performance gains compared to existing methods.
So as next, we will review these deep learning methods.

Fully Convolutional Network (FCN)

FCN is one of the primary deep learning approaches proposed by Jonathan Long [15]
(Figure 2.6) for solving semantic segmentation challenges. To deal with the problem
of inputs of varying sizes, the author adapted CNN architectures such as Alex-Net
and VGGI16. By replacing all fully connected layers with fully convolutional layers.
As a result, the model outputs a spatial segmentation map of the input image instead
of a classification score. After going through convolutional and max-pooling layers,
the output is smaller than the input image size. Thus upsampling is applied to make

14

2 Related Work

the output have the same size as the input. However, it makes the output label map
rough. Since semantic information is obtained from deeper layers and spatial location
information from fine layers, fusing the output after up-sampling and the output of the
previous layer enhances the segmentation results. The model was tested on PASCAL
VOC, SIFT flow, and NYUDv2 data sets and showed a performance improvement
compared to convnets. Unfortunately, this model is not tested on light microscopy
images to the best of our knowledge.

forward /inference

Figure 2.6: A Fully Connected Network that learns pixel-wise predictions, taken
from [15].

Encoder-Decoder-Based Models

A well-known model is the U-Net, which is proposed by Olaf Ronneberger [22] built
upon FCN for segmenting biological microscopy images. It consists of two parts
contracting path (encoder) that encodes the input image to a feature representation
and an expansive path (decoder) that project the features learned by the encoder onto
the pixel space to get the final pixel-wise classification. Compared to FCN, U-net has
multiple up-sampling layers instead of one layer. Also, fusing the output of earlier
layers is done as concatenation rather than element-wise addition. Another popular
model in this category is called Seg-Net. It is proposed by Vijay Badrinarayanan [1]
(Figure 2.7). Thanh Tran et al. [28] used Seg-Net to segment white blood cells and
red blood cells from the background of peripheral blood smear images, showing 89%
global accuracy.

15

2 Related Work

Convolutional Encoder-Decoder Output

Pooling Indices

RGB Image B conv + Batch Normalisation + RelU Segmentation
I rocling [Upsampling Softmax

Figure 2.7: SegNet; The encoder applies convolutions and max pooling. The decoder
up-samples the encoder output using the max pooling indices. Finally the
softmax layer performs pixel-wise prediction. Taken from [1].

Gaussian Processes Based Models

As mentioned before, Gaussian Processes provide an uncertainty estimation for the
prediction. For this reason, some researchers use this property of GPs to achieve
state-of-the-art results on image segmentation tasks.

For example, Sebastian G Popescu et al. [20] developed a GP-based convolutional ar-
chitecture for segmentation of tumors in the brain using an MRI data set. Comparing
this model with a U-Net, they demonstrated it achieved comparable results in image
segmentation tasks.

Moreover, for few-shot segmentation (FSS), Joakim Johnander et al. [10] rather than
using Gaussian process as the final output, suggests using Gaussian process regression
(GPR) incorporated in an encoder-decoder architecture. First, training and testing
images and the corresponding masks are fed through an encoder. Their corresponding
features are then employed in Gaussian process regression to infer the distribution of
the testing mask given the training set and testing images. The mean and variance
of the GP predictive distribution are used as input for a CNN-based decoder. Thus,
uncertainty is considered to create the final predictions segmentation. The model is
tested on the PASCAL-5' and COCO-20" data sets, demonstrating that it outperforms
other baselines.

16

3 Light Microscopy Image Segmentation
using Gaussian Processes

In this chapter, we describe how we created the microscopy data set. Then we explain
the Gaussian process-based approach used for semantic segmentation. Additionally,
we introduce a summary of used evaluation metrics and implementation details. At
last, we show performance evaluation on MNIST and microscopy images data set.

3.1 Light Microscopy Data Set

In this section, we show how we built the data set consisting of small patches. Then we
illustrate the data pre-possessing steps we applied to the created data set to feed them
as an input to the Gaussian process classifier.

3.1.1 Building the patches data set

The Image resolution is [736 x 973] for computational reasons to avoid memory overload.
To further increase the number of training samples, we will extract multiple overlapping
patches of a single image, as illustrated in figure 3.2. Each patch has a size of [256 x 256]
because choosing a more petite size patch will allow the network to see only a little
context. We will extract the same patches from the corresponding segmentation map
image. Extracting a large number of patches is not enough. As well as the diversity
of patches, it is necessary to ensure that we present all cases in a balanced proportion.
Wherefore, we cut the image into patches with a step size of 128. We conducted some
experiments on patches with a step size of 64.

First, we generate 45 synthetic images as outlined in section 2.2. Secondly, we applied
zero padding on them to ensure that the height and width are indivisible with 256
and thus that the whole image is cropped. Afterward, we split them manually into
testing, validation, and testing set, where we make sure that the images look different
among the three sets. Subsequently, we create patches for each subset. Finally, we

17

3 Light Microscopy Image Segmentation using Gaussian Processes

cleaned them. By cleaning, we mean to remove the patches where only the background
is included. Figure 3.1 demonstrate the steps we go through to create the final data set.

The algorithm for creating the patches using the framework [18] works as follows: it
starts with the first patch on the top left corner of the image. It is then transferred to
128 or 64 pixels to the right, and it is continuously done until it reaches the right side of
the image. This procedure is also repeated vertically until the patches reach the bottom
of the image.

Split images into
Apply zero-padding training, validation
and testing set

\—[Create patches H Clean created
patches

Figure 3.1: Illustration of the steps for creating the patches data set.

Generate synthetic
microscopy images

Figure 3.2: Split the image into overlapping patches. The blue, red, and green blocks
show an example of three overlapping patches on the left—some patch
samples on the right.

18

3 Light Microscopy Image Segmentation using Gaussian Processes

3.1.2 Data Pre-processing

After extracting the patches and building the training, validation, and testing subsets,
we need to perform a few pre-processing steps to the segmentation maps and the
images for the Gaussian Process Classifier (GPC) model. All the step details are
depicted in figure 3.3. Finally, we fed the final output of the pre-processing steps to the
model.

Segmenation maps pre-processing

Images pre-processing

Load segmentation maps as Grayscale Load image as RGB
shape [HxWxC] where C=1 shape [HxWxC]where C=3
type numpy array type nampy array
pixel value {0,206,195,177} pixel value {0-255}
Y b
Transform to tensor Transform to tensor
shape [CxHxW] shape [CxHxW]
type Torch.tensor type Torch.tensor
pixel value {0.206.195,177} pixel value {0-255}
Create mask
shape [CxHxXW] Ec = channel
type Torch.tensor iH = height
pixel value 01.2.3) -

Figure 3.3: Flow diagram of pre-processing steps: the right side shows the transforma-
tions for the rendered image, the left side shows the transformations for the
segmentation maps.

3.2 Our Approach

Given a training set D that contains N samples and their targets representing the
corresponding segmentation maps, S. The objective is to predict the segmentation
masks of an unseen set of images D* that contains M samples. In our approach, as
illustrated in figure 3.4, we first pre-processed the data as described in subsection
3.1.2 before feeding them to the Gaussian Process Classifier (GPC). The GPC needs

19

3 Light Microscopy Image Segmentation using Gaussian Processes

three inputs as a tensor. We denoted D, D*, and S after the pre-processing step by
X € [N,CHW], X* € [M,CH,W], and Y € [N,C H, W], respectively. We get the
predicted segmentation masks as a tensor denoted by Y* € [M, C,H, W] for the unseen
images as an output.

We build a GPC, where the classification works as described in subsection 2.3.4. In-
formally explained, we will have 7 inferred input-output functions f,,,..., f,,, where
pP1, - ., pn refers to the pixels in an image. Each function is later used to map the i'th
pixel of an unseen image to a label, wherei € 1,...,n.

Segmentation & Predicted

training images Segmentation masks
.] X

: \ —»Pre-processing——Y —» Process ——» '\ m

‘k '1 b ———— Classifier

X b o, X*

Unseen images X : training images
X*: unseen images |
'] Y : training labels |

-‘E : iY*: predicted labels ;

Figure 3.4: Overview of our approach: the training images, corresponding segmentation
maps, and the unseen images set are first pre-processed and then fed into
the Gaussian Process Classifier. Finally, we get the segmentation masks Y*
as output.

3.3 Evaluation metrics

When evaluating the performance of semantic segmentation models, we compare
the ground truth with the predicted segmentation masks. Semantic segmentation
is performed through pixel-wise classification. Hence, they are based on pixel-wise
similarities. In this section, we will explain the following evaluation metrics:

— Recall — Mean Pixel Accuracy
— Precision — Intersection over union
— Fl-score — Mean Intersection over union

Pixel Accuracy

20

3 Light Microscopy Image Segmentation using Gaussian Processes

Recall and precision metrics are computed for each class as follows:

TP
TP
iSioNn = ——— 2
Precision TP EP (3.2)

Where TP are the true positives, FP the false positives and FN the false negatives. The
recall is the true positive rate, and it is frequently used in image-based research [25]
while precision represents the positive prediction value.

We define the following notations for the further presented metrics: X is the ground
truth mask for an image, and Y is the predicted segmentation mask. n;; refers to the
number of pixels that corresponds to class i, classified as class j and, n;; refers to the
number of pixels that belong to class i and are predicted to belong to class i. At last, ¢
refers to the total number of classes.

F1-score considers both the recall and precision. In particular, it is a harmonic mean of

both metrics TP
Fl-score = >TP + FP + EN (3.3)

Pixel Accuracy is calculated by dividing the pixels that are correctly predicted by the
total number of pixels:

L Mii
PA = —ZF— (3.4)
Y X1 Mij
Mean Pixel Accuracy is calculated per-class basis and then averaged over the classes:
1 njj
MPA = — - (3.5)
¢ le Y1 1ij

Intersection over Union is computed by dividing the number of common pixels
between the ground truth and the predicted mask by the total number of pixels:
| XNY|
IoU (X,Y) = 3.6
) = X Y= %A Y] 0
Where IoU € [0,1]. Thus if IoU is equal to zero, when there is no similar pixel labeling
between ground truth and predicted mask and it is equal to one, otherwise.

21

3 Light Microscopy Image Segmentation using Gaussian Processes

Mean Intersection over Union is the IoU over all classes in all images:

1 n;
I 11 7
MIolU = - E (3.7)

= Y1 i+ X nji — g

Equations 3.4, 3.5, and 3.7 are taken from [4]. Equations 3.1, 3.2, 3.3 and 3.6 are taken
from [1].

3.4 Implementation

For the computing of the CNN-kernel we used the implementation of Adria Garriga-
Alonso [6]. For data pre-processing we used Numpy [8], pyTorch library [17], and h5py
[3]. We used the linear solver from SciPy library [29]. To obtain the patches from large
images we used the Patchify library [18]. In addition, to evaluate the model we used
the scikit-learn [19]. The ground truth masks predicted segmentation maps are created
with the help of matplotlib [27].

The runtime is presented in table 3.2, to compute the kernel matrix between more than
five images of size [256 x 256] using the local computer, with properties shown in table
3.1, we get an out-of-memory error. Hence, we computed the kernel matrix between
data samples on the GPU available on atsccs68 compute node in Garching.

Table 3.1: Technical properties of the local machine, which we used to compute the two
operations of solving the linear system and make the predictions, and the
atsccs68 node, which we used to compute the kernel matrix.

local machine atsccs68-machine
CPU i7-8550U @2.00 GHz E5-2670 @2.60GHz
GPU no GPU is available GTX 770
OS Windows 10 Ubuntu 20.04.2 LTS
Kernel - Linux 5.4.0-81-generic x86_64
RAM 8.00 GB 16 GB

22

3 Light Microscopy Image Segmentation using Gaussian Processes

Table 3.2: Computation time in seconds for each operation and indication, whether the
operation is computed on The GPU or the CPU of the local machine.

GPU | CPU | Computation time
Kernel matrix X 31.04 s
Solve linear system X 152s
Make prediction (matrix multiplication) X 10.01 s

3.5 Performance Evaluation

In this section, we show the evaluation and testing set results and provide the used
CNN-kernel architecture. First, we present the performance on the MNIST data set and
then on the microscopy images data set. We optimized the hyperparameter: number of
layers, kernel size, bias (rg, weight 02, the padding of the convolution and the activation
function. We compute every time the evaluation metrics on the validation data set.

Once we pick the best hyperparameter we evaluate the model on the testing data set.

3.5.1 MINIST Results

The MNIST data set [14] is usually used for classification tasks. However, we performed
semantic segmentation. Instead of assigning a label to the whole image, we assigned a
label (0 for the background and 1 for the digit itself) to each image pixel individually.

The data set contains 28x28 pixels gray-scale images of handwritten digitals ranging
from 0 to 9, 60000 samples for training, and 10000 samples for testing. We used a
subset of the MNIST dataset, where data samples are selected randomly. The subsets
are balanced and disjoint.

Table 3.3 below shows the number of data samples in each training, validation, and
testing subsets. Table 3.4 shows the used hyperparameter of the ConvNet GP. After
training the GP classifier on the validation and testing set, we computed the evaluation
metrics. Results are shown in tables 3.5 and 3.6. Finally, some of the predicted masks
for images from the testing set are illustrated in figure 3.5. Our model performed
extremely well, with nearly 97% for mean accuracy and 95.5% for mean IoU on the
validation and testing set. Thus we showed the potential of GP-CNN kernels for the
pixel-wise prediction task.

23

3 Light Microscopy Image Segmentation using Gaussian Processes

Table 3.3: MNIST data split.
Training Validation Testing
Samples 500 100 100

Table 3.4: Hyperparameter of ConvNet GP.

Hyperparameter Value
Number of layers 7

Kernel size 7

o2 2.79
o7 7.86
Padding SAME

Activation function | RELU

Table 3.5: Performance on the MNIST data set on the validation set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The average
IoU and accuracy are calculated. Results are in percent (%).

Precision Recall Fl-score IoU Mean Accuracy Mean IoU
Background 97.8 98.6 98.2 96.5
Digit 93.89 90.7 922 85.6

97.1 94.5

Table 3.6: Performance on the MNIST data set on the Testing set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The average
IoU and accuracy are calculated. Results are in percent (%).

Precision Recall Fl-score IoU Mean Accuracy Mean IoU
Background 97.8 98.8 98.3 96.6
Digit 94.5 91.0 92.6 86.3

97.3 95.5

24

3 Light Microscopy Image Segmentation using Gaussian Processes

-« DN EABEANEAA
- [z] | N] B B Al E
w EHEBEIEBANHAD

Figure 3.5: Prediction of Gaussian process classifier model, compared to the ground-
truth mask and the corresponding gray-scale image from the testing set.

3.5.2 Microscopy Data Set Results

This subsection contains the performance results on the validation and the testing
data sets. Table 3.7 demonstrates the hyperparameter of the ConvNet-GP. The neural
network consists of two convolutional layers, each uses filter with kernel size 3x3. Each
convolutional layer is followed by ReLU activation. The final layer uses a 256 x 256 filter
with no padding, which equivalent to a dense layer.

Table 3.7: Hyperparameter of ConvNet GP.

Hyperparameter Value
Number of layers | 2
Kernel size 3

o2 2.79
o7 7.86
Padding SAME
Activation function | RELU

We will use three different data sets in order first to find out which step size is better
than the other, secondly to see if more data samples in the training subset affect the
model performance:

e MI_128_S: contains 50 samples in each subset training, validation and testing.

e MI_128_E: contains 425, 76, and 58 samples on each training, validation, and
testing subset. In addition, 128 refers to the step size when cropping the image
into patches.

25

3 Light Microscopy Image Segmentation using Gaussian Processes

e MI_64_E: contains 599, 74, and 74 samples on each training, validation, and
testing subset. In addition, 64 refers to the step size when cropping the image
into patches.

Additionally, we will train two models:

e 4-classes model: we have four objects to predict the background, hyphae, arbus-
cules, and vesicles.

e 2-classes model: The model is trained to predict two objects background and
arbuscules+vesicles. Therefore, we omitted hyphae by merging them with the
background, and we consider arbuscules and vesicles as the same class label.

Likening table 3.8 with table 3.10, we observe that adding more training samples
increases the overall model performance by 11.6% for the mean IoU and by 15.95% for
the mean F1-score on the validation set. Further, when comparing table 3.10 with table
3.14 and table 3.11 with table 3.15. On the one hand, we conclude that the 128 step
size patches data set slightly outperforms the 64 step size patches data set using the
4-classes model on validation and testing sets. For the 128 step size, the mean IoU and
the mean F1-score increased by 6.3% on the validation set. The mean IoU and the mean
Fl-score on the testing set increased by 8.4% and 12.35%, respectively. On the other
hand, when using the 2-classes model, we do not notice any remarkable improvement;
the results look quite the same for 128 step size and 64 step size.

Moreover, according to Tables 3.11 and 3.13, we can compare the performance of the
validation and testing sets. Using the 4-classes model, the mean IoU and F1-score
narrowly decrease by 6.5% and 7.5%, respectively. Using the 2-classes model, the
IoU and F1-score for the arbusclues and vesicles which belong to the same class label
dropped by 5,1%. The reason is obviously that the difference between testing set
images and training set images is greater than the difference between validation set
images and training set.

To sum up, table 3.9 shows that the predictions of the training set are made perfectly,
with 100% mean IoU and mean F1-score. Besides, the two models produced unsatisfying
predictions on the three different data sets: for the 4-classes model, the mean IoU never
exceeded 21.3% for the validation set and 15% for the testing set. Using the 2-classes
model, predicting arbuscules and vesicles slightly improved—however, the F1-score
only ranged between 26% and 40%. Likewise, based on the Fl-score value, arbuscules
are marginally predicted correctly compared to hyphae and vesicles. The lower contrast
of hyphae regarding arbuscules and the resemblance between arbuscules and vesicles
might be the causes for this behavior.

26

3 Light Microscopy Image Segmentation using Gaussian Processes

MI _128_S

Table 3.8: 4-classes gaussian process classifier on the validation set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The average
IoU and F1-score are calculated without Background. Results are in percent
(%).

Precision Recall Fl-score IoU | Mean IoU | Mean F1-score
Background 83.2 93.1 87.8 78.8

Hyphae 235 15.5 17.59 10.8
Arbuscules 21.3 10.0 12.5 7.8 97 15.51
Vesicles 11.0 11.0 9.5 9.5
MI_128 E

Table 3.9: 4-classes gaussian process classifier on the training set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The average
IoU and F1-score are calculated without Background. Results are in percent

(%).

Precision Recall Fl-score IoU | Mean IoU | Mean Fl-score
Background 100.0 100.0 100.0 100.0

Hyphae 1000 100.0 1000 100.0
Arbuscules 100.0 100.0 100.0 100.0 100.0 100.0
Vesicles 100.0 100.0 100.0 100.0

Table 3.10: 4-classes gaussian process classifier on the validation set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The average
IoU and F1-score are calculated without Background. Results are in percent
(%).

Precision Recall Fl-score IoU | Mean IoU | Mean Fl-score
Background 86.1 95.5 90.5 83.0

Hyphae 389 26.4 30.4 20.0
Arbuscules 51.6 27.8 33.7 23.0 213 3146
Vesicles 45.8 20.7 25.1 18.3

27

3 Light Microscopy Image Segmentation using Gaussian Processes

Table 3.11: 4-classes gaussian process classifier on the testing set: precision, recall,
F1-score and intersection over mean is calculated for each label. The average

IoU and Fl-score are calculated without Background. Results are in percent
(%).

Precision Recall Fl-score IoU | Mean IoU | Mean Fl-score
Background 85.7 95.19 90.1 82.4

Hyphae 31.0 19.6 234 14.0
Arbuscules 40.3 20.3 26.0 16.2 148 23.92
Vesicles 30.8 11.3 14.0 9.3

Table 3.12: 2-classes gaussian process classifier on the validation set: precision, recall,
F1-score and intersection over mean is calculated for each label. Results are
in percent (%).

Precision Recall Fl-score IoU
Background 93.5 98.5 9589 922
Arbuscules + Vesicles 63.1 29.4 37.5 25.6

Table 3.13: 2-classes gaussian process classifier on the testing set: precision, recall,
F1-score and intersection over mean is calculated for each label. Results are
in percent (%).

Precision Recall Fl-score IoU
Background 93.1 98.4 95.7 91.8
Arbuscules + Vesicles 61.6 23.3 32.3 20.5

MI_64_E

28

3 Light Microscopy Image Segmentation using Gaussian Processes

Table 3.14: 4-classes gaussian process classifier on the validation set: precision, recall,
F1-score and intersection over mean is calculated for each label. The average
IoU and Fl-score are calculated without Background. Results are in percent
(%).

Precision Recall Fl-score IoU | Mean IoU | Mean Fl-score
Background 84.1 94.5 89.0 80.3

Hyphae 27.7 16.6 20.3 11.5
Arbuscules 48.9 27.8 34.9 219 150 2501
Vesicles 489 10.5 159 9.5

Table 3.15: 4-classes gaussian process classifier on the testing set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The average
IoU and F1-score are calculated without Background. Results are in percent

(%).

Precision Recall Fl-score IoU | Mean IoU | Mean Fl-score
Background 79.8 87.2 83.2 71.7

Hyphae 13.7 8.1 10.0 54
Arbuscules 19.2 12.0 14.39 82 6.4 11.57
Vesicles 9.7 8.4 8.1 4.5

Table 3.16: 2-classes gaussian process classifier on the validation set: precision, recall,
Fl-score and intersection over mean is calculated for each label. Results are
in percent (%).

Precision Recall Fl-score IoU
Background 92.8 98.2 9539 922
Arbuscules + Vesicles 63.8 29.9 40.3 25.6

Table 3.17: 2-classes gaussian process classifier on the testing set: precision, recall,
F1-score and intersection over mean is calculated for each label. Results are
in percent (%).

Precision Recall Fl-score IoU
Background 922 91.6 91.9 85.2
Arbuscules + Vesicles 27.0 26.2 26.1 154

29

3 Light Microscopy Image Segmentation using Gaussian Processes

3.5.3 Visual results

In this section we illustrate a few predictions of the Gaussian process classifier compared
with the ground-truth segmentation map for the training, validation, and testing set.
In the below figures, on the right, we show the real image, on the middle, the ground-
truth, and on the left, from the Gaussian process classifier predicted segmentation map.
Figures 3.6, 3.7, 3.8, 3.9, 3.12, and 3.13 hyphae are shown in red, arbuscules in yellow,
and vesicles in blue. Figures 3.10, 3.11, 3.14, and 3.15 vesicles and arbuscules are shown
in blue.

Figure 3.6 demonstrates four prediction segmentation maps from the validation set
using the small training set of only 50 data samples. The GP makes a satisfying
prediction on images, which are pretty similar to some samples in the training set. We
can see an example of it in the first image of the figure. In addition, sometimes, the GP
invented stuff, as shown in the fourth image of the figure.

Figure 3.7 shows four prediction segmentation maps from the extended training set
[MI_128_E]. As illustrated, the predicted segmentation mask is identical to the provided
ground truth of the real images. While figures 3.8 and 3.9 demonstrate four prediction
segmentation maps from the validation and testing set, respectively. The predictions
are very noisy, where the model scarcely recognizes vesicles. Figures 3.10 and 3.11
show four prediction segmentation maps of the 2-classes model from the validation
and testing set. Where we again notice that the prediction are imprecise.

For the data set, where the large image being cropped into patches with step size of
64, figure 3.12 shows that the predicted segmentation maps of the validation set are
again noisy and inexact. Vesicles are most of the time predicted as background and
arbuscules are sometimes predicted as vesicles. According to figure 3.13, the model
is coming up with other predictions that do not match the ground truth. Whereas
Figure 3.14 demonstrates the predicted segmentation maps of four samples from the
validation, and Figure 3.15 from the testing set, using the 2-classes model.

30

3 Light Microscopy Image Segmentation using Gaussian Processes

MI _128_S

Original Groundtruth Gaussian Process

Figure 3.6: Predictions of the 4-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the validation
set.

31

3 Light Microscopy Image Segmentation using Gaussian Processes

MI_128_E
Original Groundtruth Gaussian Process

.

Figure 3.7: Predictions of the 4-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the training set.

32

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process

/%

Figure 3.8: Predictions of the 4-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the validation
set.

33

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process

Figure 3.9: Predictions of the 4-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the testing set.

34

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process

] ' - ‘ 4

Figure 3.10: Predictions of the 2-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the validation
set.

35

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process
L "

: ", e 47 7

K /N .-_..4” *f w. -~ ﬂ?

- 9'|.l .

gu RS

d 7 A 4 ?

Figure 3.11: Predictions of the 2-classes based Gaussian process model, compared to
the ground-truth and the corresponding rendered image from the testing
set.

36

3 Light Microscopy Image Segmentation using Gaussian Processes

MI_64_E

Original Groundtruth Gaussian Process
T F T

o ik

G s

e

Figure 3.12: Predictions of the 4-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the validation
set.

37

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process

Figure 3.13: Predictions of the 4-classes based Gaussian process model, compared to
the ground-truth and the corresponding rendered image from the testing
set.

38

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process

v, . s

Figure 3.14: Predictions of the 2-classes based Gaussian process model, compared to the
ground-truth and the corresponding rendered image from the validation
set.

39

3 Light Microscopy Image Segmentation using Gaussian Processes

Original Groundtruth Gaussian Process

Figure 3.15: Predictions of the 2-classes based Gaussian process model, compared to
the ground-truth and the corresponding rendered image from the testing
set.

40

4 Conclusion

In this thesis, we presented how to apply Bayesian classification using Gaussian
processes to the challenging task of semantic segmentation of light microscopy images.
Before that, we explained Gaussian processes and their connection to convolutional
neural networks, how they could be used for regression and classification, and provided
a short overview of deep learning techniques for solving image segmentation tasks.

We presented the quantitative and visual results to evaluate our approach. We can
clearly see that, on the one hand, the Gaussian process classifier did well on data
samples that are very similar to training samples. However, the predictions of unseen
data samples are scattered on the other hand. In fact, the GPC has problems with
granularity. As explained in section 2.5.2, the encoder-decoder-based U-Net model
achieved outstanding results for semantic segmentation of microscopy images. Multiple
upsampling layers and a skip connection technique were deployed to combine semantic
and spatial information to get smoother segmentation results. That can explain our
approach’s behavior that does not have an encoder part. Another cause of this behavior
could be that we did not find the right choice of hyperparameter value.

In our work, we did not take advantage of Gaussian processes uncertainty estimation.
Therefore, we can extend the approach for future work by incorporating it in an
encoder-decoder architecture as done by Joakim Johnander et al [10]. Furthermore, we
can automate hyperparameter optimization to improve the model’s performance.

41

List of Figures

21
2.2

2.3

24

2.5

2.6

2.7

3.1
3.2

3.3

34

3.5

AMF structure, taken from [30]..
Annotated colonized root section. Hyphae are annotated with yellow
lines, arbusclues with red circles, and vesicles with green circles, taken

Render image on the left, segmentation map on the right. Vesicles (blue),
arbuscules (yellow) and hyphae (red).
2D Convolutional, where the kernel UE’?) is applied to an input image x;,
takenfrom [6].

Example of a semantic, instance and panoptic segmentation. Taken from

A Fully Connected Network that learns pixel-wise predictions, taken
from[15]. e
SegNet; The encoder applies convolutions and max pooling. The decoder
up-samples the encoder output using the max pooling indices. Finally
the softmax layer performs pixel-wise prediction. Taken from [1].

Illustration of the steps for creating the patches dataset.
Split the image into overlapping patches. The blue, red, and green blocks
show an example of three overlapping patches on the left—some patch
sampleson theright.
Flow diagram of pre-processing steps: the right side shows the transfor-
mations for the rendered image, the left side shows the transformations
for the segmentation maps.
Overview of our approach: the training images, corresponding segmen-
tation maps, and the unseen images set are first pre-processed and then
fed into the Gaussian Process Classifier. Finally, we get the segmentation
masks Y*asoutput.o Lo
Prediction of Gaussian process classifier model, compared to the ground-
truth mask and the corresponding gray-scale image from the testing
set. . .o

16

18

42

List of Figures

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

3.14

3.15

Predictions of the 4-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
validationset. o o
Predictions of the 4-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
trainingset. L
Predictions of the 4-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
validationset. L Lo o
Predictions of the 4-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
testingset.
Predictions of the 2-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
validationset. Lo L
Predictions of the 2-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
testingset.
Predictions of the 4-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
validationset. o
Predictions of the 4-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
testingset.
Predictions of the 2-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
validationset. L Lo Lo
Predictions of the 2-classes based Gaussian process model, compared
to the ground-truth and the corresponding rendered image from the
testingset.

34

36

38

40

43

List
3.1
3.2
3.3

34
3.5

3.6
3.7
3.8
3.9

3.10

3.11

of Tables

Technical properties of the local machine, which we used to compute the
two operations of solving the linear system and make the predictions,
and the atsccs68 node, which we used to compute the kernel matrix. . .
Computation time in seconds for each operation and indication, whether

the operation is computed on The GPU or the CPU of the local machine.

MNIST datasplit.
Hyperparameter of ConvNet GP.
Performance on the MNIST data set on the validation set: precision,
recall, F1-score and intersection over mean is calculated for each label.

The average IoU and accuracy are calculated. Results are in percent (%).

Performance on the MNIST data set on the Testing set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The
average IoU and accuracy are calculated. Results are in percent (%). . .

4-classes gaussian process classifier on the validation set: precision,
recall, F1-score and intersection over mean is calculated for each label.
The average IoU and F1-score are calculated without Background. Results
areinpercent (%).. L
4-classes gaussian process classifier on the training set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The
average IoU and Fl-score are calculated without Background. Results
areinpercent (%).. L
4-classes gaussian process classifier on the validation set: precision,
recall, F1-score and intersection over mean is calculated for each label.
The average IoU and F1-score are calculated without Background. Results
areinpercent (%).. L
4-classes gaussian process classifier on the testing set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The
average IoU and F1-score are calculated without Background. Results
arein percent (%).. L

22

23
24
24

24

24

25

27

27

27

44

List of Tables

3.12

3.13

3.14

3.15

3.16

3.17

2-classes gaussian process classifier on the validation set: precision,
recall, F1-score and intersection over mean is calculated for each label.
Results are in percent (%). L oL
2-classes gaussian process classifier on the testing set: precision, recall,
F1-score and intersection over mean is calculated for each label. Results
areinpercent (%)..
4-classes gaussian process classifier on the validation set: precision,
recall, F1-score and intersection over mean is calculated for each label.
The average IoU and Fl-score are calculated without Background. Results
arein percent (%).. L
4-classes gaussian process classifier on the testing set: precision, recall,
Fl-score and intersection over mean is calculated for each label. The
average IoU and Fl-score are calculated without Background. Results
areinpercent (%).. L L
2-classes gaussian process classifier on the validation set: precision,
recall, F1-score and intersection over mean is calculated for each label.
Results are in percent (%). L o L
2-classes gaussian process classifier on the testing set: precision, recall,
F1-score and intersection over mean is calculated for each label. Results
areinpercent (%).. L

45

Bibliography

(1]

[10]

[11]

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation.” In: IEEE trans-
actions on pattern analysis and machine intelligence 39.12 (2017), pp. 2481-2495.

Juan C Caicedo et al. “Evaluation of deep learning strategies for nucleus seg-
mentation in fluorescence images.” In: Cytometry Part A 95.9 (2019), pp. 952—
965.

Andrew Collette et al. “H5Py/H5Py: 2.4. 0.” In: (2017).

Soumyabrata Dev et al. “Localizing adverts in outdoor scenes.” In: 2019 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW). 1IEEE. 2019,
pp. 591-5%4.

Chuong B Do. “The multivariate Gaussian distribution.” In: Section Notes, Lecture
on Machine Learning, CS 229 (2008).

Adria Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. “Deep
convolutional networks as shallow gaussian processes.” In: arXiv preprint arXiv:1808.
05587 (2018).

Anirudha Ghosh et al. “Fundamental concepts of convolutional neural net-
work.” In: Recent Trends and Advances in Artificial Intelligence and Internet of Things.
Springer, 2020, pp. 519-567.

Charles R Harris et al. “Array programming with NumPy.” In: Nature 585.7825
(2020), pp. 357-362.

Achim Hekler et al. “Deep learning outperformed 11 pathologists in the classifi-
cation of histopathological melanoma images.” In: European Journal of Cancer 118
(2019), pp. 91-96.

Joakim Johnander et al. “Dense Gaussian Processes for Few-Shot Segmentation.”
In: arXiv preprint arXiv:2110.03674 (2021).

Li-Hong Juang and Ming-Ni Wu. “MRI brain lesion image detection based on
color-converted K-means clustering segmentation.” In: Measurement 43.7 (2010),
pp- 941-949.

46

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

Alexander Kirillov et al. “Panoptic segmentation.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 9404-9413.

Nikolaus Korfhage et al. “Detection and segmentation of morphologically com-
plex eukaryotic cells in fluorescence microscopy images via feature pyramid
fusion.” In: PLOS Computational Biology 16.9 (2020), e1008179.

Yann LeCun, Corinna Cortes, and Chris Burges. MNIST handwritten digit database.
2010.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional net-
works for semantic segmentation.” In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 3431-3440.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learn-
ing library.” In: Advances in neural information processing systems 32 (2019).

patchify python library. https://pypi.org/project/patchify/. Accessed: 2022-
04-30.

Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python.” In: the Journal
of machine Learning research 12 (2011), pp. 2825-2830.

Sebastian G Popescu et al. “Distributional gaussian process layers for outlier
detection in image segmentation.” In: International Conference on Information Pro-
cessing in Medical Imaging. Springer. 2021, pp. 415-427.

Carl Edward Rasmussen. “Gaussian processes in machine learning.” In: Summer
school on machine learning. Springer. 2003, pp. 63-71.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation.” In: International Conference on
Medical image computing and computer-assisted intervention. Springer. 2015, pp. 234—
241.

Torgyn Shaikhina and Natalia A Khovanova. “Handling limited datasets with
neural networks in medical applications: A small-data approach.” In: Artificial
intelligence in medicine 75 (2017), pp. 51-63.

Sally E Smith and David] Read. Mycorrhizal symbiosis. Academic press, 2010.

Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. “Beyond accuracy,
F-score and ROC: a family of discriminant measures for performance evaluation.”
In: Australasian joint conference on artificial intelligence. Springer. 2006, pp. 1015-
1021.

47

https://pypi.org/project/patchify/

Bibliography

[26]

[27]
[28]

[29]

[30]

[31]

Eleftherios Spyromitros-Xioufis et al. “Multi-label classification methods for multi-
target regression.” In: arXiv preprint arXiv:1211.6581 (2012), pp. 1159-1168.

Sandro Tosi. Matplotlib for Python developers. Packt Publishing Ltd, 2009.

Thanh Tran et al. “Blood cell count using deep learning semantic segmentation.”
In: (2019).

Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing
in Python.” In: Nature methods 17.3 (2020), pp. 261-272.

Jan Watter. “Light Microscopy Image Analysis using Neural Networks.” In:
(2021).

Teresa Wu et al. “A prior feature SVM-MRF based method for mouse brain
segmentation.” In: Neuroimage 59.3 (2012), pp. 2298-2306.

48

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Arbuscular Mycorrhiza Fungi
	3D Model of fungus-colonized root section
	Gaussian Processes
	Multivariate Gaussian distribution
	Definition of Gaussian Processes
	Gaussian Processes for Regression
	Gaussian Process for Classification

	Neural Networks as Gaussian Processes
	Convolutional Neural Networks
	Convolutional kernel
	ReLU activation

	Image Segmentation
	Introduction to Image Segmentation
	State-of-the-art of Image Segmentation

	Light Microscopy Image Segmentation using Gaussian Processes
	Light Microscopy Data Set
	Building the patches data set
	Data Pre-processing

	Our Approach
	Evaluation metrics
	Implementation
	Performance Evaluation
	MNIST Results
	Microscopy Data Set Results
	Visual results

	Conclusion
	List of Figures
	List of Tables
	Bibliography

