TuTi

Technische Universitat Munchen

Department of Mathematics

Master’s Thesis in Mathematics in Data Science

Properties of Linear Operators
Related to Gaussian Processes

Fan Xu

Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: Dr. Felix Dietrich
Submission Date: 01.05.2022

I confirm that this master’s thesis in Mathematics in Data Science is my own work
and I have documented all sources and materials used.

Munich, 01.05.2022

ii

Acknowledgements

I would like to thank my supervisor Prof. Dr. Hans-Joachim Bungartz for his kind
willingness to supervise me and my advisor Dr. Felix Dietrich for his constructive
advice. The most sincere gratitude gives to my parents for their long-time encour-
agement and solid financial support even though their small business was and is
suffering a lot due to Covid-19 pandemic.

iii

Abstract

It is interesting that neural networks can be turned into Gaussian processes in the
limit of infinite neurons in hidden layers, from which we convert neural networks
into familiar probabilistic models that are already well studied. Gaussian processes
are defined by kernel functions, which are actually much related to linear operators.
By the virtue of rich and sophisticated theories that have been well developed for
linear operators, we can study neural networks through linear operators, which
brings the theoretical richness of linear operators to neural networks. Through the
study of spectral properties of linear operators that relate to Gaussian processes,
the evolving geometric structure between original data points and the outputs of
networks is further understood.

In this thesis, we first illustrate background knowledge pertaining to linear op-
erators, kernel functions, nonlinear dimensionality reduction methods, Gaussian
Processes for regression and classification, and the equivalence of neural networks
with Gaussian processes. After that, we experimentally explore the influence of
altering the convolutional network depths and differing the number of input im-
ages on eigenanalysis of kernel matrices induced by convolutional neural networks
as Gaussian processes (CNN-GPs) and residual convolutional neural networks as
Gaussian processes (ResCNN-GPs). We observe that eigenvectors are very similar
for networks with different depths while eigenvalues are greater for networks with
more layers on MNIST dataset and skip connection does not significantly affect
the geometrical structure of eigenvectors as well. We also investigate the classifi-
cation accuracy with respect to network depths of CNN-GPs and ResCNN-GPs,
showing that both CNN-GPs and ResCNN-GPs with 7 layers have the best accu-
racy. When analyzing classification accuracy of CNN-GPs we conclude that larger
training kernel and smaller testing kernel produce a higher accuracy.

iv

Contents
1 Introduction

2 Related Work
2.1 Linear Operators

2.1.1 Eigenfunctions and Eigenvalues of Linear Operators

2.1.2 Kernels of Linear Operators .
22 Kernels.
2.2.1 Kernel Functions

2.2.2 Eigenfunction Analysis of Kernels

2.3 Nonlinear Dimensionality Reduction
2.4 Gaussian Processes
2.4.1 Covariance Functions

2.4.2 Gaussian Processes for Regression
2.4.3 Gaussian Processes for Classification

2.5 Neural Networks

2.5.1 Neural Networks as Gaussian Processes

2.5.2 Kernels of Neural Networks .

3 Properties of Linear Operators Related to Gaussian Processes

3.1 Hilbert-Schmidt Integral Operator . .

3.1.1 The Integral Operator for Kernels
3.1.2 Properties of the Integral Operator
3.1.3 An Example Based on Radial Basis Function

3.2 Networks with Different Architectures

3.2.1 Eigen-analysis of Kernel Matrices

3.2.2 Performance on Classification

3.3 Networks with Different Number of Input Images
3.3.1 Eigen-analysis of Kernel Matrices

3.3.2 Performance on Classification
4 Conclusion and Future Work

Bibliography

32

1 Introduction

With the booming development of computer science nowadays, many aspects of our
lives have been changed significantly or are under rapid evolution. Of many research
fields, machine learning is one of the intriguing fields that attract much attention from
researchers recently. Supervised learning utilizes data with continuous or discontinuous
labels and unsupervised learning uses data without labels. For labeled data, regression
with respect to continuous function outputs and classification with discontinuous targets
are two principal problems in supervised learning. For unlabeled data, our main inter-
ests lay in discovering patterns or low dimensional embedding of training data. Various
algorithms have been developed to deal with different types of problems and datasets.
For example, we can use decision trees for classification and least squares method for
regression, while K-means is used to cluster the unlabeled data, and principal component
analysis is used to reduce the dimensionality of linear data in order to find the submani-
fold of such data. Moreover, deep learning is especially fascinating to scientists in recent
years. With the advantages of neural networks, there is no need to know the explicit
form of functions that fit the true latent function, we only need to choose certain archi-
tectures suitable for processing our training data with some initialization setups, proper
loss functions, and appropriate gradient descent methods, then a very good performance
on test data with high accuracy and low loss can be achieved.

Neural networks are machine learning models that well solve problems regarding clas-
sification and regression. Nevertheless, classic neural networks tend to overfit datasets
due to the huge amount of parameters within the network. The over-parametrization
allows for convergence to global minima, where the training error is zero or nearly zero
[2]. Intuitively, when the amount of neurons goes to infinity we will have a network with
infinitely many parameters. However, Neal [21] has proven that the one-layered neural
networks with randomly distributed weights tend to a Gaussian process over the input
data in the limit of infinite neurons in hidden layers. Furthermore, Williams [32] showed
that predictions can be made efficiently using infinitely many hidden neurons and it was
easier to compute the infinite networks than finite ones through the concrete mathemat-
ical forms of the covariance functions. Gaussian processes are probabilistic methods that
are widely used in regression and classification problems. Gaussian process regression
uses posterior probability to predict distributions of new data points. In contrast, Gaus-
sian process classification uses logistic regression function in generative models, while for
discriminative models, Sigmoid function is used for binary classification and the Softmax
function is used for multi-class classification.

When we consider neural networks as Gaussian processes, the problem will be much
easier to analyze due to the sophisticated theories that have been developed. A Gaus-
sian process is determined by its mean and covariance function, of which the covariance
function is the most crucial. To utilize the rich theories of linear operators, we define
a linear operator using covariance functions — the Hilbert-Schmidt integral operator.
Once the operator is defined, we therefore define eigenfunctions and eigenvalues of a
covariance function. And Mercer’s theorem gives us an explicit representation of covari-

ance function through eigenfunctions and eigenvalues, which helps a lot when we intend
to explore the geometric structure of data points.

In Section 2, we will demonstrate the necessary knowledge and essential work con-
cerning linear operators, kernels, nonlinear dimensionality reduction, and Gaussian Pro-
cesses as well as the connection between neural networks and Gaussian processes. In
Section 3, we will mainly analyze the properties of the integral operator on kernel ma-
trices induced by convolutional neural networks and investigate the influence of kernel
matrices with differing network architectures and varying kernel sizes on eigenvectors
and eigenvalues. Related performance on classification is conducted as well in order to
observe how varying kernels affect classification accuracy.

2 Related Work

In order to have a comprehensive understanding of the contents of this thesis, we
first present the fundamental knowledge stemmed from related work done by other re-
searchers. We start with linear operators in linear algebra, based on the expositions in
1, 9].

2.1 Linear Operators

Operators are usually mappings that map the elements from one space to another space.
A operator £ : U — V is called a linear operator if it has the following two properties:

(i) Additivity: L(x +y) = L(x) + L(y) for all z and y € U,
(ii) Homogeneity: L(cx) = c¢L(x) for all x € U and all constant ¢ € R,

where U and V are vector spaces. With the above definition, it follows
L(ax 4+ by) = al(x) + bL(y) (2.1)

for any constant a,b € R and variable z,y € U. The composition of two linear operators
L1:U —Vand Ly : V — W is a new linear operator Loo Ly : U — W:

Loo Li(ax +by) = Lo o Ly(ax) + Lo o L1(by)

= aﬁg o) ﬁl(l') + b£2 e} ﬁl(y) (22)

The order of linear operators is comparatively essential and operators are not commu-
tative generally.

The inverse of a linear operator £ is defined as £7!, which satisfies £Lo L7 = T,
where 7 is the identity operator (it is also a linear operator since we get Z(z) =). It
is worth noting that not every operator has an inverse.

There are many linear operators. A linear function f : x — cx from R to R is the
simplest linear operator. Moreover, differentiation and integration are two commonly
used linear operators in Mathematics as well. According to Equation 2.1, we have

d(azx + by) dr dy

=a— +b

dt o dt dt (2:3)

for differentiation; while for integration, we have:

/(am + by)dt = a/ xdt + b/ ydt, (2.4)
Q Q Q

where (2 is the domain of integral, a and b are constants, and x and y the functions of
t, respectively. We will later apply the Hilbert-Schmidt integral operator on covariance
matrices (also called kernel matrices) of Gaussian processes deduced from convolutional
neural networks in Section 3, such that we can investigate the change of eigenfunctions
and corresponding eigenvalues of kernel matrices.

2.1.1 Eigenfunctions and Eigenvalues of Linear Operators

For finite dimensional vector spaces U and V with a basis defined on each space, we then
can represent any linear operator from U to V by a matrix. For instance, if * € R™ and
A € R™ " we can define a linear operator £ which maps R™ — R™ by

L(x) = Az, (25)

from which the linear operator L is represented by matrix A. For more general cases,
suppose we have a basis {u1,...,u,} for U and a basis {v1, ..., vy} for V, then a vector
u € U can be uniquely represented by:

u=aju+ -+ aply,. (2.6)
For a linear operator £ : U — V, we obtain:

L(u) =L(agur + -+ apuy)

2.7
=ar1L(uy) + -+ apnLuy), 27)
where L£(u;) = b1;v1+- - -+bmivy, fori = 1,...,n. Therefore, we can rewrite Equation 2.7
through
L(u) = (Ba)TV, (2.8)
where a = (a1,...,a,)", V = (v1,...,v,) and
bi1 b bin
bor o0 by o bog
B= L L . e R"™*™, (2.9)
bml bmz bmn

Here we just transform one vector space to another vector space through a linear trans-
formation Ba, where B is the matrix of £. Note that the matrix for a linear operator is
not unique, as we can choose various bases for a vector space.
As shown above, there is a connection between linear operators and matrices, we then
can analyze the eigenvectors and eigenvalues for a linear operator through its matrix.
Given a linear operator £ : U — U, a nonzero vector @ € U and a scalar \ are called
eigenvector and its corresponding eigenvalue, respectively, if we have

L(x) = . (2.10)

Since the linear operator £ can be represent by a square matrix A, Equation 2.10 is
rewritten as:
Az = \z. (2.11)

If any eigenvalue A = 0, then the matrix A is not invertible, which means that matrix
A does not have a full rank and its determinant equals 0. All the vectors that satisfy
Ax = 0 for Vo € U form the null space of matrix A.

A very important property concerning eigenvectors and eigenvalues is that they are
invariant of square matrices with changing of basis, as they are defined in terms of
linear operators, not in terms of matrices. Suppose we have two matrices A and B that
represent linear operator £ under two different bases, then A is conjugated to B thus
B = Q'AQ holds, where Q is the transition matrix between two bases. Clearly, A and
B have identical eigenvalues, and their eigenvector spaces are isomorphic to each other.

2.1.2 Kernels of Linear Operators

If £L:U — V is a linear operator, then the kernel of the operator is defined as
ker(£) ={x € U : L(x) = 0}, (2.12)

where 0 is the zero vector. That is to say, the kernel of a linear operator is a subspace
of U consisting of vectors whose images are 0 in V. The null space of a matrix and
the kernel of a linear operator are the same if linear operators £ can be represented
by a matrix. As a matter of fact, neural networks can be regarded as operators: with
activation being linear functions the network is a linear operator, while the network is
not a linear operator if the activation function is nonlinear. Hence finding the kernel of
a linear neural network will be equivalent to finding all the training points in space U
that are outputted as 0’s in V.

The kernel of a Gaussian process is the fundamental solution of the equation u; =
L(u),u € U, which contains functions that satisfy the condition u; = £(u) = 0. And
we can see that u is the kernel of operator % — L due to equation (% —L)u =0.

2.2 Kernels

Kernel functions k(x, ') measure the similarity between two vectors x, «’. The greater
the value of a kernel function is, the more similar the two vectors are. The reason we
use kernel functions is that we do not need to specify an explicit form for a feature map
1 (), while classic methods require data to be transformed to an explicit feature vector,
which may be difficult for some problems. There are plenty of kernels that are used
according to the concrete problems, and we will introduce some of them in more detail.
The main ideas of kernels are from [4, 20, 25].

2.2.1 Kernel Functions

A kernel is defined as a real-valued function k(x, ') of two vectors @, &’ € X C R". If
a kernel function k(-,-) satisfies the following two properties:

e The kernel is symmetric, namely k(x,z’) = k(z', x);
e The kernel is non-negative, that is to say k(x,z’) > 0,

then it is called a Mercer kernel. A kernel can be written to the form k(x,y) =
(Y(x),v(y)), where ¥(-) maps @,y into a higher dimensional space.

To judge whether a kernel is valid or not, a necessary and sufficient condition is that
the Gram matrix K (also called kernel matrix) should be symmetric for all nonempty
subsets of points {x;,i = 1,...,n} and positive semidefinite (PSD), i.e. for any vector
a it has a’Ka > 0.

Many kernels are available [25]. We will introduce some basic kernels from the
simplest form to a more complicated form. The simplest kernel is the constant kernel,
which has the form

k(x,z') = c, (2.13)

where ¢ € R. Actually, a constant kernel does not really measure the similarity between
two vectors, so it is not really used alone in practice, instead of as a scaling factor
combined with other kernels. Another simple kernel is the white kernel, which gives a
nonzero noise level for two identical vectors and returns 0 for two varying vectors. We
thus have a diagonal Gram matrix for the white kernel. In addition to the constant
kernel or white kernel, linear kernel (also called dot-product kernel) is often used when
data is linearly separable and the number of features is large, which is denoted by

k(x,z') = afcha:’ +c, (2.14)

where o is the vertical variation coefficient and ¢ is a constant in R. The polynomial
kernel is commonly used in Support Vector Machines (SVM), which allows our model
to learn nonlinearity

k(z,x') = (axx’' +b)°, (2.15)

where a, b and c are constants. If ¢ = 0, Equation 2.15 will be a constant kernel; if c = 1
Equation 2.15 is a linear kernel, which makes polynomial outperform linear kernels due
to its versatility. The most frequently used kernels is Radial Basis Function (RBF, also
named Gaussian kernel), which has the form:

AV
k@, a') = 0% exp (—d(g’lf)> , (2.16)

where oy is the vertical variation coefficient, and [is the length scale and d(,-) the
Euclidean distance. The RBF is isotropic, which means that the scaling parameter
v = ﬁ scales the same amount in all dimensions, and it maps an finite dimensional
vector space into an infinite dimensional vector space. In Section 2.3.2, we will explain
more about the influence of these parameters on RBF. We should note that RBF is a
stationary kernel, which is invariant to the translation, i.e. k(x,2’) = k(x + ¢, 2’ + ¢),
due to the Euclidean distance used in the exponential. It is also infinitely smooth since it
has an analytical derivative for any order. RBF has a good performance when applied to
linearly inseparable data, but it fails when our latent function is periodic. Nonetheless,
periodic kernel comes to the rescue. The periodic kernel is very useful for modeling

periodic functions:
2 sin? (L(m’m,))

k(z,z') = ofexp | — 5 P : (2.17)

where p > 0 and [> 0. It should be known that periodic kernel is also stationary.
Rational Quadratic kernel can be seen as an infinite sum of RBF with different I:

d(z,x')?

k(xz,z') = a}% <1 + —ou

) ,a>0and ! >0, (2.18)

which will result in a smooth prior on functions. When a — oo the rational quadratic
kernel converges to RBF. Furthermore, Matern kernel is a more general kernel:

b, 2') = —— (md(m,w’)> K, (*@d(m,m')), (2.19)

l l

where [> 0, d(-,-) is Euclidean distance, K,(-) is a modified Bessel function of order v
and I'(-) the gamma function. When v — oo, the Matern kernel converges to RBF.

Figure 2.1 gives us intuitive impressions of corresponding kernel functions. The
values of parameters are shown in Table 2.1.

linear polynomial
6 150
4 125
100
- 2 -
¢ = 75
= 0 B
= = 50
-2
25
-4
o
-4 -2 o 2 4 & -4 -2 o 2 4 &
X X
rbf periodic
10
0.8 &
—~ 0.6 =
B BN |
3 3
= 04 =
0z !
0.0]
-4 -2 o 2 4 & -4 -2 o 2 4 &
X X

Figure 2.1: Graphs of different kernel functions with 1D inputs x. The top left is
obviously linear kernel; the top right graph is the polynomial kernel; the bottom left
curve is the curve of RBF, which has a shape of the probability density function of the
normal distribution; the bottom right one is the plot of the periodic kernel, which has a
notable periodicity.

We can use existing kernels to construct new kernels that are suitable for specific
problems. Some constructing rules are as follows:

Kernels Parameters and their values

Linear of=1,c=0,2"=1
Polynomial | a=1,b=0,c=2,2' =2
RBF op=1,1=22"=0

Periodic or=11l=1p=1,2"=0

Table 2.1: Kernels and their parameter values used in Figure 2.1.

e Sum kernels:

ksum(z, ") = ki(x, ') + ko(z, ') (2.20)

e Production kernels:
ka'Od(w7 (B/) = kl (:B) ZB/) * kQ(wJ wl) (221)

e Exponential kernels:
kewp(z, x') = [k (z, 2")]P (2.22)

For more details of constructing new kernels, we refer to [4] and [25].

Kernels are widely applied in Machine Learning. And the most familiar applications
in Machine Learning are Kernel Principal Component Analysis (kPCA) [28] and Support
Vector Machines (SVMs) [6].

SVMs are supervised learning methods that can be used for regression and clas-
sification. For simplicity we just talk SVMs for binary classification on dataset X =
{(zi,yi),i = 1,...,n} where ; € R" and y; € {—1,+1}. The SVM aims to maximize
the width of margin between two categorical data points:

N S
min 3 [w[", (2.23)
s.t. yi(wx; +wp) > 1,foralli =1,...,n,
such that new points can be classified to one category based on
n
sgn(wx, + wy) = sgn(z Aivi(zix,) + wp), (2.24)

i=1

where w is the weighting vector, wy is the bias term, and x, is a new data point that
we want to classify. By the virtue of kernels, we can perform classification on linearly
inseparable data through SVMs by replacing x;x, by a kernel function k(x,x,.). The
representer theorem [26] ensures a solution for the minimization problem of SVM, which
is a linear combination of kernels centered on data points. Figure 2.2 shows the binary
classification of SVM for 500 data points generated by make_blobs() in sklearn, from
which we see a good classification result with nonlinear boundary and support vectors
are marked with green dots. A so-called soft margin SVM is also used for linearly
inseparable binary classification when we have some outliers for each class. Although
the algorithm allows misclassification, the misclassification error should be minimized.

@ class1l i
04 ® class0

Figure 2.2: Binary classification using SVM with RBF. Yellow dots are points labeled
with 0 and blue dots are points labeled with 1. Dashed lines are boundaries for different
classes. Green dots are support vectors on boundary.

Classic PCA is applied to reduce the dimensionality of linear data if we discover
that data is embedded in a submanifold, but kPCA is utilized for the dimensionality
reduction of nonlinear data. Kernel PCA first maps linearly inseparable data in R™ into
a higher dimensional space RN, N > n, then it projects the higher dimensional data
back to a low dimensional space such that the projected data can be linearly separable.
Figure 2.3 shows the advantage of kPCA over PCA on linearly inseparable data from
make_moons() in Python library sklearn. It turns out that the classic PCA still reserves
linear inseparability of our data, but the kPCA gives us transformed data that can be
perfectly separated by a straight line, for which we use the RBF kernel.

10 4 e classD e classD 034 h m
08 4 w class1 0.04 @ dassl e e X
02 { :' % J %
J X
06 . o ooz 4 . % x
% ¥ 011 e ® X *
41 8 % ‘ % M e class0 x
N N [®
02 2 % s & 0.00 4 001e » class 1 X
[] ; [] ;c 01 . *® X .
0o4{® x L] X -0lq® * W =
X 7| o0z . s % 2
-0.2 1 X 3 024 » o " X
04 "..""lh-%"f o 03 v. Iﬂxﬂﬁj
T T T T T T T T T T
-1 o 1 2 -1 "] 1 -0.2 0.0 0.z
Original data PCA Kernel PCA

Figure 2.3: PCA and kPCA. The first graph shows the original data. The second graph
plots the data transformed by PCA into 1D, which is obviously not linearly separable.
The third plots the data transformed by kernel PCA into 2D space, which can be per-
fectly separated by a straight line. For the third graph, it also suffices to project data
into 1D space as we can observe from x-axis.

Kernels are used in GPs as well and play a crucial role when we analyze the mean
function and covariance function of a posterior distribution. We will talk more about

the neural networks with infinitely many neurons or channels as GPs in Section 2.4.1.

2.2.2 Eigenfunction Analysis of Kernels

For the purpose of analyzing the eigenfunctions of kernels, it is necessary to know the
form of the integral operator T}, related to kernel k(-,-):

T/ ()] = / ke, o) f(«')du(a’), (2.25)

where p is a measure. Given a kernel function k(z,2’),z, 2’ € X C R™ and a function
o(+), if we have

/ B, ') o (@)dpu(z) = Ad(a), (2.26)

then we call ¢(-) an eigenfunction of kernel k(-,-) with eigenvalue A with respect to
measure . Note that, depending on the function space, there can be infinitely many
eigenfunctions and any two different eigenfunctions are orthogonal with respect to the
measure p, namely

1, iti= j., (2.27)
0, otherwise.

/ 6i()0; () dp(x) = (61, 0;),, = {

With the above definitions, a connection among kernels, eigenfunctions and eigen-
values can be described as follows:

Theorem 2.1 (Mercer’s Theorem) Let (X,pu) be a finite measure space and k €
Loo (X2, 1) be a kernel function such that integral operator Ty : Lo(X, 1) — La(X, p)
defined by Equation 2.25 is positive definite, i.e.

[@) r@)f @) du@)du(a’) > 0 (2.28)

holds for any f(-) € Lao(X, u). Assume k(-,-) is a symmetric positive semidefinite kernel,
then there exists orthogonal eigenfunctions of Ty associated with the eigenvalue A\; > 0
such that

400
B(z,a') = 3 idi(@)oi() (2.29)

converges absolutely and uniformly.

If a kernel has only finite number of nonzero eigenvalues, then it is degenerate. If the
measure 4 poses weights on finite number of n data points, then the eigendecomposition
of kernels will have only n eigenfunctions even if they are nondegenerate.

Interestingly, for heat conduction and diffusion the form of heat kernel is different
from what implies by Mercer’s theorem on account of the term e~*»* not being eigenvalue
of % — L but that of e(%_ﬁ), and heat kernel is represented by the following;:

o0

K(t,z,y) =Y _ e ¢u(x)dn(y), (2.30)

n=0

10

where e=** and ¢, () are eigenvalue and eigenfunction, respectively, and K (t,z,y) is

the solution of
OK (t,r,y)

ot
where A is the Laplacian operator. The reason for this representation is arose from that
the associated integral transform has a form of T' = e!®. Aside from the heat kernels,
Jacot et. al. [16] also argued that the evolution of neural networks during training could
be described by neural tangent kernel (NTK) parametrized by 8 € R”:

P
O(z,y; 0) = (0o, f(;0), 06, f(y:0)) = > _ g, f(x;60)0s, f(y; 0), (2.32)
p=1

in which f(-;0) is the scalar output of networks, Jp, f(-) is the partial derivative with
respect to ¢, and @ is the vector of parameters of neural networks. Equation 2.32 can
be extended to a multi-output situation as well. NTK converges to an explicit limiting
kernel and stays constant during training in the limit of infinite network width. Both the
neural tangent kernels and heat kernel show the evolution of certain processes: neural
tangent kernel indicates evolution of networks while heat kernels represents the evolution
of temperature in a certain region.

Together with integral operator Tj and Mercer’s theorem, we can analyze eigen-
functions and eigenvalues of the operator. Now that we know a kernel function can
be decomposed to an infinite sum of products of eigenfunctions and eigenvalues, we

need methods to find what mathematical forms eigenfunctions and eigenvalues take, re-
(z—x')?
202

presuming x ~ N (07 02), we have analytical solutions for eigenvalues [25]:

2a
i =1/ BZ 2.
A = 1 (2.33)

¢i(x) = exp (—(c — a)acQ) H;(V2cx), (2.34)

spectively. Using one dimensional RBF k(z,z') = exp (—) as an instance and

and eigenfunctions:

where H; = (—1)"exp (z)dxz exp(—2?), a=t = 40%, b1 = 2%, ¢ = Va? +2ab, A =
a+b+c and B = % If analytical results are not available, we can use numeric
approximations. Given probabilistic measure du(x) = p(x)dx, we have approximation

Ndi(a') = / b, @')p(a) bs() e

(2.35)
~ *Zk (@1, ') di(@1),
where @;’s are samples from p(z). Insert ' = x;,l = 1,...,n into Equation 2.35, we
have
Ku; = A", (2.36)

11

where K is the kernel matrix,)\;”at is the ¢th matrix eigenvalue and u; is the correspond-
ing eigenvector. Consequently, we have

¢i(x;) ~ Vn(ui);, (2.37)
and \mat
i & ln , (2.38)
fori=1,...,n. We could also obtain approximated eigenfunctions by Nystrom method
as
silal) ~ VIR0 (2.39)
where k(z') = (k(x1,2'),...,k(xp, 2')). From [33], the eigendecomposition of kernel

matrix could be done on a smaller system of size m < n, and then expanding the
results back to n dimensions, which requires only O(m?n) operations. In [8], authors
point out that m increases more slowly than data size n and the rate of convergence
for variational Gaussian process regression depends on the decay of eigenvalues of the
covariance operator.

In [7], the author has studied convergence properties of eigenfunctions and eigenval-
ues of kernel matrices and derived accurate bounds on approximation error, which has
the property that the error bounds scale with the magnitude of an eigenvalue, namely
the approximation errors of small eigenvalues are much smaller than those of large eigen-
values.

In Section 3, we will focus on eigenfunctions and eigenvalues of the linear operator
T}, on kernel matrix K € R™*" with entries k;; = k(x;, x;).

2.3 Nonlinear Dimensionality Reduction

In this section, we will discuss some nonlinear dimensional reduction methods that have
the capability of finding the low dimensional manifold of data in a high dimensional space
by employing spectral properties. Spectral clustering is a big family that makes use of
spectrum to perform dimensionality reduction prior to clustering in low dimensional
space, for a detailed explanation [30] would be a good choice. Except for (k)PCA we
talked about in Section 2.2.1, there are also various techniques, such as Laplacian eigen-
maps, isometric mapping (Isomap), and diffusion maps, and we will briefly introduce
each of them.

Laplacian eigenmaps [3] consider the intrinsic geometry of data and builds graphs
based on neighborhood information. Every data point in the data set can be regarded as
a node and the neighborhoods of each node must be found by certain algorithms (such
as the most commonly used K-nearest neighbor algorithm) such that the edge is decided
by the distance between two nodes. As such, the graph we build can be considered as an
approximation of the low dimensional manifold in the high dimensional space. Through
the optimization of a cost function that maintains the connected points on the graph as
close as possible, the local distance between two data points is preserved in the space.

12

With the help of Laplace-Beltrami operator, we can apply spectral decomposition to the
corresponding graph Laplacian and interpret eigenvectors as low dimensional embedding.
Figure 2.4 exhibits the reduced 2D data of MNIST images. The MNIST data set is
imported from the sklearn library and contains 1797 grayscale images with a size of
8 x 8 pixels. By the power of Laplacian eigenmaps we reduce the 64-dimensional data
into 2-dimensional data and the locality of data is maintained.

0.003 ° ® 0
1
L]
0.002 0’ e
.‘o. * L '™ e 3
. ° s e 4
0.001 € . [0. e 5
L]
o ° . &
< 0000 : . s ® 7
B
L}
9
-0.001 ‘é "
L
-0.002 . [+
) o ? L4 e @
[,
-0.003

—0.002 -0.001 0000 0001 0002 0003 0004
¢1

Figure 2.4: Laplacian eigenmaps applied on MNIST data. Varying clusters are denoted
with differing colors, and each cluster represents one handwritten digit, which results in
10 clusters total in the graph.

Isomap [29] is another approach to seek a low dimensional manifold for data, and
it extends the multidimensional scaling [5] method (MDS) by using geodesic distance
induced by a neighborhood graph other than using Euclidean distance as the pairwise
distance between data points. As we do in Laplacian eigenmaps, we need first to use
KNN to construct the neighborhood graph and compute the shortest path between each
pair of nodes in order to obtain the geodesic distance. Isomap defines geodesic distance
as the sum of edge weights along the shortest path between two nodes in the graph.
After that, we use MDS to compute the low dimensional embedding, from which the
top n eigenvectors of the geodesic distance matrix represent the coordinates we desire in
the n dimensional Euclidean space. Figure 2.5 shows the reduced MNIST handwritten
digits in 3-dimensional space. From the plot, we can see that our data is reduced from
64-dimensional space into a 3-dimensional space and the nonlinear local structure is
preserved.

Isomap is a direct version of Laplacian eigenmaps in that it needs us to construct
the full geodesic distance matrix. A weakness of the Isomap algorithm is that the
approximation of the geodesic distance is not robust to noise perturbation [11].

Diffusion maps [10] find the low dimensional embedding of data by computing the
eigenvectors and eigenvalues of a diffusion operator on data and it can overcome the
disadvantage of noise perturbation within data. Diffusion maps discover the underlying
manifold that describes the geometry of datasets by integrating local features. To for-
mulate the procedure of diffusion maps, we first need to construct the similarity matrix

13

[R R R T |

Figure 2.5: Isomap applied on MNIST data. Images are converted into 3D data and
marked with same color if their labels are identical. Different clusters are distinguished
by different colors in the legend shown in the right.

L, and then normalize the matrix to obtain matrix P. Next, we should diagonalize the
matrix P and sort the eigenvectors and eigenvalues by descending order, ultimately the
first n eigenvectors constitute the low dimensional embedding. Figure 2.6 shows the
result after applying diffusion maps.

All the algorithms mentioned above employ spectral decomposition of a certain ma-
trix that contains geometric information of data and utilize first n eigenvectors of such
matrix as a low dimensional embedding, which is actually similar to what we will do in
Section 3 except that we do eigendecomposition on the kernel matrix.

2.4 Gaussian Processes

Methods using a fixed number of parameters are parametric methods while methods
using a non-fixed number of parameters but rather depending on the size of a dataset
are called non-parametric methods. And Gaussian Processes (GPs) are non-parametric
methods. To formulate Gaussian processes, we first state Gaussian distribution (also
called normal distribution), since GPs are defined on the Gaussian distribution. Let x
be a univariate Gaussian random variable, the probability density function (PDF) of a
univariate normal distribution is

_ 1 (z — p)?
p(x) = Nor exp <—M> , (2.40)

where p is the mean and o2 is the variance. The univariate Gaussian is widely used in
statistical problems, such as regression and hypothesis test. For more general cases that

14

=
o
[]
L J
.U‘
LN N
= R Y T N =]

—].IS.O —lé.S —].é].[) —]‘:.5 —5‘.0 —2‘.5 D.ICI 2‘5 5.0
[

Figure 2.6: Diffusion map applied on MNIST data. Local geometry is ignored while the
global geometry is preserved in the graph.

T = (£A> € R" follows independently identical distribution (i.i.d) for each entry z;, we

B
have PDF of the joint normal distribution:

—¥ex —}az— Tyt(x -
paln®) = e (e -w'S e). @4

where the mean is

p= (“A> : (2.42)

KB
and the covariance matrix is

XA 2AB>
3= . 2.43
<EBA 3B (243)
If we condition x4 on g, then we have conditional distribution
x|p, X
p(@ales) = —LZlk2) (2.44)

ol E)dea’

with mean and variance

E(xalep) = pa+ ZapZg' (xp — 1s), (2.45)
Cov(zalzp) =24 — ZapZ5' Sha, (2.46)

which are quite helpful when we derive the posterior predictive distribution of GPs.

A Gaussian process defines a prior over functions, which can be converted into a
posterior over functions when we have some data points. A GP is a collection of ran-
dom variables such that joint distribution of every finite subsets of random variables
r1,%2,...,xN € R is a multivariate Gaussian. That is to say, given a random process
{zther, for any {t1,...,tn,} € T,n > 1, (x¢,,..., 24,) is Gaussian random vector, then
{z¢}1er is a GP with mean function

p(ze) = E(xy), (2.47)

15

and variance function
E(xtl s xtz) = k(l'tl s xt2)~ (2.48)

We can manually set the mean pu(-) = 0, since GP can perfectly fit the mean func-
tion, which means a GP is determined only by the covariance function k(-,-). Like
other methods, GPs can be used both for regression and classification. When solving
regression problems, we have closed form solutions which can be computed in O(N?),
however, in classification problems we can only use approximation methods due to the
non-Gaussianity of the posterior distribution. There are various advantages of Gaussian
Processes, which include:

e The prediction interpolates the observations;
e Empirical confidence intervals can be computed to measure uncertainty;

e Various kernels can be used regarding concrete problems, and it is possible to
specify custom kernels;

e [t is easy to analyze;
while disadvantages are also obvious:

e [t is very slow since GP uses whole samples to perform prediction and needs to
compute matrix inverse;

e It is not efficient in high dimensional spaces;
e Constructing a new kernel might be not easy;

o GP largely ignores defining well-targeted objective functions (to minimize or maxi-
mize objective functions) and instead focuses on optimizing the marginal likelihood
[25].

2.4.1 Covariance Functions

In Statistics, covariance is used to measure error of two random variables:

Cov(z,y) = E[(z — E(z))(y — E(y))]
— E(xy) — E(;L’)E(y)

Intuitively, if two random variables have the same trend of changing, the covariance is
positive; if their trends are opposite to each other, the value will be negative. Except
the covariance for random variables, it can be defined for a matrix as well. Let X =
(1, T2, -+ ,x,) € R™*™ be a matrix, where @; for i = 1,...,n is a column vector. Then
we have the mean vector:

(2.49)

n
>

- 1
px = ’—; = ~Xl,, (2.50)

16

where 1,, = (1,...,1)" € R". And the covariance matrix is denoted as:

- r_ 1 T

Cx = — ; (i = px) (s — px) " = —XI, X, (2.51)
where J,, = 1,, — %1n12 is the centering matrix. With the above covariance matrix, we
can regard an image as a flattened matrix, where m is the number of channels and n is
the number of pixels, and an image can be represented by a covariance matrix, which
gives us the impression that representing an image by a covariance matrix is essentially
equivalent to representing an image by a Gaussian probability density p in R™ with zero
mean [19]. Feature vector ; is a random observation of a m-dimensional random vector
with probability density p. Figure 2.7 shows 10 different digits with each pixel being
normalized in the range [0, 1] and their corresponding covariance in the above. Each
covariance matrix has only one entry due to one channel of the grayscale images. We
see that any two different digits have disparities between their corresponding covariance.
It would be very evident for us that the similar digits would have a similar covariance

01082 0.0672 01012 01246 0.0661

FKAEEIC]

0.0976 0.0981 0.0922 0.0946 0.0851

Figure 2.7: Handwritten digits and their corresponding covariance.

matrix as shown in Figure 2.8, from which we see that the covariance of the 3rd and 4th
image in the first row and the 4th in the second row have very close covariance values
due to same orientation, analogous shapes, and thickness of handwriting. Same rules
apply for the first image in the first row and the first image in the second row. Obviously,
covariance captures some important information from each image.

As for covariance of GPs, we know from previous sections that defining the covariance
function k(-, -) is defining the GP. A kernel function that satisfies the symmetry property
is a covariance function. For simplicity, the terminologies kernel function and covariance
function will be the same for subsequent contents from now on and symbol &(-, -) will be
used to refer to covariance functions. All the kernels we talked about in Section 2.2.1 can
be used as covariance functions. Depending on the problem we face, we can construct
new kernels from existing kernels by related rules mentioned before.

Generally speaking, a GP is stationary and non-stationary otherwise if the following
conditions are satisfied:

17

00672 00708 00426 00458 00645 00789 00537

0.0660 00548 00843 00411 00671 00775 0.0481

HdaBanaun

Figure 2.8: Digit 1’s and corresponding covariance.

o p(xy,) = p(xt,4s) for t,s € T
o k(xy,,my,) = k(T4 45, Tyts) for ti,to, and s € T,

where p(+) is the mean function, k(,-) is the covariance function, and 7" is an index set.
This implies that stationary kernel function takes the form k(x, ') = k(x — 2’). As we
mentioned, the mean function is usually set to be zero due to the advantage of flexibility
of GP, so we only need to focus on the covariance of GPs.

Next, we will discuss applications of GP for regression and classification, respectively.

2.4.2 Gaussian Processes for Regression

Assume the prior on regression function is a GP:
f(@) ~ GP(m(z), k(z, z")), (2.52)
where m(x) is the mean function and k(x,2’) is the kernel function, thus we have

m(x) = E[f(x)], (2.53)
k(z, ') = E [(f(x) — m(z))(f(2') — m(z))], (2.54)

where k(-,-) is positive definite. We then have a joint Gaussian distribution for a finite
set of points D = {(x;,y;)} fori =1,..., N:

p(f1X) = N(fln, K), (2.55)

where p = (u(z1),...,m(xn))? and K;; = k(zi,z;). For GP regression, we have
different representations for noise-free data and noise data, respectively.

GP regression for noise-free data

18

With noise-free training dataset D = {(z;,y;),s = 1,...,N} and testing data D, =
{(z},y}),i=1,...,N.}, we have f; = f(x;) at data point x; and f, is the output of our
test data. The joint distribution has the form:

(£) =2 (() (e) s

where K € RV*V with entry K;; = k(z;, x;), Ko € RV and K, € RV=*N«_ After
conditioning, we have posterior:

P(flXe, X, f) = N(filpe, Z0), (2.57)
e = p(X) + KIK ™ (f — (X)), (2.58)
>, =K, - K'K'K,. (2.59)

In Figure 2.9, we compare samples and the 2 times standard deviation (marked with
the shaded region) from GP prior and posterior. We can see from Figure 2.9a that
when we sample from prior p(f|X) the standard deviation makes no difference for all
3 samples due to the same prior at each point, but when we condition on 5 points, the
standard deviation of posterior p(f«|X«, X, f) at each point is really small comparing
to the region without training points as shown in Figure 2.9b, which means we are more
certain around training points when we take samples.

20 —— Mean —— Mean

Sample 1 Sample 1
15 -- Sample 2 24 --—- Sample 2
10 . -—-- Sample 3 -—— Sample 3
as{ Y BN N 1
oo

-05

-1.0

-15

2.0 -2
-4 -2 0 2 4 -4 -2 0 2 4

(a) Samples from prior distribution with (b) Samples from posterior distribution
mean 0 and standard deviation 1. with training points marked by red crosses.

Figure 2.9: Samples from prior and posterior of a Gaussian process with RBF kernel
marked with 2 times standard deviation above and below.

GP regression for noise data

Consider the noisy data with function y = f(x) 4 ¢, where € ~ N(0, UZ). We cannot
interpolate the data perfectly due to the noise. We have the covariance of training data
as:

cov(yX) =K, =K+ U;IN, (2.60)

19

where K is the covariance matrix of f(x) and Iy € RV*Y the identity. Assuming the
mean are zeros, we thus have the joint distribution of training data and testing data:

G{) ~N (0’ (E% II<<>> ' (2.61)

Consequently, the posterior distribution will be:

p(f X, X, y) :N(f*|u*,2*), (2.62)
pe = KKy, (2.63)
3. =K. - KK, 'K,. (2.64)

If we only have one testing point, the above results can be simplified to

where k, = (k(z.,@1),...,k(xs,zN)) and ke = k(z., x4). From Figure 2.10 we see
that the samples are not as smooth as that of posterior of noise-free data in Figure 2.9b,
which is resulted from the noise added for the data.

20
15
10
05
§oa T
004 AN

—0.5

-1.0 4 —— Mean "
Sample 1 !
159 sample 2
04— Sample 3
B A

Figure 2.10: Posterior distribution of noisy data. Red crosses denote the training points.
Uncertainty goes up at the region without training points. 3 samples drawn from pos-
terior are not as smooth as those of Figure 2.9b due to noise.

Although we use the same kernel function for posterior distribution, the different
values of kernel parameters influence the distribution as well. Due to the noisy data,
the kernel has a slightly different representation from Equation 2.16, for which we add
term azéij, where UZ is the variance of noise data, and 6;; = 1 if ¢ = j and d;; = 0
otherwise. Figure 2.11 illustrates the impact of different parameters of RBF kernel on
the samples and uncertainty. We can see from the first row that bigger length scale [
gives us a smoother mean and samples and the uncertainty region of larger length scale
[is not as bumped as the smaller one; the second row demonstrates that greater vertical
variation coefficient oy will produce bigger standard deviation for the region without

20

training data and thus more uncertain, and the final row tells us that when noisy data
have a higher variance O‘Z the values of samples fluctuate more fierce and we are more
uncertain than the posterior that has a lower variance for noise. At the same time, the
mean function cannot perfectly interpolate training points. Kernel parameters can be
estimated by maximizing the marginal log likelihood, which is based on the gradient
method, or we can use Bayesian inference to compute the posterior such that Monte
Carlo is applied to approximate parameters.

1=03.0=1,0,=02 I=3,0¢=1,0,=02
4 { = Mean 4 { = Mean
Sample 1 Sample 1

24 --—- Sample 2 " , 24 ---- Sample 2
- Sample 3 " ; L - Sample 3

2 . . ¥ 2
-4 -4
B I T B I T
I=1,0/=03,0,=02 I=1,0¢=3,0,=0.2
4] = Mean 4] = Mean
Sample 1 Sample 1
24 ---- Sample 2 24 ---- Sample 2

---- Sample 3 - Sample 3

-4 -4
B T S 2 6 3 3
!=1,0/=1,0,=0.05 I=10¢=10,=15
4 44 —— Mean
Sample 1 [y . ."l'-_
29 .) 24 --— Sample 2 1 A

Sample 3
T 0 =
Mean | |

-2 Sample 1 -2 L
---- Sample 2
-4 -——- Sample3 | =44 Y * ' i
H
-4 -2 o 2 4 —4 -2 o 2 4

Figure 2.11: Influence of different values of parameters on RBF kernel. [is the length
scale of RBF and oy is the vertical variation coefficient, and o, the standard deviation
of noise data. The shaded region is the 2 times standard deviation above and below the
mean. The wider the shaded region is, the more uncertain when we take samples. Red
crosses are training points.

2.4.3 Gaussian Processes for Classification

Other than applying the Gaussian processes to regression, GP can also be used in clas-
sification for new data points. Here we discuss the binary classification and GP for
multi-class classification. In Section 3, we will focus on GP for multi-class classification.

21

GP classification for binary class

The commonly used approach to classify data is to output a categorical distribution
for classes. When it comes to binary classification, we only need to consider Bernoulli
distribution, since the probability of points belonging to one class will be identical to
the probability of not belonging to the other class, which indicates that it is sufficient
for us to consider only the situation of points belonging to class +1.

Assume the binary labels are y; € {—1,+1} and define a GP on f(x;) for D =
{(xi,yi),i =1,..., N}, the probability of point @; belonging to class +1 is

p(yi = +1li) = o(yif (i), (2.66)
and the probability of point «; belonging to class —1 will be
p(yi = —1l@s) = 1 = p(yi = +1]xi), (2.67)

where o(+) is the sigmoid function

1

)

(2.68)

Thus we obtain a non-Gaussian stochastic process over function p € (0,1).
Given the dataset D, we need to determine the predictive distribution p(yn+1|®n1,

Xn,yn) for unseen point @y, where Xy = (@;,...,zy) and yy = (y1,...,yn). The
Gaussian process prior for fy = (f1,..., fn) takes the form:

p(fn+1) = N(Fn41]0, Crn4), (2.69)
where the covariance matrix Cyy; € RWTDX(N+1) does not include noise term since

we assume each data point is labeled correctly. Nevertheless, for numeric stability it is
better to introduce some noise into our data which ensures that the covariance matrix
is PSD, and the entries of Cx1 is given by

Ci]‘ = k(azi, :Bj) + I/(sij, (270)
where k(-,-) is a PSD kernel function and v is usually a fixed value.

As we mentioned, it is adequate to predict p(yn+1 = +1|yn) and the related predic-
tive distribution is

p(yn+1 = +1lyn) = /p(yN+1 = +1fnvr0)p(fnrilyn)dfngt, (2.71)

where p(ynt1 = +1|fn+1) = o(fn+1). Equation 2.71 is not analytically tractable, but
approximation methods could be applied to obtain solutions. For example, we could use

/ (@ (aljs, 02)da ~ o (k(o?)), (2.72)

22

where k(0?) = (1+702/8)~'/2, to approximate Equation 2.71. However, Equation 2.72
requires the approximation of posterior distribution p(fy+1|yn) to be Gaussian. Lapla-
cian approximation could be used to seek a Gaussian approximation of the posterior
distribution over fxn1, which has

E[fniilyn] = k" (yn —on), (2.73)
Cov [fN+1]yN] =c— ’CT(VVK;1 + CN)_lk, (2.74)
where k = (k(x1,Zn11),...,k(zn,2n11))T, o = (o(f1),...,0(fn))T and Wy =

diag(o(f1)(1—0(f1)),-.-,0(fn)(1—0c(fn))). The parameters of the covariance function
still need to be determined, for which we could maximize the likelihood function in order
to obtain desired results. Other methods, such as variational inference and expectation
propagation, have good results for classification as well.

In order to illustrate the Gaussian processes for binary classification, we use the data
generated by function make_moons() from Python library sklearn. We set noise to 0.3
and generate 500 points with labels {0, 1} marked with corresponding legends as shown
in Figure 2.12. We choose 0.5 as the boundary value of classification and use also RBF
kernel with length scale [= 1 and vertical variation coefficient oy = 1, hence we get the
predicted classification result in the figure. Although there are some incorrectly classified
points that result from noise parameters, generally speaking, we get good predictions
for class labels. Note that when the noise is higher, there will be more points classified
incorrectly.

dicted class 1 probabilit
predicted class 1 probability Lo

~7
e class0
3 class 1
- 0.80

- 0.60

F0.40

F0.20

]
1
\
1
1
1

Figure 2.12: Gaussian processes for binary classification on 500 data points. Black
dashed line is the boundary of classification, for which we use 0.5. Colored contours
mark the probabilities of points being classified to class 1, as shown in the color bar on
the right.

GP classification for multi-class

The Laplacian approximation for binary classification can be extended to K > 2 classes
very intuitively, if we use the softmax function rather than the sigmoid function in
Equation 2.68. The softmax function (also known as normalized exponential function)

23

is a generalization of logistic function to multiple dimensions and represented by
exp(z;
o(er) = o) (2.75)
> exp(zg)
k=1

where K is the number of classes. Alternatively, we can use the GP classification methods
for binary classification multiple times to realize multiclass classification. There are many
libraries provide sophisticated methods to do multiclass classification by one-vs-rest such
as sklearn [24] and pyGPs [22]. Figure 2.13 shows the classification results for iris dataset
using one-vs-rest method and good classification results for the data are obeserved.

45

class 0
class 1
class 2

L N

40

35

30

25

20

Figure 2.13: Gaussian processes for multiclass classification through one-vs-rest in pyGPs
applied on 2D iris dataset. Black dashed lines are the boundaries that separate points
belonging to different classes, and each class region is marked with a distinct color.

In [13], the authors regarded the classification problem as a regression problem with-
out noise and encoded the labels using one-hot vectors in RY with entries {—1, 41}, for
which the label vector will have +1 only at the position where it belongs to the class
and the rest are set to —1. As a result, the predicted class will take the index which
corresponds to the highest value of the computed mean vector. We will use the same
methods here to predict class labels for MNIST images in Section 3.

2.5 Neural Networks

Neural networks are comparatively important models in deep learning, and they have
been successfully instantiated that they have immense potential in decision making,
image analysis, pattern recognition, and data mining, etc.

Fully connected networks (FCN) is one of the most frequently used models for regres-
sion and classification. Hornik [15] has studied the properties of FCN with one hidden
layer and proposed:

Theorem 2.2 (Universal Approximation Theorem) For a continuous function o :
R — R and positive integers d, D, the function o is not a polynomial if and only if for

24

every continuous function f : R — RP | every compact subset K of R and every e > 0
there exists a continuous function f. : R — RP with representation

fe = W2 [N oae] Wl, (276)

where Wo, W1 are composable affine maps and o denotes component-wise composition
such that the approrimation bound

sup [|f(x) = fe(x)[| <€ (2.77)
zeK

holds for any € arbitrarily small.

For more details, please refer to [15]. According to Theorem 2.2, when we choose a
fixed €, we can find as many neurons as needed in a network to fit a continuous function.
That is to say, a neural network with linear output and one hidden layer can approximate
any continuous function defined over a closed and bounded subset of R?, if the above
conditions are satisfied. The good news is there always exists a single hidden layered
network that can approximate any function for a precision €, but downsides also exist
since the learning algorithm is not guaranteed to find the optimal parameters, which may
cause overfitting or result in high training loss. Plus, single hidden layered networks will
need a huge amount of neurons to reach a fixed precision while multilayered perceptron
(MLP, also called FCN) just need to add more layers and the number of total neurons
is far smaller compared to a single-layered network. Nonetheless, not the more layers,
the better it is. In the Ph.D. thesis of Duvenaud [12], it has been shown that as the
number of layers increases, the amount of information retained about the original input
diminished to a single degree of freedom, since the largest singular values of the Jacobian
of a set of functions drawn from independent GP priors tends to dominate as networks
go deeper. This implied that with high probability, these functions vary little in all
directions but one, making them unsuitable for computing representations of manifolds
of more than one dimension. An interesting fact to be noticed is that we always first
determine the architecture of a network and then compute the accuracy and loss of the
network, which is actually opposite to the procedure stated by Theorem 2.2.

Moreover, the relationship between accuracy and training size is kind of interesting,
since in the limit of training size going to infinity the test data size becomes zero, which
means all the data are fed to networks and our networks have adequate ability to identify
every possible occurrence, causing a 100% accuracy. Likewise, we could let neurons of
networks be infinite, and discuss the limit of such situation next.

2.5.1 Neural Networks as Gaussian Processes

There have been numerous researches that investigate the relationships between neural
networks with infinite neurons or channels and Gaussian processes. We will start from
the simpler network architecture to more complicated ones.

Bayesian Neural Networks

25

From Neal’s thesis [21], we know that with a wide class of weight priors over functions
a Bayesian neural network in the limit of an infinite number of hidden neurons tends to
be a GP.

Given a network with one hidden layer of N neurons, the network takes input € R™
and outputs a single value f(x) € R:

N
fl@) =" wah(wij;x) +b, (2.78)
i=1

where wo; is the hidden-to-output weight of neuron ¢, wy; is the weight vector of neuron
i of input layer, and h(-) is the activation function applied for each neuron depending on
wy; and b the bias. Let b and wo; have independent zero mean distributions of variance
of 02 and ‘73127 respectively, and let weight vector wi; for each neuron be i.i.d. Denoting
all weights by W, we obtain [21]

Ew (f(z)) =0, (2.79)

N

Ey [f(m)f(a:’)} = Ug + ZUiQEwli [h(wli; x)h(w; 33/)]
i=1

= ag + Nawawu [h(wu; x)h(wig; a:’)])

(2.80)

The final term of Equation 2.80 becomes w?Eq,, [h(w1; @) h(wis; &) if we scale o2,
as w?/N. As the activation function h(-) is bounded, all moments of the distribution
are bounded and hence the central limit theorem could be applied, showing that the
stochastic process will converge to a GP in the limit as N — oco.

Deep Neural Networks

Not only converges one-layered neural networks to GPs, but also multiple layer neural
networks with infinite neurons for each layer have a limit of GPs. In the work of Lee
et. al. [18], they derived the exact equivalence between infinitely wide deep networks
and Gaussian Processes. Consider a fully connected neural network of L layers with
layer width N; and pointwise nonlinear activation function ¢(-). Let € R%n be the
input vector and z” € R%ut be the output. The post and pre-activations of component
¢ at layer [are denoted by a:i and zf , respectively. Weights W,Llj and biases bﬁ of layer [
are drawn from independently identical distributions with zeros and variance o2 /N; and
respectively, O’g. We can formulate our network as:

vi(x) = (25 (2)), (2.81)
N

A(x) =b+ > Whal(z), (2.82)
j=1

where $9 (x) = x; and No = d;y, for [= 0. We know from deduction of Bayesian neural

networks that 2} is a Gaussian process if N; — oo with mean p! in Equation 2.79 and

26

variance K in Equation 2.80, denoted as zil ~ GP(u', K'). We should note that any two

zl-l, zjl are joint Gaussian and have 0 covariance, thus ensuring the independence despite
utilizing same features produced by the hidden layer. As N; — oo, Ny — o0,..., Nj —
oo in succession, it guarantees the input of each layer is governed by a GP.

Suppose zé_l is a GP, which is i.i.d for every j and hence we have i.i.d xé(w)’s. After
I — 1 steps, z}(x) is a sum of i.i.d random terms as N; — oo such that 2! ~ GP(0, K!)
with covariance

K'(z,#)=E [zl.(x), zl(m’)}

7 i

= 0} 4 2B _ap sy [0 @) @) (2:83)

= ag + aﬁ,F¢ (Klil(a:, x), Klfl(w,w’), Klfl(zr:’, w')) ,

where the joint distribution of z!~'(x) and 2/7'(z’) has a covariance described by
K'Yz, z), K'Yz, z'), and K'"(a',2'), and Fy is a deterministic function that de-
pends on ¢. With the above iterative formula, we could obtain K* for the GP describing
the final output. Assume Wz% ~ N(0,02/d;,) and b ~ N(0,0%), we have base covari-
ance

K(z,2) = E (2)(z)z)(z))

(2 1

T, 2.84
:a§+ai<mw>, ()

din

which is a special case for Equation 2.80 if we consider h(w1;;) as a identity map Z on

T
wy;T.

Convolutional Neural Networks

Convolutional neural networks are weight-sharing architectures that apply convolution
filters to extract features from input data, especially for image data. Rasmussen et. al
[13] shows that the output of a convolutional neural network with appropriate priors
over weights and biases is a GP in the limit of infinite convolutional filters, which holds
for residual convolutional neural networks as well. We will follow the procedure in the
paper.

Let X be an input image of height H(® and width D© with C© channels. We
flatten the image data to a matrix of size C(©) x (H(®O) D) and denote each row as
Z1,...,To0). Consider a network with L hidden layers, then the first layer activation
AM(X) is a linear map of input images, defined as

c(0)
aV(X) =61+ Y Wila;, (2.85)
j=1
where 1 is a all one vector in R, for i € {1,...,CM}, and other activations from A?) (X)

27

to AL (X) are defined recursively

c®
AT S).

7j=1

where Wg) is the corresponding transformed matrix of ith filter UE;) at channel j on
layer | and ¢(-) is applied elementwise. The activation A®(X) are CO x (HWDM)
matrices. For the regression and classification problems, we have H (Lt+1) — pLtl) — 1,
which is equivalent to a fully connected output layer. For each layer [, assume we have:

Uy ~ N (0,02/C0) 00 ~ N (0,07), (2.87)

1/7]7x7y

where z,y is a location within the filter.

To justify that the output of the network above is a GP, as in deep neural networks
the multivariate central limit theorem must be applied to each layer.

Consider a vector from two images X and X’ of the form

ol
az(‘l)(val) = ((l)<(X))> : (2'88)

For any pair of data points X and X’, Equation 2.88 is multivariate Gaussian jointly
distributed for layer 1, due to the shared Gaussian biases and filters in Equation 2.87.
Following Equation 2.85, we have

c(0))
oV(x, Xy = b1 + Z ((1)> <m> : (2.89)

where al(-l)(X, X’) and a(,)(X X’) are i.i.d for different filters. If we let the number of

channels at layer | go to infinity, the feature maps ang)(X, X’) at layer [4+ 1 will also
be i.i.d multivariate Gaussian. By applying Equation 2.86, we have

c® wtD 0
a"M (X X) =p"1+ Y (9 UH)) o (ol (x,X)), (2.90)
j=1 0 Wi
from which the first term is multivariate Gaussian as we assumed and the second
term is infinite sum of i.i.d terms as CY) — oo and also Gaussian. Therefore, output
AHD(X XY at layer [+ 1 is a joint multivariate Gaussian.
Other neural networks could be regarded as Gaussian processes as well. For instance,
n [14], the authors showed that neural kernel tensor network and tensor network hid-
den layer neural network will converge to the Gaussian process as the width of each
network goes to infinity. In [23], the authors derived the equivalence between Gaussian
processes and multi-layer convolutional neural networks with and without pooling layers,
and proved that the GPs corresponding to CNNs with and without weight sharing are
identical in the absence of pooling layers.

28

2.5.2 Kernels of Neural Networks

We will discuss concrete forms of covariance function corresponding to the networks
mentioned above.

Kernel of Bayesian Neural Network

Based on the Bayesian network structure represented by Equation 2.78, if we can eval-
uate the term E,,; [h(w1;; €)h(w1;; x')] we then can have the covariance function of the
network. The concrete form of covariance function depend on the choice of function
h(-). Williams [32] has shown the closed form of kernel functions of Gaussian processes
corresponding to networks with sigmoidal and gaussian hidden units. Using the error
n
function erf(z) = 2 [e~ dt as activation function, h(wy;) = erf(wigo + 3. wii),
j=1
and setting wy; ~ N (0,X), we get

2 2&T 23!
kerj(z,2') = = sin~! T T , (2.91)
m V(1 +28T2%) (1 + 22 TS3)

where & = (1,1,...,x,) is an augmented input vector. The Tanh function k(x,z’) =
tanh(a + bz’ x’) was also proposed, but it is not positive definite, thus it cannot be used

T
as a valid kernel function [27]. Williams also set h(w;; x) = exp(—w) with

202
width factor o2 and wy; ~ N'(0,02, I), and obtained
1].’1; — ’LUM|2 |$/ — w1i|2 wTwM
k m,a:’:/ex — — — L dw;
a() (2mo2, /> P < 202 202 202, t

(2.92)

ge \" xlx (- (x —) T
= exp | —5 5 | exp 5 exp | ——=5 | >
Ow, 207, —203% 20%,

where 1/02 = 2/02 4+ 1/0%, , 07y = 205, + 05, and 07 = 20; + 0, /05, . Both kernels ke, s
and kg are non-stationary, as a consequence of the Gaussian weight prior being centered

on 0 which breaks translation invariance in weight space [4].
Kernel of Deep Neural Network

Since not every activation function has an analytical form for Equation 2.83, we only
consider the activation that has a closed form, i.e. the ReLU. When no closed form
exists, a numeric method described in [18] could be performed efficiently to realize a
good approximation. For ReLU, the Equation 2.83 will be

2
Kz, ') = o2 + %\/Kz_1(w’ z)K!-1(2/,) (sin Hi;zl' + (m — 6:7%) cos 9;;%) , (2.93)

z,x’

_ K'Y (x,x')
6. = cos 1(¢Kl(m,m)Kl(m/,m/)>' (2.94)

29

With increasing depth of [, flattening angular structure of K l(a:, a') is observed, and the
numeric estimates coincide with the analytical results very well from authors’ experi-
ments.

Kernel of Convolutional Neural Network

As we discussed previously, we can always set the mean of a GP to 0, leading an emphasis
only on covariance functions. Here the mean function is always 0 since we set biases and
weights to have priors with zero means. In [13], covariance function of CNN for the 1st
layer is:
1 1 1
KD(X,X') = Cov [4{})(X), Al (X')|

, o2 c (2.95)
=%+ 50 > > XX},

i=1 veuth path

and for other layers

K{FD(X, X') = Cov [l (X), A5 ()]

) Zﬂ
—oirol Y VXX, (299
veuth path
where l l
VX, X) =E ¢ (47X)) ¢ (A0X))] (2.97)

is the covariance of activation functions, and v and u are locations within the input and
output channels or feature maps. And we have already discussed the closed form solution
Vl,(l) for ReLU and error function in previous sections. We note that Equation 2.96
is a generalization of Equation 2.80 from single hidden layer networks to multilayer
convolutional networks. Computing the kernel matrix takes O(N2LD) time, where L
is the number of layers, D is the dimensionality of input and N is the number of data
points, and inverting the kernel matrix takes O(N3). On MNIST, N3 is around a factor
of 10 larger than N2LD [13]. In practice, it is usually more expensive to compute the
kernel matrix than to convert it. Algorithm for computing the kernel k(X;, X3) of two
images X1 and Xy is shown in algorithm 1.

With a slight modification of adding skip connection between the activation of differ-
ent layers, the Gaussianity of the network is still preserved due to the i.i.d activations,
and we have a residual CNN as follows

o
l l—s l l l
ol (X) = ol (X) + 6+ Y Wo (ol (X)), (2.98)
j=1
with its covariance
KX, X) =KX X)) +op+os, Y. VXX, (2.99)

veuth path

30

Algorithm 1: Computing kernel of CNN-GPs
Rc(o) X (H©) W(O))

Input: two images X, Xs €
Output: the scalar KfLH)(Xl, X2)
Compute KV (X1, X1), KV (X1, X5) and K& (X4, X,) for
pe{l,...,HUDW} using Equation 2.95;
for!{=1,2,...,L do
Compute V" (X1, X1), VP (X1, X;) and VP (X,, Xy) for
pe{l,...,HODWO} using Equation 2.97;
4 | Compute KV (Xy,Xy), K™ (X1, Xy) and K (X,, X,) for
pe{1,..., HHED DD ysing Equation 2.96.
5 end

[uny

w N

where s is the number of skip connection spans.
Our later analysis of eigendecomposition and classification accuracy in Section 3 will
base on kernels of residual CNN and CNN presented here.

31

3 Properties of Linear Operators Related to Gaussian Pro-
cesses

Studying linear operators defined on kernels of neural networks is comparatively benefi-
cial since this will reveal more information about how the geometric structure of original
data changes after they are transformed by neural networks. Remember that a Gaussian
process is determined by its kernel function for centered datasets and thus an integral op-
erator can be applied on the kernel function to further understand the spectral properties
of such a operator and how the data geometry changes.

In this section, we will first discuss more technical aspects concerning the integral
operator related to GP kernels and the spectral properties of the operator. After that,
we will mainly pay our attention to the numerical experiments on eigen-analysis of kernel
matrices induced by convolutional neural networks as Gaussian processes (CNN-GPs)
and residual convolutional neural networks as Gaussian processes (ResCNN-GPs) such
that geometric changes of data can be observed under different network architectures
resulted from changing network depths and varying kernel sizes resulted from differing
numbers of input images, and finally we inspect the influence of kernel matrices on
classification accuracy for both cases.

Our experiments are conducted on MNIST data set, which is the classic handwritten
digits originally used to train LeNet-5 proposed by LeCun et al. [17] in 1989. MNIST
data set contains 60,000 training images and 10,000 test images. Every handwritten digit
is cropped to a size of 28 x 28 pixels with only one channel, and each pixel is scaled in the
range [0,255]. For the computation of kernel matrices, each pixel must be normalized

o [0, 1], for which each pixel just needs to be divided by 255 to be normalized in such
a range. Figure 3.1 shows what the MNIST data set looks like, and the above are their
corresponding labels.

3.1 Hilbert-Schmidt Integral Operator

We can see from Section 2, there are various linear operators available, we will focus on
a linear operator that is always applied for kernel functions, which is the operator T} we
mentioned in Section 2.2.2.

3.1.1 The Integral Operator for Kernels

The linear operator related to kernels has the form:

Ty () = / K,)bl d, (3.1)

which is also known as Hilbert-Schmidt integral operator. For a finite situation, we have:

(Trdl(@) = D _ k(= t:) (k). (3:2)

32

number 5 number 0 number 4 number 1 number 9 number 2 number 1 number 3 number 1 number 4

M
N
L
N
&
»
-
£
=
N

number 3 number 2

=
o
(2
=
-
N
©
=
S
o

number 4 number 0 number 9 number 1 number 1 number 2 number 4 number 3 number 2 number 7

£
[
N
N
=
N
=<
w
N
N

number 5 number & number 7 number 6

El

HHAXNEOANEDR
g

number 1 number 8 number 7 number 9 number 3 number 8 number 5 number 9 number 3

e
=
=
N~
&
&
v
£
w

number 0 number 0 number 9 number 4 number 1

3
S
N
A
&
R
o
o
£
~

number 4

A Es

number 1 number 7 number 1 number 6 number 3 number 0 number 2 number 1 number 1 number 7

number 6 number 0 number 4 number 0

H

number 9 number 0 number 2 number 6 number 3 number 0

©
S
v
&
N
]
o
)
o
X

number & number 7 number 4 number 6 number 8 number 0 number 7 number 8 number 3 number 1

o
N
B
&
)
=
N
S
5
~

Figure 3.1: MNIST data with labels above for each image.

We know from Mercer’s theorem in Section 2.2.2 that:
“+o00
k(x,x') = Z)\icbi(m)éf)i(w/) = ((x), p(x)), (3-3)
i=1

where () maps x and &’ to another infinite dimensional vector space, which is repre-

sented by .
¥() = (VMEIO), o V()) (3.4)

Substituting Equation 3.3 into the integral operator Equation 3.1 above, we have the
following:

HWM@Z/M@fmwwf
+oo
= / > X)) di(a))da!
j=1
:Z)‘j¢j($)/¢j(w/)¢i(:v')dm’ (3.5)
j=1

= " Njoi(@) (65, 6)
j=1
= \igi(x),

where \; and ¢; are eigenvalues and eigenfunctions of T}, operator respectively, and we
use the orthogonality of basis functions ¢; that (¢;, ¢;) = 1if ¢ = j and (¢;,¢;) = 0
otherwise.

3.1.2 Properties of the Integral Operator

Recall from previous section of linear operators that linear operators can be represented
by a matrix on a finite number of basis functions, and with the help of Mercer’s theorem
we can easily formulate the matrix representing operator T}, since the operator is closed
in the subspace spanned by n bases k(x;,-) for i« = 1,...,n, which indicates that the
operator T}, can be represented by the basis functions if we apply T} to the bases. The
matrix is denoted by K, which consists of kernel functions and has the form as follows:

k(x1,x1) k(x1,x2) -+ k(x1,xy)
k(xo, x k(xo,x < k(xo, xy

K — (2. 1) (2. 2) ' (2.) p—
k(xn, 1) k(xn,x2) -+ k(xn, xy)

and this matrix K is exactly what we call Gram matrix. When we apply same orthogonal
basis function ¢;(-) on data points @;,7 = 1,...,n for each row of the Gram matrix K,

34

we have the eigendecomposition of Gram matrix K as follows:

k(x1,x1) k(x1,x2) -+ ki, xy) zzgig
K¢z = k(m% ml) k(w2.7 w2) - k(m2,7 mn) (bz (133)
k(xn,x1) k(xn,x2) - k(xn, o) bs()
, (3.6)
¢i(x1)
bi(x2)
=\ | Pi(xs)
where ¢; € R" for ¢ = 1,...,n takes the form:
¢i(x1)
¢i(2)
¢ = | i(xs) | e r™.
From above, we have the eigenvector matrix of Gram matrix of kernels:
P = (¢17¢25"' 7¢n)7
and eigenvalue matrix is:
A1
A2
A=) (3.7)
An
where we permute the order of eigenvalues as Ay > Ao > --- >)\, along the diagonal
and set other entries to be 0, we can thus write the kernel matrix as:
K= ®AdT, (3.8)

which has an exact representation as PCA. The set of eigenvalues for operator Ty is
called its spectrum.

Here we only focus on the integral operator T} on kernels. Consequently, if we
are going to analyze the integral operator of kernel functions, it is sufficient for us to
conduct eigenanalysis for the Gram matrix of kernels, which shares identical eigenvalues
and corresponding eigenvectors with the integral operator. Therefore, eigenvalues and
eigenvectors are the objects we pay most of the attention to, and our analysis on Section
3.2 and Section 3.3 will pertain to the eigendecomposition of Gram matrix of kernels
(which also refers to kernel matrix or covariance matrix in later sections).

35

3.1.3 An Example Based on Radial Basis Function

For the clear comprehension of how the previously mentioned operator conduct on ker-
nels, we use radial basis function kernel (RBF, also called Gaussian kernel) as an instance.

RBF takes the form: d N
b, a') = oxp <_(x2lf2”)) 7 (3.9)

where x, 2’ € R", d(-,-) is the Euclidean distance and [is the length scale. In order to
find the eigenfunctions and eigenvalues of the RBF, we set [= 1 and take x,y € R for
simplicity and thus Equation 3.9 is rewritten as follows:

k(:r,y)exp((@ _y>2>

2 + 2 —2:Ey>
= exp

% +

= exp

(-~

(22y>exp(2xy)

=exp< 562) (y><1+1,+(x2y') ¥ +(xy)oo>
()i (5) () (o5 /5)

(3.10)

where we first use Taylor expansion for the term exp(zy) and then rewrite the expansion
in the form of inner product. Comparing Equation 3.3 and Equation 3.10, we therefore
have the explicit forms of eigenvalues \; and eigenfunctions ¢; for i =1,..., c0:

(3.11)

2

¢i(x) = Vai~lexp <_ac2) , (3.12)
respectively, after applying operator T on RBF. When i becomes larger, eigenvalues \;
will converge to 0 and eigenfunctions ¢; will fluctuate for differing . Clearly, RBF kernel
maps 1D data points into infinite-dimensional vectors in a new space. Equation 3.10 can
be easily extended to multidimensional cases as well. For the kernel functions that are
difficult to find the explicit formulas for eigenvalues and eigenfunctions, the approxima-
tion methods in Section 2.2.2 are relatively helpful in finding viable solutions.

3.2 Networks with Different Architectures

For the experiments, we analyze the eigendecomposition of CNN-GPs and ResCNN-GPs
on the same batch of 500 data points with respect to architectures, respectively. In [13],

36

the authors used a 7-layer CNN with 7 x 7 filters and padded zeros for each layer to
keep the size identical and each convolutional layer is followed by ReLLU nonlinearity. In
addition, all the networks have a fully connected layer for the final layer with a filter
of size 28 x 28, which outputs a single value. For instance, we define CNN-GPs and
ResCNN-GPs as in Figure 3.2. Here the library cnn_gp is from the modification work
of Tim Waegemanns [31] based on that of Carl E. Rasmussen et. al. [13], which is more
numerically stable. Note that the variances oy, 0, number of layers, stride, filter size, the
nonlinearity ¢, and the skip connection span s are all hyperparameters that influence the
kernel matrices. We will base our analysis on networks with optimized hyperparameters
and only alter the depth of our networks, while the other hyperparameters are fixed for
networks. Related codes for the experiments are available under https://github.com/
StevenXuf/Spectral_properties_of_kernels_of_CNN-GPs.

3.2.1 Eigen-analysis of Kernel Matrices
We do eigendecomposition for 3 CNN-GPs and 3 ResCNN-GPs, respectively, with dif-

ferent numbers of layers, for which only images of 2 digits are used as an input for our
networks at first. In order to have apparent comparisons, we analyze most possibly con-
fused digits 3 and 8, and the most visually distinctive digits 0 and 1. First, we analyze
the top 5 eigenvectors for 3 varying depths for CNN-GPs, as shown in Figure 3.3. Fig-
ure 3.3a plots the top 5 eigenvectors for CNN-GP with 3 layers (CNN-GP3), and ¢y is
the first eigenvector corresponding to the largest eigenvalue and is used for x-axis, while
¢1, . .., ¢5 are eigenvectors corresponding to the 2nd largest, ..., 5th largest eigenvalue,
and used as y-axis respectively. Figure 3.3b and Figure 3.3c plot similar pairwise eigen-
vectors with only disparity of differing layers for CNN-GP5 and CNN-GP7. Note that
every pair of eigenvectors ¢; and ¢; are orthogonal and thus qb;quﬁj = 0 holds if i # j.
Form the pair plots of CNN-GP for digit 0 and 1, we see that:

e each pair plot of all networks is clearly clustered and the points for digit 1 is more
tightly clustered than points of digit 0;

e first two eigenvectors can separate digit 0 and 1 very well;

e the first eigenvector ¢q of all 3 CNN-GPs with differing depths has nearly the same
upper bound and lower bound, while the bounds of other 4 eigenvectors differ;

e for the pair plot of a network, the range length of eigenvectors tends to increase
as we see from the y-axis, i.e. L(range(¢p)) < L(range(¢1)) < L(range(¢sz)) <
L(range(¢s)) < L(range(¢4)). And this holds for all 3 CNN-GPs;

e the pair plots of a network are similar to those of another network, respectively,
no matter which two networks we choose;

e the 4th pair plot of CNN-GP5 and that of CNN-GP7 is visually turned upside
down;

37

https://github.com/StevenXuf/Spectral_properties_of_kernels_of_CNN-GPs
https://github.com/StevenXuf/Spectral_properties_of_kernels_of_CNN-GPs

© 00 N O W N

BB W W W W W W W W W W NNN NN NN NN R R R R R R e e
= O © 00 N O U kA W N R O © 0 g O Uk WN KR O © N O kR W N = O

from cnn_gp import Sequential ,RelLU,Conv2d, Sum

def

def

cnn(n_layers ,filter_size=7,var_b=7.86,var_w=2.79,stride=1):
layers=[]
for i in range(n_layers):
1ayers+=[Conv2d(kernel_size:filter_size,
padding=’same’,
var_weight=var_w+*filter_size**2,
var_bias=var_b,
stride=stride),
ReLU ()]
model=Sequantial (*layers,Conv2d(kernel_size=28,
padding=0,
var_weight=var_w,
var_bias=var_b))
return model

res_cnn(n_layers,filter_size=4,var_b=4.69,var_w=7.27,stride=1):
model=Sequential (
*(Sum([Sequential (),

Sequential(

Conv2d (kernel_size=filter_size,
padding=’same’,
var_weight=var_w*filter_sizex**2,
var_bias=var_b,
stride=stride),

ReLU())

]) for i in range(mn_layers-1)),
Conv2d (kernel_size=filter_size,
padding=’same’,
var_weight=var_wxfilter_size**2,
var_bias=var_b,

stride=stride),

RelLUQ),
Conv2d(kernel_size=28,

padding=0,

var_weight=var_w,

var_bias=var_b)

)

return model

Figure 3.2: Codes of CNN-GPs and ResCNN-GPs.

38

0.050 .
005 {,
0.025 g
0000 0.00
oz 0054 o
~0.050 .
—0006 -005 -004 -003 006 -005 -004 -003
o Vs Pa
010 0 o
014 e 1
0.05 .
L *
0.00 00 o %o
(1]
-0.05
-0.1 F

006 -005 -004 —003 006 -005 -004 —003

(a) CNN-GP3.

0.050 00s{ *8®
0.025 8
0000 0.00
~0.025 w05] o o
~0.050 e 1
006 -005 -004 -003 006 -005 -004 -003
o vs ga
0.10 . e 0
00 014 e 1
- .
.]
[) .
0.00 S
.
—0.05 o
-01
-0.10 T T T T T T T T
006 -005 -004 -003 —006 -005 -004 -003

(b) CNN-GP5.

0.050

0.05
0.025
0.000 0.00 4
~0.025 w05] 4 o
~0.050 e 1
—006 -005 -004 -003 —006 -005 -004 003
o Vs 94
010 014
‘e
0.05 .e
000 0{e 0
- []
° []
-0.05 —01 e 0
~0.10 . e 1
—0l0s -005 -004 -003 —0006 -005 -004 -003

(¢) CNN-GP7.

Figure 3.3: Pairwise comparisons of top 5 eigenvectors for 0 and 1 under CNN-GPs.

39

e values of the first eigenvector ¢g are always negative, while the values of the other
4 eigenvectors can be positive or negative.

We do not see a significant influence on eigenvectors from CNN-GPs with different num-
bers of layers except for some small changes of eigenvectors, which implies that the
number of layers does affect the kernels, but has little influence on the eigenvectors
of kernel matrices. This further implicates that the eigenvectors are much decided by
intrinsic features of data itself and the integral operator. Figure 3.4 shows more eigen-
vectors of kernel matrices so that we can grasp the general global trends, and we observe
convergence for eigenvectors, especially for those of digit 0. Same patterns as those of
CNN-GPs are observed for the eigenvectors of ResCNN-GPs with 3, 5, 7 layers in Fig-
ure 3.5 and Figure 3.6. And there is no notable differences observed from CNN-GPs and
ResCNN-GPs.

To further instantiate whether the depth of a network has impacts on eigenvectors,
we plot 3D scatter plots of top 3 eigenvectors for kernel matrices induced by CNN-GPs in
Figure 3.7, and ResCNN-GPs in Figure 3.8, respectively, on images consisting of digits 0
and 1. From both figures, we draw a conclusion that eigenvectors of kernel matrices are
not significantly influenced by network depths, regardless of CNN-GPs or ResCNN-GPs,
and eigenvectors of digit 0 and digit 1 have a clear boundary between 2 clusters.

We also examine the behaviors of 10 chosen eigenvectors in Figure 3.9 to see how the
dispersion and skewness of eigenfunctions ¢;’s changes, from which we see that eigen-
functions ¢; are bounded and tended to convergence generally. The reason for bounded
eigenfunctions is because eigenfunctions ¢;’s are determined by the integral operator T}
and we have a limit data points forming a submanifold in space, which causes bounded
eigenfunctions. We also observe that values of eigenvectors are symmetrically spread
around 0, indicating no significant skewness. Furthermore, no distinctive differences
among CNN-GPs with varying depths are founded.

After analyzing the eigenvectors, we then plot the logarithms of eigenvalues for CNN-
GPs and ResCNN-GPs with different depths, respectively, as shown in Figure 3.10. For
CNN-GPs, we observe that the decreasing trends for 3 CNN-GPs are very similar and
the eigenvalues of the kernel matrix induced by the network with more layers will have
larger eigenvalues. In the beginning, the eigenvalues drop fast and then decrease slowly,
indicating that the first several eigenvectors are more important than others. The same
phenomenon holds for ResCNN-GPs. More interestingly, if we compare CNN-GP and
ResCNN-GP with the same depths, we see from that with more layers the curve of
eigenvalues of CNN-GP and ResCNN-GP are tended to coincide with each other.

Next we perform same analysis for CNN-GPs on images of digits 3 and 8 in Fig-
ure 3.11 and Figure 3.12. Again, the network depths seem do not significantly influence
the eigenvectors of related kernel matrices. One especially important distinction with
figures of digits 0 and 1 is that the pairwise plots of eigenvectors of kernel matrices on
images of digits 3 and 8 are tangled too much, which might arise from the visual confu-
sion caused by handwriting. Pairwise plots of eigenvectors of kernel matrices induced
by ResCNN-GPs are shown in Figure 3.13 and Figure 3.14. And the skip connection
of ResCNN-GPs do not bring us too many visually distinguishable differences, which

40

014

0.0+

—0.14

0065 -005 -004 -003
Po VS Pa1a

050

025

0.00 4

—0.25 4

—0.50 4

[]
006 005 -004 —003

T T T T -0.75
-006 -005 -004 003

(a) CNN-GP3.

02
006 -005 -004 -003 006 -005 -004 003
Po s Para o Vs gagg
) - 075 4)
e 0
01 0501 & 1
025
0.0
000 { mwe
a?®
—01 ~025 | .
T T T T —0.50 1 T T T L T
006 -005 -004 -003 005 -005 -004 -003
Po WS Praa o Vs Paag
02 .
[] L]
[L]
01 °
.
-
0.0
011" ¢ .
. *
006 005 004 003 —006 005 004 003
o s Para Po Vs gagg
02 . 075 | .
s 0 - - e 0
D 0s0{ & 1
01
025
00 .00 - -*
[L)
01 —-0.25 .
. -050 4 .
. . :
006 005 -004 -003 —006 -005 -004 -003

(¢) CNN-GP7.

Figure 3.4: Pairwise comparisons of more eigenvectors for 0 and 1 under CNN-GPs.

41

o Vs g1

0.075
0.050 005
0.025
0.000 0.00 1
~0.025 005
~0.050
—007 -006 -005 -004 -003 007 -006 -005 -004 -003
o vs g3
010 ") e . & 015 4
i 'y
e 1 010
0.05 P,
o 0.05
000 | @ 000
.-.
-0.05 {® ged —0.05 4
* . —0.10
—007 -006 -005 -004 -003 007 -006 -005 -004 -003
(a) ResCNN-GP3.
o vs g1
0.075
0.050 0.05 4
0.025
0.000 0.00
~0.025 005
~0.050
T T T T T -0.10 5 T T T T
—007 —006 -005 -004 —003 —007 —006 -005 -004 -003
010 015]
010
0.05
0.05
0.00 000
005 ~0.05
~0.10 1
-0.10 T T T T T T T T T T
-0007 -006 -005 -004 -003 -007 -006 -005 -004 -003
(b) ResCNN-GP5.
o vs g1
005 0.05
000 0.00
-0.05
-0.05
T T T T T —0.10 T T T T T
-007 -006 -005 -0.04 -003 —007 006 -005 -004 —-003
o Vs ga
010 015
0.05 010
0.05
0.00 0.00
~0.05 -0.05
-0.10 010
—007 -006 -005 004 -003 ~007 -006 -005 -004 003

(c) ResCNN-GP7.

Figure 3.5: Pairwise comparisons of top 5 eigenvectors of kernel matrices induced by

CNN-GPs for digits 0 and 1.

42

o VS f1za o Vs Paag

*e
0.1 .,
0.0
L]
v
01 - e,
% Aad]
-007 -006 -005 -004 -003 -007 006 -005 -004 -0.03
o Vs Pars o VS Pags
PR he
025 .
e 1 .
0.00 —u*
~025 |
~050 1
®
‘ ‘ . .
007 -006 -005 -004 -003 -0007 -006 -005 -004 -003

(a) ResCNN-GP3.

o Vs Paag
02 .
01
0.0
-01
—007 —0D6 -005 -004 003 ~007 -006 -005 -004 -003
o VS gars o VS Pags
02 050 | -
-
025 o 1
014 *
0.0 -04
00 4
—025 |
-014 ~0.50 A
T T T T T —0.75 4 T T T T L T
-007 -0D6 -005 -004 -003 -007 -006 -005 -004 -003

(b) ResCNN-GP5.

o VS P12a o vs Prao
[]
. 0 &pe
011 o 1 e T
@,
LR 4
.
-01
L]
L
-007 -006 -0.05 -004 -0.03 -007 -006 -0.05 -0.04 -003
o Vs fara o Vs Pagg
O 0.75 | .
. e 0
0.1 | 050{ e 1
025 |
0.0
000 | eme
L)
-0.1 -0.25 | .
. ¢ | -o0s0 3
007 -006 -005 -004 003 007 -006 -0.05 -0.04 -003

(c) ResCNN-GP7.

Figure 3.6: Pairwise comparisons of more eigenvectors of kernel matrices induced by
CNN-GPs for digits 0 and 1.

43

000
0.02
4 o

0.06 00

(¢) CNN-GP7.

Figure 3.7: Scatter plots of top 3 eigenvectors of kernel matrices induced by CNN-GPs

on digits 0 and 1.
44

058
—0
% _&53%5%0 0 070.028008

0.00
65 002
0.04
—0.070; pg 0.06 %

(c) ResCNN-GP7.

Figure 3.8: Scatter plots of top 3 eigenvectors of kernel matrices induced by ResCNN-

GPs on digits 0 and 1.
45

02

oal]s
==
o e
=[] -ee
- -
L
| I
-

eigenvector index

(a) Boxplot of CNN-GP3.

K
144

o _|Pm
0 om oD

43 % 1439 199 249 299 M9 399 449 499
eeeeeeeeeeeeeeee

(b) Boxplot of CNN-GP5.

04

o s 0
oo
o @qumo

43 % 1439 199 249 299 M9 399 449 499
eeeeeeeeeeeeeeee

(c) Boxplot of CNN-GP7.

Figure 3.9: Boxplots of 10 chosen eigenvectors of kernel matrices induced by CNN-GPs

on images of digits 0 and 1.
46

35 1 — CNN-GP3
ResCNN-GP3
—— CNN-GPS
—— ResCNN-GPS
304 CNN-GP7
—— ResCNN-GP7

25 4

20 4

log A

15 4

104

=1
=
1=
=}
5]
=}
=}
w
&4
=}
£
=}
=}
wn
=1}
=}

index

Figure 3.10: Eigenvalues of networks with different depths for digits 0 and 1.

possibly results from the added kernel K L_S(X, X) of precedent layers on current kernel
K L(X, X) in Equation 2.99. That is to say, essentially the kernels of ResCNN-GPs are
just multiple additions of kernel matrices of CNN-GPs from preceding layers. 3D plots
for CNN-GPs and ResCNN-GPs on images of digit 3 and digit 8 are visualized in Fig-
ure 3.15 and Figure 3.16, respectively. From both figures, we draw a similar conclusion
as the 3D scatter plots of Figure 3.3 and Figure 3.5 except that there is no clear bound-
ary between eigenvectors for digit 3 and digit 8, which results from the confusability of
these two handwritten digits, regardless CNN-GPs or ResCNN-GPs.

The logarithms of eigenvalues of networks to digits 3 and 8 are shown in Figure 3.17.
Once again, the eigenvectors of CNN-GPs and ResCNN-GPs gave similar decreasing
trends. Although the curves of CNN-GPs and ResCNN-GPs with the same number of
layers tend to coincide with each other, curves of eigenvectors of ResCNN-GPs have a
lower tail that seems to diverge from that of CNN-GPs. Further analyses are conducted
on kernel matrices induced by CNN-GP3 on datasets consisting of 800 images of digits 3,
5, and 8 and 1000 images of digits 1, 3, 5, and 8, respectively. Analysis for more digits or
more eigenvectors would be unnecessary since from the aforementioned experiments we
have picked the most possibly visual distinguishable digits and the most confusable digits
from all ten digits and the convergence trend of eigenvectors shall be similar, and we
speculate that other cases should fall in between two extremes. And the skip connection
as well as network depth have no significant impacts on eigenvectors, we hence only
focus on CNN-GP3. Related results are shown in Figure 3.18. It is not surprising that
the eigenvectors corresponding to each digit are highly tangled, no matter in 2D or
3D Euclidean space, which pertains to the indistinguishable shapes (or similarities to a
certain degree) of 3 and 5 written by hands. We also add digit 1 to see whether there

47

0oL0
0.05
0.00
—0.05

-0.10

0.10
0.05
0.00
-0.05

-0.10

010
0.05
0.00
—0.05

-0.10

0.10
0.05
0.00
—0.05

-0.10

0.10
005
0.00
-0.05

-0.10

LB L]
0.05
0.00
-0.05

-0.10

Figure 3.11: Pairwise
CNN-GPs for digits 3

0.10

0.05

0.00

-0.05

—-0.10

—006 -005 -004

006 -005 -004

(a) CNN-GP3.

—003

010

0.05

0.00

-0.05

—-0.10

01

0.0

—003 —006 -005 -004

(b) CNN-GP5.

003

0.10

0.05

0.00

-0.05

—-0.10

006 -005

—003

01

00

comparisons of top 5 eigenvectors of kernel matrices induced by

and 8.

006 -005 004

(c) CNN-GP7.

48

003

o Vs P12g

o VS Paan

010
0.05 4
0.00
—0.05
—0.10
—0.15 4

—006 005 -004

06
044
024
0o
-0.2 4
—0.44

o Vs Puge
L]

-osq-*. .

—00s 005 004 003

(a) CNN-GP3.

—006 005 -004 003

—006 -005 004 003

o VS gars o VS Pags
L] .
050 | e 3
0.1 e 8
025
»
0.0 0.00 { e .
.
. 3| 025 .
) 8] 0504 .
—0l0s -005 -004 -003 —0l06 -005 004 -003
o Vs P11 03 o vs Pug
[] []
014
01
0.0
0.0
-01 -0.1
—006 005 -004 —003 —006 -005 -004 003
o Vs gara o VS Pagg
* e 3
050
P
025
LJ
0.00 {ee .
—0.25 { ®
[]
—050 1 . .
—006 -005 004 003
(C) CNN-GP7.

Figure 3.12: Pairwise comparisons of more eigenvectors of kernel matrices induced by
CNN-GPs for digits 3 and 8.

49

0oL0 0.10
0.05 0.05
0.00 0.00
—0.05 —0.05
=0.10 —0.10
0.10 0.15
0.05 010
0.00 0.05
_0.05 0.00
010 & 3| 005
- e B
ol] -0.10
T T T T T T T T
—0.06 -005 004 003 —0.06 —0.05 -0.04 003

(a) ResCNN-GP3.

010 010
0.05 005
0.00 0,00
—0.05 008
010 -0.10
—006 005 004 003
o Vs du
015
0.10 . e 3
010 P
0.05 .
0.05
0.00 -'g"‘
000{
-0.05 $
-0.05 . o ®
~0.10 . o .
-0.10 Tee 3o
—006 -005 -004 -003 —0l06 -0005 -004 003

(b) ResCNN-GP5.

0.10 010
0.05 005
000 0.00
—0.05
-0.05
-0.10
~0.10
—006 -005 —004 -003
o Vs fu
015
010
010
0.05
0.05
0.00 000
—0.05 —0.05
-0.10 -0.10 ‘."
006 -005 -004 003 —006 -0D05 004 -003

(c) ResCNN-GP7.

Figure 3.13: Pairwise comparison of top 5 eigenvectors of kernel matrices induced by
ResCNN-GPs for 3 and 8.

50

o VS Pasa
]

010 {® *
0.05
0.00 1 .
005 {eg
005 10gy T
0104 * 2
. ™
. . . . 0151 — - . L .
006 -005 -004 -0.03 —006 -005 -004 003
o Vs Page
L]
02 os®
0o |eg *-o .
Ll]
-0z)
-04d . s
e 8
-06 °
: : : : : : : :
006 -005 -004 -003 —006 -005 -004 003

(a) ResCNN-GP3.

Po Vs Piaa
. * . 3
01 e B
[]
0.0 4 .
. []
—0.14 F)
L]
006 -005 —004 —003 006 -005 —004 —003
o Vs Para o Vs Pagg
* 3 06 * e 3
0.1 Bl o4 e 8
02 .e®
00 00 -w. .
0.2 N
01
-04 .
.
006 -005 -004 —003 —006 -005 -004 —003

(b) ResCNN-GP5.
o WS P12 o vs Pag

—006 -005 -004 003 —006 -005 -004 -003

o s Pagg
050 ¢ e 3
P
025 .o
0.00 -*. .
[]
—0.25 | o
~050 1 .
—0l0s 005 004 003 —006 005 -004 003

(c) ResCNN-GP7.

Figure 3.14: Pairwise comparison of more eigenvectors of kernel matrices induced by
ResCNN-GPs for 3 and 8.

o1

(¢) CNN-GP7.

Figure 3.15: Scatter plots of top 3 eigenvectors of kernel matrices induced by CNN-GPs

on digits 3 and 8.
52

(c) ResCNN-GP7.

Figure 3.16: Scatter plots of top 3 eigenvectors of kernel matrices induced by ResCNN-

GPs on digits 3 and 8.
53

35 4 —— CNN-GP3
ResCNN-GP3

—— CNN-GPS

—— ResCNN-GPS

CNN-GP7
30 H \\ —— ResCNN-GP7

25 4

log A

20 4

|

15 4

104

T T T T
200 300 400 500
index

=1
=
=4
=}

Figure 3.17: Eigenvalues of networks with different depths for digits 3 and 8.

is a distinctive gap or boundary between 1 and the rest in Figure 3.19. It is very clear
that eigenvectors corresponding to digit 1 is not much tangled with the rest in 2D, and
the gap is even more legible in 3D space, which seems be very reasonable since digit 1
can be easily told from the rest by vision. Theoretically, if we think about two point
x1,x2 € R™ that are very close to each other, then for a eigenfunction ¢;(-) : R* — R
we have corresponding function values ¢;(x1) and ¢;(x2) that are in a vicinity as well,
which is exactly the Lipschitz continuity. Figure 3.20 gives an illustration.

From experiments concerning eigenvectors and eigenvalues of kernel matrices induced
by CNN-GPs and ResCNN-GPs, respectively, we conclude that the depth of a network
does not play a significant role for the variations of eigenvectors but for eigenvalues,
CNN-GPs and ResCNN-GPs do not make many differences, which verifies that the skip
connection has only diminutive influences on the eigenanalysis of kernel matrices, and
the eigenvectors are much affected by the intrinsic similarity of data themselves.

3.2.2 Performance on Classification

In classic neural networks, with deeper layers the accuracy of a network will increase
until reaching a certain depth. However, will CNN-GPs and ResCNN-GPs have the
same behavior as classic networks? If it is not the case that more layers ensure higher
accuracy, then what is the best depth for each network? Here we analyze how the
networks with differing depths influence the performance of classification accuracy on
MNIST dataset. For the computation of classification accuracy, we first split the whole
training data into 120 batches and split the whole test data into 20 batches. We will pick
3 random training batches X;,1 < j < 100 without replacement to compute K(X;, X;)

54

010

0.05 A

0.00 4

—0.05

-0.10

—~0.050-0.045-0.040-0.035-0.030-0.025 —0.050-0.045-0.040-0.035-0.030-0.025
o Vs @3 o VS Py
3 e e 3
5| 0104 e 5
Bl oos e 8
0.00
.
~0.05

—~0.050-0.045-0.040-0.035-0.030-0.025 —~0.050-0.045-0.040-0.035-0.030-0.025

(a) Pairwise plots of top 5 eigenvectors.

* 3
e 5
e 8

, o_ozU-UUO'U—ZO'
3

~0.050 120.060.0

(b) Scatter plot of top 3 eigenvectors.

Figure 3.18: Eigenvectors of the kernel matrix induced by CNN-GP3 on the dataset
consisting 800 images of digits 3, 5, and 8 in total.

95

0.05 4 0.05 4

0.00 4 0.00 4

_0.05 4 —0.05

e ® 4 0
005 { *8%3 8
3.-

0.05

0.00 4 0.00

—0.051 -0.05 1

~0.045 -0.040-0.035 -0.030 —0.025 —0.045-0.040-0.035-0.030 —0.025

(a) Pairwise plots of top 5 eigenvectors.

mown oW

0.08 ‘I
0.06
0.04
0.02 1
& 0.00 7
—0.027
—0.04
—0.06

(b) Scatter plot of top 3 eigenvectors.

Figure 3.19: Eigenvectors of the kernel matrix induced by CNN-GP3 on the dataset
consisting 1000 images of digits 1, 3, 5, and 8 in total.

o6

—_—
o filxi)
o fix:z)

o

x

Figure 3.20: Function values of 2 close data points. Two close (similar) images 1 and
@2 should have close (similar) values for same eigenfunction ¢;.

and run all the test batches X*,7 = 1,...,20 in sequence for each chosen training batch,
leading to 20 K(X,X;),7 = 1,...,20, where X! and X; are normalized tensor of size
(500, 1,28,28). We have shuffled both the training and test data before training our
networks, which avoids sampling biases. The 3 chosen random training data for all
CNN-GPs and ResCNN-GPs are the same.

We first compute the number of total correctly predicted data points on the whole
test data set for 5 CNN-GPs with the only difference of network depths (other parameters
are fixed), and calculate their respective average accuracy and standard deviations of
correctly predicted class labels over 20 test runs for each training batch, as shown in
Table 3.1. We run each model on 3 randomly chosen training batches and predict on
test batch of size 500 each time until all the test points are used. The average accuracy
is computed on all 3 training runs for each model. Obviously, CNN-GP5 is better than
CNN-GP3, and CNN-GP7 is better than CNN-GP5. Accuracy drops from CNN-GP7,
and CNN-GP7 has an overall better performance than others, regardless of average
accuracy or standard deviation. A very surprising discovery is that the network CNN-
GP11 has a significantly terrible performance with respect to predicting accuracy, which
implies that deeper neural convolutional networks as Gaussian processes do not assure
a better prediction accuracy.

We could perform the same analysis for residual convolutional neural networks un-
der the same experiment settings. The average accuracy of ResCNN-GPs is shown in
Table 3.2. Still, the total number of correctly predicted points are counted and related
statistics are computed. We see that the model ResCNN-GP7 has better overall accuracy
on all test batches based on the training kernels of 3 randomly chosen training batches.
Accuracy increases with deeper residual networks and reaches its peak at ResCNN-GP7
and drops thereafter. The same occurrence as that of CNN-GP11 happens for ResCNN-
GP11, which has a relatively low prediction accuracy of 9.8%.

For both the CNN-GPs and ResCNN-GPs, they all fail when having 11 layers. It is
reasonable to imagine that the failure of CNN-GP11 results in the failure of ResCNN-

o7

Batch 1 Batch 2 Batch 3
Networks Num | Std | Num | Std | Num | Std | Avg accuracy
CNN-GP3 | 9035 | 7.24 | 9142 | 5.02 | 9106 | 7.73 90.94%
CNN-GP5 | 9185 | 6.62 | 9128 | 7.18 | 9099 | 6.09 91.37%
CNN-GP7 9234 | 5.12 | 9209 | 5.95 | 9124 | 4.95 91.89%
CNN-GP9 9124 7.3 9118 | 5.76 | 9222 | 6.39 91.55%
CNN-GP11 | 980 | 6.36 | 980 | 8.63 | 980 | 7.25 9.8%

Table 3.1: Prediction accuracy of CNN-GPs. Num denotes the number of correctly
predicted points out of 10,000 test points and Std is the standard deviation of test run
based on a chosen training batch. The average accuracy is computed for each network
depth over all 3 training batches.

Batch 1 Batch 2 Batch 3
Networks Num | Std | Num | Std | Num | Std | Avg accuracy
ResCNN-GP3 9112 | 5.1 | 9105 | 5.86 | 9087 | 6.38 91.01%
ResCNN-GP5 9135 | 6.24 | 9191 | 5.62 | 9105 | 6.16 91.44%
ResCNN-GP7 | 9238 | 5.66 | 9216 | 6.38 | 9183 | 6.37 92.12%
ResCNN-GP9 | 9201 | 6.39 | 9134 | 3.86 | 9229 | 5.51 91.88%
ResCNN-GP11 | 980 | 4.99 | 980 | 5.79 | 980 | 6.86 9.8%

Table 3.2: Prediction accuracy of ResCNN-GPs. Meanings of Num and Std are as
identical as those of Table 3.1.

GP11, since kernels of ResCNN-GPs just add the kernel of preceding s layers (s = 1
for our discussion here) to the kernel of the current layer, as shown in Equation 2.99.
Both networks fail, since the exploding values for each entry in kernel matrices cause
computational issues. To explain such cases, let [= 10 and s = 1, then for the kernel at
the 11th layer we have

Kt =EQles+ob+oy, - >3 VI

H,res H,
vEp-th patch

=K enn
=KD toiton Y VKL,
v €p-th patch (3.13)
=K nn
=Ko
= B+ B+ K+ K Koo+ K

where the hyperparameters af, 0121) and filter size for K ,(f,)res and K ,(f)cnn should be same.

o8

Combining Kﬁ(}cl%n and Kﬁlﬁgs of all patches, respectively, at the final layer, we can

see that if Ké}#} explodes, Kﬁ;) definitely explodes, leading to a final exploding scalar
output. Here we examine two random images from MNIST and inspect their covariance
for networks with differing number of layers. The results are shown in Table 3.3. Clearly,
when the number of layers exceeds 10, the kernels of networks will explode, and the
posterior predictions will be like a random guess for the label of each image, which of
course is nearly 10% as the law of large numbers indicates if we make enough guesses
for 10 class labels.

Covariance Network Type
CNN-GP | ResCNN-GP
of layers
3 9.37e+04 9.57e+04
4 6.55e+06 6.79e+06
) 4.51e+4-08 4.75e+08
6 3.07e+10 3.28e+10
7 2.07e+12 2.25e+12
8 1.39e+14 1.54e+14
9 9.31e+15 1.04e+16
10 6.20e+17 7.05e+17
11 NaN NaN
12 NaN NaN

Table 3.3: Explosion of entry values of kernel matrices. With more layers, the kernel
value continuously increases until network depth reach 10 and explodes for networks
whose depth is more than 10 thereafter.

We draw a conclusion from this subsection that the prediction accuracy of ResCNN-
GPs is higher than that of CNN-GPs with the same layers, which indicates skip connec-
tion improve the network performance; and accuracy of the networks with more layers
increase at first and then drops, and eventually both CNN-GPs and ResCNN-GPs fail
due to explosion of kernels, for which the failure of ResCNN-GPs is caused by failure of
CNN-GPs.

3.3 Networks with Different Number of Input Images

From now on, we will explore another factor — the number of input images, which
influence the sizes of kernel matrices and concentrate on the study of how the number
of input images affects the eigendecomposition and classification accuracy.

3.3.1 Eigen-analysis of Kernel Matrices

We know that for a diagonal block matrix
A0
*- (o n)

99

(3.14)

the eigenvalues of matrix A and B are also eigenvalues of matrix P. However, kernel
matrices K is generally not a form of diagonal block matrix shown as P, thus the
finding the eigen-relationship between kernel matrices and their corresponding diagonal
block matrices will be very difficult in this case. We thus find the relationship through
experiments.

We know from Section 3.2 that the network depths have no significant impacts on
the eigenvectors, and the ResCNN-GPs and CNN-GPs do not have significant differences
for eigenanalysis as well. Therefore, for the simplicity of our analysis we will only focus
on the CNN-GP3 with varying numbers of input images for digits 0 and 1.

We feed the CNN-GP3 with sample images of sizes 300, 500, and 800 in sequence
and the pairwise plots for the top 5 eigenvectors of kernel matrices induced by CNN-
GP3 are shown in Figure 3.21a. It should be noted that the latter samples contain the
former samples. We see that there is a convergent trend along the eigenfunction ¢q for
all pairwise plots and the eigenvectors generated by digits 0 and 1 are notably separated
in the first pairwise plot ”¢g vs ¢1”. Also, we inspect that with more input images the
points will cluster more tightly: the green cluster generated by 800 images is tighter
than the red cluster, while the red cluster is tighter than that of blue ones. Although
the clusters are becoming tighter as data size grows, global geometric structures of
eigenvectors are preserved for 3 datasets. It is even more intuitive when we plot the
top 3 eigenvectors in 3D space, shown in Figure 3.21b. We see that the values of 3
eigenvectors are tending to converge to 0 for all 3 eigenfunctions ¢; for ¢ = 0,1,2. This
could be instantiated by the data from Table 3.4, in which ®3q9, ®500 and Pggg are
the eigenvector matrices of kernel matrices with different input sizes, and avg and std
are average and standard deviation, respectively. We see decreasing trends of absolute
value of average and standard deviation for all top 3 eigenvectors when the input sizes
increase, from which the smaller standard deviations explain the tighter clusters.

Eigenvector index | Avg Std
®300[;,0] | -0.0569 | 0.0097
Ist | ®500[:,0] | -0.0440 [0.0079
D300[:,0] | -0.0348 | 0.0062
®300[;,1] | -0.0075 | 0.0573
2nd ‘1)500[:,1] -0.0065 | 0.0442
Dg00[:,1] | -0.0052 | 0.0350
®300[:,2] | -0.0032 | 0.0576
3rd | ®500[;,2] | -0.0021 | 0.0447
Pso0[:,2] | -0.0014 | 0.0353

Table 3.4: Averages and standard deviations of top 3 eigenvectors of kernel matrices
with different input sizes. For the 1st, 2nd and 3rd eigenvector, their averages all have
convergent trends and standard deviations get smaller when input sizes are larger.

Figure 3.22 plots the logarithms of eigenvalues of kernel matrices induced by CNN-
GP3 with different input sizes. It is known from the graph that the eigenvalues of kernel

60

o Vs 1

010

0.10 1
005 4 0.05 {
0.00 1

0.00 4
=0.05 1

-0.05 A
—0.10 1

0.10 4
0.1 1

005 4
0.0 1

0.00 4
—0.05 4 —0.1

—=0.10 4

(a) Pairwise plots of top 5 eigenvectors.

« 300
= 500
= BOO

(b) Scatter plot of top 3 eigenvectors.

Figure 3.21: Eigenvectors of CNN-GP3 on digit 0 and 1 for 3 sample sizes. Digit 0 are
denoted by dots and digit 1 are denotes by pluses. There are 3 samples: 300 blue points,
500 red points and 800 green points.

61

matrices with bigger sizes will have greater eigenvalues at the same index, which is more
obvious for the largest eigenvalue of each kernel matrix, and the eigenvalues of smaller
kernel matrix drop faster than those of larger kernel matrix.

15 —— 300

1a 800

14

12

log(A)

10

6 \

6 160 260 360 460 5(50 6(50 '.-'(50 BL:IG
eigenvalue index

Figure 3.22: Eigenvalues of kernel matrices of CNN-GP3 with 3 different input sizes:
300, 500, and 800 images of digit 0 and 1, respectively.

With the help of eigenvalues, we can give an explanation for the convergence of
eigenvectors when we feed more images to the network. Assume K3ggx300 is the kernel
matrix of CNN-GP3 when we feed the first 300 images consisting of digit 0 and 1, and
thus we have

K300x300 K300x 200)
K = 3.15
P00x500 (KQOO %300 K200x200 (3.15)

when we feed 500 images consisting of digit 0 and 1, for which the first 300 images are
contained and the last 200 images are newly added. When we perform eigendecompostion
for both kernel matrices, we have

K300x300 = ®300A300P 30, (3.16)
Ks500x500 = P500A500P500- (3.17)

Since the first 300 eigenvalues from Asgo are larger than the corresponding eigenvalues
of Aggp and there are extra 200 positive eigenvalues according to the Figure 3.22, the
first 300 entries for every eigenvector from ®509 should be scaled down to fulfill block
matrix K300><300. Same holds for K800><800-

We close this subsection by the conclusion that larger kernel matrices have more
tightly clustered eigenvectors and higher eigenvalues and global geometry of datasets
with different sizes are similar.

3.3.2 Performance on Classification

As we do in previous sections, we will discuss the relationship between kernel sizes
and prediction accuracy. Assume both X € RNX1x28x28 5nd X, e RN X1x28x28 416
normalized tensors, then the size of training kernel K(X,X) € RV*N is affected by

62

the sizes of training samples, while the sizes of testing kernel K(X,,X) € RV ¥V js
influenced by sizes of testing samples and sizes of training samples. Still, we only focus
on the performance of CNN-GP3 due to the similar performance for other depths or for
ResCNN-GPs. Of course, the classification accuracy is a mutual result of many factors,
including network depth. For the reasons we talked about in Section 3.2, we will not
consider deep networks.

Figure 3.23 shows the relationship among accuracy, training size, and testing size
on classification accuracy of CNN-GP3 trained on MNIST data, which includes all ten
digits from 0 to 9. To minimize any possible factors that might influence our results, we
just set all the hyperparameters as the optimized parameters. It is very obvious that if
the test set size is fixed we have higher accuracy once we have more training data; if the
training size is fixed we have lower accuracy once we have more test data.

To put it simply, the classification accuracy is proportionate to training size and
inversely proportionate to testing size. This is reasonable since more training samples
will provide more information and reduce the uncertainty of our prediction and more
testing samples will increase the uncertainty of our prediction due to limited information
extracted from training samples.

0.875
0.850
0.825 >
&
0.800 S
v
0.775 ®
0.750
0.725

Figure 3.23: The influence of raining size and test size on classification accuracy of
CNN-GP3.

63

4 Conclusion and Future Work

In this section, we will summarize the work we did and propose new possibilities for
future work.

In Section 2, we discussed the background knowledge concerning linear operators,
kernel functions, and Gaussian processes, and we then presented related work regarding
the equivalence of neural networks with Gaussian processes, including Bayesian neural
networks as Gaussian processes, deep neural networks as Gaussian Processes and con-
volutional neural networks as Gaussian processes, respectively, in the limit of infinite
neurons for fully connected networks or infinite filters for convolutional neural networks.

In Section 3, we mainly explored the eigenanalysis for kernel matrices induced by
CNN-GPs and investigated the performance of kernel matrices on classification accuracy.
As we know, kernel matrices are affected by network architectures and their sizes are
influenced by the number of input images. Of so many hyperparameters of CNN-GPs,
we paid our attention to network depths, and analyzed eigenvectors and eigenvalues
for (Res)CNN-GPs with differing depths, finding that network depths have only limited
influence on the eigenvectors and eigenvectors are much influenced by the intrinsic simi-
larities of image data, on the contrary, the eigenvalues are significantly influenced by net-
work depths but the decay rate of eigenvalues is very similar for networks with different
depths. Moreover, we also found that the eigenvectors and eigenvalues of ResCNN-GPs
behave similarly to those of CNN-GPs, demonstrating a limited effect of skip connection
in eigendecomposition of kernel matrices. Network depths affect classification accuracy
as well. From experiments, we knew that networks with 7 layers have the best classifica-
tion accuracy for both CNN-GPs and ResCNN-GPs and the failure of ResCNN-GPs is
closely related to that of CNN-GPs. Furthermore, we explored eigenanalysis for kernel
matrices induced by CNN-GPs with different numbers of input images, discovering a
convergent trend for top 3 eigenvectors and higher eigenvalues at the same indices when
more images are fed to the network. Through the analysis of kernel sizes and classifi-
cation accuracy, we saw that networks with larger training kernel matrices and smaller
testing matrices will have higher accuracy.

Thoroughly studying and understanding the properties of linear operators related to
Gaussian processes induced by neural networks is interesting and challenging. Despite
the study of this thesis, we still do not explore how the other hyperparameters might
influence the behaviors of eigenvectors and eigenvalues. Of these hyperparameters, the
nonlinearity should be much more intriguing and complicated. For future work, the
study of kernel matrices resulting from changing the ReLLU activation function to other
choices (such as error function) would be interesting and the performance of classification
on such network could be analyzed as well. In addition, future work could examine the
properties of other linear operators and apply the operator for related kernels. For exam-
ple, the properties of Laplacian operator V applied on neural tangent kernel ©(z, y; 6)
in equation 2.32 could be analyzed to further understand the evolutionary process of
neural networks.

64

Bibliography

1]
2]

Robert A. Beezer. A First Course in Linear Algebra. Congruent Press, 2014.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To Understand Deep Learning
We Need to Understand Kernel Learning, 2018.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15(6):1373-1396, 2003.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling: Theory
and Applications (2nd Edition). Springer, 2005.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth Annual ACM Workshop on Computational
Learning Theory, pages 144-152, 1992.

Mikio Ludwig Braun. Spectral Properties of the Kernel Matrix and their Rala-
tion to Kerrnel Methods in Machine Learning. PhD thesis, Rheinischen Friedrich-
Wilhelms-Universitat Bonn, 2005.

David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of conver-
gence for sparse variational gaussian process regression. In Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 862871, Long Beach, California, USA, 09-15 Jun
2019. PMLR.

David Cherney, Tom Denton, Rohit Thomas, and Andrew Waldron. Linear Algebra.
Davis California, 2013.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W.
Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition

of data: Diffusion maps. Proceedings of the National Academy of Sciences of the
United States of America, 102(21):7426-7431, 2005.

J. de la Porte, B. M. Herbst, W. Hereman, and S. J. van der Walt. An Introduction
to Diffusion Maps, 2008.

David K. Duvenaud. Automatic Model Construction with Gaussian Processes. PhD
thesis, University of Cambridge, 2014.

Adria Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep
Convolutional Networks as Shallow Gaussian Processes, 2019.

Erdong Guo and David Draper. Infinitely wide tensor networks as gaussian process,
2021.

65

[15]

[16]

[17]

[25]

[26]

[27]

28]

Kur Hornik. Multilayer Feedforward Networks are Universal Approximators. Neural
Networks, 2:359-366, 1989.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks, 2020.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation, 1989.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pen-
nington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes,
2018.

Ha Quang Mihn and Vittorio Murino. Covariances in Computer Vision and Ma-
chine Learning. Morgan & Claypool, 2017.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University
of Toronto, 1995.

Marion Neumann, Shan Huang, Daniel E. Marthaler, and Kritian Kersting. pyGPs
- A Python Library for Gaussian Process Regression and Classification. In Journal
of Machine Learning Research, 2015.

Roman Novak, Lechao Xiao, Jachoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron,
Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep
convolutional networks with many channels are gaussian processes, 2020.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, and Vin-
cent Dubourg. Scikit-learn: Machine learning in python. Journal of Machine Learn-
ing Research, 12(Oct):2825-2830, 2011.

Carl Edward Rasmussen and Chritopher K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2005.

Bernhard Scholkopf, Ralf Herbrich, and Alex J. Smola. A Generalized Representer
Theorem, 2001.

Bernhard Schélkopf and Alexander J. Smola. Learning with Kernels. MIT Press,
2002.

Bernhard Scholkopf, Alexander Smola, and Klaus-Robert Miiller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem, 1996.

66

[29]

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A Gloabl Geomertric
Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):2319-2323,
2000.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395-416, 2007.

Tim Waegemans. Adverserial Attacks on Gaussian Processes. Master’s thesis,
Technical University of Munich, 2021.

Christopher Williams. Computing with Infinite Networks. In M. C. Mozer, M. Jor-
dan, and T. Petsche, editors, Advances in Neural Information Processing Systems,
volume 9. MIT Press, 1997.

Chrsitopher K. I. Williams and Matthias Seeger. Using the Nystrom Method to
Speed Up Kernel Machines. In Advances in Neural Information Processing Systems
(NIPS 2000). MIT press, 2001.

67

	Introduction
	Related Work
	Linear Operators
	Eigenfunctions and Eigenvalues of Linear Operators
	Kernels of Linear Operators

	Kernels
	Kernel Functions
	Eigenfunction Analysis of Kernels

	Nonlinear Dimensionality Reduction
	Gaussian Processes
	Covariance Functions
	Gaussian Processes for Regression
	Gaussian Processes for Classification

	Neural Networks
	Neural Networks as Gaussian Processes
	Kernels of Neural Networks

	Properties of Linear Operators Related to Gaussian Processes
	Hilbert-Schmidt Integral Operator
	The Integral Operator for Kernels
	Properties of the Integral Operator
	An Example Based on Radial Basis Function

	Networks with Different Architectures
	Eigen-analysis of Kernel Matrices
	Performance on Classification

	Networks with Different Number of Input Images
	Eigen-analysis of Kernel Matrices
	Performance on Classification

	Conclusion and Future Work
	Bibliography

