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Abstract

Transmembrane proteins (TMP) are essential for any living cell, facilitating several vital
processes. Transporters and channel proteins regulate the internal conditions of a cell
through active and passive transport of molecules. Receptor proteins receive and prop-
agate signals across the membrane borders, enabling communication with the outside
environment. However, despite their importance for molecular biology and medicine,
relatively few experimentally determined structures are available. In an effort to alle-
viate this structure-gap, many sequence-based prediction methods for TMPs have been
developed and gradually improved over the last three decades. Though they cannot com-
pletely replace 3D structures, those methods produce vital information about TMPs and
their topology. As part of this thesis, we developed two prediction methods for TMPs
and integrated them in web services for easy access.

Our first method, TMSEG, implements a multi-stage prediction pipeline utilizing several
machine learning models. It combines two random forests (RF) with a neural network
(NN) to gradually filter and improve the predictions. We carefully collected training
data from the Orientations of Proteins in Membranes (OPM) database and the Protein
Data Bank of Transmembrane Proteins (PDBTM). Utilizing evolutionary information
in the form of position-specific scoring matrices (PSSM), TMSEG manages to perform
on par with other state-of-the-art methods of its time.

We integrated TMSEG into the PredictProtein web service to enable easy access for
all types of users. Running since 1992, PredictProtein is one of the oldest services for
online protein structure and function prediction. Amongst others, it provides prediction
methods for secondary structure, solvent accessibility, membrane proteins, conservation,
protein-, RNA-, and DNA-binding, Gene Ontology (GO), and subcellular location. This
diversity of information, at the click of a button, enables users to easily analyze their
proteins of interest.

Once new technologies became available, we decided to improve upon our first method
and developed TMbed. In contrast to TMSEG, it uses a much simpler model architec-
ture consisting of a small convolutional neural network (CNN) coupled with a Viterbi
decoder. However, the most important change was to the input features. We replaced
the PSSMs with so-called embeddings produced by protein language models (pLM).
Adapting the breakthroughs in natural language processing (NLP) for language mod-
els, namely the Transformer architecture, those pLMs attempt to learn the “language
of life”, i.e., the inherent patterns in amino acid sequences. Often having been trained

i



on millions or billions of protein sequences, pLMs can produce information-rich vector
representations (embeddings) for all residues in a protein sequence, which rival evolu-
tionary information. Further, running on GPUs, pLMs can process several sequences
per second, which enables pLM-based prediction methods to process whole proteomes
within less than an hour. For example, TMbed can predict the over 500,000 sequences
in UniProtKB/Swiss-Prot in less than nine hours, while still reaching state-of-the-art
prediction performance.
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Zusammenfassung

Transmembranproteine (TMP) sind für jede lebende Zelle unverzichtbar und ermöglichen
mehrere lebenswichtige Prozesse. Transporter- und Kanalproteine regulieren die in-
ternen Bedingungen einer Zelle durch aktiven und passiven Transport von Molekülen.
Rezeptorproteine empfangen und übertragen Signale über die Membrangrenzen hinweg,
was eine Kommunikation mit der äußeren Umgebung ermöglicht. Trotz ihrer Bedeutung
für die molekulare Biologie und Medizin stehen jedoch relativ wenige experimentell bes-
timmte Strukturen zur Verfügung. Um diese Strukturlücke zu schließen, wurden in den
letzten drei Jahrzehnten viele sequenzbasierte Vorhersagemethoden für TMPs entwickelt
und schrittweise verbessert. Obwohl sie 3D-Strukturen nicht vollständig ersetzen kön-
nen, liefern diese Methoden wichtige Informationen über TMPs und ihre Topologie. Im
Rahmen dieser Arbeit haben wir zwei Vorhersagemethoden für TMPs entwickelt und in
Webdienste integriert, um einen einfachen Zugang zu ermöglichen.

Unsere erste Methode, TMSEG, implementiert eine mehrstufige Vorhersagepipeline,
welche mehrere Modelle aus dem Bereich des maschinellen Lernens nutzt. Es kombiniert
zwei Random Forests (RF) mit einem Neuronalen Netzwerk (NN), um die Vorhersagen
schrittweise zu filtern und zu verbessern. Wir haben dafür sorgfältig Trainingsdaten aus
der Datenbank Orientations of Proteins in Membranes (OPM) und der Protein Data
Bank of Transmembrane Proteins (PDBTM) gesammelt. Durch die Verwendung von
evolutionärer Information in Form von positionsspezifischen Scoring-Matrizen (PSSM)
schafft es TMSEG, mit anderen State-of-the-Art Methoden seiner Zeit mitzuhalten.

Wir haben TMSEG in den PredictProtein Webservice integriert, um einen einfachen Zu-
gang für alle Benutzertypen zu ermöglichen. PredictProtein ist seit 1992 in Betrieb und
einer der ältesten Online-Dienste für Vorhersagen von Proteinstruktur und Funktion.
Neben weiteren bietet es Vorhersagemethoden für Sekundärstruktur, freiliegende Pro-
teinoberfläche, Membranproteine, Konservierung, Protein-, RNA- und DNA-Bindung,
Gene Ontology (GO) und subzelluläre Lokalisation. Diese Vielfalt an Informationen er-
möglicht es Benutzern, mit nur einem Klick Proteine mit Leichtigkeit zu analysieren.

Als neue Technologien verfügbar wurden, entschieden wir uns, unsere erste Methode zu
verbessern und entwickelten TMbed. Im Gegensatz zu TMSEG verwendet es eine viel
einfachere Modellarchitektur, bestehend aus einem kleinen konvolutionalen neuronalen
Netzwerk (CNN) in Kombination mit einem Viterbi-Dekoder. Der wichtigste Unter-
schied war jedoch die Änderung der Eingabefeatures. Wir haben die PSSMs durch soge-
nannte Embeddings ersetzt, die von Protein-Sprachmodellen (pLM) produziert werden.
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Indem sie die Durchbrüche in der natürlichen Sprachverarbeitung (NLP) für Sprach-
modelle, insbesondere die Transformer-Architektur, nutzen, versuchen diese pLMs, die
“Sprache des Lebens” zu erlernen, d.h. die inhärenten Muster in Aminosäuresequenzen.
Oft auf Millionen oder Milliarden von Proteinsequenzen trainiert, können pLMs infor-
mationenreiche Vektorrepresentationen (Embeddings) für alle Positionen in einer Pro-
teinsequenz generieren, die der evolutionären Information gleichwertig sind. Darüber
hinaus können sie auf GPUs ausgeführt werden und mehrere Sequenzen pro Sekunde
verarbeiten, was es pLM-basierten Vorhersagemethoden ermöglicht, ganze Proteome in
weniger als einer Stunde zu verarbeiten. Beispielsweise kann TMbed die über 500.000
Sequenzen in UniProtKB/Swiss-Prot in weniger als neun Stunden vorhersagen, und er-
reicht gleichzeitig eine State-of-the-Art Vorhersagegenauigkeit.
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1. Introduction

1.1. Membrane Proteins

Countless proteins play a key part in what you could call the machinery of life, the
cell. Some catalyzing chemical reactions, converting nutrients into energy-sources, oth-
ers transporting molecules to their intended destinations, or receiving and sending bio-
chemical messages. However, for those processes to function properly, the cell needs to
maintain a controlled environment. For this reason, all living cells are surrounded by
a plasma membrane, separating and shielding it from the outside world. By carefully
regulating the internal concentrations of proteins and other molecules, the cell can con-
trol its internal conditions to fit its current needs. Within the cells of eukaryotes, there
are even specialized compartments, called organelles, which are themselves surrounded
by their very own membranes. However, complete isolation would ultimately result in
death, either by running out of nutrients or by toxic accumulations of waste products.
Thus, specialized proteins exist within the membranes to facilitate transport and com-
munication across those barriers [1]. Channel and transporter proteins react to internal
or external changes, opening or closing to enable passive or active transport of atoms
and molecules. Receptor proteins, spanning both sides of a membrane, receive signals
and propagate them to the other side. In other words, membrane proteins are integral
parts of the logistics and communication networks of the cell.

1.1.1. Lipids and the Membrane Bilayer

Lipids are the main component of biological membranes, apart from the actual mem-
brane proteins. Lipids are amphiphilic molecules. They consist of a hydrophilic head
and one or more hydrophobic tails (Figure 1.1). When placed in water they tend to
spontaneously form micelles or lipid bilayers, with their hydrophilic heads on the out-
side and hydrophobic tails on the inside. Biological membranes belong to the second
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1. Introduction

category, primarily containing phospholipids and glycolipids. Cholesterols are often in-
terspersed to loosen the otherwise tightly packed structure [2], making the membrane
more flexible, almost like a fluid.

1.1.2. Types of Membrane Proteins

Within those lipid bilayers sit membrane proteins. Roughly speaking, membrane pro-
teins can be split into two groups: peripheral and integral membrane proteins. Peripheral
membrane proteins are only loosely attached to the membrane, for example through hy-
drophobic or electrostatic interactions with the lipids or other membrane proteins. On
the other hand, integral membrane proteins are embedded into the membrane. De-
pending on how far or often they penetrate the membrane bilayer, they are further
categorized into monotopic, bitopic, and polytopic proteins. Monotopic proteins reach
only partially into the membrane but do not completely cross it. Bitopic proteins cross
the membrane exactly once, emerging on the other side, while polytopic proteins cross
the membrane multiple times. Throughout this thesis, I will also refer to bi- and poly-
topic membrane proteins as transmembrane proteins (TMP). Bitopic proteins typically
cross the membrane with an alpha-helical segment, while polytopic proteins come in two
common shapes: tightly packed bundles of alpha helices, or barrel-like structures formed
by beta strands (Figure 1.2).

1.1.3. Alpha-Helical Transmembrane Proteins

The most prevalent form of TMPs are alpha-helical TMPs. Estimates based on whole
proteome predictions range from 20% to 30% [7, 8], i.e., about every fourth protein in
any living organism is an alpha-helical TMP. Alpha helices are a good way to stabilize
the membrane-crossing part of a TMP as they can form internal hydrogen bonds. The
otherwise highly apolar environment in the hydrophobic core of the membrane bilayer
makes stabilization through external bonds difficult. Amino acids found in transmem-
brane helices (TMH) are usually hydrophobic (e.g., A, I, L, V), interacting with the
hydrophobic tails of the lipids. However, sometimes polar or charged amino acids are
also part of TMHs, often shielded from the lipids by parts of the protein surface. On
average, TMHs are 26 amino acids long and oriented mostly perpendicular to the mem-
brane plane [9]. However, locally deformed membranes or tilted TMHs can allow for
variations in length, resulting in TMHs with about 15 to over 40 residues [10]. Due to

2



1.1. Membrane Proteins

Figure 1.1.: When placed in water, lipids form micelles or bilayers, shielding their
hydrophobic tails from the water while exposing their hydrophilic heads.
A: Amphiphilic lipid with a hydrophilic head and hydrophobic tails. B:
Lipids forming a micelle. C: Lipids forming a membrane bilayer.
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1. Introduction

Figure 1.2.: The two main structural types of transmembrane proteins (TMP). Left:
3D structure (PDB: 1UAZ [3]) of the alpha-helical TMP Archaerhodopsin-
1 located in the plasma membrane of Halorubrum ezzemoulense. Right:
3D structure (PDB: 2JMM [4]) of the beta-barrel outer membrane protein
A (ompA) located in the outer membrane of Escherichia coli. Dotted lines
represent the membrane boundaries annotated in OPM [5] (red: outside,
blue: inside). Images created using Mol* Viewer [6].
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1.1. Membrane Proteins

their prevalence in nature, alpha-helical TMPs are the best-studied type of membrane
proteins, and the focus of most sequence-based TMP prediction methods.

1.1.4. Beta-Barrel Transmembrane Proteins

The other and less common type of TMPs are beta-barrel TMPs. Here, the backbone
hydrogen bonds are internally satisfied by a barrel-like structure made entirely of beta
strands. A number of antiparallel beta strands are tilted about 45° relative to the
membrane plane and arranged next to each other to form a cylindrical shape [11]. Thus,
each beta strand can form bonds with the neighboring strands, with the first and last
beta strand in the sequence completing the barrel. Consecutive residues in individual
transmembrane beta strands (TMB) alternate between lipid-facing and pore-facing (i.e.
towards the inside of the barrel). This typically results in a sequence of residues that
alternate between hydrophobic and polar amino acids. Unlike alpha-helical TMPs, beta-
barrel TMPs have only been found in gram-negative bacteria, making up about 3% of
their proteomes [12, 13], and in the outer membranes of chloroplasts and mitochondria
of eukaryotic cells.

1.1.5. The Aromatic Belt and the Positive-Inside Rule

In addition to the obvious preference of hydrophobic amino acids in the core of TMH,
scientists discovered two other phenomena. First, the so-called aromatic belt or aromatic
cuff [14–16], which describes the prevalence of TYR and TRP at the ends of TMHs and
TMBs. Those polar and aromatic amino acids have a hydrophilic part, which is able
to interact with the heads of the lipids, as well as an apolar aromatic ring, which can
interact with the hydrophobic tails of the lipids. Thus, anchoring and stabilizing the
TMP within the membrane bilayer. Second, the so-called positive-inside rule [17, 18]. It
refers to the prevalence of positively charges amino acids (ARG, LYS) in the cytoplasmic
non-membrane regions of a TMP. First discovered in signal peptides [19], it was found
to be true also for TMH. This charge-bias has a strong influence on the orientation of
TMPs within the membrane and changing it through mutations can be enough to flip
it [20, 21]. Computational prediction methods frequently make use of those features,
especially the positive-inside rule.
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1. Introduction

1.1.6. Transmembrane Protein Topology

The topology of a TMP typically refers to how all residues of a protein sequence are
positioned in relation to the membrane, i.e., which parts of the sequence cross the lipid
bilayer, and which parts are situated outside the membrane and on what side of it. An-
other common term is the inside/outside topology, which refers to whether a particular
part of the protein sequence is “inside” or “outside” relative to the membrane. Here,
inside and outside most often refer to cytoplasmic and extracellular regions, respectively,
though it depends on the type of membrane. For example, the membrane of a cell or-
ganelle has no extracellular side. In this case, outside would usually refer to the parts
within the organelle.

1.2. Membrane Protein Structures

Due to the prevalence of transmembrane proteins (TMP) in nature and their impor-
tance to the pharmaceutical industry (many drug targets are TMPs) [1, 22], you would
expect there to be plenty of well-resolved 3D structures. However, quite the opposite
is the case. With less than five percent of all structures in the Protein Data Bank [23]
(PDB) being TMPs, they are significantly underrepresented [24–26]. The simple reason
is that experimentally determining the 3D structure of TMPs is harder than for most
other proteins [27]. For one, overexpression of TMPs can be toxic to the cell and it can
lead to them forming inclusion bodies [28]. In contrast to other proteins, which can fold
on their own, TMPs often need a lipid bilayer for correct folding of their 3D structure.
This makes the experimental determination more difficult, especially with classical X-
ray crystallography. Some tried to stabilize the TMPs with the help of antibodies or
fusing them with soluble domains [29–31]. However, this might alter their conforma-
tion. Recently, cryo-electron microscopy [32] gained popularity, which does not require
crystallization. Unfortunately, it comes at the cost of having a lower resolution. Despite
this rarity of 3D structures for TMPs, there are a few dedicated databases offering easy
access and additional annotations not found in PDB. Two of the more frequently used
databases are OPM [5] and PDBTM [33–35] (see below).
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1.2. Membrane Protein Structures

1.2.1. Orientations of Proteins in Membranes (OPM) database

As of early 2023, the Orientations of Proteins in Membranes [5] (OPM) database con-
tains 8,073 PDB entries, representing 4,235 distinct protein structures. Only 664 of those
PDB entries (distinct structures: 391) are beta-barrel TMPs, the others are alpha-helical
TMPs. The OPM database is automatically updated in regular intervals using the PPM
method [36–38]. For this, new PDB entries are downloaded from PDB and processed by
PPM. The method tries to find the best positioning of the PDB structures in a membrane
bilayer by calculating the transfer energy needed for inserting the protein into the mem-
brane. PPM tests several models of membranes with varying thickness and features. The
method itself received several improvements over the years, currently being in its third
iteration [38]. OPM also offers a web service to upload your own 3D structure and apply
the PPM method. OPM classifies its entries in a hierarchical system. The first level
describes the type of membrane protein, i.e., whether it is transmembrane, monotopic or
peripheral, or a membrane-active peptide. The second level provides information about
the main secondary structure composition: all-alpha, all-beta, alpha+beta, alpha/beta,
and non-regular proteins. The third level is the superfamily, i.e., proteins that are evo-
lutionary related and have superimposable 3D structures. The fourth, and final, level
is family, which includes proteins with detectable sequence homology. Each OPM entry
lists the number and position of its transmembrane segments, though it does not explic-
itly distinguish between transmembrane beta-strands (TMB), transmembrane helices
(TMH), or other membrane regions. However, this information can be inferred from the
type of TMP and the local secondary structure. The PDB structures themselves are
modified by PPM in such a way that the membrane bilayer is parallel to the z-axis, with
its center at the origin of the coordinate system. Planes of nitrogen and oxygen atoms
are added, representing the inner and outer membrane boundary, respectively.

1.2.2. Protein Data Bank of Transmembrane Proteins (PDBTM)

The Protein Data Bank of Transmembrane Proteins [33–35] (PDBTM) is an automat-
ically updated repository of PDB structures containing TMPs, similar to OPM. At
the time, it has 8,142 structures (7,611 alpha-helical TMPs, 526 beta-barrel TMPs).
PDBTM uses the TMDET [39] method to embed the protein structures into a simu-
lated membrane. It calculates the optimal positioning within the membrane based on the
accessible surface area of all residues that would be exposed to the membrane. TMDET
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1. Introduction

is periodically run against new 3D structures in PDB to filter for structures of TMPs.
Putative TMP structures are manually curated, i.e., visually inspected, after the auto-
matic detection. Unlike the detailed classification of TMPs found in OPM, the entries in
PDBTM are simply classified by their main structural elements passing the membrane:
alpha, beta, and coil for undetermined elements. In contrast to OPM, PDBTM carefully
annotates all regions of the protein sequence, not just the membrane-crossing segments.
Those annotations include beta-strand, alpha-helix, coil, membrane-inside, membrane-
loop, interfacial helix, as well as side 1 and side 2. Beta-strand, alpha-helix, and coil rep-
resent TMBs, TMHs, and other transmembrane regions, respectively. Membrane-inside
are parts of beta-barrel TMPs that are inside the beta-barrel itself and do not touch the
membrane, membrane-loops are re-entrant loops that dip into the membrane but do not
fully cross it, and interfacial helices are alpha-helical regions close and mostly parallel to
the membrane surface. Finally, sides 1 and 2 represent the other non-membrane parts
of the protein sequence and, if possible, are mapped to the corresponding inside/outside
topology. Unlike in OPM, the PDB structures are not modified to nicely fit the mem-
brane. However, the PDBTM entries contain the necessary information to do so if
desired.

1.3. Classic Computational Prediction Methods

In an attempt to alleviate the gap of known 3D structures for transmembrane proteins
(TMP), countless prediction methods have been developed and published within the
last three decades (Table 1.1). Though most of those methods only predict the position
of membrane segments within a protein sequence, instead of the actual 3D structure,
this information is often good enough for many research projects. Further features
predicted by many methods include signal peptides, membrane re-entrant loops, and
the inside/outside topology of the non-membrane regions, i.e., on which side of the
membrane they are located. Inside is most often synonymous with cytoplasmic and
outside with extracellular, though this can vary depending on the type of membrane
the protein is located in. While the first prediction methods started quite simple from
first principles, authors adapted more and more sophisticated and complex concepts and
machine learning architectures over the past decades. In the next sections, I will present
how those methods evolved from very simple programs to complex and powerful deep
learning models. It is important to note that the following is not a complete list of all
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1.3. Classic Computational Prediction Methods

membrane prediction methods, as there are just too many. Instead, I selected them
based on a combination of innovation, popularity within the scientific community, and
my personal experience.

1.3.1. Prediction from First Principles

The very first membrane prediction methods made use of the hydrophobic nature of the
lipid bilayer and consequently the transmembrane segments of the protein sequences.
In 1992, Gunnar van Heijne published TOP-PRED [40]. While being extremely simple,
its algorithm is able to detect transmembrane helices (TMH) within protein sequences
and predict their inside/outside topology. First, a window of 21 residues is shifted over
the whole protein sequence to calculate the average hydrophobicity along the sequence,
i.e., for all overlapping segments of 21 residues, a hydrophobicity score is reported. In
order to achieve a slight smoothing effect, the first and last five residues of the window
contribute less to the overall average than the central 11 residues, with the magnitude
of all position-weights forming a trapezoidal shape. An empirically chosen threshold
then distinguishes between certain and putative membrane segments, i.e., regions with
a high average hydrophobicity score are categorized as certain segments, while regions
with a moderate score are putative. Next, all possible topologies that include all certain
segments and any number of the putative ones are generated and scored based on the
positive-inside rule. This means that the number of positively charged amino acids
(ARG, LYS) on each side of the putative membrane boundary are counted. The model
with the highest charge bias towards one side is then selected, with inside being assigned
to the side with more positive charges. TopPred II [45] slightly improved upon TOP-
PRED by introducing additional rules aimed at the inside/outside topology prediction
for eukaryotic proteins, though the actual detection of TMHs stayed the same. Another
early method, SOSUI [51], similarly uses a running average hydrophobicity to detect
TMHs. In addition, it considers the amphiphilicity of the end region of a putative
TMH. This way it is able to better distinguish between true TMH and other helices
with high average hydrophobicity or region in the protein core.

1.3.2. Machine Learning for Membrane Protein Prediction

Although the early prediction methods produced reasonably good results (for their time),
their simplicity was heavily influenced by human bias. This includes the very narrow
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Table 1.1.: Selection of several transmembrane protein (TMP) prediction methods of
the last three decades. Year indicates when the method was first pub-
lished. Model provides information about whether the method uses a
simple hydrophobicity threshold, a statistical model with propensities for
each amino acid, a machine learning model (CRF: conditional random field,
GRHCRF: grammatical-restrained hidden conditional random field, HMM:
hidden Markov model, LSTM: long short-term memory network, NN: neu-
ral network, RF: random forest, SVM: support vector machine), or a con-
sensus prediction of multiple other methods. Input shows whether the
method utilizes only the information contained in the protein sequence,
some form of evolutionary information (e.g., MSA, profile, or PSSM), or
a protein language model (pLM). Type specifies the structural class of
TMPs predicted by the method, i.e., alpha-helical TMPs or beta-barrel
TMPs. SP and RL indicate if the method also predicts signal peptides or
re-entrant loops, respectively.

Name Year Model Input Type SP RL
TOP-PRED [40] 1992 Hydrophobicity Sequence Alpha No No
MEMSAT [41] 1994 Statistical Sequence Alpha No No
PHDhtm [42–44] 1994 NN Evo. Inf. Alpha No No
TopPred II [45] 1994 Hydrophobicity Sequence Alpha No No
MEMSAT2 [46] 1998 Statistical Sequence Alpha Yes No
TMHMM [47, 48] 1998 HMM Sequence Alpha No No
HMMTOP [49, 50] 1998 HMM Sequence Alpha No No
SOSUI [51] 1998 Hydrophobicity Sequence Alpha No No
Phobius [52] 2004 HMM Sequence Alpha Yes No
PROFtmb [13, 53] 2004 HMM Evo. Inf. Beta No No
PolyPhobius [54] 2005 HMM Evo. Inf. Alpha Yes No
MEMSAT3 [55] 2007 NN Evo. Inf. Alpha Yes No
OCTOPUS [56] 2008 NN + HMM Evo. Inf. Alpha No Yes
SPOCTOPUS [57] 2008 NN + HMM Evo. Inf. Alpha Yes Yes
MEMSAT-SVM [58] 2009 SVM Evo. Inf. Alpha Yes Yes
TOPCONS [59] 2009 Consensus Evo. Inf. Alpha No No
BOCTOPUS [60] 2012 SVM + HMM Evo. Inf. Beta No No
BetAware [61] 2013 NN + GRHCRF Evo. Inf. Beta No No
TOPCONS2 [62] 2015 Consensus Evo. Inf. Alpha Yes No
CCTOP [63, 64] 2015 Consensus Evo. Inf. Alpha Yes Yes
TMSEG [65] 2016 RF + NN Evo. Inf. Alpha Yes No
BOCTOPUS2 [66] 2016 SVM + HMM Evo. Inf. Beta No No
BetAware-Deep [67] 2021 LSTM + GRHCRF Evo. Inf. Beta No No
DeepTMHMM [68] 2022 LSTM + CRF pLM Alpha + Beta Yes No
DeepTMpred [69] 2022 CNN + CRF pLM Alpha No No
TMbed [70] 2022 CNN pLM Alpha + Beta Yes No
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selection of features, i.e., average hydrophobicity, positive charges, and later amphiphilic-
ity, as well as their respective thresholds. Modeling the complexity of membrane protein
folding with only a few “if-else” statements is prone to error. Thus, the next generation
of prediction methods ventured into the field of machine learning and adapted models
that are more complex: Neural networks (NN), support vector machines (SVM), and
hidden Markov models (HMM), to name a few. Those architectures are able to automat-
ically extract, learn, and model complex and non-linear relations between the individual
residues in a protein sequence. However, one still needs to define a suitable set of input
features for those models to work properly. A very basic approach is one-hot encoding
(Figure 1.3 A). This means that every residue in the sequence is represented by a one-hot
vector, i.e., a vector that contains only zeros except for a single one, which indicates the
corresponding type of amino acid. Typically, those vectors have a length of 20, repre-
senting the 20 standard amino acids. However, sometimes those vectors are extended
to represent additional symbols, like ambiguous or unknown amino acids. A slightly
more sophisticated way to encode the input is to use the corresponding rows from the
BLOSUM62 [71] (or similar) matrix to represent each amino acid (Figure 1.3 B). This
provides the model with additional information about the relation between the different
amino acids, i.e., which amino acids have similar properties and are likely substitutes.
Further, it is often helpful to explicitly provide the model with relevant features based
on the task. For membrane prediction, this would include hydrophobicity, charge, and
polarity of the amino acids.

Finally, it is usually beneficial to consider the local sequence context, instead of only
a single residue, when making a prediction for a single residue. The most common
approach for this is the sliding window method. For a predefined window size, all
features are concatenated into a single input vector and processed by the model to
make a prediction for the central residue of the window. For example, a sliding window
of size 15 with its features based on the BLOSUM62 matrix would contain a total of
15 × 20 = 300 features, i.e., each of the 15 residues within the window being represented
by its 20 BLOSUM62 scores. The prediction of the central residue, i.e., the seventh
residue, would then be based on all 300 features. By sliding such a window over the
whole sequence, all residues within a protein sequence can be processed. However,
predicting the first and last residues within a sequence requires extra care as the window
would hang over either the start or end of the protein sequence. This is often addressed
by adding an additional feature value to represent padding positions outside the actual
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amino acid sequence, or by setting all feature values to zero for those positions. In
essence, the sliding window approach mimics a 1D convolutional kernel.

Figure 1.3.: Two different encodings of the amino acid sequence SEQWENCE. A: One-hot
encoding represents each residue in the sequence with a vector of length 20.
The amino acid present at each sequence position is indicated by a 1 in the
corresponding vector element, all other elements are 0. B: Residues in the
sequence represented by the corresponding row from the BLOSUM62 [71]
matrix. In both cases, only the encoding of the first five residues is shown.
Note that the same type of amino acid is always represented by the same
vector (e.g., both E in the depicted encodings).

1.3.3. Leveraging Evolutionary Information

Arguably, one of the most impactful improvements to encode protein sequences was
leveraging so-called evolutionary information or profiles. While one-hot encoding or
BLOSUM62-like substitution matrices always provide the same fixed representation for
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a particular type of amino acid, evolutionary profiles hold specific information about
the conservation or variability of each individual residue within a protein sequence (Fig-
ure 1.4). The main idea behind this approach is that proteins from the same protein
family have similar sequences, sharing structural and functional features. Especially
regions in the sequence that are crucial for the structure and function of the protein are
usually highly conserved between members of the same protein family. On the other
hand, regions with a high variability of amino acids are most likely less relevant for the
overall function of the protein. In the context of membrane proteins, this means that
the hydrophobic characteristics of transmembrane regions are usually more conserved
than the more variable short non-membrane loops in-between them. This provides the
machine learning models with valuable evolutionary information that would be missing
in the previous single-sequence encodings.

A common method to generate such evolutionary profiles is to search the query se-
quence of interest against a big database of protein sequences and extract those that
are sequence-similar. This is usually accomplished by using optimized search programs
such as PSI-BLAST [72], HHblits [73], or MMseqs2 [74–76]. Once similar sequences
are collected they are aligned with the query sequence to compute a multiple sequence
alignment (MSA). The MSA is then further processed to compress its content into se-
quence profiles or position-specific scoring matrices (PSSM [72, 77]). A sequence profile
typically contains the raw distribution of amino acids per position of the query sequence,
i.e., the relative frequency indicating how often a particular amino acid appeared at a
specific position within the MSA (Figure 1.4 B). For a PSSM, the frequencies in the
sequence profile are normalized according to a background distribution (e.g., the back-
ground frequencies used in the BLOSUM62 matrix), and converted into log likelihoods
(Figure 1.4 C). Thus, a positive score in a PSSM indicates an amino acid that is likely to
appear at this specific position, while a negative score indicates a rather undesired amino
acid substitution. Those scores are well suited to be understood and processed by a ma-
chine learning model and provide valuable information, not only about the single input
sequence but the whole protein family. However, the downside of using MSAs, sequence
profiles, or PSSMs as input is the computational overhead associated with it. Search-
ing against a sufficiently large database with millions or billions of protein sequences
requires either vast amounts of computational resources or time, as does building large
MSAs from hundreds or thousands of sequences. Further, each of the steps involved
in the database search and MSA construction requires careful tuning of the parameters
used by the employed programs. Finally, this approach might simply fail for protein
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sequences without known homologs. Nevertheless, many of the most successful methods
for predicting TMPs utilize evolutionary information in one form or another.

1.3.4. Membrane Prediction Methods of the Last 30 Years

The MEMSAT Family

The original MEMSAT [41] method is a statistical model to predict TMHs. Based on a
data set of globular and membrane protein, the authors calculated the propensities (log
likelihoods) for each of the 20 standard amino acids to be part of one of five structural
states: inside loop, outside loop, inside helix end, outside helix end, and helix middle.
Inside and outside loops refer to non-membrane regions of the protein sequence. Inside
end, outside end, and middle of a helix refer to the caps and central residues of a TMH.
The authors defined the helix caps as the first and last four residues at each end of a
TMH. Separate statistics were computed for single-pass TMPs and multi-pass TMPs.
Using those propensity scores, MEMSAT can calculate how well a specific topology fits
to an amino acid sequence. As brute-forcing all possible topology combinations for a
given sequence would be computationally too expensive, MEMSAT utilizes a dynamic
programming algorithm similar to the Needleman-Wunsch algorithm used for pairwise
alignments. MEMSAT2 [46] extends the previous method by adding statistics for sig-
nal peptides, reducing the number of false positive predictions. The next iteration,
MEMSAT3 [55], adapts a neural network architecture, moving away from the purely
propensity-based model, and uses PSSMs instead of single sequences as input. It also
uses a sliding window of 19 residues, considering the sequence-adjacent residues when
making a prediction. Finally, MEMSAT-SVM [58] changed the model architecture again,
this time to support vector machines (SVM). The authors trained four binary SVMs,
each specialized on a different type of structural state: TMH, inside and outside loop,
re-entrant helix, signal peptide. While the three binary model for TMHs, re-entrant
helices, and signal peptides predict whether a residues belongs to this class or not, the
model for loops categorizes a residue as either belonging to an inside loop or outside loop
region. A dynamic programming algorithm, similar to the one in previous versions of
MEMSAT, is used to process the output of all four SVMs and predict the final topology
for a protein sequence.
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Figure 1.4.: Two different encodings of a multiple sequence alignment (MSA) for the
query sequence SEQWENCE. A: MSA with the query sequence and three sim-
ilar sequences. B: Query sequence encoded as a sequence profile contain-
ing the relative frequencies (percentages) of amino acids present in each
MSA column. C: Position-specific scoring matrix (PSSM [72, 77]) for the
query sequence based on the MSA and the BLOSUM62 [71] background
frequencies. Each value represents the log likelihood of the corresponding
amino acid substitutions. In both cases, only the encoding of the first five
residues is shown.
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PHDhtm

PHDhtm [42] is one of the first prediction methods to combine machine learning and
evolutionary information in order to predict TMHs and the overall topology of membrane
proteins. It consists of a multi-level prediction system, including two neural networks
(NN) and an empirical filter. The input of the first NN is a sliding window of the
MSA for the protein sequence, as well as a few global statistics. The MSA statistics
are the relative amino acid frequencies for each of the MSA columns included in the
sliding window, the frequencies for insertions and deletions, and a conservation score
for each position. Thus, 24 features encode each position: 20 standard amino acids,
1 indicator for padding, and 3 for insertions, deletions, and conservation. The global
statistics include the overall amino acid composition for the protein sequence, its total
length, and the distances from the N- and C-terminus to the current sliding window. The
input to the second NN is comprised of sliding window over the output of the first NN,
plus the conservation scores, and the same global statistics used for the first NN. Four
features encode each position in the sliding window: 2 output values from the first NN
indicating TMH/non-TMH, 1 for padding, and 1 for conservation. Finally, an empirical
filter is applied to the output of the second NN (TMH, not-TMH), deleting or extending
TMHs with less than 17 consecutive residues, and splitting very long TMHs with more
than 35 residues. The inside/outside topology is determined by the difference of positive
charges between the two sides separated by the predicted TMHs. The main advantage
of the two-level NN model is that the first NN can learn to detect residue belonging
to TMHs (i.e., sequence-to-structure), while the second NN learns to model TMHs as
segments of consecutive residues and learns their approximate lengths (i.e., structure-
to-structure). In a later version of PHDhtm [43, 44], the authors replaced the empirical
filter with a dynamic programming algorithm. First, all possible combinations of TMHs
with 18-25 residues are generated, and each TMH is scored according to the average
TMH-propensity of its residues as predicted by the second NN. Next, the highest-scoring
non-overlapping TMHs are selected one-by-one and iteratively added to the predicted
topology model. Each intermediate topology model is scored according to how well the
assigned residue-states fit the predicted propensities of the second NN. The topology
model with the highest score is selected for the final prediction, though lower-scoring
models are shown, too.
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TMHMM & HMMTOP

TMHMM [47, 48] is one of the first membrane prediction models to implement a hidden
Markov model (HMM). First described in 1998 and later republished in 2001, it is still
frequently used today. Unlike NNs or SVMs, which independently predict the states
of individual residues, HMMs try to estimate the best overall state-predictions for the
whole sequence based on a pre-defined grammar. This fit well with the segmented struc-
ture of TMPs, where the non-membrane regions of the protein sequence are separated by
TMHs crossing the membrane. Instead of having to apply additional filters to the predic-
tions in order to prevent too long or too short TMHs, the model itself can enforce those
parameters. The authors chose a cyclic HMM, forcing the topology to change between
inside and outside after each TMH. The HMM used in TMHMM contains structure-
blocks to model the core regions of TMHs, the cytoplasmic and non-cytoplasmic caps
of those TMHs, cytoplasmic loops, non-cytoplasmic short and long loops, and globular
domains between loops. The helix core model consists of 25 sequential states, including
shortcuts, which enforces lengths of 5-25 residues. The helix caps each have five states,
resulting in TMHs with lengths of 15-35 residues. Each loop region is modeled by 20
interconnected states, and together with the single self-looping globular domain state,
this allows for non-membrane regions of arbitrary lengths. HMMTOP [49] was devel-
oped independently around the same time as TMHMM. It implements a similar HMM
architecture, though the exact parameters (e.g., minimum and maximum lengths) differ
slightly. HMMTOP [50] was later improved by allowing users to pre-define the states for
parts of the protein sequence. This often resulted in better predictions and prevented
incorrect predictions for already well-annotated parts of a protein sequence.

Phobius & PolyPhobius

Phobius [52] is another early HMM-based prediction method for membrane proteins. It
was the first one to model signal peptides and TMHs in a single HMM. Essentially, it is
a combination of the HMMs implemented in TMHMM and SignalP-HMM [78], though
with slight modifications to the exact number of states. In addition to the previously
described states in TMHMM, Phobius includes separate states to model the n-, h-, and c-
regions of signal peptides, as well as its cleavage site. This enables Phobius to distinguish
between TMHs and the hydrophobic h-regions found in signal peptides, which also often
form helical structures. With this combined HMM, Phobius reaches better prediction
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performances than TMHMM, HMMTOP, and SignalP-HMM alone, or combinations of
those methods. A few years later, the same authors published an improved method,
which they called PolyPhobius [54]. Its main advantage over Phobius is the ability to
process aligned sequences from a MSA, instead of only a single sequence. PolyPhobius
first predicts the label probabilities for each individual sequence in the MSA, and then
averages the probabilities for aligned residues to get the predictions for the original
query sequence. Leveraging this evolutionary information, PolyPhobius outperforms
the already quite well performing Phobius. Although almost two decades old, both
methods are still frequently used today.

OCTOPUS & SPOCTOPUS

OCTOPUS [56] had one of the most complex model architectures at the time. Combining
elements from previous successful methods, OCTOPUS is made up of five different NNs
plus a HMM. As input, it uses both a PSSM and a raw amino acid frequency profile
generated by a PSI-BLAST [72] search. The authors trained four separate NNs to
predict the preference of a residue to be in one of four structural states: membrane,
interface, loop, and globular; each NN specialized for one of those states. The states
are defined based on the distance of a residue from the membrane center: less than 13
Å (membrane), 11-18 Å (interface), 13-23 Å (loop), and more than 23 Å (globular).
Thus, a single residue can belong to one or two states. The input for those NNs are
sliding windows over the PSSM. The fifth NN was trained to predict the inside/outside
topology preference of a residue based on sliding windows over the average frequency
profiles for the amino acids ARG+LYS, and TYR+TRP, i.e. focusing on the positive-
inside rule and aromatic belt. The output values from all five NNs are then combined
and used as emission probabilities for the HMM. The HMM itself distinguishes between
10 different states: inside and outside states for each of transmembrane, hairpin, loop,
globular, and re-entrant/dip. Transmembrane, hairpin, and re-entrant/dip states differ
by how far they are reaching into the membrane bilayer. Re-entrant/dip regions reach
only partially into the membrane, hairpins come close to the opposite border of the
membrane bilayer, and transmembrane regions completely emerge on the other side.
This made OCTOPUS one of the few methods to predict membrane regions other than
TMHs. In a later update, the authors added an additional NN and HMM to predict
signal peptides. This new method is called SPOCTOPUS [57].
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TMSEG

TMSEG [65] is a multi-stage prediction method, combining two random forests (RF),
a NN, and an empirical filter. The first stage is a RF that takes as input a sliding
window of 19 residues over a PSSM generated by PSI-BLAST [72], local hydrophobicity,
charge, and polarity, as well as global statistics similar to PHDhtm (overall amino acid
distribution, sequence length, distance to N- and C-terminus). It predicts the preference
for a residue to belong to one of three states: TMH, signal peptide, or other. In the next
stage, a median filter smooths the output of the RF, and an empirical filter removes
TMHs and signal peptides that are too short. The third stage consists of a NN trained
to distinguish between correct and incorrect TMHs. It is used to optimize the exact
placement of the already predicted TMHs, and to split very long TMHs into two separate
TMHs. In the final stage, another RF determines the inside/outside topology of the
protein sequence. For this, amino acid distributions and percentage of positively charged
residues are calculated for each of the two sides determined by the predicted TMHs, as
well as the absolute difference in positive charges. The RF then predicts the N-terminal
inside/outside topology, which in turn is used to infer the topology for all other sequence
regions in-between the predicted TMHs. Besides its good prediction performance, the
modularity of TMSEG allowed stages 3-4 to be applied to the prediction results of other
methods, often improving those as well. TMSEG is described in more detail in Chapter
2.

Consensus Methods: TOPCONS & CCTOP

Another approach to developing and training a completely new machine learning model
is the construction of consensus methods based on previous membrane prediction meth-
ods. Such consensus methods are often more accurate and stable in their prediction
output than any of the individual methods alone. One example is TOPCONS [59],
which combines the prediction output of SCAMPI-single [79], SCAMPI-multi [79], PRO-
TMHHMM [80], PRODIV-TMHMM [80], and OCTOPUS. After generating the results
for each method, they are used to calculate a topology profile for the sequence, containing
the average preferences for each residue to be either part of a TMH, inside (cytoplas-
mic), or outside (extracellular). This profile is then processed by a three-state HMM to
find the overall best topology prediction. TOPCONS2 [62] is an improved version that
replaces the previous prediction methods with Philius [81], SCAMPI-multi, OCTOPUS,
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SPOCTOPUS, and PolyPhobius. As some of those methods are able to predict signal
peptides, the HMM was adjusted accordingly and includes four states instead of three.
Another example for a consensus method would be CCTOP [63, 64], combining a to-
tal of ten methods: HMMTOP, MemBrain [82], MEMSAT-SVM, OCTOPUS, Philius,
Phobius, PRO-TMHMM, PRODIV-TMHMM, SCAMPI-multi, and TMHMM.

PROFtmb

PROFtmb [13, 53] differs from the previous membrane prediction methods by focusing
on the less common beta-barrel TMPs and their transmembrane beta strands (TMB).
The method implements a HMM with a total of 91 states, modeling TMBs, periplasmic
loops, and extracellular loops. Although the HMM architecture is quite straightfor-
ward, the authors note a few key features that increased the prediction performance of
PROFtmb. First, they model TMBs crossing the membrane from the periplasmic side
to the extracellular side and those crossing the other way around separately, instead of
having them both share parameters. Residues within a TMB always alternate between
a lipid-facing and pore-facing orientation. Next, due to their prevalence in the data set,
the HMM explicitly models short beta-turns with four or five residues on the periplasmic
side, in addition to longer loops. Finally, the HMM is able to process sequence profiles
instead of single sequences, improving the prediction performance of PROFtmb.

BetAware & BetAware-Deep

BetAware [61] predicts beta-barrel TMPs and their TMBs in two steps. First, a NN
architecture applied to the protein sequence predicts whether it is a beta-barrel TMP or
not. If it is, a grammatical-restrained hidden conditional random field [83] (GRHCRF)
predicts the three-state topology of the protein, i.e., inside, outside, and TMB regions.
The advantage of using a GRHCRF over a normal conditional random field (CRF) is
that the output of the former can be guided by a pre-defined grammar, similar to a
HMM, thus preventing it from generating biologically meaningless predictions. Like
many of the previous methods, BetAware uses sequence profiles as input to increase its
prediction performance. Just recently, an updated version called BetAware-Deep [67] has
been released. The main improvements are the inclusion of a hydrophobic moment along
the sequence, the use of a bi-direction long short-term memory (LSTM) network, and
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extending to five states. The hydrophobic moment measures the change in hydrophobic-
ity along the protein sequence and is based on the amino acid frequencies in the input
sequence profile. The LSTM takes the sequence profile and hydrophobic moment as
input and predicts the per-residue probabilities for each of the five states: non-barrel
region, periplasmic, extracellular, transmembrane, and extended beta strand. The non-
barrel region represents the parts of the protein that come before or after the beta-barrel
structure. The extended beta strands are the parts of the TMBs which extend out of
the membrane, i.e., they are no longer classified as transmembrane but still part of the
contiguous beta strand. The GRHCRF then takes the sequence profile and predicted
state-probabilities as input and predicts the overall protein topology. Finally, the five
states are converted to the typical three states by mapping the non-barrel regions to
periplasmic regions and the extended beta strands to TMBs.

BOCTOPUS & BOCTOPUS2

BOCTOPUS [60] takes the successful architecture of its predecessors (OCTOPUS, SPOC-
TOPUS) and applies them to beta-barrel TMPs. However, BOCTOPUS uses SVMs
instead of NNs. First, three separate SVMs take a PSSM as input and predict the per-
residue preferences for either inside, outside, or TMB. Those prediction values are then
fed into a HMM to generate the final topology prediction. BOCTOPUS2 [66] improves
upon its predecessor by splitting the TMB SVM into two separate SVMs, one for lipid-
facing residues and one for pore-facing residues. An empirical filter then processes the
predictions of the now four SVMs to remove likely false positives, i.e., predicted TMBs
far away from all other TMBs. Finally, the HMM uses the filtered SVM outputs and
predicts the four-state topology, i.e., inside, outside, lipid-facing, and pore-facing.

1.4. Rise of the Transformer and Protein Language Models

When Vaswani et al. published their famous paper with the title Attention Is All You
Need in 2017 [84], it had a far-reaching impact on the field of Natural Language Process-
ing (NLP) and Machine Learning in general. In the publication, they presented their
new Transformer model architecture and showed its superior performance on several
machine translation tasks. However, as the Transformer has no strong inductive biases,
i.e., it does not make strong assumptions about the structure of the input data, it was
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soon adapted to other domains such as images [85], audio [86], and most importantly,
proteins [87–93].

1.4.1. The Transformer

The Attention Mechanism

The main component responsible for the good performance of the Transformer is the
so-called attention mechanism. It enables the Transformer to consider all previous and
future elements of a given input sequence when performing computations, i.e., achieving
true bi-directionality. In general, attention works by comparing and aggregating features
for all tokens in a sequence (e.g., words in a sentence). Given a sequence of token vectors
xi, the overall sequence can be represented as a matrix X of size L × D, where L is the
length of the sequence and D is the size of each token vector. In the first step of the
attention mechanism, three matrices Q, K, and V are generated from the input matrix
X. They are also often referred to as query (Q), key (K), and value (V ). The Q,
K, and V matrices are computed by multiplying X with the weight matrices Wq, Wk,
and Wv, respectively, which are learned during training. Each weight matrix is of size
D × dk, thus projecting X to query, key, and value matrices of size L × dk. Next, the
Q matrix is multiplied with the transposed K matrix, resulting in a matrix S of size
L × L, which represents the pairwise similarity between all row-vectors of Q and K.
To prevent the individual dot-products in matrix S from having too large magnitudes,
the matrix is scaled by the inverse of

√
dk, hence this is also called scaled dot-product

attention. The matrix S is then processed by applying a row-wise softmax operation,
thereby normalizing each row to a total sum of 1. Finally, the normalized matrix S is
multiplied with V to generate the output of the attention mechanism. Mathematically,
this can be written as:

Attention(Q, K, V ) = Softmax

(
Q · KT

√
dk

)
· V (1.1)

This operation is often compared to the process of comparing a set of queries (Q) against
the keys (K) of a database and retrieving the corresponding values (V ). The weight
matrices Wq, Wk, and Wv extract the necessary features from the input X to represent
the relationship of the input tokens. In the output of the attention mechanism, each
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token is represented by a weighted sum of the values (V ) of all tokens in the sequence.
The weights are calculated by comparing the query (Q) and key (K) representations of
the tokens.

This attention mechanism is usually extended to a so-called multi-head attention. In-
stead of calculating a single Q, K, and V matrix for the input X, multiple of each are
computed. Every set of corresponding Q, K, and V matrices is referred to as an atten-
tion head, and each head is using its own Wq, Wk, and Wv matrices. After calculating
the attention output for every head, the resulting matrices are concatenated to a single
matrix. This matrix is then multiplied with a learned weight matrix Wo to combine the
individual attention head results and compute the output of the multi-head attention
mechanism. This extension of the attention mechanism allows each attention layer to
consider multiple relationships between all input tokens at once, instead of focusing on
only one at a time.

Further subcategories of attention mechanisms are the so-called self-attention and cross-
attention. In the former case, all Q, K, and V matrices are computed from the same
input X (as previously described). However, in the case of cross-attention, the query (Q)
matrix is computed from a different input than the key (K) and value (V ) matrices. For
example, in the case of machine translation (e.g., English to German), Q is computed
from the target sentence (e.g., “Der Himmel is blau”), while K and V are computed
from the source sentence (e.g., “The sky is blue”). This allows each of the tokens in the
target sentence to attend to the corresponding tokens in the source sentence.

Positional Encodings

One critical and often undesired aspect of the attention mechanism is that it is equivari-
ant regarding the order of the tokens. This means that the attention mechanism alone
would not be able to distinguish between the two sentences “the mouse ate the cheese”
and “the cheese ate the mouse”, or any other permutation of those five words. In the
original Transformer publication [84], the authors proposed encoding the absolute posi-
tion of a token within the sequence by using a combination of sine and cosine functions.
Those sinusoidal encodings are then added to the original input token vectors, thereby
allowing the Transformer to learn and model relationships of tokens based on their ab-
solute and relative positions. Later Transformer variants implemented different ways
of encoding positional information. Some opted to add either fixed [94] or learned [95]
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biases based on the relative positions of the tokens to the similarity matrix, just before
the softmax function, which allowed the Transformer to take the relative order of tokens
into account. Though those did not encode the absolute position of a token within the
sequence, they showed very good results in practice. Rotary positional encodings [96]
on the other hand applied rotations to the key and value vectors based on the absolute
position of a token. Similar to the sinusoidal encodings, rotary encodings allow modeling
absolute and relative relations between tokens.

Attention Is Not All You Need

The other main component of the Transformer is a standard two-layer feedforward neural
network (FNN) that processes each token vector individually and refines their features.
Those two components, an attention layer followed by a FNN, form what is called a
Transformer block. Finally, a typical Transformer is made up of multiple such blocks.
Thus, the model alternates between aggregating features across all tokens in the attention
layer and then processing the new features of each token individually in the FNN.

Encoders and Decoders

Transformers can be further classified into encoder and decoder models, with the main
difference being in how the attention mechanism is configured. An encoder Trans-
former utilizes standard self-attention in its attention layers, thus processing the input
sequence bi-directionally. This configuration is often used when the main purpose of
the model is to encode an input sequence into an information-rich and contextualized
vector-representation. The output of an encoder is then used as the input feature for
another downstream model, e.g., for classification tasks. On the other hand, a decoder
Transformer applies a so-called causal attention mask to the self-attention layers, which
sets the upper triangle (excluding the diagonal) of the similarity matrix S to negative
infinity. This effectively prevents any individual token from attending to any of the
tokens that are further down the sequence, i.e. the first token can only attend to itself,
the second token only to itself and the first token, and so on. Thus, causal attention
replicates the way a unidirectional long short-term memory (LSTM) network works.
Decoders are typically used for generative tasks, e.g., generating new text by iteratively
predicting the next word in a sentence based on all previous words. Finally, encoder and
decoder models can be combined via cross-attention. Here the decoder has additional
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cross-attention layers, which combine the token vectors of the decoder (queries) with the
final output of the encoder (keys, values). Such encoder-decoder models are often em-
ployed for tasks that mix inputs from different domains. For example, when translating
from one language into another, or when going from image to text (image captioning).
In fact, the original Transformer published in 2017 [84] was an encoder-decoder model
that used the encoder to process the source sentence of a machine translation task and
the decoder to generate the translated target sentence.

Training a Language Model

Transformer-based language models (LM) can be trained using supervised methods,
just like most other machine learning models. For example, an encoder-decoder LM
intended for machine translation is trained on pairs of sentences from the source and
target languages. However, there is a major benefit in self-supervised pre-training of
LMs. This means that the LM trains on unlabeled data, which is usually much more
available (e.g., by crawling Wikipedia) than labeled data for a specific task. The purpose
of this pre-training is for the LM to learn the basic grammar and semantics of the
language. Afterwards, the LM can be further fine-tuned on labeled data for its final
task, if necessary. Two methods for self-supervised pre-training are Masked Language
Modeling (MLM) and Autoregressive Language Modeling (ALM).

The idea behind MLM is similar to a cloze test, i.e. filling blanks in a sentence. The
BERT [97] (Bidirectional Encoder Representations from Transformers) model was one
of the first Transformers trained using MLM. Here, 15% of the input tokens were ran-
domly masked, i.e. replaced by a special mask token, and the encoder-only model was
tasked with reconstructing the masked tokens based on the remaining unmasked tokens.
Further, to prevent the model from focusing solely on reconstructing the masked tokens,
10% of the masked tokens were instead replaced another random token from the vo-
cabulary and another 10% were reverted to the original token. This forced the BERT
model to learn to recognize correct or misplaced words and either pass them through
to the output (for original tokens) or replace them with a correct word (for random re-
placements). The hidden representations, often called embeddings, just before the final
output projection (back to token labels) can then be used for downstream tasks. For
example, classification of either individual tokens or the overall sequence.
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On the other hand, ALM is based on predicting the next token in a sequence. Popular
models trained on ALM include the GPT [98–100] family by OpenAI. During ALM
training, a special start token is prepended to the input sequence and the model is
tasked to output the input sequence, but shifted one position to the left. This means
that the first original token of the input is aligned with the special start token, the second
original token with the first, and so on. Further, causal attention masking is applied
to the self-attention layers of the model, which are often decoder-only models. Thus,
each output token can only attend to the tokens that came before it in the sequence,
essentially modeling a next token prediction task. During inference, the decoder would
then start with a sequence, which might only consist of the special start token, and
output a sequence that includes the next, most probable word. Then it would iteratively
continue to use its own output as input, predicting the next tokens in the sequence,
until it finally predicts the end of the sequence. Such decoder models are often used for
generative tasks, such as auto-completion or text generation.

Finally, MLM and ALM training can also be combined in an encoder-decoder model.
For example, the encoder gets a masked sequence as input and the decoder is tasked
with predicting the reconstructed sequence in an autoregressive manner.

1.4.2. Protein Language Models

Adapting LM architectures from NLP to protein sequences can be quite straightforward.
The simplest way is to consider every amino acid in the protein sequence as a single word
(or token) and the whole sequence is equivalent to a sentence. Thus, the same training
techniques can be applied to those so-called protein language models (pLM). Earlier
pLMs showed promise when used to encode protein sequences to generate input features
(embeddings) for downstream tasks [101]. However, the powerful Transformer architec-
ture finally gave the needed push to put the quality of the embeddings generated by
those pLMs on comparable levels to evolutionary information (e.g., PSSMs or MSAs).

The abundance of publicly available sequence data through databases also provides
enough (unlabeled) training data for the self-supervised tasks of MLM and ALM. UniPro-
tKB [102] gives easy access to over 200 million protein sequences, while lager databases,
such as BFD [75, 103], hold up to 2.5 billion protein sequences. However, due to the
nature of protein sequences, special attention should be paid to homology. Many of
those protein sequences are highly redundant, which might bias the pre-training of the
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model. This issue was tackled in several ways, to reduce the redundancy in the training
samples. For example, Meta AI trained their ESM [91–93] family of pLMs on the less
redundant UniRef50, UniRef90, and UniRef100 clusters, or combinations thereof. The
ESM-1b model was trained on UniRef50, and ESM-1v on UniRef90. For the more recent
ESM-2 models sequences were sampled from UniRef90 based on the UniRef50 clusters, in
order to have a higher diversity of sequences without the full redundancy of UniRef90.
Another pLM, ProtT5-XL-U50 [89], was instead first trained on the redundant BFD
database and then fine-tuned on the less redundant UniRef50 cluster representatives.

Pre-training pLMs on large protein datasets enables them to learn the “grammar” and
“semantic” of protein sequences. To successfully solve their task, which is often MLM,
the pLMs must learn which amino acid motifs work in nature and which do not, or have
not been observed yet. However, due to the global perception of the attention mechanism
in Transformer models, this is not limited to local motifs, but can also extend to short-
and medium-range interactions, e.g., between residues in alpha helices or beta strands.
Even long-range interactions can be learned, which can happen between amino acids from
different domains that are close in 3D space but distant in sequence space. Further, by
training on multiple members of a protein family, the pLMs can recognize which regions
are rather conserved and which are more variable.

Although the training of large pLMs can take several days or weeks, the big advantage lies
in the fact that this has to be done only once. A pre-trained pLM encodes the compressed
information from millions or billions of protein sequences in its trained weights. While
the recent pLMs can be quite big (several GBs), modern hardware and optimizations for
machine learning enable very fast computations. A Transformer-based pLMs can usually
process several protein sequences per seconds. This often provides a speed-advantage
over generating evolutionary information, which involves searching a database for similar
sequences, aligning them into a MSA, and computing the desired statistics based on the
MSA. Further, pLMs can also handle sequences for which there are few or no known
homologs.

1.4.3. Protein Language Models for Membrane Prediction Methods

After the recent boom and success of modern pLMs in other fields of computational
biology, such as the prediction of secondary structure [89] or function [104–106], pLMs
have been tested for membrane prediction methods. Some of the more recent ones
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are DeepTMHMM [68], DeepTMpred [69], and TMbed [70]. Taking advantage of the
information-rich embeddings generated by pLMs, those methods reach state-of-the-art
prediction performance without the need for MSAs or PSSMs, and instead work with
single sequences as their input. Without having to search the query sequence against
a huge database to generate sequence profiles, those pLM-based methods are able to
process multiple sequences per second. For example, TMbed (see below) is able to
predict the over 500,000 protein sequences in UniProtKB/Swiss-Prot in less than nine
hours.

DeepTMHMM

DeepTMHMM [68] is the successor of TMHMM, one of the most popular prediction
methods of the last two decades. In addition to improved prediction performance and
the new capability to predict signal peptides, DeepTMHMM now also predicts beta-
barrel TMPs, instead of only focusing on alpha-helical TMPs. It employs the ESM-
1b [91] pLM to encode its input sequence and uses the generated embeddings as its sole
input features. The architecture of DeepTMHMM is rather lightweight and consists of
a bi-directional LSTM to process the embeddings and a conditional random field (CRF)
to model the predicted topology. Similar to a hidden Markov model (HMM), a CRF can
encode a certain grammar, which the predicted topology should adhere to. The authors
decided on two main schemas, one for alpha-helical TMPs and one for beta-barrel TMPs.
The alpha-helical model can start with either a signal peptide, an extracellular region, or
a cytoplasmic region. This is followed by any number of transmembrane helices (TMH),
each time changing from extracellular to cytoplasmic or vice versa. In contrast, the
model for beta-barrels is more strict and forced to start with a signal peptide followed
by a periplasmic region. The C-terminus is also restricted to the periplasm, enforcing
an even number of transmembrane beta strands (TMB). Globular proteins are predicted
by the alpha-helical model by simply not including any TMHs.

DeepTMpred

DeepTMpred [69] uses the ESM-1b pLM to generate its input features for a protein se-
quence, just like DeepTMHMM. However, DeepTMpred focuses solely on alpha-helical
TMPs and does not predict beta-barrel TMPs or signal peptides. Its architecture consists
of two sub-modules: one for TMH prediction and one for the inside/outside topology
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prediction. The TMH sub-module uses a small convolutional neural network (CNN)
and a CRF. While the single convolutional layer with a kernel size of three allows for
only a small receptive field, the ESM-1b embeddings should already encode the needed
global context. The CRF has only two states: TMH and non-membrane. The topology
sub-module uses a lightweight attention mechanism. Unlike the attention mechanism
in the Transformer, the attention layer chosen by the authors does not compare the
individual residues with each other. Instead, the vector representations of each residue
are projected to single weights and the residue representations are summed up according
to their weights. This weighted sum of residue representations is then used to predict
the N-terminal inside/outside topology. Further, only the first and last five residues of
a protein sequence are used for the topology prediction, which according to the authors
performed the best. Once the inside/outside topology for the N-terminus is determined,
the topology of all sequence regions is extrapolated accordingly, alternating between in-
side and outside after each predicted TMH. The authors of DeepTMpred tested a mod-
ification of their model that included sequence profiles generated with PSI-BLAST [72]
and HHblits [73], but they found that this sometimes even decreased the prediction per-
formance. They speculate that it just adds noise to the overall input signal and that the
ESM-1b embeddings already include the necessary information. Thus, the additional
parameters make the model more complicated and less stable to train.

TMbed

TMbed [70] predicts alpha-helical and beta-barrel TMPs, as well as signal peptides. Un-
like the previous two methods, it uses the ProtT5-XL-U50 [89] pLM to generate the input
embeddings. The model architecture of TMbed consists of a small convolutional neural
network (CNN), a Gaussian smoothing filter, and a Viterbi decoder. The CNN has four
layers: a pointwise convolution to reduce the dimensionality of the input embeddings,
followed by two parallel depthwise convolutional layers, and a final pointwise convolu-
tion. The CNN processes the input embeddings and predicts five state-probabilities for
each residue: inside, outside, signal peptide, TMH, and TMB. A Gaussian filter then
removes unwanted spikes in the prediction of the CNN and the Viterbi decoder models
the final state-prediction for each residue in the protein sequence. In contrast to the
CRF in DeepTMHMM, the Viterbi decoder in TMbed has only a few rulesets: 1) sig-
nal peptides must be at the start of a protein sequence, 2) signal peptides, TMHs, and
TMBs must be at least five residues long, 3) the inside/outside topology must change
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after each TMH and TMB. This allows TMbed to model more diverse protein topolo-
gies than DeepTMHMM. For example, it allows for beta-barrel TMPs with an uneven
number of TMBs, or without a signal peptide at the start. It would even be able to
predict proteins that have a combination of TMH and TMB segments, though thus far
I am not aware of experimental evidence for such proteins. TMbed is described in more
detail in Chapter 4.

1.5. 3D Structure Prediction Methods

Though not specifically designed for membrane proteins, general 3D structure prediction
methods are vital tools for the in silico research of membrane proteins. By providing
mostly reliable 3D structures, they can directly bridge the huge structure gap present
in experimental 3D structure databases. However, they often do not come with labels
attached, i.e. they usually do not predict whether a protein is a membrane protein or
not. Nevertheless, the various sequence-based TMP prediction methods presented in
the previous sections are perfectly suited as pre-filters to select only probable TMPs
for the 3D structure generation. This is especially true for the very fast and accurate
pLM-based prediction methods, such as DeepTMHMM [68] and TMbed [70]. They can
filter whole databases with several millions of protein sequences within a matter of days,
greatly reducing the downstream computational resources needed to perform the actual
3D structure prediction.

1.5.1. AlphaFold2

Without a doubt, AlphaFold2 [87, 88] made one of the biggest impacts in the field of
computational biology in the last few years. Providing quite accurate and reliable 3D
structure predictions for proteins, it single-handedly started to close the gap between 3D
structure databases and protein sequence databases. As of 2023, AlphaFold DB [107]
provides access to hundreds of millions of pre-computed 3D protein structures. Though
an accomplishment of its own, AlphaFold2 is also another offshoot of the recent Trans-
former [84] revolution. Several of its key components make heavy use of the attention
mechanism to aggregate and process the information contained within the input MSA
and its individual protein sequences, as well as to model the interactions between the
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atoms of the predicted structure. Combining this powerful new machine learning archi-
tecture with the information-rich input of evolutionary information (MSAs), gave rise
to this milestone of 3D structure prediction. While not designed to model a membrane
bilayer, research showed that AlphaFold2 is capable of reliable prediction of membrane
protein structures [108].

1.5.2. ESMFold

After AlphaFold2, the next and predictable evolution was to fully embrace the Trans-
former architecture and pLMs, which produced methods such as ESMFold [93]. Unlike
AlphaFold2, which still heavily depends on large high-quality MSAs for its prediction,
ESMFold replaces the MSA input with a pLM-based sequence embedding. This allows
ESMFold to predict 3D structures in only a fraction of the time needed by AlphaFold2,
though at the cost of a minor loss in model quality. However, for protein sequences with
only very few or no homologs at all (resulting in very small or empty MSAs), ESMFold
often reached better prediction performances than AlphaFold2.

1.5.3. TmAlphaFold & TMvisDB

Recently, 3D protein structure databases emerged that combine pre-computed AlphaFold2
predictions with membrane protein prediction methods for easy access to membrane
protein 3D structures. TmAlphaFold [109] employs a combination of SignalP 6.0 [110],
TMDET [39], and CCTOP [63, 64] to filter and detect potential membrane proteins
and the boundaries of the membrane bilayer. It currently provides predicted structures
and annotations for about 215,000 alpha-helical TMPs. TMvisDB [111] takes a more
lightweight approach, pre-filtering the over 200 million structures in AlphaFold DB using
TMbed. In total, TMvisDB contains about 44 million alpha-helical TMPs and 2 million
beta-barrel TMPs. Though the 3D structures do not explicitly include the membrane
boundaries, the TMH and TMB segments predicted by TMbed are highlighted in the
3D structures, making it easy to estimate the membrane boundaries by eye.
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1.6. Outline of This Work

This dissertation aims to ease and advance the research of transmembrane proteins
(TMP) using state-of-the-art prediction methods based on machine learning. Though
TMPs are prevalent in nature [1] and of high interest to both the research community
and pharmaceutical industry [22], there is a significant lack of high-quality 3D struc-
tures. Over the last three decades, countless statistical and machine learning methods
have been developed to predict the topology of TMPs from their primary sequence, in an
effort to alleviate the structure gap. In Chapter 2, I introduce TMSEG [65], a method to
predict alpha-helical TMPs, their transmembrane helices (TMH) and overall topology, as
well as signal peptides (if any). The multi-stage architecture is composed of two random
forests (RF), a neural network (NN), and an empirical filter. Leveraging evolutionary
information in the form of position-specific scoring matrices (PSSM [72, 77]), TMSEG
was able to compete with other state-of-the-art methods of its time. Chapter 3 focuses
on PredictProtein [112], one of the oldest web services for protein feature prediction.
Running for three decades, users around the world can easily upload their protein se-
quences and in return get access to various predictions about its potential function and
structure [112, 113]. Over time, this included predictions for TMPs by PHDhtm [42–44],
PROFtmb [13, 53], and TMSEG. Thus, scientists could use it to scan their proteins for
TMPs and further enrich them with annotations including Gene Ontology (GO) [104],
secondary structure [89], subcellular location [114], or effect of point mutations [115].
In Chapter 4, I present TMbed [70]. Intended as the successor to TMSEG, it improves
upon it in several ways. First, it adds the capability to predict beta-barrel TMPs, mak-
ing it one of the few methods predicting both types of TMPs at the same time. Next, it
utilizes the newest breakthrough in protein feature generation, namely protein language
models [89] (pLM). Lastly, it simplified the prediction model architecture and, due to
GPU acceleration, is now able to predict entire proteomes within less than an hour.
Altogether, TMbed is significantly faster and more accurate than TMSEG, competing
with the current state-of-the-art methods. Finally, I will conclude my dissertation with
a brief summary in Chapter 5.
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2.1. Preface

Combining established concepts of previous methods, we developed TMSEG, a predic-
tion method for alpha-helical transmembrane proteins (TMP). First, we decided to use
evolutionary information as input, in particular from position-specific scoring matrices
(PSSM [72, 77]). This had been proven to increase the prediction performance over only
the protein sequence alone [54, 55]. Next, we combined the prediction of transmembrane
alpha helices (TMH) with signal peptide prediction, which typically reduces the number
of false positive predictions for both of those classes [52]. Finally, we treated TMHs as
segments of consecutive residues, rather than predicting the state of each residue indi-
vidually. This idea was based in the success of hidden Markov models (HMM) in other
methods [47–50, 52, 54, 56, 57], though we did go with a different approach.

The architecture of TMSEG is a multi-stage prediction pipeline comprised of two random
forests (RF), one neural network (NN), and an empirical filter. In the first stage, a RF
predicts the preferences of each residue for three different states: TMH, signal peptide,
or other. Those predictions are then smoothed by a median filter in the second stage to
remove outliers, and an empirical filter removes all remaining TMHs and signal peptides
that are too short. If the protein retains any TMH, it continues to the third stage. Here,
a NN adjusts the length and placement of all TMHs and potentially splits very long
TMHs. The NN was specifically trained to distinguish between TMH segments that are
correctly placed and those that either are non-membrane regions or significantly shifted
from their correct position. Thus, treating TMHs as segments of consecutive residues
rather than individual ones. The final stage then predicts the inside/outside topology
of the non-membrane regions in-between the predicted TMHs.
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For the training, we collected TMP data from the Orientations of Proteins in Mem-
branes [5] (OPM) database and the Protein Data Bank of Transmembrane Proteins [33–
35] (PDBTM). Further, we took the data set of soluble proteins with and without signal
peptides used to train the SignalP4.1 [116] method. We carefully removed redundant
sequences to avoid overfitting on a particular protein family. During data processing, we
discovered that the annotation from OPM and PDBTM sometimes differed by several
residues, i.e. the TMH were shifted. As neither database could be considered more
correct than the other, we decided to use only proteins contained in both databases and
to train on the annotations of both, hoping that the model will learn to extrapolate the
most likely true annotation.

Evaluating TMSEG on an independent test split, it was able to compete with other
state-of-the-art methods at the time: MEMSAT3 [55], MEMSAT-SVM [58], and Poly-
Phobius [54]. It detected 98 ± 2% of all TMPs in the test set, while only misclassifying
3 ± 1% of all soluble proteins. For 66 ± 6% of all TMPs the predicted location of each
TMH was within five residues of the annotated position. Especially of note was its rather
low false positive rate, i.e., the percentage of soluble proteins incorrectly predicted as
TMPs. As the majority of proteins are not TMPs, this means that TMSEG would make
significantly fewer mistakes when predicting large quantities of proteins, e.g., whole pro-
teomes or databases. Further, due to the modularity of its architecture, we also tried
applying the last two stages (TMH refinement and topology prediction) to the predic-
tions of the other methods. We found that this was able to improve their predictions,
demonstrating the usefulness of our segment-based NN.

TMSEG is freely available on GitHub (https://github.com/Rostlab/TMSEG) and as
part of the PredictProtein [112, 113] (https://predictprotein.org/) web service.

Author contribution: I designed and developed the TMSEG method, collected all
data sets, and performed all evaluations. Edda Kloppmann and Jonas Reeb co-designing
the new evaluation criteria. All authors drafted the manuscript.

2.2. Journal Article: Michael Bernhofer et al., Proteins (2016)

Reference: Bernhofer, M., Kloppmann, E., Reeb, J., and Rost, B. Tmseg: Novel pre-
diction of transmembrane helices. Proteins, 84(11):1706–1716, 2016. 10.1002/prot.25155
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ABSTRACT

Transmembrane proteins (TMPs) are important drug targets because they are essential for signaling, regulation, and trans-

port. Despite important breakthroughs, experimental structure determination remains challenging for TMPs. Various meth-

ods have bridged the gap by predicting transmembrane helices (TMHs), but room for improvement remains. Here, we

present TMSEG, a novel method identifying TMPs and accurately predicting their TMHs and their topology. The method

combines machine learning with empirical filters. Testing it on a non-redundant dataset of 41 TMPs and 285 soluble pro-

teins, and applying strict performance measures, TMSEG outperformed the state-of-the-art in our hands. TMSEG correctly

distinguished helical TMPs from other proteins with a sensitivity of 98 6 2% and a false positive rate as low as 3 6 1%. Indi-

vidual TMHs were predicted with a precision of 87 6 3% and recall of 84 6 3%. Furthermore, in 63 6 6% of helical TMPs

the placement of all TMHs and their inside/outside topology was correctly predicted. There are two main features that dis-

tinguish TMSEG from other methods. First, the errors in finding all helical TMPs in an organism are significantly reduced.

For example, in human this leads to 200 and 1600 fewer misclassifications compared to the second and third best method

available, and 4400 fewer mistakes than by a simple hydrophobicity-based method. Second, TMSEG provides an add-on

improvement for any existing method to benefit from.

Proteins 2016; 84:1706–1716.
VC 2016 Wiley Periodicals, Inc.

Key words: membrane protein; protein structure prediction; transmembrane helices; a-helical integral membrane protein;

transmembrane protein prediction; transmembrane helix prediction.

INTRODUCTION

Transmembrane proteins (TMPs) are involved in

numerous essential processes within living organisms

such as signaling, regulation, and transport.1 About 20–

30% of all proteins within any organism have been esti-

mated to be TMPs.2,3 Many TMPs, especially G protein-

coupled receptors (GPCRs), are primary drug targets4

and therefore of high interest.

TMPs cross the membrane bilayer with either trans-

membrane helices (TMHs) or beta-strands. The latter are

found in the outer membrane of Gram-negative bacteria,

mitochondria, and chloroplasts. They make up only

about 1–2% of all proteins in Gram-negative bacteria.5

We concentrated on the more common class of helical

TMPs and will refer to these as TMPs in the following.

TMPs can cross the membrane only once (single-pass) or

multiple times (multi-pass). Due to the apolar and

hydrophobic environment in the lipid bilayer, most of

the amino acids found in TMHs are hydrophobic, and

their orientation in the membrane (called TMP topolo-

gy) can be discerned through Gunnar von Heijne’s

positive-inside rule.6,7

Additional Supporting Information may be found in the online version of this

article.
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Despite their immense importance, and despite crucial

experimental advances,8–11 <2% of the structures in the

Protein Data Bank12 (PDB) are TMPs.13–15 As mem-

brane regions are typically not visible in high-resolution

structures, TMHs are assigned to PDB structures by

expert resources, most prominently the Orientations of

Proteins in Membranes16 (OPM) database and the Pro-

tein Data Bank of Transmembrane Proteins17 (PDBTM).

Recent advances in experimental structure determina-

tion have benefited from advanced computational predic-

tions of TMHs from sequence.8,9 In the last 25 years,

many such tools have been developed, ranging from sim-

ple algorithms based solely on hydrophobicity scales

(e.g., TopPred18) to sophisticated uses of hidden Markov

models (e.g., TMHMM,19 HMMTOP,20 Phobius,21 and

PolyPhobius22), neural networks (e.g., PHDhtm,23,24

and MEMSAT325), and support vector machines (MEM-

SAT-SVM26). Arguably, the most important advance was

the incorporation of evolutionary information from

sequence profiles or multiple sequence alignments.23,24

Consequently, almost all methods developed over the last

decade are based on evolutionary information. A recent

assessment applying strict evaluation measures showed

that many methods perform well overall; the best are

some recent methods.27 Here, we show that a few simple

ideas improve significantly over the state-of-the-art.

MATERIAL AND METHODS

Dataset TMP166: helical TMPs with known
structures

We collected helical TMPs with known structures

annotated in OPM16 and PDBTM17 (releases 2013_07).

Both databases use PDB12 chain identifiers. We mapped

those PDB chains to their UniProtKB28 protein sequen-

ces using SIFTS.29 We excluded all chimeric PDB chains,

model structures, X-ray structures with >8 Å, and those

for which some TMH residues did not map gapless to

UniProtKB sequences. This gave 1087 PDB chains from

455 PDB structures (379 X-ray and 76 NMR structures).

UniqueProt30 reduced sequence-redundancy at

HVAL> 0 (the HVAL depends on alignment length and

the percentage of pairwise sequence identity31). At this

threshold, no pair of proteins has >20% pairwise

sequence identity for alignments of >250 residues (see

Rost 199932 for precise definitions). The result of this is

our final dataset consisting of 166 non-redundant TMPs

(called TMP166, Supporting Information Table S1).

As the TMH annotations in OPM and PDBTM dif-

fered for some proteins, we associated TMH annotations

from both databases with each sequence. The inside/out-

side topology of the non-transmembrane regions was

assigned based on the ATOM coordinates and topology

annotation from OPM (cf. Note Supporting Information

S1 and Fig. S1). We considered re-entrant regions33,34

to be non-transmembrane due to their scarcity in the

TMP166 dataset (only 15 proteins with one or two re-

entry regions each; Supporting Information Table S1).

Dataset SP1441: proteins with and
without signal peptides

As signal peptides are often confused with TMHs and

vice versa,27 a second dataset was derived from the Sig-

nalP4.1 dataset.35 This dataset contained UniProtKB

sequences of soluble proteins and TMPs with and with-

out signal peptide annotations. Note that these TMPs

have no inside/outside topology annotations and many

of their TMH annotations are not supported by experi-

mental evidence.

The SignalP4.1 dataset was redundancy reduced twice

using UniqueProt. First, all proteins similar to any of

those in the TMP166 dataset were removed at HVAL> 0.

Second, the remaining proteins were redundancy-filtered

at HVAL> 0. The final dataset contained 1441 proteins

sequences (299 TMPs and 1142 soluble proteins, called

SP1441; Supporting Information Table S2). About 477 of

those had signal peptide annotations (25 TMPs and 452

soluble proteins).

Splitting the datasets

We split the combined TMP166 and SP1441 dataset

into four subsets. We partitioned them in a way that all

subsets have approximately the same distributions with

respect to the number of soluble proteins and TMPs,

protein sequences with and without signal peptides, and

sequence lengths (Supporting Information Fig. S2).

We used the first three subsets to develop TMSEG in a

three-fold cross-validation approach (cf. TMSEG train-

ing). The fourth split, the independent test set called

BlindTest, was used only for the final performance evalu-

ation, i.e., no parameter was optimized on that set. The

BlindTest dataset contained 41 TMPs (from TMP166)

with known structure and TMH annotations from OPM

and PDBTM, and 285 soluble proteins from the SP1441

dataset. The 74 TMPs from the fourth split of SP1441

(Supporting Information Table S2) were not included in

the BlindTest dataset, because they lack sufficient experi-

mental annotations. However, we used them for the sig-

nal peptide prediction performance analysis, as we did

not have curated signal peptide annotations for the

TMPs from OPM and PDBTM.

Human proteome

We retrieved the human proteome, 20,196 protein

sequences, from UniProtKB/Swiss-Prot (release 2015_03).

We applied our TMSEG algorithm to the whole prote-

ome to provide a summary of its TMP composition and

to estimate run time.

TMSEG: Transmembrane Helix Prediction
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Dataset New12

Our original datasets had been based on the PDB

release from July 2013, when this work began. Shortly

before submission of the work in February 2016, that is,

32 months later, we retrieved all TMPs added to OPM

and PDBTM since July 2013. We removed all TMPs simi-

lar (HVAL> 0) to proteins in datasets used previously

(TMP166 and SP1441). Testing the pairwise similarity of

the remaining TMPs we found that two pairs were simi-

lar (HVAL> 0), but we decided to keep them due to

their low HVAL. This resulted in 12 new TMPs (New12

dataset, Supporting Information Table S3) we used for

additional testing. Although the statistical power of such

a small set is very limited, these 12 constitute the entire

addition of completely new structures from 2013/07 to

2016/02. Further, these or structurally related TMPs have

most likely not been used to develop any method used

for comparison.

Evaluation

As per-protein scores (correct classification as TMP or

non-TMP), we compiled the sensitivity (percentage of

observed TMPs predicted as TMPs) and the false positive

rate (FPR: percentage of soluble proteins predicted as

TMPs, Table I). As per-TMH scores (correct identifica-

tion and placement of TMHs), we compiled the preci-

sion (percentage of predicted TMHs that are correct),

recall (percentage of observed TMHs predicted as

TMHs), Qok and Qtop. Qok is the percentage of TMPs for

which all TMHs are correctly predicted (Table I). Qtop

requires in addition to Qok correct topology predictions

(in/out: Table I). To resolve conflicts between OPM and

PDBTM annotations, we chose whichever fit the

prediction best. Note that while sensitivity and recall

have the same formula, we used sensitivity in conjunc-

tion with TMPs and recall with TMHs to better distin-

guish between those scores in the text.

Each TMH was considered correctly predicted, if pre-

dicted and observed TMH ends were within five residues

(Supporting Information Fig. S3), and if predicted and

observed TMH overlapped by at least half of the length

of the longer of the two helices. These two criteria are

more stringent than those that have commonly been

used (typically: overlap >3–5 residues anywhere between

observed and predicted TMH36) and have recently led to

re-evaluating TMH prediction methods.27 None of our

major conclusions changed upon applying values slightly

different than five residues for the maximum allowed

discrepancy between predicted and observed TMH ends

(data not shown).

Error rates for the evaluation measures were estimated

by bootstrapping,37 i.e., by re-sampling the population

of proteins used for the evaluation 1000 times and calcu-

lating the sample standard deviation. Each of these sam-

ple populations contained 60% of the original proteins

(picked randomly without replacement).

State-of-the-art methods

We compared TMSEG to the best methods,27 namely

to PolyPhobius,22 MEMSAT3,25 and MEMSAT-SVM.26

Like TMSEG, these methods also use evolutionary infor-

mation to predict TMPs: MEMSAT3 and MEMSAT-SVM

automatically generate position-specific scoring matrices

(PSSMs) with PSI-BLAST, while PolyPhobius generates

multiple sequence alignments (MSAs). To ensure equal

conditions for all methods we ran them on our local

machines and used the UniProt Reference Cluster with

Table I
Evaluation Measures

Measurement Formula Description

Precision (%) 100 � # of correctly predicted TMHs
# of predicted TMHs

Precision of TMH prediction

Recall (%) 100 � # of correctly predicted TMHs
# of observed TMHs

Recall of TMH prediction

Qok (%) 100
N
�
PN
i51

xi; xi5
1; if pi5ri5100%

0; else

(
Percentage of TMPs with

correct TMH placement

Qtop (%) 100
N
�
PN
i51

yi ; yi5
1; if pi5ri5ti5100%

0; else

(
Percentage of TMPs with

correct TMH placement
and inside/outside topology

FPR (%) 100 � # of incorrectly predicted TMPs
# of soluble proteins

False positive rate of TMP prediction

Sensitivity (%) 100 � # of correctly predicted TMPs
# of observed TMPs

Sensitivity of TMP prediction

Listed are the evaluations measures used and how they were calculated. Precision and recall for the performance evaluation of the TMH prediction were computed by

combining all TMHs within the dataset (i.e., not averaged over each protein). Qok and Qtop were calculated based on all TMPs, where N was the number of TMPs in

the dataset, pi and ri were the TMH precision and recall for protein i within the dataset, and ti 5 100% indicated a correctly predicted N-terminal inside/outside topolo-

gy for protein i.

M. Bernhofer et al.
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90% sequence identity (UniRef90, release 2015_03) as

the homology search database, i.e., to generate the MSAs

or PSSMs. While we used proteins completely unknown

to TMSEG to assess its performance, some of the pro-

teins used in our assessment might have been used to

develop PolyPhobius, MEMSAT3, or MEMSAT-SVM. In

this sense, our assessment was likely to over-estimate

their performance, in particular with respect to TMSEG.

Baseline performance

We also compared all methods to a simple baseline

predictor similar to TopPred18: for all possible segments

of 21 consecutive residues, we summed the Eisenberg-

hydrophobicity38 (EisenbergSum, Supporting Informa-

tion Table S4). All non-overlapping segments with

EisenbergSum� 4 were predicted as TMHs, starting with

the segments with the highest sum. The inside/outside

topology was predicted based on the difference between

arginine and lysine residues on either side of the TMHs,

i.e., applying Gunnar von Heijne’s positive-inside rule.6,7

TMSEG input/output

TMSEG needs two input files to successfully run a

prediction: a FASTA file with the protein sequence and a

PSI-BLAST PSSM file for the input protein. The PSSM

file is mandatory and used to include homology-based

features that greatly increase the prediction accuracy.

Combining evolutionary information (e.g., PSSMs and

MSAs) with machine learning has been the most impor-

tant improvement in protein prediction and is common-

ly used in TMH and secondary structure

prediction.24,27,39,40 TMSEG incorporates evolutionary

information through PSI-BLAST profiles41 generated

from UniRef90 (release 2015_03). We used two sets of

profiles: a training set with a stringent E-value cutoff of

1025 and five iterations for creating the profile, as well

as a test set with a less strict E-value cutoff of 1023 and

three iterations. We deactivated PSI-BLAST’s low-com-

plexity filter and enabled the option to calculate local

optimal Smith-Waterman alignments in order to gener-

ate longer and more accurate alignments.

In addition, we used biophysical properties (charge,

hydrophobicity, polarity; Supporting Information Table

S4) and the overall amino acid composition. These fea-

tures were calculated twice for each residue: once for all

substitutions with a positive PSSM score and once based

on all substitutions with a negative score.

The standard output gives a brief summary of the

positions of the TMHs and signal peptide (if any) and

the inside/outside topology. In addition, a raw output is

available that also contains the unmodified output prob-

abilities of the machine-learning tools.

TMSEG algorithm

TMSEG combines several machine-learning tools and

empirical filters. The machine-learning algorithms used

are two random forests (RFs) and one neural network

(NN), both of which are implementations from the

WEKA Java package.42 The output of these algorithms is

further processed with empirically determined filters and

thresholds. The TMSEG algorithm executes four separate

steps (Fig. 1):

Step 1: initial per-residue prediction

An RF detects TMHs from the input sequence. This

RF slides a window of 19 consecutive residues through

the protein sequence, predicting whether or not the cen-

tral residue in the window is in a TMH, signal peptide,

or non-TM region, i.e., the probability of each residue

for each state is calculated based on the residue itself and

the nine residues left and right of it. For each of the 19

residue positions, we compute the PSSM profile. For the

central nine residues in the window, we also compute

the average Kyte-Doolittle43 hydrophobicity, and the per-

centage of hydrophobic, charged, and polar residues

(Supporting Information Table S4).

In addition to these local features, we compile glob-

al features: the distance of the residue to the N- and

C-terminus, the length of the protein sequence, and

the global amino acid composition. The RF assigns

three values to each residue corresponding to the

probability to be in a TMH, a signal peptide, or a

non-TM region. Runtime is decreased by multiplica-

tion of the probabilities by 1000 and transformation

into integers.

Step 2: per-protein filter: TMP or soluble

The per-residue scores are filtered empirically. First to

reduce short peaks of one or two residues, all per-residue

scores are smoothed by compiling the median score over

five consecutive residues and assigning it to the center

residue. Next, each residue is assigned to the state with

the highest score (TMH, signal peptide, or non-TM). To

prevent over-prediction due to the under-sampling of

signal peptide residues, we applied a penalty of 185 (that

is, 18.5%) to non-TM and 60 (that is, 6%) to TMH resi-

dues. These penalties were optimized during cross-

training to best balance over- and under-prediction.

Finally, TMHs shorter than seven residues are changed

into non-TM regions. If a signal peptide of at least four

consecutive residues is identified within the first 40 N-

terminal residues ending in residue at position i, TMSEG

predicts a signal peptide from residue 1 to residue i (i �
40). Signal peptide predictions outside the first 40 resi-

dues (i> 40) are changed into non-TM, but do not

invalidate signal peptides inside the first 40 residues.

TMSEG: Transmembrane Helix Prediction
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Initial predictions with fewer than four consecutive resi-

dues are changed into non-TM.

Step 3: refinement of TMHs

In the third step an NN corrects the predicted TMHs.

In contrast to the standard sliding window approach of

the RF in Step 1, here we introduced a segment-based

solution that used as input the following averages over

the predicted TMHs: length of predicted TMH, amino

acid composition, average hydrophobicity, as well as the

percentages of hydrophobic and charged residues. The

output of the NN is the predicted probability for the

segment to be a TMH. Based on this probability, the pre-

dicted TMHs from Step 2 are adjusted.

First, TMHs� 35 residues are split into two TMHs

with at least 17 residues, if these two TMHs increase the

overall probability. The minimum length of 35 residues

for splitting long TMHs and of 17 residues for the

resulting two TMHs were empirically chosen based on

the overall performance during cross-training. Second,

the start and end positions for each TMH are adjusted

by shifting them by up to three residues in either direc-

tion. Shifts are accepted if they increase the overall prob-

ability. The maximum endpoint adjustment by three

residues was empirically chosen based on the overall

performance during cross-training. In addition, the rela-

tively long minimum TMH lengths to allow splitting and

the relatively small shift of maximally three residues of

the TMH ends allow TMSEG to maintain a short

runtime.

Step 4: topology prediction

Another RF predicts the inside/outside topology of the

TMP, i.e., in which direction the TMHs cross the membrane.

During this step the non-transmembrane regions are assigned

to inside (e.g., cytoplasmic side of the membrane) or outside.

This prediction is made for the entire protein. For each

TMH, we consider up to 15 residues before and after the

TMH, and eight residues at the TMH start and end (for

TMHs< 16 these residues overlap). As all predicted TMHs

are assumed to cross the membrane, the in/out assignment is

switched after each TMH. For each side, we compute as input

to the RF the amino acid composition, the percentage of pos-

itively charged residues (we consider all arginine and lysine

residues), and the absolute difference of positively charged

residues between the two sides. Based on the RF output, one

side is assigned to be inside (e.g., cytoplasmic), the other to

be outside. Residues immediately after predicted signal pepti-

des are assigned to outside (non-cytoplasmic) and all

Figure 1
TMSEG algorithm. The new method TMSEG has four steps of machine learning and optimization. Step 1: A random forest (RF) assigns a score to
each residue for the three states transmembrane helix (TMH), signal peptide, and non-TM region. Step 2: The previous scores are smoothed

(median over 5 residues), all residues are assigned to the state with the highest score, and short segments are removed. Step 3: A segment-based
neural network (NN) adjusts the exact position of predicted TMHs, and their length, sometimes splitting TMHs, sometimes shifting, extending, or

compressing them. Step 4: The inside/outside topology is predicted by another RF.

M. Bernhofer et al.
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consecutive segments are assigned accordingly without any

further prediction.

TMSEG training

To reduce the risk of over-fitting, we split our com-

bined TMP166 and SP1441 datasets into four even splits

(cf. Supporting Information Tables S1 and S2). Note that

the TMPs from the SP1441 dataset were used to train

the random forest in the initial prediction (step 1) as

they contain signal peptide annotations. They are, how-

ever, not used for the neural network (step 3) or the ran-

dom forest in step 4, since they have no inside/outside

topology annotations and many of their TMH annota-

tions are not supported by experimental evidence.

The first of three splits was used to train, the second to

cross-train, i.e., to optimize all other free parameters (e.g.,

the minimum TMH length), and the last to evaluate per-

formance (test). This procedure was repeated three times,

such that each protein had been used exactly once for

training, cross-training and testing. The final parameters

were frozen according to the overall best performance for

all three rotations (on the test set). Given the frozen

parameters, we applied the final method to the fourth split,

the BlindTest dataset, which had not been used before.

Our careful four-fold split leading to three-fold devel-

opment (each with training, cross-training, and testing),

provided a double protection against overestimating per-

formance. We decided about every detail in the final

method before using the BlindTest dataset to evaluate

TMSEG as presented here. Many developers use a two-

fold split (training/testing), more careful ones the three-

fold split (training/cross-training/testing), while the

fourth split is occasionally introduced through pre-

release data39 like the New12 dataset that we generated.

RESULTS AND DISCUSSION

The novel TMSEG method introduced here distin-

guishes between proteins with transmembrane helices

(TMHs) and soluble proteins. For all helical transmem-

brane proteins (TMPs), it predicts the placement of the

TMHs, and their orientation in the membrane, i.e., their

inside/outside topology. We established sustained perfor-

mance through cross-validation with two levels of blind

testing. We compared our new methods to others,

including the best at predicting TMPs,27 namely Poly-

Phobius22 and MEMSAT-SVM.26 Furthermore, we ana-

lyzed MEMSAT325 because it excels at the inside/outside

topology prediction,44 and SignalP4.1 as the leading

method for signal peptide identification.35 In addition,

we compared to a simple hydrophobicity-based predic-

tion similar to TopPred.18

Outstanding per-protein distinction
between TMPs and other proteins

TMSEG correctly identified 40 of the 41 TMPs in the

BlindTest dataset (98 6 2% sensitivity) and incorrectly

predicted 8 of 285 soluble proteins as TMPs (3 6 1%

false positive rate: FPR). TMSEG performed similar to

PolyPhobius (100% sensitivity and 5 6 1% FPR) and sig-

nificantly better than MEMSAT3 and MEMSAT-SVM

(Table II).

Although signal peptides can be confused with TMHs

due to the similarity of their signal, only one of the

8 mistakes of predicting soluble proteins as TMPs origi-

nated from incorrectly predicting a signal peptide as a

TMH. This shows that training on a dataset containing

signal peptides helped significantly to reduce false posi-

tive predictions. PolyPhobius, which also includes a

sophisticated signal peptide prediction, did not confuse

any signal peptides with TMHs. However, MEMSAT-

SVM, MEMSAT3, and the Baseline predictor had 13, 41,

and 69 predicted TMHs, respectively, that overlapped by

at least half their length with annotated signal peptides.

Overall, TMSEG was able to reliably detect signal pepti-

des and to not predict them as TMHs (Supporting Infor-

mation Table S5).

Table II
Per-Protein Distinction Between Helical TMPs and Other Proteins

Method
TMP

sensitivity TMP FPR
Topology
correct

Misclassified
in human

More mistakes than
TMSEG in human

TMSEG 98 6 2 3 6 1 93 6 4 558 -
PolyPhobius22 100 6 0 5 6 1 78 6 7 770 212
MEMSAT325 100 6 0 28 6 2 93 6 4 4313 3755
MEMSAT-SVM26 98 6 2 14 6 2 88 6 5 2253 1695
Baseline 95 6 3 31 6 2 75 6 7 5015 4457

Results are provided for all 41 TMPs and 285 soluble proteins in the BlindTest dataset. Error rates are the sample standard deviation based on bootstrapping (cf. Meth-

ods). Listed are the TMP sensitivity (percentage of correctly predicted helical TMPs), the TMP FPR (percentage of non-TMP proteins incorrectly predicted as TMP),

Topology correct (percentage of proteins for which the topology (inside/outside) was correctly predicted; this differs from Qtop which requires topology and all TMHs to

be predicted correctly), Misclassified in human (estimates the number of proteins misclassfied for the entire human proteome), and More mistakes than TMSEG in

human (estimates the number of proteins misclassfied more by the method than by TMSEG). The estimates for the human proteome are based on two assumptions:

(i) the error estimates on the BlindTest dataset hold true for the human proteome, (ii) the human proteome has 20,196 proteins, 4791 of which are TMPs (cf. Results

section “Application to the human proteome”).

TMSEG: Transmembrane Helix Prediction
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We used the 74 TMPs from the fourth subset of the

SP1441 dataset (cf. Supporting Information Table S2) to

further test the prediction of signal peptides and TMHs.

For these proteins, TMSEG and PolyPhobius incorrectly

predicted several single-pass TMPs as soluble proteins,

because they confused their TMHs near the N-terminus

with signal peptides (Supporting Information Table S5).

This trend did not occur with the TMPs from the TMP166

dataset (evident by their high sensitivity values; Table II).

An explanation might be that TMPs with TMHs within

the first 40 residues are more prevalent in the SP1441 data-

set, which makes this misclassification more likely to hap-

pen. Although these misclassification rates would lower our

previous sensitivity estimates for TMSEG and PolyPhobius

(at least for single-pass TMPs with their TMH near the N-

terminus), we hesitate to generalize the results to everyday

applicability since the SP1441 dataset is biased (it was gen-

erated to develop the signal peptide predictor SignalP4.1)

and contains many TMPs with a TMH near the N-

terminus. Further, only 2 of the 9 TMHs that were incor-

rectly predicted as SPs had experimental evidence.

While all methods reached high sensitivity, they dif-

fered vastly in their false positive rates, i.e., soluble pro-

teins incorrectly considered to contain TMHs (Table II).

By translating the error rates, the number of proteins

that would be misclassified in the entire human prote-

ome can be estimated using two reasonable assumptions:

(i) the error estimates for all methods based on the 326

non-redundant proteins (41 TMPs and 285 soluble pro-

teins) in the BlindTest dataset hold true for the (redun-

dant) human proteome, (ii) the human proteome has

20,196 proteins and 4791 of those are TMPs (cf. Section

below “Application to the human proteome”). Under these

assumptions, TMSEG achieves 97% per-protein accuracy

and misclassifies only about 558 human proteins. The

second best method, PolyPhobius, makes 770 mistakes

(212 more than TMSEG) and MEMSAT-SVM as the

third best method already misclassifies 2253 proteins

(1695 more than TMSEG, Table II). In fact, TMSEG is

almost 8.8-times superior to the Baseline predictor, Poly-

Phobius over 6.5-times better, and MEMSAT-SVM 2.2-

times better than the Baseline predictor (Supporting

Information Table S6).

Best overall per-TMH prediction

Overall, TMSEG achieved a sustained level of precision

(87 6 3%) and recall (84 6 3%) for the TMHs, that is,

87 6 3% of all predicted TMHs were at the correct posi-

tion and 84 6 3% of all observed TMHs had been accu-

rately predicted [Supporting Information Fig. S4(A,B)].

These values were second to no other method, however,

only slightly above the second best method MEMSAT-

SVM (85 6 3% precision at 83 6 3% recall). All other

methods had scores below 80%. For 66 6 6% of all

TMPs, TMSEG predicted all observed TMHs at their

correct positions, i.e., Qok 5 66 6 6% (Fig. 2). MEMSAT-

SVM followed as second best with Qok 5 61 6 7% (Fig.

2). Nevertheless, given the small datasets, the top perfor-

mance of TMSEG remained within one standard devia-

tion of all compared methods, except the baseline

hydrophobicity prediction (Fig. 2: error bars).

When comparing the performance on TMP subsets

based on the number of TMHs, the performance got

worse the more TMHs a protein had [Supporting Infor-

mation Fig. S4(C,D)]. This might be misunderstood to

imply that prediction methods perform better in placing

the TMHs in single-pass TMPs than in, e.g., GPCRs

(with 7 TMHs). However, this simple numerical compar-

ison ignores the difference in the difficulty of the task:

The Baseline predictor reached a high value in Qok for

single-pass TMPs, but failed to predict all TMHs correct-

ly for any TMP with >5 TMHs [Supporting Information

Fig. S4(C)]. In fact, when we simply compiled perfor-

mance for the subset of proteins for which the Baseline

predictor failed, we found similar values for proteins

with one TMH, those with 2–5, and those with >5

TMHs (Supporting Information Fig. S5).

In contrast, it surprised us that even for the trivial

cases, i.e., those for which the Baseline predictor had all

TMHs correct, the more advanced methods failed for

some of them. This suggests that the large number of

different features used by the more advanced methods

sometimes interfere with and obscure a strong

Figure 2
TMSEG compared favorably to state-of-the-art. Results are provided for

all 41 TMPs in the BlindTest dataset. Error bars are the sample standard

deviation based on bootstrapping (cf. Methods). Shown is on the left
the percentage of proteins for which all TMHs were predicted correctly

(Qok, Table I) and on the right the percentage of proteins with correctly
predicted TMHs and inside/outside topology (Qtop, Table I; note that

Qok�Qtop by definition).
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hydrophobicity signal. Indeed, only 11 of the 19 trivial

TMPs were correctly predicted by all four other methods.

However, TMSEG still performed best with Qok 5 89 6

6%, followed by MEMSAT3 and MEMSAT-SVM with

Qok 5 84 6 7% (data not shown).

Best inside/outside topology prediction

TMSEG and MEMSAT3 correctly placed the N-

terminus as inside (e.g., cytoplasmic) or outside (e.g.,

extracellular), i.e., correctly predicted the topology, for

93 6 4% of all TMPs (Table II). When taking into

account the global topology and correct TMH placement

(i.e., Qtop), TMSEG performed better than all other

methods reaching Qtop 5 63 6 6% (Fig. 2). This is five

percentage points higher than the second best method,

MEMSAT-SVM (albeit still within one standard devia-

tion). Most advanced methods predicted the topology

correctly for almost all proteins for which they correctly

predicted all TMHs (Qtop almost identical to Qok for all

methods, except for the Baseline predictor in Fig. 2).

Application to the human proteome

We applied TMSEG to predict all helical TMPs in the

human proteome (20,196 proteins from UniProtKB/Swiss-

Prot). TMSEG predicted a total of 5157 TMPs, almost

half of these (2300 5 45%) were predicted with one TMH.

Given the sensitivity and false positive rate of TMSEG

(98 6 2 and 3 6 1%, respectively; Table II), we estimate

that 462 TMPs were incorrectly predicted (over-predicted)

and 96 were missed (under-predicted). In total, we thus

misclassified 558 proteins, and our corrected estimate was

that humans have about 4791 TMPs, i.e., about 24% of

all proteins cross the membrane. While TMSEG misclassi-

fied about 558 human proteins, the mistake in the esti-

mate of this percentage appeared to be less than a per-

mille, that is, 60.01%. However, our error estimate might

be too simplistic due to the high number of single-pass

TMPs for which the error rates are much higher than for

proteins with more TMPs.

Confirming previous observations,2,3 we also observed

two peaks of predicted TMPs for proteins with 7 TMHs

(819 proteins) and 12 TMHs (189 proteins). These likely

represent G protein-coupled receptors (GPCRs) and

transporter proteins. Applying UniqueProt to the 5157

predicted TMPs, we found around 500 non-redundant

TMPs of which 320 are single-pass TMPs.

Latest experimental structures confirmed
our estimates

The 12 new TMPs (New12 dataset) that have recently

been added to the PDB constituted the only dataset with

truly identical conditions for all methods assessed. The

New12 dataset allowed us to confirm the outstanding

performance of our new method TMSEG. TMSEG and

PolyPhobius correctly identified 10 of the 12 TMPs

(83 6 10% sensitivity), while MEMSAT3, MEMSAT-

SVM, and the Baseline predictor identified 11 (92 6 7%

sensitivity). However, TMSEG correctly predicted every

TMH of those 10 TMPs, resulting in a Qok 5 83 6 10%,

compared to Qok 5 58 6 13% for PolyPhobius, MEM-

SAT3, and MEMSAT-SVM (Baseline predictor

Qok 5 50 6 13%). TMSEG also performed best taking

into account the topology prediction and reached

Qtop 5 66 6 12%, compared to a Qtop 5 58 6 13% for

MEMSAT3 and MEMSAT-SVM, and Qtop 5 50 6 13%

for PolyPhobius and the Baseline predictor.

Comparisons complicated by small datasets

The two small datasets available for evaluation

(BlindTest with 41 TMPs and New12 with 12 TMPs)

implied high standard errors for many performance esti-

mates. Especially standard errors for the TMH-segment

based scores are so high (up to 16 percentage points,

Supporting Information Fig. S4) that comparisons

between methods hardly provide statistically significant

differences on the TMH-segment level. Nevertheless,

TMSEG seemed to perform on par with any existing

method. Note that the differences in the distinction

between helical TMPs and other proteins in the BlindTest

dataset were statistically significant even in considering

TMSEG as slightly better than the second best PolyPho-

bius (Table II).

Further, we could not use a single gold standard,

because OPM and PDBTM differed in their TMH anno-

tations: comparing the OPM annotations to the PDBTM

annotations (that is, “predicting” one with the other)

yielded Qok 5 56 6 7%. In other words, if we considered

one of those experiment-based annotations as the predic-

tion of the other, the average performance would be sim-

ilar to that of TMSEG and the other methods. When

using only OPM or PDBTM annotations to evaluate the

prediction performance, TMSEG still performed excel-

lently (Supporting Information Fig. S6). However, this

was also the only comparison in which one other meth-

od reached a numerically higher value for a dataset than

TMSEG, namely MEMSAT-SVM on the PDBTM annota-

tions. Overall, all predictions agreed more with OPM

than with PDBTM annotations (Supporting Information

Fig. S6).

Performance best with diverse alignments

TMSEG strongly depends on the evolutionary infor-

mation taken from PSI-BLAST PSSMs. We recommend

using a sufficiently large search database (e.g., UniRef90)

to generate the PSSMs. Additionally, redundancy reduc-

tion might help (e.g., at 90% pairwise sequence identity

as in UniRef90).

TMSEG: Transmembrane Helix Prediction
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Alignments built from smaller search-databases (e.g.,

UniRef50 and Swiss-Prot) only slightly lowered the per-

protein performance: the sensitivity never dropped below

90 6 4%, while the false positive rate remained at or

below 3 6 1%. However, the TMH-based precision and

recall values dropped substantially (Supporting Informa-

tion Fig. S7). Thus, for sequences that produce no PSI-

BLAST hits, we recommend using a larger search data-

base or—in the rare case that the protein is a true single-

ton—a method that is independent of evolutionary

information, e.g., Phobius.21,27

Re-entrant membrane helices not predicted
correctly

Our dataset contained only few re-entrant helices,

insufficient to learn their prediction (Supporting Infor-

mation Table S1). Therefore, we considered re-entrant

helices as non-TM during training to avoid later interfer-

ence with the inside/outside topology prediction. Due to

the lack of data, we could not reliably assess how well

TMSEG distinguishes TMHs from re-entrant membrane

helices: The BlindTest dataset included only seven re-

entrant regions (OPM and PDBTM annotations com-

bined). TMSEG incorrectly predicted five of seven as

TMHs; two of these five were predicted as two separate

TMHs; thus, the overall inside/outside topology was not

influenced. MEMSAT-SVM, the only tested method that

predicts re-entrant helices, identified five of the seven as

re-entrant, predicted one as a TMH, and missed the last.

When considering re-entrant regions as TMHs, Qok

remained the same for TMSEG and PolyPhobius and

dropped by 2–5 percentage points for MEMSAT-SVM,

MEMSAT3, and the Baseline predictor.

TMSEG easily combined with other methods

Due to the modularity of TMSEG (i.e., its four sepa-

rate steps, Fig. 1), it can be used to refine other methods.

This includes the adjustment of the TMHs as well as the

inside/outside topology prediction. We used the TMH

predictions of the reference methods, and applied Steps 3

and 4 of TMSEG to their prediction (Fig. 2). Applying

TMSEG as refinement improved the performance for

most methods (Fig. 3; Supporting Information Fig. S8).

While the improvement was small for the TMH place-

ment (Qok), TMSEG improved most methods by over

eight percentage points in Qtop (correct TMHs and

topology).

Runtime estimation

We estimated the runtime by applying TMSEG to the

human proteome (20,196 proteins). As the time to run

PSI-BLAST differs depending on the database size, we

decided to use pre-computed PSSMs to measure only the

time needed by TMSEG. Given those PSI-BLAST pro-

files, the prediction for the entire human proteome took

about 90 min (Intel Core i7-3632QM 2.2 GHz, 8GB

RAM; no multithreading), which corresponds to three to

four protein sequences per second.

CONCLUSION

In our hands, our new method TMSEG almost always

outperformed existing state-of-the-art prediction meth-

ods (Table II, Fig. 2). However, due to the small datasets,

many improvements on the per-TMH level remained too

small for the large margin of statistical significance (stan-

dard errors up to 16 percentage points, Supporting

Information Fig. S4). Most importantly, TMSEG

achieved the significantly best per-protein classification

in the distinction between helical TMPs and all other

proteins. For instance, for the prediction of all human

proteins, this implied about 558 incorrectly predicted

proteins. This number might appear high; however, no

method tested reached such a low level, e.g., PolyPhobius

misclassified about 200 more proteins than TMSEG and

MEMSAT-SVM fared about four times worse (corre-

sponding to >2000 incorrect predictions).

The highest per-protein performance resulted from a

combined prediction of TMHs, non-TM regions, and

signal peptides. In order to predict re-entrant helices,

Figure 3
TMSEG applied to refine other methods. The TMSEG algorithm itera-
tively refines performance through four consecutive steps. Here, we

applied Steps 3 and 4 as post-filters to other methods (dataset and

error bars as in Fig. 2). Given is the improvement of Qok and Qtop (cf.
Table I for definitions) of the prediction method by applying TMSEG,

i.e., Q(method 1 TMSEG) – Q(method). Note that PolyPhobius (first
bar on the left) and MEMSAT-SVM (third bar on the left) showed, on

average, no improvement in Qok.
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another state would have to be introduced; as is, TMSEG

predicted five of seven re-entrant helices in our dataset

as TMHs. The sustained high levels of per-segment pre-

dictions resulted from our new segment-focused algo-

rithm. Another major advantage of our new concept is

that it can be used to improve the predictions of most

other TMH prediction methods.

Availability and speed

Other than its top performance, using TMSEG may also

be recommended due to its speed and because it might

help to improve over the method that you run locally. The

method is easily and freely available: online through the

PredictProtein45 webserver (www.predictprotein.org), and

as standalone Debian package from the Rostlab Debian

repository (www.rostlab.org/owiki) and GitHub (www.

github.com/Rostlab/TMSEG). A tutorial on how to use

PSI-BLAST and TMSEG can be found in the Rostlab Wiki

(www.rostlab.org/owiki/index.php/TMSEG).
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3. PredictProtein - Predicting Protein
Structure and Function for 29 Years

3.1. Preface

PredictProtein is one of the oldest web services for the prediction of more than 20 func-
tional and structural features of proteins [113]. It has been running since 1992. Over
the years, more and more prediction methods for different features have been added or
replaced by improved versions. Thus, the computational resources needed to run Pre-
dictProtein and save its results became more and more. In an effort to keep it running,
we initiated a project together with the Schneider group at the Luxembourg Centre
for Systems Biomedicine (LCSB). Its main goal was to trim old and deprecated code,
remove unnecessary and outdated methods, add new ones, and move the infrastructure
to a host in Luxembourg.

We sped up and improved the graphical user interface [117–119] and added support
for new APIs for programmatic access to the cached prediction results. We added new
prediction methods for Gene Ontology (GO) [104], secondary structure [89], and protein-
, RNA-, and DNA-binding proteins [120]. Further, we improved our pipeline responsible
for searching databases for homolog sequences and alignment generation. In the past,
this step often took over an hour to complete. After the update, we were able to reduce it
to less than five minutes with the help of the MMseqs2 [74–76] method. Thus, improving
the user-experience by significantly reducing the time they spend waiting for results.

As TMSEG [65] (Chapter 2) is also part of the PredictProtein pipeline, it is easy to
cross-reference predicted transmembrane proteins (TMP) with features predicted by
other methods. For example, GO term and binding predictions might provide further

47
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information about the type of TMP (e.g., transporter, channel, receptor). Thus, making
PredictProtein an excellent resource for TMP research.

The PredictProtein web service is freely available at https://predictprotein.org/.

Author contribution: Christian Dallago and I contributed substantially to the writ-
ing of the manuscript, conceptualization of the new frontend, and implementation of
the backend. Tim Karl wrote most of the frontend and backend code, and supported
the needed hardware and software. Venkata Satagopam coordinated our efforts at the
Luxembourg site. All authors helped with the conceptualization of the new platform
and drafted the manuscript.

3.2. Journal Article: Michael Bernhofer et al., Nucleic Acids
Research (2021)

Reference: Bernhofer, M., Dallago, C., Karl, T., Satagopam, V., Heinzinger, M., et al.
Predictprotein - predicting protein structure and function for 29 years. Nucleic Acids
Res, 49(W1):W535–W540, 2021. 10.1093/nar/gkab354

Copyright Notice: Creative Commons Attribution 4.0 International License (https:

//creativecommons.org/licenses/by/4.0/).
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ABSTRACT

Since 1992 PredictProtein (https://predictprotein.
org) is a one-stop online resource for protein se-
quence analysis with its main site hosted at the Lux-
embourg Centre for Systems Biomedicine (LCSB)
and queried monthly by over 3,000 users in 2020.
PredictProtein was the first Internet server for pro-
tein predictions. It pioneered combining evolution-

ary information and machine learning. Given a pro-
tein sequence as input, the server outputs multiple
sequence alignments, predictions of protein struc-
ture in 1D and 2D (secondary structure, solvent
accessibility, transmembrane segments, disordered
regions, protein flexibility, and disulfide bridges)
and predictions of protein function (functional ef-
fects of sequence variation or point mutations, Gene
Ontology (GO) terms, subcellular localization, and
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protein-, RNA-, and DNA binding). PredictProtein’s
infrastructure has moved to the LCSB increasing
throughput; the use of MMseqs2 sequence search
reduced runtime five-fold (apparently without lower-
ing performance of prediction methods); user inter-
face elements improved usability, and new predic-
tion methods were added. PredictProtein recently in-
cluded predictions from deep learning embeddings
(GO and secondary structure) and a method for the
prediction of proteins and residues binding DNA,
RNA, or other proteins. PredictProtein.org aspires
to provide reliable predictions to computational and
experimental biologists alike. All scripts and meth-
ods are freely available for offline execution in high-
throughput settings.

GRAPHICAL ABSTRACT

INTRODUCTION

The sequence is known for far more proteins (1) than ex-
perimental annotations of function or structure (2,3). This
sequence-annotation gap existed when PredictProtein (4,5)
started in 1992, and has kept expanding ever since (6).
Unannotated sequences contribute crucial evolutionary in-
formation to neural networks predicting secondary struc-
ture (7,8) that seeded PredictProtein (PP) at the European
Molecular Biology Laboratory (EMBL) in 1992 (9), the
first fully automated, query-driven Internet server provid-
ing evolutionary information and structure prediction for
any protein. Many other methods predicting aspects of pro-
tein function and structure have since joined under the PP
roof (4,5,10) now hosted by the Luxembourg Centre of Sys-
tems Biomedicine (LCSB).

PP offers an array of structure and function predictions
most of which combine machine learning with evolutionary
information; now enhanced by a faster alignment algorithm
(11,12). A few prediction methods now also use embeddings
(13,14) from protein Language Models (LMs) (13–18). Em-
beddings are much faster to obtain than evolutionary infor-
mation, yet for many tasks, perform almost as well, or even
better (19,20). All PP methods join at PredictProtein.org
with interactive visualizations; for some methods, more ad-
vanced visualizations are linked (21–23). The reliability of
PredictProtein, its speed, the continuous integration of well-
validated, top methods, and its intuitive interface have at-
tracted thousands of researchers over 29 years of steady op-
eration.

MATERIALS AND METHODS

PredictProtein (PP) provides

multiple sequence alignments (MSAs) and position-specific
scoring matrices (PSSMs) computed by a combination
of pairwise BLAST (24), PSI-BLAST (25), and MM-
seqs2 (11,12) on query vs. PDB (26) and query versus
UniProt (1). For each residue in the query, the following
per-residue predictions are assembled: secondary structure
(RePROF/PROFsec (5,27) and ProtBertSec (14)); solvent
accessibility (RePROF/PROFacc); transmembrane helices
and strands (TMSEG (28) and PROFtmb (29)); protein dis-
order (Meta-Disorder (30)); backbone flexibility (relative
B-values; PROFbval (31)); disulfide bridges (DISULFIND
(32)); sequence conservation (ConSurf/ConSeq (33–36));
protein-protein, protein-DNA, and protein-RNA binding
residues (ProNA2020 (3)); PROSITE motifs (37); effects
of sequence variation (single amino acid variants, SAVs;
SNAP2 (38)). For each query per-protein predictions in-
clude: transmembrane topology (TMSEG (28)); binary
protein-(DNA|RNA|protein) binding (protein binds X or
not; ProNA2020 (3)); Gene Ontology (GO) term predic-
tions (goPredSim (19)); subcellular localization (LocTree3
(39)); Pfam (40) domain scans, and some biophysical fea-
tures. Under the hood, PP computes more results (SOM:
PredictProtein Methods; Supplementary Table S1), either
as input for frontend methods, or for legacy support.

New: goPredSim embedding-based transfer of Gene Ontol-
ogy (GO)

goPredSim (19) predicts GO terms by transferring anno-
tations from the most embedding-similar protein. Embed-
dings are obtained from SeqVec (13); similarity is estab-
lished through the Euclidean distance between the embed-
ding of a query and a protein with experimental GO annota-
tions. Replicating the conditions of CAFA3 (41) in 2017, go-
PredSim achieved Fmax values of 37 ± 2%, 52 ± 2% and 58
± 2% for BPO (biological process), MFO (molecular func-
tion), and CCO (cellular component), respectively (41,42).
Using Gene Ontology Annotation (GOA) (43,44) to test
296 proteins annotated after February 2020, goPredSim ap-
peared to reach even slightly higher values that were con-
firmed by CAFA4 (45).

New: ProtBertSec secondary structure prediction

ProtBertSec predicts secondary structure in three states (he-
lix, strand, other) using ProtBert (14) embeddings derived
from training on BFD with almost 3 × 109 proteins (6,46).
On a hold-out set from CASP12, ProtBertSec reached a
three-state per-residue accuracy of Q3 = 76 ± 1.5% (47).
Although below the state-of-the-art (NetSurfP-2.0 (48) at
82%), this method performed on-par with other MSA-
based methods, despite itself not using MSAs.

New: ProNA2020 protein–protein, protein–RNA and
protein–DNA

ProNA2020 (3) predicts whether or not a protein interacts
with other proteins, RNA or DNA (binary), and if so, where
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Figure 1. Predictions for SARS-CoV-2 Nucleoprotein (NCAP SARS2). Underneath the interactive slider at the top: RePROF and ProtBertSec secondary
structure (blue: helix; purple: strand; orange: other); Meta-Disorder intrinsically disordered regions (purple); ProNA2020 RNA-binding residues (low
confidence: blue; medium confidence: purple). goPredSim transfers of GeneOntology (GO) terms based on embedding similarity (lower left: CCO; lower
right: BPO & MFO). SNAP2 predicts the effect of point-mutations on function for the RNA-binding region from I84 to D98 (bottom-center; black: native
residue). Link: predictprotein.org/visual results?req id=$1$nAmulUQY$FRPFaP8NTqLW9DzdlTG3B/.

it binds (which residues). The binary per-protein predictions
rely on homology and machine learning models employ-
ing profile-kernel SVMs (49) and on embeddings from an
in-house implementation of ProtVec (50). Per-residue pre-
dictions (where) use simple neural networks due to data
shortage (51–53). ProNA2020 correctly predicted 77 ± 1%
of the proteins binding DNA, RNA or protein. In proteins
known to bind other proteins, RNA or DNA, ProNA2020
correctly predicted 69 ± 1%, 81 ± 1% and 80 ± 1% of bind-
ing residues, respectively.

New: MMseqs2 speedy evolutionary information

Most time-consuming for PP was the search for related pro-
teins in ever growing databases. MMseqs2 (11) finds related
sequences blazingly fast and seeds a PSI-BLAST search
(25). The query sequence is sent to a dedicated MMseqs2
server that searches for hits against cluster representatives
within the UniClust30 (54) and PDB (26) reduced to 70%
pairwise percentage sequence identity (PIDE). All hits and
their respective cluster members are turned into a MSA and
filtered to the 3000 most diverse sequences.

WEB SERVER

Frontend and user interface (UI)

Users query PredictProtein.org by submitting a protein se-
quence. Results are available in seconds for sequences that
had been submitted recently (cf. PPcache next section), or
within up to 30 min if predictions are recomputed. Per-
residue predictions are displayed online via ProtVista (55),

which allows to zoom into any sequential protein region
(Supplementary Figure S1), and are grouped by category
(e.g. secondary structure), which can be expanded to display
more detail (e.g. helix, strand, other). On the results page,
links to visualize MSAs through AlignmentViewer (56) are
available. More predictions can be accessed through a menu
on the left, e.g. Gene Ontology Terms, Effect of Point Muta-
tions and Subcellular Localization. Prediction views include
references and details of outputs, as well as rich visualiza-
tions, e.g. GO trees for GO predictions and cell images with
highlighted predicted locations for subcellular localization
predictions (57).

PPcache, backend and programmatic access

The PP backend lives at LCSB, allowing for up to 48 par-
allel queries. Results are stored on disc in the PPcache (5).
Users submitting sequences for which results were over the
last two years obtain results immediately. Using the bio-
embeddings pipeline (58), the PPcache is enriched by em-
beddings and embedding-based predictions on the fly. For
all methods displayed on the frontend, JSON files compli-
ant with ProtVista (55) are available via REST APIs (SOM:
Programmatic access), and are in use by external services
such as the protein 3D structure visualization suite Aquaria
(21,23) and by MolArt (22).

PredictProtein is available for local use

All results displayed on and downloadable from PP are
available through Docker (59) and as source code for local
and cloud execution (available at github.com/rostlab).
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Figure 2. Experimental and predicted RNA-binding residues for
NCAP2 SARS2. Predicted (via ProNA2020, in cyan, panels A and C) and
observed (within 5Å, in magenta, panels B and D) RNA-binding residues
for the SARS-CoV-2 nucleoprotein (gray) complexed with a 10-mer
ssRNA (orange), PDB structure 7ACT (61). Two-third of the predictions
are correct (precision = 0.73, recall = 0.20), which is around the expected
average performance reported by ProNA2020. The important sequence
consecutive central strand and loop are predicted well, while several
short sequence segments that are far away in sequence space but close
in structure space are missed, which is expected as ProNA2020 has no
notion of 3D structure, i.e., cannot identify ‘binding sites’. Panels A and
B show a different orientation than panels C and D.

USE CASE

We demonstrate PredictProtein.org tools through
predictions of the novel coronavirus SARS-CoV-2
(NCBI:txid2697049) nucleoprotein (UniProt identifier
P0DTC9/NCAP SARS2; Figure 1; SOM: Use Case; Sup-
plementary Figure S2). NCAP SARS2 has 419 residues
and interacts with itself (experimentally verified). Sequence
similarity and automatic assignment via UniRule (60)
suggest NCAP is RNA-binding (binding with the viral
genome), binding with the membrane protein M (UniProt
identifier P0DTC5/VME1 SARS2), and is fundamental
for virion assembly. goPredSim (19) transferred GO terms
from other proteins for MFO (RNA-binding; GO:0003723;
ECO:0000213) and CCO (compartments in the host
cell and viral nucleocapsid; GO:0019013; GO:0044172;
GO:0044177; GO:0044220; GO:0030430; ECO:0000255)
matching annotations found in UniProt (1). While it missed
the experimentally verified MFO term identical protein
binding (GO:0042802), goPredSim predicted protein folding
(GO:0006457) and protein ubiquitination (GO:0016567)
suggesting the nucleoprotein to be involved in biolog-
ical processes requiring protein binding. ProNA2020
(3) predicts RNA-binding regions, the one with highest
confidence between I84 (Isoleucine at position 84) and
D98 (Aspartic Acid at 98) (protein sequence in SOM: Use
Case). While high resolution experimental data on binding
is not available, an NMR structure of the SARS-CoV-2 nu-
cleocapsid phosphoprotein N-terminal domain in complex

with 10mer ssRNA (PDB identifier 7ACT (61)) supports
the predicted RNA-binding site (Figure 2). Additionally,
SNAP2 (38) predicts single amino acid variants (SAVs)
in that region to likely affect function, reinforcing the
hypothesis that this is a functionally relevant site. Although
using different input information (evolutionary vs. embed-
dings), RePROF (5) and ProtBertSec (14) both predict an
unusual content exceeding 70% non-regular (neither helix
nor strand) secondary structure, suggesting that most of
the nucleoprotein might not form regular structure. This is
supported by Meta-Disorder (30) predicting 53% overall
disorder. Secondary structure predictions match well high-
resolution experimental structures of the nucleoprotein
not in complex (e.g., PDB 6VYO (62); 6WJI (63)). Both
secondary structure prediction methods managed to zoom
into the ordered regions of the protein and predicted e.g.,
the five beta-strands that are formed within the sequence
range I84 (Isoleucine) to A134 (Alanine), and the two
helices formed within the sequence range spanned from
F346 (Phenylalanine) to T362 (Tyrosine).

CONCLUSION

For almost three decades (preceding Google) PredictPro-
tein (PP) has been offering predictions for proteins. PP is
the oldest prediction Internet server, online for 6-times as
long as most other servers (64–66). It pioneered combining
machine learning with evolutionary information and mak-
ing predictions freely accessible online. While the sequence-
annotation gap continues to grow, the sequence-structure
gap might be bridged in the near future (67). For the time
being, servers such as PP, providing a one-stop solution to
predictions from many sustained, novel tools are needed.
Now, PP is the first server to offer fast embedding-based
predictions of structure (ProtBertSec) and function (go-
PredSim). By slashing runtime for PSSMs from 72 to 4 min
through MMseqs2 and better LCSB hardware, PP also de-
livers evolutionary information-based predictions fast! In-
stantaneously if the query is in the precomputed PPcache.
For heavy use, the offline Docker containers provide pre-
dictors out-of-the-box. At no cost to users, PredictProtein
offers to quickly shine light on proteins for which little is
known using well validated prediction methods.

DATA AVAILABILITY

Freely accessible webserver PredictProtein.org; Source and
docker images: github.com/rostlab.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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4. TMbed: Transmembrane Proteins
Predicted through Language Model
Embeddings

4.1. Preface

Adapting the newest breakthroughs in natural language processing (NLP) to computa-
tion biology gave rise to so-called protein language models (pLM) [89, 91–93]. Trained
on millions or billions of protein sequences, those pLMs are able to learn how naturally
occurring sequences are structured. Using this condensed knowledge of whole protein
databases, they are able to generate information-rich vector-representations (embed-
dings) for each residue in a protein sequence. Those embedding are then used as input
features to downstream models, which often perform on par with methods using evo-
lutionary information [89, 104–106]. However, one advantage of pLMs is that it takes
usually less time to generate embeddings than it takes to search a database and generate
a multiple sequence alignment. Further, pLMs can generate embeddings even for protein
sequence that have only few or no known homologs.

For our second method, TMbed, we decided to replace the evolutionary information
with embeddings generated by the pLM named ProtT5-XL-U50 [89]. This pLM was
pre-trained on billions of protein sequences from BFD [75, 103] and later fine-tuned
on the non-redundant UniRef50 [102]. Those embeddings are the sole input to our
downstream model, which consists of a small convolutional neural network (CNN), a
Gaussian filter to smooth the predicted class scores, and a Viterbi decoder to generate
the most likely output topology. In total, TMbed predicts one of five different states for
each residue: transmembrane helix (TMH), transmembrane beta strand (TMB), signal
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peptide, inside, and outside. This makes TMbed one of the few prediction methods to
predict both types of transmembrane proteins (TMP): alpha helical and beta-barrel.

Our training data consisted of TMPs from the Orientations of Proteins in Membranes [5]
(OPM) database and soluble proteins with and without signal peptides from the Sig-
nalP6.0 [110] data set. After removing redundant sequences, we were left with a quite
unbalanced data set: 5859 soluble proteins, 593 alpha-helical TMPs, and 65 beta-barrel
TMPs. Surprisingly however, this 100:10:1 split did not negatively affect the prediction
performance.

Evaluating the prediction performance of TMbed using a nested cross-validation, we
showed that it was able to compete with the current state-of-the-art methods for both
alpha-helical and beta-barrel TMPs. It successfully recognized 98 ± 1% and 94 ± 8% of
all alpha-helical and beta-barrel TMPs in the data set, respectively, and misclassified
less than 1% of all soluble proteins. On a per-segment level, TMbed correctly placed
88 ± 1% of all TMHs and 95 ± 4% of all TMBs within five residues of their annotated
location. Even though it was not the primary focus of our method, it was even com-
parable to SignalP6.0 in terms of signal peptide prediction (TMbed detection rates of
99 ± 1% per-protein and 93 ± 1% per-segment). During a closer comparison of TMbed
with DeepTMHMM [68] we re-discovered how much annotations from databases can dif-
fer [65, 121]. Although both method were developed at about the same time, the length
distributions of the TMH and TMB segments were quite different, in both the training
data and the predictions. This highlighted two important facts: 1) both models were
quite adept at learning the underlying distributions, and 2) there seems to be a distinct
lack of a “gold standard” for TMH and TMB annotations. For example, the data set of
DeepTMHMM contained an unusual amount of TMHs with 21 residues. This is most
likely related to the fact that many of the automated and later curated annotations in
UniProtKB do have exactly 21 residues, which in turn might date back to methods like
TOP-PRED [40] and TMHMM [47, 48] that strongly favored this length.

TMbed is freely available on GitHub (https://github.com/BernhoferM/TMbed) and
as part of the LambdaPP [122] (https://embed.predictprotein.org/) web service.

Author contribution: I designed and developed the TMbed method, collected all
data sets, and performed all evaluations. All authors drafted the manuscript.
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TMbed: transmembrane proteins predicted 
through language model embeddings
Michael Bernhofer1,2* and Burkhard Rost1,3,4 

Background
Structural knowledge of TMPs 4–5 fold underrepresented

Transmembrane proteins (TMP) account for 20–30% of all proteins within any organ-
ism [1, 2]; most TMPs cross the membrane with transmembrane helices (TMH). TMPs 
crossing with transmembrane beta strands (TMB), forming beta barrels, have been esti-
mated to account for 1–2% of all proteins in Gram-negative bacteria; this variety is also 

Abstract 

Background: Despite the immense importance of transmembrane proteins (TMP) for 
molecular biology and medicine, experimental 3D structures for TMPs remain about 
4–5 times underrepresented compared to non-TMPs. Today’s top methods such as 
AlphaFold2 accurately predict 3D structures for many TMPs, but annotating transmem-
brane regions remains a limiting step for proteome-wide predictions.

Results: Here, we present TMbed, a novel method inputting embeddings from 
protein Language Models (pLMs, here ProtT5), to predict for each residue one of four 
classes: transmembrane helix (TMH), transmembrane strand (TMB), signal peptide, or 
other. TMbed completes predictions for entire proteomes within hours on a single con-
sumer-grade desktop machine at performance levels similar or better than methods, 
which are using evolutionary information from multiple sequence alignments (MSAs) 
of protein families. On the per-protein level, TMbed correctly identified 94 ± 8% of 
the beta barrel TMPs (53 of 57) and 98 ± 1% of the alpha helical TMPs (557 of 571) in a 
non-redundant data set, at false positive rates well below 1% (erred on 30 of 5654 non-
membrane proteins). On the per-segment level, TMbed correctly placed, on average, 9 
of 10 transmembrane segments within five residues of the experimental observation. 
Our method can handle sequences of up to 4200 residues on standard graphics cards 
used in desktop PCs (e.g., NVIDIA GeForce RTX 3060).

Conclusions: Based on embeddings from pLMs and two novel filters (Gaussian and 
Viterbi), TMbed predicts alpha helical and beta barrel TMPs at least as accurately as any 
other method but at lower false positive rates. Given the few false positives and its out-
standing speed, TMbed might be ideal to sieve through millions of 3D structures soon 
to be predicted, e.g., by AlphaFold2.

Keywords: Protein language models, Protein structure prediction, Transmembrane 
protein prediction
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present in mitochondria and chloroplasts [3]. Membrane proteins facilitate many essen-
tial processes, including regulation, signaling, and transportation, rendering them tar-
gets for most known drugs [4, 5]. Despite this immense relevance for molecular biology 
and medicine, only about 5% of all three-dimensional (3D) structures in the PDB [6, 7] 
constitute TMPs [8–10].

Accurate 3D predictions available for proteomes need classification

The prediction of protein structure from sequence leaped in quality through AlphaFold2 
[11], Nature’s method of the year 2021 [12]. Although AlphaFold2 appears to provide 
accurate predictions for only very few novel “folds”, it importantly increases the width 
of structural coverage [13]. AlphaFold2 seems to work well on TMPs [14], but for pro-
teome-wide high-throughput studies, we still need to filter out membrane proteins from 
the structure predictions. Most state-of-the-art (SOTA) TMP prediction methods rely 
on evolutionary information in the form of multiple sequence alignments (MSA) to 
achieve their top performance. In our tests we included 13 such methods, namely BetA-
ware-Deep [15], BOCTOPUS2 [16], CCTOP [17, 18], HMM-TM [19–21], OCTOPUS 
[22], Philius [23], PolyPhobius [24], PRED-TMBB2 [20, 21, 25], PROFtmb [3], SCAMPI2 
[26], SPOCTOPUS [27], TMSEG [28], and TOPCONS2 [29].

pLMs capture crucial information without MSAs

Mimicking recent advances of Language Models (LM) in natural language processing 
(NLP), protein Language Models (pLMs) learn to reconstruct masked parts of protein 
sequences based on the unmasked local and global information [30–37]. Such pLMs, 
trained on billions of protein sequences, implicitly extract important information about 
protein structure and function, essentially capturing aspects of the “language of life” 
[32]. These aspects can be extracted from the last layers of the deep learning networks 
into vectors, referred to as embeddings, and used as exclusive input to subsequent meth-
ods trained in supervised fashion to successfully predict aspects of protein structure and 
function [30–34, 36, 38–43]. Often pLM-based methods outperform SOTA methods, 
which are using evolutionary information on top, and they usually require substantially 
fewer compute resources. Just before submitting this work, we became aware of another 
pLM-based TM-prediction method, namely DeepTMHMM [44] using ESM-1b [36] 
embeddings, and included it in our comparisons.

Here, we combined embeddings generated by the ProtT5 [34] pLM with a simple con-
volutional neural network (CNN) to create a fast and highly accurate prediction method 
for alpha helical and beta barrel transmembrane proteins and their overall inside/outside 
topology. Our new method, TMbed, predicted the presence and location of any TMBs, 
TMHs, and signal peptides for all proteins of the human proteome within 46 min on our 
server machine (Additional file 1: Table S1) at the same or better level of performance as 
other methods, which require substantially more time.

Materials and methods
Data set: membrane proteins (TMPs)

We collected all primary structure files for alpha helical and beta barrel transmembrane 
proteins (TMP) from OPM [45] and mapped their PDB [6, 7] chain identifiers (PDB-id) 
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to UniProtKB [46] through SIFTS [47, 48]. Toward this end, we discarded all chimeric 
chains, all models, and all chains for which OPM failed to map any transmembrane start 
or end position. This resulted in 2,053 and 206 sequence-unique PDB chains for alpha 
helical and beta barrel TMPs, respectively.

We used the ATOM coordinates inside the OPM files to assign the inside/outside ori-
entation of sequence segments not within the membrane. We manually inspected incon-
sistent annotations (e.g., if both ends of a transmembrane segment had the same inside/
outside orientation) and cross-referenced them with PDBTM [49–51], PDB, and Uni-
ProtKB. We then either corrected such inconsistent annotations or discarded the whole 
sequence. As OPM does not include signal peptide annotations, we compared our TMP 
data sets to the set used by SignalP 6.0 [52] and all sequences in UniProtKB/Swiss-Prot 
with experimentally annotated signal peptides using CD-HIT [53, 54]. For any matches 
with at least 95% global sequence identity (PIDE), we transferred the signal peptide 
annotation onto our TMPs. We removed all sequences with fewer than 50 residues to 
avoid noise from incorrect sequencing fragments, and all sequences with over 15,000 
residues to save energy (lower computational costs).

Finally, we removed redundant sequences from the two TMP data sets by clustering 
them with MMseqs2 [55] to at most 20% local pairwise sequence identity (PIDE) with 
40% minimum alignment coverage, i.e., no pair had more than 20% PIDE for any local 
alignment covering at least 40% of the shorter sequence. The final non-redundant TMP 
data sets contained 593 alpha helical TMPs and 65 beta barrel TMPs, respectively.

Data set: globular non‑membrane proteins

We used the SignalP 6.0 (SP6) dataset for our globular proteins. As the SP6 dataset 
contained only the first 70 residues of each protein, we took the full sequences from 
UniProtKB/Swiss-Prot and transferred the signal peptide annotations. To remove any 
potential membrane proteins from this non-TMP data set, we compared it with CD-
HIT [53, 54] against three other data sets: (1) our TMP data sets before redundancy 
reduction, (2) all protein sequences from UniProtKB/Swiss-Prot with any annotations 
of transmembrane segments, and (3) all proteins from UniProtKB/Swiss-Prot with any 
subcellular location annotations for membrane. We removed all proteins from our non-
TMP data set with more than 60% global PIDE to any protein in sets 1–3. Again, we 
dropped all sequences with less than 50 or more than 15,000 residues and applied the 
same redundancy reduction as before (20% PIDE at 40% alignment coverage). The final 
non-redundant data set contained 5,859 globular, water-soluble non-TMP proteins; 698 
of these have a signal peptide.

Additional redundancy reduction

One anonymous reviewer spotted homologs in our data set after the application of the 
above protocol. To address this problem, we performed another iteration of redundancy 
reduction for each of the three data sets using CD-HIT at 20% PIDE. In order to save 
energy (i.e., avoid retraining our model), we decided to remove clashes for the evalua-
tion, i.e., if two proteins shared more than 20% PIDE, we removed both from the data 
set (as TMbed was trained on both in the cross-validation protocol). Thereby, this sec-
ond iteration removed 235 proteins: 8 beta barrel TMPs, 22 alpha helical TMPs, and 205 
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globular, non-membrane proteins. Our final test data sets included 57 beta barrel TMPs, 
571 alpha helical TMPs, and 5654 globular, non-membrane proteins.

Membrane re‑entrant regions

Besides transmembrane segments that cross the entire membrane, there are also oth-
ers, namely membrane segments that briefly enter and exit the membrane on the same 
side. These are referred to as re-entrant regions [56, 57]. Although rare, some methods 
explicitly predict them [17, 18, 22, 27, 58]. However, as OPM does not explicitly annotate 
such regions and since our data set already had a substantial class imbalance between 
beta barrel TMPs, alpha helical TMPs and, globular proteins, we decided not to predict 
re-entrant regions.

Embeddings

We generated embeddings with protein Language Models (pLMs) for our data sets 
using a transformer-based pLM ProtT5-XL-U50 (short: ProtT5) [34]. We discarded the 
decoder part of ProtT5, keeping only the encoder for increased efficiency (note: encoder 
embeddings are more informative [34]). The encoder model converts a protein sequence 
into an embedding matrix that represents each residue in the protein, i.e., each position 
in the sequence, by a 1024-dimensional vector containing global and local contextual-
ized information. We converted the ProtT5 encoder from 32-bit to 16-bit floating-point 
format to reduce the memory footprint on the GPU. We took the pre-trained ProtT5 
model as is without any further task-specific fine-tuning.

We chose ProtT5 over other embedding models, such as ESM-1b [36], based on our 
experience with the model and comparisons during previous projects [34, 38]. Further-
more, ProtT5 does not require splitting long sequences, which might remove valuable 
global context information, while ESM-1b can only handle sequences of up to 1022 
residues.

Model architecture

Our TMbed model architecture contained three modules (Additional file 1: Fig. S1): a 
convolutional neural network (CNN) to generate per-residue predictions, a Gaussian 
smoothing filter, and a Viterbi decoder to find the best class label for each residue. We 
implemented the model in PyTorch [59].

Module 1: CNN

The first component of TMbed is a CNN with four layers (Additional file  1: Fig. S1). 
The first layer is a pointwise convolution, i.e., a convolution with kernel size of 1, which 
reduces the ProtT5 embeddings for each residue (position in the sequence) from 1024 
to 64 dimensions. Next, the model applies layer normalization [60] along the sequence 
and feature dimensions, followed by a ReLU (Rectified Linear Unit) activation function 
to introduce non-linearity. The second and third layers consist of two parallel depthwise 
convolutions; both process the output of the first layer. As depthwise convolutions pro-
cess each input dimension (feature) independently while considering consecutive res-
idues, those two layers effectively generate sliding weighted sums for each dimension. 
The kernel sizes of the second and third layer are 9 and 21, respectively, corresponding 
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to the average length of transmembrane beta strands and helices. As before, the model 
normalizes the output of both layers and applies the ReLU function. It then concatenates 
the output of all three layers, constructing a 192-dimensional feature vector for each 
residue (position in the sequence). The fourth layer is a pointwise convolution combin-
ing the outputs from the previous three layers and generates scores for each of the five 
classes: transmembrane beta strand (B), transmembrane helix (H), signal peptide (S), 
non-membrane inside (i), and non-membrane outside (o).

Module 2: Gaussian filter

This module smooths the output from the CNN for adjacent residues (sequence posi-
tions) to reduce noisy predictions. The filter allows flattening isolated single-residue 
peaks. For instance, peaks extending of only one to three residues for the classes B and 
H are often non-informative; similarly short peaks for class S are unlikely correct. The 
filter uses a Gaussian distribution with standard deviation of 1 and a kernel size of 7, i.e., 
its seven weights correspond to three standard deviation intervals to the left and right, 
as well as the central peak. A softmax function then converts the filtered class scores to a 
class probability distribution.

Module 3: Viterbi decoder

The Viterbi algorithm decodes the class probabilities and assigns a class label to each 
residue (position in the sequence; Additional file 1: Note S3, Fig. S2). The algorithm uses 
no trainable parameter; it scores transitions according to the predicted class probabili-
ties. Its purpose is to enforce a simple grammar such that (1) signal peptides can only 
start at the N-terminus (first residue in protein), (2) signal peptides and transmembrane 
segments must be at least five residues long (a reasonable trade-off between filtering out 
false positives and still capturing weak signals), and (3) the prediction for the inside/out-
side orientation has to change after each transmembrane segment (to simulate crossing 
through the membrane). Unlike the Gaussian filter, we did not apply the Viterbi decoder 
during training. This simplified backpropagation and sped up training.

Training details

We performed a stratified five-fold nested cross-validation for model development 
(Additional file 1: Fig. S3). First, we separated our protein sequences into four groups: 
beta barrel TMPs, alpha helical TMPs with only a single helix, those with multiple heli-
ces, and non-membrane proteins. We further subdivided each group into proteins with 
and without signal peptides. Next, we randomly and evenly distributed all eight groups 
into five data sets. As all of our data sets were redundancy reduced, no two splits con-
tained similar protein sequences for any of the classes. However, similarities between 
proteins of two different classes were allowed, not the least to provide more conservative 
performance estimates.

During development, we used four of the five splits to create the model and the fifth 
for testing (Additional file 1: Fig. S3). Of the first four splits, we used three to train the 
model and the fourth for validation (optimize hyperparameters). We repeated this 3–1 
split three more times, each time using a different split for the validation set, and calcu-
lated the average performance for every hyperparameter configuration. Next, we trained 
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a model with the best configuration on all four development splits and estimated its final 
performance on the independent test split. We performed this whole process a total of 
five times, each time using a different of the five splits as test data and the remaining four 
for the development data. This resulted in five final models; each trained, optimized, and 
tested on independent data sets.

We applied weight decay to all trained weights of the model and added a dropout layer 
right before the fourth convolutional layer, i.e., the output layer of the CNN. For every 
training sample (protein sequence), the dropout layer randomly sets 50% of the features 
to zero across the entire sequence, preventing the model from relying on only a specific 
subset of features for the prediction.

We trained all models for 15 epochs using the AdamW [61] optimizer and cross-
entropy loss. We set the beta parameters to 0.9 and 0.999, used a batch size of 16 
sequences, and applied exponential learning rate decay by multiplying the learning 
rate with a factor of 0.8 every epoch. The initial learning rate and weight decay values 
were part of the hyperparameters optimized during cross-validation (Additional file 1: 
Table S2).

The final TMbed model constitutes an ensemble over the five models obtained from 
the five outer cross-validation iterations (Additional file  1: Fig. S3), i.e., one for each 
training/test set combination. During runtime, each model generates its own class prob-
abilities (CNN, plus Gaussian filter), which are then averaged and processed by the 
Viterbi decoder to generate the class labels.

Evaluation and other methods

We evaluated the test performance of TMbed on a per-protein level and on a per-seg-
ment level (Additional file 1: Note S1). For protein level statistics, we calculated recall 
and false positive rate (FPR). We computed those statistics for three protein classes: 
alpha helical TMPs, beta barrel TMPs, and globular proteins.

We distinguished correct and incorrect segment predictions using two constraints: (1) 
the observed and predicted segment must overlap such that the intersection of the two is 
at least half of their union, and (2) neither the start nor the end positions may deviate by 
more than five residues between the observed and predicted segment (Additional file 1: 
Fig. S4). All segments predicted meeting both these criteria were considered as “cor-
rectly predicted segments”, all others as “incorrectly predicted segments”. This allowed 
for a reasonable margin of error regarding the position of a predicted segment, while 
punishing any gaps introduced into a segment. For per-segment statistics, we calculated 
recall and precision. We also computed the percentage of proteins with the correct num-
ber of predicted segments  (Qnum), the percentage of proteins for which all segments are 
correctly predicted  (Qok), and the percentage of correctly predicted segments that also 
have the correct orientation within the membrane  (Qtop). We considered only proteins 
that actually contain the corresponding type of segment when calculating per-segment 
statistics, e.g., only beta barrel TMPs for transmembrane beta strand segments.

We compared TMbed to other prediction methods for alpha helical and beta barrel 
TMPs (details in Additional file 1: Note S2): BetAware-Deep [15], BOCTOPUS2 [16], 
CCTOP [17, 18], DeepTMHMM [44], HMM-TM [19–21], OCTOPUS [22], Philius 
[23], PolyPhobius [24], PRED-TMBB2 [20, 21, 25], PROFtmb [3], SCAMPI2 [26], 
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SPOCTOPUS [27], TMSEG [28], and TOPCONS2 [29]. We chose those methods 
based on their good prediction accuracy and public popularity. For methods predict-
ing only either alpha helical or beta barrel TMPs, we considered the corresponding 
other type of TMPs as globular proteins for the per-protein statistics. In addition, we 
generated signal peptide predictions with SignalP 6.0 [52]. The performance of older 
TMH prediction methods could be triangulated based on previous comprehensive 
estimate of such methods [28, 62].

Unless stated otherwise, all reported performance values constitute the average 
performance over the five independent test sets during cross-validation (c.f. Train-
ing details) and their error margins reflect the 95% confidence interval (CI), i.e., 1.96 
times the sample standard error over those five splits (Additional file 1: Tables S5, S6). 
We considered two values A and B statistically significantly different if they differ by 
more than their composite 95% confidence interval:

Additional out‑of‑distribution benchmark

In the most general sense, machine learning models learn and predict distributions. 
Most membrane data sets are small and created using the same resources, including 
OPM [45], PDBTM [49–51], and UniProtKB/Swiss-Prot [46] that often mix experimen-
tal annotations with sophisticated algorithms [50, 63–65] to determine the boundaries 
of transmembrane segments, e.g., by using the 3D structure. Given these constraints, 
we might expect data sets from different groups to render similar results. Analyzing the 
validity of this assumption, we included the data set assembled for the development of 
DeepTMHMM [44]. Three reasons made us chose this set as an alternative perspective: 
(1) it is recent, (2) it contains helical and beta barrel TMPs, and (3) the authors made 
their cross-validation predictions available, simplifying comparisons.

We created two distinct data sets from the DeepTMHMM data. First, we collected all 
proteins common to both data sets (TMbed and DeepTMHMM). We used those pro-
teins to estimate how much the annotations within both data sets agree with each other. 
In total, there were 1788 proteins common to both data sets: 43 beta barrel TMPs, 184 
alpha helical TMPs, 1,560 globular proteins, and one protein (MSPA_MYCS2; Porin 
MspA) which sits in the outer-membrane of Mycobacterium smegmatis [66]. We clas-
sified this as beta barrel TMP while DeepTMHMM listed it, most likely incorrectly, as 
a globular protein. The second data set that we created contained all proteins from the 
DeepTMHMM data set that were non-redundant to the training data of TMbed. We 
used PSI-BLAST [67] to find all significant (e-value <  10–4) local alignments with a 20% 
PIDE threshold and 40% alignment coverage to remove the redundant sequences. This 
second data set contained 667 proteins: 14 beta barrel TMPs, 86 alpha helical TMPs, 
and 567 globular proteins. We generated predictions with TMbed for those proteins and 
compared them to the cross-validation predictions for DeepTMHMM, as well as the 
best performing methods from our own benchmark (CCTOP [17, 18], TOPCONS2 [29], 
BOCTOPUS2 [16]); we used the DeepTMHMM data set annotations as ground truth.

(1)|A− B| > CIc = CI
2

A
+ CI

2

B
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Data set of new membrane proteins

In order to perform a CASP-like performance evaluation, we gathered all PDB struc-
tures published since Feb 05, 2022, which is just after the data for our set and that 
of DeepTMHMM [44] have been collected. This comprised 1,511 PDB structures 
(more than 250 of which related to the SARS-CoV-2 protein P0DTD1) that we could 
map to 1,078 different UniProtKB sequences. We then used PSI-BLAST to remove all 
sequences similar to our data set or that of DeepTMHMM (e-value <  10–4, 20% PIDE 
at 40% coverage), which resulted in 333 proteins. Next, we predicted transmembrane 
segments within those proteins using TMbed and DeepTMHMM. For 38 proteins, 
either TMbed or DeepTMHMM predicted transmembrane segments. After removing 
any sequences shorter than 100 residues (i.e., fragments) and those in which the pre-
dicted segments were not within the resolved regions of the PDB structure, we were 
left with a set of 5 proteins: one beta barrel TMP and four alpha helical TMPs. Finally, 
we used the PPM [63–65] algorithm from OPM [45] to estimate the actual membrane 
boundaries.

Results and discussion
We have developed a new machine learning model, dubbed TMbed; it exclusively 
uses embeddings from the ProtT5 [34] pLM as input to predict for each residue in 
a protein sequence to which of the following four “classes” it belongs: transmem-
brane beta strand (TMB), transmembrane helix (TMH), signal peptide (SP), or non-
transmembrane segment. It also predicts the inside/outside orientation of TMBs and 
TMHs within the membrane, indicating which parts of a protein are inside or outside 
a cell or compartment. Although the prediction of signal peptides was primarily inte-
grated to improve TMH predictions by preventing the confusion of TMHs with SPs 
and vice versa, we also evaluated and compared the performance for SP prediction of 
TMbed to that of other methods.

Reaching SOTA in protein sorting

TMbed detected TMPs with TMHs and TMBs at levels similar or numerically above the 
best state-of-the-art (SOTA) methods that use evolutionary information from multiple 
sequence alignments (MSA; Table 1: Recall). Compared to MSA-based methods, TMbed 
achieved this parity or improvement at a significantly lower false positive rate (FPR), tied 
only with DeepTMHMM [44], another embedding-based method (Table 1: FPR). Given 
those numbers, we expect TMbed to misclassify only about 215 proteins for a proteome 
with 20,000 proteins (Additional file 1: Table S10), e.g., the human proteome, while the 
other methods would make hundreds more mistakes (DeepTMHMM: 331, TOPCONS2: 
683, BOCTOPUS2: 880). Such low FPRs suggest our method as an automated high-
throughput filter for TMP detection, e.g., for the creation and annotation of databases, 
or the decision which AlphaFold2 [11, 68] predictions to parse through advanced soft-
ware annotating transmembrane regions in 3D structures or predictions [45, 49, 69]. In 
the binary prediction of whether or not a protein has a signal peptide, TMbed achieved 
similar levels as the specialist SignalP 6.0 [52] and as DeepTMHMM [44], reaching 99% 
recall at 0.1% FPR (Additional file 1: Table S3).
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Many of the beta barrel TMPs that prediction methods missed had only two or 
four transmembrane beta strands (TMB). Such proteins cannot form a pore on their 
own, instead they have to form complexes with other proteins to function as TMPs, 
either by binding to other proteins or by forming multimers with additional copies of 
the same proteins by, e.g., trimerization. In fact, all four beta barrel TMPs missed by 
TMbed fell into this category. Thus, as all other methods, TMbed performed, on aver-
age, worse for beta barrel TMPs that cannot form pores alone. This appeared unsur-
prising, as the input to all methods were single proteins. For TMPs with TMHs, we 
also observed lower performance in the distinction between TMP/other for TMPs 
with a single TMH (recall: 93 ± 3%) compared to those with multiple TMHs (recall: 
99 ± 1%). However, TMPs with single helices can function alone.

The embedding-based methods TMbed (introduced here using ProtT5 [34]) and 
DeepTMHMM [44] (based on ESM-1b [36]) performed at least on par with the SOTA 
using evolutionary information from MSA (Table 1). While this was already impres-
sive, the real advantage was in the speed. For instance, our method, TMbed, predicted 
all 6,517 proteins in our data set in about 13 min (i.e., about eight sequences per sec-
ond) on our server machine (Additional file 1: Table S1); this runtime included gener-
ating the ProtT5 embeddings. The other embedding-based method, DeepTMHMM, 
needed about twice as long (23 min). Meanwhile, methods that search databases and 

Table 1 Per-protein performance. *

*Evaluation of the ability to distinguish between 57 beta barrel TMPs (β-TMP), 571 alpha helical TMPs (α-TMP) and 5654 
globular, water-soluble non-TMP proteins in our data set. Recall and false positive rate (FPR) were averaged over the five 
independent cross-validation test sets; error margins given for the 95% confidence interval (1.96*standard error); bold: best 
values for each column; italics: differences statistically significant with over 95% confidence (only computed between best 
and 2nd best, or all methods ranked 1 and those ranked lower)
1 Evaluation missing for one of 5,654 globular proteins
2 Evaluation missing for one of 571 α-TMPs and six of 5,654 globular proteins
3 Evaluation includes only 51 β-TMPs, 552 α-TMPs, and 5,524 globular proteins due to runtime errors
4 The local PRED-TMBB2 version did not include the pre-filtering step of the web server. This caused a FPR for β-TMP of 
almost 78%. Thus, we listed the statistics for the web server predictions, which did not include MSA input

β‑TMP (57) α‑TMP (571) Globular (5654)

Recall (%) FPR (%) Recall (%) FPR (%) Recall (%) FPR (%)

TMbed 93.8 ± 7.5 0.1 ± 0.1 97.5 ± 0.7 0.5 ± 0.2 99.5 ± 0.2 2.8 ± 1.2

DeepTMHMM 77.9 ± 12.7 0.1 ± 0.1 95.8 ± 1.3 0.5 ± 0.2 99.5 ± 0.2 5.9 ± 2.2

TMSEG – – 96.5 ± 1.0 2.3 ± 0.3 97.7 ± 0.3 3.5 ± 1.0

TOPCONS21 – – 94.2 ± 1.3 2.6 ± 0.3 97.4 ± 0.3 5.8 ± 1.3

OCTOPUS1 – – 94.2 ± 1.9 9.1 ± 0.7 90.9 ± 0.7 5.8 ± 1.9

Philius1 – – 92.5 ± 1.4 2.6 ± 0.2 97.4 ± 0.2 7.5 ± 1.4

PolyPhobius1 – – 97.2 ± 1.1 5.3 ± 0.4 94.7 ± 0.4 2.8 ± 1.1

SPOCTOPUS1 – – 97.5 ± 1.6 17.2 ± 0.8 82.8 ± 0.8 2.5 ± 1.6
SCAMPI2 (MSA) – – 94.2 ± 1.6 5.6 ± 0.3 94.4 ± 0.3 5.8 ± 1.6

CCTOP2 96.1 ± 2.1 3.7 ± 0.6 96.3 ± 0.6 3.9 ± 2.1

HMM-TM (MSA)3 – – 97.3 ± 1.6 21.4 ± 0.5 78.6 ± 0.5 2.7 ± 1.6

BOCTOPUS2 84.0 ± 13.3 4.2 ± 0.5 – – 95.8 ± 0.5 16.0 ± 13.3

BetAware-Deep 85.1 ± 9.3 4.7 ± 0.3 – – 95.3 ± 0.3 14.9 ± 9.3

PRED-TMBB24 88.8 ± 12.1 7.1 ± 0.4 – – 92.9 ± 0.4 11.2 ± 12.1

PROFtmb 91.9 ± 9.0 6.1 ± 0.5 – – 93.9 ± 0.5 8.1 ± 9.0
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generate MSAs usually take several seconds or minutes for a single protein sequence 
[70], or require significant amounts of computing resources (e.g., often more than 
100 GB of memory) to achieve comparable runtimes [55].

Excellent transmembrane segment prediction performance

TMbed reached the highest performance for transmembrane segments amongst all 
methods evaluated (Tables 2, 3). With recall and precision values of 89 ± 1% for TMHs, 
it significantly outperformed the second best and only other embedding-based method, 
DeepTMHMM, (80 ± 2%, Table 2). TMbed essentially predicted 62% of all transmem-
brane helical (TMH) TMPs completely correctly  (Qok, i.e., all TMHs within ± 5 resi-
dues of true annotation). DeepTMHMM reached second place with  Qok of 46 ± 4%. 
This difference between TMbed and DeepTMHMM was over twice that between 

Table 2 Per-segment performance for TMH (transmembrane helices). *

*Segment performance for transmembrane helix (TMH) prediction based on 571 alpha helical TMPs (α-TMP) with a total of 
2936 TMHs. Recall, Precision,  Qok,  Qnum, and  Qtop were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values for each column; italics: differences 
statistically significant with over 95% confidence (only computed between best and 2nd best).
1 Evaluation missing for one of 571 α-TMPs.
2 Evaluation includes only 552 of the 571 α-TMPs due to runtime errors of the method.

TMH (571/2936)

Recall (%) Precision (%) Qok (%) Qnum (%) Qtop (%)

TMbed 88.7 ± 0.6 88.7 ± 0.7 62.4 ± 3.7 86.0 ± 2.3 96.4 ± 2.7
DeepTMHMM 80.0 ± 2.4 80.5 ± 2.4 46.2 ± 4.8 85.7 ± 3.5 96.3 ± 2.2

TMSEG 74.5 ± 2.4 77.1 ± 1.7 35.6 ± 2.4 69.9 ± 2.7 83.8 ± 4.7

TOPCONS2 76.4 ± 1.5 78.4 ± 0.8 41.0 ± 3.1 74.4 ± 3.3 91.7 ± 3.1

OCTOPUS 71.6 ± 1.5 75.7 ± 1.4 36.0 ± 2.8 67.6 ± 3.4 87.5 ± 3.1

Philius 70.8 ± 2.2 73.7 ± 0.8 34.2 ± 3.7 66.9 ± 3.4 87.5 ± 2.9

PolyPhobius 76.0 ± 2.1 76.4 ± 1.1 40.3 ± 3.5 74.5 ± 2.8 86.8 ± 2.7

SPOCTOPUS 71.5 ± 1.2 75.8 ± 1.2 35.7 ± 3.3 67.4 ± 5.5 87.2 ± 3.4

SCAMPI2 (MSA) 72.3 ± 2.7 74.1 ± 1.5 33.5 ± 3.0 72.2 ± 4.5 90.6 ± 3.5

CCTOP1 77.0 ± 1.7 79.4 ± 1.0 41.9 ± 3.6 82.6 ± 2.7 92.6 ± 2.6

HMM-TM (MSA)2 73.3 ± 1.7 72.5 ± 1.2 33.5 ± 1.4 72.1 ± 3.0 88.3 ± 4.2

Table 3 Per-segment performance for TMB (transmembrane beta strands). *

*Segment performance for transmembrane beta strand (TMB) prediction based on 57 beta barrel TMPs (β-TMP) with a total 
of 768 TMBs. Recall, Precision,  Qok,  Qnum, and  Qtop were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values for each column; italics: differences 
statistically significant with over 95% confidence (only computed between best and 2nd best)

TMB (57/768)

Recall (%) Precision (%) Qok (%) Qnum (%) Qtop (%)

TMbed 95.0 ± 4.3 99.2 ± 0.7 80.5 ± 11.4 88.1 ± 6.9 98.1 ± 3.8
DeepTMHMM 85.9 ± 6.6 92.5 ± 4.7 46.1 ± 7.6 74.3 ± 13.0 97.2 ± 4.4

BOCTOPUS2 85.3 ± 9.2 96.6 ± 2.0 56.6 ± 18.9 71.2 ± 11.8 98.0 ± 2.0

BetAware-Deep 67.1 ± 6.5 62.2 ± 11.4 8.7 ± 5.3 60.9 ± 14.1 95.7 ± 5.4

PRED-TMBB2 (MSA) 85.4 ± 1.9 75.6 ± 4.8 18.4 ± 15.0 44.5 ± 26.7 95.9 ± 3.4

PROFtmb 78.2 ± 10.1 78.0 ± 6.9 20.2 ± 12.8 46.6 ± 11.7 97.2 ± 1.0
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DeepTMHMM and the two methods performing third  best by this measure, CCTOP 
[17, 18] and TOPCONS2 [29], which are based on evolutionary information.

The results were largely similar for beta barrel TMPs (TMBs) with TMbed achieving 
the top performance by all measures: reaching 95% recall and an almost perfect 99% pre-
cision. The most pronounced difference was a 23 percentage points lead in  Qok with 80%, 
compared to BOCTOPUS2 [16] with 57% in second place. Overall, TMbed predicted the 
correct number of transmembrane segments in 86–88% of TMPs and correctly oriented 
98% of TMBs and 96% of TMHs. For signal peptides, TMbed performed on par with 
SignalP 6.0, reaching 93% recall and 95% precision (Additional file 1: Table S3). For this 
task, both methods appeared to be slightly outperformed by DeepTMHMM. However, 
none of those differences exceeded the 95% confidence interval, i.e., the numerically 
consistent differences were not statistically significant. On top, the signal peptide expert 
method SignalP 6.0 is the only of the three that distinguishes between different types of 
signal peptides.

As for the overall per-protein distinction between TMP and non-TMP, the per-seg-
ment recall and precision also slightly correlated with the number of transmembrane 
segments, i.e., the more TMHs or TMBs in a protein the higher the performance (Addi-
tional file 1: Table S4). Again, as for the TMP/non-TMP distinction, beta barrel TMPs 
with only two or four TMBs differed most to those with eight or more.

Gaussian filter and Viterbi decoder improve segment performance

TMbed introduced a Gaussian filter smoothing over some local peaks in the predic-
tion and a Viterbi decoder implicitly enforcing some “grammar-like” rules (Materials & 
Methods). We investigated the effect of these concepts by comparing the final TMbed 
architecture to three simpler alternatives: one variant used only the CNN, the other two 
variants combined the simple CNN with either the Gaussian filter or the Viterbi decoder, 
not both as TMbed. For the variants without the Gaussian filter, we retrained the CNN 
using the same hyperparameters but without the filter. Individually, both modules (fil-
ter and decoder) significantly improved precision and  Qok for both TMH and TMB, 
while recall remained largely unaffected (Additional file 1: Table S9). Clearly, either step 
already improved over just the CNN. However, which of the two was most important 
depended on the type of TMP: for TMH proteins Viterbi decoder mattered more, for 
TMB proteins the Gaussian filter. Both steps together performed best throughout with-
out adding any significant overhead to the overall computational costs compared to the 
other components.

Self‑predictions reveal potential membrane proteins

We checked for potential overfitting of our model by predicting the complete data set 
with the final TMbed ensemble. This meant that four of the five models had seen each of 
those proteins during training. While the number of misclassified proteins went down, 
we found that there were still some false predictions, indicating that our models did not 
simply learn the training data by heart (Additional file 1: Tables S7, S8). In fact, upon 
closer inspection of the 11 false positive predictions (8 alpha helical and 3 beta barrel 
TMPs), those appear to be transmembrane proteins incorrectly classified as globular 
proteins in our data set due to missing annotations in UniProtKB/Swiss-Prot, rather 
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than incorrect predictions. Two of them, P09489 and P40601, have automatic annota-
tions for an autotransporter domain, which facilitates transport through the membrane. 
Further, we processed the predicted AlphaFold2 [11, 68] structures of all 11 proteins 
using the PPM [45] algorithm, which tries to embed 3D structures into a membrane 
bilayer. For eight of those, the predicted transmembrane segments correlated well with 
the predicted 3D structures and membrane boundaries (Fig. 1; Additional file 1: Fig. S5). 
For the other three, the 3D structures and membrane boundaries still indicate trans-
membrane domains within those proteins, but the predicted transmembrane segments 
only cover parts of those domains (Additional file 1: Fig. S5, last row). Together, these 
predictions provided convincing evidence for considering all eleven proteins as TMPs.

Predicting the human proteome in less than an hour

Given that our new method already outperformed the SOTA using evolutionary infor-
mation from MSAs, the even more important advantage was speed. To estimate pre-
diction throughput, we applied TMbed to all human proteins in 20,375 UniProtKB/
Swiss-Prot (version: April 2022; excluding TITIN_HUMAN due to its extreme length 
of 34,350 residues). Overall, it took our server machine (Additional file 1: Table S1) only 
46 min to generate all embeddings and predictions (estimate for consumer-grade PC in 
the next section). TMbed identified 14 beta barrel TMPs and 4,953 alpha helical TMPs, 
matching previous estimates for alpha helical TMPs [1, 28]. Two of the 14 TMBs appear 
to be false positives as TMbed predicted only a single TMB in each protein. The other 12 
proteins are either part of the Gasdermin family (A to E), or associated with the mito-
chondrion, including three proteins for a voltage-dependent anion-selective channel and 
the TOM40 import receptor.

Further, we generated predictions for all proteins from UniProtKB/Swiss-Prot (ver-
sion: May 2022), excluding sequences above 10,000 residues (20 proteins). Processing 
those 566,976 proteins took about 8.5 h on our server machine. TMbed predicted 1,702 
beta barrel TMPs and 77,296 alpha helical TMPs (predictions available via our GitHub 
repository).

Fig. 1 Potential transmembrane proteins in the globular data set. AlphaFold2 [11, 68] structure of 
extracellular serine protease (P09489) and Lipase 1 (P40601). Transmembrane segments (dark purple) 
predicted by TMbed correlate well with membrane boundaries (dotted lines: red = outside, blue = inside) 
predicted by the PPM [45] web server. Images created using Mol* Viewer [71]. Though our data set lists them 
as globular proteins, the predicted structures indicate transmembrane domains, which align with segments 
predicted by our method. The predicted domains overlap with autotransporter domains detected by the 
UniProtKB [46] automatic annotation system. Transmembrane segment predictions were made with the final 
TMbed ensemble model
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Hardware requirements

Our model needs about 2.5 GB of memory on the GPU when in 16-bit format. The addi-
tional memory needed during inference grows with the square of sequence length due 
to the attention mechanism of the transformer architecture. On our consumer-grade 
desktop PC (Additional file 1: Table S1), this translated to a maximum sequence length 
of about 4,200 residues without maxing out the 12 GB of GPU memory. This barred 76 
(0.4%) of the 20,376 human proteins from analysis on a personal consumer-hardware 
solution (NVIDIA GeForce RTX 3060). The prediction (including embedding genera-
tion) for 99.6% of the human proteome (20,376 proteins) took about 57 min on our desk-
top PC. While it is possible to run the model on a CPU, instead of on a GPU, we do not 
recommend this due to over tenfold larger runtimes. More importantly, the current lack 
of support of 16-bit floating-point format on CPUs would imply doubling the memory 
footprint of the model and computations.

Out‑of‑distribution performance

The two pLM-based methods DeepTMHMM [44] and TMbed appeared to reach simi-
lar performance according to the additional out-of-distribution data set (Additional 
file 1: Tables S11, S12). While DeepTMHMM reached higher scores for beta barrel pro-
teins  (Qok of 79 ± 22% vs. 64 ± 26%), these were not quite statistically significant. On 
the other hand, TMbed managed to outperform DeepTMHMM for alpha helical TMPs 
 (Qok of 53 ± 11% vs. 47 ± 10%), though again without statistical significance. Further-
more, TMbed performed on par with the OPM baseline (Additional file 1: Table S12), 
i.e., using the OPM annotations as predictions for the DeepTMHMM data set, imply-
ing that TMbed reached its theoretical performance limit on that data set. Surprisingly, 
TOPCONS2 and CCTOP both outperformed TMbed and DeepTMHMM with  Qok of 
65 ± 10% and 64 ± 10% (both not statistically significant), respectively.

Taking a closer look at the length distribution for the transmembrane segments in 
the TMbed and DeepTMHMM data set annotations and predictions (Additional file 1: 
Fig. S6) revealed differences. First, while the TMB segments in both data sets averaged 
9 residues in length, the DeepTMHMM distribution was slightly shifted toward shorter 
segments (left in Additional file 1: Fig. S6A) but with a wider spread towards longer seg-
ments (right in Additional file 1: Fig. S6A). Both of these features were mirrored in the 
distribution of predicted TMBs. In contrast, the TMH distributions for DeepTMHMM 
showed an unexpected peak for TMH with 21 residues (both in the annotations used to 
train DeepTMHMM and in the predictions). In fact, the peak for annotated TMHs at 
21 was more than double the value of the two closest length-bins (TMH = 20|22) com-
bined. As the lipid bilayer remains largely invisible in X-ray structures, the exact begin 
and ends of TMHs may have some errors [28, 45, 49–51, 62]. Thus, when plotting the 
distribution of TMH length, we expected some kind of normal distribution with a peak 
around 20-odd residues with more points for longer than for shorter TMHs [72]. In stark 
contrast to this expectation, the distribution observed for the TMHs used to develop 
DeepTMHMM appeared to have been obtained through some very different protocol 
(Additional file 1: Fig. S6B).

In contrast, the distributions for the annotations from OMP and the predictions from 
TMbed appeared to be more normally distributed with TMH lengths exhibiting a slight 
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peak at 22 residues. The larger the AI model, the more it succeeds in reproducing fea-
tures of the development set even when those might be based on less experimentally 
supported aspects. The DeepTMHMM model reproduced the dubious experimental 
distribution of TMHs exceedingly (Additional file 1: Fig. S6B, e.g., orange line and bars 
around peak at 16). Although we do not know the origin of this bias in the DeepTM-
HMM data set, we have seen similar bias in some prediction methods and automated 
annotations in UniProtKB/Swiss-Prot. In fact, a quick investigation showed that for 80 
of the 184 common alpha helical TMPs the DeepTMHMM annotations matched those 
found in UniProtKB but not the OPM annotation in our TMbed data set. Of those 
annotations, 66% (303 of 459) were 21-residues long TMHs, accounting for 73% of all 
such segments; the other 104 TMPs contained only 19% (114 of 593) TMHs of length 
21. This led us to believe that the DeepTMHMM data set contained, in part, length-
biased annotations found in UniProtKB. Other examples of methods with length biases 
include SCAMPI2 and TOPCONS2 that both predicted exclusively TMHs with 21 resi-
dues; OCTOPUS and SPOCTOPUS predicted only TMHs of length 15, 21, and 31 (with 
more than 90% of those being 21 residues). BOCTOPUS2 predicted only beta strands of 
length 8, 9, and 10, with about 80% of them being nine residues long.

Since TMHs are around 21 residues long, such bias is not necessarily relevant. How-
ever, it might point to why performance appears better against some data sets supported 
less by high-resolution experiments than by others.

Performance on new membrane proteins

Although, the small data set size did not allow for statistically significant results (Addi-
tional file 1: Table S13), TMbed performed numerically better than the other methods; in 
particular, BOCTOPUS2 failed to predict the only beta barrel TMP. While TMbed and 
DeepTMHMM both missed two of the 30 transmembrane beta strands, TMbed placed 
the remaining ones, on average, more accurately (recall: 93% vs 87%; precision: 100% vs. 
93%). All methods performed worse for the alpha helical TMPs than on the other two 
benchmark data set, though with a sample size of only four proteins (25 TMHs total), 
we cannot be sure if this is an effect of testing on novel membrane proteins or simply by 
chance. Nevertheless, the transmembrane segments predicted by TMbed fit quite well to 
the membrane boundaries estimated by the PPM [63–65] algorithm (Fig. 2).

No data leakage through pLM

pLMs such as ProtT5 [34] used by TMbed or ESM-1b [36] used by DeepTMHMM 
are pre-trained on billions of protein sequences. Typically, these include all pro-
tein sequences known today. In particular, they include all membrane and non-
membrane proteins used in this study. In fact, assuming that the TMPs of known 
structure account for about 2–5% [78, 79] of all TMPs and that TMPs account for 
about 20–25% of all proteins, we assume pLMs have been trained on over 490 mil-
lion TMPs that remain to be experimentally characterized. For the development of 
AI/ML solutions, it is crucial to establish that methods do not over-fit to existing 
data but that they will also work for new, unseen data. This implies that in the stand-
ard cross-validation process, it is important to not leak any data from development 
(training and validation used for hyperparameter optimization and model choice) 
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to test set (used to assess performance). This implies the necessity for redundancy 
reduction. This also implies that the conditions for the test set are exactly the same 
as those that will be encountered in future predictions. For instance, if today’s exper-
imental annotations were biased toward bacterial proteins, we might expect perfor-
mance to be worse for eukaryotic proteins and vice versa.

Both TMbed introduced here and DeepTMHMM are based on the embeddings of 
pre-trained pLMs; both accomplish the TM-prediction through a subsequent step 
dubbed transfer learning, in which they use the pLM embeddings as input to train 
a new AI/ML model in supervised manner on some annotations about membrane 
segments. Could any data leak from the training of pLMs into the subsequent step of 
training the TM-prediction methods? Strictly speaking, if no experimental annota-
tions are used, no annotations can leak: the pLMs used here never saw any annota-
tion other than protein sequences.

Even when no annotations could have leaked because none were used for the pLM, 
should we still ascertain that the conditions for the test set and for the protein for 
which the method will be applied in the future are identical? We claim that we do 
not have to ascertain this. However, we cannot support any data for (nor against) 
this claim. To play devil’s advocate, let us assume we had to. The reality is that the 
vast majority of all predictions likely to be made over the next five years will be for 
proteins included in these pLMs. In other words, the conditions for future use-cases 
are exactly the same as those used in our assessment.

Fig. 2 New membrane proteins. PDB structures for probable flagellin 1 (Q9YAN8; 7TXI [73]), protein-serine 
O-palmitoleoyltransferase porcupine (Q9H237; 7URD [74]), choline transporter-like protein 1 (Q8WWI5; 7WWB 
[75]), S-layer protein SlpA (Q9RRB6; 7ZGY [76]), and membrane protein (P0DTC5; 8CTK [77]). Transmembrane 
segments (dark purple) predicted by TMbed; membrane boundaries (dotted lines: red = outside, 
blue = inside) predicted by the PPM [45] web server. Images created using Mol* Viewer [71]
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Conclusions
TMbed predicts alpha helical (TMH) and beta barrel (TMB) transmembrane proteins 
(TMPs) with high accuracy (Table  1), performing at least on par or even better than 
state-of-the-art (SOTA) methods, which depend on evolutionary information from mul-
tiple sequence alignments (MSA; Tables 1, 2, 3). In contrast, TMbed exclusively inputs 
sequence embeddings from the protein language model (pLM) ProtT5. Our novel 
method shines, in particular, through its low false positive rate (FPR; Table 1), incorrectly 
predicting fewer than 1% of globular proteins to be TMPs. TMbed also numerically out-
performed all other tested methods in terms of correctly predicting transmembrane 
segments (on average, 9 out of 10 segments were correct; Tables 2, 3). Despite its top 
performance, the even more significant advantage of TMbed is speed: the high through-
put rate of the ProtT5 [34] encoder enables predictions for entire proteomes within an 
hour, given a suitable GPU (Additional file  1: Table  S1). On top, the method runs on 
consumer-grade GPUs as found in more recent gaming and desktop PCs. Thus, TMbed 
can be used as a proteome-scale filtering step to scan for transmembrane proteins. Vali-
dating the predicted segments with AlphaFold2 [11, 68] structures and the PPM [45] 
method could be combined into a fast pipeline to discover new membrane proteins, as 
we have demonstrated with a few proteins. Finally, we provide predictions for 566,976 
proteins from UniProtKB/Swiss-Prot (version: May 2022) via our GitHub repository.
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5. Conclusion

Looking back at the evolution of prediction methods for transmembrane proteins (TMP)
over the last three decades, it is fascinating to see which parts changed and which stayed
mostly the same (Table 1.1). For example, as newer and more sophisticated models
became available, the field was quick to adapt; from simple threshold-based decisions,
to statistical models, and finally complex machine learning models like neural networks
(NN) and hidden Markov models (HMM). However, once HMMs and similar methods
like conditional random fields (CRF) were established, they stayed for good. This makes
sense given the well-structured “grammar” of TMPs. Similarly, most methods quickly
adapted to using evolutionary information in one form or another as input, in order to
improve their prediction performance. Another feature implemented by most modern
methods is the inclusion of a signal peptide predictor, which helps to reduce false positive
predictions. In contrast, the lack of prediction methods that include other membrane-
embedded regions like re-entrant loops is still prevalent.

Although the significant gap of experimental 3D structures for TMP still exists, we now
life in a time where the available tools and resources are able to close most of it. The
gradual advances in sequence-based prediction methods for TMPs are closing in on the
limit of what is possible with computational methods. Modern methods like TMbed [70]
detect alpha-helical TMPs and beta-barrel TMPs with sensitivities in the mid to high
90s, while predicting less than one percent of soluble proteins as TMPs. Individual
transmembrane segments are accurately predicted within only a few residues of their
annotated locations nine out of ten times. As the error of such methods decreases, it
is getting close to the error of the actual annotations in the available databases. For
example, differences in the annotations between the Orientations of Proteins in Mem-
branes [5] (OPM) database, the Protein Data Bank of Transmembrane Proteins [33–35]
(PDBTM), and UniProtKB/Swiss-Prot [102] start to account for a significant portion
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5. Conclusion

of the performance-differences in current evaluation tests [70]. Thus, one of the next ef-
forts should be to focus on increasing the amount of high-quality annotations for known
TMPs, which can then be used to train the next generation of machine learning meth-
ods.

Meanwhile, databases like TmAlphaFold [109] and TMvisDB [111] provide predicted 3D
structures on a scale several magnitudes larger than the current number of experimen-
tally determined 3D structures. Though the quality of predicted structures may vary,
they are still based on the currently best-performing 3D structure prediction method,
AlphaFold2 [87, 88]. They should be sufficient for many research projects where exact
atomic coordinates are not required, or as starting points to select the best candidate
proteins for experimental structure determination. Scanning those databases might also
reveal novel folds of TMPs. For example, TMvisDB contains proteins with both pre-
dicted beta-barrel and alpha-helical transmembrane segments. Though some of those
structures look plausible, there is currently no experimental evidence suggesting that
such proteins exists. Further, advances in the computational generation of novel pro-
tein variants enable us to create thousands or even millions of new protein sequences in
short amounts of time [123], which in turn can be scanned and filtered by the current
generation of prediction methods. This truly opens up a completely new world of TMPs
to discover and explore.
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ABSTRACT

Transmembrane proteins (TMPs) are important drug targets because they are essential for signaling, regulation, and trans-

port. Despite important breakthroughs, experimental structure determination remains challenging for TMPs. Various meth-

ods have bridged the gap by predicting transmembrane helices (TMHs), but room for improvement remains. Here, we

present TMSEG, a novel method identifying TMPs and accurately predicting their TMHs and their topology. The method

combines machine learning with empirical filters. Testing it on a non-redundant dataset of 41 TMPs and 285 soluble pro-

teins, and applying strict performance measures, TMSEG outperformed the state-of-the-art in our hands. TMSEG correctly

distinguished helical TMPs from other proteins with a sensitivity of 98 6 2% and a false positive rate as low as 3 6 1%. Indi-

vidual TMHs were predicted with a precision of 87 6 3% and recall of 84 6 3%. Furthermore, in 63 6 6% of helical TMPs

the placement of all TMHs and their inside/outside topology was correctly predicted. There are two main features that dis-

tinguish TMSEG from other methods. First, the errors in finding all helical TMPs in an organism are significantly reduced.

For example, in human this leads to 200 and 1600 fewer misclassifications compared to the second and third best method

available, and 4400 fewer mistakes than by a simple hydrophobicity-based method. Second, TMSEG provides an add-on

improvement for any existing method to benefit from.

Proteins 2016; 84:1706–1716.
VC 2016 Wiley Periodicals, Inc.

Key words: membrane protein; protein structure prediction; transmembrane helices; a-helical integral membrane protein;

transmembrane protein prediction; transmembrane helix prediction.

INTRODUCTION

Transmembrane proteins (TMPs) are involved in

numerous essential processes within living organisms

such as signaling, regulation, and transport.1 About 20–

30% of all proteins within any organism have been esti-

mated to be TMPs.2,3 Many TMPs, especially G protein-

coupled receptors (GPCRs), are primary drug targets4

and therefore of high interest.

TMPs cross the membrane bilayer with either trans-

membrane helices (TMHs) or beta-strands. The latter are

found in the outer membrane of Gram-negative bacteria,

mitochondria, and chloroplasts. They make up only

about 1–2% of all proteins in Gram-negative bacteria.5

We concentrated on the more common class of helical

TMPs and will refer to these as TMPs in the following.

TMPs can cross the membrane only once (single-pass) or

multiple times (multi-pass). Due to the apolar and

hydrophobic environment in the lipid bilayer, most of

the amino acids found in TMHs are hydrophobic, and

their orientation in the membrane (called TMP topolo-

gy) can be discerned through Gunnar von Heijne’s

positive-inside rule.6,7

Additional Supporting Information may be found in the online version of this

article.
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Despite their immense importance, and despite crucial

experimental advances,8–11 <2% of the structures in the

Protein Data Bank12 (PDB) are TMPs.13–15 As mem-

brane regions are typically not visible in high-resolution

structures, TMHs are assigned to PDB structures by

expert resources, most prominently the Orientations of

Proteins in Membranes16 (OPM) database and the Pro-

tein Data Bank of Transmembrane Proteins17 (PDBTM).

Recent advances in experimental structure determina-

tion have benefited from advanced computational predic-

tions of TMHs from sequence.8,9 In the last 25 years,

many such tools have been developed, ranging from sim-

ple algorithms based solely on hydrophobicity scales

(e.g., TopPred18) to sophisticated uses of hidden Markov

models (e.g., TMHMM,19 HMMTOP,20 Phobius,21 and

PolyPhobius22), neural networks (e.g., PHDhtm,23,24

and MEMSAT325), and support vector machines (MEM-

SAT-SVM26). Arguably, the most important advance was

the incorporation of evolutionary information from

sequence profiles or multiple sequence alignments.23,24

Consequently, almost all methods developed over the last

decade are based on evolutionary information. A recent

assessment applying strict evaluation measures showed

that many methods perform well overall; the best are

some recent methods.27 Here, we show that a few simple

ideas improve significantly over the state-of-the-art.

MATERIAL AND METHODS

Dataset TMP166: helical TMPs with known
structures

We collected helical TMPs with known structures

annotated in OPM16 and PDBTM17 (releases 2013_07).

Both databases use PDB12 chain identifiers. We mapped

those PDB chains to their UniProtKB28 protein sequen-

ces using SIFTS.29 We excluded all chimeric PDB chains,

model structures, X-ray structures with >8 Å, and those

for which some TMH residues did not map gapless to

UniProtKB sequences. This gave 1087 PDB chains from

455 PDB structures (379 X-ray and 76 NMR structures).

UniqueProt30 reduced sequence-redundancy at

HVAL> 0 (the HVAL depends on alignment length and

the percentage of pairwise sequence identity31). At this

threshold, no pair of proteins has >20% pairwise

sequence identity for alignments of >250 residues (see

Rost 199932 for precise definitions). The result of this is

our final dataset consisting of 166 non-redundant TMPs

(called TMP166, Supporting Information Table S1).

As the TMH annotations in OPM and PDBTM dif-

fered for some proteins, we associated TMH annotations

from both databases with each sequence. The inside/out-

side topology of the non-transmembrane regions was

assigned based on the ATOM coordinates and topology

annotation from OPM (cf. Note Supporting Information

S1 and Fig. S1). We considered re-entrant regions33,34

to be non-transmembrane due to their scarcity in the

TMP166 dataset (only 15 proteins with one or two re-

entry regions each; Supporting Information Table S1).

Dataset SP1441: proteins with and
without signal peptides

As signal peptides are often confused with TMHs and

vice versa,27 a second dataset was derived from the Sig-

nalP4.1 dataset.35 This dataset contained UniProtKB

sequences of soluble proteins and TMPs with and with-

out signal peptide annotations. Note that these TMPs

have no inside/outside topology annotations and many

of their TMH annotations are not supported by experi-

mental evidence.

The SignalP4.1 dataset was redundancy reduced twice

using UniqueProt. First, all proteins similar to any of

those in the TMP166 dataset were removed at HVAL> 0.

Second, the remaining proteins were redundancy-filtered

at HVAL> 0. The final dataset contained 1441 proteins

sequences (299 TMPs and 1142 soluble proteins, called

SP1441; Supporting Information Table S2). About 477 of

those had signal peptide annotations (25 TMPs and 452

soluble proteins).

Splitting the datasets

We split the combined TMP166 and SP1441 dataset

into four subsets. We partitioned them in a way that all

subsets have approximately the same distributions with

respect to the number of soluble proteins and TMPs,

protein sequences with and without signal peptides, and

sequence lengths (Supporting Information Fig. S2).

We used the first three subsets to develop TMSEG in a

three-fold cross-validation approach (cf. TMSEG train-

ing). The fourth split, the independent test set called

BlindTest, was used only for the final performance evalu-

ation, i.e., no parameter was optimized on that set. The

BlindTest dataset contained 41 TMPs (from TMP166)

with known structure and TMH annotations from OPM

and PDBTM, and 285 soluble proteins from the SP1441

dataset. The 74 TMPs from the fourth split of SP1441

(Supporting Information Table S2) were not included in

the BlindTest dataset, because they lack sufficient experi-

mental annotations. However, we used them for the sig-

nal peptide prediction performance analysis, as we did

not have curated signal peptide annotations for the

TMPs from OPM and PDBTM.

Human proteome

We retrieved the human proteome, 20,196 protein

sequences, from UniProtKB/Swiss-Prot (release 2015_03).

We applied our TMSEG algorithm to the whole prote-

ome to provide a summary of its TMP composition and

to estimate run time.

TMSEG: Transmembrane Helix Prediction
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Dataset New12

Our original datasets had been based on the PDB

release from July 2013, when this work began. Shortly

before submission of the work in February 2016, that is,

32 months later, we retrieved all TMPs added to OPM

and PDBTM since July 2013. We removed all TMPs simi-

lar (HVAL> 0) to proteins in datasets used previously

(TMP166 and SP1441). Testing the pairwise similarity of

the remaining TMPs we found that two pairs were simi-

lar (HVAL> 0), but we decided to keep them due to

their low HVAL. This resulted in 12 new TMPs (New12

dataset, Supporting Information Table S3) we used for

additional testing. Although the statistical power of such

a small set is very limited, these 12 constitute the entire

addition of completely new structures from 2013/07 to

2016/02. Further, these or structurally related TMPs have

most likely not been used to develop any method used

for comparison.

Evaluation

As per-protein scores (correct classification as TMP or

non-TMP), we compiled the sensitivity (percentage of

observed TMPs predicted as TMPs) and the false positive

rate (FPR: percentage of soluble proteins predicted as

TMPs, Table I). As per-TMH scores (correct identifica-

tion and placement of TMHs), we compiled the preci-

sion (percentage of predicted TMHs that are correct),

recall (percentage of observed TMHs predicted as

TMHs), Qok and Qtop. Qok is the percentage of TMPs for

which all TMHs are correctly predicted (Table I). Qtop

requires in addition to Qok correct topology predictions

(in/out: Table I). To resolve conflicts between OPM and

PDBTM annotations, we chose whichever fit the

prediction best. Note that while sensitivity and recall

have the same formula, we used sensitivity in conjunc-

tion with TMPs and recall with TMHs to better distin-

guish between those scores in the text.

Each TMH was considered correctly predicted, if pre-

dicted and observed TMH ends were within five residues

(Supporting Information Fig. S3), and if predicted and

observed TMH overlapped by at least half of the length

of the longer of the two helices. These two criteria are

more stringent than those that have commonly been

used (typically: overlap >3–5 residues anywhere between

observed and predicted TMH36) and have recently led to

re-evaluating TMH prediction methods.27 None of our

major conclusions changed upon applying values slightly

different than five residues for the maximum allowed

discrepancy between predicted and observed TMH ends

(data not shown).

Error rates for the evaluation measures were estimated

by bootstrapping,37 i.e., by re-sampling the population

of proteins used for the evaluation 1000 times and calcu-

lating the sample standard deviation. Each of these sam-

ple populations contained 60% of the original proteins

(picked randomly without replacement).

State-of-the-art methods

We compared TMSEG to the best methods,27 namely

to PolyPhobius,22 MEMSAT3,25 and MEMSAT-SVM.26

Like TMSEG, these methods also use evolutionary infor-

mation to predict TMPs: MEMSAT3 and MEMSAT-SVM

automatically generate position-specific scoring matrices

(PSSMs) with PSI-BLAST, while PolyPhobius generates

multiple sequence alignments (MSAs). To ensure equal

conditions for all methods we ran them on our local

machines and used the UniProt Reference Cluster with

Table I
Evaluation Measures

Measurement Formula Description

Precision (%) 100 � # of correctly predicted TMHs
# of predicted TMHs

Precision of TMH prediction

Recall (%) 100 � # of correctly predicted TMHs
# of observed TMHs

Recall of TMH prediction

Qok (%) 100
N
�
PN
i51

xi; xi5
1; if pi5ri5100%

0; else

(
Percentage of TMPs with

correct TMH placement

Qtop (%) 100
N
�
PN
i51

yi ; yi5
1; if pi5ri5ti5100%

0; else

(
Percentage of TMPs with

correct TMH placement
and inside/outside topology

FPR (%) 100 � # of incorrectly predicted TMPs
# of soluble proteins

False positive rate of TMP prediction

Sensitivity (%) 100 � # of correctly predicted TMPs
# of observed TMPs

Sensitivity of TMP prediction

Listed are the evaluations measures used and how they were calculated. Precision and recall for the performance evaluation of the TMH prediction were computed by

combining all TMHs within the dataset (i.e., not averaged over each protein). Qok and Qtop were calculated based on all TMPs, where N was the number of TMPs in

the dataset, pi and ri were the TMH precision and recall for protein i within the dataset, and ti 5 100% indicated a correctly predicted N-terminal inside/outside topolo-

gy for protein i.
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90% sequence identity (UniRef90, release 2015_03) as

the homology search database, i.e., to generate the MSAs

or PSSMs. While we used proteins completely unknown

to TMSEG to assess its performance, some of the pro-

teins used in our assessment might have been used to

develop PolyPhobius, MEMSAT3, or MEMSAT-SVM. In

this sense, our assessment was likely to over-estimate

their performance, in particular with respect to TMSEG.

Baseline performance

We also compared all methods to a simple baseline

predictor similar to TopPred18: for all possible segments

of 21 consecutive residues, we summed the Eisenberg-

hydrophobicity38 (EisenbergSum, Supporting Informa-

tion Table S4). All non-overlapping segments with

EisenbergSum� 4 were predicted as TMHs, starting with

the segments with the highest sum. The inside/outside

topology was predicted based on the difference between

arginine and lysine residues on either side of the TMHs,

i.e., applying Gunnar von Heijne’s positive-inside rule.6,7

TMSEG input/output

TMSEG needs two input files to successfully run a

prediction: a FASTA file with the protein sequence and a

PSI-BLAST PSSM file for the input protein. The PSSM

file is mandatory and used to include homology-based

features that greatly increase the prediction accuracy.

Combining evolutionary information (e.g., PSSMs and

MSAs) with machine learning has been the most impor-

tant improvement in protein prediction and is common-

ly used in TMH and secondary structure

prediction.24,27,39,40 TMSEG incorporates evolutionary

information through PSI-BLAST profiles41 generated

from UniRef90 (release 2015_03). We used two sets of

profiles: a training set with a stringent E-value cutoff of

1025 and five iterations for creating the profile, as well

as a test set with a less strict E-value cutoff of 1023 and

three iterations. We deactivated PSI-BLAST’s low-com-

plexity filter and enabled the option to calculate local

optimal Smith-Waterman alignments in order to gener-

ate longer and more accurate alignments.

In addition, we used biophysical properties (charge,

hydrophobicity, polarity; Supporting Information Table

S4) and the overall amino acid composition. These fea-

tures were calculated twice for each residue: once for all

substitutions with a positive PSSM score and once based

on all substitutions with a negative score.

The standard output gives a brief summary of the

positions of the TMHs and signal peptide (if any) and

the inside/outside topology. In addition, a raw output is

available that also contains the unmodified output prob-

abilities of the machine-learning tools.

TMSEG algorithm

TMSEG combines several machine-learning tools and

empirical filters. The machine-learning algorithms used

are two random forests (RFs) and one neural network

(NN), both of which are implementations from the

WEKA Java package.42 The output of these algorithms is

further processed with empirically determined filters and

thresholds. The TMSEG algorithm executes four separate

steps (Fig. 1):

Step 1: initial per-residue prediction

An RF detects TMHs from the input sequence. This

RF slides a window of 19 consecutive residues through

the protein sequence, predicting whether or not the cen-

tral residue in the window is in a TMH, signal peptide,

or non-TM region, i.e., the probability of each residue

for each state is calculated based on the residue itself and

the nine residues left and right of it. For each of the 19

residue positions, we compute the PSSM profile. For the

central nine residues in the window, we also compute

the average Kyte-Doolittle43 hydrophobicity, and the per-

centage of hydrophobic, charged, and polar residues

(Supporting Information Table S4).

In addition to these local features, we compile glob-

al features: the distance of the residue to the N- and

C-terminus, the length of the protein sequence, and

the global amino acid composition. The RF assigns

three values to each residue corresponding to the

probability to be in a TMH, a signal peptide, or a

non-TM region. Runtime is decreased by multiplica-

tion of the probabilities by 1000 and transformation

into integers.

Step 2: per-protein filter: TMP or soluble

The per-residue scores are filtered empirically. First to

reduce short peaks of one or two residues, all per-residue

scores are smoothed by compiling the median score over

five consecutive residues and assigning it to the center

residue. Next, each residue is assigned to the state with

the highest score (TMH, signal peptide, or non-TM). To

prevent over-prediction due to the under-sampling of

signal peptide residues, we applied a penalty of 185 (that

is, 18.5%) to non-TM and 60 (that is, 6%) to TMH resi-

dues. These penalties were optimized during cross-

training to best balance over- and under-prediction.

Finally, TMHs shorter than seven residues are changed

into non-TM regions. If a signal peptide of at least four

consecutive residues is identified within the first 40 N-

terminal residues ending in residue at position i, TMSEG

predicts a signal peptide from residue 1 to residue i (i �
40). Signal peptide predictions outside the first 40 resi-

dues (i> 40) are changed into non-TM, but do not

invalidate signal peptides inside the first 40 residues.

TMSEG: Transmembrane Helix Prediction

PROTEINS 1709

 10970134, 2016, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.25155 by T

u M
uenchen B

ibliothek, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Initial predictions with fewer than four consecutive resi-

dues are changed into non-TM.

Step 3: refinement of TMHs

In the third step an NN corrects the predicted TMHs.

In contrast to the standard sliding window approach of

the RF in Step 1, here we introduced a segment-based

solution that used as input the following averages over

the predicted TMHs: length of predicted TMH, amino

acid composition, average hydrophobicity, as well as the

percentages of hydrophobic and charged residues. The

output of the NN is the predicted probability for the

segment to be a TMH. Based on this probability, the pre-

dicted TMHs from Step 2 are adjusted.

First, TMHs� 35 residues are split into two TMHs

with at least 17 residues, if these two TMHs increase the

overall probability. The minimum length of 35 residues

for splitting long TMHs and of 17 residues for the

resulting two TMHs were empirically chosen based on

the overall performance during cross-training. Second,

the start and end positions for each TMH are adjusted

by shifting them by up to three residues in either direc-

tion. Shifts are accepted if they increase the overall prob-

ability. The maximum endpoint adjustment by three

residues was empirically chosen based on the overall

performance during cross-training. In addition, the rela-

tively long minimum TMH lengths to allow splitting and

the relatively small shift of maximally three residues of

the TMH ends allow TMSEG to maintain a short

runtime.

Step 4: topology prediction

Another RF predicts the inside/outside topology of the

TMP, i.e., in which direction the TMHs cross the membrane.

During this step the non-transmembrane regions are assigned

to inside (e.g., cytoplasmic side of the membrane) or outside.

This prediction is made for the entire protein. For each

TMH, we consider up to 15 residues before and after the

TMH, and eight residues at the TMH start and end (for

TMHs< 16 these residues overlap). As all predicted TMHs

are assumed to cross the membrane, the in/out assignment is

switched after each TMH. For each side, we compute as input

to the RF the amino acid composition, the percentage of pos-

itively charged residues (we consider all arginine and lysine

residues), and the absolute difference of positively charged

residues between the two sides. Based on the RF output, one

side is assigned to be inside (e.g., cytoplasmic), the other to

be outside. Residues immediately after predicted signal pepti-

des are assigned to outside (non-cytoplasmic) and all

Figure 1
TMSEG algorithm. The new method TMSEG has four steps of machine learning and optimization. Step 1: A random forest (RF) assigns a score to
each residue for the three states transmembrane helix (TMH), signal peptide, and non-TM region. Step 2: The previous scores are smoothed

(median over 5 residues), all residues are assigned to the state with the highest score, and short segments are removed. Step 3: A segment-based
neural network (NN) adjusts the exact position of predicted TMHs, and their length, sometimes splitting TMHs, sometimes shifting, extending, or

compressing them. Step 4: The inside/outside topology is predicted by another RF.

M. Bernhofer et al.
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consecutive segments are assigned accordingly without any

further prediction.

TMSEG training

To reduce the risk of over-fitting, we split our com-

bined TMP166 and SP1441 datasets into four even splits

(cf. Supporting Information Tables S1 and S2). Note that

the TMPs from the SP1441 dataset were used to train

the random forest in the initial prediction (step 1) as

they contain signal peptide annotations. They are, how-

ever, not used for the neural network (step 3) or the ran-

dom forest in step 4, since they have no inside/outside

topology annotations and many of their TMH annota-

tions are not supported by experimental evidence.

The first of three splits was used to train, the second to

cross-train, i.e., to optimize all other free parameters (e.g.,

the minimum TMH length), and the last to evaluate per-

formance (test). This procedure was repeated three times,

such that each protein had been used exactly once for

training, cross-training and testing. The final parameters

were frozen according to the overall best performance for

all three rotations (on the test set). Given the frozen

parameters, we applied the final method to the fourth split,

the BlindTest dataset, which had not been used before.

Our careful four-fold split leading to three-fold devel-

opment (each with training, cross-training, and testing),

provided a double protection against overestimating per-

formance. We decided about every detail in the final

method before using the BlindTest dataset to evaluate

TMSEG as presented here. Many developers use a two-

fold split (training/testing), more careful ones the three-

fold split (training/cross-training/testing), while the

fourth split is occasionally introduced through pre-

release data39 like the New12 dataset that we generated.

RESULTS AND DISCUSSION

The novel TMSEG method introduced here distin-

guishes between proteins with transmembrane helices

(TMHs) and soluble proteins. For all helical transmem-

brane proteins (TMPs), it predicts the placement of the

TMHs, and their orientation in the membrane, i.e., their

inside/outside topology. We established sustained perfor-

mance through cross-validation with two levels of blind

testing. We compared our new methods to others,

including the best at predicting TMPs,27 namely Poly-

Phobius22 and MEMSAT-SVM.26 Furthermore, we ana-

lyzed MEMSAT325 because it excels at the inside/outside

topology prediction,44 and SignalP4.1 as the leading

method for signal peptide identification.35 In addition,

we compared to a simple hydrophobicity-based predic-

tion similar to TopPred.18

Outstanding per-protein distinction
between TMPs and other proteins

TMSEG correctly identified 40 of the 41 TMPs in the

BlindTest dataset (98 6 2% sensitivity) and incorrectly

predicted 8 of 285 soluble proteins as TMPs (3 6 1%

false positive rate: FPR). TMSEG performed similar to

PolyPhobius (100% sensitivity and 5 6 1% FPR) and sig-

nificantly better than MEMSAT3 and MEMSAT-SVM

(Table II).

Although signal peptides can be confused with TMHs

due to the similarity of their signal, only one of the

8 mistakes of predicting soluble proteins as TMPs origi-

nated from incorrectly predicting a signal peptide as a

TMH. This shows that training on a dataset containing

signal peptides helped significantly to reduce false posi-

tive predictions. PolyPhobius, which also includes a

sophisticated signal peptide prediction, did not confuse

any signal peptides with TMHs. However, MEMSAT-

SVM, MEMSAT3, and the Baseline predictor had 13, 41,

and 69 predicted TMHs, respectively, that overlapped by

at least half their length with annotated signal peptides.

Overall, TMSEG was able to reliably detect signal pepti-

des and to not predict them as TMHs (Supporting Infor-

mation Table S5).

Table II
Per-Protein Distinction Between Helical TMPs and Other Proteins

Method
TMP

sensitivity TMP FPR
Topology
correct

Misclassified
in human

More mistakes than
TMSEG in human

TMSEG 98 6 2 3 6 1 93 6 4 558 -
PolyPhobius22 100 6 0 5 6 1 78 6 7 770 212
MEMSAT325 100 6 0 28 6 2 93 6 4 4313 3755
MEMSAT-SVM26 98 6 2 14 6 2 88 6 5 2253 1695
Baseline 95 6 3 31 6 2 75 6 7 5015 4457

Results are provided for all 41 TMPs and 285 soluble proteins in the BlindTest dataset. Error rates are the sample standard deviation based on bootstrapping (cf. Meth-

ods). Listed are the TMP sensitivity (percentage of correctly predicted helical TMPs), the TMP FPR (percentage of non-TMP proteins incorrectly predicted as TMP),

Topology correct (percentage of proteins for which the topology (inside/outside) was correctly predicted; this differs from Qtop which requires topology and all TMHs to

be predicted correctly), Misclassified in human (estimates the number of proteins misclassfied for the entire human proteome), and More mistakes than TMSEG in

human (estimates the number of proteins misclassfied more by the method than by TMSEG). The estimates for the human proteome are based on two assumptions:

(i) the error estimates on the BlindTest dataset hold true for the human proteome, (ii) the human proteome has 20,196 proteins, 4791 of which are TMPs (cf. Results

section “Application to the human proteome”).

TMSEG: Transmembrane Helix Prediction
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We used the 74 TMPs from the fourth subset of the

SP1441 dataset (cf. Supporting Information Table S2) to

further test the prediction of signal peptides and TMHs.

For these proteins, TMSEG and PolyPhobius incorrectly

predicted several single-pass TMPs as soluble proteins,

because they confused their TMHs near the N-terminus

with signal peptides (Supporting Information Table S5).

This trend did not occur with the TMPs from the TMP166

dataset (evident by their high sensitivity values; Table II).

An explanation might be that TMPs with TMHs within

the first 40 residues are more prevalent in the SP1441 data-

set, which makes this misclassification more likely to hap-

pen. Although these misclassification rates would lower our

previous sensitivity estimates for TMSEG and PolyPhobius

(at least for single-pass TMPs with their TMH near the N-

terminus), we hesitate to generalize the results to everyday

applicability since the SP1441 dataset is biased (it was gen-

erated to develop the signal peptide predictor SignalP4.1)

and contains many TMPs with a TMH near the N-

terminus. Further, only 2 of the 9 TMHs that were incor-

rectly predicted as SPs had experimental evidence.

While all methods reached high sensitivity, they dif-

fered vastly in their false positive rates, i.e., soluble pro-

teins incorrectly considered to contain TMHs (Table II).

By translating the error rates, the number of proteins

that would be misclassified in the entire human prote-

ome can be estimated using two reasonable assumptions:

(i) the error estimates for all methods based on the 326

non-redundant proteins (41 TMPs and 285 soluble pro-

teins) in the BlindTest dataset hold true for the (redun-

dant) human proteome, (ii) the human proteome has

20,196 proteins and 4791 of those are TMPs (cf. Section

below “Application to the human proteome”). Under these

assumptions, TMSEG achieves 97% per-protein accuracy

and misclassifies only about 558 human proteins. The

second best method, PolyPhobius, makes 770 mistakes

(212 more than TMSEG) and MEMSAT-SVM as the

third best method already misclassifies 2253 proteins

(1695 more than TMSEG, Table II). In fact, TMSEG is

almost 8.8-times superior to the Baseline predictor, Poly-

Phobius over 6.5-times better, and MEMSAT-SVM 2.2-

times better than the Baseline predictor (Supporting

Information Table S6).

Best overall per-TMH prediction

Overall, TMSEG achieved a sustained level of precision

(87 6 3%) and recall (84 6 3%) for the TMHs, that is,

87 6 3% of all predicted TMHs were at the correct posi-

tion and 84 6 3% of all observed TMHs had been accu-

rately predicted [Supporting Information Fig. S4(A,B)].

These values were second to no other method, however,

only slightly above the second best method MEMSAT-

SVM (85 6 3% precision at 83 6 3% recall). All other

methods had scores below 80%. For 66 6 6% of all

TMPs, TMSEG predicted all observed TMHs at their

correct positions, i.e., Qok 5 66 6 6% (Fig. 2). MEMSAT-

SVM followed as second best with Qok 5 61 6 7% (Fig.

2). Nevertheless, given the small datasets, the top perfor-

mance of TMSEG remained within one standard devia-

tion of all compared methods, except the baseline

hydrophobicity prediction (Fig. 2: error bars).

When comparing the performance on TMP subsets

based on the number of TMHs, the performance got

worse the more TMHs a protein had [Supporting Infor-

mation Fig. S4(C,D)]. This might be misunderstood to

imply that prediction methods perform better in placing

the TMHs in single-pass TMPs than in, e.g., GPCRs

(with 7 TMHs). However, this simple numerical compar-

ison ignores the difference in the difficulty of the task:

The Baseline predictor reached a high value in Qok for

single-pass TMPs, but failed to predict all TMHs correct-

ly for any TMP with >5 TMHs [Supporting Information

Fig. S4(C)]. In fact, when we simply compiled perfor-

mance for the subset of proteins for which the Baseline

predictor failed, we found similar values for proteins

with one TMH, those with 2–5, and those with >5

TMHs (Supporting Information Fig. S5).

In contrast, it surprised us that even for the trivial

cases, i.e., those for which the Baseline predictor had all

TMHs correct, the more advanced methods failed for

some of them. This suggests that the large number of

different features used by the more advanced methods

sometimes interfere with and obscure a strong

Figure 2
TMSEG compared favorably to state-of-the-art. Results are provided for

all 41 TMPs in the BlindTest dataset. Error bars are the sample standard

deviation based on bootstrapping (cf. Methods). Shown is on the left
the percentage of proteins for which all TMHs were predicted correctly

(Qok, Table I) and on the right the percentage of proteins with correctly
predicted TMHs and inside/outside topology (Qtop, Table I; note that

Qok�Qtop by definition).

M. Bernhofer et al.

1712 PROTEINS

 10970134, 2016, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.25155 by T

u M
uenchen B

ibliothek, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



hydrophobicity signal. Indeed, only 11 of the 19 trivial

TMPs were correctly predicted by all four other methods.

However, TMSEG still performed best with Qok 5 89 6

6%, followed by MEMSAT3 and MEMSAT-SVM with

Qok 5 84 6 7% (data not shown).

Best inside/outside topology prediction

TMSEG and MEMSAT3 correctly placed the N-

terminus as inside (e.g., cytoplasmic) or outside (e.g.,

extracellular), i.e., correctly predicted the topology, for

93 6 4% of all TMPs (Table II). When taking into

account the global topology and correct TMH placement

(i.e., Qtop), TMSEG performed better than all other

methods reaching Qtop 5 63 6 6% (Fig. 2). This is five

percentage points higher than the second best method,

MEMSAT-SVM (albeit still within one standard devia-

tion). Most advanced methods predicted the topology

correctly for almost all proteins for which they correctly

predicted all TMHs (Qtop almost identical to Qok for all

methods, except for the Baseline predictor in Fig. 2).

Application to the human proteome

We applied TMSEG to predict all helical TMPs in the

human proteome (20,196 proteins from UniProtKB/Swiss-

Prot). TMSEG predicted a total of 5157 TMPs, almost

half of these (2300 5 45%) were predicted with one TMH.

Given the sensitivity and false positive rate of TMSEG

(98 6 2 and 3 6 1%, respectively; Table II), we estimate

that 462 TMPs were incorrectly predicted (over-predicted)

and 96 were missed (under-predicted). In total, we thus

misclassified 558 proteins, and our corrected estimate was

that humans have about 4791 TMPs, i.e., about 24% of

all proteins cross the membrane. While TMSEG misclassi-

fied about 558 human proteins, the mistake in the esti-

mate of this percentage appeared to be less than a per-

mille, that is, 60.01%. However, our error estimate might

be too simplistic due to the high number of single-pass

TMPs for which the error rates are much higher than for

proteins with more TMPs.

Confirming previous observations,2,3 we also observed

two peaks of predicted TMPs for proteins with 7 TMHs

(819 proteins) and 12 TMHs (189 proteins). These likely

represent G protein-coupled receptors (GPCRs) and

transporter proteins. Applying UniqueProt to the 5157

predicted TMPs, we found around 500 non-redundant

TMPs of which 320 are single-pass TMPs.

Latest experimental structures confirmed
our estimates

The 12 new TMPs (New12 dataset) that have recently

been added to the PDB constituted the only dataset with

truly identical conditions for all methods assessed. The

New12 dataset allowed us to confirm the outstanding

performance of our new method TMSEG. TMSEG and

PolyPhobius correctly identified 10 of the 12 TMPs

(83 6 10% sensitivity), while MEMSAT3, MEMSAT-

SVM, and the Baseline predictor identified 11 (92 6 7%

sensitivity). However, TMSEG correctly predicted every

TMH of those 10 TMPs, resulting in a Qok 5 83 6 10%,

compared to Qok 5 58 6 13% for PolyPhobius, MEM-

SAT3, and MEMSAT-SVM (Baseline predictor

Qok 5 50 6 13%). TMSEG also performed best taking

into account the topology prediction and reached

Qtop 5 66 6 12%, compared to a Qtop 5 58 6 13% for

MEMSAT3 and MEMSAT-SVM, and Qtop 5 50 6 13%

for PolyPhobius and the Baseline predictor.

Comparisons complicated by small datasets

The two small datasets available for evaluation

(BlindTest with 41 TMPs and New12 with 12 TMPs)

implied high standard errors for many performance esti-

mates. Especially standard errors for the TMH-segment

based scores are so high (up to 16 percentage points,

Supporting Information Fig. S4) that comparisons

between methods hardly provide statistically significant

differences on the TMH-segment level. Nevertheless,

TMSEG seemed to perform on par with any existing

method. Note that the differences in the distinction

between helical TMPs and other proteins in the BlindTest

dataset were statistically significant even in considering

TMSEG as slightly better than the second best PolyPho-

bius (Table II).

Further, we could not use a single gold standard,

because OPM and PDBTM differed in their TMH anno-

tations: comparing the OPM annotations to the PDBTM

annotations (that is, “predicting” one with the other)

yielded Qok 5 56 6 7%. In other words, if we considered

one of those experiment-based annotations as the predic-

tion of the other, the average performance would be sim-

ilar to that of TMSEG and the other methods. When

using only OPM or PDBTM annotations to evaluate the

prediction performance, TMSEG still performed excel-

lently (Supporting Information Fig. S6). However, this

was also the only comparison in which one other meth-

od reached a numerically higher value for a dataset than

TMSEG, namely MEMSAT-SVM on the PDBTM annota-

tions. Overall, all predictions agreed more with OPM

than with PDBTM annotations (Supporting Information

Fig. S6).

Performance best with diverse alignments

TMSEG strongly depends on the evolutionary infor-

mation taken from PSI-BLAST PSSMs. We recommend

using a sufficiently large search database (e.g., UniRef90)

to generate the PSSMs. Additionally, redundancy reduc-

tion might help (e.g., at 90% pairwise sequence identity

as in UniRef90).

TMSEG: Transmembrane Helix Prediction
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Alignments built from smaller search-databases (e.g.,

UniRef50 and Swiss-Prot) only slightly lowered the per-

protein performance: the sensitivity never dropped below

90 6 4%, while the false positive rate remained at or

below 3 6 1%. However, the TMH-based precision and

recall values dropped substantially (Supporting Informa-

tion Fig. S7). Thus, for sequences that produce no PSI-

BLAST hits, we recommend using a larger search data-

base or—in the rare case that the protein is a true single-

ton—a method that is independent of evolutionary

information, e.g., Phobius.21,27

Re-entrant membrane helices not predicted
correctly

Our dataset contained only few re-entrant helices,

insufficient to learn their prediction (Supporting Infor-

mation Table S1). Therefore, we considered re-entrant

helices as non-TM during training to avoid later interfer-

ence with the inside/outside topology prediction. Due to

the lack of data, we could not reliably assess how well

TMSEG distinguishes TMHs from re-entrant membrane

helices: The BlindTest dataset included only seven re-

entrant regions (OPM and PDBTM annotations com-

bined). TMSEG incorrectly predicted five of seven as

TMHs; two of these five were predicted as two separate

TMHs; thus, the overall inside/outside topology was not

influenced. MEMSAT-SVM, the only tested method that

predicts re-entrant helices, identified five of the seven as

re-entrant, predicted one as a TMH, and missed the last.

When considering re-entrant regions as TMHs, Qok

remained the same for TMSEG and PolyPhobius and

dropped by 2–5 percentage points for MEMSAT-SVM,

MEMSAT3, and the Baseline predictor.

TMSEG easily combined with other methods

Due to the modularity of TMSEG (i.e., its four sepa-

rate steps, Fig. 1), it can be used to refine other methods.

This includes the adjustment of the TMHs as well as the

inside/outside topology prediction. We used the TMH

predictions of the reference methods, and applied Steps 3

and 4 of TMSEG to their prediction (Fig. 2). Applying

TMSEG as refinement improved the performance for

most methods (Fig. 3; Supporting Information Fig. S8).

While the improvement was small for the TMH place-

ment (Qok), TMSEG improved most methods by over

eight percentage points in Qtop (correct TMHs and

topology).

Runtime estimation

We estimated the runtime by applying TMSEG to the

human proteome (20,196 proteins). As the time to run

PSI-BLAST differs depending on the database size, we

decided to use pre-computed PSSMs to measure only the

time needed by TMSEG. Given those PSI-BLAST pro-

files, the prediction for the entire human proteome took

about 90 min (Intel Core i7-3632QM 2.2 GHz, 8GB

RAM; no multithreading), which corresponds to three to

four protein sequences per second.

CONCLUSION

In our hands, our new method TMSEG almost always

outperformed existing state-of-the-art prediction meth-

ods (Table II, Fig. 2). However, due to the small datasets,

many improvements on the per-TMH level remained too

small for the large margin of statistical significance (stan-

dard errors up to 16 percentage points, Supporting

Information Fig. S4). Most importantly, TMSEG

achieved the significantly best per-protein classification

in the distinction between helical TMPs and all other

proteins. For instance, for the prediction of all human

proteins, this implied about 558 incorrectly predicted

proteins. This number might appear high; however, no

method tested reached such a low level, e.g., PolyPhobius

misclassified about 200 more proteins than TMSEG and

MEMSAT-SVM fared about four times worse (corre-

sponding to >2000 incorrect predictions).

The highest per-protein performance resulted from a

combined prediction of TMHs, non-TM regions, and

signal peptides. In order to predict re-entrant helices,

Figure 3
TMSEG applied to refine other methods. The TMSEG algorithm itera-
tively refines performance through four consecutive steps. Here, we

applied Steps 3 and 4 as post-filters to other methods (dataset and

error bars as in Fig. 2). Given is the improvement of Qok and Qtop (cf.
Table I for definitions) of the prediction method by applying TMSEG,

i.e., Q(method 1 TMSEG) – Q(method). Note that PolyPhobius (first
bar on the left) and MEMSAT-SVM (third bar on the left) showed, on

average, no improvement in Qok.
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another state would have to be introduced; as is, TMSEG

predicted five of seven re-entrant helices in our dataset

as TMHs. The sustained high levels of per-segment pre-

dictions resulted from our new segment-focused algo-

rithm. Another major advantage of our new concept is

that it can be used to improve the predictions of most

other TMH prediction methods.

Availability and speed

Other than its top performance, using TMSEG may also

be recommended due to its speed and because it might

help to improve over the method that you run locally. The

method is easily and freely available: online through the

PredictProtein45 webserver (www.predictprotein.org), and

as standalone Debian package from the Rostlab Debian

repository (www.rostlab.org/owiki) and GitHub (www.

github.com/Rostlab/TMSEG). A tutorial on how to use

PSI-BLAST and TMSEG can be found in the Rostlab Wiki

(www.rostlab.org/owiki/index.php/TMSEG).
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Tübingen, Germany, 7The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life
Sciences, Tel Aviv University, 69978 Tel Aviv, Israel, 8Department of Biochemistry & Molecular Biology, George S.
Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel, 9Department of Biochemistry and
Microbiology, Rutgers University, New Brunswick, NJ 08901, USA, 10Roche Polska Sp. z o.o., Domaniewska 39B,
02–672 Warsaw, Poland, 11Garvan Institute of Medical Research, Sydney, Australia, 12Department of Data Sciences,
Dana-Farber Cancer Institute, Boston, MA 02215, USA, 13Department of Cell Biology, Harvard Medical School,
Boston, MA 02215, USA, 14Broad Institute of MIT and Harvard, Boston, MA 02142, USA, 15HSWT (Hochschule
Weihenstephan Triesdorf | University of Applied Sciences), Department of Bioengineering Sciences, Am Hofgarten
10, 85354 Freising, Germany, 16Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai,
New York, NY 10029, USA, 17BIPS, Poblacion Baco, Mindoro, Philippines, 18Quantitative and Computational Biology,
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, 19School of Biological Sciences, Seoul National
University, Seoul, South Korea, 20Artificial Intelligence Institute, Seoul National University, Seoul, South Korea,
21Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748 Garching/Munich, Germany and 22TUM School
of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany

Received February 23, 2021; Revised April 06, 2021; Editorial Decision April 21, 2021; Accepted May 10, 2021

ABSTRACT

Since 1992 PredictProtein (https://predictprotein.
org) is a one-stop online resource for protein se-
quence analysis with its main site hosted at the Lux-
embourg Centre for Systems Biomedicine (LCSB)
and queried monthly by over 3,000 users in 2020.
PredictProtein was the first Internet server for pro-
tein predictions. It pioneered combining evolution-

ary information and machine learning. Given a pro-
tein sequence as input, the server outputs multiple
sequence alignments, predictions of protein struc-
ture in 1D and 2D (secondary structure, solvent
accessibility, transmembrane segments, disordered
regions, protein flexibility, and disulfide bridges)
and predictions of protein function (functional ef-
fects of sequence variation or point mutations, Gene
Ontology (GO) terms, subcellular localization, and
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protein-, RNA-, and DNA binding). PredictProtein’s
infrastructure has moved to the LCSB increasing
throughput; the use of MMseqs2 sequence search
reduced runtime five-fold (apparently without lower-
ing performance of prediction methods); user inter-
face elements improved usability, and new predic-
tion methods were added. PredictProtein recently in-
cluded predictions from deep learning embeddings
(GO and secondary structure) and a method for the
prediction of proteins and residues binding DNA,
RNA, or other proteins. PredictProtein.org aspires
to provide reliable predictions to computational and
experimental biologists alike. All scripts and meth-
ods are freely available for offline execution in high-
throughput settings.

GRAPHICAL ABSTRACT

INTRODUCTION

The sequence is known for far more proteins (1) than ex-
perimental annotations of function or structure (2,3). This
sequence-annotation gap existed when PredictProtein (4,5)
started in 1992, and has kept expanding ever since (6).
Unannotated sequences contribute crucial evolutionary in-
formation to neural networks predicting secondary struc-
ture (7,8) that seeded PredictProtein (PP) at the European
Molecular Biology Laboratory (EMBL) in 1992 (9), the
first fully automated, query-driven Internet server provid-
ing evolutionary information and structure prediction for
any protein. Many other methods predicting aspects of pro-
tein function and structure have since joined under the PP
roof (4,5,10) now hosted by the Luxembourg Centre of Sys-
tems Biomedicine (LCSB).

PP offers an array of structure and function predictions
most of which combine machine learning with evolutionary
information; now enhanced by a faster alignment algorithm
(11,12). A few prediction methods now also use embeddings
(13,14) from protein Language Models (LMs) (13–18). Em-
beddings are much faster to obtain than evolutionary infor-
mation, yet for many tasks, perform almost as well, or even
better (19,20). All PP methods join at PredictProtein.org
with interactive visualizations; for some methods, more ad-
vanced visualizations are linked (21–23). The reliability of
PredictProtein, its speed, the continuous integration of well-
validated, top methods, and its intuitive interface have at-
tracted thousands of researchers over 29 years of steady op-
eration.

MATERIALS AND METHODS

PredictProtein (PP) provides

multiple sequence alignments (MSAs) and position-specific
scoring matrices (PSSMs) computed by a combination
of pairwise BLAST (24), PSI-BLAST (25), and MM-
seqs2 (11,12) on query vs. PDB (26) and query versus
UniProt (1). For each residue in the query, the following
per-residue predictions are assembled: secondary structure
(RePROF/PROFsec (5,27) and ProtBertSec (14)); solvent
accessibility (RePROF/PROFacc); transmembrane helices
and strands (TMSEG (28) and PROFtmb (29)); protein dis-
order (Meta-Disorder (30)); backbone flexibility (relative
B-values; PROFbval (31)); disulfide bridges (DISULFIND
(32)); sequence conservation (ConSurf/ConSeq (33–36));
protein-protein, protein-DNA, and protein-RNA binding
residues (ProNA2020 (3)); PROSITE motifs (37); effects
of sequence variation (single amino acid variants, SAVs;
SNAP2 (38)). For each query per-protein predictions in-
clude: transmembrane topology (TMSEG (28)); binary
protein-(DNA|RNA|protein) binding (protein binds X or
not; ProNA2020 (3)); Gene Ontology (GO) term predic-
tions (goPredSim (19)); subcellular localization (LocTree3
(39)); Pfam (40) domain scans, and some biophysical fea-
tures. Under the hood, PP computes more results (SOM:
PredictProtein Methods; Supplementary Table S1), either
as input for frontend methods, or for legacy support.

New: goPredSim embedding-based transfer of Gene Ontol-
ogy (GO)

goPredSim (19) predicts GO terms by transferring anno-
tations from the most embedding-similar protein. Embed-
dings are obtained from SeqVec (13); similarity is estab-
lished through the Euclidean distance between the embed-
ding of a query and a protein with experimental GO annota-
tions. Replicating the conditions of CAFA3 (41) in 2017, go-
PredSim achieved Fmax values of 37 ± 2%, 52 ± 2% and 58
± 2% for BPO (biological process), MFO (molecular func-
tion), and CCO (cellular component), respectively (41,42).
Using Gene Ontology Annotation (GOA) (43,44) to test
296 proteins annotated after February 2020, goPredSim ap-
peared to reach even slightly higher values that were con-
firmed by CAFA4 (45).

New: ProtBertSec secondary structure prediction

ProtBertSec predicts secondary structure in three states (he-
lix, strand, other) using ProtBert (14) embeddings derived
from training on BFD with almost 3 × 109 proteins (6,46).
On a hold-out set from CASP12, ProtBertSec reached a
three-state per-residue accuracy of Q3 = 76 ± 1.5% (47).
Although below the state-of-the-art (NetSurfP-2.0 (48) at
82%), this method performed on-par with other MSA-
based methods, despite itself not using MSAs.

New: ProNA2020 protein–protein, protein–RNA and
protein–DNA

ProNA2020 (3) predicts whether or not a protein interacts
with other proteins, RNA or DNA (binary), and if so, where
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Figure 1. Predictions for SARS-CoV-2 Nucleoprotein (NCAP SARS2). Underneath the interactive slider at the top: RePROF and ProtBertSec secondary
structure (blue: helix; purple: strand; orange: other); Meta-Disorder intrinsically disordered regions (purple); ProNA2020 RNA-binding residues (low
confidence: blue; medium confidence: purple). goPredSim transfers of GeneOntology (GO) terms based on embedding similarity (lower left: CCO; lower
right: BPO & MFO). SNAP2 predicts the effect of point-mutations on function for the RNA-binding region from I84 to D98 (bottom-center; black: native
residue). Link: predictprotein.org/visual results?req id=$1$nAmulUQY$FRPFaP8NTqLW9DzdlTG3B/.

it binds (which residues). The binary per-protein predictions
rely on homology and machine learning models employ-
ing profile-kernel SVMs (49) and on embeddings from an
in-house implementation of ProtVec (50). Per-residue pre-
dictions (where) use simple neural networks due to data
shortage (51–53). ProNA2020 correctly predicted 77 ± 1%
of the proteins binding DNA, RNA or protein. In proteins
known to bind other proteins, RNA or DNA, ProNA2020
correctly predicted 69 ± 1%, 81 ± 1% and 80 ± 1% of bind-
ing residues, respectively.

New: MMseqs2 speedy evolutionary information

Most time-consuming for PP was the search for related pro-
teins in ever growing databases. MMseqs2 (11) finds related
sequences blazingly fast and seeds a PSI-BLAST search
(25). The query sequence is sent to a dedicated MMseqs2
server that searches for hits against cluster representatives
within the UniClust30 (54) and PDB (26) reduced to 70%
pairwise percentage sequence identity (PIDE). All hits and
their respective cluster members are turned into a MSA and
filtered to the 3000 most diverse sequences.

WEB SERVER

Frontend and user interface (UI)

Users query PredictProtein.org by submitting a protein se-
quence. Results are available in seconds for sequences that
had been submitted recently (cf. PPcache next section), or
within up to 30 min if predictions are recomputed. Per-
residue predictions are displayed online via ProtVista (55),

which allows to zoom into any sequential protein region
(Supplementary Figure S1), and are grouped by category
(e.g. secondary structure), which can be expanded to display
more detail (e.g. helix, strand, other). On the results page,
links to visualize MSAs through AlignmentViewer (56) are
available. More predictions can be accessed through a menu
on the left, e.g. Gene Ontology Terms, Effect of Point Muta-
tions and Subcellular Localization. Prediction views include
references and details of outputs, as well as rich visualiza-
tions, e.g. GO trees for GO predictions and cell images with
highlighted predicted locations for subcellular localization
predictions (57).

PPcache, backend and programmatic access

The PP backend lives at LCSB, allowing for up to 48 par-
allel queries. Results are stored on disc in the PPcache (5).
Users submitting sequences for which results were over the
last two years obtain results immediately. Using the bio-
embeddings pipeline (58), the PPcache is enriched by em-
beddings and embedding-based predictions on the fly. For
all methods displayed on the frontend, JSON files compli-
ant with ProtVista (55) are available via REST APIs (SOM:
Programmatic access), and are in use by external services
such as the protein 3D structure visualization suite Aquaria
(21,23) and by MolArt (22).

PredictProtein is available for local use

All results displayed on and downloadable from PP are
available through Docker (59) and as source code for local
and cloud execution (available at github.com/rostlab).
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Figure 2. Experimental and predicted RNA-binding residues for
NCAP2 SARS2. Predicted (via ProNA2020, in cyan, panels A and C) and
observed (within 5Å, in magenta, panels B and D) RNA-binding residues
for the SARS-CoV-2 nucleoprotein (gray) complexed with a 10-mer
ssRNA (orange), PDB structure 7ACT (61). Two-third of the predictions
are correct (precision = 0.73, recall = 0.20), which is around the expected
average performance reported by ProNA2020. The important sequence
consecutive central strand and loop are predicted well, while several
short sequence segments that are far away in sequence space but close
in structure space are missed, which is expected as ProNA2020 has no
notion of 3D structure, i.e., cannot identify ‘binding sites’. Panels A and
B show a different orientation than panels C and D.

USE CASE

We demonstrate PredictProtein.org tools through
predictions of the novel coronavirus SARS-CoV-2
(NCBI:txid2697049) nucleoprotein (UniProt identifier
P0DTC9/NCAP SARS2; Figure 1; SOM: Use Case; Sup-
plementary Figure S2). NCAP SARS2 has 419 residues
and interacts with itself (experimentally verified). Sequence
similarity and automatic assignment via UniRule (60)
suggest NCAP is RNA-binding (binding with the viral
genome), binding with the membrane protein M (UniProt
identifier P0DTC5/VME1 SARS2), and is fundamental
for virion assembly. goPredSim (19) transferred GO terms
from other proteins for MFO (RNA-binding; GO:0003723;
ECO:0000213) and CCO (compartments in the host
cell and viral nucleocapsid; GO:0019013; GO:0044172;
GO:0044177; GO:0044220; GO:0030430; ECO:0000255)
matching annotations found in UniProt (1). While it missed
the experimentally verified MFO term identical protein
binding (GO:0042802), goPredSim predicted protein folding
(GO:0006457) and protein ubiquitination (GO:0016567)
suggesting the nucleoprotein to be involved in biolog-
ical processes requiring protein binding. ProNA2020
(3) predicts RNA-binding regions, the one with highest
confidence between I84 (Isoleucine at position 84) and
D98 (Aspartic Acid at 98) (protein sequence in SOM: Use
Case). While high resolution experimental data on binding
is not available, an NMR structure of the SARS-CoV-2 nu-
cleocapsid phosphoprotein N-terminal domain in complex

with 10mer ssRNA (PDB identifier 7ACT (61)) supports
the predicted RNA-binding site (Figure 2). Additionally,
SNAP2 (38) predicts single amino acid variants (SAVs)
in that region to likely affect function, reinforcing the
hypothesis that this is a functionally relevant site. Although
using different input information (evolutionary vs. embed-
dings), RePROF (5) and ProtBertSec (14) both predict an
unusual content exceeding 70% non-regular (neither helix
nor strand) secondary structure, suggesting that most of
the nucleoprotein might not form regular structure. This is
supported by Meta-Disorder (30) predicting 53% overall
disorder. Secondary structure predictions match well high-
resolution experimental structures of the nucleoprotein
not in complex (e.g., PDB 6VYO (62); 6WJI (63)). Both
secondary structure prediction methods managed to zoom
into the ordered regions of the protein and predicted e.g.,
the five beta-strands that are formed within the sequence
range I84 (Isoleucine) to A134 (Alanine), and the two
helices formed within the sequence range spanned from
F346 (Phenylalanine) to T362 (Tyrosine).

CONCLUSION

For almost three decades (preceding Google) PredictPro-
tein (PP) has been offering predictions for proteins. PP is
the oldest prediction Internet server, online for 6-times as
long as most other servers (64–66). It pioneered combining
machine learning with evolutionary information and mak-
ing predictions freely accessible online. While the sequence-
annotation gap continues to grow, the sequence-structure
gap might be bridged in the near future (67). For the time
being, servers such as PP, providing a one-stop solution to
predictions from many sustained, novel tools are needed.
Now, PP is the first server to offer fast embedding-based
predictions of structure (ProtBertSec) and function (go-
PredSim). By slashing runtime for PSSMs from 72 to 4 min
through MMseqs2 and better LCSB hardware, PP also de-
livers evolutionary information-based predictions fast! In-
stantaneously if the query is in the precomputed PPcache.
For heavy use, the offline Docker containers provide pre-
dictors out-of-the-box. At no cost to users, PredictProtein
offers to quickly shine light on proteins for which little is
known using well validated prediction methods.
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Supplementary Data are available at NAR Online.
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TMbed: transmembrane proteins predicted 
through language model embeddings
Michael Bernhofer1,2* and Burkhard Rost1,3,4 

Background
Structural knowledge of TMPs 4–5 fold underrepresented

Transmembrane proteins (TMP) account for 20–30% of all proteins within any organ-
ism [1, 2]; most TMPs cross the membrane with transmembrane helices (TMH). TMPs 
crossing with transmembrane beta strands (TMB), forming beta barrels, have been esti-
mated to account for 1–2% of all proteins in Gram-negative bacteria; this variety is also 

Abstract 

Background: Despite the immense importance of transmembrane proteins (TMP) for 
molecular biology and medicine, experimental 3D structures for TMPs remain about 
4–5 times underrepresented compared to non-TMPs. Today’s top methods such as 
AlphaFold2 accurately predict 3D structures for many TMPs, but annotating transmem-
brane regions remains a limiting step for proteome-wide predictions.

Results: Here, we present TMbed, a novel method inputting embeddings from 
protein Language Models (pLMs, here ProtT5), to predict for each residue one of four 
classes: transmembrane helix (TMH), transmembrane strand (TMB), signal peptide, or 
other. TMbed completes predictions for entire proteomes within hours on a single con-
sumer-grade desktop machine at performance levels similar or better than methods, 
which are using evolutionary information from multiple sequence alignments (MSAs) 
of protein families. On the per-protein level, TMbed correctly identified 94 ± 8% of 
the beta barrel TMPs (53 of 57) and 98 ± 1% of the alpha helical TMPs (557 of 571) in a 
non-redundant data set, at false positive rates well below 1% (erred on 30 of 5654 non-
membrane proteins). On the per-segment level, TMbed correctly placed, on average, 9 
of 10 transmembrane segments within five residues of the experimental observation. 
Our method can handle sequences of up to 4200 residues on standard graphics cards 
used in desktop PCs (e.g., NVIDIA GeForce RTX 3060).

Conclusions: Based on embeddings from pLMs and two novel filters (Gaussian and 
Viterbi), TMbed predicts alpha helical and beta barrel TMPs at least as accurately as any 
other method but at lower false positive rates. Given the few false positives and its out-
standing speed, TMbed might be ideal to sieve through millions of 3D structures soon 
to be predicted, e.g., by AlphaFold2.

Keywords: Protein language models, Protein structure prediction, Transmembrane 
protein prediction
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present in mitochondria and chloroplasts [3]. Membrane proteins facilitate many essen-
tial processes, including regulation, signaling, and transportation, rendering them tar-
gets for most known drugs [4, 5]. Despite this immense relevance for molecular biology 
and medicine, only about 5% of all three-dimensional (3D) structures in the PDB [6, 7] 
constitute TMPs [8–10].

Accurate 3D predictions available for proteomes need classification

The prediction of protein structure from sequence leaped in quality through AlphaFold2 
[11], Nature’s method of the year 2021 [12]. Although AlphaFold2 appears to provide 
accurate predictions for only very few novel “folds”, it importantly increases the width 
of structural coverage [13]. AlphaFold2 seems to work well on TMPs [14], but for pro-
teome-wide high-throughput studies, we still need to filter out membrane proteins from 
the structure predictions. Most state-of-the-art (SOTA) TMP prediction methods rely 
on evolutionary information in the form of multiple sequence alignments (MSA) to 
achieve their top performance. In our tests we included 13 such methods, namely BetA-
ware-Deep [15], BOCTOPUS2 [16], CCTOP [17, 18], HMM-TM [19–21], OCTOPUS 
[22], Philius [23], PolyPhobius [24], PRED-TMBB2 [20, 21, 25], PROFtmb [3], SCAMPI2 
[26], SPOCTOPUS [27], TMSEG [28], and TOPCONS2 [29].

pLMs capture crucial information without MSAs

Mimicking recent advances of Language Models (LM) in natural language processing 
(NLP), protein Language Models (pLMs) learn to reconstruct masked parts of protein 
sequences based on the unmasked local and global information [30–37]. Such pLMs, 
trained on billions of protein sequences, implicitly extract important information about 
protein structure and function, essentially capturing aspects of the “language of life” 
[32]. These aspects can be extracted from the last layers of the deep learning networks 
into vectors, referred to as embeddings, and used as exclusive input to subsequent meth-
ods trained in supervised fashion to successfully predict aspects of protein structure and 
function [30–34, 36, 38–43]. Often pLM-based methods outperform SOTA methods, 
which are using evolutionary information on top, and they usually require substantially 
fewer compute resources. Just before submitting this work, we became aware of another 
pLM-based TM-prediction method, namely DeepTMHMM [44] using ESM-1b [36] 
embeddings, and included it in our comparisons.

Here, we combined embeddings generated by the ProtT5 [34] pLM with a simple con-
volutional neural network (CNN) to create a fast and highly accurate prediction method 
for alpha helical and beta barrel transmembrane proteins and their overall inside/outside 
topology. Our new method, TMbed, predicted the presence and location of any TMBs, 
TMHs, and signal peptides for all proteins of the human proteome within 46 min on our 
server machine (Additional file 1: Table S1) at the same or better level of performance as 
other methods, which require substantially more time.

Materials and methods
Data set: membrane proteins (TMPs)

We collected all primary structure files for alpha helical and beta barrel transmembrane 
proteins (TMP) from OPM [45] and mapped their PDB [6, 7] chain identifiers (PDB-id) 
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to UniProtKB [46] through SIFTS [47, 48]. Toward this end, we discarded all chimeric 
chains, all models, and all chains for which OPM failed to map any transmembrane start 
or end position. This resulted in 2,053 and 206 sequence-unique PDB chains for alpha 
helical and beta barrel TMPs, respectively.

We used the ATOM coordinates inside the OPM files to assign the inside/outside ori-
entation of sequence segments not within the membrane. We manually inspected incon-
sistent annotations (e.g., if both ends of a transmembrane segment had the same inside/
outside orientation) and cross-referenced them with PDBTM [49–51], PDB, and Uni-
ProtKB. We then either corrected such inconsistent annotations or discarded the whole 
sequence. As OPM does not include signal peptide annotations, we compared our TMP 
data sets to the set used by SignalP 6.0 [52] and all sequences in UniProtKB/Swiss-Prot 
with experimentally annotated signal peptides using CD-HIT [53, 54]. For any matches 
with at least 95% global sequence identity (PIDE), we transferred the signal peptide 
annotation onto our TMPs. We removed all sequences with fewer than 50 residues to 
avoid noise from incorrect sequencing fragments, and all sequences with over 15,000 
residues to save energy (lower computational costs).

Finally, we removed redundant sequences from the two TMP data sets by clustering 
them with MMseqs2 [55] to at most 20% local pairwise sequence identity (PIDE) with 
40% minimum alignment coverage, i.e., no pair had more than 20% PIDE for any local 
alignment covering at least 40% of the shorter sequence. The final non-redundant TMP 
data sets contained 593 alpha helical TMPs and 65 beta barrel TMPs, respectively.

Data set: globular non‑membrane proteins

We used the SignalP 6.0 (SP6) dataset for our globular proteins. As the SP6 dataset 
contained only the first 70 residues of each protein, we took the full sequences from 
UniProtKB/Swiss-Prot and transferred the signal peptide annotations. To remove any 
potential membrane proteins from this non-TMP data set, we compared it with CD-
HIT [53, 54] against three other data sets: (1) our TMP data sets before redundancy 
reduction, (2) all protein sequences from UniProtKB/Swiss-Prot with any annotations 
of transmembrane segments, and (3) all proteins from UniProtKB/Swiss-Prot with any 
subcellular location annotations for membrane. We removed all proteins from our non-
TMP data set with more than 60% global PIDE to any protein in sets 1–3. Again, we 
dropped all sequences with less than 50 or more than 15,000 residues and applied the 
same redundancy reduction as before (20% PIDE at 40% alignment coverage). The final 
non-redundant data set contained 5,859 globular, water-soluble non-TMP proteins; 698 
of these have a signal peptide.

Additional redundancy reduction

One anonymous reviewer spotted homologs in our data set after the application of the 
above protocol. To address this problem, we performed another iteration of redundancy 
reduction for each of the three data sets using CD-HIT at 20% PIDE. In order to save 
energy (i.e., avoid retraining our model), we decided to remove clashes for the evalua-
tion, i.e., if two proteins shared more than 20% PIDE, we removed both from the data 
set (as TMbed was trained on both in the cross-validation protocol). Thereby, this sec-
ond iteration removed 235 proteins: 8 beta barrel TMPs, 22 alpha helical TMPs, and 205 
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globular, non-membrane proteins. Our final test data sets included 57 beta barrel TMPs, 
571 alpha helical TMPs, and 5654 globular, non-membrane proteins.

Membrane re‑entrant regions

Besides transmembrane segments that cross the entire membrane, there are also oth-
ers, namely membrane segments that briefly enter and exit the membrane on the same 
side. These are referred to as re-entrant regions [56, 57]. Although rare, some methods 
explicitly predict them [17, 18, 22, 27, 58]. However, as OPM does not explicitly annotate 
such regions and since our data set already had a substantial class imbalance between 
beta barrel TMPs, alpha helical TMPs and, globular proteins, we decided not to predict 
re-entrant regions.

Embeddings

We generated embeddings with protein Language Models (pLMs) for our data sets 
using a transformer-based pLM ProtT5-XL-U50 (short: ProtT5) [34]. We discarded the 
decoder part of ProtT5, keeping only the encoder for increased efficiency (note: encoder 
embeddings are more informative [34]). The encoder model converts a protein sequence 
into an embedding matrix that represents each residue in the protein, i.e., each position 
in the sequence, by a 1024-dimensional vector containing global and local contextual-
ized information. We converted the ProtT5 encoder from 32-bit to 16-bit floating-point 
format to reduce the memory footprint on the GPU. We took the pre-trained ProtT5 
model as is without any further task-specific fine-tuning.

We chose ProtT5 over other embedding models, such as ESM-1b [36], based on our 
experience with the model and comparisons during previous projects [34, 38]. Further-
more, ProtT5 does not require splitting long sequences, which might remove valuable 
global context information, while ESM-1b can only handle sequences of up to 1022 
residues.

Model architecture

Our TMbed model architecture contained three modules (Additional file 1: Fig. S1): a 
convolutional neural network (CNN) to generate per-residue predictions, a Gaussian 
smoothing filter, and a Viterbi decoder to find the best class label for each residue. We 
implemented the model in PyTorch [59].

Module 1: CNN

The first component of TMbed is a CNN with four layers (Additional file  1: Fig. S1). 
The first layer is a pointwise convolution, i.e., a convolution with kernel size of 1, which 
reduces the ProtT5 embeddings for each residue (position in the sequence) from 1024 
to 64 dimensions. Next, the model applies layer normalization [60] along the sequence 
and feature dimensions, followed by a ReLU (Rectified Linear Unit) activation function 
to introduce non-linearity. The second and third layers consist of two parallel depthwise 
convolutions; both process the output of the first layer. As depthwise convolutions pro-
cess each input dimension (feature) independently while considering consecutive res-
idues, those two layers effectively generate sliding weighted sums for each dimension. 
The kernel sizes of the second and third layer are 9 and 21, respectively, corresponding 
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to the average length of transmembrane beta strands and helices. As before, the model 
normalizes the output of both layers and applies the ReLU function. It then concatenates 
the output of all three layers, constructing a 192-dimensional feature vector for each 
residue (position in the sequence). The fourth layer is a pointwise convolution combin-
ing the outputs from the previous three layers and generates scores for each of the five 
classes: transmembrane beta strand (B), transmembrane helix (H), signal peptide (S), 
non-membrane inside (i), and non-membrane outside (o).

Module 2: Gaussian filter

This module smooths the output from the CNN for adjacent residues (sequence posi-
tions) to reduce noisy predictions. The filter allows flattening isolated single-residue 
peaks. For instance, peaks extending of only one to three residues for the classes B and 
H are often non-informative; similarly short peaks for class S are unlikely correct. The 
filter uses a Gaussian distribution with standard deviation of 1 and a kernel size of 7, i.e., 
its seven weights correspond to three standard deviation intervals to the left and right, 
as well as the central peak. A softmax function then converts the filtered class scores to a 
class probability distribution.

Module 3: Viterbi decoder

The Viterbi algorithm decodes the class probabilities and assigns a class label to each 
residue (position in the sequence; Additional file 1: Note S3, Fig. S2). The algorithm uses 
no trainable parameter; it scores transitions according to the predicted class probabili-
ties. Its purpose is to enforce a simple grammar such that (1) signal peptides can only 
start at the N-terminus (first residue in protein), (2) signal peptides and transmembrane 
segments must be at least five residues long (a reasonable trade-off between filtering out 
false positives and still capturing weak signals), and (3) the prediction for the inside/out-
side orientation has to change after each transmembrane segment (to simulate crossing 
through the membrane). Unlike the Gaussian filter, we did not apply the Viterbi decoder 
during training. This simplified backpropagation and sped up training.

Training details

We performed a stratified five-fold nested cross-validation for model development 
(Additional file 1: Fig. S3). First, we separated our protein sequences into four groups: 
beta barrel TMPs, alpha helical TMPs with only a single helix, those with multiple heli-
ces, and non-membrane proteins. We further subdivided each group into proteins with 
and without signal peptides. Next, we randomly and evenly distributed all eight groups 
into five data sets. As all of our data sets were redundancy reduced, no two splits con-
tained similar protein sequences for any of the classes. However, similarities between 
proteins of two different classes were allowed, not the least to provide more conservative 
performance estimates.

During development, we used four of the five splits to create the model and the fifth 
for testing (Additional file 1: Fig. S3). Of the first four splits, we used three to train the 
model and the fourth for validation (optimize hyperparameters). We repeated this 3–1 
split three more times, each time using a different split for the validation set, and calcu-
lated the average performance for every hyperparameter configuration. Next, we trained 
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a model with the best configuration on all four development splits and estimated its final 
performance on the independent test split. We performed this whole process a total of 
five times, each time using a different of the five splits as test data and the remaining four 
for the development data. This resulted in five final models; each trained, optimized, and 
tested on independent data sets.

We applied weight decay to all trained weights of the model and added a dropout layer 
right before the fourth convolutional layer, i.e., the output layer of the CNN. For every 
training sample (protein sequence), the dropout layer randomly sets 50% of the features 
to zero across the entire sequence, preventing the model from relying on only a specific 
subset of features for the prediction.

We trained all models for 15 epochs using the AdamW [61] optimizer and cross-
entropy loss. We set the beta parameters to 0.9 and 0.999, used a batch size of 16 
sequences, and applied exponential learning rate decay by multiplying the learning 
rate with a factor of 0.8 every epoch. The initial learning rate and weight decay values 
were part of the hyperparameters optimized during cross-validation (Additional file 1: 
Table S2).

The final TMbed model constitutes an ensemble over the five models obtained from 
the five outer cross-validation iterations (Additional file  1: Fig. S3), i.e., one for each 
training/test set combination. During runtime, each model generates its own class prob-
abilities (CNN, plus Gaussian filter), which are then averaged and processed by the 
Viterbi decoder to generate the class labels.

Evaluation and other methods

We evaluated the test performance of TMbed on a per-protein level and on a per-seg-
ment level (Additional file 1: Note S1). For protein level statistics, we calculated recall 
and false positive rate (FPR). We computed those statistics for three protein classes: 
alpha helical TMPs, beta barrel TMPs, and globular proteins.

We distinguished correct and incorrect segment predictions using two constraints: (1) 
the observed and predicted segment must overlap such that the intersection of the two is 
at least half of their union, and (2) neither the start nor the end positions may deviate by 
more than five residues between the observed and predicted segment (Additional file 1: 
Fig. S4). All segments predicted meeting both these criteria were considered as “cor-
rectly predicted segments”, all others as “incorrectly predicted segments”. This allowed 
for a reasonable margin of error regarding the position of a predicted segment, while 
punishing any gaps introduced into a segment. For per-segment statistics, we calculated 
recall and precision. We also computed the percentage of proteins with the correct num-
ber of predicted segments  (Qnum), the percentage of proteins for which all segments are 
correctly predicted  (Qok), and the percentage of correctly predicted segments that also 
have the correct orientation within the membrane  (Qtop). We considered only proteins 
that actually contain the corresponding type of segment when calculating per-segment 
statistics, e.g., only beta barrel TMPs for transmembrane beta strand segments.

We compared TMbed to other prediction methods for alpha helical and beta barrel 
TMPs (details in Additional file 1: Note S2): BetAware-Deep [15], BOCTOPUS2 [16], 
CCTOP [17, 18], DeepTMHMM [44], HMM-TM [19–21], OCTOPUS [22], Philius 
[23], PolyPhobius [24], PRED-TMBB2 [20, 21, 25], PROFtmb [3], SCAMPI2 [26], 
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SPOCTOPUS [27], TMSEG [28], and TOPCONS2 [29]. We chose those methods 
based on their good prediction accuracy and public popularity. For methods predict-
ing only either alpha helical or beta barrel TMPs, we considered the corresponding 
other type of TMPs as globular proteins for the per-protein statistics. In addition, we 
generated signal peptide predictions with SignalP 6.0 [52]. The performance of older 
TMH prediction methods could be triangulated based on previous comprehensive 
estimate of such methods [28, 62].

Unless stated otherwise, all reported performance values constitute the average 
performance over the five independent test sets during cross-validation (c.f. Train-
ing details) and their error margins reflect the 95% confidence interval (CI), i.e., 1.96 
times the sample standard error over those five splits (Additional file 1: Tables S5, S6). 
We considered two values A and B statistically significantly different if they differ by 
more than their composite 95% confidence interval:

Additional out‑of‑distribution benchmark

In the most general sense, machine learning models learn and predict distributions. 
Most membrane data sets are small and created using the same resources, including 
OPM [45], PDBTM [49–51], and UniProtKB/Swiss-Prot [46] that often mix experimen-
tal annotations with sophisticated algorithms [50, 63–65] to determine the boundaries 
of transmembrane segments, e.g., by using the 3D structure. Given these constraints, 
we might expect data sets from different groups to render similar results. Analyzing the 
validity of this assumption, we included the data set assembled for the development of 
DeepTMHMM [44]. Three reasons made us chose this set as an alternative perspective: 
(1) it is recent, (2) it contains helical and beta barrel TMPs, and (3) the authors made 
their cross-validation predictions available, simplifying comparisons.

We created two distinct data sets from the DeepTMHMM data. First, we collected all 
proteins common to both data sets (TMbed and DeepTMHMM). We used those pro-
teins to estimate how much the annotations within both data sets agree with each other. 
In total, there were 1788 proteins common to both data sets: 43 beta barrel TMPs, 184 
alpha helical TMPs, 1,560 globular proteins, and one protein (MSPA_MYCS2; Porin 
MspA) which sits in the outer-membrane of Mycobacterium smegmatis [66]. We clas-
sified this as beta barrel TMP while DeepTMHMM listed it, most likely incorrectly, as 
a globular protein. The second data set that we created contained all proteins from the 
DeepTMHMM data set that were non-redundant to the training data of TMbed. We 
used PSI-BLAST [67] to find all significant (e-value <  10–4) local alignments with a 20% 
PIDE threshold and 40% alignment coverage to remove the redundant sequences. This 
second data set contained 667 proteins: 14 beta barrel TMPs, 86 alpha helical TMPs, 
and 567 globular proteins. We generated predictions with TMbed for those proteins and 
compared them to the cross-validation predictions for DeepTMHMM, as well as the 
best performing methods from our own benchmark (CCTOP [17, 18], TOPCONS2 [29], 
BOCTOPUS2 [16]); we used the DeepTMHMM data set annotations as ground truth.

(1)|A− B| > CIc = CI
2

A
+ CI

2

B
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Data set of new membrane proteins

In order to perform a CASP-like performance evaluation, we gathered all PDB struc-
tures published since Feb 05, 2022, which is just after the data for our set and that 
of DeepTMHMM [44] have been collected. This comprised 1,511 PDB structures 
(more than 250 of which related to the SARS-CoV-2 protein P0DTD1) that we could 
map to 1,078 different UniProtKB sequences. We then used PSI-BLAST to remove all 
sequences similar to our data set or that of DeepTMHMM (e-value <  10–4, 20% PIDE 
at 40% coverage), which resulted in 333 proteins. Next, we predicted transmembrane 
segments within those proteins using TMbed and DeepTMHMM. For 38 proteins, 
either TMbed or DeepTMHMM predicted transmembrane segments. After removing 
any sequences shorter than 100 residues (i.e., fragments) and those in which the pre-
dicted segments were not within the resolved regions of the PDB structure, we were 
left with a set of 5 proteins: one beta barrel TMP and four alpha helical TMPs. Finally, 
we used the PPM [63–65] algorithm from OPM [45] to estimate the actual membrane 
boundaries.

Results and discussion
We have developed a new machine learning model, dubbed TMbed; it exclusively 
uses embeddings from the ProtT5 [34] pLM as input to predict for each residue in 
a protein sequence to which of the following four “classes” it belongs: transmem-
brane beta strand (TMB), transmembrane helix (TMH), signal peptide (SP), or non-
transmembrane segment. It also predicts the inside/outside orientation of TMBs and 
TMHs within the membrane, indicating which parts of a protein are inside or outside 
a cell or compartment. Although the prediction of signal peptides was primarily inte-
grated to improve TMH predictions by preventing the confusion of TMHs with SPs 
and vice versa, we also evaluated and compared the performance for SP prediction of 
TMbed to that of other methods.

Reaching SOTA in protein sorting

TMbed detected TMPs with TMHs and TMBs at levels similar or numerically above the 
best state-of-the-art (SOTA) methods that use evolutionary information from multiple 
sequence alignments (MSA; Table 1: Recall). Compared to MSA-based methods, TMbed 
achieved this parity or improvement at a significantly lower false positive rate (FPR), tied 
only with DeepTMHMM [44], another embedding-based method (Table 1: FPR). Given 
those numbers, we expect TMbed to misclassify only about 215 proteins for a proteome 
with 20,000 proteins (Additional file 1: Table S10), e.g., the human proteome, while the 
other methods would make hundreds more mistakes (DeepTMHMM: 331, TOPCONS2: 
683, BOCTOPUS2: 880). Such low FPRs suggest our method as an automated high-
throughput filter for TMP detection, e.g., for the creation and annotation of databases, 
or the decision which AlphaFold2 [11, 68] predictions to parse through advanced soft-
ware annotating transmembrane regions in 3D structures or predictions [45, 49, 69]. In 
the binary prediction of whether or not a protein has a signal peptide, TMbed achieved 
similar levels as the specialist SignalP 6.0 [52] and as DeepTMHMM [44], reaching 99% 
recall at 0.1% FPR (Additional file 1: Table S3).



Page 9 of 19Bernhofer and Rost  BMC Bioinformatics          (2022) 23:326  

Many of the beta barrel TMPs that prediction methods missed had only two or 
four transmembrane beta strands (TMB). Such proteins cannot form a pore on their 
own, instead they have to form complexes with other proteins to function as TMPs, 
either by binding to other proteins or by forming multimers with additional copies of 
the same proteins by, e.g., trimerization. In fact, all four beta barrel TMPs missed by 
TMbed fell into this category. Thus, as all other methods, TMbed performed, on aver-
age, worse for beta barrel TMPs that cannot form pores alone. This appeared unsur-
prising, as the input to all methods were single proteins. For TMPs with TMHs, we 
also observed lower performance in the distinction between TMP/other for TMPs 
with a single TMH (recall: 93 ± 3%) compared to those with multiple TMHs (recall: 
99 ± 1%). However, TMPs with single helices can function alone.

The embedding-based methods TMbed (introduced here using ProtT5 [34]) and 
DeepTMHMM [44] (based on ESM-1b [36]) performed at least on par with the SOTA 
using evolutionary information from MSA (Table 1). While this was already impres-
sive, the real advantage was in the speed. For instance, our method, TMbed, predicted 
all 6,517 proteins in our data set in about 13 min (i.e., about eight sequences per sec-
ond) on our server machine (Additional file 1: Table S1); this runtime included gener-
ating the ProtT5 embeddings. The other embedding-based method, DeepTMHMM, 
needed about twice as long (23 min). Meanwhile, methods that search databases and 

Table 1 Per-protein performance. *

*Evaluation of the ability to distinguish between 57 beta barrel TMPs (β-TMP), 571 alpha helical TMPs (α-TMP) and 5654 
globular, water-soluble non-TMP proteins in our data set. Recall and false positive rate (FPR) were averaged over the five 
independent cross-validation test sets; error margins given for the 95% confidence interval (1.96*standard error); bold: best 
values for each column; italics: differences statistically significant with over 95% confidence (only computed between best 
and 2nd best, or all methods ranked 1 and those ranked lower)
1 Evaluation missing for one of 5,654 globular proteins
2 Evaluation missing for one of 571 α-TMPs and six of 5,654 globular proteins
3 Evaluation includes only 51 β-TMPs, 552 α-TMPs, and 5,524 globular proteins due to runtime errors
4 The local PRED-TMBB2 version did not include the pre-filtering step of the web server. This caused a FPR for β-TMP of 
almost 78%. Thus, we listed the statistics for the web server predictions, which did not include MSA input

β‑TMP (57) α‑TMP (571) Globular (5654)

Recall (%) FPR (%) Recall (%) FPR (%) Recall (%) FPR (%)

TMbed 93.8 ± 7.5 0.1 ± 0.1 97.5 ± 0.7 0.5 ± 0.2 99.5 ± 0.2 2.8 ± 1.2

DeepTMHMM 77.9 ± 12.7 0.1 ± 0.1 95.8 ± 1.3 0.5 ± 0.2 99.5 ± 0.2 5.9 ± 2.2

TMSEG – – 96.5 ± 1.0 2.3 ± 0.3 97.7 ± 0.3 3.5 ± 1.0

TOPCONS21 – – 94.2 ± 1.3 2.6 ± 0.3 97.4 ± 0.3 5.8 ± 1.3

OCTOPUS1 – – 94.2 ± 1.9 9.1 ± 0.7 90.9 ± 0.7 5.8 ± 1.9

Philius1 – – 92.5 ± 1.4 2.6 ± 0.2 97.4 ± 0.2 7.5 ± 1.4

PolyPhobius1 – – 97.2 ± 1.1 5.3 ± 0.4 94.7 ± 0.4 2.8 ± 1.1

SPOCTOPUS1 – – 97.5 ± 1.6 17.2 ± 0.8 82.8 ± 0.8 2.5 ± 1.6
SCAMPI2 (MSA) – – 94.2 ± 1.6 5.6 ± 0.3 94.4 ± 0.3 5.8 ± 1.6

CCTOP2 96.1 ± 2.1 3.7 ± 0.6 96.3 ± 0.6 3.9 ± 2.1

HMM-TM (MSA)3 – – 97.3 ± 1.6 21.4 ± 0.5 78.6 ± 0.5 2.7 ± 1.6

BOCTOPUS2 84.0 ± 13.3 4.2 ± 0.5 – – 95.8 ± 0.5 16.0 ± 13.3

BetAware-Deep 85.1 ± 9.3 4.7 ± 0.3 – – 95.3 ± 0.3 14.9 ± 9.3

PRED-TMBB24 88.8 ± 12.1 7.1 ± 0.4 – – 92.9 ± 0.4 11.2 ± 12.1

PROFtmb 91.9 ± 9.0 6.1 ± 0.5 – – 93.9 ± 0.5 8.1 ± 9.0
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generate MSAs usually take several seconds or minutes for a single protein sequence 
[70], or require significant amounts of computing resources (e.g., often more than 
100 GB of memory) to achieve comparable runtimes [55].

Excellent transmembrane segment prediction performance

TMbed reached the highest performance for transmembrane segments amongst all 
methods evaluated (Tables 2, 3). With recall and precision values of 89 ± 1% for TMHs, 
it significantly outperformed the second best and only other embedding-based method, 
DeepTMHMM, (80 ± 2%, Table 2). TMbed essentially predicted 62% of all transmem-
brane helical (TMH) TMPs completely correctly  (Qok, i.e., all TMHs within ± 5 resi-
dues of true annotation). DeepTMHMM reached second place with  Qok of 46 ± 4%. 
This difference between TMbed and DeepTMHMM was over twice that between 

Table 2 Per-segment performance for TMH (transmembrane helices). *

*Segment performance for transmembrane helix (TMH) prediction based on 571 alpha helical TMPs (α-TMP) with a total of 
2936 TMHs. Recall, Precision,  Qok,  Qnum, and  Qtop were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values for each column; italics: differences 
statistically significant with over 95% confidence (only computed between best and 2nd best).
1 Evaluation missing for one of 571 α-TMPs.
2 Evaluation includes only 552 of the 571 α-TMPs due to runtime errors of the method.

TMH (571/2936)

Recall (%) Precision (%) Qok (%) Qnum (%) Qtop (%)

TMbed 88.7 ± 0.6 88.7 ± 0.7 62.4 ± 3.7 86.0 ± 2.3 96.4 ± 2.7
DeepTMHMM 80.0 ± 2.4 80.5 ± 2.4 46.2 ± 4.8 85.7 ± 3.5 96.3 ± 2.2

TMSEG 74.5 ± 2.4 77.1 ± 1.7 35.6 ± 2.4 69.9 ± 2.7 83.8 ± 4.7

TOPCONS2 76.4 ± 1.5 78.4 ± 0.8 41.0 ± 3.1 74.4 ± 3.3 91.7 ± 3.1

OCTOPUS 71.6 ± 1.5 75.7 ± 1.4 36.0 ± 2.8 67.6 ± 3.4 87.5 ± 3.1

Philius 70.8 ± 2.2 73.7 ± 0.8 34.2 ± 3.7 66.9 ± 3.4 87.5 ± 2.9

PolyPhobius 76.0 ± 2.1 76.4 ± 1.1 40.3 ± 3.5 74.5 ± 2.8 86.8 ± 2.7

SPOCTOPUS 71.5 ± 1.2 75.8 ± 1.2 35.7 ± 3.3 67.4 ± 5.5 87.2 ± 3.4

SCAMPI2 (MSA) 72.3 ± 2.7 74.1 ± 1.5 33.5 ± 3.0 72.2 ± 4.5 90.6 ± 3.5

CCTOP1 77.0 ± 1.7 79.4 ± 1.0 41.9 ± 3.6 82.6 ± 2.7 92.6 ± 2.6

HMM-TM (MSA)2 73.3 ± 1.7 72.5 ± 1.2 33.5 ± 1.4 72.1 ± 3.0 88.3 ± 4.2

Table 3 Per-segment performance for TMB (transmembrane beta strands). *

*Segment performance for transmembrane beta strand (TMB) prediction based on 57 beta barrel TMPs (β-TMP) with a total 
of 768 TMBs. Recall, Precision,  Qok,  Qnum, and  Qtop were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values for each column; italics: differences 
statistically significant with over 95% confidence (only computed between best and 2nd best)

TMB (57/768)

Recall (%) Precision (%) Qok (%) Qnum (%) Qtop (%)

TMbed 95.0 ± 4.3 99.2 ± 0.7 80.5 ± 11.4 88.1 ± 6.9 98.1 ± 3.8
DeepTMHMM 85.9 ± 6.6 92.5 ± 4.7 46.1 ± 7.6 74.3 ± 13.0 97.2 ± 4.4

BOCTOPUS2 85.3 ± 9.2 96.6 ± 2.0 56.6 ± 18.9 71.2 ± 11.8 98.0 ± 2.0

BetAware-Deep 67.1 ± 6.5 62.2 ± 11.4 8.7 ± 5.3 60.9 ± 14.1 95.7 ± 5.4

PRED-TMBB2 (MSA) 85.4 ± 1.9 75.6 ± 4.8 18.4 ± 15.0 44.5 ± 26.7 95.9 ± 3.4

PROFtmb 78.2 ± 10.1 78.0 ± 6.9 20.2 ± 12.8 46.6 ± 11.7 97.2 ± 1.0
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DeepTMHMM and the two methods performing third  best by this measure, CCTOP 
[17, 18] and TOPCONS2 [29], which are based on evolutionary information.

The results were largely similar for beta barrel TMPs (TMBs) with TMbed achieving 
the top performance by all measures: reaching 95% recall and an almost perfect 99% pre-
cision. The most pronounced difference was a 23 percentage points lead in  Qok with 80%, 
compared to BOCTOPUS2 [16] with 57% in second place. Overall, TMbed predicted the 
correct number of transmembrane segments in 86–88% of TMPs and correctly oriented 
98% of TMBs and 96% of TMHs. For signal peptides, TMbed performed on par with 
SignalP 6.0, reaching 93% recall and 95% precision (Additional file 1: Table S3). For this 
task, both methods appeared to be slightly outperformed by DeepTMHMM. However, 
none of those differences exceeded the 95% confidence interval, i.e., the numerically 
consistent differences were not statistically significant. On top, the signal peptide expert 
method SignalP 6.0 is the only of the three that distinguishes between different types of 
signal peptides.

As for the overall per-protein distinction between TMP and non-TMP, the per-seg-
ment recall and precision also slightly correlated with the number of transmembrane 
segments, i.e., the more TMHs or TMBs in a protein the higher the performance (Addi-
tional file 1: Table S4). Again, as for the TMP/non-TMP distinction, beta barrel TMPs 
with only two or four TMBs differed most to those with eight or more.

Gaussian filter and Viterbi decoder improve segment performance

TMbed introduced a Gaussian filter smoothing over some local peaks in the predic-
tion and a Viterbi decoder implicitly enforcing some “grammar-like” rules (Materials & 
Methods). We investigated the effect of these concepts by comparing the final TMbed 
architecture to three simpler alternatives: one variant used only the CNN, the other two 
variants combined the simple CNN with either the Gaussian filter or the Viterbi decoder, 
not both as TMbed. For the variants without the Gaussian filter, we retrained the CNN 
using the same hyperparameters but without the filter. Individually, both modules (fil-
ter and decoder) significantly improved precision and  Qok for both TMH and TMB, 
while recall remained largely unaffected (Additional file 1: Table S9). Clearly, either step 
already improved over just the CNN. However, which of the two was most important 
depended on the type of TMP: for TMH proteins Viterbi decoder mattered more, for 
TMB proteins the Gaussian filter. Both steps together performed best throughout with-
out adding any significant overhead to the overall computational costs compared to the 
other components.

Self‑predictions reveal potential membrane proteins

We checked for potential overfitting of our model by predicting the complete data set 
with the final TMbed ensemble. This meant that four of the five models had seen each of 
those proteins during training. While the number of misclassified proteins went down, 
we found that there were still some false predictions, indicating that our models did not 
simply learn the training data by heart (Additional file 1: Tables S7, S8). In fact, upon 
closer inspection of the 11 false positive predictions (8 alpha helical and 3 beta barrel 
TMPs), those appear to be transmembrane proteins incorrectly classified as globular 
proteins in our data set due to missing annotations in UniProtKB/Swiss-Prot, rather 



Page 12 of 19Bernhofer and Rost  BMC Bioinformatics          (2022) 23:326 

than incorrect predictions. Two of them, P09489 and P40601, have automatic annota-
tions for an autotransporter domain, which facilitates transport through the membrane. 
Further, we processed the predicted AlphaFold2 [11, 68] structures of all 11 proteins 
using the PPM [45] algorithm, which tries to embed 3D structures into a membrane 
bilayer. For eight of those, the predicted transmembrane segments correlated well with 
the predicted 3D structures and membrane boundaries (Fig. 1; Additional file 1: Fig. S5). 
For the other three, the 3D structures and membrane boundaries still indicate trans-
membrane domains within those proteins, but the predicted transmembrane segments 
only cover parts of those domains (Additional file 1: Fig. S5, last row). Together, these 
predictions provided convincing evidence for considering all eleven proteins as TMPs.

Predicting the human proteome in less than an hour

Given that our new method already outperformed the SOTA using evolutionary infor-
mation from MSAs, the even more important advantage was speed. To estimate pre-
diction throughput, we applied TMbed to all human proteins in 20,375 UniProtKB/
Swiss-Prot (version: April 2022; excluding TITIN_HUMAN due to its extreme length 
of 34,350 residues). Overall, it took our server machine (Additional file 1: Table S1) only 
46 min to generate all embeddings and predictions (estimate for consumer-grade PC in 
the next section). TMbed identified 14 beta barrel TMPs and 4,953 alpha helical TMPs, 
matching previous estimates for alpha helical TMPs [1, 28]. Two of the 14 TMBs appear 
to be false positives as TMbed predicted only a single TMB in each protein. The other 12 
proteins are either part of the Gasdermin family (A to E), or associated with the mito-
chondrion, including three proteins for a voltage-dependent anion-selective channel and 
the TOM40 import receptor.

Further, we generated predictions for all proteins from UniProtKB/Swiss-Prot (ver-
sion: May 2022), excluding sequences above 10,000 residues (20 proteins). Processing 
those 566,976 proteins took about 8.5 h on our server machine. TMbed predicted 1,702 
beta barrel TMPs and 77,296 alpha helical TMPs (predictions available via our GitHub 
repository).

Fig. 1 Potential transmembrane proteins in the globular data set. AlphaFold2 [11, 68] structure of 
extracellular serine protease (P09489) and Lipase 1 (P40601). Transmembrane segments (dark purple) 
predicted by TMbed correlate well with membrane boundaries (dotted lines: red = outside, blue = inside) 
predicted by the PPM [45] web server. Images created using Mol* Viewer [71]. Though our data set lists them 
as globular proteins, the predicted structures indicate transmembrane domains, which align with segments 
predicted by our method. The predicted domains overlap with autotransporter domains detected by the 
UniProtKB [46] automatic annotation system. Transmembrane segment predictions were made with the final 
TMbed ensemble model
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Hardware requirements

Our model needs about 2.5 GB of memory on the GPU when in 16-bit format. The addi-
tional memory needed during inference grows with the square of sequence length due 
to the attention mechanism of the transformer architecture. On our consumer-grade 
desktop PC (Additional file 1: Table S1), this translated to a maximum sequence length 
of about 4,200 residues without maxing out the 12 GB of GPU memory. This barred 76 
(0.4%) of the 20,376 human proteins from analysis on a personal consumer-hardware 
solution (NVIDIA GeForce RTX 3060). The prediction (including embedding genera-
tion) for 99.6% of the human proteome (20,376 proteins) took about 57 min on our desk-
top PC. While it is possible to run the model on a CPU, instead of on a GPU, we do not 
recommend this due to over tenfold larger runtimes. More importantly, the current lack 
of support of 16-bit floating-point format on CPUs would imply doubling the memory 
footprint of the model and computations.

Out‑of‑distribution performance

The two pLM-based methods DeepTMHMM [44] and TMbed appeared to reach simi-
lar performance according to the additional out-of-distribution data set (Additional 
file 1: Tables S11, S12). While DeepTMHMM reached higher scores for beta barrel pro-
teins  (Qok of 79 ± 22% vs. 64 ± 26%), these were not quite statistically significant. On 
the other hand, TMbed managed to outperform DeepTMHMM for alpha helical TMPs 
 (Qok of 53 ± 11% vs. 47 ± 10%), though again without statistical significance. Further-
more, TMbed performed on par with the OPM baseline (Additional file 1: Table S12), 
i.e., using the OPM annotations as predictions for the DeepTMHMM data set, imply-
ing that TMbed reached its theoretical performance limit on that data set. Surprisingly, 
TOPCONS2 and CCTOP both outperformed TMbed and DeepTMHMM with  Qok of 
65 ± 10% and 64 ± 10% (both not statistically significant), respectively.

Taking a closer look at the length distribution for the transmembrane segments in 
the TMbed and DeepTMHMM data set annotations and predictions (Additional file 1: 
Fig. S6) revealed differences. First, while the TMB segments in both data sets averaged 
9 residues in length, the DeepTMHMM distribution was slightly shifted toward shorter 
segments (left in Additional file 1: Fig. S6A) but with a wider spread towards longer seg-
ments (right in Additional file 1: Fig. S6A). Both of these features were mirrored in the 
distribution of predicted TMBs. In contrast, the TMH distributions for DeepTMHMM 
showed an unexpected peak for TMH with 21 residues (both in the annotations used to 
train DeepTMHMM and in the predictions). In fact, the peak for annotated TMHs at 
21 was more than double the value of the two closest length-bins (TMH = 20|22) com-
bined. As the lipid bilayer remains largely invisible in X-ray structures, the exact begin 
and ends of TMHs may have some errors [28, 45, 49–51, 62]. Thus, when plotting the 
distribution of TMH length, we expected some kind of normal distribution with a peak 
around 20-odd residues with more points for longer than for shorter TMHs [72]. In stark 
contrast to this expectation, the distribution observed for the TMHs used to develop 
DeepTMHMM appeared to have been obtained through some very different protocol 
(Additional file 1: Fig. S6B).

In contrast, the distributions for the annotations from OMP and the predictions from 
TMbed appeared to be more normally distributed with TMH lengths exhibiting a slight 
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peak at 22 residues. The larger the AI model, the more it succeeds in reproducing fea-
tures of the development set even when those might be based on less experimentally 
supported aspects. The DeepTMHMM model reproduced the dubious experimental 
distribution of TMHs exceedingly (Additional file 1: Fig. S6B, e.g., orange line and bars 
around peak at 16). Although we do not know the origin of this bias in the DeepTM-
HMM data set, we have seen similar bias in some prediction methods and automated 
annotations in UniProtKB/Swiss-Prot. In fact, a quick investigation showed that for 80 
of the 184 common alpha helical TMPs the DeepTMHMM annotations matched those 
found in UniProtKB but not the OPM annotation in our TMbed data set. Of those 
annotations, 66% (303 of 459) were 21-residues long TMHs, accounting for 73% of all 
such segments; the other 104 TMPs contained only 19% (114 of 593) TMHs of length 
21. This led us to believe that the DeepTMHMM data set contained, in part, length-
biased annotations found in UniProtKB. Other examples of methods with length biases 
include SCAMPI2 and TOPCONS2 that both predicted exclusively TMHs with 21 resi-
dues; OCTOPUS and SPOCTOPUS predicted only TMHs of length 15, 21, and 31 (with 
more than 90% of those being 21 residues). BOCTOPUS2 predicted only beta strands of 
length 8, 9, and 10, with about 80% of them being nine residues long.

Since TMHs are around 21 residues long, such bias is not necessarily relevant. How-
ever, it might point to why performance appears better against some data sets supported 
less by high-resolution experiments than by others.

Performance on new membrane proteins

Although, the small data set size did not allow for statistically significant results (Addi-
tional file 1: Table S13), TMbed performed numerically better than the other methods; in 
particular, BOCTOPUS2 failed to predict the only beta barrel TMP. While TMbed and 
DeepTMHMM both missed two of the 30 transmembrane beta strands, TMbed placed 
the remaining ones, on average, more accurately (recall: 93% vs 87%; precision: 100% vs. 
93%). All methods performed worse for the alpha helical TMPs than on the other two 
benchmark data set, though with a sample size of only four proteins (25 TMHs total), 
we cannot be sure if this is an effect of testing on novel membrane proteins or simply by 
chance. Nevertheless, the transmembrane segments predicted by TMbed fit quite well to 
the membrane boundaries estimated by the PPM [63–65] algorithm (Fig. 2).

No data leakage through pLM

pLMs such as ProtT5 [34] used by TMbed or ESM-1b [36] used by DeepTMHMM 
are pre-trained on billions of protein sequences. Typically, these include all pro-
tein sequences known today. In particular, they include all membrane and non-
membrane proteins used in this study. In fact, assuming that the TMPs of known 
structure account for about 2–5% [78, 79] of all TMPs and that TMPs account for 
about 20–25% of all proteins, we assume pLMs have been trained on over 490 mil-
lion TMPs that remain to be experimentally characterized. For the development of 
AI/ML solutions, it is crucial to establish that methods do not over-fit to existing 
data but that they will also work for new, unseen data. This implies that in the stand-
ard cross-validation process, it is important to not leak any data from development 
(training and validation used for hyperparameter optimization and model choice) 
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to test set (used to assess performance). This implies the necessity for redundancy 
reduction. This also implies that the conditions for the test set are exactly the same 
as those that will be encountered in future predictions. For instance, if today’s exper-
imental annotations were biased toward bacterial proteins, we might expect perfor-
mance to be worse for eukaryotic proteins and vice versa.

Both TMbed introduced here and DeepTMHMM are based on the embeddings of 
pre-trained pLMs; both accomplish the TM-prediction through a subsequent step 
dubbed transfer learning, in which they use the pLM embeddings as input to train 
a new AI/ML model in supervised manner on some annotations about membrane 
segments. Could any data leak from the training of pLMs into the subsequent step of 
training the TM-prediction methods? Strictly speaking, if no experimental annota-
tions are used, no annotations can leak: the pLMs used here never saw any annota-
tion other than protein sequences.

Even when no annotations could have leaked because none were used for the pLM, 
should we still ascertain that the conditions for the test set and for the protein for 
which the method will be applied in the future are identical? We claim that we do 
not have to ascertain this. However, we cannot support any data for (nor against) 
this claim. To play devil’s advocate, let us assume we had to. The reality is that the 
vast majority of all predictions likely to be made over the next five years will be for 
proteins included in these pLMs. In other words, the conditions for future use-cases 
are exactly the same as those used in our assessment.

Fig. 2 New membrane proteins. PDB structures for probable flagellin 1 (Q9YAN8; 7TXI [73]), protein-serine 
O-palmitoleoyltransferase porcupine (Q9H237; 7URD [74]), choline transporter-like protein 1 (Q8WWI5; 7WWB 
[75]), S-layer protein SlpA (Q9RRB6; 7ZGY [76]), and membrane protein (P0DTC5; 8CTK [77]). Transmembrane 
segments (dark purple) predicted by TMbed; membrane boundaries (dotted lines: red = outside, 
blue = inside) predicted by the PPM [45] web server. Images created using Mol* Viewer [71]
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Conclusions
TMbed predicts alpha helical (TMH) and beta barrel (TMB) transmembrane proteins 
(TMPs) with high accuracy (Table  1), performing at least on par or even better than 
state-of-the-art (SOTA) methods, which depend on evolutionary information from mul-
tiple sequence alignments (MSA; Tables 1, 2, 3). In contrast, TMbed exclusively inputs 
sequence embeddings from the protein language model (pLM) ProtT5. Our novel 
method shines, in particular, through its low false positive rate (FPR; Table 1), incorrectly 
predicting fewer than 1% of globular proteins to be TMPs. TMbed also numerically out-
performed all other tested methods in terms of correctly predicting transmembrane 
segments (on average, 9 out of 10 segments were correct; Tables 2, 3). Despite its top 
performance, the even more significant advantage of TMbed is speed: the high through-
put rate of the ProtT5 [34] encoder enables predictions for entire proteomes within an 
hour, given a suitable GPU (Additional file  1: Table  S1). On top, the method runs on 
consumer-grade GPUs as found in more recent gaming and desktop PCs. Thus, TMbed 
can be used as a proteome-scale filtering step to scan for transmembrane proteins. Vali-
dating the predicted segments with AlphaFold2 [11, 68] structures and the PPM [45] 
method could be combined into a fast pipeline to discover new membrane proteins, as 
we have demonstrated with a few proteins. Finally, we provide predictions for 566,976 
proteins from UniProtKB/Swiss-Prot (version: May 2022) via our GitHub repository.
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