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ABSTRACT

Rapid advances in hardware and software, accom-

panied by public- and private-sector investment,

have led to a new generation of data-driven com-

putational tools. Recently, there has been a par-

ticular focus on deep learning—a class of machine

learning algorithms that uses deep neural networks

to identify patterns in large and heterogeneous

datasets. These developments have been accom-

panied by both hype and scepticism by ecologists

and others. This review describes the context in

which deep learning methods have emerged, the

deep learning methods most relevant to ecosystem

ecologists, and some of the problem domains they

have been applied to. Deep learning methods have

high predictive performance in a range of ecological

contexts, leveraging the large data resources now

available. Furthermore, deep learning tools offer

ecosystem ecologists new ways to learn about

ecosystem dynamics. In particular, recent advances

in interpretable machine learning and in develop-

ing hybrid approaches combining deep learning

and mechanistic models provide a bridge between

pure prediction and causal explanation. We con-

clude by looking at the opportunities that deep

learning tools offer ecosystem ecologists and assess

the challenges in interpretability that deep learning

applications pose.

Key words: artificial intelligence; deep learning;

machine learning; neural networks; interpretabil-

ity; ecosystem ecology; environmental science.

Glossary

Activation function The activation function
determines the output value
of a neuron in a neural net-
work as a function of the sum
of the weighted inputs it re-
ceives (see also ‘weights’)

Active learning A method in which model
training has an interactive
component where after some
training themodel periodically
supplies the users with cases to
label—the goal is to minimise
the amount of data required
for adequate training

Artificial Intelligence
(AI)

The suite of computational
tools and efforts that seek to
mimic human intelligence
and information processing
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Artificial Neural
Networks (ANN)

Artificial neural networks are
computational systems de-
signed to imitate how a hu-
man brain processes
information. In these models,
‘neurons’ successively trans-
form information to predict
some outcome

Backpropagation Backpropagation is the min-
imisation of some loss func-
tion to optimise a model’s
parameterisation—in the case
of an ANN this involves
tuning the weights. For DNN
the process works backward
from the final fully connected
layer

Convolutional
Layers

The core component of a
CNN architecture, the con-
volutional layers apply the
same set of learned filters
over the entire image to ex-
tract the features that will be
used for classification and
prediction

Convolutional
Neural Networks
(CNN)

A form of specialised deep
neural network typically used
for image classification.
CNNs are made of three
types of layers: convolu-
tional, pooling and fully
connected layers

Data augmentation A technique used to synthe-
sise new training data by
modifying existing data (for
example, image rotation, im-
age cropping, and so on).
This technique can be used to
mitigate against overfitting
when training a DL model
with small training sets

Deep learning (DL) Deep learning is the compo-
nent of machine learning that
uses neural network algo-
rithms with multiple hidden
layers (the multiple layers
make them ‘deep’)

Edge computing A technological framework
that distributes computing so
as to process data at (or as
close as possible to) source to
limit bandwidth usage, en-
ergy consumption, and so on

Error function Also known as a loss func-
tion, the error function
quantifies the deviation of a
network’s prediction from
the ground true value. This
error is minimised during
model training

Feature extraction The conversion of (raw) in-
put data into (simpler) rep-
resentations to make
classifications or predictions
without losing key charac-
teristics of the original data.
Feature extraction often re-
sults in better DL model
performance than using the
raw data

Feature selection The process of input variable
selection (synonymous with
variable selection in classic
frequentist regression mod-
els). The reduction of input
parameters can aid in both
computational costs and
spurious associations

Feed-forward Neu-
ral Networks (FNN)

An architecture of artificial
neural network in which
information is fed from the
input layer neurons to the
hidden layer neurons before
being transferred to output
layer neurons. Information
flow is in one direction only
(input layer fi hidden lay-
ers fi output layer)

Fully connected
layers

In a fully connected layer of
an ANN, all neurons are
connected with all other
neurons in the preceding and
succeeding layers

Hidden layer(s) The layer(s) between input
and output layers containing
neurons. These neurons re-
ceive inputs which are
weighted and then produce
outputs based on an activa-
tion function

Input Layer The layer in an ANN which
receives the initial raw data,
processes it and passes it onto
the hidden layers. The input
layer is the first step in an
artificial neural network
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Layers Neural networks are made up
of a series of layers which re-
ceive the input information
(input layer), process it
through a series of (hidden)
layers before making predic-
tions (output layer). There are
typically three categories of
layers in neural networks; in-
put layers, hidden layers and
output layers, although their
organisation will vary
depending on the ANN
architecture

Long short-term
memory (LSTM)

An architecture designed to
overcome some technical
problems with training RNN
models. In place of neurons,
these models use memory
blocks that are connected be-
tween layers. Each block has a
memory of recent sequences
and a gate that controls its
state and the information it
outputs; this architecture al-
lows the information flow
from a block to be conditional
on its state

Machine Learning
(ML)

Machine learning is a subset
of AI that develops algo-
rithms designed to iteratively
learn (for example, identify
patterns) from data

Neurons/Nodes Each layer in a neural net-
work is comprised of a series
of neurons, each of which is a
mathematical operation.
These neurons apply the
operation to incoming data,
multiply it by a weight, and
pass the resulting value
through an activation func-
tion to other neurons in the
network.

Output Layer The final layer in an artificial
neural network where the
information that was pro-
cessed by the hidden layers is
reformulated to create the
desired predictions. The neu-
rons in this layer also have
their own weights that are
applied to aid in the deriva-
tion of the prediction

Pooling layers The pooling layer in a CNN
aggregates information by
merging the results of multi-
ple CNN filters

Recurrent Neural
Network (RNN)

An ANN that can represent
auto-correlation between
data points by incorporating
dependencies between obser-
vations. This architecture
makes RNNs particularly
useful for predicting time-
series data

Saliency maps Heatmaps developed to
highlight the most important
portions of an image in a DL
model (usually a CNN)
making a prediction—they
are a tool designed to im-
prove DL model inter-
pretability

Supervised training The practice of providing the
ANN with data that are ‘la-
belled’ in some way (for
example, wildlife imagery
with the species in the image
tagged). This process enables
training a model for a par-
ticular predictive task and
then assessing its (predictive)
performance

Testing data Data used to test a model’s
performance for a given task;
often a subset of all data
available and not used in
model training

Training data Data used to train a model
for a particular task. These
data are typically held sepa-
rate to the testing data to
prevent overfitting

Transfer learning The practice of using knowl-
edge gained from solving one
problem in a separate but
related problem. In the con-
text of DL models, this is
applying a model trained in
one context in a new setting

Unsupervised
training

The practice of training a
model with unlabelled input
data; clustering algorithms
are a well-known example of
this approach
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Weights The weights in an ANN
model control the informa-
tion flowing from a node (in
some ways analogous to the
slope in a regression model).
The weights are combined for
all nodes in a layer in an
activation function which
determines how information
is passed out of a layer

INTRODUCTION

Although their origins lie in the 1940s (Goodfellow

and others 2016), the past decade has seen rapidly

growing application of tools associated with artifi-

cial intelligence (AI), machine learning (ML) and

deep learning (DL) across the sciences. In the

Google Scholar Metrics report for 2020, the most

cited papers across all subject areas are dominated

by those in the field of AI, including three of the

top five in Nature (the other two being in genet-

ics).1 This trend reflects the rapid progress and

growing importance of AI methods and tools in

many fields, including computer vision, sound

classification, natural language processing, gaming,

and robotics. The increasing use of AI, ML and DL

methods has been driven by a combination of

technical developments in the algorithms them-

selves, the availability of large data sets, rising

computational power (including cloud-based ser-

vices, GPU-optimised code, specialist processor

units, edge computing), and accessible open-source

frameworks for their implementation. It has also

been driven by massive funding from the private

and public sectors, partly due to (sometimes

hyperbolic) assessments of the opportunities of-

fered by AI. Alongside these advances, there has

been growing concern over AI’s ethical and privacy

challenges. While developments in hardware,

software and knowledge offer potentially transfor-

mative opportunities for ecologists (for example,

powerful tools to work with new data sources such

as images, audio and language), as with many new

technologies, they have been over-hyped, which

has led to some cynicism as to what they offer. As

we will discuss, DL methods—while certainly not

the be-all and end-all of analysis methods—have

great potential to advance ecosystem ecology.

Even against the background of the exponential

growth in the scientific literature (Wang and Bar-

abási 2021), there has been an explosion of publi-

cations discussing or using AI and deep learning in

the environmental sciences since the mid-2000s

(Figure 1a). Analysis of the keywords in a corpus of

papers considering artificial intelligence (see Sup-

plementary Material) identified three broad topic

areas (Figure 1b): (i) environmental modelling and

forecasting (for example, time-series analysis of

water or air quality), (ii) automated image detec-

tion and classification (for example, identification

of species in wildlife camera traps) and (iii) remote

sensing and landscape classification (for example,

image classification for forest disturbance detection

from satellite data). This brief analysis underscores

that ecologists increasingly apply DL approaches in

a range of problem domains.

Current perspectives on DL among ecologists

range from ‘DL is a universal panacea’ to ‘DL is an

inscrutable black box to ‘DL methods are an over-

hyped fad’. In this review, we seek to provide a

realistic perspective of how to best capitalise on the

investments by the public and private sectors in

these technologies and leverage those developments

to foster new avenues for ecosystem research. Our

review is not intended as a ‘how to’ primer, nor is it

aimed at experts in DL methods. Likewise, it is not a

comprehensive evaluation of every potential or

realised application of DL in the context of ecosystem

ecology. Instead, it is intended to introduce what DL

and associated methods might offer ecosystem

ecology and some of the challenges these applica-

tions pose. We briefly describe the neural networks

that underpin DL, and consider their application in

three contrasting problem domains, before con-

cluding with how ecosystem ecologists might best

exploit these new approaches.

Deep Learning Algorithms

Deep learning relies on artificial neural networks

(ANN), which are loosely modelled on the brain

with artificial neurons (nodes) connected so they

can communicate (analogous to synaptic connec-

tions). Deep neural networks (DNN) have become

widely used during the past decade but descend

from simpler artificial neural networks devised in

the 1950s and 1960s (Figure 2; Goodfellow and

others 2016; Razavi 2021). While these early net-

works mainly used one hidden layer of nodes

(Figure 2), DNNs have many of them; hence, the

moniker ‘deep’ (see Glossary for expanded defini-

1 https://www.natureindex.com/news-blog/google-scho
lar-reveals-most-influential-papers-research-citations-tw
enty-twenty.
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Figure 1. The rise of AI and DL in the scientific literature: a normalised publication rate in articles in environmental

science overall, artificial intelligence, and deep learning from 1971 to 2021; and b focal areas of publications in

publications in environmental science using deep learning tools based on keyword co-occurrence analysis. In b the groups

are identified by maximising the density of connections between vs. across groups (that is, modularity; R command

igraph::group_fast_greedy), with the size of the nodes (black points) proportional to the frequency that a keyword

appeared together and the weight of the edges (lines between nodes) is proportional to the strength of the link (frequency

of co-occurrences). The normalisation in a is the publication rate in a given year relative to 2000 for artificial intelligence

and environmental science, while deep learning is normalised to 2006, as this was the earliest paper published with deep

learning in the environmental science discipline. See Supplementary Material for details.
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tions). Depending on the application, the inputs to

a DNN (Figure 2) can be diverse, including pixels in

an image, words in a sentence, data points in a time

series, and can be mixed in type (qualitative, cat-

egorical, quantitative). Similarly, the type of out-

puts can vary with classification (the network

determines for the given inputs one of a pre-de-

fined set of classes) and regression (the network

determines a single numeric value from the input

data).

DNNs vary in their architecture, that is the details

of the ‘wiring’ of the nodes. The most straightfor-

ward architecture is the feed-forward neural net-

work (Figure 2 right), in which raw data are

successively transformed into more abstract repre-

sentations until some output is produced (for

example, identification of a species from an audio

recording). In this architecture, nodes (the neu-

rons) are fully connected between but not within

layers. In a simple (feed-forward) ANN, input data

are transformed by a sequence of nodes in a ‘hid-

den’ layer to generate output (Figure 2). In a

shallow ANN, the single hidden layer will consist of

a series of nodes that can transform data using a

sigmoidal function, based on the fact that any data

transformation can be achieved using a stack of

sigmoidal functions and a linear transform (Good-

fellow and others 2016; Borowiec and others

2022). Although in theory given sufficient nodes a

shallow neural network can apply any transfor-

mation, it is more efficient to use multiple layers

than one single enormous one (Razavi 2021). Ra-

zavi (2021) provides an intuitive and thorough

geometric explanation of these ideas, which he

calls the concept of ‘depth’ (p. 4). In DNN, the

multiple layers have different purposes; for exam-

ple, in a CNN different layers may apply convolu-

tion kernels to extract key features from an image

and pooling layers to generalise (down sample)

these features. The architecture of deep neural

networks is such that layers go from general to

specific, with the last layer fully connected and

producing the output. Thus, as Yoskinski and oth-

ers (2014) discuss, when DNNs are trained to

classify images, the first layer tends to identify

similar high-level features (‘‘Gabor filters or colour

blobs’’, p. 1) irrespective of the image type. Each

node is characterised by an activation function that

defines how the values from incoming connections

are combined and forwarded to the next layer of

nodes. In a fully connected network, each node is

connected to all nodes in the following layer via

variable weights that are learned and hence rep-

resent the relationships between variables. The

DNN ‘learns’ by optimising the connection weights

in the network to minimise the prediction error

(Olden and others 2008; LeCun and others 2015).

Learning is most commonly performed using a

backpropagation algorithm, where an error func-

tion is minimised iteratively across observations by

updating the weights to decrease their contribution

to the overall error (Olden and others 2008). In

Figure 2. A schematic of neural network architecture for a a shallow neural network with just one hidden layer, and b a

deep feed-forward neural network with multiple hidden layers (here depicted as uniform and fully connected layers with

not all links shown).
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supervised training (that is, the output variable

[response] is labelled, and the algorithm trained to

predict the label), the goal is to minimise the dif-

ference between the predicted and observed values.

After a DNN is trained, it can be used to predict

outcomes based on new data. Usually, the output is

directly used for classification (for example, what

animal is in the picture?) or regression (for exam-

ple, what is the predicted value of a time series?),

but DNNs can be the (core) part of more complex

toolchains. Image segmentation (a.k.a. image

semantics, assigning each pixel in an image to a

class) or object detection (detecting the type and

position of multiple objects in an image) are

examples derived from computer vision that have

become regularly used in ecology.

As noted previously, there are many ways to

wire a DNN’s nodes (that is, the architecture of the

DNN). Ecologists have most frequently used con-

volutional neural networks (Brodrick and others

2019; Christin and others 2019; Borowiec and

others 2022), as they are particularly well-suited

for image and audio processing. In a convolutional

neural network (CNN), the hidden layers comprise

convolution layers (hence the name), pooling lay-

ers, and fully connected layers designed for differ-

ent components of image recognition (feature

extraction, downscaling, and integration); Rawat

and Wang (2017) review the design and application

of CNNs for image classification. Another archi-

tecture of potential importance for ecosystem

ecologists is recurrent neural networks (RNN; Fig-

ure 3). RNNs process sequences and keep a

‘memory’ of past data by feeding the output of a

layer back into that same layer (hence ‘recurrent’,

Figure 3a). RNNs can be imagined as a sequence of

neural networks feeding each other by sharing

parameter information (the unfolded neural net-

work in Figure 3b). The length of time at which a

previous network state is influential will depend on

changes in weights during training; thus, in prin-

ciple, RNNs can deal with short- and long-term

memory effects or dependencies (Goodfellow and

others 2016). This architecture is well-suited to

time-series applications, such as forecasting

hydrological and meteorological conditions (Rah-

mani and others 2021; Zhi and others 2021). Be-

cause of their ability to deal with sequential data,

RNNs offer a route to the near-time ecological

forecasting advocated by Dietze and others (2018).

Machine learning engineers are continuously

refining existing and devising new DNN architec-

tures. For example, the ‘‘transformer’’ architecture

(Vaswani and others 2017) initially developed in

the language domain is now increasingly used for

image processing tasks (Chen and others 2021a).

While this complexity could seem overwhelming

for ecologists, deep learning software packages are

increasingly available that hide most of the tech-

nical complexity and can be used from well-known

computing platforms such as R, Python, and Julia.

Changes in the Data Landscape

Machine learning and deep learning methods have

emerged in an era of large datasets (potentially

comprising > 1 9 109 items; Goodfellow and oth-

ers 2016). This emergence is crucial for DL because

these methods thrive disproportionally on big data

compared to classical statistical approaches. DL has

the potential to leverage the information hidden in

such large datasets to answer ecological questions

in new ways. Thus, any discussion of DL necessi-

Figure 3. Schematic architecture of a recurrent neural network. The architecture is shown in a folded and unfolded view

(a and b, respectively).
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tates considering two inter-related trends: big data

and born-digital data. Big data are characterised by

the three Vs: volume, velocity, and variety (LaDeau

and others 2017). Volume relates to the fact that

we have unprecedented amounts of data available

(although ‘unprecedented’ is context-dependent

and of itself unremarkable), velocity is a function of

the rapidity of data generation, sometimes hap-

pening in real-time, and variety means data are

heterogeneous in form and curation. Where do

these data come from? Increasingly, data collection

is automated using devices that remotely measure

the environment, including camera traps, satellite

platforms, unmanned aerial vehicles (UAVs;

drones), automated audio recording devices (con-

tinuously monitoring sondes in freshwater and

marine ecosystems), and simulation models (Kays

and others 2020; Keitt and Abelson 2021). In some

countries, these data are openly available and col-

lected via large coordinated research programmes

such as NEON (USA; Keller and others 2008) or

TERN (Australia; Cleverly and others 2019). These

data streams often consist of images, audio, video

or unstructured texts, which are well suited for

DNNs but challenging to use with traditional sta-

tistical methods. An additional source of big data is

citizen science, whether in collecting information

or labelling massive datasets. This diversity of

sources gives rise to the fourth ‘v’, veracity (their

variable uncertainties), which is crucial to under-

stand for these data to be used effectively (Farley

and others 2018). Reconciling the various types

and scales of data available to ecologists is a fun-

damental challenge in effectively leveraging data-

led methods. DL methods are excellent tools to

address this broader challenge. A particular chal-

lenge for DL methods is their demand for large

amounts of accurately labelled data for supervised

learning; we will return to this problem later.

The Use of DL in Ecosystem Ecology

Ecosystem ecology is the study of the dynamics of

energy and matter in ecosystems, resulting from

the interactions of abiotic and biotic components of

such systems and occurring across multiple spatial

and temporal scales. As the publications in Ecosys-

tems would attest, the field has a broad remit and

interfaces with nearly every other sub-discipline of

ecology. To illustrate the range of applications of DL

in ecosystem ecology, we will consider three broad

areas: analysis of data describing energy and matter

fluxes, image processing and analysis, and inte-

gration with earth system and ecosystem models.

We have drawn on case studies that align with

fundamental questions of ecosystem ecology, yet in

many cases, these are allied with other components

of ecology. Likewise, many of the opportunities and

challenges associated with using DL are not do-

main-specific and encompass the use of these tools

across subfields of ecology (for example, the

potential of large-scale text analysis and automated

translation to help alleviate biases in literature

syntheses).

PROBLEM DOMAIN 1: SYNTHESIS

AND PREDICTION OF MASSIVE DATA

DESCRIBING ECOSYSTEM FLUXES

Global networks, such as FluxNet and automated

hydrological and meteorological stations, yield vast

amounts of high-resolution information describing

ecosystem fluxes (Baldocchi 2020). Deep learning

methods have been applied to these data to predict

temporal dynamics and to assess how they might be

affected by global change. Recurrent neural networks

and their relatives, such as the long short-term

memory (LSTM) model (a variant of RNNs), are well-

suited to modelling temporal data and have begun to

be used to model earth system dynamics. Kraft and

others (2019) developed RNNs to predict the nor-

malised difference vegetation index (NDVI) based on

climate data, land cover and soil information using an

LSTM architecture. Their models demonstrated that

including memory (past data) improved model per-

formance in both global and biome-specific models.

While the gains in performance varied between

biomes they were somewhat predictable from a

biome’s position in climate space. For example,

memory effects seem stronger in sub-tropical regions

where seasonal effects are less important than spo-

radic climate events (for example, interspersed wet

and dry periods, see also Hansen and others 2022).

The strength of memory effects also varies through

time in different biomes (for example, it is strong in

spring in contexts where meltwater is important).

Similarly, Zhi and others (2021) used an LSTM model

to predict dissolved oxygen content in catchments

across the conterminous USA. Because dissolved

oxygen is a vital indicator of the health of freshwater

ecosystems, there is a need to develop models that are

transferrable to sites where data are lacking. Zhi and

others (2021) trained their model on measurements

of dissolved oxygen concentrations at more than 200

sites spanning 1980–2014 (minimum of n = 10

points) alongside high-quality daily meteorological

data and a suite of variables characterising watershed

conditions. The models captured the seasonal

dynamics of dissolved oxygen, although the predic-
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tions were damped at some sites. Zhi and others

(2021) comment that the model performance is af-

fected by a lack of data at dissolved oxygen extremes

and heterogeneous data availability. Similar methods

have been used to predict critical components of the

earth system at a global scale. For example, Besnard

and others (2019) implemented anRNN to predict net

ecosystem CO2 exchange at forest sites across the

globe, using a range of data for training (remotely

sensed data, down-scaled climate information and

eddy covariance flux information). Their model cap-

tured broad seasonal and inter-site trends but did not

adequately predict extreme conditions. Besnard and

others (2019) considered that this failure to capture

anomalies adequately could be explained by several

issues, including missing data in the remote-sensing

time series and the temporal resolution and spatial

content of the information. Issues of data scarcity

(including labelled data) and patchiness are a recur-

ring challenge for data-hungry models such as DNNs.

PROBLEM DOMAIN 2: INTERROGATING

IMAGE DATA

Object Identification and Labelling

Rapid developments in computer vision have made

image analysis and processing a frequent applica-

tion for DL in the environmental sciences (Fig-

ure 1b). DL-informed image processing has been

used in many ecological contexts, including (i)

identifying wildlife species in camera trap data, (ii)

the extraction of multidimensional whole-organ-

ism phenotypic information (‘phenomics’), (iii)

mapping disturbance events (for example, fire and

floods), and (iv) tracking organism movement. The

almost archetypal application of DL in ecology has

been to extract taxonomic information from ima-

gery. In a pioneering study, Norouzzadeh and

others (2018) demonstrated the ability of DL

methods to identify wildlife species in motion-ac-

tivated wildlife camera imagery. They trained nine

DL architectures (for comparison) to detect and

identify species in the Serengeti Snapshot database,

which contains 3.2 million images (Swanson and

others 2015). The model (Figure 4) approached or

exceeded the accuracy of human volunteers, with

potentially enormous (up to 99%) timesaving. For

example, their model accurately identified the 75%

of images not containing an organism, which con-

siderably reduces the number of images requiring

manual assessment.

DL models have been used to characterise vege-

tation structure and to identify and predict distur-

bances in forest landscapes, primarily via the

Figure 4. Schematic overview of the two-stage workflow used by Norouzzadeh and others (2018). In both steps, nine DL

architectures were trained, with the best performing retained for prediction. For step 1, this was a single model (a CNN),

and in step 2 it was a model ensemble. The graphs summarise model (M) vs expert (H) accuracy. There is no bar for ‘H’ in

the ‘Present?’ graph as human expertise on this task was not assessed. Wildebeest icon by Lukasiniho under CC3 license (h

ttp://Creativecommons.Org/Licenses/By-Nc-Sa/3.0/).
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analysis of remotely sensed imagery; again, con-

volutional neural networks are the leading DL

architecture used in this context. Using aerial

imagery, Rammer and Seidl (2019b) trained a CNN

to predict bark beetle outbreaks in a German na-

tional park within individual years and along a 23-

year time series. The network was trained to predict

whether a single focal cell (30 9 30 m) will be

disturbed in the next year based on the average

climate conditions, the spatial pattern of hosts and

current disturbance in a 600 9 600 m window

around the focal cell. Their CNN outperformed a

number of other machine learning methods and

did so without the inclusion of meteorological data,

on the grounds that such data are often scarce or

unavailable. These applications are not limited to

landscape-level dynamics. Kattenborn and others

(2020) trained CNNs using UAV imagery to identify

individual tree species cover in forests, estimate

plant cover in a glacial vegetation succession, and

identify invasion dynamics (first two cases in New

Zealand, the third in Chile). Their models per-

formed well, but they suggest important trade-offs

between the accuracy and the spatial resolution of

the predictions. DL models have been implemented

at still finer scales to identify insects (Valan and

others 2019) and pollen grains (Daood and others

2016; Olsson and others 2021). In short, DL

methods are versatile, accurate, and efficient for

image processing tasks; the application of these

methods to ecological questions will likely continue

to grow.

Beyond Labels: Measuring Functional
Traits and Behaviour

Phenotypic variation is linked to a range of

ecosystem properties and functions. Studies of

variation in phenotype over large spatial extents

can address macroecological questions and changes

over time assess how morphology tracks environ-

mental changes (for example, body-size shifts un-

der climate change). Manually extracting high

volumes of multidimensional phenotypic data is

time-consuming; hence, there is considerable

interest in leveraging advances in computer vision

and DL methods to facilitate this process (Lürig and

others 2021).

As described previously, citizen science efforts

have led to the collection of large bodies of data,

especially labelled images. Schiller and others

(2021) used a CNN trained using trait information

from the open TRY database (Kattge and others

2020) to estimate six plant functional traits from

plant images stored in the iNaturalist database.

They explored: (i) how the inclusion of intraspecific

variation in traits and bioclimatic information

influenced model performance and (ii) the poten-

tial for a CNN to predict traits indirectly using

covariance structures (for example, leaf shape,

which is apparent in the image, may predict ele-

mental concentration in tissues). If a model can

make accurate indirect trait predictions this would

enable more easily measured (or cheaper) param-

eters to act as surrogates for more difficult ones.

Schiller and others’ (2021) best performing models

had normalised absolute mean errors in the range

of 8–15% (r2 = 0.16–0.58) with predictions better

for leaf form than tissue-related traits (that is, di-

rectly vs. indirectly measured). Similarly, Weeks

and others (2022) developed a DL-based workflow

to identify bones in images of bird skeletons in

museum collections and measured 11 skeletal traits

(the Skelevision project: https://skelevision.net/).

This process involves detecting the bones of interest

in an image (image segmentation) and then mea-

suring them through a multistage process that used

DL models to identify bones in images and to

measure the characteristics of interest. Weeks and

others (2022) commented that an advantage of the

method was that it did not damage specimens. The

accuracy of bone detection in the models depended

on the morphological element; however, classifi-

cation and skeletal measurement were accurate

and repeatable, with only one trait showing any

phylogenetic signal (for example, bias varies across

taxa). Weeks and others (2022) emphasise that a

critical advantage of their workflow is that it is easy

to generate data describing new traits given the low

annotation requirements. In short, there seems

little doubt that there are many opportunities for

trait-based ecology to benefit from the integration

of computer vision and DL.

Data about movement can provide information

about the behavioural component of phenomics

(Lürig and others 2021). DL can be used to detect

objects (that is, animals) in video data and track

them, as well as classify such data into states

potentially associated with different behaviours.

These workflows involve object detection and

identifying key points on the body (for pose) or

tracking the objects’ movement. Software toolkits

have been developed that integrate computer vi-

sion and DL models to detect individuals and esti-

mate their pose (Graving and others 2019) and

movement (Walter and Couzin 2021). For exam-

ple, Lopez-Marcano and others (2021) describe a

workflow for detecting and tracking individual fish

(bream) in video imagery. They used a CNN to

identify the fish (based on a training set of 8700
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annotated images) and tested three object tracking

algorithms. The workflow efficiently identified and

tracked individual fish and, as with other applica-

tions leveraging DL, allowed data to be collected

and analysed at a scope not otherwise possible.

Such applications have significance for tracking

animal movement, which underpins ecosystem

functions such as biogeochemical cycling and seed

dispersal, and may also inform conservation activ-

ities such as identifying individuals of threatened

species (Tuia and others 2022).

PROBLEM DOMAIN 3: MODELLING

ECOSYSTEM DYNAMICS

Hybrid Earth System and Ecosystem
models

The incorporation of DL into process-based earth

system models to form ‘hybrid’ model platforms is a

very active research frontier (Reichstein and others

2019; Irrgang and others 2021). In such models,

some system components and processes are simu-

lated using data-driven representations and others

using more mechanistic/process-based approaches.

The advantage of this hybrid architecture is that it

can leverage the physical consistency of process

models with the data-driven performance of deep

learning models (Reichstein and others 2019).

There are several rationales for incorporating a DL

component into ecosystem models (Reichstein and

others 2019; Irrgang and others 2021): (i) to im-

prove the estimation or upscaling of uncertain

parameters, (ii) as plug-in components to replace

physical models or model components, (iii) to test

models by helping identify errors, and (iv) to

emulate computationally expensive physical mod-

els (that is acting as meta-models).

Hybrid mechanistic-DL models have begun to be

implemented to predict ecosystem properties,

including evaporation (Koppa and others 2022),

evapotranspiration (Chen and others 2021b), lake

temperature (Read and others 2019), and snow-

pack distribution (Xu and others 2022). For

example, Chen and others (2021b) implemented a

hybrid physical-DL framework to predict daily

ecosystem respiration and evapotranspiration in

the western USA. Their approach combined high-

resolution eddy covariance and meteorological data

with land surface information (NDVI via remote

sensing) to support physical and DL models (a

LSTM) of evapotranspiration and ecosystem respi-

ration. They tested the model at local (individual

FLUXNET sites) and ecoregion scales (model

transferability within ecoregions). At the site scale,

their model successfully captured long-term trends

in evapotranspiration and ecosystem respiration;

however, performance was less adequate when

predicting short-term fluctuations, especially dur-

ing summer extremes. Tests at the eco-region scale

were also successful, although there were some

issues in predicting summer extremes, demon-

strating the ability of these hybrid models to predict

unmeasured locations or those where data are

missing. In general, Chen and others (2021b) note

that the hybrid model performed well and the

architecture should be extendable to other bio-

geochemical cycles. However, they highlight some

uncertainties arising from feature selection, cap-

turing extremes (the poorer short-term perfor-

mance in summer was attributed to a lack of

extremes in the training data; the earlier example

of Zhi and others (2021) suffered from similar

problems), resolution of meteorological informa-

tion especially in mountainous terrain, issues

inherent in remote sensing (for example, cloud

cover), and error propagation within and between

the components of the hybrid model architecture.

Although some of these issues are problem-specific,

they again speak to general issues in data-driven

modelling concerning the data available for train-

ing, especially in infrequently observed conditions,

sparse sampling, and the selection of variables to

include in the model.

A concern surrounding DL models is that they

may identify patterns in a way that is not con-

strained by known physical laws (what Reichstein

and others 2019 call ‘physical inconsistency’).

Karniadakis and others (2021) describe three ways

that information can be introduced to machine

learning (including DL) models to make them

‘physics-informed’’: (i) observational biases where

the data used to train the model carry information

about the underlying mechanisms, (ii) inductive

biases where known physical laws are embedded in

the model architecture, and (iii) learning biases

where the model is penalised for violating physical

constraints. Arguably, using inductive bias is the

approach that will most strictly honour physical

reality but it requires a rather complete mechanistic

understanding of the system (difficult for complex

and open systems such as ecosystems) and does not

scale well (Karniadakis and others 2021). These

physics-informed method are beginning to be

adopted by ecosystem ecologists although the ter-

minology used differs between disciplines and

applications. For example, building on the ‘theory-

guided data science’ of Karpatne and others (2017),

Jia and others (2019) implement a RNN to predict

lake water temperature in a way that honours the
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conservation of energy and the relationships be-

tween depth and density. Their constrained RNN

outperformed a physical lake ecosystem model, and

Jia and others (2019) argue that the inclusion of

physical constraints makes it more easily general-

isable. Read and others (2019) tested this approach

across more lakes, comparing it to an unsupervised

DL model and a physical model of lake tempera-

ture. Their hybrid DL model outperformed the

others both in lakes where there was detailed site-

specific information and in a wider pool of nearly

70 test lakes where there was less information.

Likewise, physical laws might also be used to

evaluate model performance; for example, Razavi

(2021) show how a DL model of precipitation could

be tested using a temperature threshold for snow

formation (that is, is snow vs. rain predicted at

appropriate temperatures). Ultimately, linking DL

and mechanistic models may improve predictive

performance and help develop causal understand-

ing of the systems of interest.

Meta-models and Model Emulation

Another potential application of DL in models of

ecosystem dynamics is as model emulators or meta-

models. Even with access to large-scale computing

infrastructure, there are limits to which brute-force

approaches can run complex ecological models

over large areas and/ or long periods. Many tech-

niques have been proposed for scaling models be-

fore, during, or after model application (Fritsch and

others 2020), including meta-modelling (Urban

and others 1999; Cipriotti and others 2015) or

model emulation (Reichstein and others 2019). The

basis of meta-modelling is that a simpler (in com-

putational or representational terms) form of a

complex model is developed and applied over lar-

ger, longer, or more heterogeneous conditions, or

used in what would be otherwise unfeasible com-

putational experiments. For example, Cipriotti and

others (2015) used matrix models to synthesise a

complex individual-based model of grassland

dynamics by tracking transitions between states in

grid cells. DL models provide a way to deal with

cases with many states and a more complex envi-

ronment, in which full coverage of all possible

combinations is impossible by conventional ap-

proaches. Rammer and Seidl (2019a) used a DNN

that learns the probability of transitions between

103 and 106 ecosystem states from process-based

simulations conditional on state history, spatial

context, and environmental conditions. The ap-

proach was subsequently used to project post-fire

regeneration under future climate and fire regimes

for the Greater Yellowstone Ecosystem (USA),

projecting substantial regeneration failure in the

twenty-first century due to limited seed supply and

post-fire drought (Rammer and others 2021).

Similarly, Dagon and others (2020) trained a feed-

forward neural network to emulate a detailed

model of ecosystem fluxes at extended spatial

scales.

Challenges for DL in Ecosystem Ecology

Deep learning has considerable potential for

ecosystem ecology, as illustrated for the three

application domains described above. However,

considerable challenges remain. Here we consider

three challenges for the use of DL in ecosystem

ecology and discuss potential ways to mitigate

them: (i) data availability, and especially large la-

belled databases for supervised learning, (ii) the

issues of interpretability in data-led modelling (for

example, understanding why a model makes a gi-

ven prediction), and (iii) the environmental costs of

data-led methods.

Dealing with a Paucity of High-Quality
(Labelled) Data

Most applications of DL by ecosystem ecologists

have involved supervised classification; in other

words, a model learns its task using a labelled or

annotated training (reference) dataset. However,

supervised learning depends on the availability and

veracity of large labelled datasets (Karpatne and

others 2019), especially given the concern that DL

models may overfit when trained on small datasets

(Goodfellow and others 2016). In a number of

examples reviewed earlier, model performance was

negatively affected by scarce and patchy data,

especially for extreme conditions. There is a mas-

sive effort involved in developing expert-curated

training sets, whether ecological or not. Citizen

science may provide one solution; the Serengeti

snapshot database (Swanson and others 2015), for

example, contains 3.2 million images of animals

across 1.2 million snapshot captures, which have

been labelled (presence, identification, count) by

volunteers at an estimated cost of 14.6 years’ worth

of 40-h weeks. However, while citizen science ini-

tiatives may increase the scope of such efforts they

will also potentially carry biases in space, time and

expertise, although this will vary with the project

and may not differ from ‘professional’ data (Kos-

mala and others 2016). The effort to measure plant

functional traits by integrating data from the open

TRY database and the citizen science application
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iNaturalist described by Schiller and others (2021)

is an interesting example of how different data

streams can be used to develop global syntheses.

Irrespective of such efforts, there are many eco-

logical contexts where there will be a persistent

shortage of high-quality labelled.

Various solutions have been proposed to address

the issue of limited training data based on concerns

that models trained on small datasets are vulnera-

ble to overfitting. First, although the large majority

of ecological applications use supervised learning,

the development of unsupervised and self-super-

vised algorithms that circumvent the need for

extensive labelled training data is an active area of

research (for example, Yan and Wang 2022).

Where supervised models are used, two solutions

to data paucity are generating synthetic data to

augment existing databases and minimising the

amount of labelled data required. Data augmenta-

tion is the generation of new training data from

existing training examples. For example, images

can be geometrically altered (shifting, mirroring,

rotating, zooming, shearing) or audio data distorted

to increase the data set while not having to add

more raw information or labelling effort. This ap-

proach has received some attention from ecosystem

ecologists. For example, Grünig and others (2021)

used data augmentation to expand the data avail-

able to train a model for detecting and classifying

damage to plants by pests and pathogens. Another

alternative, especially for temporal data is to use

the output of physical simulations to train DL

models (a form of meta-modelling); of course,

using a process-based model to train a DL relies on

the robustness and/or the transferability of the

physical model.

Another way to deal with the problem of the

data required to train effective DL models is to limit

the amount of labelling required. Two approaches

that seek to achieve this are transfer learning and

active leaving. Transfer learning takes advantage of

models developed for one specific setting elsewhere

(Goodfellow and others 2016; Weiss and others

2016). Transfer learning has three potential bene-

fits compared to training a new model ‘from

scratch’ (Torrey and Shavlik 2010): better initial

performance, more rapid improvement in perfor-

mance as the model is trained, and better final

performance. Transfer learning leverages the

property that in broad problem domains (for

example, image classification) the early layers are

often similar across DL models, irrespective of the

specific problem (Yosinski and others 2014). By

using pre-trained models as the starting point for

model training, knowledge can be transferred (for

example, general image understanding in the

context of a DL model) to a new task where there is

limited labelled data (Goodfellow and others 2016).

Another approach aiming to reduce the labelling

burden is active learning, that uses methods to se-

lect the most informative examples (that is, those

from which the DNN can learn the most at a given

point in time) from the pool of unlabelled data. In

an iterative process an expert user is occasionally

asked to label such informative unclassified sam-

ples during model training (Norouzzadeh and

others 2021), thus selectively extending the data

set. The hope is that by being selective about which

data are labelled by the expert (the so-called oracle)

the costs involved will drop as a reduced set of the

most informative data are selected for annotation.

Ecologists have already begun to use active and

transfer learning. For example, Valan and others

(2019) used transfer learning in the taxonomic

identification of invertebrates (via a CNN) because

of a lack of training data and concern over the

computational cost of fine-turning. They used a

pre-trained CNN trained on the ImageNet data set

(currently 1.4 9 107 images in 100,000 classes),

extracted features (that is, an intermediate repre-

sentation in the CNN) and used these to train a

support vector machine with a smaller labelled

dataset (100–1000 s of images). Transfer learning

can involve models trained on quite different data.

Norouzzadeh and others (2018) tested the ability of

their models of wildlife imagery when trained on

smaller datasets simulating wildlife cameras and

the generic ImageNet database, which is not wild-

life-specific. In both cases, the models performed

well. Russo and others (2020) tested the effective-

ness of active learning to reduce the labelling effort

involved in detecting anomalies in data (in their

case, specific conductivity in mesocosm experi-

ments). Their workflow involved labelling data

(complete labelling, random labelling of a subset,

active learning) and then training DNN models

using these labels. Their analysis demonstrates that

models with high predictive accuracy can be

developed with a fraction of the labelling effort

using an active learning method. Likewise,

Norouzzadeh and others (2021) demonstrate how a

workflow integrating active learning can massively

reduce labelling requirements; the most accurate of

the algorithm they used had an accuracy compa-

rable to that of Norouzzadeh and others (2018) but

labelling just 14,000 versus 3.2 million images (a

99% reduction).
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Prediction, Explanation, Interpretability,
and Learning

Ecological modellers have long debated the relative

merits of simple and complex models in various

guises such as the realism versus tractability trade-

off (Levins 1966; Evans and others 2013; Razavi

2021). This argument is particularly acute for deep

learning methods, especially given their seemingly

‘‘unreasonable effectiveness’’ (Sejnowski 2020)

and the large amounts of data they typically re-

quire. While in some problem domains explain-

ability may not matter, in others it does. Thus,

there is growing interest in ‘interpretable machine

learning’ (Murdoch and others 2019). Roscher and

others (2020) distinguish between: (i) transparency

(being able to communicate the decisions made in

the model implementation process and how they

influence the outcomes), (ii) interpretability (for

example, using post hoc assessment to understand

how a decision based on a model prediction was

reached) and (iii) explainability (explaining the

outcome of a modelling exercise in a process-sense,

acknowledging the context-dependent nature of

explanation). Methods designed to help a mod-

elling exercise develop these qualities have begun

to be used by ecologists. These methods can

examine the global (how the model learned to

identify patterns from the data it was trained with)

or local model structure (why did a model make a

prediction for a given site or sample), and are re-

viewed in detail in an ecological context by Lucas

(2020). Ryo and others (2021) illustrate the use of

these interpretation methods (‘explainable AI’) in

the context of species distribution models and

highlight how explaining the global model and

individual predictions can yield improved causal

understanding of the system being predicted. Other

examples include the visual interrogation of DL

models using saliency maps, which depict how

each data point influences the nodes in a DNN, or

by methods that highlight surprising predictions

(McGovern and others 2019). Likewise, sensitivity

analysis and layerwise relevance propagation can

facilitate understanding of a model’s outcomes by

mapping the relationship between inputs and out-

puts (Montavon and others 2018; Toms and others

2020). These methods and others more routinely

applied to machine learning approaches (for

example, variable importance metrics or partial

dependence plots) help understand the model (in-

terpretability) but do not necessarily generate

knowledge of themselves. Thus, as Roscher and

others (2020) and Razavi (2021) emphasise, do-

main-specific expertise remains crucial for inter-

preting and assessing DL models’ credibility and

predictions.

The ability of DL to uncover patterns in large,

messy and heterogeneous data may inspire new

hypotheses that can be tested with experiments or

models. Identifying surprising predictions (or ones

that have not been observed) is important because

one route to model-based learning is for such pre-

dictions to be empirically confirmed (Mankin and

others 1975). As Reichstein and others (2019)

outline, this does not necessarily challenge the

‘classical’ hypothetico-deductive model; instead,

the patterns identified by DL approaches constitute

new ways to observe complex systems. Patterns

that cannot be explained by existing theoretical

frameworks can guide and inform new experi-

ments. In this way, resource-intensive experiments

could be more efficiently targeted. For example, the

RNN developed by Kraft and others (2019) to ex-

plore how memory effects vary across biomes

generates hypotheses about the causes of that

biome-level variation (in their case, they speculate

that the temporal grain of climate variability will

influence the importance of memory effects).

Where observations do not depart from existing

theory or understanding, they may improve model

predictions and parameterisation. In this context,

there is likely an important role for unsupervised

methods; that is, those where a model makes a

prediction to unlabelled data. For example, Son-

newald and others (2020) used machine learning

techniques to identify marine eco-provinces from

high-dimensional nutrient and plankton data; their

approach identified approximately 100 unique eco-

provinces. Then, the question for ecosystem ecol-

ogy is, which biogeochemical and ecological pro-

cesses and variables control those eco-provinces?

Why do they vary through time and space? And

how do they relate to existing classifications de-

rived in other ways (for example, via expert

assessment)?

Reconciling Energy and Environmental
Costs of Data-Led Approaches

The modelling most frequently conducted by

ecologists is not as energy expensive as the ap-

proaches used in other fields, such as large-scale

natural language models. Yet, in a review of the

ecological applications of DL it would be remiss not

to touch on recent concerns about the environ-

mental (mainly C and energy) costs of computer-

intensive methods (Dhar 2020; Schwartz and oth-

ers 2020). These concerns are true of any compu-

tationally expensive approach, although the size
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and training effort in some DL models makes it

acute (Thompson and others 2020). The emphasis

in DL models has been on extracting maximal

predictive performance, which will result in high

energy usage. However, as Canziani and others

(2017) demonstrate, energy limits probably set

upper bounds on practical accuracy given the

relationship between time and performance is

hyperbolic, and so it becomes necessary to trade off

predictive performance and energy cost. Less

computationally intensive models may also be

more practical for deployment in edge computing

(Tuia and others 2022). Recently, guidelines for

environmentally sustainable computing have been

published (Lannelongue and others 2021) along-

side calls for the energy costs of computationally

intensive projects to be reported (Lottick and others

2019; Strubell and others 2020). To support effi-

ciency in reporting open-source code bases and

online apps (for example, Green Algorithms [http

s://green-algorithms.org/] and machine learning

CO2 Impact [https://mlco2.github.io/impact/])

have been developed. We anticipate rapid devel-

opments in this area and a move towards an energy

conscious ‘green AI’ (Schwartz and others 2020).

CONCLUSION

Whether some of the more hyperbolic claims

regarding DL will prove well-founded remains to be

seen, but there is no doubt that deep learning

algorithms offer ecologists opportunities for pre-

diction and understanding in the dawning age of

big data. These opportunities range from incre-

mental advances in existing questions (that is,

application of DL methods to existing problems), to

the expansion of the scope and scale we ask ques-

tions at, to entirely new (and unpredictable)

questions and processing capacities. We anticipate

that hybrid physical-DL models are an area where

there are particular opportunities for ecosystem

ecology as the binary view of mechanistic vs.

empirical models becomes blurred. However, DL

methods also amplify debates about the place of

data, theory and models in science. To understand

data, do we need a hypothetical generating model?

Or can we identify empirical truisms to make pre-

dictions? These questions are long-standing and

likely unresolvable; focusing on them might be

unhelpful for advancing the science of ecology,

particularly if they are posed as binaries. Thus, the

challenge for ecosystem ecologists in leveraging

data-led approaches is not solely technical but is

also to reconcile competing narratives in ways that

equip us to deal with a rapidly changing environ-

ment.
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