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ABSTRACT

Remote sensing techniques are increasingly used

for studying ecosystem dynamics, delivering spa-

tially explicit information on the properties of Earth

over large spatial and multi-decadal temporal ex-

tents. Yet, there is still a gap between the more

technology-driven development of novel remote

sensing techniques and their applications for

studying ecosystem dynamics. Here, I review the

existing literature to explore how addressing these

gaps might enable recent methods to overcome

longstanding challenges in ecological research.

First, I trace the emergence of remote sensing as a

major tool for understanding ecosystem dynamics.

Second, I examine recent developments in the field

of remote sensing that are of particular importance

for studying ecosystem dynamics. Third, I consider

opportunities and challenges for emerging open

data and software policies and suggest that remote

sensing is at its most powerful when it is theoreti-

cally motivated and rigorously ground-truthed. I

close with an outlook on four exciting new re-

search frontiers that will define remote sensing

ecology in the upcoming decade.

Key words: remote sensing; satellite; geospatial;

imagery; airborne; drone.

INTRODUCTION

Ecosystem dynamics emerge from interactions be-

tween biotic agents and their spatially and tempo-

rally heterogenous abiotic environments (Turner

2005). Understanding ecosystem dynamics is cru-

cial for the sustainable management of ecosystems,

especially in the face of global land use and climate

change (Turner 2010; Trumbore and others 2015;

Lindenmayer and others 2016). In this regard, it is

of particular importance to consider ecosystem

dynamics at multiple spatial and temporal scales, as

well as across scales (Levin 1992; Peters and others

2007; Raffa and others 2008). Selecting the

appropriate scale of analysis, however, is often

challenging, especially when considering processes

acting over large spatial and long temporal extents

(Druckenbrod and others 2019). Remote sensing

fills an important niche in this regard by offering

spatially explicit information on ecological pro-

cesses over large spatial (meters to thousands of

kilometers) and long temporal (days to decades)

extents (Asner 2013; Figure 1).

Even though many ecologists have grown con-

fident integrating remote sensing data into their

research, technological development—historically

driven by physicists and computer scientists—con-

tinues to push the frontier forward, often with
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minimal input from ecologists themselves. There

hence is still a significant lag between the devel-

opment of novel remote sensing techniques and

their applications in ecological research. Closing

this gap has the potential to significantly improve

ecological analysis across spatial and temporal

scales, yet requires further disciplinary coordina-

tion, including encouraging ecologists to pursue

specialized training in remote sensing and vice

versa (Bernd and others 2017; Wegmann 2017).

Here, I review the use of remote sensing for

studying ecosystem dynamics for non-remote

sensing scientists. After a conceptual background, I

briefly summarize the emergence of remote sensing

as a major tool for understanding ecosystem

dynamics, review novel applications of remote

sensing for studying ecosystem dynamics, discuss

opportunities and challenges for emerging open

data and software policies, and call for acknowl-

edging the importance of uncertainty analysis and

ground-truthing.

CONCEPTUAL BACKGROUND

For our purposes, remote sensing refers to any tech-

nique that uses a sensor installed on a vehicle like a

satellite, plane, or car, to acquire information at a

distance by detecting radiation that has been re-

flected or emitted from a surface. Analyzing the

characteristics of this radiation can reveal infor-

mation about the surface, such as its color and al-

bedo, whether it is cold or warm, dry or wet,

vegetated or bare, and so on. Depending on the

sensor system, the spatial resolution can range from

very high (< 1 m) to high (1–10 m), moderate

(10–100 m), or coarse (> 100 m). For satellite-

based systems, however, there is typically a trade-

off between spatial and temporal resolution (the

time between two observations of the same loca-

tion on Earth; see also Figure 1). Although satel-

lite-based sensors with coarse spatial resolution

offer daily imagery from the same location, tem-

poral observation frequency decreases rapidly

when using moderate or high spatial resolution

sensors. Unmanned systems offer a possible

exception to this rule, since flights can be repeated

frequently in theory (see Figure 1), even though

this might be challenging in practice. Remote

sensing thus offers data at variable spatial and

temporal resolutions, which makes it an interesting

method for investigating ecological processes across

spatial and temporal scales. Yet it also requires re-

searchers to pick the correct resolution for their

scale of interest—a choice that can substantially

influence results, and which thus needs to be taken

with caution.

Besides the variable spatial and temporal reso-

lutions of remote sensing systems, there are also

differences in what remote sensing sensors mea-

sure. Passive sensors (for example, classical aerial

imagery or optical satellites such as Landsat or

Sentinel-2) use the incoming solar irradiance as

source of energy. The incoming solar irradiance is

either reflected by the Earth’s surface and atmo-

sphere, or absorbed and re-emitted. Passive sensors

measure the reflected or emitted solar irradiance.

Active sensors, in turn, have their own source of

radiation and thus are independent of sunlight

(active sensors include, for example, radar or Light

Detection and Ranging [LiDAR]). Most passive

sensors are sensitive to the optical part of the

electromagnetic spectrum (optical remote sensing),

that is the part visible to the human eye (approx.

400–700 nm in wavelength; Figure 1, upper right

panel) and the infrared region (approx. 700–

2500 nm in wavelength; Figure 1, upper right pa-

nel). Optical sensors thereby integrate over wave-

length bands, and the number of spectral bands

determines the spectral resolution of a sensor.

Spectral resolutions can range from red–green–blue

(RGB), to multispectral (RGB plus several bands in

the near infrared) and hyperspectral sensors

(> 100 narrow wavelength bands over the full

optical range). Besides passive optical sensors, there

are also passive thermal sensors that measure the

emitted, longer-wave radiation of objects (approx.

10,000–13,000 nm in wavelength, see Figure 1).

Active sensors often use the non-optical, micro-

wave part of the electromagnetic spectrum (radar

remote sensing; see Figure 1), or coherent optical

light sources (laser remote sensing, see Figure 1).

Depending on the system (passive or active) and

the spectral region a sensor is sensitive to, it can

detect different ecological processes (for example,

photosynthesis, water content, vegetation struc-

tures). Similar to the spatial and temporal resolu-

tion, researchers also need to decide between active

and passive remote sensing systems and choose an

appropriate spectral resolution for their process of

interest.

A Brief History of Remote Sensing
for Studying Ecosystem Dynamics

Remote sensing has a long history in the study of

ecosystems. The first studies using remote sensing

were based on airborne (infrared) imagery that

allowed for a birds-eye view of ecosystems (Estes

1966; Bowden and Brooner 1970), as well as for
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the stereographic analysis of vegetation properties

(Spencer 1979). Repeating aerial image analysis

over time revealed novel insights into how

ecosystems change (Mast and others 1997), insights

that were impossible to generate with field data

alone. Yet, aerial imagery was limited in spatial

extent as it was costly to acquire. On 23 July 1972,

the launch of the first multispectral scanner system

(MSS) on board Landsat 1 (formerly Earth Re-

sources Technology Satellite) ushered a new era for

scientists’ study of Earth. With its four spectral

bands covering the optical part of the electromag-

netic spectrum (green, red and two bands in the

near-infrared for vegetation analysis), a spatial

resolution of approximately 80 m, a theoretical

temporal sampling of 18 days and a large spatial

extent (approximately 185 9 185 km2), Landsat 1

allowed scientists—for the first time—to study the

Earth’s geo- and bio-physical properties across the

globe on a regular basis without the need for

acquiring costly aerial imagery (Pecora 1967). The

use of satellite-based remote sensing has allowed

scientists to reference their typically field-based

research in the context of the surrounding land-

scape, giving novel insights into how spatial pat-

terns determine ecological processes—and vice

versa.

Possibilities for using satellite-based remote

sensing to explore ecosystem dynamics have con-

tinued to expand at an impressive pace: Landsat 1

was followed by eight satellites in the Landsat

family, with Landsat 9 launched in 2021. These

systems have improved spatial resolution to 30 m

and added additional spectral bands in the short

wave infrared, which are especially sensitive to leaf

water content (Ceccato and others 2001) and thus

helped to even better characterize vegetation status

and change (Cohen and Goward 2004; Schroeder

and others 2011). Landsat is now the longest-run-

ning civilian satellite mission, with an astonishing

50 years of data available, which is longer than the

majority of international Long Term Ecological

Research (LTER) sites. Other space agencies have

followed and launched similar operational pro-

grams (see Belward and Skøien 2015 for a review

on who launched what when), such as the

Copernicus program of the European Space Agency

(ESA) with its six Sentinel satellites. Two of the

Sentinels, namely Sentinel-2a and Sentinel-2b

(launched in 2015 and 2017, respectively), carry

optical sensors for the analysis of ecosystem

dynamics. Today, there is also a large variety of

commercial satellite programs offering manifold

data, especially in the high spatial resolution do-

main. Combining different satellite-based remote

sensing data into so-called virtual constellations

can further increase data densities beyond the

capacity of a single satellite (Wulder and others

2015), rendering modern satellite missions some of

the most important sources of environmental data

globally.

Figure 1. Spatial grain and temporal frequency of different remote sensing systems and their relation to examples of

ecosystem dynamics (left panel). Spectral ranges covered by common remote sensing systems (right upper panel).

Examples of optical satellite missions with sensors given in brackets grouped into high, moderate and coarse resolution

systems and their spatial extent (right lower panel).
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One of the first uses of satellite-based remote

sensing in ecosystem ecology was for mapping of

land cover and land cover change. For instance,

satellite data were already used to estimate forest

area, map forest types, and identify clear-cut har-

vests in the 1980s (Fleming and Hoffer 1979; Malila

1980; Nelson and others 1987; Jarvis 1994). Map-

ping land cover and land cover changes continued

to be the primary application of satellite-based re-

mote sensing in the early twenty-first century

(Cohen and others 2002; Hansen and DeFries 2004;

Yuan and others 2005; Knorn and others 2009).

The creation of categorial maps from remote sens-

ing data allowed scientists to characterize the spa-

tial patterns of land cover and land cover changes,

such as the proportion of specific land cover classes

in the surrounding of a plot (Radeloff and others

2000), as well as how these patterns change over

time—for instance, in response to disturbance (De

Cola 1989; Kuemmerle and others 2007; Coops and

others 2010). Using satellite data thus allowed the

consideration of the spatial domain in ecological

analyses (Riera and others 1998; Roberts and oth-

ers 2004), with strong connections to the fields of

landscape and ecosystem ecology (Lopez and Frohn

2017). In fact, many developments in landscape

ecology (for example, spatial pattern analysis)

would have been impossible without the categorial

maps created from remote sensing systems. Besides

the creation of categorial maps, remote sensing was

also increasingly used for estimating vegetation

properties from the spectral reflectance signal

(Knipling 1970; Tucker 1980), mainly through the

use of vegetation indices based on infrared spectral

reflectance properties. Well-known and widely

used indices include the Normalized Difference

Vegetation Index (NDVI; Tucker 1979) and the

Tasseled Cap transformation (Crist and Cicone

1984). The use of vegetation indices became even

more important with the rise of global ecosystem

models that required spatially explicit and dynamic

information on biophysical properties such as leaf

area or photosynthesis, which were approximated

using satellite-based vegetation indices (Running

and others 1986, 1989; Running and Nemani

1988).

Although remote sensing offered insights into

ecosystems at spatial scales yet hardly studied by

ecologists, analyses were often restricted to one or

two points in time, presenting an obvious mis-

match between the temporal scale of many eco-

logical processes and the frequency of

measurements (Kennedy and others 2014). The

major reason for this was cost: each individual

Landsat image, for instance, had to be purchased at

approximately $600 (Wulder and others 2012). In

2008, however, a new data policy introduced by

the United States Geological Survey (USGS) chan-

ged the way remote sensing was used in ecological

research forever: all archives maintained by the

USGS were made free to access, which allowed

scientists to rely not only on individual images, but

to analyze hundreds of thousands of images

simultaneously (Zhu and others 2019). Other space

agencies such as Europe’s ESA followed this

example, and by 2022, most of the national satellite

achieves are free to access (at least for scientific

purposes). In response to the opening of the ar-

chives, novel techniques making use of the rapidly

growing availability of satellite data have been

developed (Wulder and others 2012). Those new

developments allowed for characterizing both in-

tra- (that is, seasonal) and inter-annual dynamics

of ecosystems, such as spatiotemporal phenological

dynamics (Fisher and Mustard 2007), land use

dynamics in response to political changes (Griffiths

and others 2012, 2013a) and conflict (Baumann

and others 2015; Yin and others 2019), trends in

forest biomass (Powell and others 2014), and dis-

turbance dynamics in response to drought (Senf

and others 2020a).

Besides the increasing temporal dimension of-

fered by satellite-based remote sensing data, anal-

yses were also no longer restricted in the spatial

domain. Prior to the opening of the archives, many

study sites were delineated by the footprint of a

single Landsat image. After 2008, however, image

compositing techniques allowed for delineating

study sites based on ecological (and socio-ecologi-

cal) processes instead (Roy and others 2010; Grif-

fiths and others 2013b; White and others 2014).

The seemingly endless availability of remote sens-

ing data has thus greatly improved our under-

standing of ecosystem dynamics over broad spatial

and temporal extents, and resulted in a series of

large-scale data products capturing the dynamics of

diverse terrestrial ecosystems at national, conti-

nental, or even global scales. Such data products

include, for example, large-scale assessments of

forest disturbance dynamics (Hansen and others

2013; White and others 2017; Senf and Seidl

2021a), phenology (Bolton and others 2020;

Kowalski and others 2020), surface water changes

(Pekel and others 2016; Pickens and others 2020),

grasslands dynamics (Griffiths and others 2020;

Schwieder and others 2022), or urban develop-

ment (Liu and others 2020), all of which are now

captured at fine spatial grain (30 m or finer) and

high temporal resolution (annual or even intra-

annual). Given this rich history of using remote
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sensing in ecosystem ecology, is there anything

new to discover?

Recent Developments in Remote Sensing
for Studying Ecosystem Dynamics

Remote sensing has become an invaluable tool for

studying ecosystem dynamics and the borders be-

tween the pure technical development of remote

sensing approaches and ecosystem sciences have

blurred. With increasing literacy in programming

and geospatial methods, as well as increasing

computer resources, many ecologists have them-

selves turned into remote sensing specialists. There

is thus an emerging suite of methods developed

by—and for—ecologists. In the following, I high-

light seven recent developments in remote sensing

that can greatly enhance ecological research and

the understanding of global ecosystem dynamics in

the upcoming decade (see also Figure 2).

Spatially and Temporally Seamless Data and Data

Products

In the past, users of remote sensing data needed to

have in-depth knowledge of radiation physics and

image processing to make remote sensing data

useful for ecological analysis. Nowadays, data are

distributed as mostly analysis-ready data (ARD;

Dwyer and others 2018; see also Table 1 for

examples). ARD processing includes geometric

corrections (that is, matching ground locations to

pixels), radiometric corrections (that is, eliminating

atmospheric influence) and masking (that is,

identifying clouds and other artefacts), which is

mostly done through data providers. In other

words, these data can be downloaded and analyzed

by users right away. This reduces the need for

heavy and often complex data processing by the

user, which has certainly accelerated the adoption

of remote sensing techniques in ecology. In re-

sponse to the availability of standardized data

products, the analysis of remote sensing data has

moved away from thinking in images toward

thinking in terms of pixels. Methods such as image

compositing, for instance, take all available pixels

and create seamless, cloud-free artificial images

composed of millions of pixels coming from differ-

ent base images (Roy and others 2010; Griffiths and

others 2013b; White and others 2014; Frantz 2019;

Potapov and others 2020). That way, analysis over

large areas becomes possible, even though indi-

vidual images might be useless due to cloud cover.

Likewise, temporal consistency has improved by

standardized adjustment and correction of images,

allowing users the ability to track changes in the

Earth’s surface properties over time (Banskota and

others 2014). The ever-increasing number of

observations facilitated analysis over longer peri-

ods, as well as increasing temporal resolution: from

decadal to annual to sub-annual analyses, for in-

stance, creating consistent seasonal or monthly

composite images (Flood 2013; Griffiths and others

2020). Finally, many remote sensing agencies re-

cently added a series of higher-level data products

that are directly applicable to ecological analysis

and modeling. This movement has started with the

moderate-resolution imaging spectroradiometer

(MODIS) program, which offers standardized

products featuring biogeophysical variables like leaf

area, land surface temperature or gross and net

primary productivity (Savtchenko and others

2004). Other satellite programs, such as Landsat by

the USA and Copernicus by the ESA, have followed

this example and now provide standardized prod-

Figure 2. Examples of a LiDAR point cloud for a 500 m2 forest research plot (left plot) with individual trees segmented to

derive tree based structural metrics (for example, height; middle plot). The data were collected from a helicopter in 2021

and processed using the open-source lidR package (Roussel and others 2020). The right plot shows a canopy height model

derived from the point cloud at a spatial grain of 1 m2.

Seeing the System from Above
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ucts for monitoring ecosystem dynamics. For

example, based on Landsat ARD, the USGS offers

standardized products for the analysis of surface

water extent, burned area and snow cover fractions

(Landsat Sciences Products). Likewise, Copernicus

by the European Space Agency offers a series of

high-resolution layers, including annual maps of

land cover (that is, impervious, forest, grasslands,

water, and small woody features), as well as annual

maps of key biophysical variables (that is, vegeta-

tion phenology and snow/ice cover). Such data

products offer a clear advantage: users can analyze

the spatial and temporal dynamics of ecosystems

(for example, changes in area burnt or snow cover

over time) without performing intensive remote

sensing analyses—although accuracy and spatial

and temporal consistency might be lower compared

to tailor-made data solutions (Congedo and others

2016; Palomino and Kelly 2019).

Upscaling of Ecological Processes

Ecological research has classically focused on

measuring ecological processes at relatively small

scales, like single plots. The role of spatial variation

in these processes was studied by experimental

design, for example, over elevation gradients. A

recent development in the intersection of remote

sensing and field ecology is using remote sensing to

upscale ecological processes measured at the plot-

scale to the landscape-scale. For example, the dis-

tribution of biomass within a forest can be modeled

from satellite data to understand the landscape-le-

vel variability of biomass and how it is related to

climate and topography (Zald and others 2016).

Phenological indicators derived from cameras can

be linked to satellite time series to better under-

stand how phenological dynamics vary at the

landscape scale (Fisher and Mustard 2007; Melaas

and others 2016). Likewise, camera trap data can

be combined with remote sensing data to better

understand global biodiversity patterns (Steenweg

and others 2017). Although the general idea of

upscaling local processes to the landscape scale by

means of geospatial technologies is not novel by

itself (Masek and others 2015), the fine spatial

grain and high temporal frequency of newer

satellite data offers novel applications. For example,

although classical approaches to mapping habitat

suitability made use of static predictors—such as

topography, land cover and climate—more recent

approaches use dynamic predictors derived from

remote sensing (for example, phenology, snow

cover) that are much closer to the actual ecological

process one wants to model (Coops and Wulder

2019; Oeser and others 2020). This makes it pos-

sible to directly model the dynamics of the process,

for example, changes in species occurrence in re-

sponse to disturbance (Rickbeil and others 2016;

Oeser and others 2021). Remote sensing thus will

improve our understanding of scaling and drivers

of change in ecological systems, a central point of

interest in the study of ecosystem dynamics.

LiDAR

Optical remote sensing is largely limited to the

study of the vegetation overstory since sunlight

does not penetrate deeply into vegetation. Most

passive data thus cannot be used for characterizing

vegetation structures. In recent decades, however,

a new type of active sensor has emerged as valuable

tool for taking a close look at vegetation structures:

light detection and ranging (LiDAR). LiDAR has a

long-standing tradition in resource management

and forestry (Lefsky and others 2002), but its use

has only recently intensified in ecosystem and

landscape ecology (Valbuena and others 2020;

Lepczyk and others 2021). LiDAR sensors use laser

beams to measure the time it takes for an emitted

beam to travel to the ground and back, from which

the elevation above ground can be derived if exact

aerial flight coordinates are known (see Lim and

others 2003 for a detailed description on the tech-

nology behind LiDAR data). From the laser beams

returned, a three-dimensional ‘point cloud’ can be

created that shows the distribution of laser returns

(see Figure 2). Because of the coherent light source

of lasers systems, laser beams can penetrate into

vegetation canopies, but will be reflected eventu-

ally by both stems and leaves. The distribution of

laser returns thus correlates with the horizontal

and vertical distribution of vegetation and indi-

vidual trees or objects can be segmented and

analysed (for example, the height and dimension of

individual trees, see Figure 2). From the point

cloud, the highest returns can be identified and

converted into a regular grid of grid-cells indicating

the elevation of the vegetation canopy (the so-

called surface model). Some of the laser beams will

also reach the ground, from which gridded fine-

scaled terrain models can be derived. By subtract-

ing the terrain model from the surface model one

can calculate the vegetation height above ground at

fine spatial resolution, called canopy height model

(see Figure 2). The ability to describe the vertical

and horizontal distribution of vegetation certainly

drives the high interest in LiDAR data among

ecologists, especially as software for processing Li-
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DAR data is nowadays freely available (Roussel and

others 2020).

LiDAR has been used recently to better under-

stand forest structures and their impacts on other

ecological processes. For example, recent studies

used airborne LiDAR data to quantify gap size dis-

tributions in forests (Silva and others 2019), dis-

turbance impacts on forest structures (Senf and

others 2020b), surface and canopy fuels (Braziunas

and others 2022), and to map habitat and biodi-

versity, which both are closely related to structural

variability (Davies and Asner 2014). Also, field-

based LiDAR tools (that is, terrestrial laser scan-

ning) have gained ample attention recently, as they

allow for developing highly detailed three-dimen-

sional models of vegetation structure (Calders and

others 2020). LiDAR data thus allow to move from

a dominating two-dimensional toward a three-di-

mensional view on landscapes and ecosystem pro-

cesses (Lepczyk and others 2021). Multiple LiDAR

acquisitions (both aerial and terrestrial) further al-

low for a detailed assessment of changing vegeta-

tion structures. For example, by analyzing repeated

LiDAR datasets, Leitold and others (2021) quanti-

fied forest canopy changes and recovery following a

hurricane at the individual tree level, and Zhao and

others (2018) estimated tree growth, biomass

dynamics and carbon fluxes of individual trees.

Despite the power of aerial LiDAR for under-

standing the spatial (and spatiotemporal) dynamics

of ecosystems, however, it remains a costly tool

because of the high operation cost of platforms

such as aircraft or helicopters, especially across

large spatial extents. Analysis is thus often re-

stricted to areas of existing data (for example, using

airborne LiDAR data from national surveying pro-

grams or the National Ecological Observatory Net-

work [NEON]; Ordway and others 2021) or to

small areas and single acquisitions. This gap might

be filled by novel spaceborne LiDAR data from the

Global Ecosystem Dynamics Investigation (GEDI)

system (Dubayah and others 2020), which provides

25-m-diameter ‘LiDAR-plots’ on a regular grid of

60 9 600 m and thus allows for quantifying

ecosystem structure over large spatial extents

(Schneider and others 2020). By fusion of GEDI

with optical satellite data, global maps of key veg-

etation features can be created in the future, for

example, global tree height (Potapov and others

2021).

Radar

Radar is another type of active data collection,

making use of system-emitted microwaves to

determine the range, angle and physical properties

of objects on the Earth’s surface (see Figure 3 for an

example). In contrast to LiDAR, radar systems used

for remote sensing are classically space-borne,

allowing for easy global data acquisition. Moreover,

as an active sensor, radar is independent of sunlight

as an irradiation source and thus can be operated

also at night and in cloudy conditions. Although

radar techniques are not novel per se and have

been applied historically for land-surveying (that is,

creation of digital elevation models) as well as for

land cover (change) mapping (that is, early work

Figure 3. Example of a seamless radar data set derived

over the European Alps from Sentinel-1. Red/green/blue

colors show different polarizations of the radar signal

averaged over the summer of 2021. The data were

derived using: https://kristofvantricht.users.earthengine.

app/view/sarworld.

Figure 4. Example of an airborne hyperspectral data set

acquired using the HySpex sensor with 416 narrow

spectral bands in the range from � 400 to � 2500 nm.

The upper image shows the reflectance in red/green/

blue, whereas the lower image shows the first three

principal components derived from all 416 bands,

providing detailed insights into the variable land cover

types.

C. Senf

https://kristofvantricht.users.earthengine.app/view/sarworld
https://kristofvantricht.users.earthengine.app/view/sarworld


on detection of deforestation in the Amazon;

Saatchi and others 1997), radar data have begun to

play an increasingly prominent role in ecosystem

dynamics research due to the recent emergence of

open-access space-borne radar systems like the

ESA’s Sentinel-1 satellite, the high spatial resolu-

tion of modern radar systems (< 10 m), and ra-

dar’s ability to penetrate cloud cover. Recent

studies have tested the ability of radar to monitor

vegetation phenology (Vreugdenhil and others

2018), forest disturbances caused by bark beetles

and fires (Tanase and others 2018; Belenguer-Plo-

mer and others 2019), and forest clearing in the

tropics, where the ability to see through clouds has

greatly enhanced monitoring capabilities (Reiche

and others 2016). Even more than LiDAR, radar

can penetrate the canopy and thus estimate vege-

tation structure (Saatchi and others 2011). Early

studies using radar data indicate it may be as useful

as LiDAR for mapping structure-dependent

ecosystem features, including biodiversity (Bae and

others 2019). Although more research is needed,

radar holds great promise for analyzing vegetation

structures through space and time—and indepen-

dent of cloud cover. Radar has also been applied for

studying wetlands (Henderson and Lewis 2008; see

also Figure 4) and urban areas (Frantz and others

2021; see also Figure 4), and its usefulness thus

extends beyond the more classical applications in

forest ecosystems. Finally, radar is well suited to

measure biomass (Yu and Saatchi 2016), which

makes it a useful tool for monitoring biomass

dynamics over time. Upcoming radar systems are

thus specifically designed for monitoring biomass

dynamics globally (Le Toan and others 2011).

Hyperspectral Data

Hyperspectral remote sensing, also known as image

spectroscopy, differs from classical optical multi-

spectral approaches in the number and width of

spectral bands recorded by the sensor. Although

multispectral sensors measure the optical part of

the electromagnetic spectrum in a few (< 10) rel-

atively wide bands (approx. 40–100 nm in width),

hyperspectral sensors measure the optical part of

the electromagnetic spectrum in many (> 50 but

often many more), regularly spaced narrow bands

of approximately 5 to 10 nm in width. Hyperspec-

tral data hence allows for sampling the full spectral

reflectance properties in high detail, which can be

used to quantify various biological, geological and

chemical properties of the Earth’s surface (Goetz

2009; see also Figure 4). For example, certain

wavelength regions are strongly linked to physio-

logical traits, for example, leaf pigments such as

chlorophyll (Blackburn 2007), and hyperspectral

data can hence ben used to estimate their spatial

and temporal variability (Carlson and others 2007;

Townsend and others 2008; Asner and others 2012;

Schneider and others 2017). Likewise, canopy

water content can be well characterized using

hyperspectral data, thus allowing for advanced

monitoring of vegetation response to drought (As-

ner and others 2016). Although hyperspectral data

enable a high level of analytical detail, handling

this high-dimensional data often requires advanced

processing tools (Bioucas-Dias and others 2013).

Hyperspectral sensors have been used mostly

onboard aircrafts, because it is technically chal-

lenging to measure radiation in narrow bands over

long distances (that is, a typical satellite orbit being

around 800 km above the Earth’s surface). That

said, with increasing technological development

there are several spaceborne hyperspectral sensors

available nowadays (for example, Hyperion on

board EO-1 or the Compact High-Resolution

Imaging Spectrometer on board PROBA-1), with

the newest addition being Italy’s PRISM mission

(launched in 2019; Loizzo and others 2018) and

Germany’s EnMAP mission (launched in 2022,

Guanter and others 2015). Those space-borne

hyperspectral sensors will help better our under-

standing of the global spatial and temporal vari-

ability in biogeochemical properties of ecosystems,

but their full potential has yet to be explored. It is

interesting to note that classical multispectral sen-

sor systems are also increasingly using narrow

spectral bands to measure specific vegetation

properties. The multispectral instruments on board

Sentinel-2a and Sentinel-2b, for instance, have

three narrow bands in the red-edge region as well

as a narrow near infrared band, allowing for a more

detailed characterization of vegetation properties

(Delegido and others 2011). It is thus likely that

future satellite sensor systems will bridge classical

multispectral and hyperspectral remote sensing.

Unmanned Aircraft Systems

With falling prices and an increasing range of

vendors, unmanned aircraft systems (UASs) have

become reality in research (Marris 2013). UAS

consist of an unmanned aerial vehicle carrying a

sensor to survey small areas from a relatively low

altitude compared to manned aerial vehicles or

satellites. Typically, UAS are used to survey areas

on the order of several hectares, but might be able

to cover several thousand. Sensors on UAS range

from simple RGB-cameras or multispectral sensors
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to LiDAR, hyperspectral, and thermal sensors. The

advantages of UAS are, on the one hand, the ability

to record remote sensing data wherever and

whenever needed and, on the other, to get high-

quality data that is often much finer in spatial grain

than data collected from aircraft or satellites. This

fine-grained data enable, for instance, the recon-

struction of detailed 3D surfaces using structure-

from-motion techniques (Pell and others 2022),

offering a new scale in remote sensing analysis

(< 10 cm) that can be used to study fine-scale

processes such as changes in the dimensions of

individual shrubs (Cunliffe and others 2016). This

makes UAS a valuable tool for creating spatially

explicit data on the individual plant or animal level

that can be scaled across landscapes. For example,

Zhang and others (2016) analyzed UAS-based ca-

nopy height models to explain fine-scale spatial

variation in biodiversity and gap-dynamics in a 20-

ha research plot. Stovall and others (2019) used

UAS to survey an area of 40,000 ha to get at indi-

vidual tree positions and heights, which allowed

them to identify a consistent relationship between

tree height and drought tolerance—insights that

would have been challenging or even impossible to

test using field data alone. Likewise, Schenone and

others 2022 used UAS data to characterize ecosys-

tem functions in an intertidal system at scales rel-

evant to management and conservation without

the need for intensive field-data collection. Using

UAS can also substantially increase temporal

observation frequencies by flying the same area

regularly throughout the year (Assmann and oth-

ers 2020). UAS can thus complement field-based

surveys by increasing temporal frequency, or even

allowing observations in terrain that is challenging

to traverse or restricted to access (Paneque-Gálvez

and others 2014; Duffy and others 2018). That

being said, there are still many restrictions for fly-

ing UAS (e.g., near airports) and acceptance of UAS

can be low due to environmental burden (e.g.,

noise), privacy or misuse concerns, or conceptual

associations with military UAS (Clothier and others

2015).

Artificial Intelligence

The increasing availability of remote sensing data

puts a burden on traditional analysis methods,

which often are designed to only handle one or two

of the available dimensions (that is, spatial, tem-

poral, spectral). However, novel insights might be

revealed by analyzing all dimensions simultane-

ously, for example, by tracking spatial and spectral

patterns over time. This might become even more

important with the increasing availability of high-

and very high-resolution imagery, which allows

researchers to take a deeper look at the spatial

patterns of individual plants or animals. In this

context, the field of remote sensing has recently

seen increased use of artificial intelligence meth-

ods, and more specifically from deep learning

(Kattenborn and others 2021). An advantage of

these approaches is their ability to independently

learn how to transform the data into useful pre-

dictors—a step that traditionally has required a lot

of experience and system knowledge (or good

luck). Moreover, deep learning allows for not only

classification on a per-pixel basis, but also identi-

fying spatial objects in an image (Brodrick and

others 2019). Identifying spatial objects that are

composed of several pixels, instead of doing anal-

ysis per pixel and ignoring spatial pattern, is an

important task in remote sensing (object-based re-

mote sensing; see Blaschke 2010 for a review on

the topic).

Recognizing spatial objects from remote sensing

data can be of particular interest in the study of

ecosystem dynamics, which is fundamentally con-

cerned with quantifying spatial patterns like dis-

turbance patches or tropical forest canopy gaps. In

this regard, deep neural networks have recently

been used to identify all trees outside forests in the

West African Sahara and Sahel (Brandt and others

2020) or fir trees affected by bark beetles (Safonova

and others 2019). Applying such techniques over

time will allow researchers to better estimate spa-

tiotemporal processes, such as bark beetle outbreak

progression (Rammer and Seidl 2019) or land use

dynamics (de Bem and others 2020). Artificial

intelligence can also help in analyzing imagery ta-

ken from neither satellites nor airplanes, but from

close-range remote sensing systems such as camera

traps (Norouzzadeh and others 2018). The field of

artificial intelligence is obviously very dynamic,

and its ultimate contribution to the remote sensing

of ecosystem dynamics remains to be seen. Yet, it is

already clear that artificial intelligence will likely

help to unravel the multi-scale processes driving

ecosystem dynamics in all their dimensions.

Opening Remote Sensing Data
to the World

The recent years have seen a strong move of the

remote sensing community toward free data, open-

source software and cloud-bases services, which

has amplified the use of remote sensing beyond the

remote sensing community. In the past, using re-

mote sensing data has been restricted to remote
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sensing specialists, mostly due to the historical cost

of data acquisitions, expensive proprietary software

and the often-high computational costs involved in

processing remote sensing data. All this, however,

has changed profoundly in the past decade (Kwok

2018). Many remote sensing data sources are now

free to access (Zhu and others 2019) and one might

argue that there are more data available than can

be analyzed. Many remote sensing scientists have

moved from using proprietary to open-source

software (Kwok 2018), such as R (Goslee 2011;

Tuck and others 2014; Ranghetti and others 2020;

Atkins and others 2022), Python (Canty 2014),

QGIS (Grizonnet and others 2017), the EnMAP-

Box (Van der Linden and others 2015), or the

Sentinel Toolboxes (https://sentinel.esa.int/web/se

ntinel/toolboxes). Those open-source tools should

also be the preferred choice when teaching remote

sensing to ecology students, as it allows them to

replicate analyses on their own computers without

buying expensive software licenses. Also, practices

like code-sharing and publishing algorithms

alongside scientific papers are becoming increas-

ingly commonplace, and further uptake can be

encouraged by, for example, journals requiring full

access to all code needed for reproducing remote

sensing analyses (Balz and Rocca 2020) or by

badging systems that transparently mark code as

open-access (Frery and others 2020).

With respect to impact beyond the remote sens-

ing community, the biggest change of the past

decade is certainly centered on computational

costs. Although it was common in the past for re-

mote sensing labs to host a large server infrastruc-

ture and massive storage space for dealing with

remote sensing data, most analyses have now

moved to cloud-based services (De Luca and others

2017; Gorelick and others 2017). Instead of

downloading the data and processing them in-

house, it is more common today to upload the code

to the data, theoretically removing all computa-

tional limitations. This transition toward cloud-

based processing of remote sensing data has trig-

gered a new age of large-scale analyses, with sev-

eral global data products being published recently

(Hansen and others 2013; Pekel and others 2016;

Liu and others 2020). Also, more and more re-

search-grade software has now been professionally

translated into cloud-based environments (for

example, Kennedy and others 2018; Hamunyela

and others 2020), allowing for the application of

state-of-the-art algorithms by scientists who are not

specialized in remote sensing. Local authorities or

non-governmental organizations can now rapidly

assess land use changes by running analyses in the

cloud, needing—in theory—nothing more than a

laptop and an internet connection (Lee and others

2016).

Despite the increasing access to remote sensing

data, software and computation power, many glo-

bal inequalities remain. In the early years of the

Landsat mission, for instance, some regions were

prioritized over others due to limited download

capacities, resulting in far less data over, for

example, the African continent compared to North

America or Europe (Wulder and others 2016).

Inequalities are further amplified by high costs of

proprietary remote sensing systems (that is, com-

mercial satellite data, airborne campaigns) and

unfair data sharing agreements (that is, data ac-

quired within a country are not shared with re-

searchers from this country). There hence is room

for improving access to remote sensing data and

analyses globally, for example, through making

image archives open access (such as a recent pro-

gram by the Norwegian International Climate and

Forest Initiative granting free access to high-reso-

lution satellite data for approximately 45 million

km2 of tropical forests), or by developing targeted

educational programs. Investing into an open-

source culture will help making remote sensing

even more important for studying ecosystem

dynamics globally.

The Need for Better Quantification
of Uncertainty in Remote Sensing
Analyses

Despite their power, remote sensing data and

associated products are always subject to uncer-

tainty, bias, and error (Foody and Atkinson 2003).

Remote sensing is thus not an exact science, and its

data and outputs must be taken with a grain of salt.

Uncertainties, for example, might arise from geo-

metric inaccuracies or poor atmospheric correction

due to missing atmospheric data or complex

topography. Biases can stem from inconsistent data

coverage across space and time, variable cloud

cover, or sensor degradation. Errors might result

from image artefacts, undetected clouds, or simply

from the fact that no remote sensing algorithm will

ever yield 100 percent accuracy. It is vital that re-

searchers using remote sensing data understand

these limitations; failure to do so can lead to

demonstrably false scientific conclusions (Palahı́

and others 2021). Embracing potential uncertain-

ties, biases, and errors is particularly important

when using off-the-shelf remote sensing products,

where researchers might not be aware of all limi-

tations and drawbacks. For instance, categorical
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maps created from remote sensing data will always

have errors that will propagate into subsequent

analyses (Langford and others 2006). Those errors

can be—and should be—quantified using standard

protocols (Olofsson and others 2013, 2014). Esti-

mates derived from such maps (for example, forest

area) should thus also always be accompanied by

measures of uncertainty. The same applies for

continuous variables derived from remote sensing,

such as biomass maps (Ploton and others 2020).

This becomes especially important when tracking

estimates over time: is a change in remotely sensed

forest area really caused by a decline in forests or is

it just due to statistical artefact (Olofsson and others

2013, 2014; Ives and others 2021)?

The topic of uncertainties quantification becomes

even more important with the increasing avail-

ability of remote sensing data and the ability to

perform large-scale remote sensing analysis in just

a few clicks. The easy access to remote sensing data

and analyses tools might allure scientists into

ignoring the many sources of uncertainties dis-

cussed above. There is hence a need to place greater

emphasis on remote sensing basics in ecology cur-

ricula, and especially sources of uncertainty in re-

motely sensed data and analyses. Moreover, each

researcher should critically assess their choice of

remote sensing data and tools and always check

which analyses of uncertainty need to be done (see

Table 2). If this is not done, the availability of open-

source, easy-to-access remote sensing data and

tools might otherwise undermine scientific pro-

gress.

Seeing the System from Above
and Below: The Importance of Ground
Referencing and System Knowledge

Ground referencing describes the process of com-

paring a remote sensing-based measurement to the

actual conditions on ground. It is an important step

in calibrating and validating remote sensing-based

models. At the same time, the power of remote

sensing lies with its ability to cover large spatial and

long temporal extents. Covering the same extents

with field data for ground referencing is often not

feasible or even possible: when doing historical

analyses, for instance, the only option for ground

referencing is to use secondary data. However,

many secondary data (for example, field data, for-

est inventories) were collected without planning

for later applications in remote sensing studies. This

makes the integration of field and remote sensing

data challenging. For example, combining remote

sensing and field data requires exact geolocations of

field plots—ideally recorded with a high-precision

GPS device—and exact definitions of plot areas

(McRoberts 2010; Frazer and others 2011). Many

field data, however, lack those basic requirements

for matching plots to pixels. Similarly, field plots

are often smaller than the pixel size of moderate-

resolution sensors, leading to a noisy relationship

between field-based measurements and the spec-

tral signal recorded at the pixel level (Gonzalez and

others 2010; Zald and others 2014). Facilitating the

integration of remote sensing data and field-based

measurements thus requires improved under-

standing of remote sensing techniques from field

ecologists, who must design their campaigns to

facilitate seamless integration with remote sensing

Table 2. Thinking About Your System Before Diving into Remote Sensing Analysis

Deciding for the correct remote sensing data and tools can be overwhelming, especially given the sharp rise in free and

easy-to-access data and tools. Every scientist interested in remote sensing should answer the following questions before

diving into their analysis:

1. What is the spatial and temporal extent of my study system, for example, stand, landscape, or global; a week, year, or

decade?

2. What data source will best quantify the process I am interested in, for example, optical multispectral or hyperspectral

data, LiDAR data, radar data?

3.What spatial grain and temporal frequency do I need to identify the process I am interested in, for example,< 1 m, 1–10

m, 10–100 m, or > 100 m; seasonal, inter-annual, decadal?

4.What method do I need to identify the process I am interested in, for example, pixel- vs. object-based, complex methods

to deal with high-dimensional data, statistical methods to estimate a trend?

5.What sources of uncertainties do I need to consider and how can I quantify those, for example, classification uncer-

tainties, changes in sensor systems over time, different data densities between regions?

Answering those five questions will help scientists choosing the correct data for analyzing their system and process of

interest, as well as force them to think about potential sources of uncertainties.
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data. This might be achieved by using UAS or other

high-spatial resolution data, allowing field crews to

obtain an instant view from above and thus the

possibility to adapt plot designs to better suit sub-

sequent remote sensing analyses (Marris 2013). An

example of using UAS for aiding field work might

involve labeling each tree based on whether it is

visible from above (and thus potentially detectible

from space) or not. Establishing the interoperability

of ground-based measurements with remote sens-

ing data as requirements in field protocols might

thus enable long-term insights into ecosystem

dynamics far beyond the individual datasets.

Although remote sensing allows scientist to see

their system from above, it is important to also

appreciate the view from below. Through the lens

of a remote sensing scientist, landscapes are com-

posed of pixels, sometimes hiding the complexity of

the real world, especially at scales smaller than the

spatial grain of the data. It is thus important for

scientists working mainly with remote sensing data

to also go to the field and to appreciate the com-

plexity of ecological systems. A thorough under-

standing of the study system will help scientists to

make more informed decision on what remote

sensing data and analyses to choose, as well as it

will help in better understanding the limitations of

remote sensing approaches. The choice of remote

sensing data and analyses should thus always be

theoretically motivated (what data/analysis do I

need to answer a question; see Table 2), and not by

technological availability (what question can I an-

swer with this data/analyses). Following this prin-

cipal will help in designing new remote sensing

approaches that truly help with studying ecosystem

dynamics.

What is Next?

Recent advances in remote sensing have opened

doors to exciting new research in ecosystem ecol-

ogy. I see four especially promising avenues for

progress in the coming decade: (1) Bridging be-

tween local and global scales, (2) better quantifi-

cation and understanding of ecosystem

heterogeneity and resilience, (3) a more nuanced

understanding of how humans shape ecosystems

and vice versa, and (4) new opportunities for cali-

brating and validating spatially explicit models of

ecosystem dynamics.

Using remote sensing to bridge between local and

global scales will allow researchers to test and de-

velop ecological theories beyond local scales and

hence beyond individual study systems. For

example, by conducting consistent, standardized

analyses of remotely sensed data from different

parts of the world, researchers can determine

whether similar processes have similar effects in

different forest landscapes (Sommerfeld and others

2018; Seidl and others 2020) or lake systems (Rose

and others 2017; Ho and others 2019). Remote

sensing can thus contribute to developing more

robust and generalizable ecological theories, which

is especially important for studying global change

impacts on ecosystems (Heffernan and others

2014). Doing so requires increasing collaboration

between—and understanding among—ecosystem

ecologists and remote sensing scientists. An exam-

ple of this cross-pollination is the substantial con-

tribution remote sensing has brought to the explicit

mapping of microclimates in recent years (Zell-

weger and others 2019), which substantially im-

proved subsequent predictive models (Lembrechts

and others 2019).

Remote sensing will allow for a better quantifi-

cation of ecosystem heterogeneity (that is, spatial

and temporal variation in ecological processes) and

thus for a substantially improved understanding of

ecosystem resilience. For example, tracking vege-

tation indices consistently through space and time

allows for the detection of early-warning signals,

such as increasing temporal autocorrelation, that

might indicate an abrupt change of ecosystem

states (Verbesselt and others 2016). In this regard,

the ability of remote sensing to track spatial pat-

terns through time (for example, forest fragmen-

tation (Taubert and others 2018) or disturbance

patch composition and configuration (Senf and

Seidl 2021b)) opens up new directions in quanti-

fying ecosystem resilience beyond traditional

measures (Scheffer and others 2015; Allen and

others 2016; Cumming and others 2017). Remote

sensing can also help with quantifying ecosystem

resilience directly, for example, through mapping

the rate and speed of recovery after disturbances

(Cole and others 2014; White and others 2017;

Senf and others 2019; Leitold and others 2022; Senf

and Seidl 2022). With the ever-increasing length of

remote sensing time series (now more than four

decades), remote sensing will thus help to also

identifying critical changes in ecosystem resilience

directly through monitoring recovery rates over

time (Ingrisch and Bahn 2018).

Finally, ecosystem ecology has seen a rise in

process-based landscape models in recent years.

Calibration and validation of those models needs

spatially explicit data and a better understanding of

landscape scale ecological processes. Remote sens-

ing can help in this respect, calling for a stronger

collaboration between remote sensing scientists
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and ecosystem modelers. With those exciting re-

search directions ahead and a better education of

ecologists in remote sensing data and analyses, one

might even think about remote sensing ecology

becoming an essential subfield of ecosystem ecol-

ogy.
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Teubner I, Rüdiger C, Strauss P. 2018. Sensitivity of Sentinel-1

backscatter to vegetation dynamics: an Austrian case study.

Remote Sensing 10:1396.

Wegmann M. 2017. Remote sensing training in ecology and

conservation—challenges and potential. Remote Sensing in

Ecology and Conservation 3:5–6.

White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW.

2017. A nationwide annual characterization of 25 years of

forest disturbance and recovery for Canada using Landsat time

series. Remote Sensing of Environment 194:303–321.

White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T,

Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L.

2014. Pixel-based image compositing for large-area dense time

series applications and science. Canadian Journal of Remote

Sensing 40:192–212.

Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflug-

macher D, Crevier Y. 2015. Virtual constellations for global

terrestrial monitoring. Remote Sensing of Environment

170:62–76.

Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE.

2012. Opening the archive: How free data has enabled the

science and monitoring promise of Landsat. Remote Sensing

of Environment 122:2–10.

Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS,

Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP. 2016.

The global Landsat archive: status, consolidation, and direc-

tion. Remote Sensing of Environment 185:271–283.

Yin H, Butsic V, Buchner J, Kuemmerle T, Prishchepov AV,

Baumann M, Bragina EV, Sayadyan H, Radeloff VC. 2019.

Agricultural abandonment and re-cultivation during and after

the Chechen Wars in the northern Caucasus. Global Envi-

ronmental Change 55:149–159.

Yu Y, Saatchi S. 2016. Sensitivity of L-Band SAR backscatter to

aboveground biomass of global forests. Remote Sensing 8:522.

Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME. 2005. Land

cover classification and change analysis of the Twin Cities

(Minnesota) Metropolitan Area by multitemporal Landsat

remote sensing. Remote Sensing of Environment 98:317–328.

Zald HS, Spies TA, Seidl R, Pabst RJ, Olsen KA, Steel EA. 2016.

Complex mountain terrain and disturbance history drive

variation in forest aboveground live carbon density in the

western Oregon Cascades, USA. Forest Ecology and Manage-

ment 366:193–207.

Zald HSJ, Ohmann JL, Roberts HM, Gregory MJ, Henderson EB,

McGaughey RJ, Braaten J. 2014. Influence of lidar, Landsat

imagery, disturbance history, plot location accuracy, and plot

size on accuracy of imputation maps of forest composition and

structure. Remote Sensing of Environment 143:26–38.

Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D. 2019.

Advances in microclimate ecology arising from remote sens-

ing. Trends in Ecology & Evolution 34:327–341.

Zhang J, Hu J, Lian J, Fan Z, Ouyang X, Ye W. 2016. Seeing the

forest from drones: testing the potential of lightweight drones

as a tool for long-term forest monitoring. Biological Conser-

vation 198:60–69.

Zhao K, Suarez JC, Garcia M, Hu T, Wang C, Londo A. 2018.

Utility of multitemporal lidar for forest and carbon monitor-

ing: tree growth, biomass dynamics, and carbon flux. Remote

Sensing of Environment 204:883–897.

Zhu Z, Wulder MA, Roy DP, Woodcock CE, Hansen MC,

Radeloff VC, Healey SP, Schaaf C, Hostert P, Strobl P, Pekel J-

F, Lymburner L, Pahlevan N, Scambos TA. 2019. Benefits of

the free and open Landsat data policy. Remote Sensing of

Environment 224:382–385.

Seeing the System from Above


	Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics
	Abstract
	Introduction
	Conceptual Background
	A Brief History of Remote Sensing for Studying Ecosystem Dynamics
	Recent Developments in Remote Sensing for Studying Ecosystem Dynamics
	Spatially and Temporally Seamless Data and Data Products
	Upscaling of Ecological Processes
	LiDAR
	Radar
	Hyperspectral Data
	Unmanned Aircraft Systems
	Artificial Intelligence

	Opening Remote Sensing Data to the World
	The Need for Better Quantification of Uncertainty in Remote Sensing Analyses
	Seeing the System from Above and Below: The Importance of Ground Referencing and System Knowledge
	What is Next?

	Funding
	References




