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Abstract
Inter-annual climate variability (hereafter climate variability) is increasing in many forested
regions due to climate change. This variability could have larger near-term impacts on forests than
decadal shifts in mean climate, but how forests will respond remains poorly resolved, particularly
at broad scales. Individual trees, and even forest communities, often have traits and ecological
strategies—the legacies of exposure to past variable conditions—that confer tolerance to
subsequent climate variability. However, whether local legacies also shape global forest responses is
unknown. Our objective was to assess how past and current climate variability influences global
forest productivity. We hypothesized that forests exposed to large climate variability in the past
would better tolerate current climate variability than forests for which past climate was relatively
stable. We used historical (1950–1969) and contemporary (2000–2019) temperature, precipitation,
and vapor pressure deficit (VPD) and the remotely sensed enhanced vegetation index (EVI) to
quantify how historical and contemporary climate variability relate to patterns of contemporary
forest productivity. Consistent with our hypothesis, forests exposed to large temperature variability
in the past were more tolerant of contemporary temperature variability than forests where past
temperatures were less variable. Forests were 19-fold times less sensitive to contemporary
temperature variability where historical inter-annual temperature variability was 0.66 ◦C
(two standard deviations) greater than the global average historical temperature variability. We also
found that larger increases in temperature variability between the two study periods often eroded
the tolerance conferred by the legacy effects of historical temperature variability. However, the
hypothesis was not supported in the case of precipitation and VPD variability, potentially due to
physiological tradeoffs inherent in how trees cope with dry conditions. We conclude that the
sensitivity of forest productivity to imminent increases in temperature variability may be partially
predictable based on the legacies of past conditions.
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1. Introduction

Forests are central to biogeochemical cycling (Sitch et al 2008), land–atmosphere interactions (Bonan 2008,
Swann et al 2010, Zemp et al 2017) and the provision of ecosystem services (Seidl et al 2016). Climate is a
powerful determinant of forest cover, structure, and functions (McDowell et al 2020, Anderegg et al 2020a).
Thus, human-caused multi-decadal shifts in mean climate could fundamentally alter 21st-century forests
with profound consequences for our planet (Swann et al 2010, Trumbore et al 2015, Ghazoul and Chazdon
2017). Yet, the climate system is dynamic across multiple temporal scales, and interannual climate variability
(hereafter referred to as climate variability), or the year-to-year fluctuations in key climate variables around
long-term mean trends, is also increasing in many places (Jackson et al 2009, Pendergrass et al 2017).
Growing climate variability may have larger near-term consequences for Earth’s forests than long-term
trends in mean climate conditions because it has the potential to generate climate extremes that exceed the
physiological tolerances of the trees (Pederson et al 2014, Uriarte et al 2016), particularly if two or three
extreme years occur consecutively, as was the case in central Europe in 2018–2020 (Senf and Seidl 2021).

Being long-lived sessile organisms, trees are uniquely exposed to their local environment (Canham et al
2018, Brodribb et al 2020). Thus, their survival depends on traits and ecological strategies that help
individuals tolerate variable conditions (Johnstone et al 2016, Isaac-Renton et al 2018). For instance, many
trees have leaf-level thermal tolerances that far exceed the temperatures they regularly experience, helping
maintain photosynthesis under variable conditions (Sullivan et al 2020). Some trees can even adjust thermal
limits within a growing season to cope with extreme heat waves (Gunderson et al 2010). Furthermore, the
diversity of traits and strategies in populations and communities can buffer forest structure and functions,
including productivity, from climate variability, even if individual trees or species are negatively affected
(Warner and Chesson 1985, Sakschewski et al 2016, Anderegg et al 2018). For example, forests in the western
United States recently experienced the driest 20-year period in at least 1200 years (Williams et al 2022), and
in response, community-weighted hydraulic traits shifted toward greater drought tolerance (Trugman et al
2020), helping to maintain forest cover and function during a millennial-scale drought. The traits and
strategies that confer individual- to community-level tolerance to contemporary conditions are often legacies
of exposure to past environmental conditions (Ogle et al 2015, Johnstone et al 2016, Peltier and Ogle 2020).
However, whether local traits and strategies aggregate to shape forest responses to changing climate
variability at global scales remains unknown.

While increased climate variability is expected during the twenty-first century, the magnitude of
projected change by 2100 within any one forest biome is modest compared to the geographic differences in
climate variability among forest biomes. For example, boreal forests experience 2.5 times greater inter-annual
temperature variability than tropical forests (Harris et al 2020). Many of the factors that determine global
geographic gradients of climate variability, like solar angle, distance to coast, and large-scale climate
teleconnections, are relatively stable over time. Thus, large geographic variations exist across the planet in the
magnitude of climate variability that forests have experienced in the past and experience today. If local
legacies shape broader forest responses to contemporary conditions, then the signal should be detectable
across global geographic gradients of climate variability.

Here, our objective is to assess how past and current inter-annual climate variability influences global
patterns of forest productivity. We hypothesized that forests exposed to large climate variability in the past
will better tolerate current climate variability than forests where past climate was relatively stable. To test this
hypothesis, we used the remotely-sensed enhanced vegetation index (EVI), a relatively robust proxy of forest
gross primary production (hereafter forest productivity) (e.g. Shi et al 2017, Huang et al 2019), and global
climate records to quantify whether and how historical and contemporary climate variability relates to
patterns of contemporary forest productivity.

2. Materials andmethods

2.1. Climate variables
Monthly mean, minimum, and maximum temperature (◦C), mean vapor pressure (hPa), and total
precipitation (mm) (record length 1950–2019; product Climate Research Unit gridded Time Series (CRU TS)
v. 4.04) gridded at a 0.5◦ spatial resolution were retrieved from the CRU, University of East Anglia (Harris
et al 2020). The CRU TS 4.04 dataset is interpolated based on a global network of weather stations. We used
monthly minimum and maximum temperature to calculate vapor pressure at saturation and then subtracted
the actual vapor pressure to derive the monthly mean vapor pressure deficit (VPD). CRU TS is the only
interpolated weather station-based product that provides global measurements of temperature, precipitation,
and vapor pressure at a relatively fine spatial resolution for the last several decades. This was essential for our
analysis, as we were interested in the concurrent influence of multiple climate variables on forest productivity.
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We used climate records for two study periods; a historical period (1950–1969) and a contemporary
period (2000–2019). The contemporary period was selected to correspond with the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite record. Two criteria determined the selection of the historical
period. Because trees are long-lived, we wanted to maximize time between the two study periods to ensure
that potential legacies of historical climate variability (e.g. trait plasticity and shifts in community
composition) would have time to manifest. However, the global density of weather stations was much lower
in the first half of the twentieth century than in the second half, which leads to large uncertainty regarding
spatial and temporal patterns of interannual climate variability prior to 1950 in the CRU data (Harris et al
2014, 2020).

We aggregated temperature and VPD climate records from monthly to annual values by selecting the
month of each year with the warmest mean temperature and with the highest mean VPD to capture the
growing conditions without prescribing changes in growing season across latitude. For precipitation, which
can be stored in snow and the subsurface for months, we quantified each year’s annual total. We then
expressed each annual precipitation total as a relative anomaly (a percentage) of the respective 20-year mean
annual total for the two study periods. This was done because precipitation variance tends to scale with mean
precipitation, where wetter places also inherently have more interannual variability in precipitation totals. As
we were interested in the effects of climate variability separate from long-term mean trends, the climate
records were linearly detrended for each grid cell and time period. We then quantified the interannual
variability of temperature, VPD, and relative precipitation anomalies during each period using the standard
deviation (SD) (figure S1 (available online at stacks.iop.org/ERE/1/011001/mmedia)). We also calculated the
change in interannual temperature, precipitation, and VPD variability between the two periods (hereafter
referred to as the late twentieth century change in climate variability).

Even after selecting the historical period to maximize weather station density, CRU-derived variability of
temperature, precipitation, and VPD could still be biased in regions where weather station density is low. To
minimize the effects of this bias, we excluded 0.17% of grid cells where climate records had an SD of zero
during one or both study periods (CRU assigns long-term monthly mean values when insufficient nearby
station data are available).

2.2. Forest variables
Monthly mean EVI (record length 2000–2019; product MOD13C2 V006) and the University of Maryland
annual gridded land cover classification for the year 2019 (Product MOD12C1 V006) were retrieved from the
United States Geological Survey Land Processes Distributed Active Archive Center (Didan 2015, Friedl and
Sulla-Menashe 2015). In global comparisons with eddy-covariance flux towers, EVI is a relatively robust
proxy for monthly (Huang et al 2019) and annual (Shi et al 2017) gross primary productivity. The EVI and
land cover were gridded at a 0.05◦ spatial resolution, derived from 1 km2 MODIS pixels. Off-nadir viewing
angles have been shown to bias patterns of seasonal and interannual EVI (Sims et al 2011, Morton et al
2014). The MOD13C2 EVI product minimizes the effects of viewing angle in the compositing algorithm by
selecting the highest quality constituent 1 km2 MODIS pixels with the lowest viewing angle for each 0.05◦

grid cell (Didan et al 2015). To ensure the results were not an artifact of sensor viewing angle, we took a
conservative approach by including only the 0.05◦ grid cells where most (⩾50%) of the constituent 1 km2

pixels had nadir viewing angles (<30◦). Grid cells are also assigned the historical mean EVI when the satellite
observations are of insufficient quality (missing data, cloudy, etc.). Thus, we only retained 0.05◦ grid cells
which were assigned the top-quality flag of ‘good: use with confidence.’

We masked monthly EVI to include only forested grid cells, which we defined as any cell where the forest
types in the land cover classification (evergreen needleleaf, evergreen broadleaf, deciduous needleleaf,
deciduous broadleaf, mixed forest) summed to 80%. In the land cover product, forests were delineated based
on a canopy height >2 m and >60% tree cover in 2019. We chose 2019 to ensure we did not include grid cells
that experienced a severe natural disturbance (e.g. stand-replacing wildfire) or deforestation during the
contemporary period. We categorized forest grid cells as boreal, temperate, Mediterranean, or tropical using
The World Wildlife Federation’s Terrestrial Ecoregions of the World (Olson et al 2001).

For each grid cell that had six or more months of EVI observations in ten or more years, we aggregated
from monthly to annual values by selecting the month with the highest mean EVI, following the treatment of
the climate data. All grid cells that did not meet six months of observations in ten or more years were
excluded from analysis. We linearly detrended the annual EVI in each grid cell and quantified interannual
variability in EVI as the SD. We aggregated the EVI grid from 0.05◦ to the 0.5◦ resolution of the climate data.
This final dataset of interannual variability in EVI included 7477 0.5◦ grid cells (figure S2). We also
calculated the mean percent cover of evergreen, deciduous, broadleaf, and needleleaf in each 0.5◦ grid cell
and converted these to categorical variables of leaf shape (one when % needleleaf exceeded % broadleaf, else
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zero) and leaf habit (one when % evergreen exceeded % deciduous, else zero) to avoid zero inflation of using
the continuous percent vegetation-type variables in regressions.

2.3. Analysis
We first assessed how contemporary climate variability influenced forest productivity globally and
within biomes. We fit a linear regression that predicted the SD(EVI2000–2019) as a function of
SD(temperature2000–2019), SD(precipitation2000–2019), and SD(VPD2000–2019), leaf shape, leaf habit, and biome.
Based on visual inspection of univariate scatter plots, we included a quadratic form of the climate variables
to allow for nonlinear relationships. To ensure normality and homoscedasticity, the response variable was
transformed using a box-cox transformation. We also evaluated collinearity among predictor variables using
a variance inflation factor cutoff of seven. Response and non-categorical predictor variables were centered
and scaled (converted to z-scores). We used exhaustive model selection with a maximum of four terms and
selected the best fitting model based on Akaike information criterion (AIC). Regression residuals were
spatially autocorrelated (Moran’s I < 0.05). Thus, we also ran spatial error and spatial auto-regressive linear
models to confirm the direction and statistical significance of relationships when spatial autocorrelation was
accounted for (see appendix S1 for more details and table S1 for results of spatial models).

We also wanted to assess how historical climate variability contributed to patterns of contemporary forest
productivity, but historical and contemporary climate variability could not be included in the same model
due to collinearity. However, model residuals (differences between observed values of the dependent variable
and the values predicted by regression) can contain ecologically relevant information (see Anderegg et al
2020b for an example), and thus, we used the model residuals from the contemporary climate variability
regression described previously as a metric of the remaining sensitivity of forest productivity for subsequent
analysis (hereafter forest sensitivity). This metric identifies forest grid cells where forest productivity was
unusually stable (large negative residuals) and unusually variable (larger positive residuals) relative to grid
cells of similar forest types that experienced similar contemporary climate variability.

We fit a linear regression to evaluate whether and how this remaining forest sensitivity was explained by
historical climate variability; SD(temperature1950–1969), SD(precipitation1950–1969), SD(VPD1950–1969), the late
twentieth-century change in climate variability;∆ SD(temperature),∆ SD(precipitation),∆ SD(VPD) and
interactions between historical climate variability and the late twentieth-century change in climate
variability; SD(temperature; 1950–1969)∗ ∆ SD(temperature), SD(precipitation; 1950–1969)∗ ∆
SD(precipitation), SD(VPD; 1950–1969)∗ ∆ SD(VPD). Again, normality, homoscedasticity, and collinearity
were assessed, continuous variables were centered and scaled, quadratic terms were included, model selection
was conducted, and the most parsimonious model was selected based on AIC. Spatial error and
autoregressive models were also run.

We repeated analyses where interannual variability of EVI was quantified as the coefficient of variation
(CV), instead of the SD. The CV is a relative rather than absolute measure of variability, allowing us to
explore whether our results were sensitive to the property that cells with high mean EVI may inherently have
more variable EVI. We also repeated analyses with the normalized difference vegetation index (NDVI)
instead of EVI. However, EVI is preferable over NDVI because it is less likely to saturate in forests with high
biomass (Huete et al 2002), and our analyses confirmed saturation of NDVI in tropical forests. Finally,
because the historical period is relatively short for characterizing climate variability, we repeated analyses
with a longer historical window of 1950–1989.

Analyses were conducted in R version 4.0.5 (R Core Team 2021), using the packages ncdf4 (Pierce 2017),
gdalUtils (Greenberg and Mattiuzzi 2018), raster (Hijmans 2020), tidyverse (Wickham et al 2019), rgdal
(Bivand et al 2018), sf (Pebesma 2018), broom (Robinson and Hayes 2019), spdep (Bivand and Wong 2018),
spatialreg (Bivand and Piras 2015), MASS (Venables and Ripley 2002), car (Fox and Weisberg 2019), MuMIn
(Barton 2020), and RStoolbox (Leutner et al 2022).

3. Results

3.1. Relationship between forest productivity and contemporary interannual climate variability
Contemporary temperature variability was the most important climate predictor of interannual variability in
EVI (table 1), and the two were negatively correlated (figure 1(A)). On average, the interannual variability in
EVI was 24% lower in forested grid cells that experienced the most variable temperatures (⩾75th percentile)
as compared to grid cells that experienced the least variable temperatures (⩽25th percentile). This matched
our expectations because geographic patterns of climate variability are relatively stationary over time, and
thus forests exposed to large climate variability during the historical period should better tolerate large
contemporary climate variability if the legacies of past conditions shape current ecological responses. The
relationship was nonlinear (figure 1(A), table 1) and varied markedly among biomes, however. In temperate
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Table 1. Results of linear regression models explaining (A) contemporary forest productivity as a function of contemporary climate
variability, leaf habit, shape, and biome, and (B) how historical climate variability relates to remaining sensitivity of forest productivity
after accounting for effects of contemporary climate variability, leaf habit, shape, and biome. Note that the two historical models had an
AIC < 2 (Model 1 and 2). N = 7477.

Model 1 Model 2

(A) Contemporary model
Intercept −0.18∗∗∗

SD(temperature; 2000–2019) −0.14∗∗∗

SD(temperature; 2000–2019)2 −0.03∗∗∗

Evergreen −0.51∗∗∗

Needleleaf −0.45∗∗∗

Temperate biome 0.62∗∗∗

Mediterranean biome 0.006
Tropical biome 0.86∗∗∗

Model R2 0.35
Moran’s I 0.45∗∗∗

(B) Historical model
Intercept 0.02∗∗ 0.02∗

SD(temperature; 1950–1969) −0.14∗∗∗ −0.08∗∗∗

SD(temperature; 1950–1969)2 −0.04∗∗∗ −0.04∗∗∗

SD(VPD; 1950–1969) 0.10∗∗∗

SD(VPD; 1950–1969)2 −0.024∗∗

∆ SD(temperature) 0.08∗∗∗ 0.08∗∗∗

∆ SD(precipitation) 0.08∗∗∗

SD(temperature; 1950–1969)∗ ∆ SD(temp) 0.09∗∗∗ 0.08∗∗∗

SD(temperature; 1950–1969)2 ∗ ∆ SD(temp) −0.11∗∗∗ −0.11∗∗∗

Model R2 0.05 0.05
Moran’s I 0.41∗∗∗ 0.41∗∗∗

∗p⩽ 0.1, ∗∗p⩽ 0.05, ∗∗∗ p⩽ 0.01

Figure 1. Univariate relationships between interannual variability in EVI and interannual climate variability during the
contemporary period (2000–2019) for all observations globally (red line), and for observations in the boreal (white line),
temperate (brown line), Mediterranean (grey line), and tropical (black line) biomes. Globally, interannual variability in EVI was
negatively correlated with (A) interannual temperature variability (◦C), and positively but modestly correlated with interannual
(B) precipitation (% of 2000–2019 mean annual total), and (C) VPD (hPa) variability. Background hexes show the number of
observations in each bin of x-y space.

forests, the correlation between variability in EVI and temperature variability largely agreed with the global
trend, except where temperatures were most variable (figure 1(A)). Interannual variability in EVI increased
with greater temperature variability in the tropical biome, was varied and inconsistent in the Mediterranean
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Figure 2. Remaining sensitivity of forest productivity after accounting for contemporary climate variability, leaf shape and habit,
and biome.

biome, and declined in the boreal biome, particularly where temperature variability was highest
(figure 1(A)). Interannual variability in EVI grew modestly with increasing precipitation and VPD variability
(figures 1(B) and (C)), but neither variable was retained in the top model (table 1).

Biome, leaf habit and shape were also important predictors of interannual variability in EVI, irrespective
of climate variability (table 1). EVI was more variable in temperate and tropical biomes than in the boreal
biome, and was lower in evergreen and needleleaf forests than in deciduous and broad leaf forests (table 1).
We repeated analyses using the CV(EVI) with qualitatively similar results (figure S3). Replacing EVI with
NDVI confirmed that NDVI saturated in high-biomass forests obscuring relationships (figure S4).

3.2. Relationship between forest productivity, historical interannual climate variability, and late
twentieth-century change in climate variability
Hotspots of remaining forest sensitivity after accounting for contemporary climate variability, leaf habit and
shape, and biome were prevalent in all biomes (figure 2). Boreal forests in eastern North America, temperate
forests in the south-central and south-east United States, temperate forests in Asia, and tropical forests in the
southern Amazon were all particularly sensitive.

Historical temperature variability is an important predictor of remaining forest sensitivity after
accounting for the effects of contemporary climate variability, forest type, and biome, but the overall model
R2 was low (table 1). Given similar contemporary conditions, forest productivity was less variable in grid
cells where historical temperatures were more variable (table 1). Forests were 19-fold times less sensitive to
contemporary temperature variability where historical temperature variability was two SDs (0.66 ◦C) greater
than the global average historical temperature variability.

The strength of legacies from exposure to historical temperature variability was altered by late
twentieth-century increases in temperature variability (table 1, figure 3). Where historical temperature
variability was close to the global average (∼50% of observations), large increases in temperature variability
between the two study periods eroded forest tolerance to contemporary climate variability (figure 3). Forest
sensitivity also increased with historical VPD variability and the late twentieth-century change in
precipitation variability (table 1). All relationships were consistent when we repeated analyses using the CV,
instead of the SD of EVI (figure S5), and when we characterized historical climate variability using a 40 year
window (1950–1989) (figure S6).

4. Discussion

Our results suggest that exposure to temperature variability in the past can foster legacies that shape how
forests respond to contemporary temperature variability at broad scales. Boreal forests, which experienced
large temperature variability historically, were more tolerant of contemporary temperature variability than
tropical forests where historical temperatures were comparatively stable. We also found that larger increases
in temperature variability between the two study periods often eroded the tolerance conferred by legacy
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Figure 3. Remaining sensitivity of forest productivity after accounting for contemporary climate variability, leaf shape and habit,
and biome as a function of historical interannual temperature variability in grid cells that experienced a 90th-percentile increase
(orange line), a 75th percentile increase (pink line), or no change (beige line) in temperature variability between the historical and
contemporary study periods. Relationships are from the top historical regression model.

effects of historical temperature variability. Meanwhile, exposure to variable precipitation and VPD in the
past did not confer tolerance to contemporary precipitation and VPD variability.

Our study provides useful insights regarding the likely relative impact of increasing future climate
variability vs. projected multi-decadal shifts in mean climate. Climate models predict relatively modest
twenty-first-century mean warming in the tropics compared to high latitudes, but temperature variability is
expected to markedly increase (Bathiany et al 2018), and tropical forests are acutely sensitive to
contemporary interannual temperature variability in our analysis. This is consistent with recent
experimental studies that show temperatures in tropical forests now often approach and exceed thermal
photosynthetic safety margins of several tree species (Doughty and Goulden 2008). Furthermore,
precipitation variability (in addition to total amount) is a strong determinant of tropical forest cover (Staver
et al 2011, Staal et al 2014, Ciemer et al 2019) and is increasing in the tropics (Pendergrass et al 2017). Thus,
perhaps changes in variability rather than shifting mean conditions will be the dominant climate driver of
twenty-first-century forest dynamics in the tropics. However, tropical forests also contain the highest
tree-species diversity on Earth, and traits that are currently rare but present may confer some
community-level tolerance (Anderegg et al 2018, Powell et al 2018).

In contrast, climate variability in the boreal forest is expected to modestly increase relative to past
conditions, but mean temperature in the boreal biome is rising at a rate at least twice the global average
(Wolken et al 2011). Disturbance agents that affect boreal forests (e.g. severe wildfires and bark beetle
outbreaks) are also sensitive to warming (Abatzoglou et al 2018, Seidl et al 2020). Thus, future changes in
mean climate and climate-sensitive disturbances will likely be more important than the direct effects of
increasing climate variability in high-latitude forests.

A remaining challenge is to identify the traits and strategies that underpin forest tolerance to temperature
variability at broad scales and to determine why there is little evidence of legacies that confer tolerance to
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precipitation and VPD variability. Precipitation and VPD exert different physiological pressures on trees than
temperature, which may explain the lack of legacies. When exposed to unusually dry conditions (low
precipitation and/or high VPD), many tree species close stomata to avoid hydraulic failure. This comes at the
cost of photosynthesis and can cause carbon starvation (Adams et al 2017). Tradeoffs between maintaining
photosynthesis and avoiding cavitation/embolism may fundamentally constrain hydraulic safety margins
(Choat et al 2018, Brodribb et al 2020), which would inhibit forest responses. Indeed, studies suggest that
trees (particularly angiosperms) operate with surprisingly small hydraulic safety margins irrespective of
prevailing hydro-climatic conditions, likely to maximize carbon gain (Choat et al 2012). Conversely,
tradeoffs in physiological buffering against the direct effects of temperature variability are not as strong
(Vico et al 2019).

Differential responses might also be explained by the climate drivers themselves. Patterns of precipitation
and VPD variability are far more spatially heterogeneous than temperature variability, which changes more
consistently across latitude (figure S1). Thus, legacy effects of precipitation and VPD variability may manifest
at finer spatial resolutions than can be resolved in global analyses. Furthermore, the effects of precipitation
and VPD are modulated by edaphic conditions (e.g. soil depth, soil texture, organic matter content), which
also vary. In some areas, large variability in precipitation or VPD might not trigger forest responses because
the soil-moisture storage capacity is high, and trees continue to access ample water supplies. We chose not
to include edaphic conditions in this analysis because of the large uncertainties in global soil datasets
(e.g. Hengl et al 2017, Tifafi et al 2018).

As climate varies across multiple temporal scales, forests may also be responding to precipitation and
VPD variability at a different frequency than our analysis evaluated. For instance, the El Niño-Southern
Oscillation is a strong determinant of rainfall variability across much of Earth’s land surface and varies on a
roughly three- to six year temporal scale (Holmgren et al 2006). While the CRU climate dataset is one of the
best available for capturing geographic patterns of global climate during the last few decades, it is less reliable
prior to 1950 when fewer weather stations were in operation (Harris et al 2014, 2020). This hinders our
ability to evaluate forest responses to climate variability over longer temporal scales. However, an analysis
using paleo reconstructions of climate and forest biomass and composition showed that processes consistent
with what we found may have helped forests tolerate hydro-climate variability over the last millennium
(Rollinson et al 2021).

It is worth noting that EVI and similar satellite-based vegetation indices are coarse indicators of forest
responses to climate variability, integrating information on fractional cover, productivity, and myriad other
factors that affect greenness. This likely introduces uncertainty into our analysis. Yet, these remotely sensed
vegetation indices are the only ones currently available with simultaneously sufficient spatial resolution and
record length. The next generation of space-based vegetation indices can characterize forest structure,
photosynthesis, evapotranspiration, and canopy chemistry, and they will offer opportunities to evaluate
previously intractable questions about how climate influences forest ecosystems (Stavros et al 2017).
However, those records are still too short to enable the analysis we present here. In the near term, these
next-generation indices could still be used for real-time monitoring of forest sensitivity to identify emerging
hotspots of climate-change impacts and to help prioritize mitigation and adaptation strategies.

We focused on multi-decadal forest responses to increasing climate variability, but did not explicitly
consider whether and how exposure to discrete extreme climate events, such as severe heat waves or
droughts, might confer tolerance to subsequent events (Jentsch et al 2007, Harris et al 2018). This is
important because extreme climate events occur more frequently with increasing climate variability (Cook
et al 2020, Perkins-Kirkpatrick and Lewis 2020, Williams et al 2020). While it is plausible that exposure to
past droughts and heat waves could make forests more tolerant of subsequent climate extremes, increased
sensitivity is also possible, particularly if the period between recurring climate extremes is shorter than the
time required for forests to recover and acclimate (Ratajczak et al 2018, Turner et al 2020). Indeed,
broad-scale analyses of forests that experienced two or more droughts over a two-decade period suggest that
deleterious effects often grow as events recur (Anderegg et al 2020b).

5. Conclusions

Twenty-first-century climate will diverge considerably from what forests have experienced over the last
century. The impact on forest cover, structure, and function could be profound (Trumbore et al 2015) with
important consequences for climate and life globally (Lenton et al 2008). Yet, the climate system is
temporally dynamic, and fluctuations in climate variables will have differential impacts depending on the
frequencies at which they occur. Interannual climate variability is expected to increase, which will likely have
acute impacts across low-latitude forests. Our analysis offers a valuable framework for diagnosing where and
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how the legacies of past climate variability might confer tolerance in forests to recent and imminent increases
in climate variability, providing critical information to guide forest and climate policy.

Data availability statement

This study used publically available datasets, including the CRU TS v. 4.04 climate dataset (doi:
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gov/products/mod13c2v006/). The code for this analysis has been permanently archived at Cary Institute for
Ecosystem Studies data repository (https://doi.org/10.25390/caryinstitute.19527169).

The data that support the findings of this study are openly available at the following URL/DOI:
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.04, https://lpdaac.usgs.gov/products/mod13c2v006/.
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