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Abstract

Over the years, automatic speech recognition (ASR) in noise-free and single-speaker-
dependent environments underwent tremendous progress with uncountable varieties of
model architectures. This work examines three well-established model architectures of
ASR and introduces related enhancements for improving their performance.

The first model architecture defines a discrete neural quantizer for hybrid approaches
in ASR. These quantizers learn a function between high-dimensional feature vectors and
discrete labels and are typically not competitive with standard continuous models. A
novel training procedure combined with a deep neural network structure can alleviate
this negative e↵ect and demonstrate that a discrete neural quantizer can outperform
continuous models despite losing information in the quantization procedure.

The second model architecture relies on attentional models with recurrent neural
structures extended by additional model components. The appended components are
optimized on two variants of time-reversed target labels and provide helpful information
for the standard model part of the attentional models. Since the time-reversing procedure
does not always produce equally long target label sequences, a novel regularization term
is solely integrated into the training process. Therefore, the performance of standard
attentional models is improved without increasing the decoding complexity of the model.

The third model architecture refers to recently established self-attentional archi-
tectures, which replace recurrent neural structures with self-attentional modules. The
modules define strong globally-dependent operations and enable those models to connect
information between distant hidden representations or features. However, speech con-
tains valuable local information suppressed by applying such operations. As a result,
the suggested approach divides the modules into local and global trainable modules
and establishes an e↵ective fusion strategy, leading to enhanced self-attentional model
architectures capable of surpassing state-of-the-art approaches.
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Zusammenfassung

Über die letzten Jahre hat die automatische Spracherkennung (ASR) in störgeräuscharmen
Umgebungen, in denen nur jeweils eine einzelne Person aktiv spricht, einen enormen
Fortschritt mit unzähligen Modellarchitekturen erzielt. Diese Arbeit untersucht drei
etablierte Modellvarianten der ASR und stellt Erweiterungen für deren Verbesserung
und Weiterentwicklung vor.

Die erste dieser Modellvarianten definiert einen diskreten, neuronalen Quantisierer für
hybride Ansätze der ASR. Die Quantisierer lernen eine Funktion zwischen hochdimension-
alen Merkmalsvektoren und diskreten Labeln und sind auf vielen Ebenen nicht konkur-
renzfähig mit kontinuierlichen Systemen. Ein innovatives Trainingsverfahren, welches
mit tiefen, neuronalen Netzwerkstrukturen kombiniert wird, kann diesen negativen E↵ekt
verringern und verdeutlichen, dass diskrete, neuronale Quantisier kontinuierliche Systeme
trotz eines Informationsverlusts übertre↵en können.

Die zweite Modellvariante setzt auf Attention-Modelle mit wiederkehrenden, neu-
ronalen Strukturen, die mit zusätzlichen Systemkomponenten erweitert werden. Diese
Komponenten werden auf zwei unterschiedliche, zeitlich umgekehrte Varianten der Ziella-
bels trainiert und stellen damit nützliche Informationen für die normalen Bestandteile
von Attention-Modellen zur Verfügung. Da der zeitliche Umkehrprozess nicht notwendi-
gerweise gleichlange Ziellabelsequenzen erzeugt, wird eine innovative Regularisierung
ausschließlich in den Trainingsprozess integriert. Infolgedessen verbessert sich die Leistung
normaler Attention-Modellen ohne die Dekodierungskomplexität zu erhöhen.

Die dritte und abschließende Modellvariante dieser Arbeit sind Self-Attention-Modelle,
bei denen die wiederkehrenden, neuronalen Strukturen durch Self-Attention-Module er-
setzt werden. Die Module definieren stark ausgeprägte, global-abhängige Operationen und
erlauben das Verbinden weit entfernter Informationen in verborgenen Repräsentations-
und Merkmalssequenzen. Diese Operationen unterdrücken jedoch wertvolle lokale In-
formationen der Sprache. Aus diesem Grund teilt der vorgeschlagene Ansatz die Stan-
dardmodule in optimierbare lokale sowie globale Module ein und etabliert eine e�ziente
Verschmelzungsstrategie, welche zu verbesserten Self-Attention-Modellen führt, die selbst
modernste ASR Ansätze übertre↵en können.
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LM language model
LN layer normalization
LSTM long short-term memory
LSTMP long short-term memory projected
LVSR large-vocabulary speech recognition
MFCC Mel-frequency cepstral coe�cient
MHA multi-head attention
MI mutual information
MLE maximum likelihood estimation
MLP multilayer perceptron
MM Markov model
MMI maximum mutual information
MONO monophone
MSE mean squared error
NLP natural language processing
NMT neural machine translation
NN neural network
NNVQ neural network vector quantizer
OOV out of vocabulary
PDF probability density function
PM pronunciation model
PMF probability mass function
R2L right-to-left
ReLU rectified linear unit
RM Resource Management
RNN recurrent neural network
RNNT recurrent neural network transducer
SA self-attention
SAED self-attention-based encoder-decoder
SGD stochastic gradient descent
SOTA state-of-the-art
TED technology entertainment design
TED-LIUM-v2 TED-LIUM release 2
TDNN time-delay neural network
TRI triphone
VGG visual geometry group
VQ vector quantizer
VTLP vocal tract length perturbation
WER word error rate

x



List of Acronyms

WSJ Wall Street Journal

xi





List of Symbols

Miscellaneous

e Euler’s number
� elementwise multiplication operator
++ concatenation operator
⇤ convolutional operator
(·)(t) time index
(·)t2t1 sub-sequence between t1 and t2
(·)[l] layer index
(·){k} parameter index
(·)> transpose of a matrix/vector
(·)�1 inverse of a matrix
(·)⇤ optimal sequence
(·)0 first di↵erential operator

(̂·) target vector/scalar
ˆ̂(·) smoothed target vector/scalar
�!
(·) forward reference
 �
(·) backward reference
 !
(·) forward-backward reference
H(·) entropy state function
I(·,·) mutual information function
E(·) expectation function
vec(·) vectorization operator
diag(·) diagonal matrix
U(·,·) uniform distribution
r(·) nabla operator
d·e ceiling operator�� ·
�� L2 norm

xiii



List of Symbols

Number Sets

B set of binary numbers
C set of complex numbers
I set of integers
N set of natural numbers without zero
P set of probabilities
R set of real numbers
R� set of negative real numbers
R+ set of positive real numbers

Functions

Aaed(·, · ,·),Asaed(·, · ,·) attention function of AED, and SAED models
Asa(·, · ,·) self-attention function in SAED models
C(·,·) cost function
�(·,·) two-dimensional Kronecker delta
d(·) distance metric function
�(·) Mel filter bank function
H(·) representing neural network function
L(·) liklihood function
L(·,·) loss function
⇧(·) regularizer function
 (·), e (·) standard, and scaled softmax function
Q(·,·), eQ(·,·) standard, and viterbi expected liklihood function
S(·) scoring function
Top-k(·,·) return the indices of the k highest entries
v(·) Mel/ordinary frequency tranformation function
⇣(·) activation function

Greek

↵(t), e↵(t),↵(t) standard, viterbi and beam search forward probabili-
ties at time t in HMMs

↵(o)
att attention weights at time step o in AED models

�(t), e�(t) standard, and viterbi backward probabilities at time
t in HMMs

�(t), e�(t) standard, and viterbi auxiliary forward probabilities
at time t in HMMs

� regularization parameter in standard losses
✏ error in backpropagation
⌘ learning rate

xiv



List of Symbols

⇥,✓ set of network/HMM parameters, single net-
work/HMM parameter

� eigenvalues in SVD
⇤ center frequency vector
µ mean of a single Gaussian
µtrain, µdev, µtest metric error on train, dev, and test set
⇠(t),e⇠(t) standard, and auxiliary transition probabilities at

time t in HMMs
⇡ initial state probabilities in HMMs
⇢ dropout probability in dropout layers
⌃, �2 variance of N -D, and 1-D single Gaussian
�,� set of all emission set parameters, single set of emis-

sion parameters

 (t), 
(t)

most likely state path at time t applying viterbi, or
beam search algorithm

⌦,! set of all class labels, single class label

Latin

A, a transition probability matrix, and single transition
probability in HMMs

a weighted output of MLPs
A set of graphemes
B, b emission probability matrix, and single emission prob-

ability in HMMs
B, b, b bias matrix, vector, and scalar in DNNs
B mini-batch
c,ec memory, and auxiliary memory state in LSTMs
c, c Mel cepstrum components, and single Mel cepstrum

component
d, ed standard, and auxiliary window size of Gaussian

masks G
D cost matrix in soft-DTW algorithm
D dataset
e(o) scoring vectors of attention module Saed at output

time step o
F ,f (t) forget gate sequence, single forget gate output at time

t in LSTMs
G, g(o), g(o) grapheme sequence, representing grapheme vector,

and grapheme at output time step o
G all possible grapheme sequences
H ,h(t) sequence of hidden representations, single hidden rep-

resentation at time step t

xv



List of Symbols

I, i image, and single pixel of an image
I, i input gate sequence, and single input gate output at

time t in LSTMs
K ordered set, retaining position of entries
K,k key sequence, and single keys in SAED models
K, k kernel matrix, and single entry in kernel of CNNs
M ,m(t),m(t) output sequence, output vector, and single output at

time t of DNNQs
⇤
M ,

⇤
m(t),

⇤
m(t) firing neuron sequence, firing neuron vector, firing

neuron at time step t in DNNQs
O,o(t) output gate sequence, and single gate output at time

t in LSTMs
P ,p(t) projection sequence, and single projection vecto at t

in projected LSTM
Q, q query sequence, and single queries in SAED models
r dropout vector
S, s(t) state sequence, and single state vector at t in HMMs
S, s beam search state sequence, and single beam search

state vector at t in HMMs
Sloc,Sglob local, and global score in SAED models
U , u recurrent weight matrix, and single recurrent weight

in RNNs
V ,v value sequence, and single value in SAED models
V , v recurrent memory weight matrix, and single recurrent

memory weight in LSTMs
V vocabulary of words w(o)

W , w weight matrix, and single weight in DNNs
W ,w(o) word sequence, and single word at time o
W set of all possible word sequences
X,x(t), x(t) input sequences, input vector, and single input at

time t in DNNs
X set of availible input sequences X in D

Y ,y(t), y(t) output sequences, output vector, and single output
at time t in DNNs

xvi



List of Figures

Chapter 1: Introduction

1.1 Overview of the Chapters in This Thesis . . . . . . . . . . . . . . . . . . 4

Chapter 2: General Background

2.1 The Graphical Model of HMMs Processing Feature Vectors . . . . . . . . 9
2.2 The Concept of the Perceptron . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The Architecture of MLPs With Multiple Layers . . . . . . . . . . . . . . 19
2.4 The Plots of Various Activation Functions . . . . . . . . . . . . . . . . . 21
2.5 The Normal and Unfolded Architecture of Standard RNNs . . . . . . . . 23
2.6 The Extended Architecture of LSTMs with Integrated Peepholes . . . . . 24

Chapter 3: Speech Background

3.1 The Generation Procedure of MFCC and Log Mel Features . . . . . . . . 50

Chapter 4: Hybrid Acoustic Modeling

4.1 The Concept of Continuous PDFs and Discrete PMFs . . . . . . . . . . . 64
4.2 The Output of Scaled Softmax Functions with Altering Scaling Factors . 70
4.3 The Architecture of DNNQs and the Corresponding Training Procedure . 74

Chapter 5: Forward-Backward Learning for Attentional Models

5.1 The Standalone CTC and the Extended RNNT Approach . . . . . . . . . 82
5.2 The Architecture of AED Models . . . . . . . . . . . . . . . . . . . . . . 84
5.3 The SA and the MHA Module . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 The Dual AED Architecture with L2R and R2L Decoders . . . . . . . . . 96
5.5 The Dual SAED Architecture with Individual L2R and R2L Models . . . 98

xvii



List of Figures

Chapter 6: Localness and Fusion Strategies in SAED Models

6.1 The Concept of Boosting Local Context in SAED Models . . . . . . . . . 106
6.2 The Qualitative Results of Applying Localness and Fusion Strategies . . 117

xviii



List of Tables

Chapter 3: Speech Background

3.1 The 39 Phonemes in the English Language . . . . . . . . . . . . . . . . . 55
3.2 The Characteristics of the TED-LIUM-v2 Dataset . . . . . . . . . . . . . 57
3.3 The Characteristics of the LibriSpeech Dataset . . . . . . . . . . . . . . . 58
3.4 An Overview of Current SOTA Results on the TED-LIUM-v2 Dataset . . 60
3.5 An Overview of Relevant SOTA Results on the LibriSpeech Dataset . . . 61

Chapter 4: Hybrid Acoustic Modeling

4.1 The Results of the Ablation Study on DNNQ Output Layer Sizes . . . . 76
4.2 The Results of the Ablation Study on Splicing Adjacent Input Frames . . 77
4.3 The Final Results of the DNNQ Model with Optimal Parameters . . . . 78

Chapter 5: Forward-Backward Learning for Attentional Models

5.1 The Results of Multiple Training Procedures for AED Models on the
TED-LIUM-v2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 The Results of Several Procedures for AED Models on the LibriSpeech
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 The Results of Multiple Training Setups for SAED Models on the TED-
LIUM-v2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 6: Localness and Fusion Strategies in SAED Models

6.1 The Results of the Ablation Study on Optimal Fusing Strategies . . . . . 114
6.2 The Results of the Ablation Study on the Optimal Location of Localness 115
6.3 The Final Results of Enhanced SAED Architectures . . . . . . . . . . . . 116

xix





1

Introduction

The ability to communicate through a complex and defined language separates us, hu-
mans, from animals on the planet. The language itself enables humans to communicate
most naturally and e�ciently. With over 7000 actively spoken languages worldwide [46],
humans created various language varieties adapted to location-dependent conditions.
Even though languages di↵er in speed or number of syllables, the average information
rate per second remains stable by approximately 39 bits

s [38]. Along the transmission of
information, the language also contains implicit psychological, medical, and emotional
information, which can be utilized to retrieve medical insights from talking individu-
als [141].

The interest in automatically recognizing spoken languages and processing them has
grown over the last two decades. The development of faster, tinier, and cheaper hardware
architectures drives the integration of speech processing algorithms on local devices.
Nowadays, smart devices like smartphones can respond to speech commands and long
sentences, and perform specific actions, e.g ., executing commands in a home automation
system [106]. All approaches simplify the interaction between humans and machines
since spoken language enables natural communication to share specific information.

Speech processing can be roughly categorized into two major research areas: automatic
speech recognition (ASR) and natural language processing (NLP). The objective of ASR
is to retrieve a transcript from a given speech signal by applying ASR concepts, in which
the alignments between input features and target labels are implicitly learned [22]. In
NLP, the output of ASR systems is further processed. The objective is to extract or
summarize information from the transcript, translate it into another language, detect
speech commands and forward them to succeeding systems to perform specific actions [35].

The following work is established in the research area of ASR, more precise in modeling
acoustic models (AMs). Similar to NLP or computer vision (CV) methods, approaches in
ASR experienced major performance improvements caused by the resurgence of already
well-known neural network (NN) paradigms over the last decade [82]. The increased
computational power led to e�cient optimization of deep neural network (DNN) structures
with multiple layers. Consequently, ASR approaches based on DNNs challenged human
speech recognition capabilities. In 2017, Microsoft achieved an important milestone
in conversational speech recognition since their ASR systems matched human speech
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1. Introduction

recognition performance [172].

1.1 Motivation

Even though current ASR systems surpass human speech recognition abilities, several
open research questions remain unanswered. Novel ASR architectures, which are modeling
AMs, often disregard existing models, as the previous generation no longer achieve
state-of-the-art (SOTA) results. This is observable in hybrid approaches [22], attention-
based encoder-decoder (AED) models [10], or even in recent self-attention-based encoder-
decoder (SAED) approaches [159], despite learning similar posterior distributions for given
datasets consisting of feature-target pairs. The following paragraphs briefly introduce
novel approaches by describing their di↵erences from non-optimal standard architectures.

Hybrid approaches [22] belong to the most-studied architectures in ASR since they
are constructed by hand-crafted modules, which are independently optimized. These
modules have predefined in- and outputs and are combined into the final ASR models.
Hybrid systems utilize continuous probability distributions modeled by either Gaussian
mixture models (GMMs) or DNNs. Although discrete probability distributions are also
feasible to apply, they su↵er in losing information in the input space since the input
feature sequences need to be quantized before being further processed. Therefore, ASR
systems utilizing discrete features, i.e., discrete probability distributions, typically are not
competitive with continuous ASR systems. Multiple studies [110, 132, 133] have already
examined discrete acoustic modeling, and some were even optimistic about surpassing
continuous AMs systems [134]. With the recent progress in hardware and software, it is
attractive to revise former discrete AM methods. Due to a lack of research over the past
years, it remains unclear if discrete AMs could be competitive with continuous AMs if
recent computational advantages are applied.

AED models [10] discard the idea of independently optimized modules and instead
establish an end-to-end (E2E) approach. They transduce input feature sequences into
grapheme sequences employing recurrent neural networks (RNNs). In contrast to hybrid
models with their predefined dictionary, pronunciation model (PM), and language model
(LM), AED models consist of encoder-decoder architectures and are entirely data-driven,
as they learn these modules implicitly from the given data [163]. Therefore, AED
models are simple to train since the alignments between input features and graphemes
are retrieved implicitly and do not require complex knowledge of the overall system
structure. However, it is challenging to identify specific implicitly learned modules for
modification. For instance, if the dictionary is extended by unknown words, already
optimized models need to be further trained with data including these unknown words.
Generally, the training data itself is crucial for robust and powerful ASR systems. Several
works have already demonstrated [105, 186] that the generalization of AED models can
be improved if additional training data in the form of time-reversed target grapheme
sequences are applied. Although the information in the standard and reversed grapheme
sequence should be similar, the information extracted by additional decoders improved
the decoding results of standard AED architectures [105]. So far, this e↵ect has been
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mainly examined in the decoding phase [105]. It is an open research question if a modified
cost function could already improve the model during training and eventually transfer
this enhancement to the decoding phase.

SAED models [159] replaced the computationally expensive RNNs in AED models
to conquer the error accumulation problem of long sequences [105]. These models rely
solely on self-attention (SA) mechanisms, evaluating the global importance between
two sequences and returning a score for each sequence pair. Since SA modules do not
require any recurrent model structures and solely depend on previous model layers,
multilayer perceptrons (MLPs) are exclusively employed in SAED models. The SA
operations allow the models to connect sequence information far apart, leading to strong
global dependencies. Although this global context is beneficial on one side, it suppresses
the local information on the other. Several works [111, 145, 149, 174] analyzed the
impact of inducing localness into SA modules. However, these studies were primarily
conducted in NLP. Their outcome demonstrated that the employment of localness
supports the performance of SAED models. Until now, few studies have successfully
applied the concept of localness in ASR [174]. Therefore, whether a more complex
approach, including localness, could further improve SAED models is unknown.

1.2 Objectives

This work suggests solutions to the previously mentioned open research questions of
hybrid [22], AED [10], and SAED models [159]. The contributions are solely executed
under laboratory conditions, and a real-time application is not intended. In order to be
replicable and comparable, the approaches need to achieve specific properties:

1. The recorded speech data is noise-free.

2. The features are extracted from a single channel.

3. There is no overlapping between speakers, i.e., only one speaker is talking.

4. There is a limitation of newly added parameters to a predefined baseline.

5. The proposed approach surpasses the current SOTA baseline.

Since the contributions are distributed over di↵erent AM approaches, particular
objectives need to be separately defined for every model class:

• Hybrid models : Despite technological progress, it is still challenging to build
competitive discrete AMs that surpass continuous AMs. Although Neukirchen et
al . [110] nearly achieved this objective with their neural network vector quantizer
(NNVQ), the final model structure was shallow and had limiting modeling capacity.
Moreover, their approach required an expensive iteration through the dataset,
which is feasible for small datasets but unfeasible for large datasets. This work
aims to tackle the iteration problem by proposing a simple adjustment in the
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Enhancements for Hybrid and End-to-End Speech Recognition Architectures 

AED ModelsHybrid Models SAED Models

Hybrid Acoustic

Modeling

Forward-Backward

Learning

Localness and

Fusion Strategies

Figure 1.1: A brief overview of the chapters examining and establishing di↵erent AM
approaches hybrid, AED, and SAED models.

training setup. Therefore, the shallow NNVQs are extendible into deep neural
network quantizers (DNNQs), which contain a higher modeling capacity and can
be optimized e�ciently.

• AED models : The approach of Zheng et al . in [105] demonstrated that AED models,
including additional decoders trained on a time-reversed transcript, returned
marginal better results than standard AED models. Although they proposed a
simple and e�cient way to combine both decoders, they neglected a more precise
analysis of combining these decoder losses in the training phase. As a result, the
training scheme can be modified, e.g ., by integrating a more complex loss. The
objective of the subsequent work is to analyze the defined training scheme in [105]
and establish an improved loss extension that is solely active in the training phase.

• SAED models : SAED models [159] with their SA modules resolved multiple prob-
lems of AED approaches where long input and output sequences existed, and valid
relations between these sequences faded by vanishing or exploding gradients. The
resulting strong global context made it feasible to find relations even between
sequence parts located far apart. However, the strong global context dependency
also has major disadvantages, as the scoring operation in the SA modules suppresses
valuable local information. Despite several works [145, 149, 174] aiming to boost the
local context, Nguyen et al . [111] recently introduced a novel di↵erential window
with individual model branches for local and global scores to achieve localness.
Since separate local and global model branches could enhance prior approaches,
this work examines the e↵ect of independent local and global model branches for
SAED models and establishes e↵ective fusion strategies.

The word error rate (WER) defines the universal and objective metric to compare the
performance of AMs. All objectives have to lower the WER metric in common compared
to the predefined baseline. LMs are excluded in all the approaches since a further
reduction of the WER can be considered, and thorough training on combining AMs and
LMs is out of the scope of this work.
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1.3 Overview

The structure of this work is depicted briefly in Figure 1.1 and in more detail in the
following:

Chapter 2 establishes the general background by introducing mathematical terms,
concepts, and fundamentals necessary to understand the following chapters.

Chapter 3 introduces the speech recognition background by defining the task of ASR,
related mathematical concepts of ASR, and a presentation of popular datasets.

Chapter 4 examines the potential of discrete ASR systems by considering the latest
progress in machine learning and demonstrates the ability of discrete systems to surpass
traditional continuous ASR systems.

Chapter 5 analyses the standard AED and SAED models and establishes an extension
for utilizing time-reversed information standard architectures.

Chapter 6 demonstrates concepts for localness and corresponding fusion strategies for
SAED architectures, leading to models capable of competing with SOTA models.

Chapter 7 concludes by summarizing the key concepts established in this work.
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2
General Background

This chapter provides the general background of concepts introduced in subsequent
chapters. In the first section, hidden Markov models (HMMs) are established. Then, it
is demonstrated how they are utilized in modeling temporal components of sequences
and how their parameters are e�ciently obtained. Related automatic speech recognition
(ASR) formulations are not discussed, as these follow in the next chapter.

In the second section, neural networks (NNs) are introduced. First, standard per-
ceptrons are explained, followed by their activation functions. Then, the standard
perceptrons are enhanced, and related variations are discussed. Next, two popular
training objectives are defined, including their corresponding cost functions. Based on
these cost functions, the backpropagation algorithm and the gradient descent methods
are explored, which define the backbone of current optimization techniques for deep
neural networks (DNNs). Combining these methods leads to e�cient procedures for
minimizing the cost functions and proper parameter adjustments of DNNs.

Moreover, the problem of vanishing and exploding gradients is examined, which
typically occurs in model optimization and how to overcome these problems. The chapter
concludes by analyzing the challenges for training generalized DNNs and suggesting
e↵ective strategies to obtain such models. Notice that the following mathematical
notations are based on ISO 80000-2 [70].

2.1 Hidden Markov Models

Many applications process data with temporal information, e.g ., audio, video, or stock
market data. The temporal information in this data contains valuable information, which
improves regression and classification tasks. Although it would be simple to assume
the i.i.d. of every sample in sequences, the temporal information of adjacent samples
would be unused, and precise predictions would be impossible. A standard approach also
applied in this work is to employ HMMs [18] for modeling sequential data since these
models are well-studied in multiple research domains, e.g ., speech recognition [22], action
recognition [173], or predicting protein topologies [78].

The theory for Markov chains was proposed by Baum et al . in 1966 [11] and defined
the foundation of statistical models, such as Markov models (MMs) and HMMs. These
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models are capable of e�ciently modeling sequential data [18] and are introduced below.
Thereby, the MMs are further extended to HMMs, which are later applied in ASR
approaches.

2.1.1 Model Structure

Let x(t)
2 RI be a single input vector of size I in a sequence of input vectors X(n) =⇥

x(1), . . . ,x(t), . . . ,x(T )
⇤
of length T , where X(n)

2 RI⇥T . The sequential data X(n) is

selected from a finite set X =
�
X(n)

 N
n=1

with N elements, whereby T varies according to

each sequence X(n). In order to prevent cluttered notation, the superscript n is expelled,
and the following formulas are defined for a single input sequence X ⌘X(n).

Although it would be simple to process the inputs x(t) by assuming i.i.d. of every input
x(t), the sequential dependence and its temporal information would be lost. Therefore,
the i.i.d. assumption has to be relaxed by introducing a standard MM [22]:

p
�
x(1), . . . ,x(T )

�
=

TY

t=2

p
�
x(t)

|x(1), . . . ,x(t�1)
�
. (2.1)

Here, p
�
x(1), . . . ,x(T )

�
defines the joint distribution between the observations x(1),

. . . ,x(T ), and p
�
x(t)

|x(1), . . . ,x(t�1)
�
represents the conditional distribution for x(t) given

all previous observations x(1), . . . ,x(t�1). This leads to a dependency of the current input
x(t) on all preceding inputs from the past. Notice that it is implicitly assumed that
p
�
x(1)

|x(0)
�
= p
�
x(1)

�
as x(0) is not defined. If x(t) in Equation (2.1) is only conditioned

on the previous observation, the first-order Markov chain formulation [18] is obtained:

p
�
x(1), . . . ,x(T )

�
= p
�
x(1)

� TY

t=1

p
�
x(t)

|x(t�1)
�
. (2.2)

Even though higher orders of Markov chains are theoretically feasible, they are out
of scope for this thesis since the number of parameters is increasing exponentially [18].
Additionally, the conditional distribution p

�
x(t)

|x(t�1)
�
is restricted to be equal in order

to be applicable in later chapters. To obtain a more flexible yet parameter-e�cient
model, discrete latent variables are introduced to each input x(t). Let s(t) 2 N be a
latent variable and denoted as a single state. Then, the states s(t) can be modeled by
K-dimensional binary random variable s(t) 2 BK with B = {0, 1}, where the element at
the index k is one, and the remaining elements are zero [119]:

s(t)k = �
�
k, s(t)

�
=

(
1 if k = s(t)

0 else
8k 2 {1, 2, · · · , K}. (2.3)

The operator �
�
· , ·
�
is the Kronecker delta, and K corresponds to the total number

of states. Notice that each state s(t) also fulfills the property of a valid probability
distribution since its entries lie in an interval 0  s(t)k  1 and

P
k s

(t)
k = 1.
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Figure 2.1: The graphical model of an HMM with the corresponding states s(t), which are
represented by blue circles. Each input x(t), expressed by the red rectangles, is aligned to a
specific state s(t), represented by dotted arrows. The alignment is obtained by a procedure
introduced Section 2.1.4.

The introduction of a latent space leads to the formulation of HMMs. In Figure 2.1,
a graphical representation of a single HMM is depicted. The latent space also implies a
modification of the joint distribution:

p
�
x(1), . . . ,x(T ), s(1), . . . , s(T )

�
= p
�
s(1)
�
"

TY

t=2

p
�
s(t)|s(t�1)

�
#

TY

t=1

p
�
x(t)

|s(t)
�
, (2.4)

where p
�
s(t)|s(t�1)

�
is the conditional distribution of being in state s(t) given the previous

state s(t�1), p
�
x(t)

|s(t)
�
is the conditional distribution of x(t) for a given state s(t), and

S = [s(1), . . . , s(t), . . . , s(T )] is the latent state sequence S 2 BK⇥T .
In order to fully define HMMs, the given distributions require parameterization. The

initial state can be governed by the parameter ⇡ 2 PK representing the probability
⇡k ⌘ p

�
s(1)k = 1

�
, where the set P = {p 2 R | 0  p  1}. This leads to the parameterized

distribution p
�
s(1)|⇡

�
:

p
�
s(1)|⇡

�
=

KY

k=1

⇡
s
(1)
k

k . (2.5)

Notice that 0  ⇡k  1 and
PK

k=1 ⇡k = 1 and therefore correspond to probabilities.
The conditional distribution p

�
s(t)|s(t�1)

�
can be parameterized similarly since these

states are also modeled by K-dimensional binary random variables. Therefore, the pa-
rameter aj,k is introduced with aj,k ⌘ p

�
s(t)k = 1|s(t�1)

j = 1
�
. The elements of the

matrix A 2 PK⇥K represent the transition probabilities of the HMM and determine the
conditional distribution:

p
�
s(t)|s(t�1),A

�
=

KY

k=1

KY

j=1

a
s
(t�1)
j

s
(t)
k

j,k , (2.6)
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where
P

k aj,k = 1 and 0  aj,k  1.
Finally, the emission probabilities p

�
x(t)

|s(t)
�
are specified with state-dependent

parameters � = {�{1}, . . . ,�{k}, . . . ,�{K}
}:

p
�
x(t)

|s(t),�
�
=

KY

k=1

p
�
x(t)

|�{k}�s(t)k . (2.7)

For continuous inputs x(t), candidates such as Gaussian mixture models (GMMs) or DNNs
can e�ciently parameterize p

�
x(t)

|s(t)
�
. In the case of discrete inputs x(t), conditional

tables are applicable.
Based on these three parameterized distributions, HMMs are defined as:

p
�
X,S|⇥

�
= p
�
s(1)|⇡

�⇥ TY

t=2

p
�
s(t)|s(t�1),A

�⇤ TY

t=1

p
�
x(t)

|s(t),�
�
, (2.8)

where ⇥ = {⇡,A,�} denotes a set of HMM parameters.

2.1.2 Parameter Estimation

The objective of the parameter estimation procedure is to determine the optimal HMM
parameters ⇥⇤ given the input sequence X:

⇥⇤ = argmax
⇥

p
�
X|⇥

�
. (2.9)

This approach is typically known as the maximum likelihood estimation (MLE) ap-
proach [18, 64]. The likelihood function L

�
⇥|X

�
based on Equation (2.8) is defined:

L
�
⇥|X

�
= p
�
X|⇥

�
=
X

S

p
�
X,S|⇥

�
(2.10)

=
KX

k(1)=1

· · ·

KX

k(t)=1

· · ·

KX

k(T )=1

p
�
X, s(1)

k(1)
, . . . s(t)

k(t)
, . . . s(T )

k(T ) |⇥
�
, (2.11)

where k(t) defines a specific visiting state in the current state vector s(t) at time t, and
L
�
⇥|X

�
corresponds to a criterion to verify if a local maximum is reached. A naive

approach to determine the likelihood function L
�
⇥|X

�
would be to sum over all states

S in Equation (2.10), which cannot be parallelized since each state s(t) depends on all
the preceding states, and would result in exponentially terms growing w.r.t. to the state
sequence length.

2.1.3 Forward-Backward Algorithm

This issue can be resolved by applying the forward-backward algorithm [128] combined
with a dynamic programming approach [13]. The algorithm defines a recursive scheme to
obtain p

�
X|⇥

�
e�ciently. Therefore, Equation (2.10) is rewritten as:
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p
�
X|⇥

�
=

KX

k=1

p
�
s(t)k ,X|⇥

�
8t 2 {1, 2, · · · , T}, (2.12)

where p
�
s(t)k ,X|⇥

�
refers to the probability of reaching the state sk at the time t, and

the input sequence X is emitted by an HMM with its parameters ⇥. The probability
p
�
s(t)k ,X|⇥

�
can be separated into two independent probabilities:

p
�
s(t)k ,X|⇥

�
= p
�
s(t)k ,X t

1,X
T
t+1|⇥

�
= p
�
s(t)k ,X t

1|⇥
�
p
�
XT

t+1|s
(t)
k ,X t

1,⇥
�
. (2.13)

The first joint probability p
�
s(t)k ,X t

1|⇥
�
specifies the probability of observing the sub-

sequence X t
1 = [x(1), . . . ,x(t)] and being in the state s(t)k . The second probability

p
�
XT

t+1|s
(t)
k ,X t

1,⇥
�
defines the probability of observing the sub-sequence XT

t+1 =

[x(t+1), . . . ,x(T )] and reaching the state s(t)k based on the already observed sub-sequence
X t

1. The probabilities are then denoted as the forward probability ↵(t)
2 PK [22]:

↵(t)
k = p

�
s(t)k ,X t

1|⇥
�

(2.14)

=
KX

j=1

↵(t�1)
j p

�
s(t)k |s(t�1)

j ,X t�1
1 ,⇥

�
p
�
x(t)

|s(t)k , s(t�1)
j ,⇥

�
, (2.15)

and the backward probability �(t)
2 PK [22]:

�(t)
k = p

�
XT

t+1|s
(t)
k ,X t

1,⇥
�

(2.16)

=
KX

j=1

�(t+1)
j p

�
s(t+1)
j |s(t)k ,X t

1,⇥
�
p
�
x(t+1)

|s(t+1)
j , s(t)k ,⇥

�
. (2.17)

The probabilities are further simplified by the three principles below [18, 22]. Notice that
not all model parameters in ⇥ are dependent on the employed probability distributions
and are removed if necessary:

1. For first-order Markov chains, the current state s(t) is only dependent of the
previous state s(t�1) and independent of all the preceding states before the time
step t � 1. Since these probabilities are typically not time-dependent, the time
index is removed:

p
�
s(t)j |s(t�1)

k ,X t�1
1 ,⇥

�
= p
�
sj|sk,A

�
. (2.18)

2. The inputs x(t) in the given sequence X are i.i.d. and therefore not correlated:

p
�
x(t)

|s(t)j , s(t�1)
k ,X(t�1)

1 ,⇥
�
= p
�
x(t)

|s(t)j , s(t�1)
k ,�{j}�. (2.19)
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3. For standard HMMs, the emission probabilities are solely state dependent. There-
fore, the Equation (2.19) can be simplified into:

p
�
x(t)

|s(t)j , s(t�1)
k ,�

�
= p
�
x(t)

|s(t)j ,�
�
. (2.20)

The forward recursion ↵(t)
k is then obtained by:

↵(t)
k =

"
KX

j=1

↵(t�1)
j p

�
sk|sj

�
#
p
�
x(t)

|s(t)k

�
, (2.21)

and the backward recursion �(t)
k by:

�(t)
k =

"
KX

j=1

�(t+1)
j p

�
sj|sk

�
#
p
�
x(t+1)

|s(t+1)
j

�
, (2.22)

where the readability is further improved by excluding the HMM parameters ⇥.
Both recursions require an initialization step to determine the next recursion step

t+ 1:

↵(1)
k = p

�
x(1)

|s(1)k

�
p
�
s(1)k |⇡

�
8k 2 {1, 2, · · · , K}, (2.23)

where s(1)k defines the initial state governed by ⇡ distribution, introduced in Equation (2.5).
Similarly, the backward recursion is initialized for the time step T :

�(T )
k = 1 8k 2 {1, 2, · · · , K}. (2.24)

Generally, the likelihood L
�
⇥|X

�
in Equation (2.12) is solely obtained by recursions

of the forward probabilities ↵(t)
k and the initialization of the backward probabilities �(T )

k

at the last time step T :

p
�
X|⇥

�
=

KX

j=1

↵(t)
j 8t 2 {1, 2, · · · , T}. (2.25)

The introduction of ↵(t) and �(t) provides an e�cient way to estimate the probability of
any state s(t) to any time t. Although the backward probabilities �(t) were not applied for
L
�
⇥|X

�
, they are required for optimizing the HMM parameters, which will be covered

soon.

2.1.4 Viterbi Criterion

The Viterbi criterion allows an approximation eL
�
⇥|X

�
of the entire likelihood p

�
X|⇥

�

by replacing the sum with max operators in Equation (2.11) [22]:

eL
�
⇥|X

�
= max

1k(1)K
. . . max

1k(t)K
. . . max

1k(T )K
p
�
X, s(1)

k(1)
, . . . , s(t)

k(t)
, . . . , s(T )

k(T ) |⇥
�
. (2.26)
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The max operators simplify the forward recursion in Equation (2.21) to e↵(t)
2 PK :

e↵(t)
k = max

1jK

h
e↵(t�1)
j p

�
sk|sj

�i
p
�
x(t)

|s(t)k

�
, (2.27)

and define an e�cient approximation of Equation (2.21). Similarly to the Forward-
Backward algorithm, the recursion is calculated up to the last time step T to receive the
final approximation eL

�
⇥|X

�
:

eL
�
⇥|X

�
= max

1kK
e↵(T )
k . (2.28)

Notice that the backward recursion is skipped, as the forward recursion e↵(t) is
su�cient to obtain eL

�
⇥|X

�
by setting all entries in e�(T )

2 PK to one.
Besides determining an approximation of L

�
⇥|X

�
, the Viterbi criterion is normally

utilized to return the optimal state sequence S⇤. Therefore, it is necessary to track the
optimal path  (t)

2 NK up to the current time t since, otherwise, the information is lost
in applying the recursion:

 (t)
k = argmax

1jK

⇥
e↵(t�1)
j p

�
sk|sj

�⇤
p
�
x(t)

|s(t)k

�
8k 2 {1, 2, · · · , K}. (2.29)

After reaching the final recursion step e↵(T ), a back-tracking procedure retrieves the
optimal state sequence S⇤, where the first entry of S⇤ is initialized with:

s⇤(t) = 0 8t 2 {1, 2, · · · , T}. (2.30)

Then, the state s⇤(t) with the highest probability is found in the last time step T :

k⇤(T ) = argmax
1kK

e↵(T )
k (2.31)

s⇤(T ) = sk⇤(T ) (2.32)

The optimal state s⇤(T ) defines the initial state of the back-tracking procedure, in which
Equation (2.29) is employed to determine the previous states iteratively:

k⇤(t�1) =  (t)

k⇤(t�1) 8t 2 {T, T � 1, · · · , 2} (2.33)

s⇤(t�1) = sk⇤(t�1) 8t 2 {T, T � 1, · · · , 2} (2.34)

2.1.5 Baum-Welch Training

Finally, the actual training based on Equation (2.9) of the HMM parameters is achieved by
either the Baum-Welch [12] or Viterbi training [84]. They di↵er in Equation (2.11), where
the Baum-Welch training applies the entire sum, whereby the Viterbi training replaces
the sums with mathematical max operators. Both procedures iteratively optimize the
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parameters utilizing the expectation-maximization (EM) algorithm [43], which maximizes
Equation (2.10) until a local, predefined criterion is reached.

The log-likelihood p
�
X|⇥

�
defined in Equation (2.9) cannot be optimized directly.

Therefore, an iterative procedure is required, where new parameters ⇥ raise the log-
likelihood p

�
X|⇥

�
. Such an approach is established as:

ln p
�
X|⇥

�(⌧)
� ln p

�
X|⇥old

�(⌧�1)
, (2.35)

where ⌧ refers to the current iteration step in the optimization. In each iteration step ⌧ ,
the objective is to obtain new HMM parameters ⇥, which return a higher likelihood than
the old model parameters ⇥old. The Baum-Welch training [12] corresponds to a modified
version of the EM algorithm [43] and specifies an e�cient way to achieve this objective.
Therefore, an expectation function Q

�
⇥,⇥old

�
is defined in the E-step. However, solely

the input sequence X is directly observable, whereas the latent sequence S is hidden. A
solution is obtained if the expectation of the entire likelihood ln p

�
X,S|⇥

�
is defined

w.r.t. to the posterior distribution of the latent variables p
�
S|X,⇥old

�
[18]:

Q
�
⇥,⇥old

�
= Ep(S|X,⇥old) ln p

�
X,S|⇥

�
(2.36)

=
X

S

p
�
S|X,⇥old

�
ln p
�
X,S|⇥

�
. (2.37)

The notation is typically simplified by introducing two auxiliary posterior distributions,
where the marginal posterior distribution �(t)

2 PK is specified as:

�(t)k = p
�
s(t)k |X,⇥old

�
=

p
�
s(t)k ,X|⇥old

�

p
�
X|⇥old

� , (2.38)

and the joint posterior distribution ⇠(t) 2 PK⇥K :

⇠(t)k,j = p
�
s(t+1)
j , s(t)k |X,⇥old

�
=

p
�
s(t)k , s(t+1)

j ,X|⇥old

�

p
�
X|⇥old

� . (2.39)

Both distributions can be e�ciently determined with the forward and backward proba-
bilities [128] defined in Equations (2.21) and (2.22). By including both probabilities, the

margin �(t)k is rewritten in the following way:

�(t)k =
p
�
s(t)k ,X t

1,X
T
t+1|⇥old

�

p
�
X|⇥old

� =
↵(t)
k �

(t)
k

KP
l=1

↵(t)
l �

(t)
l

. (2.40)

Similarly, the joint margin ⇠(t)k,j is redefined:

⇠(t)k,j =
p
�
s(t)k , s(t+1)

j ,X t
1,X

T
t+1|⇥old

�

p
�
X|⇥old

� (2.41)
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=
↵(t)
k p
�
sj|sk,⇥old

�
p
�
x(t+1)

|s(t+1)
j

�
�(t+1)
jPK

k=1

PK
j=1 ↵

(t)
k p
�
sj|sk,⇥old

�
p
�
x(t+1)|s(t+1)

j

�
�(t+1)
j

. (2.42)

The likelihood p
�
X,S|⇥

�
can then be inserted into Q

�
⇥,⇥old

�
and simplified by the

auxiliary margins �(t) and ⇠(t):

Q
�
⇥,⇥old

�
=
X

S

�
ln
�
p
�
s(1)|⇡

� 
+ ln

� TY

t=2

p
�
s(t)|s(t�1),A

� 
(2.43)

+ ln
� TY

t=1

p
�
x(t)

|s(t),�
� �

p
�
S|X,⇥old

�

=
KX

k=1

�(1)k ln ⇡k +
T�1X

t=2

KX

j=1

KX

k=1

⇠(t)k,j ln aj,k +
TX

t=1

KX

k=1

�(t)k ln p
�
x(t)

|�{k}�, (2.44)

which finalizes the E-step of the EM algorithm [43]. Notice that the first E-step requires
an initialization of the model parameters. The M-step then maximizes the expectation
function Q

�
⇥,⇥old

�
w.r.t. the model parameter ⇥ = {⇡,A,�} and considers �(t)k and

⇠(t)k,j as constant terms. The initial state distribution ⇡ is obtained utilizing a proper
Lagrange multiplier [16]:

KX

k=1

�(1)k ln ⇡k + �
� KX

k=1

⇡k � 1
�
, (2.45)

and setting the derivatives w.r.t. ⇡k to zero, leading to the maximization of ⇡MLE,k:

⇡̂MLE,k =
��(1)k

�
=

�(1)k
KP
j=1

�(1)j

8k 2 {1, 2, · · · , K}, (2.46)

with � =
PK

j=1 �
(1)
j , � being the constant Lagrange multiplier, and

�
·
�
MLE

defining the

obtained variable
�
·
�
through the approach of MLE. A similar procedure is applied to

determine the transition probabilities governed by AMLE:

aMLE,j,k =

T�1P
t=1

⇠(t)k,j

KP
l=1

T�1P
t=1

⇠(t)k,l

=

T�1P
t=1

⇠(t)k,j

T�1P
t=1

�(t)k

8k, j 2 {1, 2, · · · , K}. (2.47)

The maximization of Q
�
⇥,⇥old

�
w.r.t. �{k} depends on the utilized emission probabil-

ity distribution. For a single multidimensional Gaussian distribution N
�
x|�{k}�, where

p
�
x|�{k}� = N

�
x|�{k}� and �{k} = {µ{k},⌃{k}

} gather the mean vector µ{k}
2 RI and
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the co-variance matrix ⌃{k}
2 RI⇥I , the statements resemble a standard MLE approach

for Gaussian models, whereby the responsibility margin �(t)k is included, resulting in:

µ{k}
MLE =

TP
t=1

�(t)k x(t)

TP
t=1

�(t)k

, (2.48)

and

⌃{k}
MLE =

TP
t=1

�(t)k

�
x(t)
� µ{k}

MLE

��
x(t)
� µ{k}

MLE

�T

TP
t=1

�(t)k

. (2.49)

The mean vector µ{k}
MLE and the co-variance matrix ⌃{k}

MLE are state-dependent parameters.

2.1.6 Viterbi Training

The Viterbi training [84] refers to an approximation of the Baum-Welch training, in
which the Viterbi criterion is applied. Thereby, the approximated forward probabilities
e↵(t) and backward probabilities e�(t) lead to a modification of the standard auxiliary
margins �(t) into:

e�(t)k =
e↵(t)
k
e�(t)
k

KP
l=1
e↵(t)
l
e�(t)
l

=
e↵(t)
k

KP
l=1
e↵(t)
l

8k 2 {1, 2, · · · , K}, 8t 2 {1, 2, · · · , T} (2.50)

and ⇠(t) into e⇠(t) into:

e⇠(t)k,j =
e↵(t)
k p
�
sj|sk

�
p
�
x(t+1)

|s(t+1)
j

�e�(t+1)
jPK

k=1

PK
j=1 e↵

(t)
k p
�
sj|sk

�
p
�
x(t+1)|s(t+1)

j

�e�(t+1)
j

8k,j2{1,2, ··· ,K},
8t2{1,2, ··· ,T�1}. (2.51)

These approximated margins are then employed in the E-step of the EM algorithm [43]
and result in a modified expectation function eQ

�
⇥,⇥old

�
, which is Q

�
⇥,⇥old

�
and

su�cient for practical applications.

2.1.7 Beam Search

Although the Viterbi criterion described in Section 2.1.4 allows an e�cient procedure for
obtaining the most likely latent sequence S⇤, it requires iterating K times through all
entries of e↵k, corresponding to the number of entire states s(t)k in each time step t. Even
though it is computationally manageable for low-dimensional latent variables, e.g ., a

16



2. General Background

low number of individual states, it is infeasible for thousands of individual states, as the
computational cost would rise excessively.

In 1980, a pruning solution was proposed by Erman et al . [48], who suggested solely
utilizing a limited number of concurrent paths. Instead of considering all K most likely
paths, they applied a beam of the Kbest most probable paths at the current time t, where
Kbest often refers to the beam size of the beam. Therefore, an ordered set K(t) can be
defined and returned by a mathematical function Top-k

�
· , ·
�
. The function determines

the indices i(l) of the Kbest highest entries of a regarding vector in descending order:

K
(t) = Top-k

�
↵(t), Kbest

�
(2.52)

where K
(1) = {i(1), . . . , i(l), . . . , i(Kbest)}, and ↵(t)

2 PK specifies a pruned version of e↵(t),
where Kbest entries are unequal to zero, and the remaining entries are zero. Notice that
for t = 1, the ordered set K(1) = Top-k

�
e↵(1), Kbest

�
is determined on e↵(1), leading to the

subsequent iterations:

↵(t)
k = max

8j2K(t�1)

⇥
↵(t�1)
j p

�
sk|sj

�⇤
p
�
x(t)

|s(t)k

�
8k 2 {1, 2, · · · , K}, (2.53)

The most likely pruned path is obtained following Section 2.1.4:

 
(t)
k = argmax

8j2K(t�1)

⇥
↵(t�1)
j p

�
sk|sj

�⇤
p
�
x(t)

|s(t)k

�
8k 2 {1, 2, · · · , K}. (2.54)

The recursions ↵(t) and  
(t)

are calculated up to the time T before applying the back-
tracking algorithm to retrieve the most likely pruned state sequence S

⇤
.

17



2. General Background

2.2 Neural Networks

The following section covers the theoretical background of NNs, also named as DNNs
for deeper network structures. Therefore, the concept of perceptrons is introduced,
which defines the base unit of NNs. These perceptrons build the foundations of three
main structures: The multilayer perceptrons (MLPs), the convolutional neural networks
(CNNs), and the recurrent neural networks (RNNs). Besides the mentioned DNN
architectures, various activation functions are discussed to achieve non-linear model
properties. These DNNs are optimized by stochastic gradient descent in order to
generalize to specific data distributions, where the training objective is specified by
various loss functions. The corresponding network weight gradients are obtained by
backpropagation, where the objective training error between the output of the network
and ground truth is determined and then backpropagated through the entire network
from the output back to the input layer. Deeper network structures have to cope with
issues such as vanishing or exploding gradients, which hinder the training success and
lead to non-optimal convergence. Along the standard network training schemes, the
robustness of DNNs has to be ensured. Therefore, the section concludes this chapter
by presenting multiple regularization strategies, such as batch normalization (BN) and
dropout, to prevent overfitting.

2.2.1 The Perceptron

The concept of the perceptron, illustrated in Figure 2.2, was invented by Frank Rosenblatt
in 1958 [136]. Inspired by the neurons in the human brain, he sought to develop models for
representing these neurons. Standard perceptrons are typically composed of J di↵erent
units or outputs aj . Each output aj is obtained by a weighted sum of the elements xi of
an input x 2 RI . The bias bj terms allow the perceptron to shift each output aj and can

Figure 2.2: The concept of a single perceptron, consisting of multiple output units aj . Each
output unit aj , shifted by the bias bj , is generated by a weighted sum of the input x. The
i-th element of the input x is connected to the j-th unit of the perceptron by a weight wj,i.
In order to achieve a non-linear property for higher modeling capacity, an activation function
⇣
�
·
�
is employed for each output aj , leading to the final output hj .
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Figure 2.3: The architecture of an MLP, where multiple perceptrons are stacked into layers.
The input x[1] = x and the output h[4] = y are highlighted with orange boxes, whereby the
hidden layers are marked with bluish boxes with their outputs h[1], h[2], and h[3]. The input
x[1] is forwarded through the entire MLP to generate the response h[4] = y. For simplifications,
the bias terms bj are excluded.

also be interpreted as a threshold before the output aj is emittable.
The connection of the i-th element of the input x to the j-th unit of the perceptron

is specified by the weight wj,i, which can be modified depending on the importance of
the connection. The final output hj is retrieved by applying the activation function ⇣

�
·
�

to each unit output aj, resulting in non-linear perceptron properties.
Multiple perceptrons can be stacked into L layers to generate MLPs, depicted in

Figure 2.3. The output of each layer l can be specified in a layer-wise definition:

h[l]
j = ⇣ [l]

�
a[l]j
�
= ⇣ [l]

� I[l]X

i=1

w[l]
j,ix

[l]
i + b[l]j

�
8l 2 {1, 2, · · · , L}, (2.55)

where
�
·
�[l]

specifies the layer l to which the variable or function refers, and L defines
the total number of layers, including the input and output layers. The Equation (2.55)
can also be rewritten utilizing matrix formulation:

h[l] = ⇣ [l]
�
a[l]
�
= ⇣ [l]

�
W [l]x[l] + b[l]

�
8l 2 {1, 2, · · · , L}, (2.56)

with h[l],a[l], b[l] 2 RJ [l]
, x[l]

2 RI[l] , and W [l]
2 RJ [l]⇥I[l] . Each layer output h[l] is then

fed as the subsequent input x[l+1] of the next layer:

x[l+1] = h[l]
8l 2 {1, 2, · · · , L}, (2.57)

where the first layer is denoted as the input layer, setting the input x as x[1] = x, and
the last layer y = h[L] with y 2 RJ [L]

is termed the output layer. The finalized MLP
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consists of multiple layers l, including non-linear functions ⇣ [18]. The MLPs can be
interpreted as a non-linear function H⇥

�
·
�
, capable of approximating any arbitrary

function [69]:

H⇥

�
x
�
= y = h[L] = W [L]x[L] + b[L] (2.58)

= W [L]
�
⇣ [L�1]

�
W [L�1] . . . ⇣ [1]

�
W [1]x[1] + b[1]

�
. . . b[L�1]

��
+ b[L], (2.59)

where activation functions ⇣ are commonly not applied in the output layer y, i.e.,
⇣ [L]
�
a[L]
�
= a[L], to obtain unbounded output values. The ability to approximate any

arbitrary function H⇥

�
x
�
by MLPs was already demonstrated by Hornik et al . in 1989.

They proved in their theoretical work [69] that even MLPs with single hidden layers are
su�cient to achieve this objective with high precision. Even though these were promising
theoretical results, there are technical limitations in practice. For instance, memory
resources are finite, resulting in limited layer units and total layers.

Over the last years, the number of layers, i.e., the depth of DNNs, steadily increased as
more computational resources became available. However, the vanishing gradient problem,
covered in Section 2.2.9, temporally limited the total depth of these architectures. In
2016, He et al . established a solution for this issue [65] by introducing residual connections
and enabled DNN architectures with over 1000 layers. In general, depth significantly
reduces the number of total network parameters without losing the model capacity of
DNNs. Instead of increasing the number of units per layer, the number of layers increases,
leading to a higher level of abstraction without modifying the total number of model
parameters.

2.2.2 Activation Functions

Activation functions are required to obtain non-linear MLPs, essential to separate data
samples in the hyperspace, where linear hyperplanes are insu�cient. Besides the non-
linearity property, MLPs without applying activation functions cannot learn higher
levels of abstraction as these networks are transformable into standard perceptrons. For
instance, such transformation can be demonstrated by an MLP with a single hidden
layer:

y = h[2] = W [2]x[2] + b[2] (2.60)

= W [2]
�
W [1]x[1] + b[1]

�
+ b[2] (2.61)

= W [2]W [1]x[1] +W [2]b[1] + b[2] (2.62)

= fWx[1] + eb, (2.63)

where the weight matrices are combined into fW = W [2]W [1] and the bias terms into
eb = W [2]b[1] + b[2]. The final MLP formulation corresponds to the definition of standard
perceptrons in Equation (2.56).
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Figure 2.4: Various activation functions, utilized in the DNN layers. The index j is omitted
for better readability. The first graph on the left depicts the identity or linear function, which
passes the output a unaltered to h. In the second graph, the sigmoid function is plotted,
inspired by the firing neurons of the human brain. The third graph illustrates the tanh function,
a rescaled version of the sigmoid function. The last graph presents one of the most popular
activation functions in computer vision, the rectified linear unit (ReLU) function.

Therefore, activation functions need to be employed to achieve the advantage of
multiple layers in MLPs. In Rosenblatt’s original work [136], a unit step function was
employed as an activation function:

h = ⇣
�
a
�
=

(
0 if a < 0

1 if a > 0,
(2.64)

where a single unit output a = aj of an MLP is considered, and the corresponding layer
indices l are excluded to improve readability.

In recent approaches, a wide range of activation functions have been proposed. The
most established activation functions are introduced in the following and are depicted in
Figure 2.4. The simplest type of candidate functions are identities, also known as linear
layers:

⇣
�
a
�
= a, (2.65)

where the activation functions are not modifying the weighted sum a. Identities are
typically employed in the output layers of MLPs.

Other candidates are logistic functions, such as the sigmoid functions, which corre-
spond to a soft version of the unit step in Equation (2.64):

⇣
�
a
�
=

1

1 + exp
�
� a
� , (2.66)

where exp
�
·
�
= e(·) with e referring to Euler’s number

The tanh functions define rescaled versions of the sigmoid functions:

⇣
�
a
�
=

exp
�
a
�
� exp

�
� a
�

exp
�
a
�
+ exp

�
� a
� . (2.67)

The tanh functions di↵er primarily in their output range, with 0 < ⇣
�
a
�
< 1 for the

sigmoid and �1 < h < 1 for the tanh functions. Initially, logistic functions were inspired
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by the action potential of the human brain [68], as neurons require a certain amount of
time for activation in contrast to the direct activations in unit step functions.

The last candidate, the ReLU [108] functions, are determined as:

⇣
�
a
�
= max

�
0, a
�
=

(
a if a > 0

0 else,
(2.68)

and correspond to the most applied activation functions in current approaches [65, 153,
154]. The function combines two important properties of activation functions: non-
linearity and non-vanishing gradients induced by the sparsity of ReLUs. Therefore, very
deep MLPs are obtainable in reduced training time [52].

Apart from the most popular activation functions, various other activation functions
exist, such as leaky ReLUs [99], gated linear units [41], exponential linear units [37], or
Swish units [129], which return slightly better results in task-dependent approaches.

2.2.3 Recurrency

The MLPs can e�ciently model any arbitrary functionH⇥

�
x
�
. However, their predictions

are limited to single inputs x(t), which do not consider temporal information. Even
though it is feasible to utilize these input sequences X by ignoring their temporal
information, valuable information would be discarded.

Standard Recurrent Neural Network An extension of standard MLPs capable of
considering temporal information are recurrent neural networks (RNNs), where early
variations were already described in 1990 [47] and a few years later in [73]. RNNs consist
of shared weights and recurring model structures, where the hidden representations
h[l](t�1) of the previous time step t � 1 are redirected to the input at time t, and the
model weights are shared along the time axis:

h[l](t) = ⇣ [l]
�
W [l]x[l](t) +U [l]h[l](t�1) + b[l]

�
8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}.

(2.69)
The hidden representation h[l](t�1) of the previous time step t � 1 is often referred to
as a hidden state of an RNN [183], which implicitly condenses the temporal component
into the fixed-length representation h[l](t�1), weighted by the recurrent weight matrix
U 2 RJ [l]⇥J [l]

. In practice, RNNs are unfolded T times. The result of the unfolding
process of the model is depicted in Figure 2.5, where the RNNs are considered standard
MLPs with an additional input h[l](t�1) in each time step t.

Similar to MLPs, RNNs can generate an output y(t) for each time step t:

y(t) = h[L](t) = W [L]x[L](t) + b[L] 8t 2 {1, 2, · · · , T}, (2.70)

if x[l+1](t) = h[l](t) is set for layer one up to layer L� 1, including the current time step t.
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Figure 2.5: The architecture of an RNN. In practice, the RNN is unfolded, where the RNN
is copied T times, corresponding to the length of the input sequence X 2 RI⇥T . The unfolded
RNN is then handled as a standard MLP for each time step t. However, the hidden unit output
h[l](t�1) has to be stored for the next time step t+ 1.

Long Short-Term Memory Although the recurrence of standard RNNs allows the
implicit utilization of temporal information, they lack in several aspects [183]:

1. In long input sequences X, RNNs tend to be vulnerable to vanishing gradients
since they resemble very deep MLPs, which is caused by the recurrency. The
problem of vanishing gradients is explained in Section 2.2.9.

2. The hidden state h[l](t) cannot be stored for a specific time step t and then applied
in later time steps, which is required if valuable information needs to be transferred
from the beginning to the end of the sequence X.

3. If hidden states h[l](t�1) are memorized and radical changes between the input x(t)

and x(t+1) occur, a reset or forget mechanism is required to avoid over-dominant
impacts.

4. Sometimes, the hidden states h[l](t) contain barely new information. Therefore, it
would be beneficial to skip or lower the impact of the current hidden representation
h[l](t) on future representations.

In 1997, Hochreiter et al . proposed an extension of standard RNNs. They established the
long short-term memory networks (LSTMs) [67], which tackled all the aspects mentioned
above. In their approach, they created a cell with a memory state. The cell is built out
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2. General Background

Figure 2.6: The architecture of LSTMs with peephole connections. The LSTMs are governed
by four gate mechanisms: the forget gate f [l](t), the input gate i[l](t), the output gate o[l](t),
and an auxiliary memory state ec[l](t). These gates are trainable MLPs and control the internal
memory state c[l](t) based on input sequences X. In the forget, input, and output gates, sigmoid
activation functions are applied, represented by darker greenish boxes around the gate functions.
In the auxiliary memory state, the tanh activation functions are utilized, depicted by brighter
greenish boxes. The dashed lines refer to the peephole connections [50].

of several gate mechanisms, represented by perceptrons, which flexibly process the input
x[l](t) and the hidden state h[l](t�1) in each layer l. A few years later, the standard LSTM
approach was modified to utilize the memory state in the gate modules of the model [50].
Both LSTM variations are depicted in Figure 2.6, in which the dashed lines refer to the
modifications in LSTMs with peephole connections.

The input gate i[l](t) 2 PJ [l]
, the forget gate f [l](t)

2 PJ [l]
, and the output gate

o[l](t)
2 PJ [l]

is defined as:

i[l](t) = sigmoid
�
W [l]

i x
[l](t) +U [l]

i h
[l](t�1) + V [l]

i c
[l](t�1) + b[l]i

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T}, (2.71)

f [l](t) = sigmoid
�
W [l]

f x
[l](t) +U [l]

f h
[l](t�1) + V [l]

f c
[l](t�1) + b[l]f

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T}, (2.72)

o[l](t) = sigmoid
�
W [l]

o x
[l](t) +U [l]

o h
[l](t�1) + V [l]

o c
[l](t) + b[l]o

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T}, (2.73)

where W [l]
i ,W

[l]
f ,W

[l]
o 2 RJ [l]⇥I[l] , U [l]

i ,U
[l]
f ,U

[l]
o 2 RJ [l]⇥J [l]

, and V [l]
i ,V

[l]
f ,V

[l]
o 2 RJ [l]⇥J [l]

are weight matrices, b[l]i , b
[l]
f , b

[l]
o 2 RJ [l]

are the biases, and the terms regarding c[l](t�1)

refer to the newly added peephole connections proposed in [50]. All three gates are
standard perceptrons whose activation functions are set to sigmoid functions.

In order to memorize essential aspects at a specific time step t in the sequence, a
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memory state is added. Similar to the gate perceptrons in Equations (2.71) to (2.73), an
additional perceptron, which represents an auxiliary memory state ec[l](t) 2 {c 2 R |� 1 
c  1 }J

[l]
, is employed:

ec[l](t) = tanh
�
W [l]

ec x
[l](t) +U [l]

ec h
[l](t�1) + b[l]ec

�
8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}.

(2.74)
In contrast to the gates defined above, the auxiliary memory states ec[l](t) do not have
access to the memory states c[l](t), and their activation functions are set to tanh functions.
The remaining parameters W [l]

ec 2 RJ [l]⇥I[l] and U [l]
ec 2 RJ [l]⇥I[l] refer to weight matrices

and b[l]ec 2 RJ [l]
to a bias vector. Since the final memory state c[l](t) 2 RJ [l]

requires options
for skipping, updating, or forgetting the current memory state c[l](t), it is specified as:

c[l](t) = f [l](t)
� c[l](t�1) + i[l](t) � ec[l](t) 8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}, (2.75)

where f [l](t) and i[l](t) correspond to the forget and input gates, respectively, and the
operator � defines the Hadamard product, i.e., the elementwise product of two vectors
or matrices. These gate perceptrons generate the current memory state c[l](t) by either
addressing more importance on past memory states c[l](t�1) or by addressing more
relevance to the current input ec[l](t), which leads to a reduction of the forget gates f [l](t),
or an increase of the input gates i[l](t), respectively.

Finally, the hidden state h[l](t)
2 {c 2 R |�1  c  1 }J

[l]
is obtained by a combination

of the output gate o[l](t) and the memory state c[l](t):

h[l](t) = o[l](t)
� tanh

�
c[l](t)

�
8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}, (2.76)

where the activation functions are set to tanh functions. The composition of h[l](t) also
demonstrates the advantage of LSTMs, where stored information from the past can
be stored in the memory state c[l](t), forwarded over long temporal distances, and then
actively considered in the current hidden state h[l](t). Notice that the outputs y(t) = h[L](t)

for the current time step t can be obtained by the similar output procedure of standard
RNNs (see Equation (2.70)).

Along LSTMs, gated recurrent units (GRUs) exist [31], o↵ering another extension
approach for RNNs. Even though LSTMs exist longer than GRUs, a recent study could
not identify major performance improvements in employing GRUs over LSTMs [36].

Long Short-Term Memory Projected A further extension of standard LSTMs [50] is
long short-term memory projected networks (LSTMPs). These networks were proposed
by Sak et al . [139], who applied projection layers to reduce the dimension of the
hidden state h[l](t). Thereby, the LSTMPs were forced to employ their parameters more
e�ciently, yielding a significant performance improvement. The simple yet e�cient
approach introduced a recurrent projection layer p[l](t):
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p[l](t) = W [l]
p h

[l](t)
8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}, (2.77)

where p[l](t)
2 R eJ [l]

refers to a dimension-reduced projection of h[l](t)
2 RJ [l]

, i.e., eJ [l] < J [l],
and W [l]

p 2 R eJ [l]⇥J [l]
to the regarding projection matrix. In their experiments, satisfying

results were typically obtained for eJ [l] = J [l]

4 [29]. The projection p[l](t�1) then replaced

the hidden state h[l](t�1) of standard LSTMs in Equations (2.71) to (2.74):

i[l](t) = sigmoid
�
W [l]

i x
[l](t) + eU [l]

i p
[l](t�1) + V [l]

i c
[l](t�1) + b[l]i

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T}, (2.78)

f [l](t) = sigmoid
�
W [l]

f x
[l](t) + eU [l]

f p
[l](t�1) + V [l]

f c
[l](t�1) + b[l]f

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T}, (2.79)

o[l](t) = sigmoid
�
W [l]

o x
[l](t) + eU [l]

o p
[l](t�1) + V [l]

o c
[l](t) + b[l]o

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T}, (2.80)

ec[l](t) = tanh
�
W [l]

ec x
[l](t) + eU [l]

ec p
[l](t�1) + b[l]ec

� 8l2{1,2, ··· ,L}
8t2{1,2, ··· ,T},, (2.81)

and also reduced the number of parameters in the weight matrices eU [l]
i , eU

[l]
f ,
eU [l]

o 2

RJ [l]⇥ eJ [l]
. Deep LSTMPs are retrieved by following the standard RNN output procedure

in Equation (2.70).

Bidirectional Long Short-Term Memory Projected Standard LSTMs o↵er an
e�cient approach for generating hidden representations h[l](t) relying on past temporal
context. However, if the entire input sequence X exists, it is also beneficial to employ
future context for the current hidden state h[l](t). In 1997, Schuster et al . proposed the first
bidirectional RNN architecture [142], which utilized the past and future context. Later,
Graves et al . transferred this idea to bidirectional long short-term memory networks
(BLSTMs), which were applied to phoneme classification [58]. A major drawback of
BLSTMs is caused by a large increase in model parameters since two individual LSTMs
are required to consider the past and future context independently, which results in a
doubled number of parameters compared to standard LSTMs.

This issue is resolved by first applying LSTMPs for the past context with the projected
hidden states �!p [l](t):

�!p [l](t) =
�!
W [l]

p

�!
h [l](t)

8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}, (2.82)

and then additional LSTMPs for the future context with the projected hidden represen-
tations  �p [l](t) [57],

 �p [l](t) =
 �
W [l]

p

 �
h [l](t)

8l 2 {1, 2, · · · , L}, 8t 2 {1, 2, · · · , T}, (2.83)

where �!p [l](t), �p [l](t)
2 R eJ [l]

, and
�!
W [l]

p ,
 �
W [l]

p 2 R eJ [l]⇥J [l]
. The hidden states

�!
h [l](t) and

 �
h [l](t) are determined following Equations (2.78) to (2.81), and the symbols

��!�
·
�
and

 ���
·
�
refer to the parameters or outputs following the past and future projected hidden

state sequence, respectively.
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In order to return the final and deep bidirectional long short-term memory projected
(BLSTMP) architecture, the projected hidden states of the current layer l are concate-
nated and fed as the new input to the subsequent forward and backward LSTMPs
layers:

x[l+1](t) = !p [l](t) = �!p [l](t) ++
 �p [l](t)

8l 2 {1, 2, · · · , L}, (2.84)

where ++ defines a concatenate operator between two vectors or matrices. The concate-
nation between �!p [l](t) ++

 �p [l](t) results in the vector  !p [l](t)
2 R2 eJ [l]

. The final BLSTMP
output y(t) for the time step t is obtained by combining �!p [L](t) and  �p [L](t) in the final
layer L:

y(t) =
�!
W [L]�!p [L](t) +

 �
W [L] �p [L](t) + b[L] 8t 2 {1, 2, · · · , T}. (2.85)

2.2.4 Convolution

Even though MLPs and RNNs can approximate any arbitrary function [69], the size of
the inputs x[l](t) to each layer l strongly influences the required computational resources
for calculating the corresponding matrix operations. Since MLPs and RNNs can solely
process one-dimensional input data x 2 RI , higher-dimensional data structures, such
as images I 2 RM⇥N , are typically vectorized if they need to be used in these models.
Therefore, a function vec

�
·
�
is defined as:

vec
�
I
�
=
�
i1,1, i1,2, . . . , i2,1, i2,2, . . . , iM,N�1, iM,N

�>
, (2.86)

where I refers to a two-dimensional image with its entries im,n. However, even if small
images are vectorized, MLPs are fed by high-dimensional input vectors x = vec

�
I
�
of

high dimension, i.e., x 2 RMN .
As MLPs are infeasible to process high-dimensional data e�ciently without applying

dimension-reducing techniques beforehand, and small input shifts in x lead to major
parameter changes in training, CNNs suggest an alternative way of processing high-
dimensional data [83]. Thereby, CNNs apply three key concepts: parameter sharing,
translation equivariant, and sparse connections [82, 183].

A convolutional layer of CNNs can be derived from standard perceptrons [183] if
X 2 RI⇥J refers to two-dimensional inputs and H 2 RI⇥J to two-dimensional hidden
representations of a perceptron:

hi,j = ⇣
�
bi,j +

X

o

X

p

wi,j,o,pxo,p

�
8i 2 {1, 2, · · · , I}, 8j 2 {1, 2, · · · , J} (2.87)

= ⇣
�
bi,j +

X

h

X

w

eki,j,h,wxi+h,j+w

�
8i 2 {1, 2, · · · , I}, 8j 2 {1, 2, · · · , J}, (2.88)

where the subscripts
�
o, p
�
re-indexed by

�
o = i + h, p = j + w

�
. The initial weight

matrix is replaced by a kernel fK 2 RI⇥J⇥ eH⇥fW defined as fKi,j,h,w = W i,j,i+h,j+w, and
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bi,j refers to an entry of the two-dimensional bias matrix B 2 RI⇥J . The kernel matrix
fKi,j,h,w exists for each position

�
h, w

�
in the input matrix X and is spatial-dependent

on regions
�
i, j
�
. For instance, unique position-dependent kernels are learned if similar

features are placed at di↵erent positions in the input X. Since this is highly ine�cient
caused of the number of required parameters, a single kernel fK is shared along each
position

�
i, j
�
:

hi,j = ⇣
�
b+

X

h

X

w

fKh,wxi+h,j+w

�
8i 2 {1, 2, · · · , I}, 8j 2 {1, 2, · · · , J}, (2.89)

yielding in a single scalar bias b 2 R and a dimensional-reduced kernel fK 2 R eH⇥fW .
In general, the Equation (2.89) already defines the convolutional operation between a
kernel fK and an input X. Furthermore, the utilization of a shared kernel fK induces
translation equivariance, where a specific shift in the input X equals a similar shift in
the output H. Notice that the concept of equivariance is not present in MLPs, as a
minor modification in the input would lead to major changes in the output.

So far, there is no advantage in utilizing convolutional layers compared to standard
MLPs since the size of the kernel fK is not limited and could be equal to the size of
the input X. In practice, processing two-dimensional data, such as images, requires
detecting specific local features, such as edges. Since these features are locally bounded,
smaller kernels K 2 RH[l]⇥W [l]

are su�cient to detect those:

h[l]
i,j = ⇣ [l]

�
b[l] +

H[l]X

h=1

W [l]X

w=1

k[l]
h,wx

[l]
i+h,j+w

� 8 1iI[l]�H[l]+1,
8 1jJ [l]�W [l]+1

8l2{1,2, ··· ,L},
, (2.90)

with H [l]
⌧ I [l] and W [l]

⌧ J [l] being the dimensions of the reduced kernel K, which
greatly decreases the number of required kernel parameters. Notice that in the formulation
above, the stride length is set to one, and no zero-padding is applied. The stride length
s refers to every position

�
si, sj

�
of input X [l] in which the convolution operation is

employed. The zero-padding specifies an operation to sustain the dimensions of the
output h[l]

i,j . Therefore, outer rows and columns of X [l] are filled with zero values added.

If the zero-padding procedure is skipped, the dimension reduction of h[l]
i,j can be observed

in Equation (2.90), where the dimensions of H [l]
2 R(I[l]�H[l]+1<I[l])⇥(I[l]�W [l]+1<J [l]) are

reduced compared to the dimensions of X [l]
2 RI[l]⇥J [l]

.
The finalized Equation (2.90) corresponds to the standard definition of a convolutional

layer in CNNs [171, 183]. Typically, CNNs are further extended for multiple input and
output channels. For instance, a single-layer CNN with one input channel and Z [l] output
channels would yield the kernel dimensions K 2 RZ[l]⇥1⇥H[l]⇥W [l]

.
Besides the standard CNNs, other variants can be found in dilated convolutions [177],

where sparse kernels are employed, or deformable convolutions [40], where each kernel
weight can be shifted continuously instead of symmetric kernel shifts.

Pooling A drawback of the hidden representations h[l]
i,j of convolutional layers refers

to the missing translation invariance property, which can be achieved by pooling layers

28



2. General Background

summarizing the statistics of h[l]
i,j [82]. The most popular pooling layers are max-pooling

layers [171]:

h[l]
i,j = max

1oO[l]
max

1pP [l]
x[l]

O[l]i+o,P [l]j+p
8i2
�
0,1, ··· ,

⌃
I
[l]

O
[l]

⌥
�1
 
,8j2
�
0,1, ··· ,

⌃
J
[l]

P
[l]

⌥
�1
 
,

8l2{1,2, ··· ,L},
(2.91)

and average-pooling layers:

h[l]
i,j =

1

O[l]P [l]

O[l]X

o=1

P [l]X

p=1

x[l]

O[l]i+o,P [l]j+p
8i2
�
0,1, ··· ,

⌃
I
[l]

O
[l]

⌥
�1
 
,8j2
�
0,1, ··· ,

⌃
J
[l]

P
[l]

⌥
�1
 
,

8l2{1,2, ··· ,L}.
(2.92)

In these layers, the input X [l] is divided into
⌃

I[l]

O[l]

⌥
⇥
⌃
J [l]

P [l]

⌥
non-overlapping subregions

Xsub 2 RO[l]⇥P [l]
, with d·e defining the ceiling operation. Each subregion Xsub is

then represented either by the maximum value, i.e., in max-pooling layers, or by an
average value, i.e., in the average pooling layer, of these subregions. In this process,
the information on the precise input position is lost, and solely the information of an
approximated position is retained, leading to the translation invariance property.

2.2.5 Training Criterion

The sections above presented the fundamental layer types of several current state-of-
the-art architectures. All model parameters representing standard DNNs have to be
optimized or trained based on a predefined training criterion. In supervised training,
where labeled datasets D =

�
(X(n), Ŷ (n))

 N
n=1

exist, the optimization criterion can be
defined either as a regression or a classification task.

Regression Task The regression tasks can be considered curve-fitting tasks, where
continuous functions have to be determined, which can represent the datasets D. The
target label ŷ(t)

2 Ŷ (n) in the datasets D are continuous vectors of any size J , leading
to continuous outputs Y of the obtained function H⇥ with equal dimensions J [18].

Classification Task In classification tasks, model functions H⇥ classify inputs x(t)
2

X(n) and assign them to a particular category, where the number of categories is finite [18].
The target labels ŷ(t) 2 Ŷ (n) in the dataset D are typically discrete and one-hot encoded
to obtain ŷ(t)

2 BJ with kŷ(t)
k = 1 (compare to Equation (2.3))

Generally, the training criterion is defined as follows:

⇥⇤ = argmin
⇥

L
�
H⇥

�
x
�
, ŷ
�
, (2.93)

where ⇥ gathers all the model parameters, i.e., all weights w[l]
j,i and bias b[l]j , ⇥

⇤ represents
the optimal model parameters based on a loss function L

�
y, ŷ

�
.
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2.2.6 Loss

The loss functions define a training criterion to determine optimal model parameters ⇥ by
minimizing its function value. The impact of the loss function on the network parameters,
i.e., the gradients of the loss w.r.t. ⇥, are derived by the backpropagation (BP) algorithm,
introduced in the following subsection. Therefore, the chosen loss functions need to be
di↵erentiable to apply the BP algorithm.

The Mean Squared Error Loss Function The most popular loss function candidate
in the mean squared error (MSE) loss LMSE

�
· , ·
�
, utilized in several regression tasks

since it defines an intuitive and straightforward training criterion:

LMSE

�
y, ŷ

�
=

1

J

JX

j=1

�
yj � ŷj

�2
, (2.94)

where J specifies the dimension of the DNN outputs y and the target label ŷ. The
gradients of the loss w.r.t. the outputs y of the DNN are obtained by:

@L
�
y, ŷ

�

@y
=

2

J

�
y � ŷ

�
, (2.95)

corresponding to a scaled subtraction between the outputs y and the target labels ŷ.

The Kullback-Leibler Divergence Loss Function The Kullback-Leibler divergence
(KLD) loss [80] defines an information-theoretic training criterion that measures the
information loss caused by approximated distributions in comparison to the true target
distributions [82]:

LKLD

�
y, ŷ

�
=

JX

j=1

ŷj ln

✓
ŷj
yj

◆
=

JX

j=1

ŷj
�
ln ŷj � ln yj

�
(2.96)

It has a non-negative value property and is often referred to as a distance measurement
between two distributions, even though asymmetric properties exist since generally
eLKLD

�
y, ŷ

�
6= eLKLD

�
ŷ,y

�
[82].

Since the KLD loss functions require probability distributions, the network outputs y
are commonly transformed into probability distributions by softmax function  

�
·
�
[82],

and the target labels ŷ are one-hot encoded (compare to Equation (2.3)):

eyj =  
�
y
�
j
=

exp
�
yj
�

PJ
k=1 exp

�
yk
� 8j 2 {1, 2, · · · , J}, (2.97)

with ey being the transformed output y. As a result, the standard KLD loss function is
modified [183]:

eLKLD

�
y, ŷ

�
=

JX

j=1

ŷj

 
ln ŷj � ln

exp
�
yj
�

PJ
k=1 exp

�
yk
�

!
(2.98)
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=
JX

j=1

ŷj ln ŷj + ln
JX

j=1

exp
�
yj
�
�

JX

k=1

ŷkyk, (2.99)

where eLKLD refers to the modified KLD loss function, and H(ŷ) =
PJ

j=1 ŷj ln ŷj defines
the entropy measurement of the target labels ŷ. Although it would be feasible to apply
standard outputs y instead of the transformed outputs ey in the KLD loss function, the
gradients of eLCE w.r.t. y are simplified significantly [183]:

@LKLD

�
y, ŷ

�

@y
=  

�
y
�
� ŷ. (2.100)

Notice that the gradients w.r.t. to y of the entropy @
@yH

�
ŷ
�
= @

@y

PJ
j=1 ŷj ln ŷj = 0 since

the target labels ŷ are independent of the model parameters. In practice, the softmax is
prone to overflow and underflow, which need to be considered [82].

The Cross Entropy Loss Function The cross entropy (CE) loss function is derived
from the enhanced KLD loss function. Since the target labels ŷ are not altered during
training, the target label distribution can be assumed constant. Therefore, the entropy
of the dataset is H

�
ŷ
�
= 0, and the KLD loss function eLKLD

�
y, ŷ

�
is simplified into:

eLCE

�
y, ŷ

�
= �

JX

j=1

ŷj ln
exp

�
yj
�

PJ
k=1 exp

�
yk
� = ln

JX

j=1

exp
�
yj
�
�

JX

k=1

ŷkyk, (2.101)

whereby the DNN outputs y are transformed by the softmax function  . The gradients
of the KLD and CE loss functions are equal, as the entropy H

�
ŷ
�
of the target labels

remains constant in training.
Besides the three fundamental loss functions introduced above, several other domain-

related loss functions exist. In ASR, popular loss functions are the connectionist temporal
classification (CTC) loss [55] or the lattice-free maximum mutual information (MMI)
loss [125]. The CTC loss function is further discussed in Section 3.1.2, as it is employed
in multiple state-of-the-art (SOTA) approaches of ASR.

2.2.7 Backpropagation

Based on the training criteria defined in Section 2.2.5 and the introduction of multiple
loss functions L in Section 2.2.6, the training objective of DNNs is specified. However,
methods for minimizing chosen loss functions L and e�ciently computing the required
gradients of loss functions L w.r.t. all model parameters were not discussed so far. These
gradients are required to perform the gradient descent in Section 2.2.8.

In 1982, Werbos introduced the first e�cient BP algorithm for DNNs [167], although
he had already presented related base concepts in 1974 [166]. Nowadays, the gradients
for all modern DNN architectures are determined by the BP algorithm.
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The concept of the BP algorithms requires the definition of loss functions L
�
y, ŷ

�

(see also Section 2.2.6), where the outputs y are retrieved by feeding the DNNs with
the inputs x (compare to Section 2.2.1), and the target labels ŷ are obtained from a
given dataset D. Then, an initial error ✏[L] 2 RJ [L]

is determined in the output layer
L [82, 112]:

✏[L] = ryL
�
y, ŷ

�
� ⇣

0[L]
�
a[L]
�
, (2.102)

where ry =
�

@
@y1

, . . . , @
@yj

�>
specifies the partial derivative operator w.r.t. the variable in

the subscript and
�
·
�0

defines the first derivative. Then, the error ✏[L] is backpropagated
to the preceding layers l:

✏[l] =
�
W [l+1]>✏[l+1]

�
� ⇣

0[l]
�
a[l]
�
8l 2 {L� 1, L, · · · , 1}, (2.103)

leading to error vectors ✏[l] 2 RJ [l]
in each layer l. The corresponding gradients of the

loss L w.r.t. all the model weights are derived by:

@L
�
y, ŷ

�

@w[l]
j,i

= h[l�1]
i ✏[l]j 8l 2 {L� 1, L, · · · , 1}, (2.104)

and w.r.t. all the model biases by:

@L
�
y, ŷ

�

@b[l]j
= ✏[l] 8l 2 {L� 1, L, · · · , 1}, (2.105)

where a[0] corresponds to the input x = a[0].
In general, the BP algorithm can be interpreted as an e�cient approach to backprop-

agate gradients from the output to the input layer by applying the chain rule multiple
times [112]:

@L
�
y, ŷ

�

@w[l]
j,i

=
X

j[L]

X

j[L�1]

· · ·

X

j[l+1]

@L
�
y, ŷ

�

@h[L]

j[L]

@h[L]

j[L]

@h[L�1]

j[L�1]

. . .
@h[l+1]

j[l+1]

@h[l]
j

@h[l]
j

@w[l]
j,i

. (2.106)

Backpropagation Through Time In 1988, Werbos extended the BP algorithm to
the backpropagation through time (BPTT) algorithm [168] to be applicable for RNNs
(compare to Section 2.2.3). Similar to the standard BP, the output sequence Y is
generated by feeding the input sequence X into the RNN, obtaining the gradients of the
loss eL

�
Y , Ŷ

�
by:

@eL
�
Y , Ŷ

�

@w[l]
j,i

=
1

T

TX

t=1

@L
�
y(t), ŷ(t)

�

@w[l]
j,i

(2.107)
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(2.108)

All the gradients are determined following the standard BP algorithm, except for the
last gradient @h[l](t)

j /@w[l]
j,i, as h[l](t)

j also depends on the previous hidden state h[l](t�1)
j

caused by the recurrent connection. As a result, the last gradient consists of separate
gradients. The first gradient represents the standard gradient of the hidden state h[l](t)

j

w.r.t. the weights w[l]
j,i of current layer l at the time t. The second gradient corresponds

to the extended gradient introduced by the BPTT algorithm [183] and considers the
dependency on the previous time step t� 1:

@h[l](t)
j

@w[l]
j,i

=
@h[l](t)

j

@w[l]
j,i

+
t�1X

m=1

 
tY

n=m+1

@h[l](n)
j

@h[l](n�1)
j

!
@h[l](m)

j

@w[l]
j,i

. (2.109)

In practice, the formulation is determined by unfolding the RNNs, and performing a
forward pass for each time step t (compare to Figure 2.5). Then, the BP algorithm is
utilized to acquire all time-dependent layer gradients.

2.2.8 Stochastic Gradient Descent

The gradient descent procedure [82] employs the retrieved gradients for minimizing the
predefined loss functions L, which results in modifying the model parameters. Therefore,
the introduced loss functions L are reformulated as cost functions C

�
· , ·

�
, utilizing

multiple input samples from the given dataset D instead of single tuples
�
x, ŷ

�
2 D:

C
�
Y , Ŷ

�
=

1

N

NX

n=1

L
�
H⇥

�
x(n)

�
, ŷ(n)

�
. (2.110)

In practice, employing the entire dataset D is infeasible, caused of the limited memory
resources. For this reason, randomly sampled subsets B 2 D are applied, resulting in the
stochastic gradient descent (SGD) procedure:

CSGD

�
Y B, Ŷ B

�
=

1

B

BX

n=1

L
�
H⇥

�
x(n)

�
, ŷ(n)

�
, (2.111)

with
�
x(n), ŷ(n)

�
2 B and

�
·
�
B referring to the values in the current mini-batch B, whose

size is set by B. The mini-batches B are typically sampled without replacement from a
given dataset D until the batches cannot be filled. This condition concludes the current
epoch, which specifies an iteration through the entire dataset D.

The following SGD procedure is initiated by the parameter initialization of the DNN
for the first iteration step ⌧ = 1. Then, each iteration step ⌧ +1 consists of first obtaining
the set of model parameter gradients G(⌧+1) for each mini-batch B by the BP algorithm:
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G
(⌧+1) =

@CSGD

�
Y B, Ŷ B

�
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@CSGD

�
Y B, Ŷ B

�

@w[l](⌧)
j,i

,
@CSGD

�
Y B, Ŷ B

�

@b[l](⌧)j

)
8 1iI[l],
8 1jJ [l]

8l2{1,2, ··· ,L},

(2.112)
followed by a descent step. As the notation would be cluttered by including all gradients,
the descent step is demonstrated for a single gradient vector g(⌧+1)

2 RD with g 2 G
(⌧+1),

where g(⌧+1) is the gradient of a single network parameter ✓(⌧+1)
2 RD with ✓(⌧+1)

2 ⇥
and is obtained by the BP algorithm. Since these gradients of SGD are prone to noise
caused by the low sample size B, momentum terms v are added to the SGD formulation
to smooth the gradients by preventing sudden changes [127].

The momentum vector v(⌧)
2 RD is updated by:

v(⌧+1) = ↵v(⌧)
� ⌘g(⌧+1), (2.113)

with ↵ 2 P being a hyperparameter to modify the impact of the momentum on the
gradient vectors g(⌧), and ⌘ 2 R+ defines the learning rate of each gradient descent step
and requires it to be positive. The optimization process slows down for lower learning
rates ⌘, and the risk of getting stuck in a high local minimum is increased. In contrast,
larger learning rates ⌘ speed up the optimization process with the risk of noisy gradients
overshooting local minimas.

The descent step is finalized by updating the corresponding network parameter ✓(⌧+1)

by:

✓(⌧+1) = ✓(⌧) + v(⌧+1). (2.114)

The descending procedure is repeated until a stopping criterion is reached.
Over the years, the SGD has been steadily improved and extended, primarily to receive

more robust gradients. Popular candidates are found in Adagrad [45], Adadelta [180],
and Adam [76]. Adagrad adapts the learning rate by tracking the inputs X. If frequent
inputs x are observed, the learning rate ⌘ is decreased, whereas higher learning rates
⌘ are set for more infrequent inputs x [45]. The Adadelta optimizer corresponds to an
extension of Adagrad [180]. Here, a gradient window is added to restrict past gradients.
Additionally, gradients were replaced by decaying running averages to improve e�ciency.
The Adam optimizer utilizes two bias-corrected momentum vectors with exponential
decay factors, e�ciently compensating for noisy gradients and not requiring any learning
rate adaptions [76].

2.2.9 Vanishing and Exploding Gradients

The BP algorithm e�ciently determines the gradients of loss functions L w.r.t. the model
parameters ⇥. However, typical problems of DNN and RNN optimization with BP are
vanishing and exploding gradients. Vanishing gradients refer to events in DNN training
where the training procedure experiences sudden halts, and further loss changes are not
observable. Exploding gradients define the opposite events, where the value of the loss L
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abruptly exceeds a numerical representation. Both issues are already known since 1993
when Bengio et al . [14] described problems in training RNNs with very long sequences.
They identified that the vanishing and exploding gradient problem is caused by the norm
of the gradients, which either decreases to zero or increases to infinity, respectively.

A precise theoretical analysis with a regarding solution was introduced by Pascanu
et al . [117] a few years later. They demonstrated that the problem of vanishing and
exploding gradients is observable in RNN layers l, an eigendecomposition:

W [l] = V [l]diag
�
�[l]
�
V [l]�1

, (2.115)

is applied, where W [l]
2 RI[l]⇥I[l] is assumed to be a square matrix, V [l]

2 RI[l]⇥I[l]

describes a square matrix,
�
·
��1

defines the inverse matrix operator, diag
�
�[l]
�
2 RI[l]⇥I[l]

refers to a diagonal matrix, and �[l]
2 RI[l] are the eigenvalues of W [l]. If RNNs are then

unfolded t times, the matrix W [l] is reused t times (compare to Section 2.2.3) to obtain
the gradients by the BPTT algorithm [82]:

�
W [l]

�t
= V [l]diag

�
�[l]
�t
V [l]�1

. (2.116)

As a result, the gradients are scaled by the eigenvalues diag
�
�[l]
�t
, and vanish for

eigenvalues smaller than one and explode for eigenvalues larger than one [82].
Pascanu et al . [117] suggested a gradient-clipping procedure to prevent exploding

gradients. An exemplary single gradient g(⌧+1) in the current descent step ⌧ + 1 is
rescaled if its norm exceeds a threshold �:

g(⌧+1) =
�g(⌧)

��g(⌧)
�� if

��g(⌧)
�� > �, (2.117)

with
�� ·
�� referring to the L2 vector norm. The hyperparameter � need to be found

heuristically, whereby � values corresponding to half of the average norm lead to regular
training [117]. The gradient-clipping approach requires minor computational overhead
and yields more stable training as the gradients g(⌧) are bounded.

For vanishing gradients, several strategies are applicable. Glorot et al . [52] rec-
ommended utilizing ReLU activation functions, as they induce sparsity with ”dead”,
unrecoverable neurons and lead to simplification, which need not be considered in the
BP algorithm. Other strategies proposed skip connections [65], allowing the gradient flow
to skip specific layers and BN layers for normalizing the current mini-batch B, which are
covered in Section 2.2.11.

2.2.10 Model Generalization

The established methods and algorithms laid the foundations for constructing and training
DNN architectures. However, solely focusing on obtaining the optimal parameters is
insu�cient, as it is essential to attain model parameters ⇥ that also perform well on
unseen training data [82].
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Commonly, the generalization ability of H⇥ is measured by splitting a labeled dataset
D into three non-overlapping sets: the training set train Dtrain, the development set dev
Ddev, and the testing set test Dtest, where Dtrain,Ddev,Dtest ✓ D. In the training phase,
the model is optimized on Dtrain and evaluated on Ddev. The test set Dtest is excluded
from the optimization, and only employed in the final evaluation. Depending on the
objective, a metric is defined to measure the error between the model predictions Y
and the target labels Ŷ . For each data set, the training µtrain, dev µdev, and test errors
µtest are obtained. The test error µtest is also referred to as the generalization error [82]
since it specifies the generalization capabilities of DNNs on unseen data. Notice that
this statement is only valid if and only if all the samples of the sets are i.i.d. and drawn
from the same underlying data-generating distribution [82].

Therefore, training DNNs on given datasets Dtrain is more challenging than simply
minimizing chosen cost functions. Instead, it is essential to carefully tune the model
parameters until training and generalization errors are minimized since such specifications
lead to models performing well on unseen data. This concept is known as the bias-
variance trade-o↵ [18], where it is essential to achieve a balance between expected model
predictions, including strong biases or strong variances. The model bias, which is
obtained for all sets of D, refers to the average error between the model predictions
and the true underlying regression function of the datasets in D. The model variance
specifies the sensitivity around the average prediction errors [18]. If the concept of the
bias-variance trade-o↵ is ignored, DNN models are prone to either over- or underfitting.
Such conditions describe a problematic relationship between the size of a dataset Dtrain

and the degree of freedom introduced by the model parameters [18, 82].
The overfitting condition is achieved if the model bias tends to be irrelevant, leading

to variance-governed network functions H⇥. The number of model parameters is so large
that DNNs can memorize the entire training dataset Dtrain rather than determining a
generalized network function H⇥. Besides the underlying data-generation distribution,
several other generating distributions are implicitly learned and overlap with the true
distribution [82]. In DNN training, overfitting is typically identified if the training error
µtrain continuously decreases while the dev error µdev stagnates or rises.

The underfitting condition describes bias-dominated network functions H⇥. The
number of utilized model parameters is too low to derive generalized model functions H⇥

for representing the underlying data-generating distribution. Commonly, such models
tend to be less complex in their model architecture and are infeasible to learn complex and
challenging patterns [82]. A similar e↵ect is observable in the MLP from Equation (2.63),
which does not apply any activation functions. As a result, it cannot determine non-linear
class separation borders in the feature space. In DNN optimization, underfitting occurs
if the training error µtrain does not decrease even after several training iteration steps.

2.2.11 Model Regularization

Nowadays, model regularization is essential in current DNN applications since these
models are usually representing variance-dominated model functions H⇥. Consequently,
they are prone to overfit the given training dataset Dtrain, as their exceeding number of
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parameters leads to a high degree of freedom in the model functions H⇥. In general,
model regularization approaches are directly applied in the cost functions C, modifying
the layers of DNNs, augmenting the training dataset Dtrain on-the-fly, or limiting the
optimization time of DNN models. In the following, training strategies are discussed
that optimize the training process of DNN architectures to obtain variance-balanced
network parameters of H⇥.

Weight Decay Regularization methods, which directly alter the cost functions C of
DNNs, are introduced by additional regularization terms ⇧

�
Y , Ŷ

�
to the functions:

eC
�
Y , Ŷ

�
= C

�
Y , Ŷ

�
+ �⇧

�
Y , Ŷ

�
, (2.118)

with eC
�
Y , Ŷ

�
defining the extended cost function C

�
Y , Ŷ

�
and � referring to the weight

factor of the regularization ⇧.
The weight decay belongs to the most popular regularization functions in DNN

training. It was initially proposed by Hoerl et al . [82] for linear regression models and
was then transferred into the domain of DNNs. Weight decay extends the cost functions
by another objective, represented by the regularization term ⇧

�
Y , Ŷ

�
=
PL�1

l=1

��W [l]
��,

leading to the modified cost function eC:

eC
�
Y , Ŷ

�
= C

�
Y , Ŷ

�
+ �

L�1X

l=1

��W [l]
��, (2.119)

where
��W [l]

�� corresponds to the Frobenius norm of a weight matrix W [l] of the layer l.

The declining norm of the weight matrices W [l] constrains the degree of freedom in the
weight parameters and prevents overfitting.

Interestingly, similar regularization e↵ects are achievable by adding noise to the input
sequence X, demonstrated by Bishop [17] in 1995. His method corresponded to a more
e�cient approach, as no additional resources are required for determining the gradients
of the regularization terms ⇧.

Batch Normalization The batch normalization (BN) referred to layer-dependent
regularization methods and was proposed by Io↵e & Szegedy to reduce the internal
covariate shift in DNNs [71], which yielded regularization e↵ects and faster optimization
speed of DNNs. According to their vague definition, the covariate shift defines a concept
of continuously altering input layer distributions, which leads to slower model training
induced by unstable parameter estimations.

In general, the BN layers are applied after the hidden representations h[l](n) of the
current layer l to conquer the internal covariate shift of the next layer l + 1. In the
training phase, BN layers derive the first- and second-moment statistics of the hidden
representations H [l](n)

B 2 RJ [l]⇥B in the current mini-batch B:

µ[l]
B =

1

B

BX

n=1

h[l](n)
B , (2.120)
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with µ[l]
B 2 RJ [l]

specifying the mean and h[l](n)
B 2 RJ [l]

referring to a sample of the hidden

representation batch H [l](n)
B . The variance �[l]

B
2
of the current output is determined by:

�[l]
B
2
=

1

B

BX

n=1

�
h[l](n)

B � µ[l]
B
�2

=
1

B

BX

n=1

�
h[l](n)

B � µ[l]
B
�
�
�
h[l](n)

B � µ[l]
B
�
, (2.121)

where �[l]
B 2 RJ [l]

. Then, the BN layers normalize the representations h[l](n)
B of the current

mini-batch B in the following:

eh[l](n)
B = [l]

h[l](n)
B � µ[l]

Bq
�[l]

B
2
+ "[l]

+ ⌫ [l], (2.122)

where [l] and ⌫ [l] are trainable parameters with ⌫ [l] = ⌫ [l]1[l]
2 RJ [l]

, the heuristic
parameter " to prevent numerical instabilities with "[l] = "[l]1[l]

2 RJ [l]
, and the statement

1[l]
2 RJ [l]

defines vectors of ones. During the inference, each BN layer derives the first
and second-moment statistics from the entire training dataset Dtrain and applies whereby

an unbiased variance �[l]
B
2
= B

B�1�
[l]
B
2
. In practice, the required population means and

variances are already retrieved by moving average and moving variance in the training
process.

Despite the enormous success of BN layers in various research domains, it remains
unclear how BN improves the generalization of DNNs, and why larger learning rates
⌘ can be set without observing divergent training outcomes. The original authors of
BN [71] emphasized that the covariate shift is mainly responsible for the beneficial e↵ect
of BN, even though they owed a clear explanation of the concept of covariate shift.

Recently, several studies have questioned the idea of covariate shift and established
alternative explanations of how BN layers modify the training process [19, 96, 140].
Santurkar et al . [140] discovered that BN does not necessarily reduce such covariant
shifts. Instead, they argued that BN layers smooth the optimization landscape and ensure
more predictive and stable gradients. Therefore, larger learning rates ⌘ can be selected,
resulting in reduced optimization durations. Another work from Luo et al . [19] analyzed
the regularizing e↵ect of BN on the gradients in DNN training. They identified that the
concept of BN implicitly regularizes large parameter updates by reducing the magnitude
of the layer activation functions. They also established a theoretical framework for
explaining BN layers, where they explicitly demonstrated the regularization e↵ect of BN
layers [96].

Layer Normalization The concept of layer normalization (LN) was proposed by Ba
et al . [6] to eliminate several drawbacks of BN layers. For instance, BN layers solely
depend on the samples of the current mini-batch B, which leads to highly correlated
value shifts in the next layer if the hidden representations of the previous layer di↵er
tremendously. Moreover, BN layers cannot be applied in real-time applications since the
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statistics of a mini-batch size B = 1 are not representative. And finally, it is unclear how
BN is employed in RNNs.

Therefore, Ba et al . [6] proposed the concept of LN, where the output units a[l] of

the current layer l are normalized by the mean µ[l]
L :

µ[l]
L =

1

J [l]

J [l]X

j=1

a[l]j , (2.123)

and the variance �[l]
L

2
:

�[l]
L

2
=

1

J [l]

J [l]X

j=1

�
a[l]j � µ[l]

L
�2
, (2.124)

where
�
·
�
L refers to the parameters related to the LN method. The current hidden

representations h[l](n) are then normalized by the LN formulation:

ehj
[l](n) = ⇣

0

@[l] a
[l](n)
� µ[l]

Lq
�[l]
L

2
+ "[l]

+ ⌫ [l]j

1

A 8j 2 {1, 2, · · · , J [l]
}, (2.125)

Dropout Another popular regularization technique is dropout, introduced by Srivastava
et al . [66, 150] in 2014. In the training phase, dropout layers set the hidden representations
h[l](n) with a probability of ⇢ to zero and leave the remaining representations unmodified.
This procedure results in noisy network layers since the hidden representations h[l](n) are
dropped out by the random variable r[l]

2 BJ [l]
sampled from a Bernoulli probability

distribution r[l]j ⇠ Bern
�
⇢
�
. As a result, DNNs cannot rely on specific connections

represented by the weight matrices W [l] and are forced to derive more generalizing model
parameters. Consequently, induced noise heavily influences the gradients, yielding an
increased training time.

In the inference phase, dropout is not applied since induced noise is not intended.
Additionally, all weight matrices W [l] need to be scaled by fW [l] = ⇢W [l] to prevent a
wrong scaling during the inference phase.

In practice, dropout is implemented as the inverted dropout procedure [66, 119, 150],
where dropout layers are applied on the current layer output h[l], and the dropout
probability ⇢ is replaced with the keep probability e⇢ = 1� ⇢. Combining both aspects
results in the following statement:

eh[l] =
r[l]
� h[l]

e⇢[l] , (2.126)

where optimal values for e⇢[l] are in the range of [0.5, 0.8]. An advantage of these
modifications is that the rescaling operation of the model weights is transferred from the
inference to the training phase, as the expectations E

�
·
�
of the standard and altered

hidden representations h[l] remain unchanged (i.e., E
�eh[l]

�
= E

�
h[l]
�
) [183]. Therefore,
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the optimized model weights can be directly utilized in the evaluation phase, and no
further adjustment is required.

Even though dropout layers generate solely marginal computational overhead, they
require heuristic parameters e⇢[l], which depends on the applied model architecture. In
recent years, Kingma et al . introduced variational dropout layers [20], where individual
layer-dependent dropout parameters e⇢[l] are learned in the optimization phase.

Label Smoothing In the established loss and cost functions from Section 2.2.6, given
target vectors ŷ are always assumed. In classification tasks, the categories are typically
scalar class values, i.e., ŷ 2 N, and are transformed into representing category vectors.
A standard approach to transforming these class labels ŷ into representing target vectors
ŷ 2 BJ [L]

defines the one-hot encoding procedure in Equation (2.3), which makes them
applicable in the presented loss and cost functions.

Although the approach of one-hot encoded target labels ŷ allows an e�cient encoding
procedure, DNN models trained on these labels are prone to overfitting. Since models
continuously learn to assign the entire probability to a single neuron yj in the output
layer in training, the generalization capability of DNNs is restricted [155]. As a result,
substantial value di↵erences between the single firing neuron and the remaining neurons
exist and lead to overconfident model predictions [155].

A solution for this overfitting scenario was given by Szegedy et al . [155], where they
combined the original one-hot encoded target label distribution ŷ with a fixed uniform
distribution U

�
·
�
represented by the vector u 2 RJ [L]

:

ˆ̂y =
�
1� ◆

�
ŷ + ◆u, (2.127)

which led to smoothed target label distribution ˆ̂y. The impact of the selected uniform
distribution u = U

�
1, J [L]

�
, in which each entry was assigned to uj =

1
J [L] , was modified

by the smoothing parameters ◆, where Szegedy et al . [155] achieved reasonable results
with ◆ = 0.1. The resulting smooth target label distribution ˆ̂y prevents overfitting by
establishing a positive lower value bound (◆ = 0.1), which avoids huge value di↵erences
between each output neuron.

Early Stopping In contrast to regularization methods, which directly modify either
the cost function C of DNN or the model architecture itself, early stopping provides
a simple yet e�cient regularization approach without any training overhead. Thereby,
early stopping is integrated into the training process by defining a specific moment in
the overall training where the optimization has to be stopped to prevent overfitting [18].
Since the training error µtrain does not provide any information on a pending overfitting
process, the validation error µdev on Ddev is a reliable measurement to determine the
training stop. After each epoch, which defines a complete iteration through Dtrain and
feeds to the DNN, the validation error µdev is obtained. If µdev stops declining for several
predefined epochs (in practice, one to three epochs), the overall optimization of the DNN
is stopped.
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Dataset Augmentation Typically, DNNs benefit from utilizing more training data as
they are then less prone to overfitting. However, in practice, it is challenging to obtain
large labeled datasets since the sole collection of training data is not su�cient. The
collected data need to also be labeled, which is di�cult to automate and requires human
surveillance.

An alternative approach is o↵ered by dataset augmentation, where the training dataset
Dtrain is extended on-the-fly by defining plausible transformations of the input sample
x [82], whereby the target value ŷ remains unaltered. One of the most straightforward
transformations is adding noise to the input X [146]. Therefore, the DNN is challenged
to denoise the input X to predict the correct target label ŷ(n).
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3

Speech Background

This chapter establishes the theoretical foundation of automatic speech recognition
(ASR). The first section introduces the general mathematical formulation for defining
ASR, followed by describing the decoding process to obtain the best hypothesis for a given
feature sequence and specifying the ASR metric for the evaluation phase. The second
section covers the extraction of the Mel-frequency cepstral coe�cients (MFCCs) and log
Mel features, which serve as the input features for all ASR approaches in this thesis. The
third section elaborates on popular augmentation techniques for generating additional
training data. The subsequent section discusses various types of target labels in ASR.
In the fifth section, the two popular datasets TED-LIUM release 2 (TED-LIUM-v2)
and LibriSpeech are presented, on which the established approaches are evaluated. The
chapter concludes with the current state-of-the-art (SOTA) results on the TED-LIUM-v2
and LibriSpeech.

3.1 Formulation of Automatic Speech Recognition

In this section, the central problem of ASR is defined, followed by an introduction of
corresponding mathematical formulations. The formulations allow a redefinition of the
problem in the context of hybrid and end-to-end (E2E) ASR. Both theoretical concepts
build the foundation of the contributions introduced in Chapters 4 to 6.

3.1.1 The Formulation for Hybrid Speech Recognition

The central problem of hybrid ASR is defined by mapping an input sequence X 2 RI⇥T

to a word sequence W 2W , whereby W is a set gathering all possible word sequences.
The word sequence W =

⇥
w(1), . . . ,w(o), . . . ,w(O)

⇤
of length O with w(o)

2 RJ consists
of multiple words w(o)

2 V , where V corresponds to a lexicon set of known words w(o).
Multiple representing word sequences W with higher and lower probability exist for a
given input sequence X. In a mathematical context, the decision of selecting the best
fitting word sequence W from W for a given input sequence X can be specified with
Bayes decision theory [22, 163]:
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W ⇤ = argmax
W2W

p
�
W |X

�
, (3.1)

where W ⇤ refers to the most probable word sequence W for a given input sequence X,
and p

�
W |X

�
corresponds to a posterior distribution. Consequently, the key problem of

hybrid ASR lies in e�ciently modeling the posterior distribution p
�
W |X

�
.

In hybrid speech recognition, p
�
W |X

�
is factorized into three distinct distributions

by applying Bayes’ theorem [22]:

W ⇤ = argmax
W2W

p
�
X|W

�
p
�
W
�

p
�
X
� = argmax

W2W
p
�
X|W

�
p
�
W
�
= argmax

W2W
p
�
X,W

�
(3.2)

= argmax
W2W

X

S

p
�
X,W ,S

�
= argmax

W2W

X

S

p
�
X|W ,S

�
p
�
S,W

�
(3.3)

⇡ argmax
W2W

X

S

p
�
X|S

�
| {z }

AM

p
�
S|W

�
| {z }

PM

p
�
W
�

| {z }
LM

, (3.4)

where p
�
X|S

�
corresponds to the acoustic model (AM), p

�
S|W

�
to the pronunciation

model (PM), and p
�
W
�
to the language model (LM). Each model is independently

optimized and does not exchange information with other model components. Notice
that in Equation (3.2), p

�
X
�
is excluded as it is independent of W . In Equation (3.3),

the joint probability distribution p
�
X,W

�
is extended by the state sequence S of an

hidden Markov model (HMM), which does not alter the original joint distribution, as
S is marginalized out of p

�
X,W ,S

�
by summing over all states s(t) 2 S. Moreover,

Equation (3.4) is approximated by p
�
X|S

�
⇡ p

�
X|W ,S

�
since S corresponds to a

direct representation of W [163].

Acoustic Model In hybrid ASR, p
�
X|S

�
specifies the likelihood of an AM, com-

monly modeled by Gaussian mixture models (GMMs), multilayer perceptrons (MLPs),
or recurrent neural networks (RNNs). Generally, p

�
X|S

�
is simplified by following

Section 2.1.1 [163]:

p
�
X|S

�
=

TY

t=1

p
�
x(t)

|x(t�1), . . . ,x(1),S
�

(3.5)

⇡

TY

t=1

p
�
x(t)

|s(t)
�
/

TY

t=1

p
�
s(t)|x(t)

�

p
�
S
� , (3.6)

where the chain rule of probability theory is applied in Equation (3.5). As the likelihood for
the current input x(t) is only dependent on the current state s(t), it can be further reduced
to a framewise likelihood function p

�
x(t)

|s(t)
�
[163]. By employing Bayes’ theorem once

more, the framewise likelihood function p
�
x(t)

|s(t)
�
can be approximated by the pseudo-

likelihood [22] consisting of the framewise posterior distribution p
�
s(t)|x(t)

�
normalized
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by p
�
S
�
. This approximation is valid as the p

�
X
�
remains constant during optimizing

Equation (3.1).
In the past, the framewise likelihood p

�
x(t)

|s(t)
�
, also known as the emission proba-

bility in the HMM framework (compare Equation (2.20)), was modeled by GMMs. The
likelihood p

�
X|S

�
was maximized using the Baum-Welch algorithm (see Section 2.1.5).

Nowadays, the posterior distribution p
�
S|X

�
is learned by deep neural networks (DNNs)

as these networks possess large modeling capacities, superior to GMMs. In the decoding
phase, the likelihood p

�
X|S

�
is approximated by the pseudo-likelihood p(S|X)

p(S) .

Pronunciation Model The PMs are defined by the conditional distribution p
�
S|W

�

and represent the state transitions of HMMs for a given word sequence W [163]. The
distribution is reformulated by employing the chain rule, and the conditional dependence
of the current state s(t) on all preceding states s(t�1), . . . , s(1) is approximated by a
first-order Markov chain (compare Section 2.1.1):

p
�
S|W

�
=

TY

t=1

p
�
s(t)|s(t�1), . . . , s(1),W

�
(3.7)

⇡

TY

t=1

p
�
s(t)|s(t�1),W

�
. (3.8)

In contrast to the standard state transitions of HMMs in Equation (2.6), the state tran-
sitions p

�
s(t)|s(t�1),W

�
are conditioned on the word sequence W . The sequence W is

typically converted to a deterministic phoneme sequence, in which each phoneme is mod-
eled by individual 3-state HMMs1. Thus, the HMM state transitions in p

�
s(t)|s(t�1),W

�

represent phoneme sequences for a given word sequences W and also ensure monotonic
alignments by solely depending on past states s(t�1) [163].

Language Model The prior distribution p
�
W
�
is modeled by LMs. Similar to PMs,

the chain rule of probability theory is applied to p
�
W
�
in the first step:

p
�
W
�
=

OY

o=1

p
�
w(o)

|w(o�1), . . . ,w(1)
�

(3.9)

⇡

OY

o=1

p
�
w(o)

|w(o�1), . . . ,w(o�OLM�1)
�
, (3.10)

followed by approximating the conditional dependence of the current w(o) on all the
preceding words w(o�1), . . . ,w(1) by an OLM-order Markov chain, where settings with
OLM = 4 returned satisfying results in prior studies [98]. Notice that in practice, p

�
W
�

1The definition of a phoneme is covered in Section 3.4.1.
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requires a power scaling, i.e., ln(p
�
W
�
)15, since AMs are commonly overconfident due

to their strongly correlated framewise likelihoods p
�
x(t)

|s(t)
�
[123].

Finally, the AMs, PMs, and LMs are combined into the hybrid ASR formulation.

3.1.2 The Formulation for End-To-End Speech Recognition

End-to-end (E2E) speech recognition reformulates the problem of ASR by altering the
problem of finding the best fitting word sequence W into obtaining the best fitting
grapheme sequence G 2 G for a given input sequence X 2 X :

G⇤ = argmax
G2G

p
�
G|X

�
, (3.11)

where G corresponds to a set collecting all possible grapheme sequences. The grapheme
sequence G =

⇥
g(1), . . . , g(o), . . . , g(O)

⇤
of the length of O with g(o)

2 RJ is composed
of several graphemes g(o)

2 A, where A defines a set of graphemes, e.g ., the English
alphabet.

In the subsequent paragraph, the problem of E2E speech recognition is similarly
factorized as in Equation (3.1) to demonstrate the transition from hybrid to E2E models
in ASR. Therefore, the connectionist temporal classification (CTC) [55] is first explained
before discussing current E2E models with attention mechanisms modeling Equation (3.1)
directly [163].

Since hybrid ASR approaches require expert knowledge for modeling AMs, PMs, and
LMs, a single, combining model would simplify the training tremendously. In general,
RNNs are capable of such tasks. However, they have two major drawbacks [55]. Firstly,
they require framewise aligned training data, typically generated by optimized hybrid
ASR models. Secondly, the standard objective functions for training MLPs or RNNs
were solely defined for separate training samples in the past and led to independent
predictions for each training sample. In 2006, Graves et al . introduced the CTC objective
function [55] and resolved the mentioned drawbacks. As a result, the training of RNN
was feasible without requiring framewise-aligned training data.

CTC Approach The CTC objective function provides a solution for modeling p
�
G|X

�

e�ciently and is inspired by hybrid ASR approaches. Similarly, p
�
G|X

�
can be factorized

in multiple distributions, whereby p
�
U |G

�
is modeled by a grapheme model (GM)

instead of a PM, and p
�
G
�
is governed by a grapheme-based LM instead of a word-based

LM [163]:

G⇤ = argmax
G2G

p
�
G|X

�
(3.12)

= argmax
G2G

X

U

p
�
G,U |X

�
= argmax

G2G

X

U

p
�
G|U ,X

�
p
�
U |X

�
(3.13)

⇡ argmax
G2G

X

U

p
�
G|U

�
p
�
U |X

�
= argmax

G2G

X

U

p
�
U |G

�
p
�
G
�

p
�
U
� p

�
U |X

�
(3.14)
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= argmax
G2G

X

U

p
�
U |X

�
| {z }

AM

p
�
U |G

�
| {z }

GM

p
�
G
�

| {z }
LM

1

p
�
U
� . (3.15)

Instead of adding the state sequence S in the hybrid setup (compare Equation (3.3)),
the sequence U =

⇥
u(1), . . . ,u(eo), , . . . ,u( eO)

⇤
=
⇥
?, g(1),?, . . . ,?, g(o),?, . . . ,?, g(O),?

⇤

is introduced in Equation (3.13), where u(eo)
2 eA. The auxiliary sequence U corresponds

to the augmented sequence G, which incorporates a blank symbol ? into the grapheme
set eA ⌘ A [ {?}. The original G is augmented by placing blank symbols ? between
each grapheme g(o) and at the beginning and the ending of G. The blank symbols ?
allow collapsing of repetitive graphemes and the detection of grapheme boundaries [163].
Moreover, in Equation (3.14), the dependency of the GM on the input X is eliminated
by assuming conditional independence, i.e., p

�
G|U

�
⇡ p

�
G|U ,X

�
, which is a valid

simplification to separate the distributions of AM, GM, and LM [163]. In the original
CTC approach, 1

p(U) is not considered [55] and will be ignored in further discussions.

The final CTC formulation Equation (3.15) resembles a similar hybrid ASR formula-
tion, where p

�
G|X

�
is factorized into three separated distributions:

G⇤
⇡ argmax

G2G

X

U

eOY

eo=1

p
�
u(eo)

|X
�
p
�
u(eo)

|u(eo�1),G
�p
�
G
�

p
�
U
� . (3.16)

The resulting formulation seems infeasible to calculate since it requires summing over
all possible auxiliary grapheme sequence U . However, Graves et al . [55] demonstrated
that the summation in p

�
G|X

�
is feasible by utilizing the Markov assumption, which

enabled them to apply dynamic programming algorithms as the forward-backward
algorithm (compare to Section 2.1.3). Since a detailed definition and explanation of the
corresponding CTC cost function would be out of scope for this thesis, the interested
reader is referred to the original work from Graves et al . [55].

Attentional Approach In order to approximate p
�
G|X

�
, the conditional indepen-

dence assumption is heavily exploited in the CTC approach. As a result, strong biases
occur and lead to questionable approximations of p

�
G|X

�
. In recent years, the interest

in purely data-driven E2E approaches, capable of directly estimating p
�
G|X

�
without

assuming any conditional independence, has steadily increased:

G⇤ = argmax
G2G

p
�
G|X

�
= argmax

G2G

OY

t=o

p
�
g(o)

|g(o�1), . . . , g(1),X
�
. (3.17)

Current SOTA approaches utilize either attention [34] or a self-attention [159] mecha-
nisms to model the probabilistic chain in p

�
G|X

�
. The probabilistic chain in Equa-

tion (3.17) considers the entire input sequence X in every conditional distribution
p
�
g(o)

|g(o�1), . . . , g(1),X
�
. However, modeling the posterior distribution p

�
G|X

�
with-

out any constraints has significant drawbacks: non-monotonic alignments. Therefore,
grapheme predictions g(o) at the beginning of G may depend on inputs x(t) from the
end of X. In hybrid ASR and the CTC approach, monotonic alignments are enforced by
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restricting the framewise likelihood p
�
x(t)

|s(t)
�
of the PM and the framewise posterior

distribution p
�
u(t)

|X
�
of the GM solely depending on s(t�1) or u(t�1), respectively.

3.1.3 Decoding

To evaluate ASR approaches on specific datasets, the optimized ASR models generate
hypothesis transcripts for given input sequences X. The obtained hypothesis transcript
is then tested against an ASR metric, introduced in Section 3.1.4. Typically, hypothesis
transcripts are obtained by the decoding procedure, which aims to either solve Equa-
tion (3.1) to obtain the most probable word sequence W ⇤ or Equation (3.11) to retrieve
the most probable grapheme sequence G⇤ for a given input sequence X.

For hybrid ASR models, the most probable word sequence W ⇤ is retrieved by the
Viterbi algorithm (compare to Section 2.1.4) [175]. The Viterbi algorithm determines the
most probable state sequence S⇤ for a given input sequence X, then transforms the state
sequence S⇤ into the optimal word sequence W ⇤ utilizing the PM (see Section 3.1.1). In
practice, the exhaustive Viterbi decoding is replaced by the beam search algorithm [48]
(compare Section 2.1.7), corresponding to the greedy version of the Viterbi decoding.
The beam search algorithm allows a trade-o↵ between required computational resources
and the accuracy of obtained state sequences S⇤, as only the Kbest paths are stored in
the Viterbi algorithm.

In E2E models, the greedy beam search algorithm is also applied for decoding, as
the Viterbi algorithm is intractable for a large grapheme set A. The standard decoding
procedure is initialized by feeding the special start-of-sentence token <sos> [170] into
the model. Then, relying on <sos> and the input sequence X, the grapheme probability
distribution p

�
g(2)

|<sos>,X
�
for the next time step t = 2 is generated, and the Kbest

paths for p
�
g(2)

|<sos>,X
�
are stored. The decoding procedure is iteratively repeated

until the auxiliary end-of-sequence token <eos> is detected or a maximal predefined
length for the output grapheme sequence is reached. The hypothesis transcript is
generated in the final step by selecting the most probable path to obtain the most
probable grapheme sequence G⇤ [170].

3.1.4 Evaluation Metric

In ASR, the performance of ASR models is typically evaluated in the word error
rate (WER) metric. Therefore, the number of reference words Nref 2 N from a given
transcript is counted, and the hypothesis transcript from an optimized model is aligned
to a reference hypothesis. Next, the number of substituted words Nsub 2 N, deleted
words Ndel 2 N, and inserted words Nins 2 N are determined and inserted into the WER
metric function [123]:

WER
�
Nsub, Ndel, Nins, Nref

�
= 100

Nsub +Ndel +Nins

Nref
, (3.18)

where the WER is measured in %. The Levenshtein distance [87] is generally applied to
obtain the minimal Nsub, Ndel, and Nins required to transform the hypothesis transcript
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into the reference transcript.

3.2 Speech Features

In all domains of pattern recognition, it is essential to generate robust and uncorrelated
features for recognition tasks. Over the years, MFCC features [42] became the most
popular feature type in several audio domains, such as voice recognition [107], keyword
spotting [184], and speaker recognition [156]. These features are hand-crafted in multiple
subsequent steps, corresponding to specific operations to obtain uncorrelated and robust
features. Recently, neural-based features generated by neural networks (NNs), e.g .,
wav2vec features [7], challenge such hand-crafted features since neural-based features
allow entirely E2E approaches. Since all established approaches in this thesis utilize
MFCC features, the required steps for generating them are explained in the following
(compare to Figure 3.1).

3.2.1 Pre-Emphasis

In the pre-emphasis phase, higher frequencies of the recorded speech signal fX 2 I1⇥eT

of length eT with I = {x 2 N | 1  x  216} are emphasized to compensate for the
negative spectral slope caused by the human speech production system [122]. Generally,
pre-emphasis filters transform the recorded speech signal fX into pre-emphasized signals
X̊ 2 I1⇥eT by applying the transfer function H

�
z
�
2 C [130]:

H
�
z
�
= 1� 0.95z�1. (3.19)

3.2.2 Windowing

In the windowing phase, the pre-emphasized speech signal X̊ is split into T segments
7���[
X = [ 7��[x(1), . . . , 7��[x(t), . . . , 7��[x(T )] with

7���[
X 2 II̊⇥T and 7��[x(t)

2 II̊ . The speech signal can be
assumed quasi-stationary for adequate segment lengths I̊, i.e., varying solely gradually
in time [130]. Typically, segment sizes of 20ms (corresponds to I̊ = 400 for a speech
signal sampled with 16 kHz) are su�cient for assuming stationary signals with stable
acoustic characteristics [130]. In practice, the segments are retrieved utilizing a sliding
window of 20ms, which operates over the signal with a shift of 10ms, causing an overlap
of 10ms. As the segments 7��[x(t) contain sudden changes at their boundaries, which would
result in edge e↵ects in the subsequent discrete Fourier transformation (DFT) procedure,
the boundaries in each segment 7��[x(t) are smoothed by a window vector 7���[w 2 PI̊ [130].

For a single segment 7��[x = 7��[x(t), the windowing procedure is executed as:

q = 7���[w � 7��[x. (3.20)

In the popular MFCC features, Hamming windows are commonly employed [113]:
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Audio Signal

MFCC Features

log Mel Features

Pre-Emphasis & 
Segmentation

Windowing DFT

Mel Filter BankLogarithmDCT

Figure 3.1: The procedure for generating the MFCC and log Mel features. The audio signal
is pre-emphasized, segmented, and windowed before the DFT is applied. Then, the power
spectrum components are passed through the Mel-filter banks and the logarithm is employed.
The resulting components correspond to the log Mel features. If the DCT is utilized on the log
Mel spectrum, the final MFCC features are obtained.

7��[wl = 0.54� 0.46 cos

✓
2⇡l

I̊

◆
8l 2 {1, 2, · · · , I̊}, (3.21)

with q 2 II̊ referring to the segment 7��[x after applying the Hamming window. Notice that
the following steps are defined for a single windowed segment to avoid cluttered notation.

3.2.3 Discrete Fourier Transformation

In the next step, each windowed segment q is transformed into the frequency domain by
a DFT to retrieve its components Q 2 CI̊ [130]:

Qk =
I̊X

l=1

ql exp

✓
�j2⇡(l � 1)(k � 1)

I̊

◆
8k 2 {1, 2, · · · , I̊}, (3.22)

where I̊ also defines the number of points utilized for the DFT, and j specifies the
imaginary unit.

3.2.4 Mel Spectrum

The log Mel spectrum components C 2 RM are obtained by passing the power spec-
trum components |Qk|

2 through the Mel-filter bank �m

�
k
�
, followed by taking the

logarithm [130]:

Cm = ln

0

@
I̊X

k=1

|Qk|
2�m

�
k
�
1

A 8m 2 {1, 2, · · · ,M}, (3.23)
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where �m

�
k
�
is defined as:

�m

�
k
�
=

8
>>>><

>>>>:

0 if k < ⇤m�1
2(k�⇤m�1)
⇤m�⇤m�1

if ⇤m�1  k  ⇤m

2(⇤m+1�k)
⇤m+1�⇤m

if ⇤m < k  ⇤m+1

0 if k > ⇤m+1.

(3.24)

with ⇤ 2 RM
+ referring to the center frequencies of the Mel-filter bank �m

�
k
�
. The center

frequency vector ⇤ is obtained by [72]:

⇤m = v�1

 
v(Fmin) +

v
�
Fmax

�
� v
�
Fmin

�

M � 1

�
m� 1

�
!
8m 2 {1, 2, · · · ,M}, (3.25)

with Fmin 2 R+ and Fmax 2 R+ corresponding to the minimal and maximal frequency,
respectively, and M refers to the number of filters in �m

�
k
�
. In practice, the minimum

frequency is set to Fmin = 300 and the maximal frequency to Fmax = 8000 for speech
signals sampled by 16 kHz [72]. Moreover, the transformation function v

�
·
�
:

fMel = v
�
ford
�
= 1125 ln

✓
1 +

ford
700

◆
, (3.26)

and the inverse transformation function v�1
�
·
�
:

ford = v�1
�
fMel

�
= 700

✓
exp

✓
fMel

1125

◆
� 1

◆
, (3.27)

are required in the center-frequency vector ⇤. The transformation function v
�
ford
�

converts the ordinary frequency ford to the human-perceived frequency fMel in the Mel
scale, and v�1

�
·
�
transforms the Mel frequency fMel back to the ordinary frequency ford.

Initially, the Mel scale was introduced by Stevens et al . [151], who analyzed frequency
scales that better represent human hearing. They discovered that human hearing is
superior to di↵erentiating minor changes for low frequencies up to 1kHz and that this
e↵ect disperses for higher frequencies.

Furthermore, the logarithm of the Mel spectrum is taken to separate the actual speech
signal from the impulse response of the vocal tract. If it is assumed that the actual speech
signal is convolved with the impulse response of the vocal tract, a transformation in the
frequency domain leads to a multiplication of both spectra. Thus, both spectra can be
separated in the logarithm domain, where the multiplicative spectra are transformed into
additive spectra. The additive spectral proportion of the vocal tract in the logarithm
domain is removed in a subsequent procedure.

3.2.5 Discrete Cosine Transformation

The near-optimal compression property of the discrete cosine transformation (DCT) [4]
is utilized to decorrelate the former Mel spectrum caused by the overlapping triangle
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filters of the Mel-filter bank �m

�
k
�
. The number of total MFCCs is typically reduced

since most information is condensed in the first coe�cients. Thereby, satisfying results
are already obtained for the first 13 coe�cients [124].

Finally, the Mel cepstrum [21] is retrieved by the DCT as:

c = cv =
MX

m=1

Cm cos

 
⇡
�
v � 1

��
m+ 0.5

�

M

!
8v 2 {1, 2, · · · , V }, (3.28)

where V refers to the number of MFCCs, which can be lower or equal to the number of
Mel-filter banks M .

Recently, the employment of the DCT and reducing the number of MFCCs have
become less critical as rising computational resources simplify the processing of high-
dimensional data. Nowadays, the DCT step is skipped to retrieve log Mel features
Cm 2 RM , or the number of total MFCCs is set to the maximal number of filter banks
V = M .

3.2.6 Cepstral Mean Normalization

Transforming the Mel spectrum into the logarithm domain leads to a separation of the
spectral proportion of the vocal track and the actual speech signal. If the transfer function
of the vocal track is assumed constant on average, it is removable by normalization
techniques. The cepstral mean normalization (CMN), also known as cepstral mean
subtraction, belongs to the most popular normalization approaches for MFCCs [86]:

c(t) = c(t) �
1

T

TX

t=1

c(t), (3.29)

since it is simple to apply and only requires a marginal computational overhead. There
have also been variations of cepstral mean normalization (CMN), where the CMN method
is solely applied to speech-representing MFCCs and silenced MFCCs are excluded.
A detailed study was conducted by Westphal, who analyzed the impact of several
normalization techniques [169].

3.2.7 Dynamic Mel-Frequency Cepstral Coe�cient Features

Even though the generated and normalized MFCCs c(t) e�ciently condense the recorded
speech signal into a few decorrelated coe�cients, the resulting feature vectors solely
represent static speech characteristics for a fixed time frame and disregard any dynamics
of the signal. The first approach considering the dynamics of MFCCs was proposed
by Furui [49], who improved the performance of his models by applying the dynamic
features. The dynamics of normalized MFCCs are the velocity, which is denoted as the
delta MFCCs �c(t):

�c(t) =

P2
n=1 n

�
c(t+n)

� c(t�n)
�

2
PN

n=1 n
2

, (3.30)
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and the acceleration referred to as the delta-delta MFCCs �2c(t):

�2c(t) =

P2
n=1 n

�
�c(t+n)

��c(t�n)
�

2
PN

n=1 n
2

. (3.31)

The normalized static MFCCs c(t), the delta MFCCs �c(t), and the delta-delta MFCCs
�2c(t) are concatenated to obtain the feature inputs x(t) = c(t) ++ �c(t) ++ �2c(t) with
x(t)
2 R3V . Note that the approximation of the derivatives in Equations (3.30) and (3.31)

is based on finite di↵erences, explained in more detail in [104].

3.3 Speech Feature Augmentation

In order to avoid overfitting, input features are augmented by applying predefined
transformations, leading to artificially increased training datasets. The augmentation is
commonly employed at three distinct locations: directly on the raw speech signalfX [116],
before retrieving the Mel spectrum by modifying either the Mel-filter bank �

�
k
�
[72] or

the power spectrum |Q|
2 [74] or on the final MFCCs c(t) [116]. Recent augmentation

techniques for ASR models are introduced in the following section.

3.3.1 Speed Perturbation

In the past, common augmentation strategies combined the vocal tract length perturba-
tion (VTLP) [72] and tempo perturbation [74] to increase the number of speech samples.
The VTLP modifies the Mel-filter banks �m

�
k
�
(compare Section 3.2.4), where the

center-frequency vector ⇤ is continuously transformed by randomly applying a linear
warping along the frequency axis [72]. The tempo perturbation approach alters the speed
rate of the signal directly in the power spectrum components |Qk|

2 and leaves the pitch
and spectral envelope of the signal unchanged [74].

A more straightforward approach was proposed by Ko et al . [77], who constructed
additional data by modifying the speed of speech signal fX. They employed the two
additional speed factors of 90% and 110% of the original speech signal and adjusted the
pitch before generating the MFCCs. The evaluation revealed that their simple speed
perturbation approach outperformed VTLP and tempo perturbation and combinations
of these techniques without increasing the implementation e↵ort [77].

3.3.2 SpecAugment

An alternative augmentation technique SpecAugment was introduced by Park et al .
[116], which is directly applicable to the normalized log Mel features C(t) or normalized
MFCC features c(t). Initially, three deformations of the spectrum were introduced: time
warping, frequency masking, and time masking. Recent works [8, 187] omitted the time
warping as it is computationally expensive. Therefore, solely the time and frequency
masking are discussed, and the interested reader is referred to [116].

53



3. Speech Background

Time Masking Time masking defines masks in which t� adjacent input features x(t)

of an input sequence X are set to zero. The beginning of the mask is specified by the
parameter t0, which is drawn from uniform distribution t0 ⇠ U

�
1, T

�
. The mask length

is set by the parameter t�, drawn from uniform distribution t� ⇠ U
�
0, T�

�
, and the

maximum mask length is bounded by T�. Generally, the time masking process is applied
ntm times on the same input spectrum, where ntm is chosen by a uniform distribution
ntm ⇠ U

�
1, Ntm

�
, and the number of repetitive mask operations are constrained by

Ntm [116].

Frequency Masking The frequency masking procedure applies a mask by setting
i� consecutive entries in all input features x(t) in X to zero. The starting position i0
and the length i� of the mask are drawn from the uniform distributions i0 ⇠ U

�
1, I
�

and i� ⇠ U
�
0, I�

�
, respectively, where I refers to the feature dimension of the feature

sequence X 2 RI⇥T and i� is bounded by I�. The frequency masking procedure is
also repeated nfm times, determined by a uniform distribution nfm ⇠ U

�
1, Nfm

�
, and the

masking procedure is limited to maximal repetitions of Nfm [116].

3.4 Speech Labels

The training criterion of AMs in ASR systems is defined as a standard classification
task (compare to Section 2.2.5), where AMs are trained on a labeled dataset Dtrain,
followed by an evaluation of their generalization capabilities represented by the unseen
dataset Dtest. Since robust and uncorrelated features are required to obtain stable results,
MFCC features c(t) (compare to Section 3.2) are utilized. Depending on the model setup,
these features can slightly di↵er in their dimensions if delta �c(t) and delta-delta MFCC
features �2c(t) are appended or solely log Mel coe�cients C(t) are utilized by skipping
the DCT.

Three popular options are available for target labels: Phonemes, characters, or byte
pair encoding (BPE) units. In the following, these label types are introduced and
compared utilizing the exemplary word combination:

Automatic speech recognition.

3.4.1 Phonemes

Phonemes are phonetic base units of spoken words [158] and o↵er a general pronunciation
definition for words in any language. Although spoken words slightly di↵er for every
speaker due to their anatomy or dialect, people can understand each other as long as
the phonemes are closely related, recognizable, and the word to recognize is already
known [158].

Monophone In ASR, single phonemes are typically denoted as monophones (MONOs),
and either modeled by three-state HMMs [143] or as stand-alone DNNs [161]. Instead of
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Table 3.1: The 39 phonemes in the English language with corresponding examples and
translations [2].

Phoneme Example Translation Phoneme Example Translation

AA odd AA D L lee L IY
AE at AE T M me M IY
AH hut HH AH T N knee N IY
AO ought AO T NG ping P IH NG
AW cow K AW OW oat OW T
AY hide HH AY D OY toy T OY
B be B IY P pee P IY
CH cheese CH IY Z R read R IY D
D dee D IY S sea S IY
DH thee DH IY SH she SH IY
EH Ed EH D T tea T IY
ER hurt HH ER T TH theta TH EY T AH
EY ate EY T UH hood HH UH D
F fee F IY UW two T UW
G green G R IY N V vee V IY
HH he HH IY W we W IY
IH it IH T Y yield Y IY L D
IY eat IY T Z zee Z IY
JH gee JH IY ZH seizure S IY ZH ER
K key K IY

modeling high-dimensional output spaces with hundreds of thousands of English words,
each word is converted to its MONO representation. The English language distinguishes
between 39 phonemes [2] summarized in Table 3.1 with corresponding examples. As
a result, the output space of ASR models is highly reduced from thousands of words
to only 39 MONOs. The representative MONO sequences for every word are obtained
by predefined lexicons (e.g ., the CMUdict [2]), which o↵er mappings between words
and MONOs and vice versa. The application of the CMUdict on the exemplary word
sequence leads to the following MONO sequence:

AO T AH M AE T IH K S P IY CH R EH K AH G N IH SH AH N.

Triphone Even though MONOs are reducing the training complexity by reducing
the output space of ASR models, they lack consistency compared to words [85]. The
inconsistency is commonly reduced by employing context-dependent phonemes, also
known as triphones (TRIs) [143], where three adjacent MONOs are combined into a
single TRI. This leads to 59 319 unique TRI combinations, which fortunately do not all
exist in the English language. Additionally, the number of TRIs is reduced by clustering
and regression tree (CART) approaches, where similar TRIs are clustered together and
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tied to single representative TRIs [176]. The exemplary word sequence is translated to
the TRI sequence:

AO-T+AH T-AH+M AH-M+AE M-AE+T AE-T+IH T-IH+K IH-K+S K-S+P

S-P+IY P-IY+CH IY-CH+R CH-R+EH R-EH+K EH-K+AH K-AH+G

AH-G+N G-N+IH N-IH+SH IH-SH+AH SH-AH+N.

Notice that the TRIs notation is inspired by Young et al . [175], who specified TRI as
L-X+R, where L refers to the left-content MONO, X to the center-content MONO, and
R to the right-content MONO.

3.4.2 Characters

MONOs and TRIs still belong to the most popular target label types in ASR and
achieve SOTA results [98]. However, they always require a lexicon for mapping between
phonemes and words, and if a specific word mapping is unknown, the phoneme sequence
is incorrectly recognized. This typical issue in phoneme-based ASR approaches known
as the out of vocabulary (OOV) problem. The problem describes a condition in which
a predicted phoneme sequence cannot be mapped to a corresponding word, as the
translation does not exist in the lexicon. A common strategy consists in increasing the
lexicon size to reduce the number of missing words, though the strategy is prone to fail
for special person or city names.

With the rising popularity of DNNs, there has been an increased interest in E2E
approaches based on RNNs, which directly convert input features into character (CHAR)
sequences. Until 2006, these approaches required a pre-segmentation of the training data
and post-processing to retrieve the final word sequence, as RNNs were only trained on
independent pre-segmented training samples [55]. In 2006, Graves et al . introduced the
CTC approach, enabling RNN-based E2E approaches to directly apply CHAR labels
for unsegmented sequential data such as MFCC feature sequences [55]. Therefore, a
lexicon was not further required, and the issue of OOV was solved. The exemplary word
sequence is mapped into the following CHAR sequence:

A U T O M A T I C S P E E C H R E C O G N I T I O N.

3.4.3 BPE Units

The byte pair encoding (BPE) units [144] belong to predominant word segmentation
algorithms in E2E ASR. The BPE algorithm is typically applied by a tokenizer, e.g .,
the popular Sentencepiece tokenizer [79], which determines the optimal, representative
tokens given the training dataset transcript. The number of tokes is commonly limited
by heuristically chosen values. Each word is then represented by those tokes, constructed
by CHARs, punctuation, or special graphemes. The tokenized exemplary word sequence
is represented by the obtained tokes as:
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Table 3.2: A summary of the characteristics of the TED-LIUM-v2 dataset according to the
obtained splits. The symbol # is read as the number of.

Characteristics of TED-LIUM-v2

# Speakers

Split # Hours # Female # Male # Total Speakers

Train 206.8 398 844 1242
Dev 1.7 1 7 8
Test 3.1 2 9 11

A UT OM AT IC SP E E CH RE C O G N ITION,

where the tokes are derived by the Sentencepiece tokenizer, which is trained on the
transcript of the TED-LIUM-v2 [138], and the maximum number of the tokens is set to
500.

3.5 Popular ASR Datasets

In ASR, models are evaluated under various conditions, which di↵er in the level of
di�culty. The most straightforward condition corresponds to single-speaker and noise-
free environments. More challenging conditions are represented by the overlapping speech
from various speakers [164] or speech interfered with by general noise [89]. In this thesis,
all established approaches assume single-speaker and clean speech data.

Over the years, several open-source clean-speech datasets were introduced, steadily
increasing in size. The increase in size involved a consistently higher demand for
computational power to e�ciently train ASR models on these datasets. Thereby, three
well-known datasets were established in the speech community: the TED-LIUM-v2 [138],
a dataset with up to 250 h of speech data, followed by LibriSpeech [115] with nearly
1000 h of speech data, and GigaSpeech [27] with 10 000 h labeled speech data. Since solely
the TED-LIUM-v2 and LibriSpeech datasets are utilized in the subsequent experiments,
they are discussed in more detail in the following sections.

3.5.1 TED-LIUM Release 2

The TED-LIUM release 2 (TED-LIUM-v2) [138] dataset corresponds to a small-sized
dataset, requiring limited resources in the form of a single graphics processing unit (GPU).
The dataset incorporates several talks from the American media company technology
entertainment design (TED) [5], which invites famous and non-famous speakers worldwide
to give lectures with subtitles under the slogan ”ideas worth spreading” [5].

As all these talks are subtitled, Rousseau et al . (from the Laboratoire Informatique
de’l Universitè du Maine (LIUM)) decided to create the TED-LIUM-v2 [138] in 2014,
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Table 3.3: The characteristics of the LibriSpeech dataset with regarding female and male
speakers and their corresponding recording time for each split. The symbol # is read as the
number of.

Characteristics of LibriSpeech

# Speakers

Split # Hours # Female # Male # Total Speakers

Train-other-500 496.7 564 602 1166
Train-clean-360 363.6 439 482 921
Train-clean-100 100.6 125 126 251

Train-combined 960.9 1128 1210 2338

Dev-clean 5.4 20 20 40
Dev-other 5.3 16 17 33
Test-clean 5.4 20 20 40
Test-other 5.1 17 16 33

where they collected 1495 TED lectures with a mean duration of 10min and 12 s and
held by 1242 unique speakers. These lectures were then filtered and split into 92 976
speech segments with their corresponding transcript. This process led to the train split
of the overall dataset with a total of 207 h transcript speech data, whereby 141 h are male
and 66 h female speakers. A similar process was repeated for the dev and test, resulting
in 507 and 1155 speech segments, respectively. Furthermore, the most relevant of the
overall 2.6 million words were summarized in a phonetized dictionary with 159 849-word
variants and 152 213 unique words. All characteristics of the dataset are depicted in
Table 3.2.

3.5.2 LibriSpeech

LibriSpeech [115] defines a dataset of mid-range size, which requires more computational
demanding resources. Panayotov et al . derived the dataset by combining the books
of Project Gutenberg [63] and the speech data of the audiobooks from LibriVox [102],
where both groups are volunteer-driven projects which rely on public domain books. The
Project Gutenberg was founded by Michael Hart in 1971 to ”encourage the creation and
distribution of ebooks” [63], where volunteers collect public domain books, digitalize and
provide them as ebooks to the public. In 2005, Hugh McGuire extended the Project
Gutenberg by founding LibriVox [102]. LibriVox is also a volunteer-driven project that
records public domain books from Project Gutenberg and releases the recordings as
public domain audiobooks.

On the foundation of Public Gutenberg and LibriVox, Panayotov et al . established
the dataset LibriSpeech in 2015 [115], in which they began to gather 8000 public domain
audiobooks (in 2015) from LibriVox [102] with the corresponding meta-data and retrieved
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the according transcript in the ebooks from Project Gutenberg [63]. Then, a four-stage
process was applied to obtain good speech-to-text alignments. First, the transcript of all
ebooks was preprocessed to be consistent, followed by training a simple bigram LM for
each ebook. In parallel, MFCCs [42] were extracted from the audiobooks recorded by over
9000 unique speakers. For the lexicon, they relied on the 134 000 words of CMUdict [2]
provided by Carnegie Mellon University. An initial HMM-GMM AM was trained on
the 100 h VoxForge dataset [1] made available by volunteers, who manually aligned their
recordings to the corresponding transcript. Combining the optimized AM and the LM
of each book, they decoded every audiobook to determine a base alignment. Then,
the Smith-Waterman alignment algorithm [148] was employed to obtain an ideal local
alignment. The alignments with the highest similarity were stored and split into segments
of 35 s lengths, whereas the remaining ones were discarded. Inaccurate alignments with
transpositions, substitutions, deletions, or insertions of the reader were filtered out [115].
The accurate 35 s segments were further split into shorter alignments if the silence
exceeded 0.3 s. For the dev and test data, a cut was permitted at the end of sentences.

Finally, the retrieved base corpus of around 1200 h of speech data was partitioned
into a disjoint train set of train-clean-100, train-clean-360, and train-other-500, a dev set
of dev-clean and dev-other, and a test set of test-clean and test-other. A summary of all
splits is depicted in Table 3.3.

3.6 SOTA Results on Popular ASR Datasets

This section gathers current SOTA results on TED-LIUM-v2 and LibriSpeech, compared
to the approaches later established in Chapters 4 to 6. Since the performance of all ASR
approaches di↵ers significantly, several reasons are discussed.

3.6.1 SOTA Results on TED-LIUM-v2

It is questionable if general comparisons of current SOTA approaches [60–62, 75, 81, 181,
187] on the TED-LIUM-v2 dataset are su�cient to determine the overall best model
architecture since only a limited number of novel approaches have been evaluated on
the TED-LIUM-v2 dataset. Based on Table 3.4, hybrid approaches seem to define
the superior model class, even though di↵erent AMs and training schemes are applied.
For instance, in 2017, Han et al . utilized a combination of time-delay neural networks
(TDNNs) and long short-term memory networks (LSTMs) [61], and later in 2019, a
multi-stride transformer AM [62] relied on lattice-free maximum mutual information
(LF-MMI) as an objective function. On the other hand, Zhou et al . selected a standard
multi-layer bidirectional long short-term memory (BLSTM) as AM, optimized with the
cross entropy (CE) objective, and extended the optimization by discriminative sequence
training [51]. Therefore, it is challenging to define a fair comparison between di↵erent
models, and it seems that all existing architectures have the right to exist.

The comparison in Table 3.4 demonstrates that the introduced methods are not
competitive with recently proposed SOTA approaches. However, it is vital to put the
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Table 3.4: An overview of relevant SOTA results for the TED-LIUM-v2 [138] reported for
recent approaches and established approaches of this thesis. All results are given in WER

�
%
�
.

TED-LIUM-v2

Paper Year AM Labels CTC LM Dev Test

Han et al . [62] 2019 Hybrid TRI 7 3 7.7 8.0
Han et al . [61] 2017 Hybrid TRI 7 3 7.1 7.7
Zhou et al . [187] 2020 Hybrid TRI 7 3 5.1 5.6
Karita et al . [75] 2019 RNN TRI 7 3 9.3 8.1
Kürzinger et al . [81] 2020 Attention BPE 3 3 10.7 10.7
Zeyer et al . [181] 2019 Attention TRI 7 3 10.3 8.8
Guo et al . [60] 2021 Self-Attention BPE 3 7 9.3 8.7
Guo et al . [60] 2021 Self-Attention BPE 3 3 8.6 7.2

Watzel et al . [13†] 2019 Hybrid TRI 7 7 27.1 27.1
Watzel et al . [12†] 2020 Attention CHAR 7 7 15.7 15.9
Watzel et al . [10†] 2020 Self-Attention BPE 7 7 14.5 13.2
Watzel et al . [11†] 2021 Self-Attention BPE 3 7 9.8 9.1

results in context to the examined and proposed methods in [10†, 11†, 12†, 13†]. A closer
look into Chapters 4 to 6 reveals that all approaches did not aim to surpass current
SOTA models and examined the e↵ects of specific modifications regarding the overall
model parameters. The utilized architectures were simplified versions of SOTA models,
where the AMs were reduced in total size, and auxiliary losses were omitted. In addition,
none of these methods integrated an LM into the final evaluation, which typically further
reduces the WER on the evaluation sets (see Zeyer et al . [182]). Therefore, a fair
comparison of [10†, 11†, 12†, 13†] to the most current SOTA approaches is not given.

3.6.2 SOTA Results on LibriSpeech

Nowadays, the LibriSpeech [115] belongs to the most popular noise-free ASR datasets
and has been intensively evaluated over the years. Thereby, novel model architectures
were proposed, surpassing existing methods and questioning older approaches. However,
besides the model architectures, these novel approaches also introduced innovative
training methods, boosting the performance of traditional ASR models. The latest
SOTA models [60, 61, 98, 114, 179, 182], evaluated on LibriSpeech, are listed in Table 3.5
and compared to the novel training method [12†] introduced in Chapter 5. The approach
of Watzel et al . [12†] is not competitive with the SOTA approaches. However, this
direct comparison can not be seen as fair, as the authors did not aim to surpass SOTA
attentional models, which is observable in their applied model structure and training
scheme. Compared to Zeyer et al . [182], who utilized a model architecture similar to
Watzel et al . [12†], Watzel et al . constructed their encoder by four LSTM layers with
1024 units and did not pre-train them. The output layer size of the decoder was set
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Table 3.5: Relevant SOTA results for LibriSpeech [138] reported in recent approaches and
compared to established approaches of this thesis. Note that approaches utilizing additional
data or not fully covering all evaluation sets are excluded from this comparison. All results are
stated in WER

�
%
�
.

LibriSpeech

Paper Year AM Labels CTC LM
Dev Test

Clean Other Clean Other

Zeghidour et al . [179] 2017 CNN CHAR 7 3 3.2 10.1 3.4 11.2
Pan et al . [114] 2020 CNN TRI 3 3 1.6 4.2 1.8 4.5
Han et al . [61] 2017 Hybrid TRI 7 3 3.0 8.8 3.6 8.7
Lüscher et al . [98] 2019 Hybrid TRI 7 3 1.9 4.5 2.3 5.0
Zeyer et al . [182] 2018 Attention BPE 3 7 4.9 14.4 4.9 15.4
Zeyer et al . [182] 2018 Attention BPE 3 3 4.3 12.9 4.4 13.5
Guo et al . [60] 2021 Self-Attention BPE 3 3 1.9 4.9 2.1 4.9

Watzel et al . [12†] 2020 Attention BPE 7 7 7.2 20.1 7.3 20.6

to 100 since they utilized 100 BPE units, and the overall training was not guided by
the CTC loss [55]. In contrast, Zeyer et al . [182] employed six encoder layers with 2024
LSTM units and deployed an encoder pre-training. Moreover, they created 10 000 BPE
units, adapted their decoder output to this size, and supported the overall model by the
CTC loss [55].

Other exciting aspects are the novel model architectures in general. The results
in Table 3.5 reveal that a particular model architecture alone does not lead to the
best ASR approach. The three leading approaches [60, 98, 114], which do not utilize
external data and fully report the results on all evaluation sets, rely on three di↵erent
model architectures. The AM applied by Lüscher et al . [98] corresponds to a standard
HMM-DNN model, further optimized by discriminative sequence training [51] based on
generated lattices. In the approach of Guo et al . [60], the AM is represented by a
Conformer [59], an extension of a transformer model [159]. And Pan et al . [114] built
up their AM on a variant of 1D-convolutional neural networks (CNNs) organized in a
multistream setup. All these architectures di↵er fundamentally, and their performance
gap is negligible. This indicates that each model has the potential to reduce the WER
on LibriSpeech further, and no architecture should receive preferential treatment.
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4

Hybrid Acoustic Modeling

In this chapter, the alternative approach from Watzel et al . [13†] for discrete acoustic
models (AMs) is established, demonstrating the potential of deep neural networks (DNNs)
as discrete AMs compared with traditional continuous models, such as Gaussian mixture
models (GMMs). The first section introduces discrete and continuous automatic speech
recognition (ASR) formulations and elaborates on the strengths and weaknesses of these
approaches. The second section discusses related methods comparable to the later intro-
duced deep neural network quantizer (DNNQ), then lays the mathematical foundation
for the established procedure. The fourth section specifies the overall training setup by
defining the model architecture, the training scheme, and the decoding approach. The
final results are examined in the fifth section, where several configurations exhaustively
analyze the performance of DNNQ and continuous GMMs. The last section concludes
the chapter by giving an outlook on future works and the potential of discrete ASR
models.

4.1 Introduction

Over the years, hybrid ASR models steadily reduced their word error rate (WER)
on several clean speech ASR datasets as the Wall Street Journal (WSJ) dataset [120],
containing solely clean speech with one speaker and without any noise, and on the more
challenging datasets, such as the augmented multi-party interaction (AMI) dataset [23],
where several o�ce meeting scenarios were recorded with multiple speakers talking and
additional background noise from the o�ce itself.

Hybrid ASR often distinguishes between applying discrete and continuous AMs,
which di↵erentiate in the employed input sequence X. In continuous AMs, the high-
dimensional inputs x(t)

2 RI are typically uncountable and from an input sequence
X 2 RI⇥T . Therefore, generating the AM likelihood p

�
X|S

�
requires probability

density functions (PDFs), which specify functions transforming any input x(t)
2 RI into

continuous sampling spaces. A well-known PDF model is GMMs [22], where a single
Gaussian from a GMM is depicted in Figure 4.1. In the training phase, the statistics
for each state sk with its corresponding GMMs are gathered, and the parameters are
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Figure 4.1: On the left, the PDF of a single Gaussian with its parameters µ = 0 and ⌃ = 0.1
is plotted, whereby PDFs are typically applied in continuous AMs. Notice that the likelihood
p
�
x(t)

|s(t)
�
can exceed values of one. The PMF of a discrete random variable x(t) is depicted on

the right, commonly utilized in discrete AMs. In contrast to PDFs, the likelihood p
�
x(t)|s(t)

�

is limited to values between zero and one in PMFs.

derived by maximum likelihood estimation (MLE). The GMMs can also be replaced by
strong DNN discriminators, modeling the posterior p

�
S|X

�
. In the decoding phase, the

posterior is then transformed into the pseudo-likelihoods specified in Equation (3.6).

Discrete AMs rely on discrete random variables, where the inputs x(t)
2 N are from

an input sequence X 2 N1⇥T and are countable, as the number of individual inputs
is commonly limited. Since the emitted likelihood p

�
X|S

�
relies on discrete values,

probability mass functions (PMFs) are applied for each state sk. The PMFs can be
seen as look-up tables, where the statistics of occurring discrete inputs x(t) are counted
and normalized by the total number of state visits. Then, the corresponding emission
probabilities p

�
X|S

�
are retrieved by selecting the value at the index x(t) of a look-up

table [22]. Notice that in contrast to continuous PDFs, where the likelihood p
�
x(t)

|s(t)
�

can exceed values of one, the PMF likelihood p
�
x(t)

|s(t)
�
is restricted to values equal to

or smaller than one, which can be observed in Figure 4.1.

In 2016, the performance of hybrid ASR systems relying on continuous AMs and
employing clean speech datasets pared with human recognition performance [172]. Even
though this milestone demonstrated the superiority of DNNs in ASR, their training
approaches are computationally expensive and require tremendous resources and labeled
datasets. In the past, alternative approaches with discrete AMs were quite popular since
they reduced the complexity of ASR models by quantizing the continuous input features
x(t)
2 RI into discrete feature x(t)

2 N before being further processed. Generally, quanti-
zation is achieved by applying vector quantizers (VQs) with corresponding optimized
centroids, also denoted as codebooks. These codebooks are determined by unsupervised
algorithms such as the k-means algorithm [18]. The VQs determine the minimal distance
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of x(t) to all the classes in the codebooks and assigns the corresponding class label x(t)

with the minimal distance.
Nowadays, discrete AMs have been more or less disregarded, as each quantization

procedure leads to a loss of information. As a result, ASR models based on discrete AMs
are inferior to continuous AMs and produce higher WERs.

Despite the disadvantage of the quantization procedure in discrete AMs, multiple
discrete approaches were established in the past [25, 110, 133–135, 137, 178]. However,
they did not apply a fair comparison to continuous AMs or did not evaluate large-
vocabulary speech recognition (LVSR) datasets. This chapter establishes multiple novel
contributions initially proposed by Watzel et al . [13†]:

• Methods for modeling discrete AMs are revisited and reimplemented in current
state-of-the-art (SOTA) toolkits.

• A novel deep neural network quantizer (DNNQ) for discrete AMs is introduced,
which can be trained on arbitrary output layer sizes.

• A novel cost sampling procedure is proposed, which provides an e�cient training
process for DNNQs.

• A fair comparison of discrete and continuous AMs is given by evaluating the LVSR
dataset TED-LIUM release 2 (TED-LIUM-v2) [138].

• Exhaustive evaluations of the DNNQs reveal that discrete AMs, represented by
DNNQs, outperform continuous GMM systems.

4.2 Related Work

The first detailed examination of vector quantization procedure in speech encoding
applications was done by Makhoul et al . [101]. They analyzed the performance of
VQs for encoding speech signals and derived the theoretical limits of such quantization
procedures. Moreover, they analyzed common problems in practical environments, such
as optimal VQ architectures, e�cient implementations, and performance in practice.

A few years later, Yu et al . applied VQs in phoneme recognition and compared
several supervised clustering approaches for determining corresponding codebooks. They
assumed improved VQs would lead to higher recognition rates in the subsequent discrete
hidden Markov models (DHMMs) [178]. However, they did not observe a decrease in the
WER even though the VQs returned better phoneme recognition rates.

Another related approach was established by Le Cerf et al ., who utilized multilayer
perceptrons (MLPs) as quantization networks [25]. They quantized the inputs x(t) by
selecting the output with the highest probability as corresponding class labels instead of
employing MLPs as probability estimators. Furthermore, they provided several extensions
of their approach, in which multiple outputs based on descending order of the output
probabilities were applied, MLPs were considered as fuzzy VQs, or individual MLPs, for
processing the base features, the delta, the delta-delta, and the energy features.
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In all former approaches, the VQ quantization procedure relied on minimizing the
distortion of each input x(t) to its class label x(t). An alternative approach was proposed
by Rigoll in 1994 [133], in which he laid the mathematical foundation for maximum mutual
information (MMI) MLPs, also known as neural network vector quantizers (NNVQs),
where he utilized the information-theoretic MMI criterion as a distance measurement for
obtaining the proper NNVQ weights. His evaluation revealed that NNVQs are superior
to standard VQs, whose codebooks were retrieved by classical k-means training [100].
Although NNVQs seemed to represent strong alternatives to standard approaches, they
contained three drawbacks:

1. The standard backpropagation approach was not applicable, as the quantization of
inputs x(t) to class labels x(t) is achieved by selecting the number of the maximum
output of the NNVQs, corresponding to the mathematical non-di↵erentiable max
operator.

2. It remained unclear if NNVQs are competitive with continuous approaches since
the evaluation of the novel architecture was solely compared with VQs relying on
codebooks derived by the k-means algorithm.

3. The model was evaluated in a phoneme recognition task, where 18 Japanese
phonemes had to be recognized, and it was unclear how well the novel NNVQ
model would perform on LVSR datasets.

Two years later, the latter two drawbacks were eliminated by Rigoll et al . [135],
who trained their novel NNVQs on the 1000-word Resource Management (RM) dataset
introduced by the defense advanced research projects agency (DARPA) in 1988 [126].
Rigoll et al . split their single NNVQ into four separate NNVQs and applied spliced
feature vectors to increase the feature context, leading to three NNVQs trained on
the base, delta, and delta-delta features, respectively, and a single NNVQ on the log
energy and its two derivatives. The final evaluation revealed that combined NNVQs
were superior to k-means-determined VQs but could not surpass continuous AM systems
modeled by GMMs.

Shortly after the first evaluation on a larger dataset, Neukirchen and Rigoll presented
a solution for the non-di↵erentiable max operator [134]. They utilized the scaled and
di↵erentiable softmax function on NNVQ outputs, leading to an approximation of the
max operator if a proper scaling factor was selected and enabled the application of a
standard backpropagation (BP) approach (compare Section 2.2.7). The evaluation of
the novel NNVQ on the RM dataset also indicated that, for the first time, discrete
AMs were slightly superior to continuous AMs represented by GMMs. Additionally,
a theoretical analysis of novel NNVQs in the context of GMMs was also given [110],
where their di↵erentiable solution led to a generalization of NNVQs, resulting in network
architectures with arbitrary output layer sizes.

A few years later, the NNVQs were further evaluated on the challenging WSJ
dataset [120] that contained over 400 h of labeled speech data with 47M words and
belonged to the largest speech datasets at this time. Even though Rottland et al .
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expected promising results, the obtained results revealed that discrete AMs represented
by NNVQs were not competitive with continuous GMM AMs.

4.3 Proposed Method

This section is divided into the theory of standard NNVQs, the extension of NNVQs
into DNNQs and their training scheme, and the training procedure of discrete hidden
Markov models (HMMs). First, the theory of the NNVQs is established [133, 134]. Then,
the framework of the NNVQs is further extended to the novel architecture and training
scheme of DNNQs. The last part describes the integration of the quantized outputs x(t)

into the framework of discrete HMMs.

4.3.1 Theory of Standard NNVQ

The theory of training NNVQs by the mutual information (MI) criterion is derived by
following the approaches in [133, 134], where a more general definition of the emission
probabilities from Equation (2.7) is defined:

⇥⇤ = argmax
⇥

�
ln p
�
X|⌦,⇥
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(
TX
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)

(4.1)
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j=1

ln p
�
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�
9
=

; , (4.2)

where m(t) = H⇥(x(t)) with m(t)
2 R

⇤
J [L]

refers to the output of NNVQs, and
⇤
J [L] can

be arbitrarily chosen depending on the task to solve. The model ⇥ can represent any
arbitrary DNN architectures, and ⌦ = [!(1), · · · ,!(t), · · · ,!(T )] are class labels for the
corresponding input sequence X, where monophones (MONOs) or triphones (TRIs)
states are popular target label options in ASR.

In order to simplify the subsequent notations, the parameters ⇥ are omitted in the
next step, and the likelihood p

�
x(t)

|!(t),⇥
�
is rewritten as:

p
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where p
�
x(t)

|m(t)
j ,!(t)

�
is reduced to p

�
x(t)

|m(t)
j

�
, as the inputs x(t) are commonly

considered conditionally independent of the classes !(t) [133]. Then, the likelihood
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and the conditional probability p

�
m(t)

j |!(t)
�
are reformulated by utilizing

Bayes’ theorem, yielding:
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Both terms are substituted into Equation (4.4):
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and the standard quantization procedure of VQs is applied to obtain simplified conditional
probability p

�
!(t)

|
⇤
m(t)

�
:

p
�
m(t)

j |x(t)
�
=

(
1 if m(t)

j =
⇤
m(t)

0 else
8j 2 {1, 2, · · · , J [L]

}, (4.9)

where p
�
m(t)

j |x(t)
�
refers to the posterior distribution given an input x(t). Notice that

the posterior distribution has values of one at the index j of the firing neuron
⇤
m(t) solely

and zero otherwise.
Finally, p

�
x(t)

|!(t)
�
is substituted into the general likelihood formulation defined in

Equation (4.2):
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whereby
PT

t=1 ln p
�
x(t)
�
is omitted, as it does not depend on the parameters ⇥. The

remaining sums can be expressed as expectations E
�
ln p
�
⌦
��

and E
�
ln p
�
⌦|

⇤
M
��
:
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⇥⇤ = argmax
⇥

�
� E(ln p

�
⌦
�
) + E

�
ln p
�
⌦|

⇤
M
�� 

(4.13)

= argmax
⇥

�
H
�
⌦
�
� H

�
⌦|

⇤
M
�

| {z }
I
�
⌦,

⇤
M
�

 
, (4.14)

and further reformulated into the entropies H
�
⌦
�
and H

�
⌦|

⇤
M
�
by considering that the

expectation of ln probabilities can be defined as entropies. The last expression leads
to the information-theoretic criterion of the MI I

�
⌦,

⇤
M
�
[133], where the MI I

�
⌦,

⇤
M
�

between the two discrete label sequences ⌦ and
⇤
M is maximized to retrieve proper

parameters ⇥.

4.3.2 Training Procedure of NNVQs

The goal of the training procedure of NNVQs is to determine the proper parameters ⇥⇤

based on training criterion:

⇥⇤ = argmax
⇥

�
H
�
⌦
�
� H

�
⌦|M

� 
, (4.15)

which defines a supervised training task of maximizing the MI I
�
⌦,M

�
[133]. Notice that

standard NNVQ outputs are considered, which are not satisfying the VQ quantization
formulation in Equation (4.9). Moreover, the fixed target labels are set to ⌦ = Ŷ , which
originates from a given dataset D, and the target label sequence Ŷ is typically obtained
by the one-hot encoding strategy defined in Equation (2.3). As the target vectors ŷ(t)

are fixed, the entropy H
�
⌦
�
remains constant during optimization, and the training

criterion in Equation (4.15) is simplified into:

⇥⇤ = argmax
⇥

�
� H

�
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. (4.16)

The conditional entropy H
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is then reformulated in terms of probabilities:
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Ŷ |M

�
= �

TX

t=1

J [L]X

i=1

⇤
J [L]X

j=1

p
�
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The joint probability distribution p
�
Ŷ ,M

�
can be represented by p

�
Ŷ ,

⇤
M
�
if the

standard quantization procedure from Equation (4.15) is assumed, where the firing
neuron

⇤
m(t) = H⇥(x(t)) is one and the remaining output neurons are zero. Additionally,
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Figure 4.2: The result of a scaled softmax functions e (m) with the three di↵erent scaling values
 1 = 1.0,  2 = 10.0, and 3 = 25.0 for given NNVQ outputm = (0.5, 0.4, 0.6, 0.8, 0.9, 0.7, 0.3)>.
For  1 = 1.0, the scaled softmax corresponds to the standard softmax function  (m) = e (m).
In the case of the scaling factor  3 = 25.0, a close approximation of the max operator is
obtained, resulting in the dominant firing neuron

⇤
m = 5, or

⇤
m being one-hot encoded as

⇤
m = (0, 0, 0, 0, 1, 0, 0)>.

if the one-dimensional target labels ŷ(t) instead of the one-hot encoded vectors ŷ(t) are
considered, the joint probability distribution p

�
Ŷ ,

⇤
M
�
can be e�ciently derived:
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Initially, Rigoll approximated the quantization procedure of VQs in his MLPs by setting

the maximum output m(t)
j in m(t)

2 R
⇤
J [L]

to one and the remaining outputs to zero [133],
leading to a non-di↵erentiable max operation. This operator was later replaced by Rigoll
and Neukirchen, who introduced a scaled and di↵erentiable softmax function e [134]:

⇤
m(t)

⇡ e 
�
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=
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�
 m(t)

j
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PJ
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�
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}. (4.20)

with
⇤
m(t) refers to an approximation of

⇤
m(t) being one-hot encoded (compare Equa-

tion (2.3)) and  to a heuristic parameter for scaling the enhanced softmax e . In
Figure 4.2, the scaled softmax function e is depicted for multiple scaling factors  ,
whereby  1 = 1.0 is equivalent to a standard softmax function, and  3 = 25.0 corre-
sponds to an approximated max operation, and the NNVQs can be assumed to follow
the quantization formulation of standard VQs. If higher or lower values are chosen for  ,
NNVQs generate spikier or smoother outputs e 

�
m(t)

�
, leading to stronger and weaker

approximations of
⇤
m(t) being one-hot encoded.
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4.3.3 The Extended Training Procedure for DNNQs

Although Rigoll and Neukirchen [134] described a procedure to obtain the gradients of

H
�
Ŷ |

⇤
M
�
w.r.t. the weights of the MLPs, their approach required iterating through the

entire dataset D to gather the joint probability p
�
Ŷ ,

⇤
M
�
. Moreover, they did not employ

standard cost functions, and their optimization relied solely on minimizing H
�
Ŷ |

⇤
M
�
.

Watzel et al . established an alternative training procedure in their work [13†], in which

they applied the standard cross entropy (CE) cost function CCE

�
Ŷ B,

⇤
MB

�
(compare

Section 2.2.6) for implicitly maximizing the MI I
�
Ŷ ,

⇤
M
�
instead of explicitly minimizing

H
�
Ŷ |

⇤
M
�
[160]. They obtained the CE cost function CCE

�
Ŷ B,

⇤
MB

�
for small mini-

batches B of size B and prevented ine�cient iterations over the entire dataset D which
was essential for modifying the standard NNVQs into DNNQs by increasing the number
of hidden layers.

However, utilizing CE cost functions CCE

�
Ŷ B,

⇤
MB

�
is more complex than it seems,

as it requires equal dimensions
⇤
J [L] !

= J [L] between the DNNQ outputs m(t)
2 R

⇤
J [L]

and the one-hot encoded target labels ŷ(t)
2 RJ [L]

. Since the dimensions of the DNNQ
output m(t) can be arbitrarily set, similar to standard VQs, a dimension mismatch
⇤
J [L]
6= J [L] would occur. Additionally, the MI I

�
Ŷ ,

⇤
M
�
heavily depends on the number

⇤
J [L] of unique emitting labels corresponding to the output dimensions of the DNNQ.
The modeling capability of DNNQs is limited if small output dimensions

⇤
J [L] are chosen,

as the theoretical limit of the MI depends on the number of unique emitting output
labels

⇤
m(t).

The approach of Watzel et al . [13†] introduced a novel two-stage training scheme,

which enabled them to employ CE cost functions CCE

�
Ŷ B,

⇤
MB

�
for any arbitrary

DNNQ output dimension
⇤
J [L]. Therefore, the joint probability p

�
Ŷ ,

⇤
M
�
is obtained and

conditioned on
⇤
M in the first stage:
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where P 2 PJ [L]⇥
⇤
J [L]

represents the conditional probability distribution p
�
Ŷ B|

⇤
MB

�
. The

matrix P is determined by following the approach from Rigoll and Neukirchen [134]:
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with "prob referring to a heuristic parameter for smoothing the values in P . If a proper
mini-batch size B is chosen, the matrix P can approximate the conditional probability
distribution of the entire dataset D in each descent step, i.e., p

�
Ŷ |

⇤
M
�
⇡ P .

In the second stage, the DNNQ outputs
⇤
m(t) are mapped from P

⇤
J [L]

into the label
space BJ [L]

by:
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f⇤m(t) = P
⇤
m(t) (4.23)

with f⇤m(t)
2 PJ [L]

specifying the transformed DNNQ outputs
⇤
m(t). The linear transfor-

mation in Equation (4.23) can be interpreted as a marginal probability, representing
⇤
m(t)

2 P
⇤
J [L]

in the label space BJ [L]
[13†]. As a result, DNNQs with arbitrary output layer

sizes are trainable, as their output can be mapped to any lower or higher dimensional
label space BJ [L]

.

4.3.4 The Discrete Hidden Markov Model Training

In standard HMMs, the likelihood p
�
X|S,�

�
for specific states sk is modeled by

PDFs, governed by the parameters �. Since the DNNQs generate discrete labels
⇤
m(t),

represented by their one-hot encoded outputs
⇤
m(t), the discrete likelihood p

� ⇤
M |S,�

�

in DHMMs is modeled by PMFs [22].
The DHMMs parameters are iteratively updated in the MLE procedure, which relies

on a given Viterbi state sequence S⇤ (compare Section 2.1.4). In contrast to standard

HMMs, the training of DHMMs is heavily simplified, as the auxiliary margins e�(t)k and
e⇠(t)l,k correspond to deterministic counts [109]:
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�
8k 2 {1, 2, · · · , K}, (4.24)

and:
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which are utilized to update the PMFs representing the likelihoods p
� ⇤
m(t)

|s(t)k ,�{k}� for
each state s(t)k . The PMFs can be gathered in a matrix B 2 PK⇥
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, where each row
corresponds to the likelihood p
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The transition probabilities are updated following the procedure of standard HMMs
(compare Equation (2.6)):

aMLE,l,k =

PT�1
t=1 �

�
s⇤(t), s(t)l

�
�
�
s⇤(t+1), s(t)k

�
PT�1

t=1 �
�
s⇤(t), s(t)k

� 8l, k 2 {1, 2, · · · , K}. (4.27)

Notice that the number of bins in the normalized histograms, i.e., the likelihood
p
� ⇤
m(t)

|sk,�
{k}�, depends on the number of unique DNNQ labels

⇤
m(t).

4.4 Experimental Setup

The evaluation of DNNQs was conducted by Watzel et al . [13†] on the publicly available
dataset TED-LIUM-v2 [138]. The 207 h transcribed speech dataset belongs to the class
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of small-sized datasets and is already pre-split into the train, dev, and test sets. The
DNNQ models are implemented in the first version of the TensorFlow toolkit [3], which
corresponds to one of the most popular toolkits in machine learning. It provides several
pre-implemented functions in Python and C++ for building up DNNs, which can then
be e�ciently trained on graphics processing units (GPUs). The pre-processing procedure
of the TED-LIUM-v2 dataset, the decoding procedure for the optimized DNNQ models,
and the final evaluation are accomplished with the Kaldi toolkit [124]. The well-known
toolkit gathers all the required modules for training SOTA approaches in ASR, executed
by pre-defined scripts.

The experimental section is divided into four parts. First, the pre-processing procedure
of the TED-LIUM-v2 is described, which was employed by Watzel et al . Then, the
architecture of DNNQs is explained, including the applied regularization techniques. In
the third part, the novel training scheme from Watzel et al . is introduced. Finally, the
last part presents the decoding procedure.

4.4.1 Pre-Processing of the TED-LIUM-v2 Dataset

In the first step, Watzel et al . [13†] extracted 13-dimensional Mel-frequency cepstral
coe�cients (MFCCs) c(t) 2 R13 for each 25ms segment 7��[x(t)

2 I400, where the first
coe�cient was replaced by the log energy of this segment1. Then, they normalized the
extracted MFCCs by applying the cepstral mean normalization (CMN) and appended
the delta �c(t) and delta-delta �2c(t) features to obtain the final inputs x(t)

2 R39. Next,
these inputs are employed in a multi-staged training procedure, resulting in the final TRI
HMM-GMM model. For this, the transcript of the dataset D is sorted from the shortest
to the longest utterances. The shortest 10 000 utterances with their corresponding
MFCCs are utilized for training a standard MONO HMM-GMM model by MLE in the
first stage. Then, MONO models carry out a forced alignment on the entire dataset D
and serve as the initialization model of the subsequent TRI HMM-GMM model. Finally,
the TRI HMM-GMM model is optimized by MLE on the entire dataset D. Afterwards,
the trained TRI HMM-GMM model is utilized to conduct another forced alignment on
the whole dataset, providing the TRI states s(t) 2 B2024 or MONO states s(t) 2 B127 as
target labels ŷ(t) for the corresponding inputs x(t).

4.4.2 Architecture of DNNQs

In the second step, they built up the network architecture of their DNNQs, depicted
in Figure 4.3. The DNNQs are defined as MLPs with four hidden layers. The input
layer is composed of 39 input nodes set to the inputs x(t)

2 R39. Then, four subsequent
hidden layers h[1](t),h[2](t),h[3](t)

2 R512
+ followed, whereby each hidden layer includes 512

neurons, and the activation functions are set to rectified linear units (ReLUs) (compare
Equation (2.68)). Each hidden layer is concluded by a batch normalization (BN) layer [71]
to normalize its outputs for the subsequent layers. Watzel et al . [13†] appended a dropout

1400 samples correspond to 25ms in a 16 kHz sampled signal.
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Figure 4.3: On the left the DNNQ architecture, and on the right, the novel sampling

procedure is depicted. In order to transform the DNNQs outputs
⇤
m(t)

2 P
⇤
J [L]

into the label

space BJ [L]
, p
�
Ŷ B,

⇤
MB

�
is sampled in the mini-batch B, followed by conditioning on

⇤
MB to

obtain p
�
Ŷ B|

⇤
MB

�
. Then,

⇤
m(t) is transformed by p

�
Ŷ B|

⇤
MB

�
into f⇤m(t), corresponding to a

representation of
⇤
m(t) in the label space BJ [L]

. Finally, the CE cost function CCE(Ŷ B,
f⇤
MB)

can be calculated and backpropagated to optimize the DNNQs.

layer [66] with a keep probability e⇢ = 0.5 after the fourth BN layer for regularization. A
three-parted layer architecture finalizes the DNNQ models. First, MLPs generate the

outputs m(t)
2 P

⇤
J [L]

by applying sigmoid activation functions. Then, the outputs m(t)
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are processed by scaling layers, where scaling factors of  = 15.0 provide numerically
stable training with satisfying model performance. In the end, softmax functions are
employed on the scaled DNNQ outputs to obtain a quantization procedure comparable
to standard VQs.

Besides regularizing the DNNQs by utilizing BN and dropout layers, the model weights
are regularized by the weight decay term ⇧ =

PL�1
l=1

��W [l]
�� (see also Equation (2.119))

scaled by � = 10�7.

4.4.3 Optimization of DNNQs

In the third step, the DNNQs are optimized by the Adam optimizer [76], whereby

the frame-wise CE cost function CCE

�
Ŷ B,

⇤
MB

�
serves as the training criterion for the

optimizer. The DNNQ outputs
⇤
m(t)

2 P
⇤
J [L]

are transformed into f⇤m(t)
2 PJ [L]

by the
transformation matrix P (compare Equation (4.23)) in order to apply the CE cost

function CCE

�
Ŷ B,

⇤
MB

�
. The initial learning rate is set to ⌘ = 0.01. If Watzel et al .

[13†] did not observe an MI improvement during validation for several subsequent epochs,
they halved the current learning rate ⌘. As P requires su�cient statistics to satisfy
P ⇡ p

�
Ŷ |

⇤
M
�
, Watzel et al . [13†] employed mini-batches B of size B = 15 000. Moreover,

they smoothed the values in P by setting "prob = 0.01, which remained unchanged in all
subsequent experiments. Additionally, they suggested employing the label smoothing
procedure (see also Equation (2.127)) by selecting the smoothing parameter ◆ = 0.1,
which led to a more steady and faster training.

4.4.4 Decoding Procedure for DNNQs

In the last step, the optimized DNNQs are evaluated on the dev and test set of the
TED-LIUM-v2 dataset. The evaluation is split into several parts. The trained DNNQs
are utilized in the first part, generating inferences about the train, dev, and test set.
During inference, the scaled softmax function e is omitted, and the class label

⇤
m(t) is

obtained by the argmax function:

⇤
m(t) = argmax

1j
⇤
J [L]

m(t)
j 8t 2 {1, 2, · · · , T}. (4.28)

Then, the DHMMs are optimized by utilizing the predicted
⇤
m(t) and the given transcript

of the train set in a Viterbi training (compare Section 4.3.4). Finally, the obtained
DHMMs are decoded on the dev and test, where the provided 4-gram language model
(LM) of the dataset is incorporated in the decoding process. The decoding procedure is
executed as a beam search (see also Section 2.1.7) with a beam size Kbest = 13, returning
the final WERs on the dev and test sets.
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Table 4.1: The WERs (%) for di↵erent DNNQ output layer sizes
⇤
J [L]
2 {400, 700, 1000, 1500}

trained on the subset eD, which corresponds to the 20 000 shortest utterances in
TED-LIUM-v2 [138].

Monophone States

DNNQ GMM
⇤
J [L] 400 700 1000 1500 -

dev 52.0 45.8 44.5 45.8 54.2
test 52.2 46.9 45.1 47.0 54.7

4.5 Evaluation

Watzel et al . [13†] conducted two ablation studies to determine the optimal DNNQ

output layer size
⇤
J [L] and the number Nspl of subsequent inputs x(t), which were spliced

together to increase the context. Based on the outcome of these studies, they retrained
their DNNQs to derive the best models.

4.5.1 Ablation Study on DNNQ Output Layer Sizes

Their first ablation study aimed to determine the optimal output layer size of the DNNQs.
Therefore, Watzel et al . [13†] trained the DNNQs on a subset eD ✓ D of the entire dataset
D, more precisely, on the 20 000 shortest utterances to speed up the time-consuming
optimization process. The target labels for the subset eD are obtained following the
multi-stage training procedure of TRI HMM-GMMs above, in which the obtained TRI
states s(t) 2 B2024 are mapped to the MONO states s(t) 2 B127 and serve as one-hot
encoded target labels ŷ(t)

2 B127.
Then, Watzel et al . trained four DNNQ setups for 100 epochs with varying output

layer sizes
⇤
J [L]

2 {400, 700, 1000, 1500}. The learning rate ⌘ is halved if there is a
performance stagnation on the dev set for six subsequent epochs. The DNNQs are
decoded following the decoding procedure in Section 4.4.4.

Besides the DNNQs, a baseline model is established. Therefore, standard MONO
HMM-GMMs are optimized by MLE on the subset eD. The trained model is decoded by
the standard decoding procedures of MONO HMM-GMMs [22], whereby the 4-gram LM
provided by the dataset is included, and a beam size Kbest = 13 is applied.

Even though the MONO DHMM-DNNQ models are restricted due to their quantiza-
tion process, all four DNNQ setups from Watzel et al . [13†] outperformed the standard
MONO HMM-GMM systems, whose results are summarized in Table 4.1. Since standard
NNVQs [134] failed to surpass continuous models in the past, the authors suspected that
DNNQs possessed a higher modeling capability. Compared to NNVQ, the DNNQs are
built up by multiple hidden layers, increasing their generalization capabilities. Moreover,
they assumed that the BN and dropout layers further improved generalization, as BN
layers stabilize and accelerate the training process, and the dropout layers force the

76



4. Hybrid Acoustic Modeling

Table 4.2: The reported WERs (%) for Nclu = 1000 and Nspl 2 {0, 1, 2}, where the DNNQs
are trained on the entire train set of TED-LIUM-v2 [138].

Monophone States

DNNQ

Nspl 0 1 2

dev 43.7 37.5 36.2
test 45.1 38.9 37.2

DNNQs to make more robust predictions.

Furthermore, the results in Table 4.1 reveal that the optimal DNNQ output layer size
is specified by

⇤
J [L] = 1000, which returns the overall best WERs of 44.5% and 45.1%

on the dev and test set, respectively, and corresponds to a relative WER reduction of
17.9% and 17.6% compared to standard HMM-GMM systems. Although Watzel et
al . [13†] achieved superior results by setting

⇤
J [L] = 1000, it remains unclear if more

suitable values for
⇤
J [L] exist, as the di↵erences between

⇤
J [L] = 700 and

⇤
J [L] = 1500 are

significant. Nevertheless, the first ablation study already demonstrates the potential of
DHMM-DNNQ models.

4.5.2 Ablation Study on Splicing Adjacent Input Frames

In the second ablation study, Watzel et al . [13†] analyzed the splicing impact of varying
numbers of subsequent inputs

{

x(t), where they defined three splicing setups with Nspl 2

{0, 1, 2}. The first splicing setup with Nspl = 0 corresponds to a standard single frame
input

{

x(t) = x(t) with

{

x 2 R39. In the second setup, the context of the current input x(t)

is extended by concatenating the Nspl = 1 adjacent frames

{

x(t) = x(t�1) ++ x(t) ++ x(t+1)

to obtain the new spliced input

{

x(t)
2 R117. The context is further extended with Nspl = 2

in the last setup, resulting in the spliced input

{

x(t)
2 R195. Watzel et al . [13†] optimized

three DNNQs with spliced inputs

{

x(t) in three training setups.

In contrast to the first study, the optimization is conducted on the entire dataset
D and MONOs are chosen as target labels ŷ(t). The dropout layers in the DNNQs are
omitted, as dropout layers typically increase the training time, which the authors wanted
to avoid. Overall, the DNNQs are trained for 50 epochs, and the learning rate ⌘ is halved
if no improvement on the dev set is observable for ten subsequent epochs.

The results of the ablation study are summarized in Table 4.2 and demonstrate that
the WERs of DNNQs can be further reduced if a larger context is chosen. The derived
DNNQs heavily benefit from an increased context Nspl = 2, which leads to a WER of
36.2% and 37.2% on the dev and test set. This corresponds to a relative WER reduction
of 17.2% on the dev and 15.5% on the test, respectively, compared to DNNQs trained on
standard single-frame input x(t).
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Table 4.3: The final WERs (%) for Nspl 2 {0, 1, 2} and Nclu = 1000, where the entire train
set of TED-LIUM-v2 is utilized. [138].

Triphone States

DNNQ GMM

Nspl 0 1 2 0 1 2

dev 30.5 27.1 27.1 28.2 35.2 45.9
test 31.7 28.1 27.1 27.7 36.3 48.0

4.5.3 Final Results of DNNQ Architectures

Based on conducted ablations studies, Watzel et al . [13†] expected superior DNNQ

models for spliced inputs

{

x(t)
2 R195 with Nspl = 2 and output size of

⇤
J [L] = 1000.

Therefore, they trained three DNNQs with Nspl 2 {0, 1, 2} on the entire dataset D for
50 epochs, halved the ⌘ for performance stagnation of 10 subsequent epochs on the
dev set, and selected TRIs states as target labels ŷ(t)

2 B2024. The results of the TRI
DHMM-DNNQ models are compared to standard TRI HMM-GMMs with spliced inputs

{

x(t) with Nspl 2 {0, 1, 2} to ensure a fair comparison.
In Table 4.3, the results of all model structures are depicted. Interestingly, Watzel et al .

[13†] reported that forNspl = 0, the DHMM-DNNQmodels could not surpass the standard
HMM-GMMs. However, as soon the context is increased, i.e., for Nspl 2 {1, 2}, the
DHMM-DNNQ models exceeded the HMM-GMMs, whose performance even deteriorates.
Similar performance declines of HMM-GMMs applying higher dimensional inputs

{

x(t)

were already reported in another work from Rath et al . [131], who suspected that the
massive increase of GMM parameters caused by

{

x(t) led to the declining performance of
HMM-GMMs.

The DHMM-DNNQ models achieve the overall best performance by setting Nspl =
2. Watzel et al . [13†] reported a WER of 27.1% on the dev and 27.1% on the test,
corresponding to a relative WER decline of 3.9% and 2.2%, respectively. However, the
authors did not observe similar performance improvements between Nspl 2 {0, 1, 2} in the
ablation study from Section 4.5.3. They argued that the employed TRI target labels ŷ(t),
which were applied in the final evaluation, already included valuable context-dependent
information, leading to minor improvements between Nspl 2 {0, 1, 2}.

4.6 Conclusion

In their work, Watzel et al . demonstrated that discrete AMs have the potential to
challenge continuous AMs. Their sampling approach provided an e�cient alternative to
train standard NNVQs with arbitrary output layer sizes based on given target labels. As
a result, standard NNVQs could be deepened by increasing the number of hidden layers,
leading to DNNQ architectures. Besides the standard weight decay for regularization,
they employed SOTA regularizing layers, such as BN or dropout layers, to improve the
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generalization of DNNQs models. Moreover, they carried out several ablation studies
to obtain the optimal DNNQ output layer size or to examine the impact of a larger
context where multiple adjacent input frames were spliced together. The final evaluation
demonstrated how DHMM-DNNQ models surpass standard HMM-GMMs, even though
their quantization procedure corresponded to losing valuable information.
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5

Forward-Backward Learning for
Attentional Models

This chapter discusses the forward-backward learning strategies from Watzel et al .
[10†, 12†], who examined the impact of time-reversed models on standard attention-based
encoder-decoder (AED) and self-attention-based encoder-decoder (SAED) architectures
in the optimization phases and how reversed structures could be utilized as auxiliary
functions. In the first section, the most popular end-to-end (E2E) automatic speech
recognition (ASR) architectures in the form of connectionist temporal classification
(CTC), recurrent neural network transducer (RNNT), and AED models are introduced.
In the second section, related approaches to the work of Watzel et al . [10†, 12†] are
presented. Then, the subsequent section establishes the theory of AED and SAED
architectures, followed by a theoretical integration of time-reversed model structures.
The concept of e�cient regularization procedures for even and odd lengths of target
grapheme sequences is introduced, and how arbitrary distance metrics are applicable.
In the fourth section, the experimental setups of AED and SAED models are described,
including the pre-processing of the datasets, the structure of those models, the varying
training procedures for examining the impact of reversed model structures on the standard
architectures, and the decoding procedures of the regularized AED and SAED models.
In the subsequent evaluation section, the outcome of the established training procedures
is discussed. The chapter concludes by reviewing the established approaches from Watzel
et al . [10†, 12†].

5.1 Introduction

Recently, hybrid ASR models have been replaced by E2E ASR models to simplify the
modeling procedure of ASR architectures. In the past, building up standard hybrid ASR
approaches required specific expert knowledge since hybrid approaches were composed
of separate components, roughly dividable into acoustic model (AM), pronunciation
model (PM), and language model (LM) modules. Typically, conditional independence
assumptions are applied in order to optimize each module independently. However, these
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Figure 5.1: On the left, the CTC approach with single encoder RNNs is presented, where
each g(t) is predicted without incorporating adjacent graphemes g(t�1) or g(t+1). On the right,
RNNTs architecture with its encoder, prediction, and joint networks is depicted. In contrast
to CTC, the grapheme prediction g(o) is conditionally dependent on the previously predicted
grapheme sequence Go�1

1 .

assumptions heavily simplify the general theory of ASR models (see also Equation (3.1))
and primarily enable independent optimization of ASR components in practice. However,
this leads to the drawback of restricting the flow of information between components in
practical approaches, and valuable information is not transferred from one component to
another.

In E2E models, all these modules are combined into a single deep neural network
(DNN), and neither expert knowledge of specific ASR components nor a solution for the
formerly mentioned problems of hybrid ASR models is required. Therefore, E2E ASR
models have become very popular over the last few years [10, 26, 30, 33, 34, 44, 56, 57,
59, 95, 149, 157, 165] and surpassed established hybrid ASR approaches for su�ciently
large training dataset sizes [30]. In general, E2E approaches can be divided into three
categories [88]: models applying CTC [55, 56], RNNT models [53, 57], and models relying
on either recurrent neural network (RNN)-based attentional [9, 10, 32–34, 54, 152] or
self-attentional transformer [44, 59, 121, 149, 159] encoder-decoder structures.

In the past, standard RNN approaches were typically trained by objective functions,
which treated each grapheme predictions g(t) based on an input sequence X as indepen-
dent predictions [55]. Therefore, pre-segmentation procedures are mandatory to generate
frame-wise samples (x(t), ŷ(t) = ĝ(t)), commonly generated by a forced alignment proce-
dure of pre-trained hidden Markov model (HMM)-Gaussian mixture models (GMMs).
The final predicted grapheme sequence G is then obtained through a post-processing
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procedure.

In 2006, Graves [55] introduced the alternative CTC objective function, where encoder
RNNs learn the absolute probabilities p

�
G|X

�
(compare to Figure 5.1a). Instead of

maximizing each relative prediction p
�
g(t)

|x(t)
�
independently, the correct predictions of

the entire transcript are maximized. Therefore, a unique blank grapheme output unit is
added to the existing output layer, allowing the encoder RNNs to generate null predictions
?. Graves interpreted these extended encoder RNN outputs u(t)

2 {g(t)
[ ?} as

alignments [55] and compared them to standard HMMs transition probabilities. Here, the

activation of a single grapheme output g(t)j defines the state transition into another state,
and activations for the blank grapheme ? specify the state staying condition [56]. The
absolute probability p

�
G|U ,X

�
is then found by summing over all possible alignments

U (compare Section 3.1.2), where the length of the alignments is limited to the input
length T of X. Although the summation seems infeasible at first sight, Graves solved this
issue by assuming conditional independent graphemes g(t), which enabled him to apply
the forward-back algorithm (see also Section 2.1.3) for calculating p

�
G|X

�
. Finally, the

derivatives of p
�
G|X

�
w.r.t. to the encoder RNNs output layer y(t) are determined and

backpropagated through the network.

A drawback of encoder RNNs trained by the CTC criterion is the strong conditional
independence assumption of each grapheme g(t), which harms the performance of RNNs
by predicting adjacent grapheme combinations in G without considering neighboring
grapheme context g(t�1) or g(t+1). Such encoder RNNs require strong LMs to incorporate
the grapheme context for correcting wrong grapheme predictions. Graves suggested
an enhanced version of CTC [53], where he extended the standard encoder RNNs by
additional prediction RNNs and joint multilayer perceptron (MLP) [55] (compare to
Figure 5.1b). The encoder RNNs process the input sequence X t

1 up to the input
time step t and the prediction RNNs are fed by the predicted grapheme sequence
Go

1 = [g(1), · · · , g(o)] up to the current output time step o. The hidden representations of
the encoder and prediction RNNs are then fused and further processed by the joint MLP.
The normalized RNNT outputs, representing samples from the posterior distribution
p
�
G|X

�
, are obtained by applying the softmax function after the joint MLPs. As

a result, the conditional independence assumption of g(o) does not longer hold, as a
conditional dependence of the prediction RNNs and the joint MLP exist. In addition,
RNNT models are no longer limited to the output sequence length O  T and can
produce arbitrary-length O output sequences.

Alternative encoder-decoder E2E architectures were initially established in the domain
of neural machine translation (NMT) [9, 32]. Therefore, Cho et al . [32] utilized encoder
RNNs to encode the input sequence X into hidden representation sequences Henc.
The decoder RNNs generate the posterior distribution p

�
G|X

�
based on the hidden

representations Henc of the encoder, its previous hidden representation h(o�1)
dec and

the predicted grapheme output g(o�1). Later, Chorowski et al . [33] got inspired by a
work from Graves [54] and introduced the AED models, where an attention mechanism
weighted the relevance between the hidden encoder representations H (t)

enc and the hidden

decoder representations H(o)
dec. Moreover, they integrated penalty terms in the attention
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Figure 5.2: The AED architecture consists of encoder and decoder networks. The attention
mechanism provides relevance of Henc in the decoder networks. In comparison to RNNTs,
the entire input sequence X has to be processed by the encoder before emitting grapheme
predictions g(o).

module forcing the model to prefer monotonic alignments. In a subsequent work by
Chorowski et al . [34], the attention mechanism was further improved by extending the
attentional functions with location-aware modules, where attention weights of previous
time steps were considered.

The AED E2E models achieved state-of-the-art (SOTA) results in multiple large-
vocabulary speech recognition (LVSR) setups [10, 26]. However, these architectures also
have a major drawback: the application of RNNs. Although superior versions of RNNs
exist, as the well-known long short-term memory networks (LSTMs) [67], they are limited
in preserving information for long input sequence X [91]. Compared to standard MLPs,
they require more resources for computation, and the training time is increased by the
recurrent connections.

In 2017, Vaswani et al . [159] established a non-recurrent replacement for the LSTMs,
built solely by standard MLPs, and global self-attention (SA) modules. In contrast to
standard LSTMs, the SAED architectures are not limited to the length of input sequences
since these networks can always attend to the entire input sequence [88]. In the following
years, the SAED models, also known as transformer models, were successfully transferred
into ASR [44, 149], further improved by deeper model versions [121], or were also forced
to consider local context [59, 11†]. Recently, multiple studies also verified the superiority
of SAED models to LSTMs [75, 90, 181].

Even though AED or SAED architectures achieve SOTA results on several datasets,
Watzel et al . demonstrated in their approaches [10†, 12†] that the performance of these
architectures could be enhanced if specific model extensions are deployed. For AED
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models, Watzel et al . [12†] added a second decoder network in the training phase, which
was optimized on time-reversed target labels. The decoder serves as a regularizer and
is discarded in the subsequent decoding phase. Watzel et al . also established a similar
approach for SAED models, where an entire SAED model is trained on time-reversed
target labels for regularizing standard SAEDs models. Additionally, the impact of various
distance functions and the utilization of byte pair encoding (BPE) and character (CHAR)
target labels in the regularization procedure were examined. The contributions of both
works [10†, 12†] can be summarized as follows:

• An e�cient incorporation of the second decoder in AED and the second transformer
network in SAED in the standard model setups.

• An examination of BPE and CHAR target labels on the model performance in
AED and SAED models.

• The integration of the novel regularization procedures into standard AED and
SAED models if BPE sequences of odd lengths occur in the training phase.

• An analysis of the Euclidean and Cosine metrics in regularizing SAED architectures.

• The advantage of integrating additional time-reversed network structures in AED
and SAED models.

5.2 Related Work

The first analysis of bidirectional RNN architectures was conducted by Liu et al . [92, 93]
for general E2E modeling in 2016. They examined the impact of incorporating additional
right-to-left (R2L) RNNs into standard left-to-right (L2R) RNNs, where the R2L RNNs
were trained on time-reversed target label sequences and the L2R RNNs on regular
target labels. Their motivation was driven by the fact that RNNs su↵ered in maintaining
correct predictions of large input sequences, which was discovered in a study in 2018 [91].
Liu et al . [92, 93] suggested independently optimizing additional R2L RNNs from the
L2R RNNs and utilizing the L2R and R2L RNNs in a joint search approximation.
Consequently, they merged the k-best hypothesis of the L2R and R2L RNNs into a joint
search space and executed an exhaustively rescoring of all variations in the search space.
Their novel approach returned good results compared with standard decoded L2R RNNs.
However, both RNNs were optimized independently and could not share information.

A few years later, Mimura et al . [105] transferred the idea of R2L models into the
domain of ASR and applied such a concept to AED models. Instead of training two entire
L2R and R2L AED models, they proposed using single encoder networks whose hidden
representations were shared between individual L2R and R2L decoder networks. Their
training phase was defined as multitask learning, in which the shared encoder and the
corresponding L2R and R2L decoders were jointly optimized by a weighted cost function.
For the final decoding procedure, a three-pass decoding algorithm was established. The
k-best hypotheses generated by the L2R and R2L decoders were obtained in the first
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and second passes. In the final pass, these hypotheses were merged into a combined
hypothesis by considering the attention weights of the L2R and R2L attention modules,
followed by a rescoring procedure. In the subsequent evaluation, Mimura et al . [105]
demonstrated that their novel AED model outperformed standard L2R AED models,
even though they solely deployed a simple joint training procedure.

In the same year, Zhang et al . [185] addressed the joint training procedure of L2R
and R2L models in NMT, as all former approaches mainly examined the e↵ect of R2L
models in the decoding phase. They established and proposed a novel training process
in which each L2R and R2L model was initially pre-trained independently. Next, they
divided the subsequent training iterations into two phases. In the first phase, L2R and
R2L models generated predictions for the corresponding mini-batch and determined
the Kullback-Leibler divergence (KLD) regularization terms for the L2R model. The
regularization terms were added to the standard cost functions, the resulting error was
then backpropagated through the L2R networks, and their weights were updated by
stochastic gradient descent (SGD). The parameters of the R2L models were frozen, as
they served as auxiliary networks. The training iteration was finalized in the second
phase by repeating the same procedure for the R2L models, whereby the L2R models
corresponded to the auxiliary networks. The iterative training procedure was repeated
until convergence was observed. The regularized models indicated better performance
in the evaluation. In contrast to prior works, Zhang et al . [185] did not apply shared
model structures.

In the domain of text-to-speech, Zheng et al . [186] established a similar joint training
approach to the former procedure [185]. However, they exclusively examined the mutual
impact of regularizing bidirectional decoder RNNs. They also pre-trained the L2R and
R2L decoders and utilized shared encoder RNNs [105]. Then, they individually optimized
the L2R or R2L decoders in each training iteration [185] and applied the opposite decoder
network as auxiliary models. In contrast to Zhang et al . [185], they further extended the
loss by an additional regularizing term, which minimized the L2 distances between the
hidden representations of the L2R or R2L decoders. Their evaluation revealed superior
results compared with models relying on standard L2R decoders.

Recently, Chen et al . [28] proposed bidirectional decoders for SAED transformer
models in ASR, and they followed the approach from Mimura et al . [105] by utilizing
a single shared encoder. However, instead of integrating additional R2L decoders into
the existing L2R decoders, they solely reversed the query, key, and value matrices of the
SA modules in individual model branches and shared the weights between the L2R and
R2L decoders. In the evaluation, the novel SAED model returned lower word error rates
(WERs) compared with standard SAED models, and they were able to demonstrate that
these models could e↵ectively employ the time-reversed information without increasing
the number of model parameters. Interestingly, Chen et al . did not integrate a separate
regularizer term into the loss function. Therefore, it remained unclear whether the model
could be further improved by setting alternative training objectives.
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5.3 Proposed Method

The first part independently introduces the theory of AED and SAED architectures. Since
Watzel et al . established methods for AED [12†] and SAED [10†] architectures, which
share similarities, most of their methods are jointly described, and the corresponding
model architectures are referenced. Afterward, the integration of R2L structures into
existing L2R architectures is explained, whereby the implementation di↵erences between
AED and SAED models are discussed. Then, the challenge of regularizing equal and
unequal sequence lengths is described. For SAED models, the analysis is extended by
examining the impact of various distance functions.

5.3.1 Theory of AED Models

The theory of AED models is established by relying on the approach by Chorowski et al .
[34], corresponding to the most popular AED model structure nowadays. Standard AED
models consist of three major model components: the encoder networks Henc

�
·
�
, the

attention mechanisms Aaed

�
·
�
, and the decoder networks Hdec

�
·
�
(see also Figure 5.2).

Generally, the input sequences X are transformed by RNNs into the hidden encoder
representations H [lenc]

enc :

H [lenc]
enc =

⇥
h[lenc](1)

enc , . . . ,h[lenc](t)
enc , . . . ,h[lenc](T )

enc

⇤
8lenc 2 {1, 2, · · · , Lenc}, (5.1)

which encode crucial aspects of the input sequences X. The hidden representations
H [Lenc]

enc of the last encoder layer Lenc conclude the encoder network Henc:

H [Lenc]
enc = Henc

�
X
�
. (5.2)

Afterward, the encoded sequence H [Lenc]
enc and h[Ldec](o�1)

dec are processed by an attention

module Aaed, whereby h[Ldec](o�1)
dec 2 RJ [Ldec] corresponds to the hidden representations of

the second last hidden layer Ldec of the RNN decoder at the previous time step o� 1:

↵(o)
att = Aaed

�
H [Lenc]

enc ,h[Ldec](o�1)
dec

�
8o 2 {1, 2, · · · , O}, (5.3)

with ↵(o)
att 2 PT referring to attention weights for weighting the hidden representations

H [Lenc]
enc .
The subsequent attention modules Aaed

�
·
�
are commonly defined by scoring networks

Saed(·):

e(o) = Saed

�
H [Lenc]

enc ,h[Ldec](o�1)
dec

�
8o 2 {1, 2, · · · , O}, (5.4)

whose scoring values e(o)
2 RT are normalized along the input sequence axis T by the

softmax function  
�
·
�
to generate the attention weights ↵(o)

att:

↵(o)
att =  

�
e(o)
�
=

exp(e(o))
PT

⌧=1 exp(e
(o)
⌧ )

8o 2 {1, 2, · · · , O}. (5.5)
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Notice that the attention weights ↵(o)
att can also be interpreted as alignments [9], as each

hidden representation h[Ldec](o�1)
dec of the decoder RNNs receives a score for each latent

layer output h[Lenc](t)
enc of the encoder.

The attention networks Aaed and their scoring functions Saed can be arbitrarily
defined, depending on which task has to be solved. For ASR models, Chorowski et
al . [34] enhanced the standard content-based attention module in Equation (5.3) to

Aaed

�
H [Lenc]

enc ,h[Ldec](o�1)
dec ,↵(o�1)

att

�
, which includes the attention weights of the previous

output time step o� 1. As a result, the scoring values e(o) in Equation (5.4) are modified,
leading to a content-based and location-aware module:

e(o)t = Saed

�
H [Lenc]

enc ,h[Ldec](o�1)
dec ,↵(o�1)

att

�
(5.6)

= w>
aed tanh(W aedh

[Ldec](o�1)
dec + V aedh

(t)
enc +U aedf

(o) + baed) 8t 2 {1, 2, · · · , T}
(5.7)

whereby W aed 2 RJ [Ldec]⇥J [Ldec] , U aed 2 RJ [Ldec]⇥Z , and V aed 2 RJ [Ldec]⇥J [Lenc] are weight
matrices, and waed, baed 2 RJ [Ldec] are weight vectors. The vectors f (o)

2 RZ are obtained
by the location-aware module, represented by 1D convolutional neural networks (CNNs):

f (o) = F ⇤ ↵(o�1)
att . (5.8)

where the operator ⇤ defines convolution, F 2 RZ⇥W refers to the convolutional kernel
of width W , and Z defines the number of output channels. Notice that the parameter H
is dropped as H = 1 for 1D CNNs.

In the next step, the alignments ↵(o)
att are utilized for weighting the relevance of

each hidden encoder representation h[Lenc](t)
enc and aggregated into the content vector

c(o) 2 RJ [Lenc] for the current output time step o:

c(o) =
TX

t=1

↵(o)
t h[Lenc](t)

enc 8o 2 {1, 2, · · · , O}. (5.9)

Based on the content vector c(o), the previous grapheme output g(o�1), and hidden
layer output h[Ldec](o�1)

dec of the second last decoder layer, RNNs are generating the last

latent layer output H [Ldec]
dec of the decoder networks:

H [Ldec]
dec = Hdec

�
h[Ldec](o�1)

dec , c(o), g(o�1)
�
8o 2 {1, 2, · · · , O}, (5.10)

with:

H [ldec]
dec =

⇥
h[ldec](1)

dec , . . . ,h[ldec](o)
dec , . . . ,h[ldec](O)

dec

⇤
8ldec 2 {1, 2, · · · , Ldec}. (5.11)

The final output grapheme sequence G is obtained by applying a single-layer perceptron
with linear activation functions (compare Section 2.2.1):
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h[Ldec+1](o)
dec = W [Ldec+1]h[Ldec](o)

dec + b[Ldec+1]
8o 2 {1, 2, · · · , O}, (5.12)

whereby W [Ldec+1]
2 RJ⇥J [Ldec] corresponds to the weight matrix and b[Ldec+1]

2 RJ to
the bias of the J-dimensional output perceptron. In order to retrieve the final grapheme
distribution p

�
G|X

�
, the softmax function  

�
·
�
is applied:

p
�
g(o)

|X,Go
1

�
=  

�
h[Ldec+1](o)

dec

�
8o 2 {1, 2, · · · , O}. (5.13)

5.3.2 Theory of SAED Models

Initially, SAED models were introduced by Vaswani et al . [159] in 2017. A year later,
Dong et al . [44] successfully transferred them to the domain of ASR. The subsequent
theory is thus established following their approach.

The SAED models are related to AED models, as they also consist of three fundamen-
tal components: the encoder networks Henc, the attention modules Asaed, and the decoder
networks Hdec. In contrast to AED models, SAED models are not integrating recurrent
or convolutional network structures into their architecture and are solely constructed out
of MLPs. As a result, SAED layers only depend on the outputs of the previous layers
and avoid the computationally expensive calculation costs of RNNs or CNNs [159].

The first core module in SAED architectures, which is depicted in Figure 5.3a, refers
to the self-attention (SA) module Asa

�
·
�
:

Asa

�
Q,K,V

�
=  

�
Ssaed

�
Q,K

��
V , (5.14)

for which a score function Ssaed

�
·
�
is introduced, which utilizes the matrix dot product [44]:

Ssaed

�
Q,K

�
=

QK>
p
Ik
�M , (5.15)

and includes the optional binary maskM 2 BTq⇥Tk . The score function Ssaed is normalized
by a softmax function  and scaled by the matrix V . The scalar 1/

p
Ik prevents the

subsequent softmax function from reaching regions where small gradients appear [159].
The matrices Q =

⇥
q(1), . . . , q(tq), . . . , q(Tq)

⇤
of length Tq, K =

⇥
k(1), . . . ,k(tk), . . . ,k(Tk)

⇤

of length Tk, and V =
⇥
v(1), . . . ,v(tv), . . . ,v(Tv)

⇤
of length Tv refer to the query, key,

and value matrix and gather the query q(tq) 2 R1⇥Iq , key k(tk) 2 R1⇥Ik , and value
v(tv) 2 R1⇥Ik vectors, respectively. The sequence lengths are generally Tk = Tv, and the
dimensions are Iq = Ik [44].

A major drawback of single SA modules Asa is their limitation on specific subspaces,
which leads to SA modules focussing on similar parts of the sequences. In order to
obtain more flexible yet parameter-e�cient SAED models, Vaswani et al . [159] suggested
employing multi-head attention (MHA) modules Asaed

�
·
�
(compare to Figure 5.3b),

defining an extension of the SA of SAED models:
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MatMul

Transpose
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Mask
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(a) Scaled dot-product attention

Concatenate

Linear

Scaled Dot-Product Attention

LinearLinearLinear

(b) Multi-head Attention

Figure 5.3: On the left, the SA module Asa is depicted, determining a normalized score Ssaed

by including an optional mask M [44]. The MHA module is presented on the right, utilizing

multiple heads H [h]
head represented by individual SA modules [44]. Each head H [h]

head is fed by
the output of one-layer MLPs, followed by a concatenation of all heads and a linear projection
onto the model dimension Imodel.

Asaed

�
Q,K,V

�
= W saed

�
H [1]

head
++ . . . ++ H [h]

head
++ . . . ++ H [H]

head

�
8h 2 {1, 2, · · · , H},

(5.16)

where H heads H [h]
head are concatenated and linearly transformed by the weight matrix

W saed 2 RImodel⇥HI
[h]
v . Each head H [h]

head:

H [h]
head = Asa

⇣�
W [h]

q Q>�>,
�
W [h]

k K>�>,
�
W [h]

v V >�>
⌘

(5.17)

corresponds to an independent SA module Asa, as the matrices Q 2 RTq⇥Imodel and
K,V 2 RTk⇥Imodel are linearly transformed into H distinct subspaces by individual

projection matrices W [h]
q ,W [h]

k 2 RI
[h]
q ⇥Imodel and W [h]

v 2 RI
[h]
v ⇥Imodel . The internal model

dimension is defined by Imodel, and I [h]q , I [h]k , I [h]v refers to the dimensions of the query,

key, and value vectors of each head Hhead, which are typically set to I [h]q = I [h]k = I [h]v =
Imodel/H. As a result, the MHA module Asaed jointly attends multiple di↵erent sections

of the sequences induced by the varying subspaces of the heads H [h]
head.

The last essential modules of SAED models are the two-layer position-wise MLPs,
which finalize the MHA modules Asaed:

Hpw

�
X
�
= ⇣
�
W [1]

pwX + b[1]pw)W
[2]
pw + b[2]pw, (5.18)
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where the rectified linear unit (ReLU) functions are assigned as activation functions
⇣, W [1]

pw 2 RImodel⇥Ipw and W [2]
pw 2 RIpw⇥Imodel specify weight matrices, b[1]pw 2 RIpw and

b[2]pw 2 RImodel are bias vectors, and Ipw defines the dimension of the internal projection in
Hpw.

The encoder networks Henc

�
·
�
and decoder networks Hdec

�
·
�
of SAED models can

be defined by applying the preceding modules and previously introduced concepts from
Chapter 2. Therefore, a standard SAED encoder layer H [lenc] is established by:

H [lenc]
enc = H

[lenc][4]
pw

�
H [lenc][3]

enc

�
+H [lenc][2]

enc

H [lenc][3]
enc = LayerNorm[lenc][3]

�
H [lenc][2]

enc

�

H [lenc][2]
enc = A

[lenc][2]
saed

�
H [lenc][1]

enc ,H [lenc][1]
enc ,H [lenc][1]

enc

�
+X [lenc]

H [lenc][1]
enc = LayerNorm[lenc][1]

�
X [lenc]

�
,

8lenc 2 {1, 2, · · · , Lenc},

(5.19)

with
�
·
�[lenc][elenc] referring to the current encoder layer lenc with its sub-encoder-layers

elenc and the summation operator describing residual connections [65]. The inputs of the
next layer are assigned to X [lenc] = H [lenc�1]

enc , except for the input to the first encoder
layer X [lenc=1] = X. The output of the entire encoder network Henc is then obtained by:

H [Lenc]
enc = Henc

�
X
�
, (5.20)

Similarly, the decoder networks Hdec can be defined as:

H [ldec]
dec = H

[ldec][6]
pw

�
H [ldec][5]

dec

�
+H [ldec][4]

dec

H [ldec][5]
dec = LayerNorm[ldec][4]

�
H [ldec][4]

dec

�

H [ldec][4]
dec = A

[ldec][4]
saed

�
H [ldec][3]

dec ,fH [Lenc]
enc ,fH [Lenc]

enc

�
+H [ldec][2]

dec

H [ldec][3]
dec = LayerNorm[ldec][2]

�
H [ldec][2]

dec

�

H [ldec][2]
dec = A

[ldec][2]
saed

�
H [ldec][1]

dec ,H [ldec][1]
dec ,H [ldec][1]

dec

�
+Go�1

1
[ldec]

H [ldec][1]
dec = LayerNorm[ldec][1]

�
Go�1

1
[ldec]�

8ldec 2 {1, 2, · · · , Ldec},

(5.21)

whereby fH [Lenc]
enc = LayerNorm

�
H [Lenc]

enc

�
(compare Section 2.2.11) and the optimal mask

M are applied in A
[ldec][2]
saed to prevent access to future predicted graphemes sequences GO

o+1,
which are exclusively available in training yet not in the evaluation phase. Furthermore,

Go�1
1

[ldec] = H [ldec�1]
dec is assigned to all decoder layers Ldec, besides the first decoder

layer Go�1
1

[ldec=1]
= Go�1

1 is applied. The output of the entire decoder networks Hdec is
retrieved by:

H [Ldec]
dec = Hdec

�
Go�1

1 ,H [Lenc]
enc

�
8o 2 {1, 2, · · · , O}. (5.22)

In order to obtain the final grapheme posterior distribution p
�
G|X

�
, the decoder output

is normalized:
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fH [Ldec]
dec = LayerNorm

�
H [Ldec]

dec

�
, (5.23)

followed by a subsequent single-layer J-dimensional output MLP with linear activation
functions (see also Section 2.2.1):

h[Ldec+1](o)
dec = W [Ldec+1]fH [Ldec]

dec + b[Ldec+1]
8o 2 {1, 2, · · · , O}, (5.24)

with its weight matrix W [Ldec+1]
2 RJ⇥J [Ldec] and its bias b[Ldec+1]

2 RJ . Finally, the
posterior distribution p

�
G|X

�
is derived by employing the softmax functions  :

p
�
g(o)

|X,Go
1

�
=  

�
h[Ldec+1](o)

dec

�
8o 2 {1, 2, · · · , O}. (5.25)

5.3.3 Model Extension by Additional Reversed Structures

Standard AED and SAED models generate the current grapheme output g(o) based
on the posterior distribution p

�
g(o)

|X,Go
1

�
, where the prediction of g(o) relies on the

entire input sequence X and the past grapheme prediction Go
1. Watzel et al . [10†, 12†]

described these models as L2R architectures and denoted the grapheme distribution as
p
�
�!g (o)

|X,
�!
Go

1

�
= p

�
g(o)

|X,Go
1

�
, as they predict future graphemes �!g (o) on the right

by incorporating the left context of past graphemes
�!
Go

1. Consequently, L2R models
autoregressively predict future graphemes �!g (o), although they have access to the entire
input sequence X.

Watzel et al . extended the standard AED models with additional R2L decoders [12†]
and the standard SAED models with entire R2L structures [10†] to access future context
during optimization. Both additional structures are trained on time-reversed target
grapheme sequences

 �
Ĝ = [

 �
ĝ (1)=

�!
ĝ (O), . . . ,

 �
ĝ (eo)=

�!
ĝ (o), . . . ,

 �
ĝ ( eO)=

�!
ĝ (1)]. For instance,

the exemplary L2R grapheme sequence
�!
Ĝ = [c, a, t] would correspond to the time-

reversed R2L grapheme sequence
 �
Ĝ = [t, a, c]. Therefore, the training objective of

their approaches [10†, 12†] was to determine, in addition to the standard grapheme
distributions p

�
�!g (o)

|X,
�!
Go

1

�
, the time-reversed character distributions p

�
 �g (eo)

|X,
 �
Geo

1

�
.

The information of future grapheme predictions  �g (eo) of R2L architectures is transferred
to the regular L2R predictions �!g (o) by a novel regularization procedure.

In optimal scenarios, Watzel et al . [10†, 12†] expected L2R and R2L model structures,
generating similar grapheme predictions for the current output time step o = eo:

p
�
�!g (o)

|X,
�!
Go

1

�
= p
�
 �g (eo)

|X,
 �
Geo

1

�
, (5.26)

since both structures obtain similar information, either in standard or time-reversed
order.

5.3.4 Knowledge Transfer of AED and SAED Architectures

In order to enable a flow of information between the L2R and R2L model structures,
Watzel et al . [10†, 12†] followed the approach of Zheng et al . [186], which introduced reg-

ularization terms ⇧
��!
GB,
 �
GB
�
, utilizing the grapheme predictions �!g (o)

B , �g (eo)
B of the L2R
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and R2L structures in the joint cross entropy (CE) cost function eC
��!
GB,
�!
ĜB,
 �
GB,
 �
ĜB
�

for the current mini-batch B. The enhanced cost function eCaed for AED models [12†] is
defined as:

eCaed

��!
GB,
�!
ĜB,
 �
GB,
 �
ĜB
�
= ↵aedCCE

��!
GB,
�!
ĜB
�

+
�
1� ↵aed

�
CCE

� �
GB,
 �
ĜB
�
+ �aed⇧

��!
GB,
 �
GB
�
.

(5.27)

The cost functions for SAED models are slightly modified [10†], as the KLD cost functions
are combined with the CTC cost functions:

eCsaed

��!
GB,
�!
ĜB,
 �
GB,
 �
ĜB
�
= ↵saed

⇥
�saedCCTC

��!
GB,
�!
ĜB
�
+
�
1� �saed

�
CKLD

��!
GB,
�!
ĜB
�⇤

+
�
1� ↵saed

�⇥
�saedCCTC

� �
GB,
 �
ĜB
�

+
�
1� �saed

�
CKLD

� �
GB,
 �
ĜB
�⇤

+ �saed⇧
��!
GB,
 �
GB
�

(5.28)

where ↵(·) refers to the parameter for weighting the corresponding L2R and R2L costs,
�(·) to the parameter for weighting the corresponding KLD with the additional CTC
cost, and �(·) to a parameter for modifying the impact of the regularization term ⇧.

5.3.5 Regularization of Even Grapheme Sequence Lengths

In general, the transcript of a given dataset D can be arbitrarily pre-processed to obtain
di↵erent types of target label sequences Ĝ (compare Section 3.4). Watzel et al . [10†, 12†]
employed CHARs and BPE units [144] as target sequences Ĝ, even though the application
of BPE units seemed superior in recent approaches [30, 157].

For CHARs, the lengths of L2R grapheme sequences
�!
Ĝchar and R2L grapheme

sequences
 �
Ĝchar are even, as the time-reverse procedure has no impact on the length

of the standard sequence
�!
Ĝchar. Therefore, Watzel et al . [10†, 12†] defined the simple

regularization term ⇧ for even lengths of L2R and R2L grapheme sequences as:

⇧
��!
Gchar,B,

 �
Gchar,B

�
=

1

O

OX

o=1

d
�
�!g (o)

char,B,
 �g (eo)

char,B
�
, (5.29)

with d
�
· , ·
�
representing a distance metric, and o = eo, since the lengths of the sequences

�!
Gchar,B and

 �
Gchar,B are even, i.e., O = eO.

5.3.6 Regularization of Odd Grapheme Sequence Lengths

Watzel et al . [10†, 12†] faced a more challenging scenario in applying BPE units [144], as
the generation of BPE sequences based on reversed transcripts leads to odd grapheme
sequences (O 6= eO). For instance, although the number of BPE units is equal, i.e.,
�!g (o)

bpe,
 �g (eo)

bpe 2 RJ , the exemplary L2R grapheme
�!
Ĝbpe = [c, a, t ] would result in the
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time-reversed R2L BPE sequence
 �
Ĝbpe = [ta, c ]. Therefore, the regularization term ⇧

in Equation (5.29) cannot be applied, as it specifies scenarios with even sequence lengths.
The solution, which Watzel et al . established in their approaches [10†, 12†], was

inspired by the concept of the soft-dynamic time warping (DTW). Initially, the standard
DTW algorithm was proposed by Berndt et al . [15] for comparing temporal sequences.
However, the algorithm cannot be utilized in neural network (NN) training, as it relies
on the min operator, which is not di↵erentiable. In 2017, Cuturi et al . [39] introduced
the soft-DTW algorithm, which corresponds to a di↵erentiable version of the standard
DTW algorithm. Therefore, the soft-DTW algorithm redefines the min operators as
softmin operators whose softness is modified by the heuristic parameter �:

min
1iI

�ai =

8
><

>:

min
1iI

ai � = 0

�� log
IP

i=1
e�ai/� � > 0,

(5.30)

with a 2 RI defining an intermediate alignment cost vector. If � = 0, the softmin
operator recovers to the standard min operator, whereby � > 0 leads to a smoothed
version of the min operator [39]. Watzel et al . [10†, 12†] utilized the soft-DTW algorithm
to obtain a regularization term ⇧ for

�!
G and

 �
G with altering sequence lengths:

⇧
��!
Gbpe,B,

 �
Gbpe,B

�
= min

1iI

�
�
D
��!
Gbpe,B,

 �
Gbpe,B

�
A
�
. (5.31)

The matrix D
�
· , ·
�
2 RO⇥ eO calculates the cost of the alignment procedure:

D
��!
Gbpe,

 �
Gbpe

�
=

OX

o=1

eOX

eo=1

d
�
�!g (o)

bpe,
 �g (eo)

bpe

�
, (5.32)

and A 2 BO⇥ eO refers to a binary alignment matrix from a set A ⇢ BO⇥ eO, gathering all
allowed paths from (1, 1) to (o, eo) by solely performing the operations #, !, and & for
moving from the uppermost left to lower most right part in an alignment matrix A.

By calculating the inner product between D
��!
Gbpe,

 �
Gbpe

�
and A in Equation (5.31),

Watzel et al . [10†, 12†] obtained the cost of all alignment variations of
�!
Gbpe and

 �
Gbpe.

As a result, the additional training objective of the regularization term ⇧ constrains the
overall model architectures for determining proper alignments between the predicted
L2R and R2L grapheme sequences.

5.3.7 Distance Metrics

Generally, the definition of the distance metrics d
�
· , ·
�
is arbitrarily chosen. For AED

models [12†], Watzel et al . selected the standard Euclidean metric deuc
�
· , ·
�
to measure

the distance between the L2R and R2L grapheme predictions:

deuc
�
�!g (o), �g (eo)� = k�!g (o)

�
 �g (eo)
k. (5.33)
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However, it remains unclear which impact a chosen distance metric has on the performance
of SAED architectures. In 2018, Cer et al . [24] introduced the Cosine similarity in
sentence encoding, in which the angle of two vectors served as a distance metric. Inspired
by their work, Watzel et al . slightly modified the Cosine similarity metric and specified
it in the following way:

dcos
�
�!g (o), �g (eo)� = 1

⇡
arccos

✓ �!g (o) �g (eo)

k
�!g (o)kk

 �g (eo)k

◆
. (5.34)

5.4 Experimental Setup

The AED and SAED model structures were evaluated by Watzel et al . [10†, 12†] on
the publicly available datasets TED-LIUM release 2 (TED-LIUM-v2) [138] and Lib-
riSpeech [115]. They utilized the given train, test, and dev sets of the TED-LIUM-v2
dataset and followed a similar approach for the LibriSpeech dataset, where they employed
the train-clean-100, train-clean-360, and train-other-500 as train sets, the test-clean
and test-other as test sets, and the sets dev-clean and dev-other as dev sets. The AED
and SAED architectures are implemented in the ESPnet framework [162], which utilizes
the general machine learning toolkit PyTorch [118]. The ESPnet framework belongs
to the most popular frameworks for E2E ASR, gathering all the required modules for
pre-processing ASR datasets, optimizing SOTA DNN models, and providing e�cient
decoding procedures for evaluating the final models.

The experimental setup section is roughly dividable into four parts. In the first part,
the pre-processing of the two datasets is introduced, which has been applied by Watzel
et al . [10†, 12†]. Then, the subsequent section discusses the model structure of AED and
SAED architectures. The third section establishes the training procedures for analyzing
the impact of reversed model structures on standard AED and SAED models during
training. The section is concluded with the decoding scheme for both model variants.

5.4.1 Pre-Processing of the TED-LIUM-v2 and LibriSpeech
Datasets

First, Watzel et al . pre-processed the TED-LIUM-v2 and LibriSpeech datasets following
the procedure described in Section 4.4.1. Their SAED approach [10†] augmented the
TED-LIUM-v2 dataset by speed perturbation [77] with the speed factors 0.9, 1.0, and 1.1
before extracting the speech features (compare Section 3.3.1). In both approaches [10†,
12†], the 80-dimensional log Mel feature and three-dimensional pitch feature vector are
extracted [103], leading to the final unnormalized 83-dimensional input vectors x(t)

2 R83.
They chose standard CHARs and BPE units as target label types. The CHAR

sequences are directly extracted from the given transcript of the datasets. Additionally,
each CHAR sequence is framed by the <sos> and <eos> tokens, respectively, in order
to specify the start and end of the grapheme sequences. The procedure is repeated
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Figure 5.4: The dual AED architecture consists of shared encoder networks Henc =
 ��
Henc =��!

Henc and separate attention modules and decoder networks for each L2R and R2L model.
The R2L AED networks and the regularization terms ⇧ are solely active during optimization,
leading to a knowledge transfer between L2R and R2L AED architectures. The R2L structures
and the regularization terms are excluded in the decoding phase to avoid increasing complexity.

for a time-reversed version of the given transcript to obtain the L2R target graphemes
�!
ĝ (o)

char 2 B28 and the R2L target sequence
 �
ĝ (eo)

char 2 B28.
The generating procedure of BPE units is similarly initialized by enclosing each

standard and time-reversed grapheme sequence with <sos> and <eos> tokens in the
transcript. Then, they utilized the tokenizer SentencePiece [79] to determine the 100
optimal BPE units [144] for representing the framed L2R and R2L sequences, leading to

the final L2R BPE units
�!
ĝ (o)

bpe 2 B100 and the R2L BPE units
 �
ĝ (eo)

bpe 2 B100.
In summary, the pre-processing procedures result in two individual training datasets

Dchar =
��

X(n),
�!
Ĝ(n)

char,
 �
Ĝ(n)

char

� N1

n=1
and Dbpe =

��
X(n),

�!
Ĝ(n)

bpe,
 �
Ĝ(n)

bpe

� N2

n=1
, for each TED-

LIUMv2 and LibriSpeech dataset, respectively.

5.4.2 The Architecture of AED Models

For AED models [12†], the input sequences X are not directly fed into the encoder
networks Henc since these sequences are typically too long, leading to inferior performance
of the subsequent RNN networks [91]. Instead, Watzel et al . [12†] pre-processed the input
sequences X by front-end CNN networks, which extract local features, and reduce the
length of the input sequences X. Therefore, they applied a two-block CNN as a front-end
structure [162], initially inspired by the visual geometry group (VGG) architecture [147].
The first block consists of two CNN layers with 64 output channels, respectively, whereby
the input channels of the first layer are assigned to one and the input channels of the
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5. Forward-Backward Learning for Attentional Models

second layer to 64. Furthermore, 3 ⇥ 3 filters with stride lengths of one are applied,
leading to the two CNN layer kernels K [1]

2 R1⇥64⇥3⇥3 and K [2]
2 R64⇥64⇥3⇥3. Each

layer applies ReLU activation functions, and the entire CNN block is finalized by 2D
max-pooling layers with 2⇥ 2 kernels and stride lengths of two. The second CNN block
structure corresponds to the one above. However, they distinguish by the number of
output channels set to 128, leading to the two CNN layer kernels K [3]

2 R64⇥128⇥3⇥3 and
K [4]

2 R128⇥128⇥3⇥3. The output of the second block is vectorized (compare Section 2.2.4)
and defines the new input sequences X 2 R2656⇥T/4 to the encoder networks Henc. The
encoder consists of four bidirectional long short-term memory projected (BLSTMP)
layers H [l]

enc 2 R1024 with J [lenc] = 1024 units for each direction and a projection layer
P [lenc] 2 R1024 of size eJ [lenc] = 1024. Each L2R decoder

��!
Hdec and R2L decoder

 ��
Hdec

network is defined as one-layer LSTMs with 1024 hidden units, respectively, and concluded
by individual MLPs with linear activation functions, followed by a softmax function
to obtain the grapheme predictions �!g (o) and  �g (eo). Moreover, each decoder output is
generated by applying the independent attention modules

��!
Aaed and

 ��
Aaed, whereby the

dimensions of the convolutional kernels are assigned to
�!
F ,
 �
F 2 R10⇥100, leading to the

final model structure in Figure 5.4.

5.4.3 The Architecture of SAED Models

For SAED models [10†], Watzel et al . also did not directly feed the input sequences X
into the encoder networks and instead pre-processed them by a convolutional front-end
network to reduce the length of input sequences [44]. The front-end models consist of
two-layer CNNs with the kernels K [1]

2 R1⇥83⇥3⇥3 and K [2]
2 R83⇥83⇥3⇥3, where the

stride length is set to two, and each layer utilizes ReLU activation functions. The outputs
of the second CNN layer are vectorized (compare Section 2.2.4) and linearly mapped
to Imodel-dimensional input vectors by MLPs. Since SAED models do not incorporate
recurrent or convolutional structures, they have no information on the order of sequences.
Therefore, Vaswani et al . [159] proposed a positional encoding function PE

�
· , ·
�
, which

inserts information about the relative input vector position in the overall input sequence:

PE
�
i, t
�
=

(
sin
�
t/10 0002i/Imodel

�
0  i < Imodel/2

cos
�
t/10 0002i/Imodel

�
Imodel/2  i < Imodel

(5.35)

whereby i refers to the current indices of the Imodel-dimensional input vectors and t to
the current time-step of the output sequence with length T/4 generated by front-end
models. The final input sequences X 2 RImodel⇥T/4 for the encoder networks Henc are
obtained by summing the SAED front-end outputs and the positional encoding PE of
the corresponding sequences. The sequences X are then fed to L2R encoder

 ��
Henc and

R2L encoder
��!
Henc, where each encoder is composed of 12 encoder layers H [lenc]

enc with 2048
units, respectively. In each attention module

���!
Asaed

[lenc] and
 ���
Asaed

[lenc], Watzel et al . [10†]
employed a total of H = 4 independent heads with the corresponding internal dimension
Imodel = 256. The optional mask M is omitted, as attention to all sections of the input
sequence X is allowed. The dimension of the position-wise MLP was set to Ipw = 2048.
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Figure 5.5: The dual SAED architecture consists of entire L2R and R2L SAED architectures.
Similarly to the dual AED networks, the R2L SAED models and the regularization terms ⇧
are only active in the training phase and are not utilized during decoding.

A similar parameter setup is conducted for the L2R decoder
 ��
Hdec and R2L decoder

��!
Hdec with its independent

���!
Asaed

[ldec] and
 ���
Asaed

[ldec] modules by applying solely six decoder
layers. In contrast to the encoder networks Henc, they applied a lower triangular matrix
of ones as the mask M in the SA modules

�!
Asa

[ldec][2] and
 �
Asa

[ldec][2] to avoid attention
to future predicted graphemes in the sequences

�!
GO

o+1 and
 �
G

eO
eo+1. The last L2R decoder

layers
�!
H(Ldec)

dec and R2L decoder layers
 �
H(Ldec)

dec are concluded by separate LayerNorm
layers, linear output layers, and softmax functions to obtain the grapheme predictions
�!g (o) and  �g (eo) (compare to Figure 5.5). Notice that the grapheme sequences also require
a positional encoding procedure to provide relative temporal information for the decoder
networks. For regularization, a dropout layer [66] is applied after each Asa and Asaed

module, whereby the dropout probability is assigned to ⇢ = 0.1.

5.4.4 Optimization and Training Procedures of AED Models

Watzel et al . [12†] optimized several AED model structures in their approach and
established a general optimization scheme. Typically, Adadelta optimizers [180] are
applied for optimizing AED models whose learning rate is initialized by ⌘ = 10�8. The
optimizer minimizes the cost function eCaed utilizing mini-batches B of size B = 30. The
learning rate ⌘ is decayed by 0.01, and the value of a patient counter is increased by
one if no improvements in the dev set are observed. The procedure is terminated if the
patient counter exceeds the value of three.
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5. Forward-Backward Learning for Attentional Models

For AED models [12†], Watzel et al . conducted five di↵erent training procedures:

1. In the first Forward setup, standard AED models with L2R decoder networks
��!
Hdec are optimized, and the weighting ↵aed = 1.0 and regularization parameter
�aed = 0.0 are assigned, defining the baseline.

2. The second Backward training procedure is specified by setting the two parameters
↵aed, �aed to 0.0, leading to AED models with R2L decoder networks

 ��
Hdec.

3. The third Backward Fixed training setup corresponded to the Backward procedure,
whereby the weights of the encoder network

 ���
H

fixed
enc =

��!
Henc are frozen and initialized

by the final encoder weights from the Forward stage.

4. In the fourth Dual Decoder stage, the encoder networks Henc are shared between
the L2R decoder networks

��!
Hdec and the R2L decoder networks

 ��
Hdec. The encoder

Henc and L2R decoder
��!
Hdec are initialized by the final weights from the Forward

setup, and the R2L decoder
 ��
Hdec by the weights of the final Backward Fixed model.

To solely allow minor impacts of R2L models on standard L2R structures, large
weighting values are set for ↵aed = 0.9, whereby the remaining parameters are not
modified.

5. The last Dual Decoder Euc setup corresponds to the final setup, integrating the
regularization term ⇧ into the overall cost function eCaed. The distance metric in ⇧
is set to the Euclidean metric deuc. Since the regularization terms di↵er between
CHAR and BPE grapheme sequences, the parameter �aed is accordingly adjusted.
For CHARs, the weighting of the regularization parameter is assigned to �aed = 1.0
and further reduced to �aed = 10�5 for the BPE units. The additionally softening
parameter of the soft-DTW algorithm is set to � = 1.0.

5.4.5 Optimization and Training Procedures of SAED Models

Watzel et al . [10†] introduced a similar optimization with subsequent training proce-
dures for SAED architectures. In general, standard SAED models [44] are trained by
Adam optimizers [76]. The cost function eCsaed defines the training objective, which is
minimized for a mini-batch B of size B = 32. Additionally, the one-hot encoded target
graphemes

�!
ĝ (o) and

 �
ĝ (eo) are pre-processed by the label smoothing procedure (compare

Equation (2.127)) with a smoothing value of ◆ = 0.1 before being further processed in
the model cost function eCsaed. In all procedures below, CTC cost functions CCTC are
applied by weighting the costs with �saed = 0.3. In contrast to AED models, SAED
models typically require a warmup phase, where the learning rate ⌘ is linearly increased
before transiting into the actual optimization phase, in which the learning rate ⌘ is
gradually decreased. Watzel et al . [10†] applied a slightly modified learning rate schedule
compared with the initially proposed version [159]:

⌘ = I�0.5
model min

�
⌧�0.5, ⌧ · 25 000�1.5

�
, (5.36)
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5. Forward-Backward Learning for Attentional Models

whereby ⌧ refers to the current iteration step (see also Section 2.2.8) and Imodel to the
internal model dimension of SAED models. Notice that based on Equation (5.36), the
warmup phase lasts for 25 000 iterations, in which the learning rate ⌘ is linearly increased.

The subsequent training procedures of SAED, which Watzel et al . established in
their approach [10†], are comparable to the AED procedures defined above. In contrast
to regularized AED models, which solely integrate additional decoder networks

 ��
Hdec and

rely on shared encoder networks Henc, regularized SAED architectures utilize additional
R2L architectures

 ���
Hsaed in the standard model architectures Hsaed =

���!
Hsaed. Apart from

these major di↵erences, four training procedures are employed:

1. The first training procedure is also specified as a Forward setup. Therefore, Watzel
et al . [10†] trained a standard SAED model

���!
Hsaed and set the weighting parameter

to ↵saed = 1.0 and the regularization parameter to �saed = 0.0.

2. In the second Backward procedure, the total cost function eCsaed is modified by
assigning ↵saed = 0.0 and �saed = 0.0 to obtain R2L SAED architectures

 ���
Hsaed.

3. The third Dual SAED Euc setup already defines a regularized procedure in which
L2R SAEDs

���!
Hsaed and R2L SAEDs

 ���
Hsaed models are utilized. The weights of

the L2R model structure
���!
Hsaed are initialized with the final model weights of the

Forward stage, whereas the initial weights of R2L models are taken from the
optimized model in the Backward procedure. In order to achieve a large impact
on L2R SAED architectures, Watzel et al . chose a large weighting parameter
↵saed = 0.9 in the total cost function eCsaed. The regularization term ⇧ employs the
Euclidean distance metrics deuc and its impact was set to �saed = 1.0 for CHARs
and �saed = 10�3 for BPE units by Watzel et al . [10†]. In the case of the BPE
units, the softening parameter of the soft-DTW algorithm is assigned to � = 1.0.

4. The final Dual SAED Cos training procedure is comparable to the former setup,
applying the Cosine distance metric dcos in the regularization term ⇧. The impact of
the regularization is altered to �saed = 15.0 for CHARs and further to �saed = 10�1

for BPE units. The remaining parameters are not modified.

5.4.6 Decoding Procedure for AED and SAED Models

In both decoding procedures of AED and SAED models [10†, 12†], the integration of LMs
is omitted. Watzel et al . concatenated solely on the AM structures and followed a similar
decoding strategy in both regularized AED and SAED approaches [10†, 12†] in which the
regularized structures

��!
Hdec and

���!
Hsaed were decoded, and the auxiliary structures

 ��
Hdec

and
 ���
Hsaed were excluded from the decoding phase.
The AED architectures are decoded by a beam size ofKbest = 20.0. For SAED models,

the beam size is slightly reduced to Kbest = 10.0. In contrast to AED architectures,
where the overall best model is commonly utilized for the decoding phase, SAED models
are decoded by first averaging their weights of the last ten epochs before decoding the
averaged SAED model. Additionally, the CTC networks are incorporated with a factor
of 0.3 into the decoding procedures.
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5. Forward-Backward Learning for Attentional Models

Table 5.1: The results of the five AED training procedures evaluated on the TED-LIUM-v2
dataset [138] and reported in WER (%).

TED-LIUM-v2 [138]

CHARs BPE units

Methods dev test dev test

Forward 16.77 17.32 17.83 18.00
Backward 18.12 18.47 18.57 17.99
Backward Fixed 23.34 23.77 25.55 25.01
Dual Decoder 16.47 17.12 17.70 18.08
Dual Decoder Euc 15.68 15.94 16.75 17.42

5.5 Evaluation

This section discusses the results of both approaches [10†, 12†] from Watzel et al . Related
approaches to AED models [12†] are presented and examined in the first part. Then, the
corresponding SAED model results are analyzed and further discussed.

5.5.1 Results of AED Architectures

Watzel et al . [12†] evaluated their AED architectures based on the five training procedures
defined above. They also considered the impact of larger training data quantities by
evaluating the smaller dataset TED-LIUM-v2 [138] and larger dataset LibriSpeech [115].
The results of both datasets are summarized in Table 5.1 and Table 5.2, respectively.

In the first two Forward and Backward training procedures, Watzel et al . expected
an equal performance of the L2R decoders

��!
Hdec and R2L

 ��
Hdec since both model struc-

tures obtained the same amount of information, leading to equally modeled grapheme
distributions in Equation (5.26). For the larger LibriSpeech dataset, they verified their
expectation, as only a minor performance di↵erence between the setups was noticeable
in Table 5.2. However, the results of the smaller dataset TED-LIUM-v2 in Table 5.1
reveal that the statement in Equation (5.26) is not confirmed since L2R decoders

��!
Hdec

returned superior results compared to R2L decoders
 ��
Hdec. Watzel et al . [12†] identified

the dataset size as the cause of the performance imbalance between both datasets. They
argued that rather more unique variations of sentence endings exist than variations of
sentence beginnings. Therefore, R2L architectures require more training samples for
better generalization of R2L grapheme sequences.

The Backward Fixed setup demonstrates that the hidden representations H [Lenc]

of the encoder networks Henc also encode temporal information of the L2R decoder
structures and are therefore heavily influenced by the subsequent decoder networks Hdec.
Based on the results in Table 5.1 and Table 5.2, Watzel et al . confirmed these findings
for both datasets. They claimed that the frozen encoder weights led to a restricted
flow of information between the encoder and decoder structures. Compared to standard
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Table 5.2: The results of the five AED training procedures evaluated on the LibriSpeech
dataset [115] and reported in WER (%).

LibriSpeech [115]

CHARs BPE units

dev test dev test

Methods clean other clean other clean other clean other

Forward 7.69 20.67 7.72 21.63 7.59 20.98 7.67 21.92
Backward 7.60 20.78 7.54 21.83 7.53 20.94 7.60 21.71
Backward Fixed 11.39 28.36 11.75 28.53 12.07 28.63 12.39 29.06
Dual Decoder 7.29 20.99 7.60 22.00 7.46 21.29 7.70 22.01
Dual Decoder Euc 7.24 19.96 7.02 20.95 7.17 20.01 7.33 20.63

Backward training procedures, R2L models with fixed encoders experience a major
performance decline.

In the third Dual Decoder training procedure, Watzel et al . were inspired by the
approach of Mimura et al . [105], who applied shared encoder networks Henc with

��!
Hdec

and
 ��
Hdec decoders in training. However, they did not evaluate the resulting AED model

consisting of the shared encoder Henc and the L2R decoder
��!
Hdec in their approach, and

therefore the impact of R2L model structures on standard L2R architectures remained
unclear. The results in Table 5.1 and Table 5.2 indicate that the impact of a reverse
model structure on the final model performance is negligible. Although enhanced L2R
models return minor improved results in both datasets, a clear tendency for major
improvements is not observable.

The last Dual Decoder Euc setup reveals the largest impact on the performance of
standard AED models. Compared to the baseline models established in the Forward
procedures, the regularized approach from Watzel et al . [12†] returned superior AED
models. These models achieve the best performance without increasing the complexity
of the decoding procedures. The results in Table 5.1 and Table 5.2 confirm consistent
improvements in both datasets. On the smaller dataset TED-LIUM-v2, relative WER
improvements of 7.2% for the CHAR and 4.4% for the BPE graphemes are observed.
These improvements are reproducible on the larger LibriSpeech dataset, where the
regularized L2R models experience relative WER improvements of 4.9% and 5.1% for
CHAR and BPE graphemes, respectively.

5.5.2 Results of SAED Architectures

The SAED models are evaluated in four di↵erent setups, whereby Watzel et al . [10†]
solely employed the smaller dataset TED-LIUM-v2 [138]. The results are presented in
Table 5.3.

Based on the experience of the Forward and Backward training setups for AED
models [12†], they assumed a similar performance divergence between the L2R SAED
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Table 5.3: The results of the four SAED training procedures evaluated on the TED-LIUM-v2
dataset [138] and reported in WER (%).

TED-LIUM-v2 [138]

CHARs BPE units

Methods dev test dev test

Forward 18.28 16.27 16.08 14.13
Backward 23.12 17.75 24.33 19.39
Dual SAED Cos 17.85 15.31 15.14 13.62
Dual SAED Euc 16.49 15.25 14.49 13.19

models
���!
Hsaed and R2L SAED models

 ���
Hsaed. Their expectation was confirmed and

summarized results in Table 5.3. If trained on time-reversed grapheme sequences, the
R2L SAED models

 ���
Hsaed experience a major decline compared to standard L2R SAED

models. Even though SAED models possess global attention modules, which should be
superior to the attention modules of AED models, they cannot deploy their advantages.
Moreover, it remains unclear if SAED models would benefit from larger datasets and if
the performance gap between

���!
Hsaed and

 ���
Hsaed models would diminish.

Since the examination of the Dual Decoder training procedure solely returns minor
improvements in AED models, Watzel et al . directly analyzed the impact of the regular-
ization in the third Dual SAED Cos stage. In Table 5.3, the results of their regularization
procedure are presented and reveal consistent improvements for L2R SAED models

���!
Hsaed

if Cosine distance metrics dcos are applied in the regularization terms ⇧.
Watzel et al . further improved the performance of the L2R SAED model

���!
Hsaed in

the last Dual SAED Euc setup. The evaluation results are depicted in Table 5.3 and
demonstrate that employing Euclidean distance metrics deuc in the regularization term
⇧ has the largest impact on L2R model structures. For CHAR graphemes, the superior
models achieve relative WER improvements of 9.8% on the dev and 6.3% on the test sets.
Similar relative WER reductions are confirmed for BPE graphemes, whereby Watzel et
al . observed a decrease of 9.9% and 6.7% on the test and dev sets, respectively.

5.6 Conclusion

This chapter discussed the approaches from Watzel et al . [10†, 12†], which examined
forward-backward learning strategies for AED and SAED architectures. Their exhaustive
evaluation demonstrated that information from R2L models is transmittable to standard
AED and SAED architectures if regularization terms are integrated into the total
cost functions. The application of their regularization approach was straightforward
for CHARs, as reversed CHAR sequences did not modify their sequence length, thus
leading to standard and reversed CHAR sequences of even length. However, their
regularization approach was not simply transferable for the popular BPE units, as the
encoding procedure of time-reversed sequences did not necessarily lead to equally long
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BPE sequences. Consequently, sequence mismatches for BPE units were noticeable and
required special treatment. Therefore, Watzel et al . established methods for the odd
BPE sequences by utilizing a di↵erentiable version of the DTW algorithm. As a result,
they could apply their regularization approach, despite appearing sequence mismatches
in the training phase.

To evaluate the impact of R2L models on standard L2R architectures, Watzel et al .
defined several training procedures on smaller and larger datasets. Their evaluation
revealed that the influence of reversed model structures on L2R models was negligible if
no regularization procedures were applied. However, the integration of regularization
terms led to explicit improvements in the final decoding phase of the regularized L2R
architectures. The results of the regularized AED and SAED models indicated that
reversed structures were generally e↵ective auxiliary functions, whereas utilizing Euclidean
metrics returned slightly better results.
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6

Localness and Fusion Strategies in
SAED Models

In this chapter, the standard self-attention (SA) mechanism of self-attention-based
encoder-decoder (SAED) architectures is extended by a novel localness and fusion strategy,
which has been established by Watzel et al . [11†]. The first section introduces the standard
scoring function in SAED, discusses its drawbacks, and outlines the contributions of their
approach [11†]. Related approaches in neural machine translation (NMT) and automatic
speech recognition (ASR) are explained in section two, and their di↵erent concepts
are described. In the third section, the score function of SAED models is revised, and
Gaussian masks for inducing local context are introduced. Finally, the section analyzes
several fusion strategies, which allow e�cient procedures for fusing the standard global
scores with the novel local scores. The fourth section elaborates on the pre-processing of
the dataset, the architecture of the enhanced SAED model, its optimization, and the
decoding procedure to retrieve the final results. In the fifth section, two ablation studies
are conducted to obtain the optimal fusion strategy and to determine the most e↵ective
location of localness in the encoder layers of SAED architectures. The chapter concludes
by summarizing the contributions of Watzel et al . [11†].

6.1 Introduction

Nowadays, the SAED models based on self-attention (SA) mechanisms [159] are slowly
but steadily replacing standard long short-term memory (LSTM) architectures. Over the
years, multiple SAED and related approaches have been established [44, 59, 121, 149, 159].
The SA module prevents computationally expensive calculations of recurrent model
structures and allows global attention on the entire sequence, leading to e�ciently
connected information located far apart.

Even though these SAED approaches returned remarkable results on multiple datasets,
the SA core module is prone to suppress local context. Typically, the score matrix Ssaed

is calculated by (compare Section 5.3.2):
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Boosting the impact of
local sequence parts

Figure 6.1: The concept of boosting the local context in the scoring function Ssaed, inspired
by [174]. For an exemplary row in Ssaed, a local score matrix has been determined, which is
then applied to modifying specific entries of Ssaed.

Ssaed

�
Q,K

�
=

QK>
p
Ik

, (6.1)

where the optional mask M is excluded from the query matrix Q =
⇥
q(1), . . . , q(tq),

. . . , q(Tq)
⇤
with Q 2 RTq⇥Imodel consisting of the query vectors q(tq) 2 R1⇥Imodel and the key

matrix K =
⇥
k(1), . . . ,k(tk), . . . ,k(Tk)

⇤
with K 2 RTk⇥Imodel containing the key vectors

k(tk) 2 R1⇥Imodel . The result of the scoring operation Ssaed can be considered as values,
representing the relevance between q(tq) and k(tk) at the time steps (tq, tk). The softmax
operation (see Equation (2.97)) normalizes the resulting score matrix Ssaed along the
entire sequence length Tk, leading to normalized relevance values with strong global
dependency. The global scoring modules Ssaed in the SA mechanisms seem superior to
standard recurrent approaches, which are restricted to specific parts of the sequence
(compare Section 5.2). However, they may also be suboptimal since the module does not
consider local dependencies and equally attends to all input sequence positions [174]. In
standard ASR approaches, the input feature sequences X and the output sequences G
commonly contain strong local dependencies, which need to be considered to retrieve
state-of-the-art (SOTA) ASR architectures.

Generally, the score functions Saed can be modified into two distinct parts: Choosing
proper local score functions with their corresponding positions and window sizes in which
the impact of localness should be increased or selecting methods that e�ciently combine
the result of the original score function Saed and the novel integrated local score function
before further processed by the softmax operator  . Figure 6.1 depicts the outcome of
these combined operations. In the red circle, a section of column vector in Ssaed is chosen
and modified by the values of the local score matrix in a window at a specific position,
typically learned by a multilayer perceptron (MLP).

In the past, multiple approaches [97, 111, 145, 149, 174] have examined procedures
to increase the impact of local dependencies. However, most of these approaches did not
examine the e↵ect of localness in ASR applications or chose simple methods to combine
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the global and local dependencies. Watzel et al . [11†] transferred the concept of induced
localness into SAED models and examined e↵ective fusion strategies to combine the
global and local score matrices. Their contributions in [11†] can be summarized into
four parts:

• The transfer of the concept of local SA into ASR.

• The analysis of multiple fusion strategies for combining global and local score
functions.

• The in-depth examination of the most e↵ective location for applying localness in
SAED architectures.

• Achieving SOTA results on the TED-LIUM-v2 dataset [138] by combining the most
e↵ective location of localness with the optimal fusion strategy.

6.2 Related Work

The concept of localness or local attention was introduced by Luong et al . [97] for NMT
in 2015. They observed that obtaining each attention weight by the standard global
attention operation in attention-based encoder-decoder (AED) models always required
attending to all hidden representations, leading to computationally expensive approaches.
Therefore, they established a local attention method, where they restricted the attention
in each time step on small sections of the representations. The selected parts were chosen
by centering a fixed-size Gaussian window around a specific time step, which is learned
by MLPs. Even though the novel approach of localness returned promising results, the
flexibility of the Gaussian windows was limited, as the window size was fixed. Moreover,
it is questionable if multiplicative Gaussian masks define the optimal strategy, as their
application leads to dominant local scores, which suppress valuable information about
the global scores.

The first implementation of localness in SAED models was done in 2018 by Sperger
et al . [149]. In contrast to the initial concept of Luong et al . [97], they added local score
matrices to the standard global score to induce local context. Initially, they applied a hard
masking procedure, where the local score matrices were constructed as inversely banded
matrices. They also established a more flexible approach by utilizing soft Gaussian
masks, where the location of the masks was deterministically set, and the window size
was learned during optimization. The local Gaussian masks and the global attention
scores were then fused by a simple summation; alternative fusion strategies were not
further investigated.

In the same year, Yang et al . [174] proposed an entirely flexible Gaussian mask
for NMT, where the positions and the sizes of the masks were learned by MLPs. The
central positions of the Gaussian windows were predicted by MLPs based on the query
vectors of the query matrix. For determining optimal window sizes, Yang et al . examined
several strategies. The most straightforward strategy was based on the original concept
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of localness, where the window size was fixed to heuristic values. An extension of the
former strategy was introduced by layer-specific window sizes, which were learned by the
mean of all key vectors in the current layer. The last strategy defined a highly flexible
query-specific approach, where the flexible window sizes were independently learned
for each query vector. All strategies were also examined in the multi-head attention
(MHA) layers and in the context of finding the optimal location of localness in SAED
architectures. Although Yang et al . verified that the performance of SAED models
improved, they did not further analyze strategies for fusing the global and local attention
scores and relied on the simple addition operation.

A more recent study for optimal fusion strategies for local and global scores in SAED
models was carried out by Nguyen et al . [111] in NMT. Even though they did not apply
Gaussian masks, they proposed two novel fusion procedures. The first method replaces
the summation of the local masks and the global attention scores with multiplicative
operators. The second method entirely separated the calculation of local and global
scores, where the standard score function in each SA module was divided into local and
global branches with their individual weights. The masks were then solely multiplied to
the local score matrices and additively fused with the global scores. The outcome was
employed in the SA module and finalized by the softmax function. Even though their
novel fusion approach returned superior results, the regular addition equally weighted
the output of the local and global model branches and did not apply a weighted addition
procedure.

6.3 Proposed Method

Before introducing the novel localness and fusion strategy of Watzel et al . [11†], the
standard score functions in SAED architectures are revised. Then, the popular Gaussian
masks for inducing localness are introduced. The parameters of these masks are learned
by standard MLPs, whose predictions are limited to the length of the query matrices. In
the last part, several fusion strategies are defined, corresponding to procedures of related
approaches or extensions proposed by Watzel et al . [11†].

6.3.1 Standard Score Functions in SAED Models

One of the crucial elements in the SA modules Asa of SAED models refers to the
scoring functions introduced in Section 5.3.2 in detail. Generally, multiple separated SA
modules, also known as heads, are implemented as an MHA module. As the following
approaches are seamlessly transferable to MHA applications, the revised SA Asa modules
are rewritten without specifying the current head to improve readability:

Asa

�
QW q,KW k,V W v

�
=  

�
Ssaed

�
QW q,KW k

��
V W v, (6.2)

where W q 2 RImodel⇥Iq , W k 2 RImodel⇥Ik , and W v 2 RImodel⇥Iv refer to weight matrices.
Similar to the standard scoring functions Ssaed in the MHA, the corresponding weight
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matrices are considered in the score function of each head:

Ssaed

�
QW q,KW k

�
=

�
QW q

��
KW k

�>
p
Ik

, (6.3)

leading to the standard score output Ssaed 2 RTq⇥Tk after calculating the dot-product of
the query Q 2 RTq⇥Imodel and key K 2 RTk⇥Imodel matrices. In the standard configuration,
the scoring function Ssaed treats all queries q(tq) and keys k(tk) as equally important and
does not consider any local dependencies between neighboring queries or keys. Even
though these global assumptions allow an exchange of information between far-away
elements of sequences, it can be problematic for ASR models. For instance, sequence
sections that contain silence with lower information are similarly treated as standard
sections, which include regular speech.

6.3.2 Gaussian Masks for Inducing Localness

In order to achieve localness in SAED architectures, Watzel et al . [11†] followed the
approach of Yang et al . [174], who established flexible Gaussian masks G:

gtq,tk = �

�
tk � p(tq)

�2

2�(tq)2
8tq 2 {1, 2, · · · , Tq}, 8tk 2 {1, 2, · · · , Tk}, (6.4)

where G 2 RTq⇥Tk
� , and �(tq) 2 R is implemented as �(tq) = d(tq)

2 . The parameters
p(tq) 2 R for the central position and d(tq) 2 R for the size of the window allow a
modification of the Gaussian mask G. The parameters p(tq) and d(tq) are commonly
adjusted by the trainable parameters ep(tq) 2 R and ed(tq) 2 R, which are learned by MLPs
in training:

✓
p(tq)

d(tq)

◆
= Tq sigmoid

✓
ep(tq)
ed(tq)
◆
8tq 2 {1, 2, · · · , Tq}. (6.5)

The combination of the parameter Tq and the sigmoid activation function ensures that
the predicted parameters ep(tq), for the central position, and ed(tq), for the window size, are
generated by Gaussian masks G located inside the dimensions of the global attention
score matrix Asaed.

Central Position Prediction for Gaussian Masks Yang et al . [174] predicted the
central positions ep(tq) by applying two-layer MLPs, whereby their predictions relied on
the transposed query vectors q(tq) in Q:

ep(tq) = W [2]
p tanh

�
W [1]

p q(tq)>
�
8tq 2 {1, 2, · · · , Tq}, (6.6)

where W [1]
p 2 RImodel⇥Imodel and W [2]

p 2 R1⇥Imodel represent weight matrices. Notice that

it is impractical to utilize key vectors k(tk) for predicting ep(tq), as the predictions in the
cross SA module (compare the unmasked MHA in the decoder of the SAED model in
Figure 5.5) would lead to Gaussian masks G located outside of Asaed as Tk > Tq.
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Window Size Prediction for Gaussian Masks Watzel et al . [11†] examined multiple
input procedures in order to predict the optimal window size ed(tq). Inspired by Yang et
al . [174], they also analyzed the impact of fixed window sizes ed(tq), either heuristically
defined or determined by the mean key vector k over the entire key matrix K for a
layer-specific approach. Since these procedures did not lead to satisfying results and
seemed to limit the flexibility of Gaussian masks G, Watzel et al . [11†] decided to employ
a query-specific approach similar to [174]:

ed(tq) = W [2]
d tanh

�
W [1]

p q(tq)>
�
8tq 2 {1, 2, · · · , Tq}, (6.7)

where W [1]
p 2 RImodel⇥Imodel and W [2]

d 2 R1⇥Imodel specify weight matrices. Notice that the

resulting hidden representations of W [1]
p q(tq)> are reused from Equation (6.6) above, as

these contain prior knowledge about the location of the window, leading to more precise
window size predictions ed(tq). Besides, the computational costs are reduced, resulting in
more e�cient architectures.

6.3.3 Fusion Strategies for Global and Local Attention Scores

The optimal fusion strategy of localness, either in the simplest form of Gaussian masks
G or in entirely separated model structures, is essential to being e↵ective in the SA
modules of SAED architectures. Therefore, Watzel et al . [11†] revised several fusion
strategies of related approaches and proposed an extension of the existing ones.

Biased Fusion Strategy The most straightforward fusion strategy can be considered
if the global score functions Asaed represent weight matrices in linear transformations,
whose bias terms are represented by local Gaussian masks G:

Ssaed

�
QW q,KW k

�
=

�
QW q

��
KW k

�>
p
Ik

+G. (6.8)

This procedure was already successfully applied by Sperger et al . [149], Yang et al . [174],
and Lohrenz et al . [94].

Global and Local Score Fusion Strategy The next fusion strategy is motivated by
the novel fusion approach from Nguyen et al . [111] in NMT. Nguyen et al . introduced
separated global scores:

Sglob =
�
QW q,glob

��
KW k,glob

�>
, (6.9)

and local scores:

Sloc =
�
QW q,loc

��
KW k,loc

�>
�G. (6.10)

Separate model branches generate both scores with individual weight matrices W q,glob =
W q andW k,glob = W k for the standard global score Ssaed, and individual weight matrices
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W q,loc 2 RImodel⇥Iq , W k,loc 2 RImodel⇥Ik for the local scores Sloc. Notice that Watzel et al .
replaced the initially proposed di↵erentiable masks in [111] with Gaussian masks G. The
global and local scores were then fused by simple addition, leading to the final scoring
functions Ssaed:

Ssaed

�
Q,K

�
=

Sglob + Sloc
p
Ik

, (6.11)

and enable the corresponding models to incorporate more global or local context into
their final score function Ssaed, achieved by individual weight matrices for each score.

Adjustable Global and Local Score Fusion Strategy Although the previous
strategy led to a more flexible model, Watzel et al . [11†] proposed an extended method.
They argued that the global score Sglob and the local score Sloc are still equally weighted
in the summation and introduced a trainable parameter ↵, for weighting the relevance of
local and global scores:

Ssaed

�
Q,K

�
=
↵Sglob +

�
1� ↵

�
Sloc

p
Ik

. (6.12)

The weighting parameter ↵ is predicted by two-layer MLPs, which are fed by the mean
of the key vectors k 2 RImodel [174]:

↵ = sigmoid
�
W [2]

↵ tanh
�
W [1]

↵ k
>��

(6.13)

where W [1]
↵ 2 RImodel⇥Imodel and W [2]

↵ 2 R1⇥Imodel are weight matrices, and the activation
functions are set to sigmoid functions.

6.4 Experimental Setup

The following section is divided into four parts which partly overlap with the sections of
the last chapters. In the first section, the pre-processing procedure of the TED-LIUM
release 2 (TED-LIUM-v2) dataset is revised and slightly modified. Then, the enhanced
SAED models of Watzel et al . [11†] are defined, which are utilized for analyzing their
localness and fusion strategies. The third part discusses the optimization of the SAED
architecture. The section is concluded by specifying the parameter setup for the decoding
phase.

6.4.1 Pre-Processing of the TED-LIUM-v2 Dataset

Watzel et al . [11†] followed the pre-processing procedures described in Section 5.4.1. In
the first step, the speed perturbation augmentation technique [77] on the TED-LIUM-v2
dataset is applied, where the speed factors of the recorded speech signal are modified to
0.9, 1.0, and 1.1 before generating the input features. Based on these three augmented
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speech signals, 80-dimensional log Mel features and three-dimensional pitch features [103]
are extracted, which are utilized as the input features x(t)

2 R83.

The corresponding target grapheme sequences G are generated from the given
transcript of the TED-LIUM-v2 dataset. First, each target sequence is enclosed by the
auxiliary tokens <sos> and <eos> to specify the start and the end of the sequence.
Then, the tokenizer SentencePiece [79] is employed to generate the 500 optimal byte pair

encoding (BPE) [144] units, resulting in sequences with target vectors g(o)bpe 2 B500.

6.4.2 The Standard Architecture of SAED Models

The SAED model utilized by Watzel et al . [11†] corresponds to similar architectures
established in Section 5.4.3 with minor modifications. The feature sequences X are pre-
processed with convolutional front-end modules in order to lower their overall sequence
length. The module is designed as two-layer convolutional neural networks (CNNs)
with a fixed stride length of two and whose kernels are set to K [1]

2 R1⇥83⇥3⇥3 and
K [2]

2 R83⇥83⇥3⇥3. Each CNN layer is finalized by rectified linear unit (ReLU) activation
functions, whereby the output activations of the last CNN layer are vectorized following
the procedure in Section 2.2.4. The resulting high-dimensional vectors are then fed
to MLPs, which linearly transform these into the Imodel-dimensional input vectors.
Since SAED models are not utilizing recurrent neural networks (RNNs) or CNNs, the
positional encoding function proposed in [159] is added, which includes relative positional
information of each input vector (compare Section 5.4.3).

The resulting input vectors are then processed in the encoder networksHenc, consisting
of Lenc = 12 layers H [lenc]

enc , whereby 2048 units are utilized in each layer. Watzel et al .

[11†] set the number of heads H to four in the entire attention network A
[lenc]
saed without

applying the optional mask M and specified an internal dimension of Imodel = 256 for
the overall SAED architecture. The hidden representations H [12]

enc of the last encoder
layer are further processed in the decoder networks Hdec. Additionally, H

[12]
enc is fed into

MLPs, which linearly map the representations into the grapheme dimension R83. Then,
the output is transformed into the connectionist temporal classification (CTC) grapheme

distribution g(o)
CTC, required in the overall cost function eCsaed.

The decoder networks Hdec are composed of similar parameter setups. However, the
number of decoder layers is set to Ldec = 6, and optimal M in the form of lower triangular
matrices prevents the attention modulesA[ldec][2]

sa from accessing future predicted grapheme
sequences GO

o+1. The final decoder layer H(Ldec)
dec is finalized by a layer normalization

(LN) and a single-layer linear MLP, whose output is transformed into the grapheme
prediction distribution g(o) by softmax functions. Before the predictions g(o) are fed back
to the decoder networks Hdec, the positional encoding needs to be appended to integrate
relative temporal information. In order to prevent overfitting, the SAED architecture is
regularized by dropout layers [66] with ⇢ = 0.1 following each Asa and Asaed module.
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6.4.3 Optimization of SAED Models

In the optimization phase, Watzel et al . [11†] augmented the input features X by the
SpecAugment augmentation method [116] to increase the number of training samples
and reduce the impact of overfitting. The uniform distributions for the time masking
deformation are bounded by T� = 40, limiting the maximum length of the time masks,
and by Ntm = 2, specifying the maximum repetitions of the time masking procedure.
Similarly, the uniform distribution for the length of the frequency mask is limited to
T� = 30, and the frequency masking procedure is repeated for a maximum of Nfm = 2
times. Additionally, the target graphemes g(o) are smoothed with the label smoothing
method established in Equation (2.127), whereby the smoothing values are set to ◆ = 0.1.

The SAED models are trained based on the scheme introduced in Section 5.4.5. The
Adam optimizer [76] applies a learning rate schedule with a warmup phase of 25 000
iteration steps, where the learning rate ⌘ is slowly and linearly increased before passing
over into the training phase with gradually decreasing learning rates ⌘. Furthermore,
the standard Kullback-Leibler divergence (KLD) cost function is utilized as a training
objective with a mini-batch size of B = 50 and further extended the cost by the CTC
cost functions CCTC with a weighting parameter �saed = 0.3, leading to the overall cost
function eCsaed:

eCsaed

�
GB,GCTC,B, ĜB,

�
=
�
1��saed

�
CKLD

�
GB, ĜB

�
+�saedCCTC

�
GCTC,B, ĜB

�
. (6.14)

6.4.4 Decoding Procedure for Standard SAED Models

In the decoding phase, the standard grapheme prediction g(o) and CTC grapheme
prediction g(o)

CTC are combined by the weighting factors of �saed = 0.3, language models
(LMs) are omitted, and the beam size is assigned to Kbest = 20.0.

6.5 Evaluation

Yang et al . [174] and Nguyen et al . [111] reported improvements in applying and fusing
local attention scores in NMT. Therefore, Watzel et al . [11†] defined two ablation studies
to examine the impact of di↵erent fusion strategies and to determine the most e↵ective
location of localness in the SAED architectures. Based on the results of these studies, the
enhanced SAED architectures are retrained and compared to current SOTA architectures.
Finally, qualitative results are analyzed in detail to observe the modification of standard
global scores by the localness procedure.

6.5.1 Ablation Study on Optimal Fusion Strategies

In Table 6.1, the results of the first ablation study are summarized in which the impact
of the predefined fusion strategies is analyzed. The local scores are solely integrated into
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Table 6.1: Ablation study on optimal fusion strategies in SAED models. The results are
reported in word error rates (WERs) (%) and evaluated on TED-LIUM-v2 dataset[138].

TED-LIUM-v2

Model dev test

Baseline without Localness 10.0 9.2
+ Bias Fusion Strategy [174] 10.1 9.0
+ Global and Local Score Fusing Strategy 10.3 8.8
+ Adjustable Global and Local Score Fusing Strategy 9.8 9.1

the encoder networks Henc, which returned superior results for SAED models in recent
studies [111, 174].

The Baseline without Localness setup specifies the baseline of the ablation study,
where standard SAED architectures are optimized for 50 epochs following the training
scheme above. The decoding procedure yields 10.0% and 9.2% WERs for the dev and
test set, respectively. These results are slightly worse than the SOTA results reported
in the ESPnet framework, as the SAED models are solely optimized for 50 epochs and
decoded with a reduced beam size of Kbest = 20.0 caused by time constraints.

The more flexible Bias Fusion Strategy setup incorporates the Gaussian mask G,
initially established in [174]. Although Yang et al . reported improvements in integrating
such flexible masks into their approach, Watzel et al . [11†] did not observe consistent
reductions in the WERs. On the test set, a WER reduction from 9.2% to 9.0% is
observable. However, similar declines are not returned for the dev set, where the WER
is slightly increased from 10.0% to 10.1%. Watzel et al . [11†] assumed that including
localness with Gaussian masks could be problematic, as these masks are always active
even if localness is not intended.

The Global and Local Score Fusion Strategy defines an extension of former strategies
as the generation process of the local scores Sloc and global scores Sglob is achieved by
separate network branches [11†]. Therefore, the SAED architectures can focus either
solely on the local, global, or both branches equally. Besides, the Gaussian mask G is
solely multiplied by the local scores Sloc, hence leaving the standard global attention
Asaed unaltered. Although applying such a fusion strategy reduces the WER from 9.2%
to 8.8% on the test set, the overall strategy remains inconsistent, as similar improvements
are not noticeable on the dev set, where the WER rises from 10.0% to 10.3%. Watzel
et al . [11†] suspected the equally weighted summation of Sloc and Sglob for leading to
these inconsistent results since neither of these scores could be independently active to
represent the final score of the SA module Asaed.

Watzel et al . [11†] suggested a solution for the previous issue in the Adjustable Global
and Local Score Fusion Strategy setup. The SAED architectures are enhanced by also
predicting a relevance parameter ↵ based on the mean key k of the current layer for
allowing the model to decide if either the local score Sloc or the global Sglob is more
relevant in the SA module Asaed. As a result, consistent improvements on the dev and
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Table 6.2: Ablation study on the optimal location of localness in the encoder layers of SAED
models. The results are listed in WERs (%) and evaluated on the TED-LIUM-v2 dataset [138].

TED-LIUM-v2

Model dev test

Baseline without localness 10.0 9.2
+ Adjustable Global and Local Score Fusing Strategy in Layer 1-3 10.1 8.8
+ Adjustable Global and Local Score Fusing Strategy in Layer 1-6 10.2 8.9
+ Adjustable Global and Local Score Fusing Strategy in Layer 1-9 10.0 8.8
+ Adjustable Global and Local Score Fusing Strategy in Layer 1-12 9.8 9.1

test sets are observed, and the WERs on the dev, and on the test set, are reduced from
10.0% to 9.8% and 9.2% to 9.1%, respectively.

6.5.2 Ablation Study on the Optimal Location of Localness

In the second ablation study, Watzel et al . [11†] examined the most e↵ective location of
the Adjustable Global and Local Score Fusion Strategy in the encoder networks Henc to
improve the performance of SAED models. They expected that inducing localness in the
lowest layers should lead to significant improvements, as local information is commonly
present in lower layers of deep neural networks (DNNs). Therefore, four setups are
defined to analyze the impact of integrating localness and subsequent fusion strategy
into the SA Asaed modules: Applying the strategy in the first three, six, nine, and all
encoder layers, respectively.

The results are depicted in Table 6.2 and demonstrate that three out of four experi-
ments lead to inconsistent improvements in SAED models. If localness is employed in
the first three layers, a WER decrease from 9.2% to 8.8% on the test set and a minor
increase from 10.0% to 10.1% on the dev set is observed. Similar inconsistent results are
noticed by utilizing the novel fusion strategy in the first six layers. Here, the performance
on the test set improves from 9.2% to 8.9% but deteriorates from 10.0% to 10.2% on the
dev set. A more consistent improvement is recognizable for deploying localness in the
first nine encoder layers. The WER decreases from 9.2% to 8.8% on the test set and
remains stable with a 10.0% WER on the dev set. The most consistent improvements
are returned for utilizing the fusion strategy in all encoder layers, where a WER decline
from 9.2% to 9.1% on the test set and a minor decline from 10.0% to 9.8% on the dev
set is observable.

Interestingly, Watzel et al . [11†] could not verify the consistent improvements reported
in NMT [111, 174]. They assumed that despite further pre-processing of the input
sequence X by front-end modules, the sequence length remained multiple times the
length of the target grapheme sequence Ĝ and made it challenging to e�ciently integrate
localness even in lower layers of the encoder networks Henc.
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Table 6.3: The final WER (%) results of the current SOTA model and the enhanced SAED
model with optimal parameters. The evaluation is executed on TEDLIUMv2 [138], and both
models are decoded with a beam size of 40.

TED-LIUM-v2

Model #Param dev test

Baseline ESPnet 28M 10.1 8.9
+ Adjustable Global and Local Score Fusing Strategy 29M 10.0 8.7

6.5.3 Final Results of Enhanced SAED Models

In order to compare the novel Adjustable Global and Local Score Fusion Strategy to
recent SOTA results listed in the ESPnet framework [162] (commit c881192), Watzel
et al . [11†] modified the training parameters of their enhanced SAED architecture to
correspond to the parameter setup of the SOTA model, leading to optimization for 100
epochs, a decoding procedure with a beam size of Kbest = 40.0, and a minor increase of
the model parameters from 28M to 29M.

The results in Table 6.3 reveal that the enhanced model structure surpasses current
SOTA models by reducing the WER from 8.9% to 8.7% on the test and from 10.1% to
10.0% on the dev set. The novel approach from Watzel et al . [11†] demonstrates the
advantage of utilizing localness in SAED models and why it should be considered in
future ASR models.

6.5.4 Qualitative Results of Local and Global Scores

Besides the quantitative results, the qualitative results are depicted in Figure 6.2. Brighter
colors define higher value scores, whereby darker colors specify lower value scores. The
first row presents the generation of the local scores Sloc. In the left Figure 6.2a, the
local scores are generated in the local attention branch, relying on their individual
weight matrices, and do not include the multiplicative Gaussian masks G. In the middle
Figure 6.2b, the Gaussians for each q(tq)> are plotted, leading to the Gaussian mask G.

Additionally, the predicted positions p(tq) marked by blue crosses and window sizes
d(tq) colored in yellow are included. The Gaussian mask G is then multiplied by the
local scores Sloc, resulting in heavily smoothed local scores Sloc, which are presented in
Figure 6.2c.

In the second row, the global score Sglob generated by the global attention branch is
presented in Figure 6.2d. This score corresponds to the standard score of SAED models
without integrating localness or applying fusion strategies. The Figure 6.2e reveals the
final score Ssaed of the fusion procedure established by Watzel et al . [11†]. Compared to
the global score Sglob, some sections in Ssaed are boosted by the induced localness, which
are normally suppressed.
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(a) Sloc without the Gaussian
mask G.

(b) The obtained Gaussian
mask G with its marked p(tq)

and d(tq).

(c) The local score Sloc with
multiplied G.

(d) The global score Sglob without fusion. (e) The final attention score Ssaed represents the
fusion of the scores Sglob and Sloc with ↵ = 0.423.

Figure 6.2: The Adjustable Global and Local Score Fusion Strategy with the final attention
score of Asaed adapted from [11†]. The global score Sglob and the local Sloc are determined and
weighted by the parameter ↵. Relevant sections of the final attention score in Figure 6.2e are
boosted by Sloc.

6.6 Conclusion

This chapter introduced a novel approach from Watzel et al . [11†] for inducing and fusing
localness into standard SAED architectures. Based on the popular Gaussian masks, the
novel fusion strategy successfully transferred the concept of localness to SAED models
in ASR, leading to a flexible fusion procedure.

The superiority of the novel fusion strategy was examined in an ablation study, which
evaluated the novel strategy against current fusion methods. In contrast to localness
in NMT applications, which heavily improved models if applied in the lowest encoder
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layers, Watzel et al . [11†] could not verify such findings in ASR models.
In their evaluation of the novel fusion strategy, they could also achieve current SOTA

results on the TED-LIUM-v2, which required a minor parameter increment.

118



7

Conclusion

This work presents three model enhancements for popular model architectures in auto-
matic speech recognition (ASR), beginning with classic hybrid approaches in Chapter 4,
followed by attention-based encoder-decoder (AED) models in Chapter 5, and concluding
with self-attention-based encoder-decoder (SAED) architectures in Chapter 6. The
model enhancements were initially proposed by Watzel et al . and are defined at di↵erent
locations in the training setups, such as in standard cost functions by introducing novel
cost sampling procedures, in given model architectures by adding additional network
components, or in the network layers by modifying low-level functions. The objectives
from Section 1.2 are briefly revised before the conclusions w.r.t. each objective are drawn:

1. Discrete acoustic models (AMs) have the potential to surpass continuous AMs in
hybrid approaches.

2. Additional model components in AED and SAED models, which are trained on
time-reversed target labels, improve the model performance.

3. Inducing localness with e↵ective fusion strategies between local and global contexts
leads to a performance gain in SAED architectures.

In the first model enhancement from Chapter 4, discrete AMs are defined as deep neural
network quantizers (DNNQs). They emit discrete class labels in quantization procedures,
where the mathematical max operators are utilized on the outputs of DNNQs. As these
operators are non-di↵erentiable, such models cannot be optimized by the backpropagation
algorithm. Therefore, the max operators are replaced with scaled softmax operators to
allow the standard backpropagation approach. In contrast to the initially established
neural network vector quantizer (NNVQ) architectures, DNNQmodels are implemented in
state-of-the-art (SOTA) training frameworks and employ recent regularization techniques
such as batch normalization (BN) and dropout layers for better generalization.

Furthermore, DNNQ models are required to emit a certain number of unique class
labels to compete with continuous AMs, represented as Gaussian mixture models (GMMs).
The number of unique labels is generally limited to the number of unique classes in a
given dataset. The novel cost sampling procedure defines a mapping approach for setting
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arbitrary output sizes in DNNQs, leading to discrete AMs competitive with continuous
AMs. The optimal DNNQ parameters are determined by two ablation studies. The first
study examines the optimal output size of DNNQ models, and the second study obtains
the ideal number of adjacent input features, which should be spliced together into a
single feature input. In a final evaluation, these optimal parameters are applied and lead
to discrete DNNQ models surpassing continuous GMMs despite the major disadvantage
of losing information in the quantization process of DNNQs.

The second model enhancement in Chapter 5 utilizes the popular AED architectures,
consisting of the encoder, decoder networks, and attention modules, where the attention
modules learn to weigh the impact of hidden representations of the encoder networks and
decoder networks. The AED models are modified in five di↵erent setups and evaluated
on a smaller and larger dataset, where the standard character (CHAR) and byte pair
encoding (BPE) units are employed as target label types. The first setup defines a
standard AED model setup, where the architecture is trained on both datasets, and their
results specify the baseline of subsequent experiments. In the second setup, the AED
models are optimized on time-reverse target labels, which leads to a minor performance
decrease. The third setup, in which a pre-trained encoder network is applied, further
decreases the model performance, as the encoder network is initially trained on standard
target labels. In the fourth setup, the AED architecture is extended by additional decoder
networks, which are solely active in training. The obtained AED models are decoded by
excluding the additional model structures, leading to minor performance improvements.
The best results are reported in the fifth setup, where information exchange between
both decoder networks is enforced by introducing regularization terms for minimizing
the distances between the decoder sequence outputs. As the regular and time-reversed
BPE target sequences do not match their length, a novel regularization term based
on the soft-dynamic time warping (DTW) algorithm is established, which enables the
minimization of sequences with uneven lengths.

Additionally, the superiority of the model extension is also verified for SAED models.
In contrast to additional decoder structures in AED models, the SAED model approach
is extended by another entire SAED model, where the regular SAED model is trained
on standard target labels and the additional SAED model on time-reversed target labels.
Furthermore, the impact of Euclidean and Cosine distance metrics in the regularization
procedures are examined and revealed that the Euclidean distance metric returns the
best results for the two target label types CHAR and BPE units.

The third model enhancement described in Chapter 6 investigates the impact of
local context and the corresponding fusion strategies in SAED architectures. The SAED
models belong to the most popular architectures in ASR, as they enable the modeling
of AMs without any recurrent or convolutional model components. Their self-attention
(SA) modules are commonly extended into multi-head attention (MHA) modules to
learn global dependencies between features or hidden representations whose locations in
the sequences are far apart. However, local context is often suppressed by SA modules
despite playing a major role in the recognition process of ASR models. Therefore, the
standard scores of SAED architectures are modified by adding local Gaussian masks,
whose parameters are learned by multilayer perceptrons (MLPs). The optimal fusion
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strategy for the local and global scores and their most e↵ective location in the SAED
architecture is determined in two ablation studies. The first ablation study examines
the impact of three fusion strategies and compares the result to standard SAED models.
The first fusion strategy is a simple summation between the standard global score and
local Gaussian masks, leading to minor and inconsistent performance improvements.
The second fusion strategy divides the generation of the final SA score into separate
local and global score generation procedures, which are determined by two individual
model branches. However, in such a fusion strategy, consistent improvements are not
observable.

The last strategy established a novel fusion method by extending the former strategy
with a learnable relevance weighting parameter for the local and global scores, resulting
in the best and most consistent performance improvements in enhanced SAED models.
The second ablation investigates the most e↵ective location of the former best fusion
strategy. It reveals that the biggest impact is achieved by applying the strategy in all
SA modules of the encoder layers. In the final evaluation, an enhanced SAED model is
constructed and evaluated against recent SOTA models. The results demonstrate the
superiority of localness in the novel fusion approach, as the enhanced SAED architectures
surpass current SOTA models.

The general conclusion of this work is that despite utilizing di↵erent model architec-
tures in ASR, there is still room for improvement, as most of the popular ASR models
possess non-optimal training schemes, model components, or layer functions. However,
this work also shows that the improvements of novel approaches are reaching saturation,
and it is questionable if consistent performance gains of clean speech ASR approaches
are expectable in the future. Nevertheless, multiple research directions of the established
approaches exist:

1. The potential of discrete AMs in the form of DNNQs can be further enhanced if these
models are directly trained on triphone (TRI) instead of classic monophone (MONO)
labels. Moreover, even though DNNQs cannot surpass standard continuous deep
neural network (DNN) architectures, they could be beneficial in tandem approaches,
which combine discrete DNNQs with continuous DNNs.

2. The additional decoders in AED models, which are solely active in training, demon-
strate their importance in standard AED architectures. These decoder predictions
also contain valuable information and should be integrated into the decoding phase.

3. The induced localness with the optimal fusion strategy is solely integrated into
the encoder layers of SAED models, and further investigation of its impact in the
decoder layers would be reasonable.
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Appendix: Notation

This appendix briefly introduces the notation used throughout this work.

References

References are divided into three groups to allow for better identification:

1. Self-citations are highlighted by a †, for example, [11†].

2. Citations of manuscripts written by supervised students are highlighted by a +, for
example, [19+].

3. Any other citations are not highlighted, for example, [22].

Multi-references are separated by a comma in alphanumerical order, not in the order
of appearance in the text, for example: The works of Ronecker [17+] and Schnell [19+]
were both completed in 2018 in a seminar [17+, 19+]. To avoid clutter from frequently
recurring references, each reference is usually repeated only once per paragraph unless an
attribution is ambiguous.

Mathematics

The mathematical notation follows the ISO 80000-2 standard where possible [70]. The
most important aspects are summarized below:

• Scalars are written in lower-case letters, for example, a.

• Constant scalars are written in capital letters, for example, C.

• Vectors are written in bold letters, for example, v.

• Matrices and tensors are written in bold capital letters, for example, X.

• Distributions and sets are written in calligraphic capital letters, for example, N .
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In addition to ISO 80000-2, the following rules apply:

• It is implicitly assumed that p(x(1)
|x(0)) = p(x(1)) as x(0) is not defined.

• Whenever partial and total derivative are identical, for example, because the derived
function is separable in its variables, partial notation is preferred. In other words,
@x
@t is preferred over dx

dt unless the meaning changes.

• All mathematical operations are subject to automatic singleton expansion, also
called broadcasting. That is, if two tensors are included in a calculation that
requires identical size, their mismatching (singleton) dimensions are expanded via
repetition until their dimensions match. For example, consider an A⇥B matrixX =
(x1, ..,xB) and a 1⇥B vector v = (v1, ..., vB), then X + v = (x1 + v1, ..,xB + vB),
and analogously, for an A⇥1 vector u = (u1, ..., uA)T , X +u = (x1+u, ..,xB +u).

• Index dereferences always happen from right to left, the indexed dimension(s) being
collapsed. For example, an A⇥B⇥C⇥D tensor X indexed as X ij has dimension
A⇥B, where j is an index into D and i is an index into C.

Acronyms

Acronyms are introduced (at least) once when they first appear on a per-chapter basis.
For article usage it is assumed that capitalized acronyms are pronounced as letter
sequences and others are read as if they were common words. For example, it is an
hidden Markov model (HMM) and a convolutional neural network (CNN), but a rectified
linear unit (ReLU). To avoid confusion with plural usage, acronyms are su�xed by a
plural “s”, for example, CNNs is the plural of CNN.
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