
Technische Universität München
TUM School of Engineering and Design

Specification of Distributed Computing for Small
Satellite Control

Sebastian Rückerl

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität
München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Christoph Holst

Prüfer*innen der Dissertation:

1. Prof. Dr. Ulrich Walter

2. Prof. Dr. Martin Schulz

3. Prof. Dr.-Ing. Carsten Trinitis

Die Dissertation wurde am 4. November 2022 bei der Technischen Universität München eingereicht und
durch die TUM School of Engineering and Design am 2. Mai 2023 angenommen.

Acknowledgements

First, I would like to express my deepest gratitude to Prof. Walter, without whom this thesis would not
be possible. Thank you for putting your trust in the work of your Ph.D. students and for providing the
freedom and autonomy required to develop my ideas and approaches to the challenging topics of this
thesis. At the same time, he provided great feedback and new ideas supporting the development of this
thesis.

I am also extremely grateful to my mentor Carsten Trinitis. Thank you for your valuable second
opinion on my ideas and your support with the supervision of various student theses.

This endeavor would not have been possible without the support of many people from different parts
of TUM. I could not have finished this journey without Thomas Pöschl and Martin Losekamm. Thank
you for the countless hours you spent explaining particle physics and radiation in space environments to
me made. Without this support, this thesis, especially the radiation tests, would not have been possible.
Furthermore, I am also thankful to all other Professors and Ph.D. students at TUM that supported me
with the supervision of many student theses and provided valuable insight and new ideas regarding my
research.

My special thanks also go to the LRT staff. Martin Rott and Uta Fellermair, thank you for always
supporting me with any bureaucratic hurdles. Nicolas Appel, thank you for all the hours of drinking
coffee. During this time we had many great (and many not-so-great) ideas that made me enjoy the
time and provide the energy to tackle the various tasks required for this thesis and beyond. I would like
to extend my thanks to all the other members of the LRT for a great time we had during the last years.

I would also like to thank the Munich Orbital Verification Experiment (MOVE) team and its former
and current members. I started working on space-related topics only because of MOVE and Martin
Langer. Finally, the MOVE students, especially the students of the current MOVE software team, had to
endure various changes in the software framework developed throughout this thesis. Thank you for all
the great ideas and patience with me breaking your software over and over again.

I am also very grateful to all the people proofreading this thesis. Especially to my father, Reinhard
Rückerl, and my wife, Marion Rückerl, who read the entire thesis and provided valuable feedback.

Finally, I would also like to thank my family for their support. During the many years working on
my Ph.D., they provided the required support and pressure to successfully finish. Special thanks to my
wife who had to endure my mood during the last months of writing this thesis.

i

Abstract

The Technical University of Munich (TUM) will launch multiple satellite missions in the upcoming years.
While all of these missions use CubeSats, they have diverging requirements from short time missions
over long time missions with restrictive pointing requirements to reliable operation in the radiation
environment of the South Atlantic Anomaly (SAA). Due to the tight schedule and the concurrent
development of these missions, the reuse of components is essential for successful missions. We suggest
a distributed system as a potential solution and expect such a system to provide the required flexibility
and reusability.

While a wide range of small satellite on-board computers and data handling software frameworks
exist in literature, only a few are actually available. For CubeSats, it is still common to use a centralized
control setup. While advanced frameworks for distributed control and data handling exist, they target
larger system with less restricted resources. None of these frameworks provides timing guarantees and
enables the implementation of a distributed real-time control system.

The main research question is thus, if a distributed system is possible on a resource restricted
CubeSat and if this distributed system improves flexibility and adaptability, and thus encourages the
reuse between missions. At the same time, we also want to show that such a system can meet the
timing requirements of a distributed real-time control system such as an attitude determination and
control system (ADCS).

As previous frameworks for on-board software exist, we first select RODOS as basic operating
system (OS). Using the available features of RODOS, we design a framework — called the DOSIS
framework — that provides a simple, flexible, yet strongly type-checked interface for developers and
contains the necessary features for distributed real-time control. An implementation of the framework
and the RODOS ports for the STM32L4 and VA41620 microcontroller provide a basic prototype. A time
synchronization test verifies the frameworks clock synchronization and the remaining timing error for
timed sensor readout or actuator activation. A radiation test with protons additionally verifies that the
VA41620 satisfies the requirements for operation in the SAA.

The DOSIS framework’s implementation provides an interface for developers that simplifies the
implementation of new software components. These components can be easily adapted and shared
between missions and thus enable the reuse of major parts of the flight software. The time synchroniza-
tion test verifies the real-time capabilities. The remaining timing uncertainty is below 2 ms — even
with low-quality references for the local clock on each node — and thus sufficient even for ADCS
applications. Finally, the radiation tests show that the VA41620 successfully corrects bit errors caused
by proton irradiation. Thus, we expect this controller to operate in the SAA without software observable
issues.

Within this thesis, we show that a distributed system for CubeSat on-board control is possible and
can satisfy real-time requirements. Furthermore, a target platform exists that is well capable of reliable
operation in the SAA. Thus, we find the DOSIS framework presented in this thesis as a viable option for
future CubeSats at TUM.

iii

Zusammenfassung

In den kommenden Jahren werden an der Technischen Universität München (TUM) mehrere Satelli-
tenmissionen innerhalb kurzer Zeit stattfinden. Die Anforderungen dieser Missionen unterscheiden
sich dabei deutlich: So gibt es Missionen mit nur kurzer Missionsdauer, eine Mission welche eine
stabile Ausrichtung über längere Zeiträume benötigt, sowie eine Mission welche einen zuverlässigen
Betrieb im Strahlungsmaximum der Südatlantischen Anomalie (SAA) erfordert. Aufgrund des straffen
Zeitplans ist das Wiederverwenden von Einzelkomponenten sowie das Anpassen vorhandener Kompo-
nenten notwendig. Diese Arbeit stellt ein verteiltes System zur Steuerung von Kleinsatelliten als ein
wiederverwendbares und anpassbares System und damit als Lösung für dieses Problem dar.

In der Literatur werden viele Softwarepakete für Satelliten erwähnt, jedoch ist nur ein kleiner Teil
davon tatsächlich für Missionen an der TUM verfügbar. Des Weiteren nutzen die meisten CubeSats
eine zentrale Komponente zur Steuerung des restlichen Satelliten. Verteilte Systeme, insbesondere
solche die eine verteilte Regelung ermöglichen, finden sich dabei zumeist nur für größere und weniger
ressourcenbeschränkte Systeme.

Ziel dieser Arbeit ist es zu zeigen, dass ein verteiltes System für CubeSats möglich ist und tatsächlich
die Flexibilität bietet, um für zukünftige Missionen der TUM verwendet zu werden. Zusätzlich zeigt diese
Arbeit, dass ein solches System in der Lage ist auch Echtzeitanforderungen eines Lagebestimmungs-
und -reglungssystems (ADCS) erfüllen zu können.

Der Systementwurf beginnt mit der Wahl von RODOS als verwendetes Betriebssystem (OS). An-
schließend wird das sogenannte DOSIS Framework mit allen notwendigen Funktionen für ein verteiltes
Echtzeitkontrollsystem, insbesondere mit einfach zu nutzendem Interface sowie einer hinreichend
genauen Zeitsynchronisation, entworfen sowie die Implementierung des Frameworks und der zuge-
hörige Hardware-Prototyp vorgestellt. Die Funktionalität der Zeitsynchronisation sowie der zeitlich
gesteuerten Abfrage von Sensordaten und Aktivierung der Aktuatoren wird anhand eines Prototypen
aufgezeigt. Mit einem Strahlentest wird anschließend die Tauglichkeit des VA41620 Mikrocontroller
für den Einsatz in der SAA untersucht. Insbesondere die Fähigkeit der Hardware Bitfehler direkt zu
korrigieren wird dabei genauer analysiert.

Die Tests zur Zeitsynchronisation zeigen, dass die verbleibende Zeitunsicherheit für das Auslesen von
Sensoren sowie das Ansteuern von Aktuatoren auch unter Verwendung eines ungenauen Taktgebers an
jedem Knoten kleiner als 2 ms und damit für ein CubeSat ADCS ausreichend ist. Auch die Strahlentests
konnten die angenommene Tauglichkeit der Hardware bestätigen. Obwohl einige Bitfehler durch
Protonen verursacht wurden, konnte die Hardware diese wie erwartet beheben. Die Funktionalität des
VA41620 auch unter extremen Bedingungen wird dadurch gezeigt und es wird erwartet, dass dieser
Mikrocontroller auch in der SAA fehlerfrei betrieben werden kann.

In dieser Arbeit wird damit bestätigt, dass ein verteiltes System zum Steuern eines CubeSats eine
vielversprechende Option darstellt und die Echtzeitanforderungen eines ADCS Systems erfüllen kann.
Auch eine für CubeSats geeignete Hardware, welche das vorgeschlagene Framework unterstützt und
den fehlerfreien Betrieb in der SAA ermöglicht, ist vorhanden. Das DOSIS Framework ist daher ein
guter Kandidat als Framework für die Flugsoftware zukünftiger CubeSats der TUM.

v

Contents

Acknowledgements i

Abstract iii

Zusammenfassung v

Contents vii

Acronyms xi

Glossary xv

Symbols xvii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Future MOVE Missions . 1
1.1.2 ORIGINS LRSM Missions . 1

1.2 Problem Statement . 2
1.3 State of the Art . 3

1.3.1 Satellites at the Institute of Astronautics . 3
1.3.2 Commercially Available CubeSat On-Board Computers 7
1.3.3 On-Board Software Frameworks . 8
1.3.4 Space Shuttle Avionics . 13
1.3.5 Data Field Systems . 13

1.4 Gap Analysis . 13
1.5 Scope of this Thesis . 15

1.5.1 Approach . 15
1.6 Structure of this Thesis . 16

2 Background and Design Goals 17
2.1 ORIGINS LRSM Missions . 17

2.1.1 AFIS . 17
2.1.2 ComPol . 18
2.1.3 IOV-1 . 18

2.2 MOVE-III . 20
2.2.1 DEDRA Sensor . 20
2.2.2 CubeSat Platform . 20

2.3 Radiation Environment in Space . 20
2.3.1 Radiation Sources . 20
2.3.2 Effects on Electronics . 24
2.3.3 Summary . 27

2.4 Design Goals . 28

3 System Design 31

vii

viii CONTENTS

3.1 Baseline Framework . 31
3.1.1 Exclusion Criteria . 32
3.1.2 Selection Criteria . 32
3.1.3 Available Frameworks . 33
3.1.4 Available Operating Systems . 34
3.1.5 Selection . 36

3.2 Physical Interconnection of Nodes . 37
3.2.1 Network Topology Constraints . 37
3.2.2 Candidate Topologies . 38
3.2.3 Topology Selection . 39
3.2.4 Interface Standard . 39

3.3 DOSIS Framework Introduction . 42
3.4 DOSIS Components . 44

3.4.1 DOSIS ComponentInterfaces . 45
3.4.2 DOSIS ComponentImplementations . 46
3.4.3 General Interactions between Components . 48
3.4.4 Concurrent ComponentInterfaces . 48
3.4.5 Concurrent ComponentImplementations . 49

3.5 DOSIS Modules . 49
3.5.1 ReadOnly . 49
3.5.2 Settable . 50
3.5.3 Interval . 51
3.5.4 TimedSettable . 52
3.5.5 Actuator . 52
3.5.6 Doable . 52
3.5.7 Config . 53
3.5.8 Interaction between Components and Modules . 53

3.6 DOSIS Communication Abstraction . 56
3.6.1 CAN . 57
3.6.2 RODOS Publisher-Subscriber Message-Passing . 58
3.6.3 DOSIS Messages . 59

3.7 DOSIS Device Definitions . 62
3.8 Time Synchronization . 62

3.8.1 Reference Node Selection . 63
3.8.2 Time Format . 64
3.8.3 Time Transfer . 65
3.8.4 Local Time Update . 67

3.9 Reliability . 72
3.9.1 Classification . 73
3.9.2 Considered Scenarios . 74
3.9.3 Mitigation Strategies . 75
3.9.4 Simplified Bully for Leader Election . 77
3.9.5 Task Migration . 85
3.9.6 Redundant Execution . 86

4 Implementation 89
4.1 Hardware Selection . 89

4.1.1 VA41620 Platform . 89
4.1.2 STM32L4 Platform . 90

4.2 DOSIS Framework Implementation . 90
4.2.1 C++ Template Metaprogramming . 91
4.2.2 Modules . 92
4.2.3 ComponentInterface . 96
4.2.4 Driver Implementation . 99

CONTENTS ix

4.2.5 Daemon Implementation . 101
4.2.6 DOSIS Message Handling . 101

4.3 DOSIS Time Handling . 105
4.3.1 The DOSIS Time Model . 105
4.3.2 Time Synchronization Implementation . 107

5 Time Synchronization Test 109
5.1 Time Synchronization Mechanisms . 109

5.1.1 Test Setup . 109
5.1.2 Time Synchronization Test Results . 111
5.1.3 Control Loop Test Results . 111
5.1.4 Time Synchronization Test Discussion . 114
5.1.5 Control Loop Test Discussion . 114

5.2 Time Synchronization Verification . 115
5.2.1 Setup . 115
5.2.2 Time Synchronization Test Results . 116
5.2.3 Control Loop Test Results . 118
5.2.4 Time Synchronization Test Discussion . 121
5.2.5 Control Loop Test Discussion . 122

6 Radiation Test 123
6.1 Radiation Test Setup . 123

6.1.1 Mechanical Setup . 123
6.1.2 Electrical Setup . 123
6.1.3 Test Software . 126

6.2 Data Analysis Method . 128
6.2.1 Raw Data Preprocessing . 128
6.2.2 Bit-Flip Analysis . 128
6.2.3 Deposited Energy . 129
6.2.4 Particle Flux and Fluence . 129

6.3 VA41620 Radiation Test Results . 129
6.4 STM32L4 Radiation Test Results . 133
6.5 VA41620 Radiation Test Discussion . 136

6.5.1 Implications for Radiation Environment in LEO . 136
6.6 STM32L4 Radiation Test Discussion . 137

6.6.1 Implications for Radiation Environment in LEO . 138
6.7 Conclusion . 138

7 Discussion 139
7.1 Fulfilled Objectives . 139

7.1.1 Distributed System Framework . 139
7.1.2 ADCS Capability . 140
7.1.3 Hardware Platform . 141

7.2 Simplified and Modular Component Development . 142
7.3 DOSIS on ORIGINS LRSM Missions . 143

7.3.1 On-Board Software . 143
7.4 Limitations of Implementation . 144
7.5 Ongoing Effort and Future Extensions . 145

7.5.1 Ongoing Development . 145
7.5.2 Additional DOSIS Modules . 146

7.6 Summary . 147

8 Conclusion 149
8.1 Summary . 149

x CONTENTS

8.2 Conclusion . 150
8.3 Outlook . 151

References 153
List of Publications . 167
List of Supervised Theses . 168

A COTS CubeSat OBCs 171

B Framework and OS Selection 175
B.1 Criteria . 175
B.2 Preference Analysis . 179
B.3 Framework Scoring . 180
B.4 Operating System Scoring . 188

C Time Synchronization 195
C.1 Proof of Offset Compensation with P-Controlled Clock Update 195
C.2 Proof of Skew Compensation with P-Controlled Clock Update 196
C.3 Proof of Separation of Error within P-Controlled Clock Update 198
C.4 Time Synchronization Verification Test Results . 199

C.4.1 Internal Oscillator . 199
C.4.2 External 32.768 kHz Oscillator and Reference Node 1 209
C.4.3 External 32.768 kHz Oscillator and Reference Node 3 219

D Implementation 229
D.1 Usage of DOSIS . 229

D.1.1 GPO Driver . 230
D.1.2 Using a DriverInterface . 230

E Radiation Test Additional Figures 235

DOSIS Terms 237

List of Figures 241

List of Tables 245

List of Algorithms and Programm Code 247

Acronyms

ADC Analog To Digital Converter
ADCS Attitude Determination and Control System
Al Aluminum
API Application Programming Interface

C Carbon
CAN Controller Area Network
CAN FD Controller Area Network Flexible Data-Rate
CAST China Academy of Space Technology
CCSDS Consultative Committee for Space Data Systems
CDH Command and Data Handling
CMOS Complementary Metal-Oxide-Semiconductor
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CRC Cyclic Redundancy Check
Cu Copper (from Latin Cuprum)

DAC Digital To Analog Converter
DLR German Aerospace Center (from German Deutsches Zentrum für Luft- und Raumfahrt)
DOSIS Distributed Operating System Initiative for Satellites

ECSS European Cooperation for Space Standardization
EEPROM Electrically Erasable Programmable Read-Only Memory
EIA Electronic Industries Alliance
eMMC Embedded Multimedia Card
EPS Electrical Power System
ESA European Space Agency

Fe Iron (from Latin Ferrum)
FIFO First In, First Out
FPGA Field Programmable Gate Array
FR-4 Flame Retardant 4 (Fiber Glass Epoxy)
FRAM Ferroelectric Random Access Memory

GNSS Global Navigation Satellite System
GPIO General Purpose Input/output
GPO General Purpose Output

H Hydrogen
He Helium

I Integral
IP Internet Protocol

xi

xii Acronyms

ISIS Innovative Solutions in Space
ISO International Organization for Standardization
ISS International Space Station
I²C Inter Integrated Circuit

LED Light Emitting Diode
LEO Low Earth Orbit
LET Linear Energy Transfer
LRSM Laboratory for Rapid Space Missions
LRT Institute of Astronautics (from German Lehrstuhl für Raumfahrttechnik)

MCU Micro Controller Unit
MISRA Motor Industry Software Reliability Association
MMU Memory Management Unit
MPSoC Multiprocessor System On a Chip
MRAM Magnetoresistive Random Access Memory

NASA National Aeronautics and Space Administration

O Oxygen
OBC On-Board Computer
OBDH On-Board Data Handling
ORIGINS DFG Cluster of Excellence ORIGINS
OS Operating System
OSI Open Systems Interconnection

P Proportional
PCB Printed Circuit Board
PDP Payload Data Processor
PI Proportional Integral
PSI Paul Scherrer Institute

RAM Random Access Memory
ROM Read-Only Memory
RS Recommended Standard
RTOS Real-Time Operating System

SAA South Atlantic Anomaly
SEE Single Event Effect
SI International System of Units (from French Système International d’Unités)
SiO2 Silicon Dioxide
SML Space Missions Laboratory
SoC System On a Chip
SPENVIS Space Environment Information System
SPI Serial Peripheral Interface

TAI International Atomic Time (from French Temps Atomique International)
TCP Transmission Control Protocol
TIA Telecommunications Industry Association
TID Total Ionizing Dose
TM/TC Telemetry and Telecommand
TMR Triple Modular Redundancy
TUM Technical University of Munich

Acronyms xiii

TüV Technical Inspection Association (from German Technischer Überwachungsverein)

UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol
UHF Ultra High Frequency
UL Underwriters Laboratory
UML Unified Modeling Language
USB Universal Serial Bus
UUT Unit Under Test

VHF Very High Frequency

XML Extensible Markup Language
xTEDS Extended Transducer Data Sheet

Glossary

AFIS Antiproton Flux in Space (AFIS) is one of the LRSM CubeSat missions with an
estimated launch date in 2024. The scientific goal of AFIS is the measurement of
antiprotons within the SAA.

cFS NASA’s core Flight System (cFS) is an open-source software framework for
spacecraft. It is available online at https://github.com/nasa/cFS.

ComPol Compton Polarimeter (ComPol) is one of the LRSM CubeSat missions. The scien-
tific goal of ComPol is the measurement of the polarization of X-rays originating
from the Cygnus X-1 binary system.

COrDeT The Component Oriented Development Techniques (COrDeT) framework by
P&P Software is a service-oriented software framework compatible with ESA
standards. Documentation and a reference implementation is available online at
https://www.pnp-software.com/cordetfw/.

CSP CubeSat Space Protocol (CSP) is a network-layer protocol for CubeSats. Docu-
mentation and a C-implementation is available online at www.libcsp.org.

DEDRA The DEbris Density Retrieval & Analyises (DEDRA) sensor is a detector for dust
particles in space. It is developed at TUM as a modified and improved version of
the MDC [160]. The DEDRA sensor is the main payload of the MOVE-III CubeSat.

F’ F Prime (F’) is a framework for spaceflight applications developed by NASA. F’ is
an open-source framework available at https://nasa.github.io/fprime/.

first-MOVE First CubeSat mission of the MOVE project. The 1 U CubeSat first-MOVE was
launched into a LEO on November 21, 2013 [104].

fsfw The Flight Software Framework (fsfw) is a control software developed by the
University of Stuttgart as part of the Flying Laptop Project. The source code for
fsfw is available at https://egit.irs.uni-stuttgart.de/fsfw/fsfw.

GERICOS GEneRIC Onboard Software (GERICOS) is a framework for reusable software
components for payload flight software developed by LESIA [169].

IOV-1 In-Orbit Verification Experiment 1 (IOV-1) is a LRSM mission for in-orbit verifica-
tion of hardware developed for the AFIS and ComPol missions. IOV-1 is an ISS
based experiment with an expected launch mid 2023.

MDC The Munich Dust Counter (MDC) is a dust particle detector developed at TUM
for the MUSES-A mission [76].

MesoMag Mesosphere Magnetometry (MesoMag) is a proof-of-principle experiment on
IOV-1 for a future LRSM mission measuring Earth’s magnetic field.

MOVE The Munich Orbital Verification Experiment (MOVE) project is an educational
project for satellite development at TUM. It is a joint effort between the LRT and
the scientific workgroup of rocketry and spaceflight.

xv

https://github.com/nasa/cFS
https://www.pnp-software.com/cordetfw/
www.libcsp.org
https://nasa.github.io/fprime/
https://egit.irs.uni-stuttgart.de/fsfw/fsfw

xvi Glossary

MOVE-BEYOND Development program within the MOVE project for a satellite bus as successor of
MOVE-II

MOVE-II Second CubeSat mission of the MOVE project. MOVE-II was launched into a LEO
on December 3, 2018 and is still in operation.

MOVE-IIb Third CubeSat mission of the MOVE project and sister-satellite of MOVE-II. MOVE-
IIb was launched into a LEO on July 5, 2019.

MOVE-III Upcoming CubeSat mission of the MOVE project. MOVE-III’s latest design is a
6 U CubeSat featuring the DEDRA sensor as its payload [160].

MQTT MQTT is a publish-subscribe, machine to machine network protocol. Additional
information about this protocol is available online at https://mqtt.org/.

NMF Nanosat Mission Operations Framework (NMF) is a CCSDS compatible framework
for small satellite software. It was developed by Graz University of Technology
and is maintained by ESA. The source code and documentation is available at
https://nanosat-mo-framework.github.io/.

OBC-NG On Board Computer — Next Generation (OBC-NG) is a framework for distributed
data processing on high performance COTS hardware developed by DLR [118].

RODOS Realtime On-board Dependable Operating System (RODOS) is an open-source
operating for small embedded devices developed by the Universit of Würzburg.
RODOS is available online at https://gitlab.com/rodos/rodos.

RTEMS Real-Time Executive for Multiprocessor Systems (RTEMS) is an open-source RTOS
available at https://www.rtems.org/.

ScOSA Scalable On-Board Computing for Space Avionics (ScOSA) is a satellite software
project by DLR with the goal of developing a system based on the OBC-NG [218].

SPA Space Plug-and-Play Avionics (SPA) is a framework developed by the Air Force Re-
search Laboratory that provides a standardized interface to interconnect satellite
components on a software and hardware level [121].

VIDANA Visionary Data Management System for Nano-Satellites (VIDANA) is a task migra-
tion system for RODOS enabling state transfer and multiple hot-standby copies of
tasks developed at the University of Würzburg [152, 229].

https://mqtt.org/
https://nanosat-mo-framework.github.io/
https://gitlab.com/rodos/rodos
https://www.rtems.org/

Symbols

Radiation Environment and Testing

σbit-flip bit error cross section
ρ volumetric mass density
d shield depth
φ particle fluence
Φ particle fluence rate or particle flux
L linear energy transfer
Nbit-flip number of observed bit-flips
Smemory size of monitored memory
DTID total ionizing dose

System Selection and Design

wi weight of selection criterion i

Time Synchronization

bCAN bus data rate on the CAN bus
Ci(t) output of clock i at time t
ci correction term of clock i
ci(k) correction term of clock i in synchronization interval k
di(t) drift of clock i at time t
ei(k) clock error at of clock i at the beginning of synchronization interval k
k identifier of synchronization interval
Ki integral gain koefficient
Kp proportional gain koefficient
kt identifier of time synchronization interval at time t
NCAN frames number of CAN frames of a 1300 B RODOS message
oi offset of clock i
SCAN frame size of an extended CAN frame without stuff bits
si skew of clock i
Sstuff bits size of stuff bits in a CAN message
t reference time
TCAN frame transmission time of an extended CAN frame excluding stuff bits
TCAN frame+ transmission time of an extended CAN frame including stuff bits
tk time of reception of time update message k
T1300 B RODOS message transmission time of 1300 B RODOS message via CAN excluding stuff bits
T1300 B RODOS message+ transmission time of 1300 B RODOS message via CAN including stuff bits
trx,k received reference time in time update message k after delay compensation
Tstuff bits transmission time of stuff bits in a CAN message
ui(k) skew correction term of clock i in synchronization interval k

xvii

xviii Symbols

Bully Algorithm

Iall set of used identifiers
il unique identifier of currently elected leader
Ilive set of identifiers of live nodes
in unique identifier of node n
Tawait coordinator timeout to wait before detecting a missing coordinator message
Telection timeout after sending an election message
Tfail timeout after which the election failed
Tok timeout after sending an ok message
Tp processing time
Tquery timeout after sending a query message
Tresp upper bound of response time
Tsend ok timeout before sending ok message
Ttrx bully message transmission time

Chapter 1

Introduction

1.1 Motivation

CubeSats are small satellites that were first proposed and standardized by Jordi Puig-Suari and Bob
Twiggs in 1999 [213]. The CubeSat Design Specification [213] defines CubeSats in terms of basic
units (U). A 1 U CubeSat has a size of approximately 10 cm× 10 cm× 10 cm and a mass of up to
2 kg [213]. This standard also defines larger CubeSats of up to 12 U by stacking multiple basic units.
While CubeSats initially targeted educational purposes [219], they have evolved to a wide field of users
and applications including remote sensing, technology demonstration, and science [226]. With the
variety of applications, the number of active CubeSats is increasing steadily [208, 226]. This trend is
still continuing and more CubeSats than ever will be launched in the upcoming years [101].

The Munich Orbital Verification Experiment (MOVE) program at the Institute of Astronautics
(LRT) at Technical University of Munich (TUM) is an educational program to build, launch, and
operate CubeSats with students [52, 107]. The 1 U CubeSats first-MOVE, MOVE-II, and MOVE-IIb were
launched as part of this program in 2013 [104], 2018, and 2019 [183] respectively. Recently, design
and development of the MOVE program’s next satellite MOVE-III has begun. At the same time, the DFG
cluster of excellence ORIGINS (ORIGINS) Laboratory for Rapid Space Missions (LRSM) initiated the
concurrent development of multiple scientific CubeSat missions. The combination of those missions
drives the need for a simple, reusable and adaptable platform to bundle efforts and reduce the workload
to implement several CubeSat missions concurrently.

1.1.1 Future MOVE Missions

MOVE-III, the next CubeSat of the MOVE project will host the DEbris Density Retrieval & Analysis
(DEDRA) payload [159, 160], which counts dust particles to improve space debris models [160].
MOVE-III will be a 6 U CubeSat with three copies of the DEDRA sensor [160]. The details of this
mission are still undefined, but initial development and pre-studies have started. The student team
uses precursor missions on stratospheric balloons to verify their initial development efforts [112].

This approach reflects some lessons learned of previous missions. From first-MOVE, we know that
requirements, especially software requirements, are imprecise and incomplete in early phases of the
development [106]. This was noticed similarly during the development of MOVE-II where major parts
of the software were only designed and implemented once they were actually required for integrated
tests. Langer [105] found that early integration and integration testing as early as possible is critical
for a successful mission.

1.1.2 ORIGINS LRSM Missions

The ORIGINS LRSM [62] will launch multiple concurrent CubeSat missions with short timelines in
the upcoming years. Currently, two missions are part of the LRSM and scheduled for launch in the
upcoming years: The Antiproton Flux in Space (AFIS) mission measuring the antiproton flux in the Van
Allen belt, specifically within the South Atlantic Anomaly (SAA) [170], and the Compton Polarimeter

1

2 CHAPTER 1. INTRODUCTION

(ComPol) mission measuring the polarization of X-ray originating from Cygnus X-1 [137]. Each of these
missions has a set of unique requirements, e.g., AFIS requires a lot of electrical power and reliable
operation within the SAA [170]. ComPol, on the other hand, requires precise pointing to Cygnus
X-1 [62]. A precursor on the International Space Station (ISS) will demonstrate the technology and
verify the scientific instruments in-orbit. Even though the requirements differ, these missions will share
major parts of the software and hardware to reduce the workload of the relatively small LRSM team.

1.2 Problem Statement

For future MOVE missions, we see the need for a system that can be used for MOVE-III and the
stratospheric balloons. These early balloon missions already drive the requirements for usable end-to-
end solutions and provide a platform for early testing of larger parts of the MOVE-III satellite. While
the flexibility required for reuse between balloon and satellite missions requires some effort, it also
enables late adaptations to changed requirements of the satellite. While this flexibility is important,
the changing student team also requires a system that is easy to understand and use after only a short
learning phase. For those reasons we see a strong requirement for a system that consists of smaller and
independent building blocks and can be assembled to a larger system for real missions. At the same
time, the smaller parts enable the independent testing on precursor missions.

Similar to MOVE-III, the LRSM requires a flexible framework to enable a simplified reuse and
adaptation to different scenarios. A framework that is easy to understand further reduces the mental
load of the LRSM team members and thus enables successful missions with short timelines. At the same
time, an increased adaptability to different scenarios, including the increased reliability required for
successful operation within the SAA, enables the reuse of the suggested framework between different
LRSM and the MOVE-III missions.

The currently available MOVE-II platform is not flexible enough and cannot be adapted easily to
these upcoming missions. Development of an independent system for each mission is not an option due
to the limited manpower. Therefore, we see the need for a flexible, adaptable, and easy to understand
framework for future CubeSats at TUM.

We propose a distributed system based on a network of nodes with an adequate software support as
a solution to this problem. We suppose that:

Hypothesis 1 A system based on a network of nodes can improve the flexibility and adaptability of the
overall system and allows simple extensions to meet different mission criteria.

Specifically, we suppose that this distributed system enables sharing of components between
different missions and even between CubeSats, stratospheric balloons, and other precursor missions. A
distributed system enables the independent development and simple adaptation to the various scenarios
and, with proper interface design, simplifies development and reduces the potential for design and
implementation faults due to mismatched interfaces.

In the context of a real-time sensitive system, it is not only important to provide flexibility, but
also to provide a suitable level of timing of actions distributed over several nodes. This is especially
important for control systems, e.g., an attitude determination and control system (ADCS). We suppose
that the proposed system can meet those requirements, specifically that:

Hypothesis 2 Such a system can meet the timing requirements to implement timing sensitive systems such
as a distributed attitude determination and control system.

Overall, we suppose that such a distributed system can meet all the requirements for the develop-
ment of MOVE-III, the LRSM missions, and all precursors thereof on stratospheric balloons and the
ISS.

1.3. STATE OF THE ART 3

1.3 State of the Art

This chapter presents an overview over CubeSat projects at the LRT, available commercial off-the-
shelf (COTS) on-board computers (OBCs), and currently available frameworks for on-board software
development suitable for CubeSats. Finally, it presents some ideas originating from on-board computing
within the Space Shuttle and so-called data field systems.

1.3.1 Satellites at the Institute of Astronautics

To this day, three CubeSats were built and launched at the LRT as part of the MOVE project: first-MOVE,
MOVE-II, and MOVE-IIb.

First-MOVE

Development of the first satellite of the LRT called first-MOVE began in 2006 [52]. First-MOVE
was a 1 U CubeSat [52] according to the previous version of the CubeSat Design Specification [212].
First-MOVE was a technology demonstrator for the in-house developed hardware with a focus on
education of students on satellite development and operation [52]. Its scientific objective was the
characterization of solar cells in cooperation with an industrial partner [52]. As secondary payload, a
camera on-board first-MOVE should gather pictures of earth [52]. Figure 1.1 depicts first-MOVE in its
deployed configuration in the laboratory of LRT.

Figure 1.1: First-MOVE in its deployed configuration at the LRT laboratory. Image source: [106]

Most subsystems of first-MOVE were built in-house at the LRT [52]. The only exceptions are a
ClydeSpace EPS and battery and an Innovative Solutions in Space (ISIS) UHF/VHF transceiver [52].
The on-board data handling (OBDH) system’s hard- and software was also developed in-house, mostly
by a single person [106]. An Atmel SAM9260 [49] containing an ARM9 core running at up to 180 MHz
was the OBDH system’s core [52]. A magnetoresistive random access memory (MRAM) stored the
boot image to reduce the likelihood of bit-errors [52]. Additional flash memory extended this storage
and contained redundant copies of the boot image for error correction and software updates [52].

4 CHAPTER 1. INTRODUCTION

A compare and update unit could repair bit flips in the boot image [52]. To mitigate temporary
failures a circuit breaker could perform a hard reset of the OBDH [52]. It could be triggered by a
latch-up detection, a hardware watchdog or the hard command unit connected to the transceivers [52].
Redundant implementation of the reset mechanisms using radiation hardened components aimed to
reduce the risk of a malfunction in this system critical part [52]. No detailed documentation on how all
these mechanisms should work is available, as no documentation was created due to missing time and
manpower [106]. Figure 1.2 depicts the printed circuit board (PCB) stack of first-MOVE containing all
these components.

Connection Board
(Top L-Board)

OBDH Board

Latch-Up Board

Hardcommanding
Unit

EPS + Battery Board

Experimental Board

Transceiver

Connection Board
(Bottom L-Board)

Figure 1.2: PCB stack of first-MOVE. Image source: [104]

First-MOVE was launched in November 2013 and operational in orbit for approximately four
weeks [104]. At this point, the operators observed a major anomaly that degraded the satellite to a
state where two-way communication was no longer possible [104]. Langer et al. assume that a failure
of the OBDH is most likely the reason for this degradation [104].

MOVE-II

Development of MOVE-II, the second CubeSat at the LRT began in 2015 [107]. MOVE-II is a 1 U
CubeSat with deployable solar cells and antennas [107]. 4-junction solar cells are the payload of
MOVE-II. The scientific goal of MOVE-II is the observation of performance and degradation over time
of this novel type of solar cell [186].

Figure 1.3 depicts the stack with the main subsystems of MOVE-II according to the MOVE-II System
Documentation [108]. The top panel combines the payload solar cells, a sun sensor, and a magnetic coil
of the ADCS integrated into the PCB. It connects to the main PC/104 stack via an adapter board. The
command and data handling (CDH) board, which also contains the global navigation satellite system
(GNSS) receiver [183], is the first board in this stack, followed by the battery and the electrical power
system (EPS) PCB. The ADCS main panel is the core of the ADCS. The UHF/VHF transceiver [182]
is the always active telemetry and telecommand (TM/TC) transceiver of MOVE-II [107]. The S band
transceiver [182] is available for high data rate communication [107] and only enabled on demand.

Not shown in figure 1.3 are the UHF/VHF and S band antennas mounted below the PC/104 stack
and the four side panels, one on each side of the stack. Each side panel contains ADCS sensors and
actuators, two smaller 4 cm× 4 cm solar cells, and a deployable flap panel with two 4 cm× 8 cm solar
cells [107].

Command and Data Handling (CDH) According to [183], a SAMA5D2 [141] processor running at
400 MHz is the core of the CDH system. Furthermore, 512 MB of random access memory (RAM) and
512 MB of NAND flash storage provide the main memory [183]. Additionally, 32 kB of FRAM memory
provide storage for critical values and a space vault with 1.5 GB of flash storage and two SD cards

1.3. STATE OF THE ART 5

Top panel

PC/104 adapter

CDH
Battery

EPS

ADCS main panel

UHF/VHF transceiver

S band transceiver

Standoffs

Figure 1.3: PC/104 stack of MOVE-II. Image source: [108].

provides additional long-time storage for less critical data [183]. An external controller provides a
watchdog capable of resetting the entire CDH [183].

The authors of [183] also present the boot process of the MOVE-II CDH: During startup the
bootloader randomly selects one of three Linux kernels. If booting a certain kernel fails, a watchdog
automatically resets the system. The bootloader repeats this process until it finds a working kernel.
Afterward, the startup code selects one of three system images based on a round-robin scheme. This
selection only uses images previously reaching an uptime of more than 10 min.

A MOVE-II system software image consists of a collection of daemons [114]. Each daemon provides
a special service, in most cases the functionality of one subsystem [114]. Systemd1 is used to manage
these daemons, D-Bus2 is used for communication between different daemons where needed [183]. A
special daemon called HORST monitors the health of all other subsystems and triggers automated state
changes based on this information [183]. Figure 1.4 provides an overview of these daemons.

Figure 1.4: MOVE-II software architecture. Image source: own publication [183].

1A system and service manager for Linux available at https://systemd.io/.
2A message bus system for inter-process communication. Additional information available online at https://www.

freedesktop.org/wiki/Software/dbus/.

https://systemd.io/
https://www.freedesktop.org/wiki/Software/dbus/
https://www.freedesktop.org/wiki/Software/dbus/

6 CHAPTER 1. INTRODUCTION

ADCS main panel

ADCS top panel ADCS side panel (4x)

Main MCU SensorsActuators

CDH

Top panel
MCU

Sensors

Actuators

Side panel
MCU

Sensors

Actuators

Figure 1.5: MOVE-II ADCS architecture according to [139].

According to Lill, Messmann, and Langer [114], the MOVE-II software was developed using agile
methods. The authors state that individual components were developed independently based on an
initial system decomposition. According to them, early system level integration and testing assured
functionality beginning with the minimum viable product. This way problems with hardware and
software could be detected early and were fixed without budget or schedule issues [114].

Attitude Determination and Control System (ADCS) Messmann et al. [139] present the features of the
magnetorquer based MOVE-II ADCS: Within this system, a microcontroller on the ADCS main panel
is responsible for the control algorithm. Additional microcontrollers on each side panel and the top
panel provide the interface to the magnetic field and sun sensors, the gyroscope, and the magnetic coils
including the current-sensor feedback. Software components called producers read the sensor values
from the hardware and provide it to the main microcontroller. The main microcontroller estimates the
current attitude of the satellite based on this input, orbital elements from a two line element and the
current time. Based on this input, the control algorithm generates an output based on the estimated
attitude and forwards this information to software components called consumers. These consumers in
turn control the individual magnetorquers on the different ADCS panels.

Figure 1.5 depicts a summary of the ADCS architecture as described in [139]. According to the
authors of [139], the system has a tree like organization where the main microcontroller is responsible
for all calculations. All other controllers act as simple input/output nodes for various sensor and
actuator signals. Hardware-in-the-loop and software-in-the-loop verification of the flight software did
show good results for the overall ADCS system [93].

Launch and Operation On December 3, 2018, MOVE-II was launched and first results were presented
in [183]: Initially, regular operation of MOVE-II was delayed due to issues with the ground station.
In this phase, MOVE-II had a slowly increasing angular velocity of up to 527 ° s−1. Due to the flexible
Linux software and the possibility to upload new scripts, the operators could establish an actuation
pattern that effectively decreased the angular velocity and stabilized MOVE-II at a residual spin rate
of less than 10 ° s−1. According to [183], the root cause of the fast spinning is a current loop of the
solar panel wiring. Additional issues with the power budget increase the difficulty of the MOVE-II

1.3. STATE OF THE ART 7

operation [183].
A twin satellite called MOVE-IIb was launched on July 5, 2019 [93]. Compared to MOVE-II,

MOVE-IIb has an adapted solar panel wiring and updated software [183]. Due to a reduced output
signal power of MOVE-IIb no regular operation could be performed so far.

1.3.2 Commercially Available CubeSat On-Board Computers

Several integrated COTS OBCs solutions for CubeSats are available today. Table 1.1 lists an overview
of these solutions, table A.1 presents a more extensive list in the appendix. Most of them rely on a
32 bit ARM Cortex M core in combination with up to 1 MB of RAM [1, 16, 17, 61, 156, 204]. The major
exceptions are the low-power CubeSat Kit modules by Pumpkin Space Systems. These modules use 8 bit
or 16 bit microcontrollers combined with less than 100 kB of RAM [171–177]. Powerful multiprocessor
system on a chip (MPSoC) with multiple ARM cores combined with field programmable gate array
(FPGA) gates available for mission developers are used for computational intense applications [1, 79,
98, 162, 203]. Up to 64 GB RAM is available on these powerful platforms [162]. Only a few platforms
use cores designed specifically for space missions, e.g., the LEON3-FT [2, 3, 79].

Table 1.1: Summary of COTS OBCs for CubeSats.

Core
Memory

FRAM/MRAM Flash Both Unknown

8 bit MCU - - - PPM-B1 [176]
16 bit PIC - PPM-D1 [171]

PPM-D2 [175]
PPM-E1 [177]

- -

16 bit MSP430 Eddie The Com-
puter [205]

- - PPM-A1–PPM-
A3 [172–174]

32 bit ARM M4 - - n-ART OB-
COMMS [16]

n-ART SMC [17]

32 bit ARM M7 - EnduroSat
OBC [61]

3C2 [156]
OBC-P3 [204]

-

other 32 bit ARM - - iOBC [80] -
other 32 bit - - NanoMind

A3200 [91]
-

32 bit LEON3-FT - - - SIRIUS
OBC/TCM [2,
3]

FPGA or similar KRYTEN-M3 [1] CSP [203]
Proton 200k
Lite [202]

CFC-400 [79]
Antelope
OBC [98]

TELOS
OBC [162]

In most cases, memory for program code is part of the microcontroller. A few MB of additional
external code memory exist on some OBC modules. Either ferroelectric random access memory (FRAM)
or MRAM provides high reliability storage on some platforms. Flash memory provides high density
storage for less critical data. On most COTS OBCs SD-cards provide additional mass memory.

Most COTS OBCs do not provide any kind of hardware redundancy and rely on a watchdog, which
is sometimes combined with a second boot image stored in the same memory. In a few cases, duplicate
SD-card slots exist, which can provide redundancy regarding mass memory storage. The Space Inventor
OBC-P3 is an exception and provides fully redundant copies of all hardware components [204].

8 CHAPTER 1. INTRODUCTION

1.3.3 On-Board Software Frameworks

A number of software frameworks for on-board software developments are available today. This section
gives a summary of the known frameworks in alphabetical order.

CAST Reference Architecture

This paragraph is a summary of the China Academy of Space Technology (CAST) reference architecture
as presented in CAST Flight Software as a CCSDS Onboard Reference Architecture [36]: The CAST
reference architecture aims to standardize the on-board software and networking, increase reuse of
software, and replace manual programming of on-board software by assembling a software based
on an architecture and smaller software components. The CAST flight software implements several
Consultative Committee for Space Data Systems (CCSDS) standards, especially for information transfer
on lower layers. The CAST reference architecture consists of four layers:

• A hardware layer containing the physical hardware, e.g., the central processing unit (CPU),
memory, or external interfaces;

• an operating system (OS) layer providing a real-time kernel, hardware abstraction and a uniform
application programming interface (API);

• a middleware layer providing networking, data transfer, and commonly used basic support
services;

• and an application layer containing the various management services of the system.

The authors of [36] emphasize the improvements in standardization, flexibility, and scalability due to
the simplified reuse and replacement of individual components. They also state that using the CAST
reference architecture could improve the reliability by task migration, system reconfiguration, and the
reduced complexity of system verification due to reuse of components.

Source code or extended documentation of the CAST reference architecture is not publicly avail-
able [143] and was not available to the author of this thesis. A publication as a CCSDS orange book
(CAST Flight Software as a CCSDS Onboard Reference Architecture [36]) is pending [231].

NASA cFS

National Aeronautics and Space Administration (NASA) core Flight System (cFS) is an open source3

on-board software framework providing abstractions and applications reusable between missions [133].
The cFS consists of three layers:

• A platform abstraction layer providing an abstraction of the used OS and a platform support pack-
age containing the software required to combine the cFS core, the OS, and the hardware [132].
Linux, Real-Time Executive for Multiprocessor Systems (RTEMS), and VxWorks are supported
OSs with platform support packages available for Linux based development, ColdFire, RAD750,
LEON3 and the GomSpace NanoMind CubeSat OBC [133].

• An executive services layer containing the core and an API to access these service [133]. The core
provides essential services for messaging, alerts, runtime configuration, and startup/managing of
other services [133].

• And an application layer consisting of threaded applications and shared libraries [133]. A number
of applications for general TM/TC tasks are available [132].

An active community provides additional utilities and applications [133]. cFS is successfully used on
the Dellingr CubeSat, even though porting it to the CubeSat hardware was a challenge [50].

Although cFS provides an inter-task message routing mechanism, no use in distributed systems is
mentioned.

3Available at https://github.com/nasa/cFS.

https://github.com/nasa/cFS

1.3. STATE OF THE ART 9

COrDeT On-Board Software

Three layers assemble the Component Oriented Development Techniques (COrDeT) on-board software
reference architecture: A component layer, an interaction layer and an execution platform [181].
The component layer contains the functional and sequential behavior of the software system where
each component implements the software for a single concern [181]. The interaction layer consists
of containers and connectors: Containers surround these components and take care of concurrency,
real-time, and reconfiguration tasks; connectors implement the communication between different
containers [6]. The execution platform provides low level abstractions, monitoring and control
services, domain-neutral services such as tasking support, and on-board interface services [181].
This decoupling on on-board interface services with strict functional and timing requirements from
other components allowed independent development of the various parts of the overall system [6].
The COrDeT development process uses various modeling tools to declare and define the on-board
software [181].

The C2 implementation of COrDeT by P&P Software GmbH is publicly available via the vendor
website4 or a public GitHub repository5. This implementation does not provide a communication
middleware for any specific hardware [163]. Instead, it assumes that a message-passing middleware
with certain properties exists [163]. Neither user manual [163] nor framework definition [164]
mention the used real-time OS or any other hardware specific issues. Therefore, the author assumes
that these have to be provided by the user of the framework.

Although [181] mentions the physical distribution across nodes, no further analysis of the use of
COrDeT in a distributed system could be found.

CubedOS

CubedOS is a CubeSat software framework entirely written in SPARK [25]. As Brandon et al. [25]
states, the advantage is the static verification of the software. Yet he also mentions the possibility to
use bindings for regular Ada or C code with the intent to use external libraries. CubedOS provides
direct messaging as well as publish-subscribe message-passing among different modules [25]. It can be
executed on any system with Ada support such as Linux or VxWorks [25]. Current effort to increase the
feature set of CubedOS is ongoing and distributed processing is one of the next steps [26]. CubedOS is
publicly available6 with unknown license.

F Prime (F’)

F Prime (F’) is an open-source7 framework for small spacecraft developed by NASA’s Jet Propulsion
Laboratory [22]. The following paragraph is a summary of F’ according to Bocchino et al. [22]:
According to the authors, F’ aims to simplify reuse of flight software over multiple missions and speed
up development and testing. The main features of F’ are its modular architecture, a complexity level
matching the small satellites, a development ecosystem, and the wide range of supported processors.
Splitting the architecture into three main parts increases the reusability. Components are the first
concept and are similar to classes in object-oriented languages, which define data and methods to
manipulate said data. Ports define interfaces of components to interact with one another and are strictly
typed. Topologies define an assembly of components interconnected via the respective ports. A set of
support tools provide the ability to model a system and generate large parts of the required code based
on this model; only the internal functionality of a component has to be implemented manually. The
current open-source version7 provides a Linux and macOS port.

The F’ community on GitHub8 provides additional ports for FreeRTOS, VxWorks, Arduino, and some
others. Additional documentation of F’ is available via the project’s website9.

4https://www.pnp-software.com/cordetfw/download.html
5https://github.com/pnp-software/cordetfw
6Available at https://github.com/cubesatlab/cubedos.
7Available at https://github.com/nasa/fprime.
8https://github.com/fprime-community
9https://nasa.github.io/fprime

https://www.pnp-software.com/cordetfw/download.html
https://github.com/pnp-software/cordetfw
https://github.com/cubesatlab/cubedos
https://github.com/nasa/fprime
https://github.com/fprime-community
https://nasa.github.io/fprime

10 CHAPTER 1. INTRODUCTION

Although most systems using F’ are monolithic systems, the F’ User’s Guide10 suggests a hub pattern
to distribute an F’ application over several nodes [31]. While this enables distributed systems, it is
not directly supported. Especially the necessity to define individual ports for every message traversing
a shared medium as suggested in [31] increases the required effort if more components want to
communicate with one another on this medium.

GEneRIC Onboard Software (GERICOS)

The GEneRIC Onboard Software (GERICOS) framework as presented by Plasson et al. [169] aims at in-
creasing the development speed of payload software. They present three main parts of GERICOS [169]:

• the core acting as an abstraction of the used real-time OS,

• the blocks providing generic solutions for software components required in most payload instru-
ments,

• and the drivers acting as generic interface to the periphery not yet covered by the used OS.

GERICOS is implemented in the C++ subset as defined in Joint Strike Fighter Air Vehicle C++ Coding
Standards for the System Development and Demonstration Program [33] and supports the ThreadX,
RTEMS, and FreeRTOS operating systems [169]. A Unified Modeling Language (UML) based docu-
mentation fully documents the design of GERICOS [169]. Plasson et al. [169] mention an Extensible
Markup Language (XML) dialect that can be used to automatically generate some parts of the code.
Although [169] mentions this feature, the authors also mention that it is not fully implemented. The
current state of these features is unknown.

Although GERICOS was initially developed for a LEON based platform of the Radio Plasma Waves
onboard the European Space Agency (ESA) solar orbiter [169], it has been successfully ported to
CubeSat hardware of the PicSat mission [110]. Plasson et al. [169] list porting the system to a LEON3-
FT multicore system as one of the challenges for future developments of GERICOS. Therefore, the
author of this thesis assumes that it is not suitable for distributed systems. Currently, GERICOS is not
available as open-source software and no technical documentation is publicly available.

KubOS

KubOS is an open-source11 on-board software framework developed by the Kubos Corporation12.
According to KubOS online documentation [100], it is a collection of microservices running on a custom
Linux distribution. The documentation furthermore states that Internet Protocol (IP) is used as baseline
for all internal communication. Although Linux is not a real-time OS, the KubOS documentation states
that it is still sufficient for most applications and response times as low as 30 µs are possible.

The requirement for the custom Linux distribution restricts the usage of KubOS on some platforms.
Especially for 16 bit micro controller units (MCUs) or MCUs without memory management unit (MMU)
the Linux support is very limited [234].

Nanosat Mission Operations Framework (NMF)

This paragraph is a summary of Nanosat Mission Operations Framework (NMF) as introduced by
Coelho, Koudelka, and Merri [46]. NMF aims at increasing the portability of on-board software and
embedding it in a larger framework that also includes ground station software components. In contrast
to cFS, NMF does not target embedded systems but systems with suitable features to run a regular OS.
The framework is split into four layers:

• a transport layer to transfer messages of higher layers between different nodes,

10The F’ User’s Guide is available online at https://nasa.github.io/fprime/UsersGuide/guide.html.
11Available at https://github.com/kubos/kubos.
12https://www.kubos.com/

https://nasa.github.io/fprime/UsersGuide/guide.html
https://github.com/kubos/kubos
https://www.kubos.com/

1.3. STATE OF THE ART 11

• a message abstraction layer connecting the transport layer to a specific NMF implementation and
ensuring communication between components on different implementations of NMF,

• a service layer providing a number of CCSDS services, platform management services, and
software management services,

• and an application layer containing the mission specific logic implemented in individual applica-
tions.

Every application implements a certain functionality and can be individually installed, executed,
and updated [45]. Dependencies between different applications are possible, thus a specific service
can be split up into a chain of smaller individual services [45]. The software management and
update components provide a way to update individual applications, the entire OS, or even the FPGA
configuration [47]. ESA’s OPS-SAT mission makes use of these management features [47].

An open-source Java implementation as presented in [44] is publicly available13. Coelho, Koudelka,
and Merri [45] suggest the use of NMF in a distributed application spread over multiple satellites in
formation flying scenarios. Using NMF for embedded distributed systems is not feasible due to the
requirement for a rather powerful controller capable of running a regular OS [46].

On Board Computer — Next Generation (OBC-NG) and Scalable On-Board Computing for Space Avionics
(ScOSA)

Lüdtke et al. [118] present a distributed approach for the On Board Computer — Next Generation
(OBC-NG). According to them the main goals of OBC-NG are the increased performance, high reliability
due to autonomous reconfiguration, and commanded in-orbit reconfiguration. An example setup
of an OBC-NG system can be seen in figure 1.6. Each node of the OBC-NG consists of an ARM
based processing unit [20] with an optional high performance coprocessor on processing nodes or
periphery on input nodes [118]. A SpaceWire network provides the communication capability within
the OBC-NG and is used to synchronize the local time on all nodes [20]. Linux and Realtime On-board
Dependable Operating System (RODOS) are supported OSs of the OBC-NG [118]. A tasking framework
on top of the OS enables the cooperation of different modules and provides the necessary software
infrastructure [167]. The OBC-NG middleware provides a reconfiguration and checkpoint service
capable of redistributing tasks on a node failure or as requested via a ground command [118]. An
evaluation of the recovery mechanism on a network of Zynq based nodes confirmed the redistribution
time of less than 5 s for non-real-time tasks and less than 100 ms for real-time tasks [167].

The tasking framework of OBC-NG was used on the Eu:CROPIS satellite of the German Aerospace
Center (DLR) [126]

The OBC-NG development continues within Scalable On-Board Computing for Space Avionics
(ScOSA) [218]. Treudler et al. [218] present that the on-board computing system within ScOSA is
split into redundant high-reliability nodes based on a LEON3 system on a chip (SoC) and COTS Xilinx
Zynq based computing nodes. According to them, SpaceWire interconnections provide the reliable
communication within the system and each node uses the Linux or RTEMS OS. They demonstrated the
usability of ScOSA for earth observation, attitude control, robotic servicing, and autonomous navigation
tasks. The ScOSA flight experiment project aims to demonstrate the ScOSA system within the DLR
CompactSat mission [119].

Although the OBC-NG and ScOSA systems provide a platform for distributed on-board computing,
it is in its current state not suitable for CubeSats due to the power consumption of the suggested
hardware. The source code of the software is not publicly available.

Space Plug-and-Play Avionics (SPA)

Lyke et al. [124] present Space Plug-and-Play Avionics (SPA) as a framework that provides an interface
standard to achieve a behavior similar to common Universal Serial Bus (USB) devices; using a device
should be possible without the need of additional drivers. For this purpose, each device can identify

13Available at https://github.com/esa/nanosat-mo-framework.

https://github.com/esa/nanosat-mo-framework

12 CHAPTER 1. INTRODUCTION

Sensors
Mass

memory

Input
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Input
node

Sensors Actuators

Figure 1.6: Example setup of an OBC-NG system according to [118].

itself and provide the interface definition with an extended Transducer Data Sheet (xTEDS) [109]. The
communication within the first generation of SPA was implemented using a modified USB that provides
sufficient power for space hardware [123]. Later on, support for SpaceWire [122], inter integrated
circuit (I²C) [225], and optical communication [67] were added. Sensor interface modules simplify
development of SPA enabled devices, as they can act as interface adapter between the SPA network and
individual sensor modules [121]. SPA was used on various satellites [28, 68, 102, 103]. A CubeSat
compatible variant only using I²C and USB interfaces is also available [92, 134]. SPA did show its
capability in rapidly assembling a satellite system from individual components [39].

Although SPA is usable on CubeSats [92, 134] and provides a universal interface to connect
components and autonomously configure these components in a distributed manner [121], SPA is
mainly used as a network of sensors connected to a central OBC. No SPA implementation is available to
the author of this thesis, although [40] presents an implementation of SPA.

Flight Software Framework (fsfw)

In [18], Bätz introduces the open-source14 Flight Software Framework (fsfw) developed at the Uni-
versity of Stuttgart. This paragraph presents fsfw according to this description by Bätz: fsfw is a
component based framework, where each of these component has well-defined interface accessible by
other components. The core acts as a connector for different components and as a high-level interface
to hardware and OS functionalities. A separate platform abstraction layer provides an interface to the
hardware, which is also used by the core. Initially, development of fsfw was based on the LEON3-FT
and the RTEMS real-time OS [18]. Additional support for Linux, FreeRTOS, and a generic hosted
abstraction was added later on [154].

Although the fsfw provides some features required for a distributed system, [18] explicitly mentions
that the distribution of periodic data, simplified support to call the interface of other modules, and the
support for distributed computing is currently not available.

14Available at https://egit.irs.uni-stuttgart.de/fsfw/fsfw.

https://egit.irs.uni-stuttgart.de/fsfw/fsfw

1.4. GAP ANALYSIS 13

1.3.4 Space Shuttle Avionics

One of the first high reliability systems implemented partially in software is the Space Shuttle avionics
system. According to Space Shuttle Avionics System [73], this system consists of four redundant units and
an additional payload unit connected to each other and the periphery via communication buses. It also
introduces these 28 physical communication buses grouped into seven categories, which interconnect
the nodes and connect them to the periphery. According to that documentation, all critical sensors and
actuators are redundantly available and interconnected in a way that assures that no single component
or communication bus failure is critical for the overall operation. Soft checkpoints synchronize all
nodes in redundant operation aided by discrete output signals on each node. [34].

A system of four redundant units can reliably detect up to two concurrent node failures [34].
The comparison of special data words and bus timeouts indicate a node failure in this mode of
operation [198]. These tests use redundant buses, where each node controls a separate bus and only
listens on all other buses [73]. Dedicated hardware implements the final voting step to detect and
disable failed nodes [198]. This hardware automatically removes a node from the redundant set if the
input from two other nodes indicates failure of this specific node [198].

This cooperative voting is no longer possible in a degraded system and only two available units.
In this case, only limited failure detection and recovery is available [198]. If these nodes disagree, a
self-test can sometimes still decide which node failed [198].

The Space Shuttle avionics system provides an outstanding reliability and can recover from many
faults; A failing node does not affect nominal system operation. While this level of reliability may be
desired, it has a high cost regarding the system’s complexity, a requirement for special hardware, and a
large amount of physical bus interconnections. The Space Shuttle system cannot be directly transferred
to CubeSats as they do not generally require this level of reliability and are constrained regarding
available hardware and physical space required for the interconnections.

1.3.5 Data Field Systems

Mori [153] presents a distributed system based on a so-called data field. Data is broadcasted into this
data field identified with a content code [153]. Subsystems must be able to manage themselves and
operate even without the other subsystems available [153]. Yashiro, Takahashi, and Fujiwara [235]
extends this to a system based on COTS OBC modules connected via a redundant Controller Area
Network (CAN) bus. Every data point from input nodes or the OBC nodes themselves is broadcasted
on the CAN and can be processed by the OBC modules on demand [236]. This network schedules
messages based on cycles, which also act as a synchronization point for the redundant copies of the
OBC [236]. Majority voting and an output function assure that only a single command for an actuator
is published [235]. After a failure nodes perform autonomous recovery, synchronize themselves to
the cycles and regain correctness after collecting a suitable amount of data at the CAN bus [235].
According to [153], this approach of a distributed system simplifies maintenance, adaptation, and
future extensions of the system. Although bread board level system tests were successful [235, 236],
no further development of the system could be found by the author of this thesis.

1.4 Gap Analysis

As previously mentioned in section 1.2, the MOVE-III and LRSM CubeSat missions require a flexible,
adaptable, and yet easy to understand platform and software framework. The MOVE-II platform is
not flexible enough to provide all the required functionalities and can thus not be used without major
modifications. Instead, we propose a solution based on a network of nodes and a software framework
to enable simplified use of such a distributed system (see hypothesis 1). This system should be capable
of distributed control and enable the development of complex and time critical distributed subsystems,
such as an ADCS (see hypothesis 2).

First, a framework for a distributed control in MOVE-III and the LRSM CubeSats should be open-
source or otherwise available at TUM, including a usable implementation and suitable documentation.
Additionally, such a framework should be suitable for smaller MCUs with limited memory and potentially

14 CHAPTER 1. INTRODUCTION

Table 1.2: Features of available frameworks.

C
A

ST

cF
S

C
O

rD
eT

C
u

be
dO

S

F’ G
ER

IC
O

S

K
u

bO
S

N
M

F

O
B

C
-N

G
/S

cO
SA

SP
A

fs
fw

open-source ✗ ✓ ✓i ✓ii ✓ ✗ ✓ ✓ ✗ ✗ ✓

documentation ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗iii ✓

small MCUs ? ✓iv ? ✓v ✓ ✓ ✗ ✗ ✗ ✓ ✓

modular ? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? ✓ ✓

interfaces ? ✓vi ✓vi ? ✓ ? ✓ ✓ ? ✓ ✓vii

distributed ✓ ✓viii ✓ix ?x ✓xi ✗ ✓xii ✓xiii ✓ ✓xiv ✗

synchronization ? ? ✗ ? ✗ ? ? ? ✓ ✓ ✗

i Only high level code available, not bound to any OS ii License unknown iii Although some standards exist iv With
some limitations v VxWorks as base OS available for small MCUs vi Generic messages only vii No simple interface to
access other components viii Inter-task message routing is available, but no use in distributed systems documented ix No
message-passing is implemented x Distributed processing is one of the next steps xi Rather complicated setup to send a
large amount of different messages over a shared network xii IP based communication enables distributed applications
xiii Coelho [44] suggests a distributed use over several satellites, but does not mention distributed applications in a single
satellite xiv Distributes individual subsystems, but no distributed control

without a dedicated MMU; otherwise the system might exceed the limited resources, especially
regarding electrical power, on a CubeSat. This also potentially allows choosing from a wide range of
COTS hardware platforms as presented in section 1.3.2. To enable the required flexibility and reusability
of components, basic building blocks should be available that can be configured and orchestrated into
a specific system. This modularity enables the reuse of components in different missions and reduces
the required manpower. A user-friendly interface to these modules furthermore reduces the mental
load of developers and potentially shortens the required timeline of a mission. Distributed control
algorithms require a well established communication scheme between different software components
within a single node and also within different nodes of the distributed network of nodes. Thus, the
system must enable this distribution over several nodes within its design. Finally, a synchronization
mechanism enables real-time sensitive applications within a distributed system. This mechanism is
thus an essential part of such a framework.

Although some frameworks for on-board software exist (see section 1.3.3), none of those provides
the required properties for distributed control on CubeSats. Table 1.2 provides an overview over these
frameworks regarding their support for the mentioned properties and features. The CAST reference
architecture, COrDeT, GERICOS, ScOSA, and SPA are not publicly available and thus cannot be used
for the future TUM CubeSats. CFS, CubedOS, KubOS, NMF, and ScOSA do not support small MCUs
and have thus a limited usability on CubeSats. Furthermore, only the CAST reference architecture and
ScOSA explicitly support distributed applications, but as previously mentioned both are unavailable.
Similarly, only ScOSA and SPA explicitly support the synchronization of nodes. Again, these are not
publicly available.

Therefore, we identify two major research gaps: First, distributed satellite bus control for resource
constrained hardware on CubeSats is not available. Second, no reliable time synchronization between
nodes in such a system is available.
Research Gap 1 Distributed satellite bus control for a resource constrained CubeSat platform.

As previously mentioned, no framework provides advanced features for distributed systems on
constrained hardware, i.e., such hardware without MMU and only limited available RAM and program
memory. As such hardware is common in COTS CubeSat OBCs (see section 1.3.2), a framework for
distributed control on such platforms is essential to demonstrate the use of a distributed system for

1.5. SCOPE OF THIS THESIS 15

CubeSat bus control applications. Additionally, no demonstration of the increasing flexibility and
adaptability of a distributed CubeSat control system is currently available (hypothesis 1).

Research Gap 2 Reliable time synchronization on a resource constrained platform.

Besides the general distributed system for CubeSats, a complex control application requires an
advanced time synchronization mechanism. Only once all nodes share a common time model, a
synchronized execution of time critical applications is possible. Currently, this is not supported in any
of the previously mentioned frameworks suitable for CubeSat typical resource constrained hardware.

1.5 Scope of this Thesis

This section introduces the objectives of this thesis based on the previously presented problem statement
(section 1.2) and gap analysis (section 1.4). The main goal is the demonstration of a distributed system
suitable for CubeSats as suggested in hypothesis 1. As specific missions of the LRSM as well as the
MOVE-III satellites should use the proposed system, this includes not only a theoretical demonstration,
but instead requires a hardware and software demonstrations that directly enables mission development.
Therefore, we split the main goal into three distinct objectives:

Objective 1 (Framework Design and Implementation) Design and implement a framework for dis-
tributed control on CubeSats suitable for small MCUs with or without dedicated MMU.

Objective 2 (Demonstrate ADCS Capability) Demonstrate that real-time requirements can be met and
thus an ADCS system typical for a CubeSat is feasible based on the proposed framework.

Objective 3 (Demonstrate on Target Hardware) Demonstrate that real hardware exists that is suitable
for use in space and can be used as a platform for the provided framework.

Objective 1 is the enabler for distributed systems on CubeSats. As currently no such framework
exists and the lack thereof is one of the identified research gaps (see research gap 1), this objective
aids in advancing the state of the art regarding CubeSat control systems. Afterward, objective 2
demonstrates the usability for real-time sensitive applications. Although the objective focuses on an
ADCS system, it indirectly demonstrates the limitations of the proposed system. Therefore, this objective
not only satisfies the needs of ADCS designers, but aids general mission designers and provides insight
into system boundaries and the implementation of real-time control loops based on the previously
proposed framework. Finally, the demonstration on appropriate target hardware assures that it is really
usable for the target environment, where especially AFIS requires safe operation in high radiation
environments of the SAA. While hardware evolves over time, the LRSM missions as well as MOVE-III
require an available hardware platform to advance their development.

While these objectives include the demonstration of the required framework capabilities to build a
real mission, they do not include the implementation of user applications.

1.5.1 Approach

The general focus of this thesis is the overall functionality and usability of the proposed framework for
distributed control on a CubeSat. The clear goal is a framework that can be used on LRSM missions and
the MOVE-III satellite. Therefore, the suggested solution is not necessarily optimal, but instead aims at
a simple and yet flexible solution that can meet the requirements of those missions. This way, we hope
that future mission designers and developers can still use the framework, play with its features, and
evolve the framework with their additions and improvements.

To achieve this goal, we will first have a closer look at the LRSM missions AFIS and ComPol as well
as the MOVE-III mission. As the AFIS mission requires operation in the increased radiation of the SAA,
we will also have a look at the radiation environment in low earth orbit (LEO) and specifically the SAA.
Based on this information, we will better understand the needs of these missions and derive design
guidelines and, if applicable, performance requirements.

16 CHAPTER 1. INTRODUCTION

The final design of the distributed satellite control framework happens in three steps: An initial
analysis of existing frameworks and suitable OSs provides the basic knowledge and foundation of this
design. A selection of an existing framework as base of the own design avoids reinventing larger parts
and enables the focus on the previously presented objectives of this thesis. Additionally, we select
a general network topology and technology for the distributed system. A rough description of the
overall framework initiates the second step. The following detailed description includes all parts of the
framework’s core, the synchronization of nodes, and some additional features providing an extended
design space for future mission’s designers. The last part of the framework’s description provides insight
into the implementation. This part includes the reference hardware platform, the implementation of the
framework’s core, and the suggested usage of the framework. Unit testing and software interface tests
provide a reasonable confidence in the implementation and assure proper behavior of the framework’s
core.

At this point, the description of the framework is complete, and thus objective 1 is fulfilled. The
remaining objective 2 and objective 3 are demonstrated in subsequent tests using the suggested
reference hardware. The first test focuses on the critical time synchronization of all nodes and the
timed execution of tasks. They verify the nominal case and analyze worst-case scenarios. Thus, they
provide insight into the limitations of this aspect of the framework. The second test focuses on the
radiation tolerance of the selected MCU. It verifies the MCU’s radiation tolerance as specified by the
vendor and closes a gap in the available data. This test assures that a real platform exists that satisfies
the needs of the AFIS mission, specifically the operation within the SAA.

1.6 Structure of this Thesis

The first part of this thesis introduces the general problem and the relevant background information.
The current chapter starts with the general problem, followed by an analysis of the related work and the
identification of the relevant research gap. Chapter 2 introduces the LRSM and the MOVE-III missions,
identifies the limiting factors based on the known profiles of said missions, and finally defines design
guidelines for later system design.

The second part presents the design and implementation of the suggested solution. Chapter 3
shows the proposed system starting with a selection of a baseline architecture and framework or OS.
Afterward, it introduces the proposed framework in detail. The following chapter 4 highlights the
implementation of the framework including its current limitations and presents the prototype hardware.

The third part presents two tests conducted to verify the framework and the used hardware platform.
First, chapter 5 demonstrates the time synchronization behavior and the accuracy and precision of
timed execution as required for an ADCS system. Afterward, chapter 6 demonstrates that the selected
MCU is indeed capable of operating in the harsh space environment.

The last part discusses and summarizes the achievements of this thesis. Chapter 7 discusses the
results with a comparison of achievements to defined goals of this thesis, presents the simplifications
and the use of the presented work as part of the LRSM missions, and provides insight into current
limitations and future extensions. Finally, Chapter 8 concludes this work with a summary and an
outlook into future efforts.

Chapter 2

Background and Design Goals

2.1 ORIGINS LRSM Missions

The LRSM is part of the excellence cluster ORIGINS1 at TUM. Within this interdisciplinary research
network, the LRSM supports scientists using CubeSats and small satellites for scientific missions [62].

The ORIGINS LRSM CubeSats and related missions will use the suggested on-board control system.
This section introduces the AFIS and ComPol missions and the ISS based technology demonstrator
In-Orbit Verification Experiment 1 (IOV-1).

2.1.1 AFIS

The AFIS detector measures the flux of antiprotons trapped in Earth’s magnetic field [170]. AFIS focuses
on the inner Van Allen belt and specifically the SAA [170]. While previous measurements detected
antiprotons with a kinetic energy above 60 MeV [5], AFIS targets the lower energetic antiprotons in the
range of 25 MeV to 100 MeV [170].

The active core of AFIS has a volume of about 8 cm× 8 cm× 8 cm and consists of 1024 scintillating
fibers aligned as 32 layers of 32 fibers each [117]. The entire sensor including the readout electronics
fits into a cube of 10 cm× 10 cm× 10 cm [116] and thus into 1 U of a CubeSat. The sensor, including
the readout and processing electronics, consumes about 20 W to 35 W of electrical power [115, 116,
170]. Processing of the raw sensor readout classifies the events and particles based on the deposited
energy along the particle’s track within the active volume of the sensor [116]. The omnidirectional [115,
117] AFIS sensor has a worst-case angular resolution for detected particles of 6° [116] and average-case
angular resolution of approximately 2° [117]. Losekamm et al. [116, 117] estimate the relative energy
resolution to about 1 % within the target energy range.

An evaluation of the sensor within the ISS [117] is currently ongoing.

Impact on CubeSat Platform

Although the missions final orbit or concept of operations is not fixed yet, we can derive some basic
aspects affecting the CubeSat design. Due to the sensor size of approximately 10 cm× 10 cm× 10 cm,
the AFIS CubeSat including the sensor and the required satellite platform will be a 3 U CubeSat. Three
main limitations for the design space of this CubeSat exist: the large amount of data that needs
processing and downlink capabilities; the power consumption of more than 20 W; and the operation
within the radiation intense SAA. Other aspects, e.g., pointing of the CubeSat into a specific direction,
are less important. The sensor and subsequent data analysis require only a rough attitude knowledge.

A consequence of a large amount of data is the requirement for a communication system with a
high data-rate downlink, which in turn most likely requires directional antennas and ground station
pointing during overpasses. Similarly, the high power consumption requires an extended solar array,
which must be pointed towards the sun. Therefore, the ground station and sun pointing modes are the

1Additional information about ORIGINS and the research efforts is available online at https://www.origins-cluster.de/.

17

https://www.origins-cluster.de/

18 CHAPTER 2. BACKGROUND AND DESIGN GOALS

main drivers of any ADCS requirements. Both systems require an accuracy in the magnitude of a few
degrees only.

Operation within the SAA requires a certain level of radiation tolerance. Rare unexpected resets,
missing some measurements, or the corruption of a few measurements within this region may be
tolerable. Nevertheless, the overall operation and specifically the firmware and critical configuration
set must not be affected by the operation in the SAA.

The high computational effort required for data processing is another critical aspect for the design
of the AFIS CubeSat platform. A separate high-power Payload Data Processor (PDP) replacing the FPGA
otherwise included in the AFIS readout electronics is developed within the LRSM for this purpose. This
PDP as such is not subject of this thesis.

2.1.2 ComPol

The following description of ComPol is a summary of ports of the Master’s thesis of Meier [137].
ComPol’s goal is the observation of spectrum and polarization of hard X-ray emission of the black
hole binary system Cygnus X-1 for a prolonged time. The ComPol detector itself is based on Compton
scattering. A first detector layer scatters the X-ray photons, a second layer absorbs these photons. Both
layers detect the position of scattering or absorption of the photon and the photon’s energy. Based
on these measurements, Compton-scattered photons can be separated from other events. A statistical
analysis of many Compton-scattered photons and specifically the scattering direction of these photons
provides information about the polarization of those photons. A collimator with a preliminary inner
diameter of 15 mm and length of 10 cm limits the opening angle of the instrument and reduces the
expected noise. The ComPol detector fits into the volume of about 1 U and the current mission design
assumes a 3 U overall CubeSat.

Impact on CubeSat Platform

The observation of the stellar object Cygnus X-1 requires a precise pointing of the satellite. Analysis of
the Compton-scattered photons requires a precise knowledge of the CubeSat’s pointing, as the incoming
angle of photons is one of the basic parameters. Due to the narrow opening angle, the instrument
requires an accurate pointing for any measurement. Additionally, the statistical analysis requires a
long-time stable and precise pointing to avoid additional measurement uncertainties. Currently, we
estimate the requirement for the ADCS accuracy and precision in the range of 0.1°. To meet this
requirement in a distributed system, such an ADCS requires a precise and accurate distributed time
knowledge and reliable sensor readout and actuation at predetermined points in time. At the time
of the writing of this thesis, the LRSM team favors usage of an externally developed ADCS over an
in-house development for various reasons. Even with an externally developed ADCS, ComPol requires
a good time synchronization for reliably and timely exchange of pointing information between the
instrument and the ADCS component.

ComPol requires less electrical power and generates fewer measurement data than AFIS. Thus, it
does not change the limits of the design space in this regard.

2.1.3 IOV-1

IOV-1 is an ISS based technology demonstrator for the LRSM systems. It will be mounted to the ArgUS
multi-payload adapter on the Bartolomeo platform outside the ISS2. The main objective of IOV-1 is the
verification of the AFIS and ComPol payloads and the LRSM in-house developed CubeSat bus compo-
nents. IOV-1 furthermore includes an additional payload as proof of principle for a potential future
mission measuring the Earth’s magnetic field. The long-time goal of this mission called Mesosphere
Magnetometry (MesoMag) is the measurement of Earth’s magnetic field based on periodic excitation
of sodium atoms at 92 km above ground as demonstrated in [30] from a CubeSat based instrument.
Within IOV-1, the MesoMag prototype performs a measurement of background noise at 589 nm.

2More information on ArgUS and the Bartolomeo platform is available in [48] and https://www.airbus.com/en/
products-services/space/in-space-infrastructure/bartolomeo.

https://www.airbus.com/en/products-services/space/in-space-infrastructure/bartolomeo
https://www.airbus.com/en/products-services/space/in-space-infrastructure/bartolomeo

2.1. ORIGINS LRSM MISSIONS 19

The launch of IOV-1 is currently scheduled for mid 2023.

Preliminary Setup

As previously mentioned, IOV-1 contains a prototype of ComPol, AFIS, MesoMag and the CubeSat bus
CDH. Individual smaller boxes contain the hardware of each prototype and are interconnected via a
main backplane.

The ComPol prototype contains a scaled-down version of detector without collimator. It will
demonstrate the operation of the ComPol sensor and meanwhile measure the X-ray background
radiation. The AFIS prototype contains a smaller version of the final instrument with only a quarter
of the scintillating fibers. During in-orbit operation, the updated AFIS sensor will be verified within
the in-orbit thermal vacuum environment and measure the radiation background outside the ISS.
The ComPol and AFIS prototypes will use the PDP for data processing. This way, they also verify
the interface towards and the capabilities of the PDP in an environment similar to the final CubeSat
missions.

The MesoMag prototype contains a 589 nm imager in combination with a visible light reference
imager. It gains information about the detector principle and measures the background noise. The
visible imager provides a reference to identify potential sources of locally increased background, which
is expected above certain regions, e.g., above densely populated areas.

The CubeSat bus prototype contains two CDH units. It verifies the usability of the components
in-orbit. At the same time, the CubeSat bus prototype verifies the interface of the CDH towards the
payloads, more specifically towards the individual PDPs. Therefore, this prototype can verify the CDH
system, its satellite control capabilities, and parts of the distributed features within a reduced setup of
only two nodes.

An additional box contains the interface to the ISS, including the electrical power converters and
an NVIDIA Jetson-based flight computer connected to the ISS-provided Ethernet. This box does not
only act as an interface adapter, but also provides direct access to the debug ports of all prototypes.
This way, not only the regular operation but also additional housekeeping data can be extracted. The
debug interface furthermore enables detailed debug output, in-orbit updates of all components, and
the resolution of potential software issues due to prior undetected behavior as a consequence of the
space environment.

Figure 2.1 depicts this setup of the IOV-1 mission. The MesoMag prototype will be pointed towards
nadir, the ComPol prototype towards zenith.

C
om

P
ol

in
st

ru
m

en
t

P
D

P

bi
as

vo
lta

ge
co

nv
er

te
r

ComPol backplane

ComPol Prototype

1 4
A

F
IS

in
st

ru
m

en
t

P
D

P

B
ia

s
vo

lta
ge

co
nv

er
te

r

AFIS Backplane

AFIS Prototype

C
D

H
no

de
1

C
D

H
no

de
2

CubeSat
backplane

CubeSat Bus
Prototype

IS
S

in
te

rfa
ce

co
nt

ro
lle

r
N

V
ID

IA
Je

ts
on

IS
S

to
in

te
rn

al
po

w
er

co
nv

er
te

r

ISS interface
backplane

ISS Interface

R
ef

er
en

ce
im

ag
er

58
9

nm
im

ag
er

MesoMag
backplane

MesoMag
Prototype

IOV-1 main backplane

Figure 2.1: Overview of the components of IOV-1 with prototypes separated to individual boxes. The
overall setup will be mounted to the ArgUS platform that the MesoMag prototype points to nadir and
the ComPol prototype to zenith. Not shown are the openings in the boxes of MesoMag and ComPol for
their respective optics.

20 CHAPTER 2. BACKGROUND AND DESIGN GOALS

Impact on CubeSat Platform

In comparison to AFIS and ComPol, IOV-1 has relatively relaxed requirements for the CubeSat platform.
It mainly targets the verification of all components; the CDH is the main component of the CubeSat
platform for this verification. To enable this testing, the CubeSat platform needs to be flexible enough
to allow independent testing and reuse of these components for AFIS, ComPol, and IOV-1. Additionally,
the CDH has to handle its redundant units and, in contrast to the later CubeSat missions, interface with
multiple PDPs.

2.2 MOVE-III

MOVE-III is the fourth satellite of the MOVE series at the LRT. Similar to its predecessors, it is a student
developed satellite, and it is currently in its design phase. While most details about the mission are yet
to be defined, the DEDRA sensor will be the scientific payload targeting the detection of small particles
in LEO [159].

2.2.1 DEDRA Sensor

DEDRA is part of a collaborative effort to improve space debris models [27]. The sensor itself is a
modified and improved version of the Munich Dust Counter (MDC) [160, 161].

The MDC is an impact-ionization-detector that measures mass and velocity of dust particles [76].
This sensor was first used in a highly elliptical orbit with an apogee of up to 1.53 · 106 km on the HITEN
(MUSES-A) satellite [77]. Furthermore, the MDC was also part of BREM-SAT [95] and the Mars orbiter
NOZOMI [188].

The DEDRA sensor on MOVE-III has, compared to the MDC, a smaller opening of only approximately
8 cm× 8 cm and fits into 1 U of a CubeSat [160]. Compared to the MDC, an improved version of the
DEDRA sensor uses an extended setup for better estimation of the direction of incoming particles [160].
The improved version is slightly larger than 1 U of a CubeSat [160] and estimated to fit into a volume
of 1.5 U [161]. DEDRA targets the measurement of particles with a mass of 1 · 10−15 kg to 1 · 10−10 kg
and a speed of up to 30 km s−1 [160].

2.2.2 CubeSat Platform

MOVE-III including the DEDRA sensor will be a 6 U CubeSat based on the MOVE-BEYOND develop-
ment [160, 161]. It will contain three DEDRA sensors, where two use the basic version fitting into 1 U
and one uses the improved version with better detection of the particle’s direction [160, 161]. Similar
to the learnings of first-MOVE [106], precise requirements for and details about the satellite bus used
for MOVE-III are still unknown.

Due to the student project character, the precursor missions on stratospheric balloons [112] and the
unavailable requirements, MOVE-III needs a flexible system enabling early testing of first prototypes
and the possibility for adaptations at a late stage of the development.

2.3 Radiation Environment in Space

This section provides an introduction to the radiation environment in a LEO orbit relevant for the
previously introduced missions and this environment’s effects on a satellite. Specifically, it introduces
the high energetic particles and their effects on embedded electronics.

2.3.1 Radiation Sources

Three main sources of energetic particles are most relevant for LEO orbits: Galactic cosmic rays from
outside the solar system, particles emitted from the Sun, and particles trapped in the geomagnetic
field [145].

2.3. RADIATION ENVIRONMENT IN SPACE 21

100 101 102 103 104 105

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Ekin /MeV n−1

Φ
/

cm
−2

sr
−1

s−
1
(M

eV
/n
)−

1

H
He
C
O
Fe

Figure 2.2: Differential flux of galactic cosmic rays in a 600 km polar orbit during a solar minimum.
Shown is the flux of hydrogen (H), helium (He), carbon (C), oxygen (O), and iron (Fe) nuclei.
Kinetic energy normalized to the respective number of nuclei. Data generated with SPENVIS (https:
//www.spenvis.oma.be/) using the ISO 15390 model.

Galactic Cosmic Rays

Galactic cosmic rays are particles at very high kinetic energy of up to 1021 eV [145]. Most of those
particles are hydrogen (H) or helium (He) nuclei and only about 1 % are nuclei of heavier elements [140,
196]. Due to the increased rate of energy loss of heavier nuclei, nuclei up to iron (Fe) contribute
significantly to the rate of transferred energy [140]. The Lunar environment provides a good estimate
for the galactic cosmic rays outside Earth’s protective magnetic field. The main contribution of H
(31 %), Fe (16 %), and He (9.4 %) to the total dose of galactic cosmic rays in this environment [179]
demonstrates that heavier nuclei cannot be neglected. The Sun’s activity modulates the absolute flux of
galactic cosmic nuclei; a maximum in the Sun’s activity reduces the flux of galactic cosmic nuclei [13].
Overall, the flux is relatively low with only a few particles per cm2 s [57]. Additionally, Earth’s magnetic
field deflects parts of these particles [57, 145].

Figure 2.2 depicts the galactic cosmic ray flux of selected elements in a circular 600 km polar orbit.

Solar Energetic Particles

The so-called solar wind consists of a large amount of particles, mainly protons and electrons [190],
at a speed of up to 800 km s−1 and thus a relatively low kinetic energy of up to a few keV [178].
Additionally, solar events may generate bursts of high energetic particles with a kinetic energy of up to
several GeV [57, 144, 178]. Similar to the galactic cosmic rays, these bursts consist mainly of electrons,
He nuclei, and H nuclei but also contain larger ions [54, 178, 190]. These ions, especially those
from elements with a larger core charge, are only partially ionized, i.e., they may contain remaining
electrons [54]. The largest proton events have a flux of 102 to 104 protons per cm2 s sr with a kinetic
energy of more than 10 MeV [144]. Those extreme events have a duration in the order of a few seconds

https://www.spenvis.oma.be/
https://www.spenvis.oma.be/

22 CHAPTER 2. BACKGROUND AND DESIGN GOALS

10−1 100 101 102 103
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

Ekin /MeV n−1

Φ
/

cm
−2

sr
−1

s−
1
(M

eV
/n
)−

1

H
He
C
O
Fe

Figure 2.3: Worst week average differential flux of solar cosmic rays in a 600 km polar orbit. Shown is
the flux of H, He, C, O, and Fe nuclei. Kinetic energy normalized to the respective number of nuclei.
Data generated with SPENVIS (https://www.spenvis.oma.be/) using the CREME-96 (worst week)
model.

only [42, 144]. While these events also emit neutrons at high kinetic energies [42, 144], most neutrons
decay rapidly and do not reach Earth [57]. Again, Earth’s magnetic field deflects parts of the charged
particles and thus provides protection especially against those with lower kinetic energy [144].

The solar activity and thus the flux and kinetic energy of solar cosmic rays vary in the long term
with solar cycle (scale of years) and in the short term with solar jets (scale of hours) [178]. Figure 2.3
depicts the average flux of particles originating from solar cosmic rays of a single worst week.

Trapped Particles

The third and due to the high flux one of the major sources of radiation in LEO are charged particles
trapped in Earth’s magnetic field. These particles travel in spiraling lines along the magnetic field lines
and bounce off the magnetic mirror due to the field gradient near the magnetic poles [75].

Van Allen Belts The so-called Van Allen belts — named after James Van Allen who first observed them
in 1958 [221] — are belts of trapped particles around Earth’s magnetic equator [222]. The inner Van
Allen belts consist mostly of trapped protons and electrons [222] with a kinetic energy of up to a few
MeV and a few hundred MeV respectively [57, 145]. It affects high altitude LEOs and extends up to a
height of about 2.5 Earth’s radii3 [145]. The outer Van Allen belt extends to about 10 Earth’s radii and
mainly consists of trapped electrons [145].

South Atlantic Anomaly In principle, satellites in low altitude LEO are not directly affected by the Van
Allen belts [145]. Only due to an asymmetric magnetic field and the lower field strength above the

3About 9500 km above Earth’s surface.

https://www.spenvis.oma.be/

2.3. RADIATION ENVIRONMENT IN SPACE 23

southern Atlantic Ocean [41], the lower Van Allen belt can reach down to about 200 km above Earth’s
surface in this region. Due to this anomaly called the South Atlantic Anomaly (SAA), satellites in a LEO
may still pass through the Van Allen belt in this region and are thus affected by trapped protons and
electrons.

Figure 2.4 depicts the flux of protons with a kinetic energy above 20 MeV to visualize the SAA.
According to this data, we expect a flux of about 3 · 103 cm−2 s−1 of such protons for the peak of a SAA
pass. Figure 2.5 depicts the average flux of protons and electrons in a polar LEO orbit. Although a
major part of this radiation originates from the SAA, other regions also contribute to this average.

−180° −135° −90° −45° 0° 45° 90° 135° 180°

90°

75°

60°

45°

30°

15°

0°

−15°

−30°

−45°

−60°

−75°

−90°

Longitude

La
tit

ud
e

101 102 103

Φ>20 MeV / cm−2 s−1

Figure 2.4: World map of trapped proton flux for kinetic energy above 20 MeV on a 600 km polar orbit
during a solar minimum. Data generated with SPENVIS (https://www.spenvis.oma.be/) using the AP-8
model. Background image credit: NASA Earth Observatory map by Joshua Stevens using data from
NASA’s MODIS Land Cover, the Shuttle Radar Topography Mission (SRTM), the General Bathymetric
Chart of the Oceans (GEBCO), and Natural Earth boundaries (https://visibleearth.nasa.gov/images/
147190/explorer-base-map/147191l).

https://www.spenvis.oma.be/
https://visibleearth.nasa.gov/images/147190/explorer-base-map/147191l
https://visibleearth.nasa.gov/images/147190/explorer-base-map/147191l

24 CHAPTER 2. BACKGROUND AND DESIGN GOALS

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

Ekin /MeV

Φ
/

cm
−2

sr
−1

s−
1

M
eV
−1

electron, solar maximum
electron, solar minimum
proton, solar maximum
proton, solar minimum

Figure 2.5: Differential flux of trapped electrons and protons in a 600 km polar orbit. Data generated
with SPENVIS (https://www.spenvis.oma.be/) using the AP-8/AE-8 model.

2.3.2 Effects on Electronics

Radiation affects the functionality of semiconductors as used in modern electronics. This can be
separated into three types of effect: displacement damage, single event effect (SEE) as the result of
a single ionizing impact, and total ionizing dose (TID) effects as a cumulative effect over the entire
lifetime of a component [56, 223]. Out of these types, SEE and TID effects have the largest influence
on commonly used complementary metal-oxide-semiconductor (CMOS) electronics [58].

Total Ionizing Dose

The total ionizing dose (TID) is a measure for deposited energy E per unit mass m of a specific target
material [56]:

DTID =
dE
dm

(2.1)

Although Gy is the standard unit of the International System of Units (SI), TID is mostly given in rad in
literature, where 1 rad= 0.01 Gy [58].

An increasing TID leads to gradual degradation of electronic devices [168]. Transistors and
integrated electronics such as CMOS devices are most sensitive to TID related degradation [56].
Typically, CMOS devices suffer from decreased switching speed, increased leaking current, and a
reduced threshold voltage and driving current [58]. Depending on the used technology, the TID
tolerance is in the range of 101 Gy to 104 Gy [56]. Some COTS MCUs where successfully tested at a
TID of 100 Gy to 500 Gy [32, 53, 197]. Still, a careful selection of those components is necessary as the
TID tolerance of COTS in general varies in a wide range of 101 Gy to 104 Gy [125, 197].

As the TID directly affects the switching characteristics of the hardware, e.g., of an MCU, no
mitigation in software is possible. Special hardware tolerating the expected TID must be used or the
TID must be reduced to an acceptable level using appropriate shielding.

https://www.spenvis.oma.be/

2.3. RADIATION ENVIRONMENT IN SPACE 25

Table 2.1: Density of material used for shielding estimation.

Material Density ρ/gcm−3 Reference Normalized Density ρ/ρAl

Al 2.70 [74, p. 4-44] 1.00
FR-4 1.92 [210]i 0.71
Cu 8.96 [74, p. 4-59] 3.32
SiO2 2.20 to 2.65 [74, p. 4-84] 0.81 to 0.98
Packaging 2.20 estimateii 0.81

i Used as estimate, as final material and vendor are unknown. ii Lowest SiO2 density used, as it is the main component and
specific details about the final material are unknown.

Shielding The shield depth specified in either mm aluminum (Al) equivalent or g cm−2 — the latter
is normalized to the shielding material’s density — is used to estimate the effects on the radiation
environment. Although the effects of different materials slightly differ, we estimate the Al equivalent
depth based on the density of the target materials for a first approximation:

dAl equiv. = dshield ·
ρshield

ρAl
(2.2)

We estimate the TID within a CubeSat based on a simplified 1 U CubeSat model. This CubeSat
consists only of six regular PCBs covering the sides of the CubeSat. Each PCB is assumed as a 1.55 mm
FR-4 board with 2 full layers of 35 µm of copper (Cu). Additionally, we assume the packaging of the
chip to surround the target chip’s die with 0.5 mm of packaging plastic. We estimate the packaging
plastic’s density — which consists mainly of silicon dioxide (SiO2) filler (70 % to 90 %), epoxy resin,
hardener resin, and some additives in smaller amounts [94] — to 2.2 g cm−3.

dchip in CubeSat; Al equiv. = dFR-4 ·
ρFR-4

ρAl
+ dCu ·

ρCu

ρAl
+ dpackaging ·

ρpackaging

ρAl

≈ 1.7mm
(2.3)

Table 2.1 lists the densities used for this calculation. The calculated Al equivalent shield depth is a
worst-case estimate. A real CubeSat will contain additional PCBs, including the carrier of the chip itself,
and most likely is covered in solar cells. Thus depending on the direction, the actual Al equivalent
shield depth will be larger than the estimated 1.7 mm, which further reduces the expected TID.

Figure 2.6 depicts the expected TID after one year in a 600 km polar orbit for different shield depths.
The horizontal line indicates the previously calculated minimum shield depth. Based on these values
calculated with the Space Environment Information System (SPENVIS)4, we expect a TID for a chip
within the CubeSat of less than 60 Gy per year.

Single Event Effects

This section summarizes the information about SEEs from Single Event Effects in Aerospace [168], unless
specifically stated otherwise.

As previously mentioned, a number of high energetic particles from various sources reach all
components within a spacecraft. These particles also cross electronic components and interact with the
component’s fabric. Energetic particles generate electron-hole pairs along their path in semiconductors
and deposit their kinetic energy this way. Nuclear reactions of these particles, especially of protons, may
additionally deposit parts of the kinetic energy and generate secondary particles. Within the electronic
components, especially within semiconductors, the deposited energy leads to various unwanted SEEs.
In contrast to the previously introduced TID effects, a SEE is the result of a single particle hitting a
device and thus has a localized effect.

4https://www.spenvis.oma.be/

https://www.spenvis.oma.be/

26 CHAPTER 2. BACKGROUND AND DESIGN GOALS

0 2 4 6 8 10 12 14 16 18 20
100

101

102

103

in
si

de
C

ub
eS

at

d /mm

D
TI

D
/

G
y

solar minimum
solar maximum

Figure 2.6: DTID in SiO2 due to trapped particles and solar protons after 1 year in a polar 600 km
LEO for different Al equivalent shield depths d. The vertical line indicates the Al equivalent shied
depth for a chip inside a CubeSat surrounded by regular PCBs. Data generated with SPENVIS (https:
//www.spenvis.oma.be/) with SHIELDOSE-2 as suggested in [58]. Proton and electron fluxes generated
with AP-8 and AE-8 models respectively.

In digital electronics, such a SEE may lead to a single event upset and corrupt bits of information.
Such a single event upset may be transient, permanent, or static: A transient effect only affects a local
signal that is not yet stored in any latch or register. They may be overridden by the surrounding logic
prior to the next clock edge and thus remain hidden. A static effect, on the other hand, changes the
content of a latch or register, and is observable for an extended time. The observable effect ranges from
a single changed memory bit, over multiple simultaneously changed bits, to the temporary interruption
of (parts of) the device’s functionality. Static errors can be corrected by resetting the affected memory
location or power cycling the device, and they do not permanently affect the functionality. Permanent
errors on the other hand permanently damage the device. An example for such an error is a single
event latchup in a CMOS device that short circuits a signal and enables a high current flow. This current
flow in turn may generate excessive heat and thus thermally damage the device.

Linear energy transfer (LET) is used to analyze the ionizing effect of a specific impact; it states the
deposited energy per distance traveled within the target component and is derived from the stopping
power of the target material. The LET is an average value and depends on the particle properties and
target material. It is typically specified in units of either MeV mm−1 or MeV cm2 g−1, where the latter
is a normalization with respect to the target material’s density. Note that the LET is not physically
accurate as it assumes a constant stopping power of the target material, even though it is not constant
along the path. A particle deposits most of its kinetic energy just before it is entirely stopped. Figure 2.7
depicts the stopping power of Si for electrons, protons, and He nuclei. This simplification of the effect
may be acceptable as the targets are relatively thin, e.g., a few hundred µm for a Si based digital circuit.
We will use the symbol L to reference to the LET in formulas and figures.

https://www.spenvis.oma.be/
https://www.spenvis.oma.be/

2.3. RADIATION ENVIRONMENT IN SPACE 27

10−3 10−2 10−1 100 101 102 103 104

100

101

102

103

Ekin /MeV

S(
E k

in
)/

M
eV

cm
2

g−
1

electron
proton

He nuclei

Figure 2.7: Stopping power of SI for electrons, protons and He nuclei. Data from https://physics.nist.
gov/PhysRefData/Star/Text/contents.html [194].

Shielding Shielding can significantly change the rate of expected SEEs. Not all particles presented in
section 2.3.1 will actually hit and potentially generate a SEE. Instead, these particles have to first pass
the shield and therefore already deposit parts of their kinetic energy. Particles with a low kinetic energy
deposit their entire kinetic energy within the shielding and never reach the sensitive electronics.

Figure 2.8 depicts the range of electrons, protons, and He nuclei-particles in Al according to [194].
A shield of 1.7 mm Al, which is equivalent to a shield depth of 0.46 g cm−2, already stops protons with
a kinetic energy below 20 MeV.

2.3.3 Summary

For a CubeSat in LEO, we expect a radiation environment mainly consisting of protons and electrons
combined with a few heavier particles. The PCBs mounted on the outside of a CubeSat act as a shield
for parts of this radiation and stop particles with a kinetic energy below 20 MeV n−1 from reaching
sensitive electronics. The flux of protons above 1 · 105 MeV is below one proton per year and cm2.

Another important aspect of the radiation environment are the Van Allen belts and the increased flux
within the SAA. An expected proton flux in the maximum of the SAA for protons with a kinetic energy
above 20 MeV of approximately 3 · 103 cm−2 s−1 may severely influence the safe operation within this
region. Other CubeSats already reported an increased bit error rate within this region [29]. As AFIS
specifically requires reliable operation within the SAA, the bit errors due to SEEs must be mitigated.

The expected TID of approximately 60 Gy per year for electronics inside a CubeSat may also affect
the reliable operation of electronics. While we can neglect TID effects on short-term missions, a
mission with a duration of more than one year requires a careful selection of components or additional
shielding.

https://physics.nist.gov/PhysRefData/Star/Text/contents.html
https://physics.nist.gov/PhysRefData/Star/Text/contents.html

28 CHAPTER 2. BACKGROUND AND DESIGN GOALS

10−3 10−2 10−1 100 101 102 103 10410−5

10−4

10−3

10−2

10−1

100

101

102

103

104

0.46

Ekin /MeV

x
/

g
cm
−2

electron
proton

He nuclei

Figure 2.8: Range of electrons, protons, and He nuclei in Al based on the continuous-slowing-down
approximation. Data taken from https://physics.nist.gov/PhysRefData/Star/Text/contents.html [194].
An Al shield with a depth of 1.7 mm entirely stops all particles below the horizontal line at 0.46 g cm−2.

2.4 Design Goals

As previously presented, the different missions’ requirements diverge. For example, the available power
and communication bandwidth are the limits for AFIS, but the ADCS capabilities and timely knowledge
of the pointing are the driving factor for ComPol. A system perfectly suited for one of these missions
might not be a good candidate for the others.

Design goals provide a way to compare different scenarios or solutions and influence design
decisions. For this thesis they act as a rough guideline to enable the design of a solution, although
detailed requirements are yet to be defined. The presented criteria do not have a fixed precedence and
are presented in alphabetical order.

Design Goal 1 (Component Availability) The used software and hardware components should be avail-
able for CubeSat missions at TUM.

The availability of components is an important design goal for the proposed system. It is important
to only select components that can be used within the LRSM and MOVE projects. Therefore, COTS
should be used instead of highly specialized parts. If no such component exists, building it in-house
is preferred over one-of-a-kind products of external companies without the possibility to easily get a
reliable supply. All software components should be either licensed by TUM or available as open-source
software. In any case it should be possible to use the software for academic and scientific purposes.

Design Goal 2 (Expandability and Flexibility) The proposed framework should be expandable and
adaptable to the needs of future LRSM missions.

Expandability and flexibility are important factors enabling a reuse of the OBC for various not yet
defined missions. It also accounts for the fact that most requirements of the upcoming LRSM and MOVE

https://physics.nist.gov/PhysRefData/Star/Text/contents.html

2.4. DESIGN GOALS 29

missions are not yet final. To compensate this lack of knowledge, the proposed system must provide
the flexibility to add new components or replace existing components of the overall system at a later
stage of the development.

Design Goal 3 (Power Consumption) The OBC should not consume significantly more power than
other CubeSat OBCs.

The available electrical power on a CubeSat is limited. Therefore, it is crucial to reduce the
power consumption of the OBC. A reduced power consumption relaxes the design constraints on other
subsystems and thus potentially enables longer scientific operation.

Design Goal 4 (Reliability) The system should allow reliability measures either embedded into the
framework, or at least allow the users of the system to define those measures on top of the proposed
framework.

The harsh space environment increases the demand for reliability compared to most other use cases.
Not only is the environment hostile, but it is also unfeasible to perform manual maintenance once the
satellite is in orbit. Therefore, it is important to reduce the potential of an unresponsive system. The
system should be kept as simple as possible to reduce the potential for hardware or software bugs. The
used components should account for the harsh environment and reduce the risk of a mission loss as far
as possible.

Design Goal 5 (System Load) The proposed solution should not introduce a large overhead that gener-
ates a high load at the target platform.

The system load is a good measure for the efficiency of the resource utilization. Reducing the load
while not harming the functionality of the system as such also aids in satisfying other design goals.
A system with only minimal load in its nominal state still provides a potential for future expansion
and adaptation to new missions. Additionally, a reduced system load can benefit the overall power
consumption and responsiveness of a system.

Chapter 3

System Design

The system design provides the critical information for a later implementation of the suggested system.
It is based on the knowledge about the AFIS and ComPol mission specific requirements and the learnings
from previous CubeSats at the LRT. In combination with the implementation presented in chapter 4 this
chapter fulfills objective 1 as it provides the entire design of the suggested framework for distributed
control in CubeSats. As previously stated in section 1.5.1, we aim at a simple solution that meets the
requirements presented earlier and has the potential for future adaptations and extension. This way,
the suggested system can evolve in the future and adapt to the needs of upcoming missions. To enable
future changes to the framework, this chapter provides insight into the selection of the basic setup and
a detailed description of the suggested framework with a focus on the interconnection of the various
components and the intended usage.

This chapter starts with the selection of a framework or OS in section 3.1 that already provides
many of the features required for the suggested system. Afterward, section 3.2 selects a topology and
interface standard for the interconnection of nodes within the distributed system. This selection of the
RODOS OS and an interconnection of all nodes with a CAN bus network provides the basic setup for
the suggested system.

Section 3.3 provides an overview of the Distributed Operating System Initiative for Satellites (DOSIS)
framework proposed in this thesis. Afterward, section 3.4 and section 3.5 present the basic building
blocks of this framework called Components and Modules. Section 3.6 details the communication
abstraction within DOSIS, which is based on the selected CAN bus and the capabilities provided by
RODOS. The introduction of the core of DOSIS ends with section 3.7, which presents used to logically
connect different parts of the system.

Objective 2 demands timing guarantees to enable a distributed real-time control. Therefore, the
system requires a time synchronization, which section 3.8 presents in detail. This chapter ends with an
introduction to fault tolerance mechanisms, which designers of a specific mission may use on-demand,
in section 3.9.

3.1 Baseline Framework

Publicly available frameworks and OSs can provide parts of the basic infrastructure required to
implement a framework as wanted by objective 1. In particular, they can provide a suitable hardware
abstraction and a message-passing mechanism to enable basic communication. Real-time scheduling
and the management of concurrent threads are other important aspects that should not be re-invented
within this thesis. Although this is mostly required for the implementation, it also has some effects on
the design.

We use a multi-criteria decision analysis based on the method presented by Zangemeister [237] for
this selection process.. This method compares a final score of the individual solutions to select the best
match. The final score of each solution is a weighted sum of the scores for the different criteria.

31

32 CHAPTER 3. SYSTEM DESIGN

3.1.1 Exclusion Criteria

Exclusion criteria prohibit the use of a certain solution. Thus, we exclude any framework or OS meeting
one of the following criteria from the decision process.

Exclusion Criterion 1 (Availability) Neither the source nor a binary distribution of the framework or
OS is available.

Any framework or OS that is only mentioned in literature but not available as source code or
in a binary distribution suitable for linking the software cannot be used to build an executable
software. Without an executable software it is not possible to satisfy objective 3 (Demonstrate on Target
Hardware). Additionally, this would not allow the use of the framework in any real application and
thus no benefit from such a framework could be expected.

Exclusion Criterion 2 (Suitability for small MCUs) The framework or OS is not suitable for embedded
low-power MCUs.

Smaller embedded MCUs with a focus on low-power rather than high performance are common
in CubeSat platforms. Such MCUs often do not have a dedicated MMU or are limited regarding
the available code memory and RAM, which does not exceeding a few MB for most of these MCUs.
Especially for distributed applications based on multiple nodes, the power consumption of each
individual node is critical. Thus, it should be possible to run software based on the proposed framework
even on small nodes without MMU and less than 1 MB of code storage and RAM. Using a high-power
platform would limit the possible use of the suggested framework to larger CubeSats with relaxed
power constraints. Therefore, we exclude frameworks or OSs designed for larger MCUs or other
high-power platforms from the selection.

3.1.2 Selection Criteria

Three groups of criteria provide the baseline of the selection process for the remaining candidates:
criteria regarding availability and support (criteria 1 to 3), criteria regarding portability (criteria 4
to 5), and criteria regarding features (criteria 6 to 8).

Criterion 1 (Open-source) The source code of the framework or OS is publicly available and uses an
open-source license.

To develop a framework based on a specific OS or other framework in an embedded application
it is critical to have access to the sources thereof. Not only the availability of the software, but also
the license of the software is important to maximize the possible future use cases of the framework
developed within this thesis. Less restrictive licenses enable a wide range of possible future use cases
for institutional and commercial applications in the future. If the source code is not available at all, the
corresponding framework or OS is excluded from the selection process by exclusion criterion 1.

Criterion 2 (Documentation) The framework’s or OS’s documentation is complete and meet basic quality
criteria.

Documentation provides the insight into a framework or OS for a better understanding of the
functionality and proper use of its features. A complete documentation contains at least some infor-
mation on how to get started using the framework, a documentation of the software interfaces, and
background information on the intended use of the features of the framework or OS.

Criterion 3 (Support) The maintainers and/or the community still actively support the framework or
OS.

Questions not answered by the documentation might still be relevant during development. In such
cases an active community or maintainer can provide additional information. Additionally, active
maintainers and community members assure that the software is kept up-to-date.

3.1. BASELINE FRAMEWORK 33

Criterion 4 (Ports) Ports for target devices, especially target devices with a small MCUs, are available.

A software port provides the necessary adaptations required for a specific target platform. Compati-
bility of a software with a wide range of target platforms increases the flexibility to use said software
for various applications. Ports for small MCUs potentially without MMU show the use of the framework
or OS in embedded systems, which many CubeSats use for their on-board control system. An available
port to a desktop system such as Linux simplifies development.

Criterion 5 (Porting) It is simple to port the framework or OS to a new target platform.

A low effort of porting the framework or OS to a new target platform simplifies the use in new
systems. This will decrease the time needed to adapt to a new hardware generation or a changed
platform due to external constraints. We estimate the effort of porting the framework based on the
structure of the software and the available documentation specifically targeting the process of porting
the system.

Criterion 6 (Multi-threading) The framework or OS supports multi-threading.

Multi-threading enables the executing distributed applications within a single node. Supporting
functionality for thread synchronization simplifies the application development. Examples for support
functionality are semaphores and mutexes, protected regions or atomic execution.

Criterion 7 (Real-time) A scheduler is available and supports real-time scheduling capabilities.

A scheduler assigns execution times to different tasks or threads. For control loops in time critical
systems the real-time capability of a scheduler is of high importance. Support for simplified activation
at a certain time in the future or in a certain interval simplifies development of timed user applications.
This is required not only for time critical control loops (e.g., for ADCS) but also for low priority tasks
like telemetry gathering or regular self checks of the software.

Criterion 8 (Message-passing) The framework or OS includes a message-passing mechanism, preferably
a publisher-subscriber based message-passing.

Support of message-passing is required for a distributed application. It enables the communication
between different threads on a single node or between different nodes. For the framework developed
within this thesis a simple message-passing scheme is beneficial. Especially publisher-subscriber based
messaging allowing multiple receivers of a single message can simplify the higher level messaging.

Value Scale and Weight We evaluate all criteria and assign a score on a scale from 0 to 1 where 0 is
the lowest and 1 the highest possible score. A preference analysis provides the relative weight of each
criterion. Table 3.1 presents the resulting weight wi for each criterion. Appendix B.2 presents details
on the pairwise comparison and the calculation of the weights.

3.1.3 Available Frameworks

Section 1.3.3 already presents available frameworks for on-board computing on small satellites. First,
we check the exclusion criteria for these frameworks. Afterward, we rate the remaining candidates
according to the previously presented criteria.

Exclusion Table 3.2 presents the exclusion of candidates according to exclusion criteria 1 and 2. The
evaluation of exclusion criterion 1 is based on the online availability of a software and does not include
the license of the framework; i.e., we do not exclude a software that is available online but does not
use an open-source license. Similarly, we do not exclude a framework due to exclusion criterion 2 if it
does neither specify a particular architecture nor exclude smaller MCUs specifically.

34 CHAPTER 3. SYSTEM DESIGN

Table 3.1: Weight wi of selection criteria based on result of preference analysis in appendix B.2. Criteria
in this table are sorted by their weight.

Criterion i wi

Real-time 7 0.22
Multi-threading 6 0.19
Documentation 2 0.16
Porting 5 0.14
Support 3 0.11
Message-passing 8 0.11
Ports 4 0.05
Open-source 1 0.03

Table 3.2: Exclusion of frameworks not suitable for selection due to Availability (1) and Suitability for
small MCUs (2). Only frameworks passing both criteria will be candidates for the selection.

Framework Availability Suitability for small
MCUs

Candidate for selection

CAST ✗ ? ✗

cFS ✓ ✓ ✓

COrDeT ✓ ? ✓

CubedOS ✓ ✓ ✓

F’ ✓ ✓ ✓

GERICOS ✗ ✓ ✗

KubOS ✓ ✗ ✗

NMF ✓ ✗ ✗

OBC-NG / ScOSA ✗ ✗ ✗

SPA ✗ ✓ ✗

fsfw ✓ ✓ ✓

Rating We rate the remaining five frameworks by assigning a value to each criterion and calculate
the final score as weighted sum of the value of the criteria. Appendix B.3 presents the rating for each
framework in detail. Table 3.3 summarizes the result of this process.

3.1.4 Available Operating Systems

OSs are a second group of candidates as baseline of the proposed framework. Therefore, available OSs
that are intended for space applications or used by one of the previously presented frameworks in a
real space environment are additional candidates for the selection process. This section first presents
the candidate OSs in alphabetical order, followed by applying the exclusion criteria and evaluating the
remaining candidates.

FreeRTOS The FreeRTOS kernel is a minimalistic real-time capable kernel targeting small MCUs
with only limited memory and processing resources [8]. Libraries for Transmission Control Protocol
(TCP) [10] and standard connectivity protocols [9] simplify the development of embedded applications.
Additional support for the Amazon Web Services for internet of things applications [11] simplifies
development of interconnected embedded devices. A lot of documentation and other online resources
are available1. FreeRTOS is publicly available and released as open-source project2.

1https://www.freertos.org/
2https://github.com/FreeRTOS/FreeRTOS

https://www.freertos.org/
https://github.com/FreeRTOS/FreeRTOS

3.1. BASELINE FRAMEWORK 35

Table 3.3: Summary of the rating of candidate frameworks. The final score for each framework
calculates as the sum of the weighted score of the individual criteria. The weights shown in table 3.1
are used. The detailed analysis and reasons for the given scores is available in tables B.4 to B.12

Criterion cFS COrDeT CubedOS F’ fsfw

Open-source (1) 1 1 0 1 1
Documentation (2) 1 0.8 0.6 1 0.6
Support (3) 1 0.6 0.4 1 0.8
Ports (4) 1 0 1 1 1
Porting (5) 0.25 0 0 1 0.75
Multi-threading (6) 0.33 0 0 0.92 1
Real-time (7) 0 0 0 0 0
Message-passing (8) 0.6 0 0.4 0.6 0.6

Final Score 0.51 0.22 0.24 0.73 0.62

Linux and µClinux The well known Linux OS is another candidate for this selection. Although Linux
targets mainly larger systems, such as desktop or server systems, it can still be used in embedded
applications [234]. µClinux, a special version of Linux, extends the range to smaller MCUs without a
dedicated MMU [234]. Various spacecraft use Linux as the main OS of the on-board computer [113].
Leppinen [113] states the main benefits of Linux in spacecraft software as the reliable Linux source
code maintained by a large community, the support for a wide range of platforms and communication
protocols, and the available software.

RODOS RODOS is a simplistic real-time operating system designed for usage in systems with a high
demand for dependability [151]. It is designed as network centric operating system, thus aims to
provide a reliable network for less reliable nodes [151].

According to Montenegro and Dannemann [149], RODOS is split into two major parts, the core,
and the middleware. The core provides a simple micro-kernel including resource management,
threading, input/output abstraction and interrupt management [149]. On top of the RODOS core, the
middleware implements a publisher-subscriber based messaging mechanism over so-called RODOS
topics [149]. This messaging does not only support communication within a single hardware unit, but
also provides gateways to connect multiple physical components into one large system [149]. The
location of publishers and subscribers in such a network can be dynamic and change at runtime of the
system [149]. RODOS is implemented in C++ and offers an object-oriented interface [149].

The source code of RODOS is maintained by Prof. Montenegro at the University of Würzburg and is
publicly available on GitLab3.

RTEMS RTEMS is a real-time operating system with support for multiple APIs and support for 18
different processor types [215]. It provides thread synchronization, locking features and a configurable
real-time scheduler [214]. Access to different file systems, periphery interfaces and support for BSD
user space applications is available as part of RTEMS [214]. Various board support packages provide
the required information to connect a processor and a specific target platform [214]. Extensive
documentation of RTEMS is available online4, the source code is available in a git repository5.

ThreadX Azure real-time operating system (RTOS) ThreadX is a OS for embedded internet of things
applications and is developed by Microsoft [136]. ThreadX has a minimal footprint of only a few kB for
instructions and RAM and is thus suitable for a wide range of MCUs [136]. The ThreadX picokernel
architecture reduces the amount of layers and connects all components directly to the core of the

3https://gitlab.com/rodos/rodos
4https://ftp.rtems.org/pub/rtems/releases/5/5.1/docs/html/
5https://git.rtems.org

https://gitlab.com/rodos/rodos
https://ftp.rtems.org/pub/rtems/releases/5/5.1/docs/html/
https://git.rtems.org

36 CHAPTER 3. SYSTEM DESIGN

system [135]. While maintaining a small footprint, ThreadX provides a wide range of features for
multi-threading, time and memory management, interrupt handling, and a priority based preemptive
scheduler [136]. ThreadX complies with the Motor Industry Software Reliability Association (MISRA)-C
standard, and is UL and TüV certified [135]. Additional information on ThreadX is available in the
Microsoft online documentation [142] and the ThreadX GitHub repository6.

VxWorks VxWorks is a real-time OS used for various applications over the last 30 years [233]. It
offers a save, secure, reliable, and certifiable platform for many areas, including certification for avionic
systems [232]. VxWorks includes networking support, a fault-tolerant file system, and higher level
support for multimedia and artificial intelligence applications [233]. Developers can tune the set of
features for their specific application and combine it with drivers and support for a target platform
packaged into a board support package. Windriver provides wide range of board support packages
online7. Additional information is available at the Windriver product page8. The source code of
VxWorks is not publicly available.

Exclusion and Rating The exclusion of OS from the selection process uses the criteria presented in
section 3.1.1. Table 3.4 presents the result of the exclusion process. Only VxWorks is not publicly
available and therefore excluded from further analysis. Regular Linux is not suitable for smaller
embedded controllers, especially controllers without MMU. µClinux, the embedded version of Linux is
no longer available online. The project website9 is no longer publicly available10, thus no source code
of µClinux is available. Therefore, no version of Linux does take part in the selection process.

Table 3.4: Exclusion of operating systems not suitable for selection due to Availability (1) and Suitability
for small MCUs (2). Only OSs passing both criteria will be candidates for the selection.

Framework Availability Suitability for small
MCUs

Candidate for selection

FreeRTOS ✓ ✓ ✓

Linux ✓ ✗ ✗

RODOS ✓ ✓ ✓

RTEMS ✓ ✓ ✓

ThreadX ✓ ✓ ✓

µClinux ✗ ✓ ✗

VxWorks ✗ ✓ ✗

The remaining OSs are rated based on the criteria defined in appendix B.1. Table 3.5 presents the
result of this process. Tables B.14 to B.20 in appendix B.4 show additional details on the reasoning for
this rating.

3.1.5 Selection

The final selection combines the previous scoring of available frameworks and OSs. Table 3.6 presents
the three candidates with the highest reached score. The RODOS OS reaches a score of 0.95 and is the
candidate with the highest cost-benefit score.

The second and third candidates (RTEMS and FreeRTOS) differ from RODOS mainly regarding
criterion 8 (Message-passing) due to the unavailable distributed publisher-subscriber message passing
in these OSs. If these become available in the future, an additional abstraction layer can provide the
possibility to use the framework suggested within this thesis in combination with any of these OSs. To

6https://github.com/azure-rtos/threadx
7https://bsp.windriver.com/products
8https://www.windriver.com/de/products/vxworks
9https://www.uclinux.org

10Last internet archive snapshot in April 2021: https://web.archive.org/web/2021*/http://www.uclinux.org/index.html

https://github.com/azure-rtos/threadx
https://bsp.windriver.com/products
https://www.windriver.com/de/products/vxworks
https://www.uclinux.org
https://web.archive.org/web/2021*/http://www.uclinux.org/index.html

3.2. PHYSICAL INTERCONNECTION OF NODES 37

Table 3.5: Summary of the rating of candidate operating systems. The final score for each OS calculates
as the sum of the weighted score of the individual criteria. The weights shown in table 3.1 are used.
The detailed analysis and reasons for the given scores are available in tables B.14 to B.20

Criterion FreeRTOS RODOS RTEMS ThreadX

Open-source (1) 1 1 0.75 0.5
Documentation (2) 1 1 1 1
Support (3) 0.9 1 1 0.8
Ports (4) 1 1 0.88 1
Porting (5) 1 1 1 0.75
Multi-threading (6) 0.92 1 1 1
Real-time (7) 0.75 0.75 0.75 0.75
Message-passing (8) 0.2 1 0.5 0.2

Final Score 0.83 0.95 0.87 0.79

focus on the core functionality of the suggested framework, we do not define this layer now. Instead,
future developments can include this abstraction layer if the environment demands the use of a different
baseline OS.

Table 3.6: Result of the three candidates with the highest score within the baseline framework/OS
selection. For information on all other candidates see table 3.3 and table 3.5

Framework/OS Score

RODOS 0.95
RTEMS 0.87
FreeRTOS 0.83

3.2 Physical Interconnection of Nodes

The physical interconnection of nodes is the second aspect analyzed prior to the design of the actual
framework. This interconnection of nodes is critical for the simplicity of the proposed system. It
changes the number of electrical interconnection required for each node, and thus is critical for the
complexity of the resulting hardware setup. Additionally, a simple network potentially decreases the
complexity of synchronization algorithms as it might reduce the effort required for routing traffic to
reach a destination node.

Within this section, we will first select a network topology suitable for the proposed distributed
on-board computing. Sections 3.2.1 to 3.2.3 present this comparison and selection. Afterward,
section 3.2.4 compares available physical interface standards and selects the interface standard used
for the proposed system.

3.2.1 Network Topology Constraints

A network topology represents the structure of the interconnection between nodes in a network [23]. A
physical topology represents the physical interconnection of hardware components; a logical topology
the relationship of communicating entities at a higher level and can be interpreted as virtual overlay
network [200]. A link in a physical topology represents the wiring or similar connection between
nodes [200]. Thus, the selected physical topology affects the required cabling and the complexity of
future extensions of the hardware setup. Additionally, the used physical topology has an impact on
the required complexity of higher layer protocols. This is especially important if the logical topology
cannot be directly mapped into the physical topology.

38 CHAPTER 3. SYSTEM DESIGN

To simplify the integration of the proposed system, we want to minimize the required cabling and
reduce the amount of required interfaces per node. Additionally, it should be possible to disable any
node of the network without disabling the entire network of nodes. The network shall be able to
function when any node is or suddenly becomes unavailable. This is required for later power saving
modes where some parts of the system are disabled to reduce the overall power consumption.

Distributed applications require the synchronization of all (or subsets of all) nodes. A simple
broadcast (or multicast) mechanism reduces the complexity of this synchronization. Additionally, the
publisher-subscriber provided by the previously selected RODOS needs a way to potentially send a
message to all nodes of the system. Providing a simple broadcast or multicast on the lower layers of the
network stack can thus reduce the complexity of the overall system. Especially the necessary packet
routing on a higher network layer, if not all nodes can be directly reached, increases the complexity.
Therefore, we prefer a physical topology that enables simple broadcast or multicast communication.

3.2.2 Candidate Topologies

We consider the five basic network topologies bus, star, ring, mesh, and tree as candidates for the
suggested system.

Bus Topology

In a bus topology, all nodes share a trunk line for communication [23]. As this trunk line is a shared
medium, only one node can send a message at a time [19]; all other nodes will receive this message [23].
As the bus topology does not require forwarding of messages, a failed node does not affect the overall
network availability in general [19], although there are failure modes that could affect the entire
network [185]. The trunk line is critical for this topology; a failure of the trunk line, e.g., if it is
interrupted, will potentially propagate to the entire network [19]. The main benefit of the bus topology
is the simplicity and the fact that it requires the least cabling effort of all the basic topologies [127].
Due to the possible collisions on the shared medium, the bus topology does not perform well under
heavy traffic [127].

Star Topology

In a star topology, a central hub or switch connects all nodes of the network [23]. This central hub
or switch controls the entire network and forwards data to the destination node [127]. In contrast to
a bus topology, a failed cable will not affect the entire communication, but only a single node [23].
On the other hand the central hub or switch is a single point of failure for the entire network [127].
The star topology has a better performance than the bus topology, especially under heavy load [127].
This is achieved at the cost of a higher cabling effort [19] and a limited potential for expansion [127].
Broadcasting of messages in a star network is possible using a special address that will be forwarded by
the central hub or switch to every other node on the network.

Ring Topology

Each node in a ring network receives messages from one neighbor and transmits or forwards messages
to another neighbor in a ring like manner. Each message flows around this ring in the same direction
until it reaches the destination node [200]. Such a network avoids the signal collisions impacting the
performance of the bus topology [200]. Therefore, a ring topology has a better performance than a
bus topology [127]. The deterministic transmission times in a ring network [23] could be beneficial
for some real-time applications. The downside of a ring topology is the fact that a single failed node
will interrupt the entire communication as messages cannot flow backwards [23]. Additionally, a ring
network is in most cases more costly than a network using a star or bus topology [127]. Broadcast
messages in a ring topology are possible by simply sending a message in a full circle.

3.2. PHYSICAL INTERCONNECTION OF NODES 39

Mesh Topology

In a full mesh, every node has a direct connection to all other nodes on the network [127]. As a full
mesh is not practically possible in most cases, a partial mesh with only a subset of the links of the full
mesh network is often used [200]. The main advantage of a mesh network is the increased reliability
due to the redundant connections [23]. This redundancy assures that the failure of a single node does
not affect other parts of the system [127]. This is achieved at the cost of additional cabling effort [19]
and a higher effort required for routing messages to the destination node [23]. Broadcast or multicast
messages are simple in a full mesh, but require additional routing effort in partial mesh topologies.

Tree Topology

In a tree topology, all nodes are connected hierarchically [200]. A tree consists of at least three levels, as
otherwise it would be identical to a star topology [200]. A tree topology is thus a hierarchical extension
of a star topology [23], which is mainly relevant for larger networks [200]. The hierarchical structure
reduces the pressure on the interfaces of the central node [23] and thus simplifies expansion of the
network [127] compared to a star topology. The cost for this simplified expansion is a communication
overhead that further increases with the number of levels in the hierarchy [200]. Failures of nodes
in higher hierarchies of a tree network affect the entire network similarly to the central node of a
star topology and potentially break the entire internal communication [19]. Due to the hierarchical
structure broadcast or multicast messages are possible without complicated routing mechanisms.

3.2.3 Topology Selection

A ring or tree topology does not allow disabling arbitrary nodes. This would be required for power
saving modes and also represents one of the major failure modes of embedded MCUs. Although this
could be mitigated by redundant connections, bypasses, or similar means, the added complexity should
be avoided. The mesh topology requires some sort of routing to reach every node and requires a lot of
cabling. As this is not feasible or would add additional undesired constraints on the final setup, the
mesh topology is also excluded. The remaining candidates are the star and bus topologies. Due to the
reduced implementation effort of the bus topology (no central hub or switch needs to be implemented),
it is the preferred topology for the framework suggested within this thesis. Table 3.7 summarizes this
comparison.

Table 3.7: Comparison of network topologies based on: required cabling effort; possibility to disable
nodes during runtime, which also includes failing nodes; and simplicity of implementing a broadcast
or multicast communication on top of the suggested topology. N represents the number of nodes in a
network.

Topology Cabling Effort (Required
Connections)

Disabling Nodes Possible Simple Multicast

Bus ✓ O(1) ✓ ✓

Star ✓ O(N) ✓ (other than central node) ✓

Ring ✓ O(N) ✗ ✓

Mesh ✗ up to O(N2) ✓ ✗

Tree ✓ O(N) ✗ ✗

3.2.4 Interface Standard

For real hardware, a physical bus interface standard implements the selected bus topology. This interface
standard must at least provide a specification of the electrical interface, the electrical signalling scheme,
media access control, detection of unsuccessful communication, and recovery from such situations.
Therefore, the interface standard should at least cover the physical and data link layers according to the

40 CHAPTER 3. SYSTEM DESIGN

International Organization for Standardization (ISO)/Open Systems Interconnection (OSI) reference
model [86].

All nodes in the selected network will eventually transmit data. The point in time of this transmission
might not be known in advance. Therefore, we prefer a bus that allows every node to initiate a
transmission.

Availability of hardware support for the selected bus in COTS MCUs is beneficial as it reduces
development effort and guarantees better integration in arbitrary nodes. A minimal amount of required
cables will also simplify prototyping and integration in a full system. Therefore, we prefer a bus that
does not require a large amount of connections to operate.

We identified three multi-master bus standards widely available in embedded COTS and space
grade MCUs.

CAN

CAN is defined in ISO standard 11898 [81–85] and targets distributed control in automotive applica-
tions [81]. It is a multi-master bus with priority based media access control [81]. A single differential
signal provides the electrical interface between nodes [82]. The physical connection of nodes can
be performed in a star- or bus-like layout [83]; in both cases every message is broadcasted to all
nodes [81].

CAN is already used in a few CubeSats [24]. The European Cooperation for Space Standardization
(ECSS) engineering standard ECSS-E-ST-50-15C [59] standardizes additions for the use of a CAN bus
in spacecraft.

Classical CAN is defined for data rates of up to 1 Mbit s−1 [81]. A CAN frame uses 44 bit11 for its
header and checksum fields, not including bit-stuffing or inter-frame spacing; each classical CAN frame
can carry up to 8 B of user payload [81]. Therefore, classical CAN has an overhead of about 50 %
and thus has an actual user data rate of only about 500 kbit s−1. A flexible data rate version of CAN
provides a higher signaling rate of up to 5 Mbit s−1 and increases the allowed size of the payload [81,
82]. CAN with flexible data rate is not yet common in most COTS and especially not in space grade
MCUs, but if required, it might provide increased performance in future hardware revisions.

The CAN media access control layer uses carrier sense multiple access with collision avoidance;
thus any node can start transmitting a frame if the bus is currently idle [81]. If multiple nodes start a
transmission at the same time, the nodes perform a bit-wise arbitration [81]. Nodes will read back the
transmitted data; if it is different from the expected value, the node lost the arbitration and will stop
its transmission [81]. Therefore, the first bits of every frame act as arbitration field; as it contains the
message identifier, these identifiers also define the message priorities [81].

CAN provides several layers of error detection and recovery from failure states. A transmitting
node will detect if the bits were successfully applied to the bus and if it receives a proper acknowl-
edgement [81]. Receiving nodes will check the correct bit-stuffing, the trailing checksum, or illegal
use of the CAN bus in general [81]. Whenever any node detects an error, it immediately signals
the error to all other nodes [81]. A fault confinement entity counts detected transmit and receive
errors; if these counter surpass a threshold, the fault confinement entity will separate the node from
active participation in the communication [81]. While CAN FD, an improved version of CAN, provides
higher bit rates [82], low speed CAN with a signaling rate of up to 125 kbit s−1 includes additional
guarantees for various off-nominal scenarios [83]. It is specified to still operate with any single line of
the differential signal shorted to ground, the supply voltage, or the other line [83].

I²C

I²C is a communication standard to simplify interfacing components between different vendors [220].
It is designed for inter integrated circuit control of MCUs and their periphery [220]. I²C uses two single
ended signals, a clock, and a data signal, and it allows multiple controllers on a single bus [220]. Not

1164 bit with extended identifiers

3.2. PHYSICAL INTERCONNECTION OF NODES 41

all nodes necessarily support the multi-controller mode, but COTS and space grade components with
explicit multi-controller support are available12.

According to Bouwmeester, Langer, and Gill [24], many CubeSats use an I²C bus. Although the
authors do not mention the specific use of I²C in those CubeSats, they state that at least one mission
failure can be attributed to I²C and multiple others are likely [24]. Therefore, we deem the use of I²C
questionable for mission critical applications.

While I²C is specified for up to 5 Mbit s−1 in ultra fast-mode [220], many MCUs only support
standard and fast-mode with up to 400 kbit s−1. The overhead of I²C is small compared to CAN.
Each transaction starts with a 7 bit device address and a read-write flag indicating the type of the
transaction [220]. After each byte, a single-bit acknowledgement indicates successful reception of the
preceding byte [220].

The I²C arbitration of concurrent transaction is similar to the CAN arbitration. A controller stops
an ongoing transmission whenever it transmits a recessive bit to the data signal line but receives a
dominant bit on that line [220]. This arbitration only uses the address and data of the transmission; no
priority can be included in this process [220]. Some undefined conditions exist within this arbitration,
which are mentioned but not resolved in the I²C specification [220].

A receiving node has to assert at acknowledgement after each byte of the transmission [220].
This flag indicates various potential errors, including unsupported or invalid commands, overflowing
buffers, or the absence of the receiver [220]. The I²C standard [220] does not include a checksum
or other means to assure data integrity. Bus lockups are a common issue in I²C buses [24]. The I²C
standard [220] suggests bus clear operations by consecutively toggling the clock line to resolve these
situations; if it is not effective, a hardware reset or power-cycle is suggested. Various different user level
mechanisms try to solve these issues with I²C on CubeSats [24]. Even with those custom mechanisms,
many CubeSats have problems regarding the reliability of I²C [24].

TIA/EIA-485

The Telecommunications Industry Association (TIA)/Electronic Industries Alliance (EIA) standard
TIA/EIA-485-A [216], formerly called recommended standard (RS)-485, specifies an electrical interface
for multipoint systems. TIA/EIA-485 describes the required capabilities of transmitter and receiver
hardware on a differential bus [216]. This is limited to the signal levels and does not include physical
arbitration, timing, or any data link layer protocol suggestions [216]. The standard suggests the
use with a signaling rate of up to 10 Mbit s−1 but allows devices with different rates [216]. Some
experiments on the ISS use a TIA/EIA multidrop bus [99].

TIA/EIA-485-A [216] does not suggest any media access nor any error correction or recovery
mechanisms. Thus, it only describes the physical layer interface and leaves all other details up to the
user.

Selection

TIA/EIA-485 cannot be used without a matching data link layer protocol and does not provide any
arbitration mechanism. I²C would provide the required basic features, enables multiple controllers on a
shared bus including an arbitration and basic error detection. The major disadvantage of I²C is the
potential for bus lockups and other error states, which could lead to mission failure. CAN on the other
hand provides a rich set of error detection and recovery features, can operate in a degraded state with
a partially interrupted physical connection and provides inherent features to exclude failed nodes from
any communication. It also includes message integrity checks and a priority based arbitration. Support
for CAN is available in the previously selected baseline OS RODOS. Therefore, we select CAN as the
preferred bus standard for the proposed system.

12For example, the STM32L4 MCU family or the space grade VA41620 support multi-controller I²C.

42 CHAPTER 3. SYSTEM DESIGN

Node #1

Node #3

Node #2
MCU #1

MCU #2

MCU #3

S
ha

re
d

bu
s

Actuator

Sensor

Other I/O

Actuator

Sensor

Other I/O

Actuator

Sensor

Other I/O

Figure 3.1: Basic DOSIS setup with three nodes. Each node contains an MCU and periphery. This
periphery will mostly consist of sensors and actuators, but might also contain others like storage,
external communication interfaces, or special purpose processing units.

3.3 DOSIS Framework Introduction

We propose the DOSIS framework as a light-weight framework that simplifies development of distributed
applications for satellite control applications. It provides utilities to assemble a mission specific flight
software as a combination of reusable components. Developers can pragmatically declare the interface
of new components as a combination of pre-defined modules. The default behavior of the modules
provides a basic implementation of the declared component. Developers can adapt the behavior of
the component to its specific needs by providing a custom implementation for some modification
points. Interfaces provide access to the implemented functionality in a distributed setup without deep
knowledge about the internal message-passing or the networking capabilities of the individual nodes.
The simplicity of the DOSIS framework encourages the use in single node as well as distributed setups.

We use a generic reference system to explain the general functionality of the DOSIS framework and
the proposed overall system. The proposed system is a network oriented system, interconnected via a
shared CAN bus. The CAN bus interconnects a number of smart nodes. Each node contains at least
an MCU and optionally some periphery. Due to the simple porting of the used RODOS OS, a system
designer can select different MCUs depending on the needs for a specific mission. The MCU provides
the interface to a node’s periphery like sensors, actuators, storage, co-processing units or external
communication interfaces. Figure 3.1 visualizes such a setup of three generic nodes. Although this
setup consists of three nodes, the DOSIS framework is not limited to this specific setup. A single node
setup or setups with a higher node count are equally possible. Within a DOSIS setup, the distribution
of software components to the available nodes is arbitrary. Only software components that provide
access to specific periphery are bound to the respective node. All communication between different
parts of the software is globally available within the overall network. This includes the availability of
all information within the entire distributed system.

The main advantages of the DOSIS framework is its modularity and flexibility. It enables the
development of a distributed application based on individual DOSIS Components. Each of these
Components provides a distinct functionality to the application and can be reused within the same
application or as part of a different mission. A Component itself consists of two tightly coupled, yet
independent parts: its interface and its implementation. The interface, called ComponentInterface,
defines how to interact with the Component and provides the functionality required to perform these
interactions. This includes everything needed to interact with a Component, even though it might

3.3. DOSIS FRAMEWORK INTRODUCTION 43

1

1

1

1

1

1

1

1

1 k = 1..∗

1
k = 1..∗1 k = 1..∗

Component

ComponentIF ComponentImpl

Module

ModuleIF ModuleHandler

Figure 3.2: Generic associations between DOSIS Components and DOSIS Modules. Each Component
consists of two parts: a ComponentInterface (ComponentIF) and a ComponentImplementation (Com-
ponentImpl). One or more Modules define the general layout of a Component. The ModuleInterface
(ModuleIF) and ModuleHandler of all of these Modules will be part of the ComponentInterface and
ComponentImplementation respectively.

only exist on a different node. The implementation, called ComponentImplementation, is based on
the definition of the interface. It provides a default functionality for all parts accessible from the
ComponentInterface. A Component developer can change this behavior by adapting modification points
within the ComponentImplementation.

The Components can be split into two groups: Drivers with direct hardware access and Daemons
providing hardware independent logic. Drivers provide an interface to specific physical hardware. They
are independent of any mission specific logic or data handling. Daemons on the other hand never
directly access physical hardware. Instead, they access the data of sensors, target values of actuators,
or other hardware capabilities via the corresponding Driver. Daemons are in charge of the Drivers
they require, whereas a Driver will never actively change the behavior of a Daemon. Daemons are
independent of the physical setup and distribution of periphery to nodes and only implement the higher
level logic required for satellite control. Therefore, it is easily possible to move a Daemon to a different
node without affecting the overall system. Thus, designers and developers can redistribute Daemons to
different nodes, even at a late stage of the development process, to optimize resource utilization or
adapt the system to a changed concept of operations. Daemons might contain mission specific logic that
cannot be easily reused between different missions. In this case either the DaemonImplementation or
the entire Daemon can be replaced. In the worst-case this affects other mission specific Daemons, but it
will never affect any Driver. Section 3.4 presents the DOSIS Components in greater detail.

DOSIS Modules are the essential building blocks of DOSIS Components and further simplify the
development. Each Component is a combination of one or more Modules. The Modules provide the
individual building blocks of the ComponentInterface combined with a default implementation of the
behavior of this part of the interface. Similar to Components, each Module consists of a ModuleInterface
and a ModuleHandler. The ModuleInterface provides the required functionality to access the sub-part of
the Component specified by this Module; the ModuleHandler provides the default implementation of
the Module-specific functionality. Component developers can alter a Module’s behavior by adapting the
corresponding modification points within the Component itself. Figure 3.7 illustrates the basic relation
between Components and Modules. Section 3.5 provides an in-detail presentation of the DOSIS Modules.

The DOSIS framework potentially increases the development speed, as a major part of the software
can be reused over several missions. Additionally, it enables the parallel development of different
components, even if they rely on the interface of one another. This is possible, as the declaration
of a Component as a collection of Modules already provides a usable interface. It also enables and
encourages early testing, as once the interface of a related Component exists, its implementation can be
replaced by a test environment. This process can begin before the ComponentImplementation of the
related Component is available and is transparent for the tested Component. The global availability of all
communication further simplifies development and debugging tasks due to a simplified observation of a
Components behavior. Therefore, the distributed setup not only enables later distribution of Components
to nodes in a real system, but also supports testing and development processes. The development of

44 CHAPTER 3. SYSTEM DESIGN

DOSIS core

component module

time synchronization

driver

daemon

Figure 3.3: Top level packages of the DOSIS core framework.

individual components is therefore:

• independent of the node the component will be deployed to;

• independent of the development status of other Components it uses, especially the state of
development of the ComponentImplementation of those Components;

• avoiding code duplication as Modules provide major parts of the otherwise replicated code.

The framework provides this simplicity for the developer by having a clean interface. It is not
simply possible to exchange any information within the DOSIS framework other than by using the
ComponentInterfaces. This reduces hidden information flow as much as possible and thus aids developers
and designers with design and implementation of a minimal and yet expandable system.

Timing is critical for distributed control loops of real-time or otherwise time constrained systems
such as an ADCS subsystem. Some Modules provide support for timed tasks (explained in more detail
in section 3.5), but they require a precise time synchronization between the nodes of the network.
To finally allow the use of the DOSIS framework to build such distributed control loops, a time
synchronization mechanism is part of the DOSIS framework. Section 3.8 introduces this CAN and
RODOS based time synchronization mechanism.

Figure 3.3 gives an overview of the various parts of the DOSIS core. The following sections
will introduce the different parts of the DOSIS core. Section 3.4 provides a better insight into
DOSIS Components and the available modification points for application developers. Afterward,
section 3.5 introduces Modules as the basic building blocks of these Components. Finally, section 3.6
and section 3.7 provide more insight into the internal communication within the DOSIS framework
and the orchestration and logical connection of multiple Components.

3.4 DOSIS Components

DOSIS Components are the largest basic building blocks within the DOSIS framework. Each component
provides an independent and distinct feature or service to the overall system. To aid later distribution
to specific MCUs, we separate Components into two categories: Components directly interfacing with
specific hardware called Drivers; and Components independent of hardware such as controllers only
relying on data provided by other Components called Daemons. DOSIS Drivers should be as minimal as
possible and only provide access to hardware. It does not actively interface any other Component and
does not have any dependencies besides the interfaced physical hardware. A DOSIS Daemon on the
other hand performs high-level data processing and control of the Drivers and Daemons it interfaces
with. In contrast to Drivers, Daemons never directly interface physical hardware, but instead access

3.4. DOSIS COMPONENTS 45

the hardware indirectly via Drivers. This way Drivers can be easily reused in different missions while
Daemons provide the potentially mission specific features. This increases the flexibility to adapt the
overall software to the needs of yet unknown missions as demanded by design goal 2.

Each DOSIS Driver or Daemon consists of two parts: The first part is the interface, which acts as a
contract for all external accesses and is called DriverInterface or DaemonInterface respectively. Each
access to a functionality of a Driver or Daemon from outside uses this interface. It is independent of
the node actually executing the Driver’s or Daemon’s internal logic and can be used multiple times to
access the same Driver or Daemon from different locations. The second part is the implementation of
the Driver’s or Daemon’s internal logic and is called DriverImplementation or DaemonImplementation
respectively. In contrast to a DaemonImplementation, a DriverImplementation is not independent of the
node it is running on as it requires access to the physical hardware.

Figure 3.4 visualizes the separation of DOSIS Components into Drivers and Daemons as well as the
separation of interface and implementation.

1

1

1

1

1

1

1

1

Component

Driver Daemon

DriverIF DriverImpl DaemonIF DaemonImpl

Drivers are Components with direct
hardware access.
Drivers are Components with direct
hardware access.

Daemons are Components with
high level logic.
Daemons are Components with
high level logic.

Figure 3.4: DOSIS Components split to Driver and Daemon. A Driver or Daemon itself consists of an
interface (IF) and an implementation (Impl).

3.4.1 DOSIS ComponentInterfaces

ComponentInterface represent the contract of a Component towards its users. It is the single source
of truth used to derive all messages to and from this Component. Additionally, it provides the high
level interface to interact with the Component from an arbitrary node of the system. This section uses
ComponentInterface to reference a DriverInterface or DaemonInterface. If a statement only relates to one
of them, it uses the more specific DriverInterface or DaemonInterface explicitly.

A Component consists of a combination of one or more DOSIS Modules. DOSIS Modules provide
generic functionality patterns for individual parts of a Component. To understand a ComponentInterface,
these Modules can be imagined as registers with attached functionality and partly autonomous behavior.
Section 3.5 introduces the DOSIS Modules in more detail. The ComponentInterface contains the
part of these Modules responsible for the access to those Modules throughout the distributed system.
Additionally, developers can add shortcut names or smaller helper functions to a ComponentInterface.
This will at least contain human-readable names to all Modules within a Component and can include
methods to further analyze or prepare the data when interacting with said Modules.

ComponentInterfaces provide parts of the message handling required for communication between the
ComponentInterface and the ComponentImplementation. As a specific setup might use the ComponentIn-
terface and ComponentImplementation on different nodes, the ComponentInterface has to assemble and
send messages via a communication channel to the corresponding ComponentImplementation. At the
same time, it provides access to the messages sent from the corresponding ComponentImplementation
back to this ComponentInterface. Note that the ComponentInterface acts as a wrapper and only forwards
these messages. The actual message handling is part of the Modules, which is introduced in section 3.5

46 CHAPTER 3. SYSTEM DESIGN

in greater detail. A developer can thus use a ComponentInterface to access the functionality of the
Component without knowledge about the internal messaging.

3.4.2 DOSIS ComponentImplementations

A DOSIS ComponentImplementation provides the functionality of the Component. It handles all messages
received from an associated ComponentInterface and forwards them to the respective Module’s imple-
mentations. Application developers can modify the behavior of the ComponentImplementation based on
callbacks. Specifically, a developer can modify the following callbacks for any ComponentImplementation,
i.e., DriverImplementation or DaemonImplementation:

System initialization (init) A modification point to execute setup functionality on initialization of the
entire MCU. The default implementation does not perform any action.

Module data request (get) Whenever data should be sent from the ComponentImplementation to the
corresponding DOSIS interface, this callback provides the actual data. This callback can change
the behavior of individual Modules. The default implementation uses the data of the associated
Module’s register.

Module data update (set) Whenever data changes due to an update commanded via the Compo-
nentInterface this callback is executed. Similar to the previous callback, it can be changed on a
per-Module basis. The default action is storing the new data to the associated Module’s register.

Additional modification points exist within DaemonImplementations, as Daemons implement higher
logic and are often proactive Components. These Daemons repeatedly execute regular tasks that are
not directly associated to any part accessible via the DaemonInterface. An example of such a regular
task is the update of a controller. It regularly collects data from various Drivers using their respective
DriverInterfaces, calculates a control output, and forwards the result to other Drivers that directly
interface physical actuators. Two additional callbacks are available for this purpose:

Daemon initialization (Daemon init) This callback provides a modification point for the behavior of
the Daemon directly after system startup. This callback should set up the timing for subsequent
invocations of the Daemon step callback. If a Daemon requires an initial configuration, the
execution of this callback can be delayed until the Daemon’s Config Module executed the first
update of the entire configuration.

Daemon step (step) A Daemon executes this callback in a regular interval. This interval can be
changed at runtime and can thus adapt the behavior of the Daemon to different situations. Every
proactive behavior of a Daemon, e.g., gathering data and command other Components, should be
implemented within this callback.

Figure 3.5 visualizes the internal activities within a Driver or Daemon. The execution of a Driver
or Daemon starts with an initialization phase. This includes calling the system initialization and
for Daemons also the Daemon initialization callbacks. If required, a Daemon will wait for an initial
configuration message and process this message within the Config Module and only execute the Daemon
specific initialization callback afterward. After initialization, each Driver or Daemon will enter an
infinite processing loop. This loop starts with the calculation of the time to the next internal activity.
This activity is either an activity of one of the timed Modules (see section 3.5) or the next scheduled
activation of the Daemon step callback. Afterward, the Driver or Daemon will wait for incoming
messages and forwards those messages for handling within the respective Module. If the timeout passes
before the Component receives any message, the scheduled activity will be executed. In both cases the
execution will continue with the next loop iteration. Note that figure 3.5 does not display calls to the
Module data request or Module data update callbacks. The Modules themselves activate these callbacks
either as reaction to a received message or a time triggered activity. Section 3.5 presents the details of
Modules and how they interact with these callbacks.

3.4. DOSIS COMPONENTS 47

Daemon only

[Daemon]

[initial config not needed]

[initial config needed]

[Driver]

[timeout][message received]

system initialization

wait for initial config

forward initial config
to Config Module

Daemon initialization

calculate timeout until next
timed Module or Daemon activity

wait for message or timeout

trigger Module activity
or Daemon step

forward message
to Module

Figure 3.5: Internal activities of a Driver- or DaemonImplementation. It activates callbacks whenever
their name is mentioned. This figure does not show callbacks for Module data request or Module data
update, as the Modules call them from within the respective message or time triggered activity handling.

48 CHAPTER 3. SYSTEM DESIGN

implementation : ComponentImplementation

if 1 : ComponentInterface if 2 : ComponentInterface if N : ComponentInterface

1. command

2. response
2. response

2. response

Figure 3.6: Communication diagram with multiple ComponentInterfaces. The ComponentInterface sends
the response to all ComponentInterfaces at the same time.

3.4.3 General Interactions between Components

In a distributed application, multiple Components interact with one another to fulfill a certain task. A
hierarchical organization of Components simplifies the interactions required to fulfill the task. Drivers
are always at the lowest level of this hierarchy; they never command other Components. Daemons on
the other hand command an arbitrary number of other Components. This hierarchy can have multiple
layers, thus Daemons can command other Daemons. The Daemons are responsible for setup of all
commanded Components as well as the recovery if one of them behaves off-nominal. Simple setups can
use this simple hierarchy and thus only rely on 1:1 connections between ComponentImplementations
and ComponentInterfaces where each ComponentInterface is part of another DaemonImplementation.

A ComponentInterface provides all necessary methods to access a certain Component. Daemons use
this ComponentInterface to issue Commands and to access the returned data. The ComponentInterface
always passively collects all messages from the associated ComponentImplementation and provides
access to the various data points within the ComponentImplementation. Section 3.5.8 gives more details
on how Components utilize Modules to handle the communication between a ComponentInterface and
the corresponding ComponentImplementation.

3.4.4 Concurrent ComponentInterfaces

In most scenarios a simple 1:1 relation between ComponentInterface and ComponentImplementation is
not sufficient. For example, multiple Daemons could access the measurements generated by a single
Driver to perform their individual tasks. ComponentImplementations always send their messages to all
associated ComponentInterfaces. The ComponentInterfaces, with aid of the used Modules, keeps track of
the latest message received for each individual value within any of the Modules used to declare the
Component. Section 3.5 provides a detailed description of Modules and the functionality they provide to
access this data.

As long as only one ComponentInterface is used for active commanding of the Component, no
conflicts can arise. In cases where this strict commanding hierarchy is not possible, the system designer
has to take special care to avoid situations where different users execute conflicting command sequences
at the same time. Although the ComponentInterface will always keep track of the latest known state of
the ComponentImplementation, and thus simplify implementation of multiple commanding entities, it
cannot assure that different control strategies are not contradicting each other. This 1:N relation of
the commanding hierarchy can be used to add redundancy to a given system. Multiple instances of a
commanding entity can co-exist. Just note that no direct mapping of response to commands is possible.

Figure 3.6 depicts a setup with multiple ComponentInterfaces for a single ComponentImplementation.
The number of ComponentInterfaces is arbitrary and can change over time. As previously noted, each
ComponentInterface receives a response sent from the ComponentImplementation. This response is en-
tirely independent of the origin of the command or internal trigger that caused this response. In contrast
to the response, the ComponentInterfaces do not receive the commands of other ComponentInterfaces.
Thus, they can only observe the response of the ComponentImplementation.

3.5. DOSIS MODULES 49

3.4.5 Concurrent ComponentImplementations

Currently, the DOSIS framework does not directly support multiple ComponentImplementation instances
connected to a single (or multiple common) ComponentInterfaces. In such a scenario the Compo-
nentInterfaces can not keep track of the potentially different states of these ComponentImplementations,
but instead will always use the latest response received from any of the ComponentImplementations.
Currently, this needs to be solved on a higher level. Either the different implementations have to
internally coordinate their response and ever only send a single response; or they behave like individual
different ComponentImplementations, each connected to a different ComponentInterface. In the second
case, another Component can use all of those ComponentInterfaces and perform the combination of the
different answers manually. This would especially support high reliability scenarios, where redundant
execution is necessary to avoid any kind of service interruption even for short periods of time. As most
CubeSats, especially the MOVE-III and ORIGINS LRSM satellites, do not have such strict requirements,
these features are not part of the core DOSIS framework. Section 3.9.6 presents additional information
on redundant execution of certain tasks within the DOSIS framework.

3.5 DOSIS Modules

DOSIS Modules are the smallest building blocks within the DOSIS framework. They provide an
abstract representation of individual elements of a Component. This includes a register to store the
data associated with this Module, the abstract behavior of the Module, and the interface functionality
to access and manipulate the stored data. Modules in combination with an identifier and a data
type provide the basic building blocks for all Components (see section 3.4). Each Module can be
separated into two parts: the interface to access and manipulate the Module within the context of a
ComponentInterface (see section 3.4) called ModuleInterface; and the action handler providing the default
actions, modification points for developers, and data storage called ModuleHandler. The ModuleInterface
provides synchronous and asynchronous access to the corresponding ModuleHandler, i.e., it can either
request data and wait for the response or request the data and access the response at a later point in time.
The ModuleHandler provides methods to send a response back to the ModuleInterface. It also provides
the default behavior with modification points to adapt the Module to the specific needs of a Component.
The modification points make use of the callback functions within a ComponentImplementation, which
are presented in section 3.4 in greater detail. Figure 3.7 visualizes this separation based on a Settable
Module.

The Settable Module is one of seven DOSIS Modules with distinct features. The other Modules are
ReadOnly, Interval, TimedSettable, Actuator, Doable, and Config. Figure 3.8 depicts these Modules and
their relation to Components. Not shown are the identifying key (Key) and data type (Type) template
arguments depicted in figure 3.7. The key acts as unique identifier of a Module within the context of a
Component. Modules used to declare a certain Component can still be the same general type of Module
and also use the same data type, but must use a different, unique key. The only Module that cannot be
used arbitrarily is the Config Module. It has a special role and is only available as a mandatory Module
of every Daemon.

The following sections will introduce the seven Module types and provide insight into their intended
use, behavior of each Module, and available modification points. Finally, section 3.5.8 presents the
interaction of Modules and Components.

3.5.1 ReadOnly

ReadOnly is the simplest DOSIS Module. It provides an internal register that cannot be modified via
the ReadOnlyInterface. The ReadOnly Module is intended for data that is only sporadically required. An
example use case is a serial number of a sensor controlled by a DOSIS Driver.

The ReadOnlyInterface provides methods to request the data stored in the internal register and to
access the received response. A ReadOnlyInterface always keeps track of the latest received response,
thus keeping track of the latest state of the internal value. The access to the response is available in both

50 CHAPTER 3. SYSTEM DESIGN

Settable

Type: Typename
Key: Integer

SettableInterface

+ key : const Integer

+ requestValue()
+ setValue(value: Type)
+ getResult() : Result<Type>

Type: Typename
Key: Integer

SettableHandler

+ register : Type
+ key : const Integer

+ publishError(error: Error)
+ publishResponse(value: Type)

Type: Typename
Key: Integer

Figure 3.7: Split of the DOSIS Settable module into SettableInterface and SettableHandler. Error
represents the type of error codes within the framework; Result<Type> represents the result sent
from the SettableHandler to the SettableInterface. This result can either contain data or an error code.
Depending on the specific module the available methods within the ModuleInterface vary. This diagram
only displays the basic public methods. Additional blocking counterparts of the shown methods exist
but are not shown in the diagram.

synchronous and asynchronous versions. If no new response is available, both versions provide access
to the last known state of the internal value. A combined synchronous method to request and wait for
the response provides an even simple user interface for basic use cases. All synchronous methods use an
optional timeout parameter to avoid infinite blocking due to an unresponsive Component. Additionally,
the ReadOnlyInterface provides access to the identifying key.

The ReadOnlyHandler provides direct access to the internal register for use within the ComponentIm-
plementation. Methods to send data or error messages to the associated ReadOnlyInterface provide the
capability to sporadically generate additional messages, e.g., on update of the value due to an external
event. Similar to the ReadOnlyInterface, the ReadOnlyHandler provides access to the identifying key of
the specific ReadOnly Module.

By default, the ReadOnlyHandler returns the content of the internal register whenever it receives a
request. An implementation of the get callback for the key of this ReadOnly Module changes this default
behavior. The return value of this implementation of the get callback replaces the value stored within
the internal register and is forwarded to the ReadOnlyInterface instead.

3.5.2 Settable

A Settable Module is similar to a ReadOnly, but additionally allows setting the internal register of
the SettableHandler. The Settable Module provides the required functionality for values that can be
modified, but will not be accessed in a repetitive pattern or time critical sequence of commands. An
example for such a use would be a calibration parameter of a sensor controlled by a DOSIS Driver.

The SettableInterface provides the same functionality as the ReadOnlyInterface. Additionally, it
provides methods to set the content of the ReadOnlyHandler’s register. A combined synchronous method
to update the content of the register and verify the returned result enables simplified access patterns.
The method expects the returned value to be identical to the value used for the call to the set method.
If these values are not identical, an error will be returned instead.

The SettableHandler’s interface for use within the ComponentImplementation is identical to the
ReadOnlyHandler’s interface.

3.5. DOSIS MODULES 51

1

1..*

1

1

Component

Driver

Daemon

Module

Config

ReadOnly

Settable

Interval

TimedSettable

Actuator

Doable

Figure 3.8: Relation between DOSIS Components and Modules. Each Component consists of one or more
arbitrary Modules. The Config Module is a mandatory part of every Daemon and cannot be used in other
contexts.

The default action for a received set command is an update of the internal register. The value will
be overwritten and the SettableHandler returns the new content of the register to the SettableInterface.
Similar to a ReadOnly, the SettableHandler returns the content of the internal register for every data
request as its default behavior. Additionally, a modification point for updates to the internal register
exists, which is similar to the get callback as mentioned for the ReadOnly. The corresponding set
callback will be called whenever the ReadOnlyHandler receives a command to set the value of the
internal register. This callback should post-process or forward the updated value to any hardware if it
is required for a certain Component. If the update of the value fails, it can return an error code, which
will be forwarded to the ReadOnlyInterface.

Figure 3.7 depicts the public interface of SettableInterface and SettableHandler.

3.5.3 Interval

The Interval Module is an extension of the ReadOnly Module and can provide its data automatically
in a regular interval without an explicit request. The interval itself is changeable at runtime and thus
can adapt its behavior to different scenarios throughout a mission. The Interval Module is the best fit
for most sensor readouts.

The IntervalInterface provides all the methods of a ReadOnlyInterface. This includes the automatic
update of the latest received value of the internal register within the ReadOnlyInterface. A user of the
IntervalInterface can access the data provided in a regular interval using the same methods used to
access the response after a request within a ReadOnly Module. Additionally, an IntervalInterface provides
methods to access and modify the interval parameter. These methods are similar to the access methods
of a SettableInterface, but operate on the interval parameter instead of the register. The IntervalInterface
automatically keeps track of the latest state of this parameter used within the IntervalHandler.

The IntervalHandler is almost identical to a ReadOnly handler, but it provides additional methods to
modify the configured interval from within the associated Component.

The default behavior of data requests is similar to the default behavior or a ReadOnly Module.

52 CHAPTER 3. SYSTEM DESIGN

Additionally, it will generate a response in the configured regular interval. This mechanism triggers the
same internal behavior as a received request and generates an identical response message. Similarly to
the ReadOnly Module, the default behavior can be changed with a get callback. This callback will be
activated for regular requests and as a consequence of the interval activation.

3.5.4 TimedSettable

A TimedSettable Module behaves like a Settable Module with delayed execution of a set command.
Therefore, each set command contains an additional parameter specifying the point in time for actuation.
This Module is intended for time critical activation that keeps the new state until commanded otherwise.
Example use cases are a time critical configuration change or an actuation of a trigger at a certain point
in time.

The TimedSettableInterface is a SettableInterface with an additional point in time parameter for every
set method. Note that in contrast to a regular Settable the response will be delayed to the specified
point in time. Any user of the TimedSettableInterface must take this into account, especially when using
synchronous set methods. Similar to the previous Modules, the TimedSettableInterface keeps track of the
latest state of the internal register.

The methods provided by the TimedSettableHandler are identical to the methods of a SettableHandler.
By default, the TimedSettable behaves like a Settable that delays the actual internal set of the register

and transmission of the response. The available callbacks and their functionalities are identical to those
of a Settable. The only difference is that the set callback is only called once the specified point in time
is reached.

3.5.5 Actuator

An Actuator is similar to a TimedSettable, but features an additional default value and a reset
timeout. In contrast to a TimedSettable, an Actuator will automatically reset its value to the specified
default after the specified timeout is reached. An Actuator is intended for parameters that do not
permanently change their state, but return to a default value after a certain timeout. For example
coils of a magnetorquer will most likely use an Actuator, as they will only actuate for a certain time.
Afterward, they should always return to a switched-off state.

An ActuatorInterface is similar to a TimedSettableInterface, but provides additional methods to
interact with the default value and timeout parameters. It contains access to the default value and
timeout parameters similar to the access of the IntervalInterface to the interval parameter. Again, the
interface keeps track of the state of these parameters and always allows access to the latest known
value without requesting the values again.

An ActuatorHandler is also similar to the TimedSettableHandler. Additionally, access to the default
value and timeout parameters exists.

An Actuator’s default behavior is similar to the behavior of a TimedSettable. The Actuator executes
received set commands only once the specified point in time is reached. After the timeout has passed,
the Actuator internally issues another set command using the specified default value. This will reset the
internal register and send another data message to the associated ActuatorInterface. Again, the behavior
can be modified with the get and set callback methods. Similar to a ReadOnly, the ActuatorHandler
executes the get callback for every request. A set command on the other hand triggers two set callback
invocations: the initial set of the register triggers the first invocation; the reset to the default value
triggers the second invocation.

3.5.6 Doable

In contrast to all other Modules, a Doable Module has a return value with a potentially different type
than the request value. Therefore, it does not behave like a smart register, but instead represents a

3.5. DOSIS MODULES 53

remote procedure call. Once triggered with a command, it will execute the internal logic and return
the result. A Doable Module is intended for self-check and other functionality where a simple trigger
generates a more complex output. Other scenarios where a small parameter triggers a large response
will also benefit from a Doable Module. An example for such a scenario is a request of larger portions of
data, e.g., configuration parameters from background memory. In this scenario the request parameter
is a simple identifier, but the result is complex.

The DoableInterface provides a method to trigger the execution of the internal logic and methods to
access the returned result. Synchronous and asynchronous versions are available and further simplify
the use of the Doable Module. A DoableInterface stores the latest response and thus enables access to
the response without triggering the execution again.

The methods available within the DoableHandler are identical to those of the ReadOnlyHandler. The
DoableHandler’s internal register stores the last received parameter.

Due to the different Types of the request and the result of a Doable, no default behavior is
available. Therefore, the DoableHandler always executes a special version of the get callback with an
additional parameter for the request parameter. This callback must return the result or error, which the
DoableHandler forwards to the DoableInterface.

3.5.7 Config

The Config Module is the only Module developers of Components cannot use arbitrarily. Instead, it is
implicitly part of every Daemon. It provides an interface to a Daemon capable of setting all modifiable
parameters with a single command. This is used for Daemons that require an initial configuration.
Designers may additionally use the Config Module for global state changes due to different mission
phases or emergency situations. The Config Module simplifies those state transitions as only a single
command has to be issued. This way, no configuration parameters can be missed and the configuration
update of all Modules within the Daemon happens at the same time.

The ConfigInterface is similar to a DoableInterface, but has fixed data types for request and response.
The request always contains a configuration for the specific Daemon. This response contains the
identifier of the applied configuration. Similar to the DoableInterface, it always provides access to the
latest received response.

No methods for direct use from within the DaemonImplementation exist. The ConfigHandler splits
the received configuration message into individual configuration parameters of the Modules within
the context of the current Daemon. Afterward, it calls each Module with the configuration update.
This potentially triggers the set callback of the various modules, but will suppress the response these
modules would normally produce. No modification points exist for a Config Module.

Configuration Update Content

A configuration update message contains all modifiable values of all other Modules within a Daemon.
This contains not only the main value stored in the register of a Module, but also other configuration
parameters like the interval parameter of Interval Modules or the default value and timeout parameters
of an Actuator Module. As the Config Module immediately applies a received configuration update,
the configuration message does not contain the point in time parameter used for set commands in
TimedSettable and Actuator Modules. Additionally, each configuration update contains a user defined
identifier. This identifier has no immediate functionality, but is returned to the interface on every
configuration update, thus acting as an acknowledgement of success.

3.5.8 Interaction between Components and Modules

Components are collections of Modules and act as a container to access individual Modules and
forward the data respectively. The ComponentInterface provides methods to access a ModuleHandler
based on its key. Afterward, a user can directly interact with said ModuleHandler to send commands

54 CHAPTER 3. SYSTEM DESIGN

to ComponentImplementation. Each command contains the key of the Module; the ComponentImple-
mentation uses this key to identify the corresponding ModuleHandler and asynchronously forwards the
content of the command. The ModuleHandler executes the necessary steps, including an invocation
of the corresponding callbacks and sends a response back to the ComponentInterface. Similar to the
ComponentImplementation, the ComponentInterface identifies the corresponding ModuleInterface based
on the key contained in a response message and stores the response respectively. The user can access the
response via the ModuleInterface he initially used to issue the command. If multiple ComponentInterface
instances exist for a single Component, each of them receives the response message and stores it within
the respective ModuleInterface. Figure 3.9 depicts this process based on a simple data request.

3.5. DOSIS MODULES 55

getModule(k)

mk

enqueue
(k,request)

sendMsg(k,request)
request()

k,request

invokeCallback()

value

store(value)

sendMsg(k,value)

handle(request)

dequeue()

getValue()

value

getResponse()

value

User: mk:ModuleIF if:ComponentIF hk:ModuleHandler impl:ComponentImpl

Figure 3.9: Interactions between Components and Modules. This figure depicts access to the data stored
in a Module with read access, e.g., a ReadOnly. First the user gets access to the Module mk identified by
its key k. Afterward, the user utilizes mk to send a request to the ComponentImplementation impl. Impl
asynchronously handles the request and, after invoking the callback, sends the current value to the
ComponentInterface if. As depicted in figure 3.5, the ComponentImplementation is waiting for incoming
messages continuously, which is not shown in this sequence diagram. Finally, the user can access an
available response via the ModuleInterface. If a request is not successful and the ModuleHandler returns
an error, the ModuleInterface returns this error to the user instead. If no new response is available
within the ModuleInterface, the ModuleInterface returns the latest known value or error.

56 CHAPTER 3. SYSTEM DESIGN

3.6 DOSIS Communication Abstraction

The DOSIS communication abstraction separates the different concerns of the messaging between
ComponentInterface and ComponentImplementation into layers of a communication stack. This enables
transparent communication within a single node or an entire network of nodes while maintaining the
possibility for future exchange, adaptation, or improvement of individual layers in the future. While
this layering adds flexibility for future adaptation, it also provides the required capabilities for runtime
changes of the distribution and/or availability of Components. Additionally, it enables many to many
relations between ComponentInterface and ComponentImplementation.

Network

Node #1

ComponentIF

Module #N

ComponentImpl

Module #N

Node #2

ComponentIF

Module #N

Figure 3.10: Layered communication within the DOSIS framework. A ComponentImplementation and
the associated ComponentInterfaces can exchange messages independent of their distribution to nodes
in the network.

The communication can be separated into three distinct levels with independent tasks: On the
highest level, a message within a ComponentInterface or ComponentImplementation is forwarded to
the respective Module. The main purpose on this level is the addressing of the Module in combination
with some meta-information. The next level is responsible for addressing a specific Component. This
level assures that a message for a specific ComponentInterface is forwarded to all instances of said
ComponentInterface. While this level can directly forward a message to its local destinations, it relies on
a third level to reach instances on other nodes. The third task is the forwarding of messages between
nodes. The network level solves this task and provides all necessary means to reliably transfer a
message to all other nodes. Figure 3.10 depicts the layered communication approach.

This separation of concerns enables transparent communication. The Components and Modules are
independent of any knowledge about the node they are located on or the network connecting all nodes
of the network. Additionally, this enables message-passing to all instances without knowledge about
the amount of instances in a certain system or their distribution across several nodes and thus different
locations in the network.

The CAN bus, which was previously selected in section 3.2, provides the lowest level’s functionali-
ties. This includes the physical and data link layers according to the ISO/OSI reference model [86].
Section 3.6.1 describes the CAN bus in general, its most important features, and the layout of a CAN
data frame we will use for communication within the DOSIS framework. The RODOS message-passing
provides addressing of individual Components. The publisher-subscriber message-passing in RODOS
uses so-called topics to send a published message to an arbitrary number of subscribers. Section 3.6.2
presents this publisher-subscriber message-passing and its usage of the CAN bus to transparently attach
to the communication from arbitrary nodes. Finally, section 3.6.3 presents the DOSIS internal messages
used to address a certain module and its functionality in the context of a Component. This section
provides details on the DOSIS message format and its usage of the RODOS topic messages. Figure 3.11
gives an overview over the used protocols on the four lowest layers according to the ISO/OSI reference
model [86].

3.6. DOSIS COMMUNICATION ABSTRACTION 57

transport layer

network layer

data-link layer

physical layer

DOSIS messages

RODOS topics

CAN

Figure 3.11: Network stack of DOSIS messaging using layer names according to the ISO/OSI reference
model [86]. Only layers 1 (physical) to 4 (transport) are shown. Higher layers are not part of the
DOSIS framework.

3.6.1 CAN

CAN as specified in ISO 11898-1:2015(E) [81] provides the physical and data link layer within the
DOSIS communication abstraction. It provides the physical layer specification including media access
with priority based arbitration, advanced error detection and recovery mechanisms, and includes
message identifiers to filter incoming traffic [81]. We will use classical CAN data frames with extended
identifiers at a CAN signalling rate of 1 Mbit s−1. Remote transmit requests will not be used, instead
the DOSIS Components handle data requests on a higher layer.

One of the most important features of CAN is its guaranteed data consistency: Either all active nodes
on the common bus correctly receive a certain message, or at least one node marks the message as
erroneous and all nodes reject the message [81]. In combination with the automatic retransmission of
unsuccessfully transmitted messages [81], we can rely on CAN to transmit any data until it is consistently
received within all nodes. This check includes all nodes of the network, which independently verify
a broadcasted message independent of the message’s identifier; only afterward, a message can be
dropped by an incoming message filter [81].

Each CAN frame starts with a single dominant symbol, called the start-of-frame marker, followed
by the arbitration field [81]. This field contains the message identifier and is the only field used for
message arbitration [81]. The subsequent control field contains the length of the following payload data
in byte [81]. Classical CAN frames allow payload sizes of 0 B to 8 B [81]. A 15 bit cyclic redundancy
check (CRC) calculated from all previously mentioned fields ensures data integrity [81]. As mentioned
before, each node will verify the frame and transmit a corresponding acknowledgement [81]. An
end-of-frame marker signals the end of the current frame [81]. A node may only transmit the next
CAN data frame three bit times after said marker [81]. Figure 3.12 depicts a generic classical CAN data
frame with extended identifiers.

Extended sequences of identical symbols in non-return-to-zero encoded data can lead to synchro-
nization issues within receiving nodes. CAN mitigates this by adding stuff-bits after series of five
consecutive identical symbols [81]. I.e., CAN inserts a recessive symbol after five consecutive dominant
symbols and vice versa.

Dominant bits on the shared bus encode a logical 0, recessive bits a logical 1 [81]. As CAN uses a
bit-wise arbitration and transmits the message identifier starting with its most significant bit, a lower
message identifier has a higher priority and will win the arbitration process [81]. If the arbitration
is still undecided after the last bit of the arbitration field and any of the subsequent bits of two
concurrent transmission differ, the arbitration has failed [81]. An error frame will indicate such a failed
arbitration [81].

58 CHAPTER 3. SYSTEM DESIGN

Fault Confinement Entity

The CAN fault confinement is another mechanism to prevent faulty nodes from inhibiting communi-
cation [81]. In contrast to the mentioned CRC and message acknowledgement, which operate on a
message basis, the fault confinement checks the behavior of a node. It provides separate counters for
detected transmit and receive errors within a certain node [81]. Different errors cause an increment of
the respective counter by a certain value; successfully transmitted or received frames cause a decrement
of the respective counter [81]. If any of those counters surpasses a threshold, the fault confinement
prohibits the node from sending error frames and increases the inter-frame-space the node has to
wait prior to transmitting the next data frame to eleven bit-times [81]. The fault confinement entirely
disconnects a node from active participation in the communication if the transmit error counter ever
exceed a second even higher threshold [81]. Only an explicit restart or power cycle of the device
reconnects a node after such a disconnect [81].

Optional CAN Extensions

A number of extension exist for further enhancements or adaptations of CAN to a specific domain. The
low speed high reliability CAN as defined in ISO 11898-3:2006(E) [83] increases the reliability of the
physical layer implementation. While it increases resilience to physical errors like shorts of one of
the CAN wires to a certain voltage or ground level, it limits the usable data rate to 125 kbit s−1 [83].
A mission designer using the DOSIS framework can replace the suggested high speed CAN with ISO
11898-3:2006(E) compatible CAN without other changes to the framework.

Likewise, the ECSS standard ECSS-E-ST-50-15C [59] defines a physical layer with increased
reliability. It not only adds a specification for off-nominal wiring situations, but additionally specifies
the use of redundant CAN buses. While ISO 11898-3:2006(E) limits the maximum usable data rate to
125 kbit s−1, ECSS-E-ST-50-15C allows data rates of up to 1 Mbit s−1. Furthermore, ECSS-E-ST-50-15C
includes higher level usage of CAN based on the CANopen [43] application layer. While the physical
layer specifications and the redundant CAN bus suggested in ECSS-E-ST-50-15C can be used without
any changes, the CANopen based extensions are not compatible to the DOSIS framework.

A time triggered version of CAN as specified in ISO 11898-4:2004(E) provides features that could
be used for future extensions of the DOSIS framework. Although many parts of the DOSIS framework,
especially the DOSIS Modules, provide various time triggered activities, they do not require a time
triggered physical and data link layer.

3.6.2 RODOS Publisher-Subscriber Message-Passing

This section provides a short summary of the RODOS publisher-subscriber message-passing. The
following is a summary of the information provided in [149], [148], and the public GitLab repository13.

The RODOS middleware provides publisher-subscriber based message-passing. This message-
passing enables asynchronous communication between different applications. It is implemented using
so-called topics, which provide independent communication channels. An application can publish
its data on a topic, which is received by any subscriber of the same topic. Each topic has a unique
32 bit identifier and an individual maximum length given by the used data type; the overall maximum
length is limited to 1300 B. RODOS reserves the first 1000 topic identifiers for internal use. The
number of active publishers and subscribers of a topic can change at any time. This enables flexible
distribution of applications and redundant instantiation of applications. Gateways further expand
this middleware over various nodes. Implementations for universal asynchronous receiver-transmitter
(UART), CAN, User Datagram Protocol (UDP), and shared memory in multicore or multiprocessor
systems are available.

13https://gitlab.com/rodos/rodos

https://gitlab.com/rodos/rodos

3.6. DOSIS COMMUNICATION ABSTRACTION 59

RODOS Topic Messages over CAN

The DOSIS framework uses CAN gateways to connect the middleware of all nodes. The RODOS CAN
gateway uses the classical extended CAN frame format with 29 bit identifiers as specified in [81]. The
identifier contains a static prefix, a topic identifier, and a node identifier. The static prefix enables
use of the CAN bus for messages other than RODOS topic messages; the node identifier has mainly
informative character and avoids unsuccessful collision resolution of the CAN frames if multiple nodes
concurrently publish messages on the same topic. Figure 3.13 visualizes the CAN identifier used for
RODOS topic messages. The topic identifier of only 16 bit limits the usable topics over CAN to 65 536.

Each classical CAN frame can contain up to 8 B of payload. A simple fragmentation protocol splits
the potentially larger RODOS topic messages into blocks fitting into individual CAN frames. Each
frame contains a 1 B sequence number; the first frame contains an additional length field of 2 B; the
remaining 5 B to 7 B contain the user data (see figure 3.14). Therefore, a message can be fragmented
into up to 256 frames, with 5 B of user data in the first frame and 7 B in each subsequent frame.

A topic message on CAN could thus have a maximum size of 5 B+ 255 ∗7 B = 1790B, which exceeds
the global limit for RODOS topics of 1300 B. Therefore, any RODOS topic message can be transmitted
via a CAN gateway. A gateway is capable of receiving interleaved messages from different nodes, but it
will never transmit multiple interleaved topic messages. If multiple messages are to be transmitted by
different nodes at the same time, the CAN arbitration prefers messages with lower topic identifiers.

The fragmentation of RODOS messages over CAN adds a significant communication overhead due
to the small fragment size of only 8 B. This overhead is 300 % for a 1 B topic message, dropping below
20 % for 50 B and below 15 % for 433 B messages. This overhead is not critical for most applications
but impacts the different time synchronization mechanisms presented in section 3.8.

Use of RODOS Topic Messages within DOSIS

RODOS topics provide the communication channel for messages between a ComponentInterface and
a ComponentImplementation. Two separate topics exist for each instance of a Component: All Compo-
nentInterfaces for said Component use one topic for messages towards the ComponentImplementation
called command topic. The ComponentImplementation uses a second topic to send messages to all
its ComponentInterfaces, called data topic. If multiple instance of a Component exist, each of them
uses a different pair of topics for its internal communication. The topic identifier between 100114 and
65 53515 are used for this communication. Therefore, a DOSIS based system can consist of up to 32 267
different Component instances.

3.6.3 DOSIS Messages

While RODOS topic identifiers address ComponentInterfaces and ComponentImplementations, the DOSIS
messages are responsible for addressing individual Modules within a Component. For command topics,
DOSIS messages mark commands as request or set commands; for data topics they differentiate
between regular data messages and error messages. For Modules with more than one accessible value,
i.e., Modules with additional configuration parameters, the DOSIS message also addresses the internal
value of the Module. To avoid unnecessarily bloated messages, we aim to keep the DOSIS message
overhead as minimal as possible without unnecessarily limiting the usability of DOSIS.

To fulfill its purpose, a DOSIS message must contain at least an identifier of the addressed Module,
an inner identifier to address the sub-parts of a Module, and a message type. While the identifiers
uniquely identify a register or configuration parameter of a specific Module within a DOSIS Component,
the type identifies the commanded action for command messages, and differentiates data and error
content for a data message. A DOSIS message does not require a length field. RODOS messages already
provide such a length field; Furthermore, it is not required at all as the Modules know the message
content data type based on the other fields of the DOSIS message header and therefore can derive
the message length. The differentiation between command and data messages is also not contained

141001 is the first identifier not reserved for RODOS internal use.
15RODOS topic messages over CAN use 16 bit identifiers. The maximum value of an unsigned 16 bit integer is 65 535.

60 CHAPTER 3. SYSTEM DESIGN

in a DOSIS message. It is not required as a RODOS topic only ever contains either command or data
messages.

Module Identifier

The key to address Modules within Components as presented in section 3.5 is used as Module identifier.
Most simple Components, such as sensors and actuators only require a few Modules. On the other hand
a Component may also address an entire external subsystem, including a wide range of configuration
parameters and telemetry data outputs. Therefore, the Module identifier’s size of 8 bit is a compromise
between reducing the size to avoid a bloated header and a reasonable limit to allow large Components.
A size of 8 bit provides the capability to address 28 = 256 different Modules.

Inner Identifier

The internal addressing of the data register or a configuration parameter of a specific Module requires
another identifier. An Actuator has an internal data register and two configuration parameters, thus
requires three different internal identifiers. Although this could be encoded in a 2 bit field, we will use
a 3 bit field to account for future modules that may require additional parameters. This allows up to
eight different registers or parameters within a single Module and thus provides sufficient capacity for
future extensions.

Message Type

The last field of a DOSIS message is the message type identifier. The Modules as presented in section 3.5
require three different command types (get, set, and do). The corresponding data messages only
require two different types, namely to distinguish data and error payloads. To represent the three
different types of command messages, a DOSIS message contains a 2 bit type identifier.

Figure 3.15 depicts the layout of a DOSIS header.
DOSIS messages of any size only contain 2 B of header data. Although this generates a significant

overhead for short messages, e.g., 25 % of overhead for 4 B of payload data, the relative overhead for
larger payloads is quite low. A message with a payload of 100 B has a relative overhead of only 2 %.

Use in DOSIS Modules and Components

As shown in section 3.5, Modules are responsible for assembling and sending DOSIS messages. Mod-
uleHandlers assemble and send data messages via the data topic; ModuleInterfaces assemble and send
command messages via the command topic. Components never directly assemble or send a message.
They only act as receiving end-point and forward the messages to the respective Module. Thus, Modules
have full freedom regarding the content of the message. This assures that future extensions can add
Modules with a new set of features without limitations regarding the internal messaging.

3.6. DOSIS COMMUNICATION ABSTRACTION 61

S
O
F

Arbitration Control

0 identifier[28 . . 18] 1 1 identifier[17 . . 0] 0 0 0 length code

⏞ ⏟⏟ ⏞

39 bit

Data

up to N = 8B, Byte[0 . . N]

CRC ACK EOF IFS (≥3 bit)

CRC[14 . . 0] 1
A
C
K

1 1 1 1 1 1 1 1 1 1 1 . . .
⏞ ⏟⏟ ⏞

25 bit

Figure 3.12: CAN data frame with extended identifier according to ISO 11898-1:2015(E) [81]. Each
frame starts with a start-of-frame (SOF) marker, which is always set to 0, followed by the arbitration
field containing the message identifier and some additional flags. This figure depicts the fixed values
for data frames with extended identifiers; more information on these flags is available in [81]. The
subsequent control field contains a length code indicating the length N of the following data field.
The CRC field contains the calculated CRC-15 and a CRC delimiter, which is always set to 1. The
acknowledgement field (ACK) contains a single ACK flag, which is set by receiving nodes, a value of 0
indicates successful transmission, and an ACK delimiter, which is always set to 1. Seven consecutive 1s
mark the end-of-frame (EOF). Afterward, an inter-frame-space (IFS) of at least 3 bit is preserved prior
to the next data frame. Some special frames, such as error frames, do not necessarily respect the IFS.

012345678910111213141516171819202122232425262728

1 1 1 0 0 topic identifier node identifier

Figure 3.13: RODOS use of the CAN extended frame format’s 28 bit identifier.

0 1 2 3 4 5 6 7

seq. nr. length (first frame)
payload (other frames) payload

Figure 3.14: Fragmentation of RODOS topic messages over CAN. Shown is the allocation of the 8 B
within a classical CAN frame.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Module identifier 0 0 0 type inner
identifier

Figure 3.15: Header of DOSIS messages. A gray background indicates reserved bits always set to zero.

62 CHAPTER 3. SYSTEM DESIGN

3.7 DOSIS Device Definitions

As previously mentioned, a ComponentImplementation and a ComponentInterface exchange messages
via a pair of RODOS topics. The used topics must be unique within a certain system, thus the topic
identifiers used for a certain Component must not be used elsewhere. Embedding these identifiers
directly into a Component is not possible as multiple instances of a Component can exist at the same time.
For example, multiple instances of a Driver for a sensor used multiple times in various locations of the
system can exist. A device definition (deviceDef) uniquely assigns the required pair of topic identifiers to
a specific Component’s instances, i.e., the ComponentImplementation and ComponentInterface instances.
Additionally, a human-readable name and the Component’s specific type are part of the deviceDef . These
support designers and developers while connecting Components, try to avoid wrongful connections,
and enable human-readable output during development. A unique deviceDef must exist for each
Component instance. It reflects the static connection and is therefore not changeable at runtime.
Figure 3.16 visualizes the use of deviceDef as connecting entity between ComponentImplementation and
ComponentInterface.

≪communication channel≫

Component

Component Interface Component Implementation

Device Definition

command-topic identifier : Integer
data-topic identifier : Integer
name : String
Component type : Type

Component type
must match the type
of the Component
that ComponentIm-
plementation and
ComponentInterface
belong to.

Component type
must match the type
of the Component
that ComponentIm-
plementation and
ComponentInterface
belong to.

Figure 3.16: Usage of a deviceDef . A deviceDef provides all the details to establish a DOSIS communica-
tion channel consisting of a data topic and a command topic (see section 3.6). To avoid potential bugs,
the deviceDef contains the type of the Component it can be used for. Using the deviceDef in a different
context is forbidden.

3.8 Time Synchronization

To this point, we designed a framework that simplifies definition and implementation of Components
and enables the assembly of distributed applications. Modules, which are the basic building blocks
for Components, provide features supporting time sensitive applications. They enable developers to
regularly read a sensors value, schedule update of actuator values to a specific time in the future
and connect all those parts with some controlling Daemon. All of those features rely on a common
understanding of system time, as otherwise scheduling of any event would not be possible. Thus, a
common understanding of time must be established in all nodes.

To better understand the problem, we need to take a closer look at the timing requirements of
different applications. The ADCS subsystem is the subsystem with the strictest timing requirements,
as the accuracy of said system highly depends on precise measurement, forward propagation, and
actuation of attached wheels, magnetorquers, or other active components. For a CubeSat ADCS, we
assume a control loop that updates all parameters at a rate of 5 Hz. Such an update loop requires all

3.8. TIME SYNCHRONIZATION 63

sensor values every 200 ms, calculates a control output parameter from these values, and updates the
actuators accordingly. A precise knowledge about the exact sampling point and a regular sampling
interval increases the accuracy of the overall ADCS system. To minimize the negative effect of timing
uncertainties, a remaining time uncertainty between nodes of less than 2 ms is desired. To minimize
effects on the estimated derivation of a measured value over time, the time should furthermore increase
monotonically and reduce other effects that could negatively impact such a measurement.

Another important aspect is the accuracy of the local clock or oscillator in individual nodes. Tirado-
Andrés and Araujo performed an analysis of the available clock sources for low-power COTS MCUs for
wireless sensor networks [217]. They found that even temperature-compensated crystal oscillators
have an accuracy of about 10 ppm and a drift of about 5 ppm [217]. Temperature-compensated crystal
oscillators as commercially available for space applications show similar numbers in their respective
specification16. Assuming a component with an accuracy and relative drift of less than ±1 ppm could
be found, two nodes could still drift apart more than the desired 2 ms in about 30 min17. Such a
clock source obviously cannot meet the requirement for an ADCS system over extended periods of
time. Additionally, other solutions like externally synchronized clocks as part of each node (e.g., GNSS
conditioned clocks) are not feasible in a CubeSat due to their space and power requirements. Therefore,
we have to rely on a local oscillator for short time intervals and provide a synchronization mechanism
that assures long time synchronization of all nodes of the system.

A specific mission’s needs drive the design of the time synchronization setup. Mainly due to the
potentially heterogeneous system with different clock sources on each node, a single setup optimal for
all scenarios does not exist. Therefore, we will have a look at a few options with reduced complexity
that are still capable of meeting the requirement for a remaining time uncertainty of less than 2 ms.
Related scenarios that also use a number of relatively simple nodes, e.g., wireless sensor networks, can
be separated in two categories: time synchronization based on a reference clock used to synchronize all
others, and time synchronization using an entirely decentralized approach. While a few decentralized
solutions exist [66, 189, 199] that could be adapted to the DOSIS framework, synchronization to a
reference clock gives better accuracy according to [209]. Additionally, the time distribution from such a
reference clock can be tailored to the DOSIS framework and simplify the procedure due to the relatively
simple CAN based network setup. Therefore, we suggest a simple clock synchronization based on a
reference clock. The selection of the reference clock may be a dynamic process and enable redundancy
even though the synchronization uses only one reference clock at a time.

The suggested time synchronization can be split into three independent sub parts: First we have to
choose a reference clock selection procedure. Section 3.8.1 presents the advantages and disadvantages
of static selection, dynamic selection and hybrid approaches. Afterward, we take a closer look at
the time representation and the transfer of time updates from a reference clock to all other nodes.
Sections 3.8.2 and 3.8.3 introduce the different methods and their advantages. Finally, section 3.8.4
presents the update of the local time on a receiving node.

3.8.1 Reference Node Selection

As previously stated, the suggested DOSIS time synchronization uses a reference clock attached to any
node in the network. While the selected clock type is highly mission dependent, e.g., some missions
might contain a GNSS based clock where others only contain some kind of local oscillator, the selection
of the reference node can be decided on a higher level. The selection of a reference node can be
performed statically or dynamically at runtime.

Static Selection

A statically selected reference node simplifies the implementation. Therefore, the designer has to
carefully select the reference node based on system properties. This scenario fits best for scenarios

16e.g., Vectron: https://www.vectron.com/products/space/space.htm, Xsis: https://xsis.com/index.html, or Q-Tech:
https://q-tech.com/products/tcxo-products/tcxo-for-space/

17Assuming the worst-case where both nodes are off by 1 ppm but in opposite direction; thus the total relative error is
2 ppm.

https://www.vectron.com/products/space/space.htm
https://xsis.com/index.html
https://q-tech.com/products/tcxo-products/tcxo-for-space/

64 CHAPTER 3. SYSTEM DESIGN

where only a single node has the required capabilities, i.e., a reasonably stable clock source. In CubeSats
this could be a node with GNSS access or a real-time clock with alternate power source to ensure
a reliable absolute time even after power cycles of the software. The main disadvantage of a static
selection is the inherent single point of failure. The entire clock synchronization does not function
anymore once the selected reference node fails. Thus, a purely static selection is only a reasonable
option for single-string setups without redundancy.

Dynamic Selection

In contrast to the static selection, dynamic selection of the reference node is entirely independent of
parameters that a designer assigned to the nodes. Instead, the nodes themselves dynamically select
the reference node randomly or based on a simple heuristic. While this dynamic selection can always
succeed, the selected reference node may not be optimal. For example, a node with a low-quality
physical oscillator may become the reference node. This would inevitably lead to a system-wide clock
with reduced quality. The absence of a single point of failure is the main advantage of an entirely
dynamic selection. As long as at least one node is active, a reference clock can be selected. Thus, the
fully dynamic selection based on a random decision or a simple heuristic might be a viable option for
missions where the local clock of all nodes is of similar quality. Depending on the number of nodes in a
certain system the entire dynamic selection may generate a not negligible complexity and a potentially
unwanted communication overhead during the selection.

Hybrid Selection

Scenarios where only a few nodes use high-quality local oscillators need a different selection method.
We suggest a hybrid of a static and a dynamic selection process for these scenarios. While the designer
statically selects the potential reference nodes, a dynamic selection chooses the active reference node at
a specific point in time. This combines the advantages of both selection processes. While the dynamic
part still generates some overhead and complexity, it is limited to a few nodes. These nodes all have a
high-quality clock, thus the static pre-selection excludes situations in which a low-quality clock may
become the reference clock. The dynamic selection of one out of a few potential reference clocks avoids
a single point of failure regarding the time synchronization.

Mission Specific Reference Node Selection

Depending on the specific mission’s needs, any of the selection approaches may be optimal. While no
choice fits all missions, we suggest using one or a few statically assigned potential reference nodes.
In most CubeSats only a single node with a high-quality, e.g., GNSS based, clock reference exists. It
may be accompanied by a real-time clock with alternate power source attached to either the same or
a different node on the system. If such a backup is available, it should be used as possible fallback
solution, otherwise only a single potential reference clock exists, thus static selection is the best option.
If more than one reference node is available, the simplest dynamic selection possible should be used.
This reduces the risk of potentially mission critical software bugs in this essential part. If multiple
otherwise more or less equal nodes exist, we suggest selecting the reference node using a simplified
bully leader election. Section 3.9.4 presents this leader election.

3.8.2 Time Format

The format used to represent time is important for the possible quality of system-wide time knowledge,
overhead for time transfer between nodes (see section 3.8.3), and simplicity of local time update
mechanisms on each node (see section 3.8.4). CCSDS standard CCSDS 301.0-B-4 [35] and the
ECSS CAN bus extension standard [59] define various time formats. For simplified handling in all
nodes, we also have to consider the time representation in RODOS. RODOS time is a local system
uptime in ns [149] represented in a 64 bit signed integer18. For simplified calculation in later ADCS

18Extracted from the RODOS GitLab repository at https://gitlab.com/rodos/rodos.

https://gitlab.com/rodos/rodos

3.8. TIME SYNCHRONIZATION 65

implementation, we also consider the ease of converting the time representation to a modified Julian
date [131], which is widely used for astronomical calculations.

Out of the four suggested time representations in CCSDS 301.0-B-4, only two representations
are efficient for computer interpretation: CCSDS unsegmented time code and CCSDS day segmented
time code [35]. The unsegmented time code represents a single monotonically increasing counter
value uciteCCSDS-301. The day segment code represents a counter for full days, a second counter for
ms of the current day, and an optional counter for fractions of the current ms [35]. The RODOS time,
which is a monotonically increasing counter for ns, can be converted to a CCSDS unsegmented time
code without any computational overhead. The conversion to and from a modified Julian date, which
is a representation of fractional days [131], is best represented by a day segment code. We assume that
more calculations will be done with the RODOS internal time, e.g., for scheduling purposes, compared
to the modified Julian date representation. We use the RODOS time, which is similar to CCSDS
unsegmented time code with a basic unit of ns, 8 B to represent the basic time unit, and no fractional
time unit. This minimizes computational effort of time handling and reduces overall complexity.

Although CCSDS 301.0-B-4 suggests an epoch of January 1, 1958, and a representation in seconds
according to the International Atomic Time (TAI), we only synchronize the local time as known to
RODOS. This limitation is necessary as we cannot assume that every system using the DOSIS framework
will include an externally synchronized clock source, such as a GNSS based clock reference.

The used 64 bit signed integer used to represent the system time can represent time up to

(263 − 1)ns≈ 9.22 · 1018 ns≈ 292 y . (3.1)

This should be sufficient as uptime or mission elapsed time for most CubeSat missions with a duration
of only a few years. Even using the suggested TAI epoch, this time format can represent time until the
year 2250.

3.8.3 Time Transfer

As previously said, reference nodes will directly transfer their time to all other nodes of the network.
To reduce complexity and utilization of the communication channel, we use a broadcast message to
transfer these time update messages. Four options on different abstraction levels are available for such
a broadcast: using DOSIS Components, using RODOS topic messages, directly using CAN frames, or
using a dedicated clock distribution line.

Dedicated Clock Line

With a dedicated clock distribution network, the clock update broadcast uses a communication channel
separated from all other communication. While dedicated clock pulses are simple to implement and
enable precise timing, they cannot transfer the entire time information without an additional protocol
or side-channel. While it promises the best time accuracy and precision, it requires additional wiring,
which may be undesired in CubeSats. Therefore, we avoid the use of dedicated clock distribution
networks and aim at clock distribution based on the available communication channel as presented in
section 3.6.

CAN Based Time Transfer

A time transfer based on the existing CAN bus does not require any additional hardware setup and
especially does not require any additional cabling. On the other hand, it requires special care regarding
the implementation and the expected message delay. Knowledge about the message delay is critical for
the quality of the time synchronization [130]. Thus, we will first have a closer look at the expected
delay, followed by a presentation of the considered alternatives, and the final selection of the time
transfer mechanism.

66 CHAPTER 3. SYSTEM DESIGN

Message Delay Considerations19 RODOS topic messages use extended CAN frames (see section 3.6).
Including the inter frame spacing a full extended CAN frame has an overhead of 67 bit and a payload
of up to 8 B. Bit-stuffing might additionally increase the size of a CAN frame by up to 29 bit [158].

As defined in section 3.6.2, we use a CAN data rate of bCAN bus = 1Mbit s−1. The transmission time
of an extended CAN frame with 8 B of payload is thus:

TCAN frame =
SCAN frame

bCAN bus
=

67bit+ 8B ∗ 8bit B−1

1Mbit s−1 = 131µs (3.2)

Tstuff bits =
Sstuff bits

bCAN bus
=

29 bit

1Mbit s−1 = 29µs (3.3)

TCAN frame+ = TCAN frame + Tstuff bits = 131µs+ 29µs = 160µs (3.4)

with

TCAN frame : transmission time of an extended CAN frame excluding stuff bits,
SCAN frame : size of an extended CAN frame without stuff bits,
bCAN bus : data rate on the CAN bus,
Tstuff bits : transmission time of stuff bits in a CAN message,
Sstuff bits : size of stuff bits in a CAN message, and
TCAN frame+ : transmission time of an extended CAN frame including stuff bits.

Reduction of bit-stuffing jitter [37] and jitter less communication [38] are possible by specifically
encoding the transmitted data. As this also increases the overhead, we will not make use of these mech-
anisms, although they should be noted if future extensions require a more precise time synchronization
in DOSIS.

Time transfer messages have the highest priority, i.e., the lowest used CAN identifier, in our system.
This guarantees predictable worst-case delays on the shared bus, as such a message will always
dominate CAN arbitration. Thus, the worst-case wait time before transmission of a time transfer
message starts is the time to finish the previous message. This wait time will always be less than
TCAN frame+ = 160µs.

Messages sent via RODOS topics have a size of up to 1300 B. As introduced in section 3.6.2, the
RODOS fragmentation protocol splits this payload into several CAN frames: the first frame contains 5 B,
each subsequent frame contains 7 B of the topic message. Thus, RODOS splits a 1300 B topic message
into

NCAN frames = 1+
1300 B− 5B

7B
= 186 (3.5)

extended CAN frames with 8 B of CAN payload each. The total transmission time of such a message
with and without bit stuffing is

T1300 B RODOS message = NCAN frames · TCAN frame = 131µs · 186≈ 24.4 ms (3.6)

T1300 B RODOS message+ = NCAN frames · TCAN frame+ = 160µs · 186≈ 29.8 ms (3.7)

with

T1300 B RODOS message : transmission time of 1300 B RODOS message via CAN excluding stuff bits,
NCAN frames : number of CAN frames of a 1300 B RODOS message,
TCAN frame : transmission time of an extended CAN frame excluding stuff bits,
T1300 B RODOS message+ : transmission time of 1300 B RODOS message via CAN including stuff bits,

and
TCAN frame+ : transmission time of an extended CAN frame including stuff bits.

As RODOS topics do not interleave different messages from a single source, this has to be added to
the worst-case delay. Additionally, this could be interrupted by higher priority messages on the CAN

19Partially based on own publication [184].

3.8. TIME SYNCHRONIZATION 67

bus originating from other sources. In this case the maximum delay is infinitely long, and no worst-case
guarantees can be given at all.

DOSIS Component based communication additionally increases this delay. As they handle received
messages asynchronously and outside the regular topic message handling, other processes with equal
or higher priority may delay the message handling.

DOSIS Component Based Time Transfer A time synchronization implemented based on DOSIS Com-
ponents and their interfaces provides a high-level abstraction. An implementation would consist of a
time synchronization provider Component that uses an Interval module to regularly transmit its own
local time. All other nodes use a time synchronization receiver Component that utilizes the provider’s
ComponentInterface to access received time synchronization updates. While this abstraction simplifies
the implementation, it has the largest uncertainties regarding the expected message delay. Thus, it
is only an option for systems with reduced timing requirements. While it may achieve a reasonable
quality in absence of other CAN bus load and higher priority tasks within the receiving nodes, it cannot
give any worst-case guarantees.

RODOS Topic Based Time Transfer The direct use of RODOS topic messages is similar to the use of
DOSIS Components. In contrast to DOSIS Components, it handles messages synchronously and thus
processes received time transfer messages without additional delay. Therefore, it is not affected by
other tasks running on a specific node. Nevertheless, RODOS messages cannot give any worst-case
guarantees. If other messages originate from the same node as the time transfer messages, the delay
may vary substantially.

Thus, we do not encourage the direct use of RODOS based messages for time transfer between
nodes. Although it may decrease the delay variations compared to DOSIS Components, it still cannot
give any guarantees and provides less abstraction and breaks uniform interfaces within the entire
system.

Direct CAN Usage Based Time Transfer While the direct use of CAN frames provides the least abstrac-
tion, it enables timing guarantees for high priority messages. As previously mentioned, the expected
delay for a CAN frame with the highest priority is less than TCAN frame. The direct use of CAN removes
all other delays due to RODOS not interleaving messages or asynchronous handling of DOSIS messages.
Additionally, it enables the transmission of an entire 8 B time message as selected in section 3.8.2 in a
single CAN frame. No additional overhead for fragmentation or inner addressing is required. Thus, a
reference node completes transmission of a time message in [TCAN frame, 2 · TCAN frame+]. Although this
does not account for computational delays, i.e., the time between generating the time message and the
actual transmission thereof as well as the time required to generate a timestamp after receiving the
message, it gives a reasonable estimate for the remaining uncertainty.

Suggested Solution We suggest the direct use of CAN for time transfer. This solution provides the
best knowledge about delays and thus the least uncertainty. Therefore, it promises the best time
synchronization quality out of the previously mentioned solutions.

Tests of the different time transfer mechanisms and their effect on time synchronization quality
confirm the superiority of the direct CAN based approach. Chapter 5 presents these tests and the results
thereof in greater detail.

3.8.4 Local Time Update

At this point, all nodes know the time of the reference node at a certain point in time. The last step of
the time synchronization is the update of the local time on each individual node. A local time update
should be able to compensate the relative error of a local clock. The relative error can be separated
into three individual error terms: a time difference between clocks called offset, a difference between
the frequencies of the individual clocks called skew, and a difference in the change of the frequency

68 CHAPTER 3. SYSTEM DESIGN

over time called drift [217]. Based on the clock definition of Tirado-Andrés and Araujo, an uncorrected
clock Ci is defined relative to the reference time t as

Ci(t) = oi + si · t + di(t) (3.8)

with

Ci(t) : output of clock i at time t,
t : reference time,
oi : offset of clock i,
si : skew of clock i, and
di(t) : drift of clock i at time t.

Figure 3.17 visualizes these error terms. In the remaining part of this section, we will have a look at
three basic update mechanisms and their characteristics.

treference clock

t lo
ca

lc
lo

ck

perfect clock
offset
offset + skew
offset + skew + drift

Figure 3.17: Visual representation of different clock errors for a clock model similar to Tirado-Andrés
and Araujo [217].

Direct Set

The first update mechanism is a direct update of the current value of the local clock. This update
mechanism modifies the offset of the local time after each received time update. We define a direct-set
updated clock as

Ci(t) = oi + si · t + di(t)
⏞ ⏟⏟ ⏞

uncorrected local clock

+ ci(k)
⏞⏟⏟⏞

correction term

(3.9)

with

Ci(t) : output of clock i at time t,
t : reference time,
oi : offset of clock i,
si : skew of clock i,
di(t) : drift of clock i at time t,
ci(k) : correction term of clock i in synchronization interval k, and
k ∈ N0 : identifier of synchronization interval.

3.8. TIME SYNCHRONIZATION 69

The recursive definition of ci(k) for this clock is

ci(0) = 0

ci(k+ 1) = trx,k − (Ci(tk)− ci(k))
⏞ ⏟⏟ ⏞

local time at tk without correction

∀k ∈ N0 (3.10)

with

k ∈ N0 : identifier of synchronization interval,
tk : time of reception of time update message k, and
trx,k : received reference time in time update message k after delay compensation.

Due to the direct update, the only remaining error ∀t ∈ {t | ∃k ∈ N0 : t = tk} is the remaining
uncertainty due to the unknown transmission delay as presented in section 3.8.3. The main advantage
of this update mechanism is its simplicity and stability. The major disadvantage of this method are the
jumps of the local time.

P-Controller

A simple proportional (P)-controller, steering the local clock towards the received time by adjusting the
frequency of the local clock, avoids the jumps of the local time. The controller updates the clock skew for
each interval between two consecutive time synchronization points. For each interval between two local
clock updates, the last synchronization point and the local time associated with this synchronization
point are the reference for forward propagation of the local clock. Thus, a P-controlled clock Ci(t) is
defined as

Ci(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

uncorrected clock
⏟ ⏞⏞ ⏟

oi + si · t + di(t), t ≤ t1

Ci(tk)
⏞ ⏟⏟ ⏞

local time at
start of interval

+ (si + ui(k))
⏞ ⏟⏟ ⏞

corrected skew

· (t − tk)
⏞ ⏟⏟ ⏞

time since
start of interval

+di(t), t > t1
(3.11)

with

Ci(t) : output of clock i at time t,
t : reference time,
oi : offset of clock i,
si : skew of clock i,
di(t) : drift of clock i at time t,
k : identifier of synchronization interval,
tk : time of reception of time update message k,
ui(k) : skew correction term of clock i in synchronization interval k,
kt ∈ N0 : identifier of time synchronization interval at time t.

The skew correction term ui(k) is the output of a P-controller that uses the time deviation as input
error term:

ei(k) = trx,k − Ci(tk)

ui(k) = Kp · ei(k)
(3.12)

with

ei(k) : clock error at of clock i at the beginning of synchronization interval k,
trx,k : received reference time in time update message k after delay compensation, and
Kp : proportional gain koefficient.

The main advantage of such a P-controlled clock compared to the direct-set update is the absence
of jumps in local time. Although the P-controlled clock update can compensate arbitrary clock offsets,

70 CHAPTER 3. SYSTEM DESIGN

it cannot entirely compensate the clock skew. A static offset, a common problem with P-controllers,
also affects this clock update mechanism. While a clock with only an offset error can be successfully
compensated20, a clock with offset and skew errors will converge towards 1− si/Kp

21.
Large offsets may potentially lead to situations where a P-controlled clock generates decreasing

output performance. To avoid these situations, Kp has to be selected carefully; depending on the
scenario ui(k) must be additionally limited to never output a control parameter less than or equal to
−1. Values of −1 or below could lead to a stopped or backwards running clock with unexpected side
effects.

PI-Controller

Adding an integral (I) component to the previously presented P-controller compensates the remaining
error in ei(k) [120, p. 412 ff.]. The only difference of the resulting proportional integral (PI)-controller
compared to the P-controller based clock update is a modified definition of ui(k)

ui(k) = Kp · ei(k) + Ki ·
k
∑︂

n=1

ei(n) (3.13)

with

ui(k) : skew correction term of clock i in synchronization interval k,
k : identifier of synchronization interval,
Kp : proportional gain koefficient,
ei(k) : clock error at of clock i at the beginning of synchronization interval k, and
Ki : integral gain koefficient.

The integral part of the PI-controller is represented by a sum over an integer range, as the controller
acts on discrete time input.

Although the PI-controller adds some complexity and increases the implementation effort, it is still
reasonably simple and can thus be used for time updates. Note that although a PI-controlled clock
update can compensate clock skew and does not generate any jumps in its output, it may still suffer
from a reverse running clock output. Similar to the P-controlled clock, this can happen with large
offsets or other large distortions to the input. Careful tuning of Kp and Ki can reduce the risk of these
situations, but only a limit similar to the P-controlled clock guarantees a monotonically increasing clock
output.

Suggested Solution

Figure 3.18 depicts the expected output for the suggested clock update mechanisms. As previously
mentioned, a PI-controlled update provides the best error compensation of all candidates. While more
advanced controllers would be possible, we suggest using the relatively simple PI-controller to keep the
complexity of the time synchronization minimal.

The remaining concerns are the potentially backwards running clock if a large offset between
reference and local clock is present. We suggest limiting the controller output to a reasonable range.
While selecting the range for a specific physical setup, the quality of the physical clock has to be
considered. The clock synchronization cannot compensate a skew difference of the reference and the
local clock larger than the selected limit.

In addition to the PI-controlled clock update, we suggest an initial hard synchronization of the
local and the reference clock. This is especially important for systems with a large initial clock offset.
Although this generates an initial jump of the local time, it reduces the time needed to first synchronize
the local clock. Afterward, the PI-controlled and limited clock update guarantees a monotonically
growing clock output. Equations (3.14) to (3.17) define the suggested clock:

20See appendix C.1.
21See appendix C.2 and appendix C.3.

3.8. TIME SYNCHRONIZATION 71

t1 t2 t3 t4 t5 t6 t8 t10

Ci(t)

C
i(

t)
−

t

perfect clock
unsynchronized
direct-set
P-controlled
PI-controlled

Figure 3.18: Qualitative comparison of clock update mechanisms. Shown is the time difference of
the reference clock and a local clock with offset, skew, and drift for the first 10 time synchronization
intervals. The direct-set update suffers from time jumps in the local time. A P-controller based update
mitigates these jumps, but cannot compensate the remaining offset. Finally, a PI-controller compensates
the remaining offset.

72 CHAPTER 3. SYSTEM DESIGN

Ci(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

unsynchronized clock
⏟ ⏞⏞ ⏟

oi + si · t + di(t) , t ≤ t1

oi + si · t + di(t)
⏞ ⏟⏟ ⏞

unsynchronized clock

+ ci
⏞⏟⏟⏞

inital offset correction

, t1 < t ≤ t2

Ci(tk)
⏞ ⏟⏟ ⏞

local time at
start of interval

+ (si + ui(k))
⏞ ⏟⏟ ⏞

corrected skew

· (t − tk)
⏞ ⏟⏟ ⏞

time since
start of interval

+di(t), tk < t ≤ tk+1∀k ≥ 2

(3.14)

ci = ei(1) (3.15)

ui(k) = Kp · ei(k) + Ki ·
k
∑︂

n=1

ei(n) (3.16)

ei(k) = trx,k − Ci(tk) (3.17)

with

Ci(t) : output of clock i at time t,
t : reference time,
oi : offset of clock i,
si : skew of clock i,
di(t) : drift of clock i at time t,
ci : correction term of clock i,
tk : time of reception of time update message k,
k : identifier of synchronization interval,
ui(k) : skew correction term of clock i in synchronization interval k,
ei(k) : clock error at of clock i at the beginning of synchronization interval k,
Kp : proportional gain koefficient,
Ki : integral gain koefficient, and
trx,k : received reference time in time update message k after delay compensation.

For a reliable and unique time representation, the suggested solution assumes an implementation
that immediately handles a received time message and updates the clock parameters accordingly. More
specifically, it assumes that the transition from synchronization interval k to k+ 1 including the update
of ui(k), tk, behaves like a single atomic operation. Any process accessing the current time will evaluate
Ci(t) based on the latest set of parameters. Detailed information regarding the actual implementation
of this time synchronization is available in section 4.3.

3.9 Reliability

Reliability is an important aspect of space missions. Many CubeSats are either dead-on-arrival or fail
within the first months of operations [24]. Insufficient testing and issues regarding the solar array
deployment are the main reasons for the high infant mortality in CubeSats [64]. A reliability assessment
based on detected errors during testing proposed by Langer aims at a good compromise between short
time to orbit and reasonable reliability [105]. His method mainly targets the infant mortality due
to insufficient testing and thus remaining design and implementation errors in a CubeSat. A study
by Dubos, Castet, and Saleh shows that failure rate for small satellites grow again after only a few
years [55]. This can no longer be attributed to infant mortality. The harsh space environment and the
effects of radiation are one factor leading to defects in various components [223]. A major contributing
factor to single event effects of radiations are protons trapped in earth’s magnetic field [168]. Especially
within the SAA, which is one of the high interest regions for the AFIS mission (see section 2.1.1), an
increased intensity of trapped protons is to be expected [145, 168, 223]. Thus, a countermeasure for
this kind of defect in combination with proper pre-flight testing promises the best overall reliability.

Design goals 2 and 4 demand a system that designers and developers can adapt to the needs of
a specific mission. Identification of failure scenarios and faults leading to these failures provides the

3.9. RELIABILITY 73

required details to design an appropriate fault tolerance scheme. Within the following sections, we will
use the terms fault and failure according to ISO/IEC/IEEE 24765:2017(E) [87]: A fault in this sense is
a defect in any component of the system such as a software bug; and a failure is an observable effect of
a fault leading to a malfunction of the system where the system can no longer fulfill its purpose.

Within this section, we will first have a look at the different faults, the sources thereof, and the
resulting failures. Section 3.9.1 will introduce a classification of faults and failures, followed by an
introduction to specific scenarios in section 3.9.2. Finally, section 3.9.3 presents mitigation strategies
and solutions a mission designer can use on demand.

3.9.1 Classification

Prior to an analysis of specific scenarios, we require a basic classification of faults and the resulting
failures. This not only simplifies the selection of scenarios that require special treatment, but also
provides a structured overview to better understand those scenarios.

Origin of Faults

We consider four major categories for the origin of a specific fault:

Design Fault The first source of faults is the overall system design. Faults in the design may manifest
themselves due to unsuitable systems engineering practices or a lack of knowledge about a system’s
parameters. Critical design faults can be detected with extensive testing of the integrated system.

Implementation Fault Implementation faults are faults due to a software or hardware component that
does not stick to its specification, e.g., software bugs. Proper testing of all parts of a system and their
respective interfaces may uncover implementation faults.

Hardware Fault — Singe Event Effects SEE are faults due to external factors that appear without
any prior warning. As their name indicates, the impact of a single charged particle may result in an
observable effect, such as a bit-flip in memory. In contrast to design and implementation faults, these
cannot be eliminated by a simple modification to the specification or the software implementation.
Mitigation strategies exist that reduce the impact of SEEs on the overall system and potentially correct
such a fault before they generate an observable failure.

Hardware Fault — Wear out Wear out and the prior gradual degradation of performance parameters
of electronic devices is another source for faults in CubeSats. Especially due to the harsh space
environment, a faster degradation of components must be expected. After some time components may
fail due to wear out and cannot be recovered. The duration until components fail may be extended
with shielding or the selection of components specifically intended for space environment.

Failures

Failures are the consequence of faults that render the system uncapable of fulfilling its task. To select
proper countermeasures for specific faults or failures of subcomponents, a better understanding of the
observable failures is necessary. Any of the previously prevented faults may result in:

• no effect at all, i.e., the fault cannot be observed as it either does not generate any effect or a
mitigation strategy hides the effect on a lower, non-observable layer of the system;

• transient effects, i.e., effects that can only be observed for a short period of time;

• and permanent effects, i.e., destructive scenarios where a recovery of the specific component is
not possible at all.

74 CHAPTER 3. SYSTEM DESIGN

The effect can be again split into three different categories: fail-silent, wrong data, or bogus
behavior. Fail-silent failure modes can be observed by the absence of an expected output. An example
for a fail-silent failure mode would be an unavailable component due to power loss. Wrong-data failure
modes do not affect the responsiveness or behavior of a component; only the content of the output
is wrong. The failure mode of a sensor reporting wrong values is an example of a wrong-data failure
mode. The last category, bogus behavior, summarizes all failure modes that affect the control flow of a
component. This can lead to any kind of unexpected output like additional unwanted interaction with
other components of the system.

3.9.2 Considered Scenarios

Concrete failure scenarios provide the basic information for the design and implementation of mitigation
strategies to finally increase a system’s reliability. This section will present the considered failure modes
divided into three categories: failures due to a priori existing faults, failures affecting a single node,
and failures affecting the communication between nodes. While the first category focuses on the origin
of the fault and the fact that it could have been detected during testing, the other two categories focus
on the part of the system affected by a certain fault.

A-Priori Existing Faults

In this category, we consider two separate faults that may lead to system failures: design faults and
implementation faults. Although for a specific fault it may not be clear if it originates from the design
or the implementation, it is important to separate them for proper mitigation strategies. Both failure
scenarios have a permanent effect. Thus, they can only be resolved with a new revision of the system.

Design Faults The design of a system may contain faults that lead to system failures. Such faults can
be hidden in various parts of the design, but ultimately lead to an invalid state of the overall integrated
system. An example for such a fault is a high-level state machine controlling the system that contains a
potential lockup, which freezes the system if a certain condition or sequence of conditions appears.
Although according to ISO/IEC/IEEE 24765:2017(E) a design fault is a “[. . .] fault that results from a
human error during system design [. . .]” [87, p. 131], we consider all faults of high-level interaction
between components as well as faults originating from invalid or contradicting assumptions about a
system as design faults. Thus, design faults only appear in the interaction of components and analyzing
a subset of the system may not reveal them. Design faults appear deterministically, i.e., if the same
sequence of actions leading to a system failure as a consequence of a design fault occurs, the same
failure happens again. Any failure mode can be activated due to design faults, i.e., a system may
fail-silent, generate wrong data, or behave wrongly.

Implementation Faults We consider classical bugs in a system’s realization as implementation faults.
These faults can be summarized as a breach of the interface contract of a single component and may
appear in hardware or software. Similar to design faults, implementation faults appear deterministically
and may lead to any failure mode. In contrast to design faults, implementation faults can be observed
by applying the same sequence of input values to a single component of the system.

Failures Affecting a Single Node

The second category contains all failures of a single node due to a fault that did not exist within the
design or implementation of the system and only manifested at a later state of a mission. We consider
three different scenarios: bit errors, unexpected resets of a node, and permanent failure of a node.

Bit Errors Bit errors, e.g., bit-flips or stuck bits, may appear spontaneously in any part of a node. In
many cases these bit errors are a consequence of single-event effects [168, 223]. Depending on the
affected memory region, a bit-flip may lead to any failure mode. Bit-flips in data or background memory

3.9. RELIABILITY 75

used for log files and measurements are in most cases less critical to the overall system performance.
Bit-flips in code memory or the caches and registers of an MCU have a higher impact and will most likely
lead to unexpected behavior. In most cases, bit-flips are a temporary effect and will not permanently
damage the memory cells.

Unexpected Reset An unexpected reset is a temporary fault that resets an entire node into its initial
configuration. Many faults can lead to this failure, e.g., power reset due to EPS protection circuits,
watchdog resets due to a faulty firmware, resets triggered by the firmware itself, or uncorrected
bit errors in code memory. In either case, we assume the node to reset its entire state and restart
its operation as if it was just powered on. We furthermore assume that the underlying fault only
sporadically affects the system and that the fault is no longer active after a system reset. Nevertheless,
a node will lose its entire runtime state and any synchronization with other nodes of the distributed
system as a consequence of an unexpected reset.

Permanent Failure The last failure mode of a single node is a permanent failure of the entire node or
parts thereof. While the previous failure mode is temporary and recovers its functionality after a full
system reset, recovery from a permanent failure is not possible. An example for a permanent failure is
a node that can no longer operate due to physical damage or wear out, e.g., due to radiation or thermal
cycling.

Failures Affecting the Communication between Nodes

The third category contains two considered scenarios of failed communication between different nodes:
either wrong communication with invalid or unexpected data or missed communication where the
transmission of parts of the information is unsuccessful.

Wrong Communication If faults occur during transmission of information between nodes, a receiving
node may process invalid data. We name this failure state a wrong communication failure. Depending
on the further use of the received information this may have a wide range of side effects.

Missed Communication Whenever a transmitting node sends data to another node, we expect the
receiving node to receive and process the data. If it does not receive any data at all, a missed
communication failure occurred. A missed communication failure may be temporary, e.g., a receiver
missed a single message, or permanent, e.g., an interruption of the physical interconnection between
nodes.

3.9.3 Mitigation Strategies

We divide the mitigation strategies into three categories based on the abstraction layer suggested for
their respective mitigation: early detection prior to launch, mitigation in hardware, and mitigation in
software.

Early Detection of Design and Implementation Faults

We do not suggest runtime migration for design or implementation faults, but instead suggest the use
of extensive testing of all parts of the system. While unit testing can detect most implementation errors,
integration testing provides insight into the interaction of different components. Within MOVE-II, we
made good experiences with early integration testing in various different scenarios. Although even
with combined unit and integration testing some faults may still be hidden in the system, but Langer
suggested that a saturation in detected faults over time can be achieved [105]. Further analysis of
design and implementation faults and best practices regarding testing and verification of a CubeSat is
not part of this thesis.

76 CHAPTER 3. SYSTEM DESIGN

Fault-Tolerance in Hardware

The different fault scenarios require an individual handling. Out of these scenarios, bit-flips, node
resets, and communication problems can be partially handled in hardware.

Bit-Flips We suggest the use of hardware specifically suitable for space environment to reduce the risk
of bit errors and wear out related symptoms in critical nodes. This is especially critical for the MCU and
memory used for code storage and other critical mission data. COTSs suitable for this purpose exist,
such as the ARM-M based MCUs by Vorago Technologies [228]. The radiation hardening of this device
exceeds all requirements for LEO applications. If the internal memory of such a device is not sufficient,
additional external memory provides the storage for program code and critical data. MRAM or FRAM
are sufficiently radiation tolerant for LEO applications [71, 78]. Thus, we assume that these devices’
protection against bit-flips in any registers, relevant sections of code memory, and critical data memory
is sufficient for our application.

Node Reset or Failure While the use of space rated hardware also reduces the risk of node resets or
permanent failures, it cannot entirely prevent them. Especially lockups in a system may still happen
due to design or implementation faults that were not detected during testing. To avoid permanent
loss of a node, we suggest the use of watchdog timers. These watchdogs must be repeatedly reset by
the software and otherwise trigger a reset of the entire node. They avoid permanent node failures
due to stuck software by simply resetting an unresponsive node, but cannot recover from permanent
node failures due to defective hardware components. The specific watchdog setup depends on the
requirements of the respective mission and many CubeSat designers and developers rely on their
capabilities to recover from off-nominal situations [24]. Thus, higher level software must still be able
to recover from sporadic node resets and in some cases even permanent node failures.

Communication CAN already covers a wide range of faults and is capable of detecting errors during
transmission and retransmission of failed frames [81–83] and may be sufficient for most CubeSats.
In addition, especially for missions with increased reliability requirements, we suggest using the
CAN extension as suggested in ECSS-E-ST-50-15C [59]. This standard suggests the use of hardware
redundancy and a physical layer that provides the high reliability features of ISO 11898-3:2006(E) [83]
at higher signaling rates than originally suggested. This setup mitigates the risk of wrong communication
and reduces the probability of missed communication due to physical reasons to a minimum. While
these features ensure successful transmission of CAN frames, higher layer protocols may still suffer
packet loss due to the finite size of buffers in real implementations. Therefore, missed communication
must still be considered as a relevant scenario on higher layers.

Fault-Tolerance in Software

The remaining failure modes are unexpected node resets, permanent node failures, and missed
communication. In most CubeSats short downtimes due to a system reset or a missed communication
are acceptable, thus a mitigation scheme based on recovery from off-nominal situations can be used.
In those systems, it is essential to automatically activate all components after a reset as fast as
possible, reattach the components to the respective communication and resume their respective tasks.
Components that require an internal state, i.e., such components that require knowledge about past
events, may include an additional resynchronization step to synchronize their state with other nodes
or reload the last known state from permanent memory. If fail-over entities exist and these entities
need to agree on a fail-over situation, a leader-election algorithm assures a synchronized decision in all
nodes. Section 3.9.4 proposes a bully algorithm for this election. If an application is only active on
a single node at a time, a checkpoint and restore mechanism provides the necessary features. It can
transfer a state either to permanent memory or to a different node. Section 3.9.5 presents the basics of
such a mechanism.

Missed communication failures are only a minor concern as sporadically missed messages can be
tolerated similar to a system reset. In both cases the application needs to be aware of the possibility of

3.9. RELIABILITY 77

such errors and carefully treat every communication. Especially situations where software infinitely
waits for a missed message can lead to failures of the entire system. In general, application developers
should implement the handling of missed communication within the DOSIS framework. The framework
itself provides the required asynchronous interfaces to messages and the latest state of the sub-values
of any register (see sections 3.4 and 3.5).

If short downtimes are not acceptable for a specific application, this application requires other
mitigation mechanisms. One or more hot redundant copies of an application can seamlessly continue
the required task. The DOSIS framework and the global knowledge of information provides all means
to implement such a mechanism as part of the application. Section 3.9.6 presents the basic options for
redundant execution of a specific task and the required considerations for application developers.

3.9.4 Simplified Bully for Leader Election

This section will present the simplified Bully leader election tailored to the environment of the DOSIS
framework. The first part of this section introduces the original Bully algorithm and modifications
thereof, followed by a detailed description of the suggested simplified Bully leader election.

Previous Versions of the Bully Leader Election Algorithm

The first version of the Bully algorithm, proposed by Garcia-Molina, is a widely applicable algorithm
for leader election in a distributed system [69]. This paragraph summarizes the algorithm according
to [69]: Each node has a unique identifier in a certain range. Any node may initiate an election by
sending a special election message to all nodes that have a larger identifier than the initiating node
itself. If those nodes are alive, they will individually respond to the initiator of the election with an
ok message. Thus, the original initiator knows that a node with higher identifier is available and thus
knows it lost the election process. After replying to an election message, each of the nodes will initiate
its own election. If a node does not receive a single ok message in response to its election message, it
is the node with the largest available identifier. Thus, it wins the election and sends a message to all
other nodes to inform them about the changed leader. Figure 3.19 depicts the Bully leader election
after the previous leader has failed.

The main disadvantage of the Bully algorithm is the amount of messages required for a full election
process. The amount of messages of a full election using the Bully algorithm is in O(n2) [70] as each
node initiates an election and receives one response from each live node. The high message count can
be reduced with a nomination based extension of the Bully algorithm proposed in [111]. In this version
of the algorithm the election initiating node collects the responses of all other nodes and nominates
the node with the highest identifier. Afterward, the nominated node announces itself as winner of the
election process using a coordinator message. Figure 3.20 presents an exemplary election process for
this version of the Bully algorithm.

The authors of [97] and [70] present a similar modification, which calls the nomination message
grant messages. Additionally, this version adds stop messages to terminate a concurrently started
election process and thus further reduce the amount of messages. The number of messages required
for a full election using this modified Bully algorithm is in O(n) [70]. The main disadvantage of this
version of the Bully algorithm are the large timeouts and thus the long runtime of an election [155].
Soundarabai et al. add a flag to suppress concurrently started elections to the grant based Bully
algorithm. Extending the state during the election to also keep track of the second-highest identifier
reduces the overhead if the potential candidate fails mid-election [4].

A different approach by Mamun, Masum, and Mustafa reduces the number of required messages
without an additional nomination or grant message [129]. Instead, a node that initiated the election
also announces the new leader and directly transmits the coordinator message [129]. Additional
messages simplify the recovery process of previously failed nodes without initiating a full election [129].
The solution in [129] does not address some issues regarding concurrently initiated elections and some
special cases of recovering nodes [155]. Murshed and Allen proposes an adaptation of the algorithm
presented in [129] that addresses these concerns [155]. They split the set of nodes into potential
candidates and ordinary nodes of an election [155] and thus reduce the amount of messages required

78 CHAPTER 3. SYSTEM DESIGN

1

2

3

4

5

(a) Initial election

1

2

3

4

5

(b) Response

1

2

3

4

5

(c) Second election

1

2

3

4

5

(d) Response

1

2

3

4

5

(e) Coordinator an-
nouncement

Figure 3.19: Leader election using the original Bully algorithm according to [69]. Node 2 initiates the
election by sending an election message to all nodes with larger identifier (a). All live nodes respond to
the election message, which also stops the active election process in node 2 (b), and initiate their own
election (c). Again, all live nodes respond to the election message (d). The node that has the largest
identifier among the live nodes does not receive any response. Therefore, it announces itself as new
coordinator to all nodes (e).

for a full election. An ordinary node may still become the elected leader if all candidate nodes fail [155].
Different timeout values for received ok messages resolve concurrently initiated elections, as a node
with larger identifier will end the election first [155]. This version also uses multicast messages to keep
the amount of messages for an election process minimal [155]. Kabashi, Zeqiri, and Zabeli suggest a
simplification for some cases where the nodes with highest and second-highest identifier may become
the leader without a full election [89]. Figure 3.21 depicts a nominal election as suggested in these
versions of the Bully algorithm. Similar to the nomination or grant based Bully algorithm, this approach
has a worst-case complexity in O(n) [89, 129, 155].

Proposed Simplified Bully Leader Election Algorithm

We propose a simplified version of the enhanced Bully algorithm from [129, 155]. The suggested
simplifications reduce the complexity of the algorithm and make use of the CAN communication’s
broadcast nature.

The leader election must fulfill two main criteria: safety and liveness [155]. In this context safety
means that all nodes must agree on a single leader; liveness mains that after an election all nodes must
agree that the election has finished and accept the elected leader. The algorithm furthermore assumes
that:

1. all nodes use the same algorithm for leader election;

2. the system is synchronous and enables the use of timeouts;

3. the system never halts temporarily;

4. the network does not fail, only individual nodes may fail;

5. the network strongly orders all transmitted messages;

6. every node n has a unique identifier in ∈ N+;

3.9. RELIABILITY 79

1

2

3

4

5

(a) Election

1

2

3

4

5

(b) Response

1

2

3

4

5

(c) Nomination

1

2

3

4

5

(d) Coordinator an-
nouncement

Figure 3.20: Leader election using a nomination or grant based Bully algorithm similar to a nominal
election in [4, 70, 97, 111, 201]. Node 2 initiates the election (a) and receives the response of all live
nodes (b). After a timeout, node 2 selects the node with the highest identifier, in this case node 4, and
nominates this node as new leader (c). Node 4 announces itself as new coordinator to all nodes (d).

1

2

3

4

5

(a) Election

1

2

3

4

5

(b) Response

1

2

3

4

5

4

4
4

4

(c) Coordinator an-
nouncement

Figure 3.21: Leader election using a Bully algorithm where an election initiating node announces the
new leader as used in [89, 129, 155]. Node 2 initiates an election (a), gathers the response of all live
nodes (b), and directly announces the new elected leader (c).

7. every node knows the set of used identifiers Iall := {x | ∃n : x = in};
8. the nodes do not know the subset of live nodes Ilive := {x ∈ Iall : x is alive} and can detect the

failure of an elected leader only based on timeouts; and

9. crashed nodes may rejoin the election at any time.

These assumptions are similar to the assumptions in [69] and the assumed identifiers in [155]. Only
item 5 differs and enforces a total order of all messages. Garcia-Molina [69] only assumes a strong
ordering of messages from a certain node. This assumption can be made as CAN sequentially broadcasts
all messages on a single physical connection. It is clear that every node will receive those messages in
the same sequential order.

Additionally, every node recognizes the current leader and stores the unique identifier of said leader
il in a local variable leader.

The suggested algorithm uses five types of messages similar to the messages in [129]:

election An election message initiates an election. It is sent by a node d that detected the absence of
the previous leader. The message contains the unique identifier id of the sending node.

ok An ok message is the response to a received election message, indicating that a node n is alive. This
message contains the unique identifier in of the sending node.

coordinator A coordinator message announces a new leader node l. It contains the unique identifier il
of said leader.

query A resuming node r sends a query message to request information about the current leader
without initiating a new election. A query message contains the unique identifier ir of this node.

80 CHAPTER 3. SYSTEM DESIGN

answer Answer messages are the reply to query messages. An answer message contains the unique
identifier il of the current leader.

In contrast to [129], all messages are broadcast-messages.

Regular Leader Election Whenever an arbitrary node d detects the absence of the leader, it initiates an
election. The election starts with an election message; Node d broadcasts this message including its own
identifier id and starts a timeout Telection to wait for ok messages. Every live node n with in > id will wait
for Tsend ok and afterward reply with an ok and start a timeout Tok. The timeout prior to sending the ok
message reduces the amount of messages for concurrently initiated elections. This is presented in more
detail in Concurrent Elections on page 81. All other live nodes do not reply and start a timeout Tfail.
Unless multiple nodes fail during the election process, this timeout will not be reached. If node d did not
receive a single ok before its timeout has passed, it wins the election, broadcasts a coordinator message
using its own identifier id , and updates its own leader:= id . Otherwise, it selects the largest identifier
of the received ok messages as the new leader, i.e., il = max({in ∈ Iall | in ∈ received ok messages}),
broadcasts a corresponding coordinator message and updates its own leader:= il . All live nodes update
their respective leader with the il of the received coordinator message. This election is similar to
the election process shown in figure 3.21, but uses broadcast messages filtered at the receiving node
instead of individual messages.

Node Recovery A previously failing node may reappear and rejoin the set of live nodes Ilive. This
node r will execute a special recovery sequence similar to the recovery presented in [89]: If the
recovering node has the maximum identifier of all nodes, i.e., ir = max({in ∈ Iall}), it immediately
broadcasts a coordination message announcing itself as new leader and updates leader:= ir ; Otherwise,
it broadcasts a query messages and waits for Tquery. The currently elected leader l will reply with an
answer message containing its own identifier il . If ir does not receive an answer, it knows that the
current leader node has failed and initiates a regular election; Otherwise, it compares its own identifier
with the received identifier. If ir > il as received within the answer message, node r immediately
announces itself as new leader in a coordination message and updates its leader:= ir ; Otherwise, it
accepts node l as leader and updates its leader:= il .

Failure of Detecting Node A detecting node d may fail after transmitting the initial election message
but before announcing the elected leader. All nodes that replied to this election message detect the
absence of d after Tok if they do not receive a coordinator message. In this case the node with the
largest identifier among the ok messages will announce itself as new leader. It publishes a coordinator
message containing its own identifier and updates its leader accordingly.

In contrast to [155], we do not use individual timeouts but instead directly base the decision on
transmitted messages: The winning node detects that it won the election based on the ok messages of
all other nodes. The broadcast nature of all messages on the CAN bus enables access to this information.
The total order of messages on the CAN bus guarantees that each node receives the initial election
message prior to any of the ok messages. Thus, it is safe to only take those ok messages into account
that were received after the initial election message.

If node d was the node with the highest identifier alive, no other node does reply with an ok
message. In this case, no node can decide which node should become the new leader. Therefore, no
node announces a winner with a coordinator message. Nodes that sent an ok can detect the absence
of the coordinator message after waiting for an additional Tawait coordinator, all other nodes after their
Tfail timeout. In this case, those nodes will restart the election process. The same timeouts also recover
from a concurrent failure of node d and the node with the highest identifier mid-election after it sent
the ok message. This special case with a failure of a very specific node or a concurrent failure of two
nodes is unlikely. Thus, we accept the large amount of concurrently initiated elections.

Failure of New Leader Mid-Election If node l ′ with il ′ =max({in ∈ Iall}) at the beginning of the election
process fails mid-election, it may still be announced as new leader. This happens if it fails after sending

3.9. RELIABILITY 81

its ok message. All live nodes agree on a leader and the election process terminates regularly. The
result is similar to the elected leader failing after the election has completed. One of the remaining live
nodes will eventually detect the absence of the leader and initiate a new election. Thus, no special
treatment of this situation is required.

Concurrent Elections In some situations, multiple nodes may detect the absence of the leader concur-
rently. Each of those nodes will initiate an election by transmitting an election message. As previously
mentioned, all nodes that potentially reply to the election message will delay this response and thus
only send a single ok message each. Once a node reaches its Tsend ok timeout, it decides whether to send
an ok message based on its own identifier and the highest identifier received in one of the previous
election messages. An election-initiating node a will not continue its active election after it receives
an election message from a node b with ib > ia. Thus, only a single node with the highest identifier
among the election-initiating nodes will continue the election process. This mechanism stops all but a
single concurrently initiated election, similar to the stop messages used in other versions of the bully
algorithm, e.g., [70], and does not require individual timeouts as suggested in [155]. The remaining
election will continue similar to the regular leader election presented on page 80. Figure 3.22 depicts
the messages of two concurrent elections.

5

4

3

2

1

(a) Election

5

4

3

2

1

(b) Response

5

4

3

2

1

4

(c) Coordinator

Figure 3.22: Concurrently initiated elections with the proposed Bully algorithm. In (a), nodes 2 and 3
concurrently initiate an election. All nodes wait for Tsend ok after receiving the first election message.
Afterward, nodes send an ok message if and only if their own identifier is higher than the highest
identifier of the previous election messages. This is only the case for node 4, which sends an ok message
in (b). Node 2 does not continue with its election as it received an election message from node 3.
Finally, in (c) node 3 broadcasts a coordinator message announcing node 4 as new leader.

Suboptimal Node Elected In real scenarios, especially if high load on the CAN bus increases message
transmission times, a suboptimal node l ′ where i′l ̸=max({in ∈ Ilive}) may win the election. To resolve
this situation, a node that receives a coordinator message with an identifier lower than its own identifier
immediately sends another coordinator message announcing itself as new leader. A similar behavior
was also suggested by Kabashi, Zeqiri, and Zabeli [89]. Although this may lead to many coordinator
messages, it resolves unintended situations and thus assures that all live nodes will eventually agree on
a single leader. This is guaranteed, as all nodes handle received coordinator messages and the strong
order of messages on the shared CAN bus assures that all nodes process these messages in this order.

Timeouts We can define a time Tresp as upper bound until a node that sends a request to another node
receives the response. Due to the synchronous system and the assumption of a never failing network,
this timeout will be respected unless a node fails. A failure detector based on this timeout can be
relied on as initial failure detector and as failure detector during an election process [129]. According
to [129], Tresp is defined based on the transmission time of a message Ttrx and the processing time Tp

82 CHAPTER 3. SYSTEM DESIGN

as

Tresp = 2 · Ttrx + 1 · Tp . (3.18)

Each message can be encoded in a single CAN frame, assuming the message, consisting of the
message’s type and the respective node identifier, can be embedded in 8 B or less. From equation (3.4)
we know that the transmission of a single CAN frame may require up to TCAN frame+ = 160µs. Thus,
for N nodes sending a message concurrently, the transmission time for all messages is less than
TN CAN messages = N · TCAN frame+ = N · 160µs. The propagation delay of the CAN message in the physical
medium is small compared to TCAN frame+ and thus neglected for simplicity. For a real application where
other traffic exists on the CAN bus, we suggest a Ttrx > TN CAN messages. The added margin also covers the
neglected propagation delay. Furthermore, if Ttrx≫ Tp and it contains some margin, we can simplify
equation (3.18) to

Tresp ≈ 2 · Ttrx (3.19)

as stated in [155].
Based on Ttrx and Tresp, we suggest the following timeouts:

Tsend ok ≥ 1Ttrx (3.20)

Tawait coordinator ≥ 1Ttrx (3.21)

Telection ≥ Tresp + Tsend ok ≥ 3Ttrx (3.22)

Tok ≥ Telection ≥ 3Ttrx (3.23)

Tfail ≥ Tsend ok + Tok + Tawait coordinator ≥ 5Ttrx (3.24)

Tquery ≥ Tfail ≥ 5Ttrx (3.25)

We suggest a single Ttrx prior to sending an ok message, as this assures that a node receives all
election messages of concurrently initiated elections. No node will decide to initiate an election while a
previously started election has not yet finished. Thus, a single ok message is sufficient even if all nodes
concurrently initiate an election.

Telection is defined similar to [129] extended by the time a node waits before transmitting its ok
message. Tok, which is used by all nodes after transmitting an ok message to wait for a coordinator
message, is equal or longer than Telection. A node will start this timer after sending the ok message, i.e.,
after Tsend ok. This timer will only trigger at least Ttrx after the election-initiating node broadcasts the
coordinator announcement. If the election-initiating node fails and does not broadcast a coordinator
massage, nodes which did reply with an ok message select the leader as previously suggested (see
page 80). One of those nodes may publish a coordinator message, therefore all other nodes wait for at
least Ttrx to await this message. Only if this message is also missing, the entire election failed. Therefore,
the timeout of nodes that do not send an ok message should be at least as long as all timeouts of those
nodes that sent such a message combined.

Finally, the timeout after sending a query message to await an answer should be longer than the
time until an initiated election finally fails, i.e., Tfail. This assures that a resuming node, which will not
receive an answer while an election is still running, does not interfere with the election process. If an
election was running, the resuming node will receive a coordinator message before this timeout has
passed. If it does not receive such a message, either the election has finally failed or the selected leader
has failed. In both cases it is safe to initiate a new election once this timeout has passed.

Algorithm Summary Algorithms 3.1 to 3.5 depict the procedures of the suggested bully algorithm. As
mentioned earlier, each node knows its own identifier iown and the set of used identifier Iall. Additionally,
each node has a local variable leader that stores the identifier of the currently elected leader. In
addition to the identifiers, this variable may also store a special value indicating that the leader is
currently unknown. A node triggers algorithm 3.1 whenever it detects the absence of the current leader.
Whenever a node recovers from a previous fault condition, it executes algorithm 3.4. Algorithms 3.2,
3.3 and 3.5 are triggered whenever a node receives the corresponding message type. The only exception

3.9. RELIABILITY 83

is algorithm 3.2: A node does not trigger this algorithm again, if it is already running and currently
waiting for additional election messages in line 7. In all algorithms, WAIT is a special function that
suspends the execution for a period of time specified with the first parameter; BROADCAST sends a
message of a given type and optionally with a specific identifier on the CAN bus; and ABORT aborts
processing of the specified procedure if the local node is currently executing this procedure.

Algorithm 3.1 Initiate election

1: procedure INITIATE ELECTION

2: leader←unknown
3: BROADCAST(election, iown)
4: WAIT(Telection) ▷Wait for incoming ok messages
5: N ←number of received ok messages
6: if N = 0 then
7: leader← iown
8: else
9: leader←max(in ∈ {received ok messages})

10: end if
11: BROADCAST(coordinator, leader)
12: end procedure

Algorithm 3.2 Receive election

1: procedure RECEIVE ELECTION(isource)
2: leader← unknown
3: if iown < isource then
4: ABORT(INITIATE ELECTION) ▷ Stop concurrent elections
5: end if
6: ABORT(RESUME)
7: WAIT(Tsend ok) ▷Wait for additional election messages
8: imax←max(i ∈ {received election messages})
9: if imax > iown then ▷ active participation

10: BROADCAST(ok, iown)
11: WAIT(Tok) ▷ A coordinator message and thus an abort is expected here
12: if iown >max(i ∈ {received ok messages}) then
13: leader← iown
14: BROADCAST(coordinator, iown)
15: else
16: WAIT(Tawait coordination)
17: end if
18: else ▷ no active participation in election
19: WAIT(Tfail − Tsend ok)
20: end if
21: INITIATE ELECTION ▷ Only called if election failed entirely
22: end procedure

84 CHAPTER 3. SYSTEM DESIGN

Algorithm 3.3 Receive coordinator

1: procedure RECEIVE COORDINATOR(inew leader)
2: ABORT(INITIATE ELECTION)
3: ABORT(RECEIVE ELECTION)
4: ABORT(RESUME)
5: if inew leader > iown then
6: leader← iown
7: BROADCAST(coordinator, iown)
8: else
9: leader← inew leader

10: end if
11: end procedure

Algorithm 3.4 Resume

1: procedure RESUME

2: leader← unknown
3: if iown =max(i ∈ Iall) then
4: leader← iown
5: BROADCAST(coordinator, iown)
6: else
7: BROADCAST(query)
8: WAIT(Tquery) ▷Wait for answer message
9: if answer received then

10: ianswer← i from received answer message
11: if ianswer < iown then
12: leader← iown
13: BROADCAST(coordinator, iown)
14: else
15: leader← ianswer
16: end if
17: else ▷ No answer received
18: INITIATE ELECTION

19: end if
20: end if
21: end procedure

Algorithm 3.5 Receive query

1: procedure RECEIVE QUERY

2: if leader = iown then
3: BROADCAST(answer, iown)
4: end if
5: end procedure

3.9. RELIABILITY 85

Time Synchronization Reference Node Selection

As stated in section 3.8.1, multiple candidate reference nodes may be available. The runtime selection of
the currently active node uses the proposed Bully algorithm for its leader, and thus active reference-node
selection.

The proposed Bully algorithm elects the leader with maximum identifier alive. If a node with
high priority resumes, it will be immediately elected as the new leader. If the reference node does
not contain an absolute time source, it may have a large initial deviation from the system time of the
remaining system. Immediately starting to broadcast the time from such a node may be undesired, as it
leads to potentially large time deviations and thus potential timing issues. Thus, we suggest a resume
procedure surrounding the Bully algorithm.

A resuming node will first wait for at least three time synchronization intervals Tts and behave as a
regular node during this time. Due to the initial direct update of the local clock in the hybrid clock
update mechanism, larger clock differences will be mitigated after this startup phase. Only afterward,
the node will resume its Bully implementation and may thus become the reference node. If for a certain
system all reference nodes use an absolute clock source, e.g., a GNSS based time source, and the system
time is an absolute time, a designer can choose to skip this extended resume mechanism. The absolute
time sources mitigate the risk of a potentially large initial time offset.

Please note that resuming a node and resuming the time synchronization as potential reference
node may not be directly connected. If a node has an external reference clock that requires a prolonged
startup, the node may resume its operation and participate in the time synchronization as regular node.
A GNSS time source is an example of such a time reference that may require some time for initialization
and first synchronization with the external time source.

Any potential reference node may detect the failure of the currently elected reference node due to
repeatedly missing time update messages. Any of those nodes may initiate an election according to the
proposed Bully algorithm. To avoid repeated detection of a failure while an election is still in progress,
we suggest using a time synchronization interval Tts≫ Tfail of the Bully algorithm.

3.9.5 Task Migration

In some situations it may be required to continue the execution of a task on a different node of
the distributed system, e.g., due to a failed node or a change of the mission phase. Visionary Data
Management System for Nano-Satellites (VIDANA), a RODOS based system for task migration [229],
targets dynamic scalability to increase dependability and performance of a distributed system [152].
While [152] mentions the possibility to scale this system to very small satellites, it still requires
sufficient resources for standby instances of a task on all nodes that may eventually execute said
task [150]. Regular context updates keep the state known to all standby instances [150]. A so-called
Task Distributor knows the entire system state and on-demand activates a task on a specific node [150].

VIDANA provides basic scalability and increased reliability due to the possibility to resume work on
a different node. The downside of VIDANA is the required RAM due to the standby instances of all
tasks on all nodes. Therefore, we suggest using a system capable of runtime migration of the entire
RODOS thread. Such a system would be similar to distributed systems in automotive contexts, e.g., as
presented in [192], which enables task migration [193] based on a runtime checkpoint and restore
mechanism implemented for embedded system using the L4 microkernel [191].

For a system based on RODOS and DOSIS, a full migration, including migration of executable code
at runtime, is not entirely feasible. The lack of an MMU and virtual addresses prevent the execution of
arbitrary code from arbitrary locations in memory. Thus, we suggest a thread migration that requires
the code present on all nodes similar to the migration suggested in VIDANA. Only the state of a thread
should be migrated at runtime, including the creation of RODOS threads and thus enabling the reuse
of resources, especially RAM, for different tasks. This system can transfer tasks between nodes at
runtime. If a node periodically publishes a snapshot of its internal state similar to the status updates
in VIDANA [150] or an external node replicates said state, a task can be resumed on a different node
after an arbitrary node failure. Konlechner [96] and Föger [65]22 demonstrate the basics of a runtime

22Both theses supervised by the author of this work.

86 CHAPTER 3. SYSTEM DESIGN

migration of entire RODOS threads in their theses.

3.9.6 Redundant Execution

In contrast to the migration of tasks, which mainly guarantees that a service can be resumed if a certain
node fails, redundant execution enables a continued operation without any service interruption. In the
presentation of [150], the authors suggest the redundant execution of a critical task within VIDANA,
although they do not mention any details or the expected impact on user applications.

The DOSIS framework enables the redundant execution of a task on arbitrary nodes of the system.
As mentioned in section 3.4, multiple concurrent ComponentInterfaces and ComponentImplementations
are possible, although a system designer and developer has to take special care in this case. We
distinguish two general scenarios: Either multiple copies of a ComponentImplementation are fully active
at the same time and do not perform any internal coordination, or these ComponentImplementations
internally track the state of an active node and act as if they were a single entity.

Fully Active ComponentImplementations

A set of fully active replications of a ComponentImplementation enables an uninterrupted service even
with arbitrary nodes failing. This is achieved with N instances of a ComponentImplementation and
voting on all output values within interfacing nodes.

In such a system, all replicated ComponentImplementation instances behave as if they were the only
available instance; each uses an individual deviceDef . The command-topic identifiers of all deviceDefs
may be identical, but the data-topic identifier is unique for each deviceDef . Another Component that
accesses these instances will utilize N copies of the ComponentInterface. Commands sent via any of
these ComponentInterfaces will be received by all instances of the ComponentImplementation if the
command-topic identifiers are identical; otherwise, the accessing Component commands each replication
individually. Each ComponentImplementation instance replies to the command on its assigned data topic.
The accessing Component handles all replies individually and combines them accordingly. Accessing
Components similarly handles data generated in the replicated ComponentImplementations, e.g., within
an Interval Module.

A replicated Component may also command other Components. These Components will receive
(up to) N copies of any command. Thus, they must be aware of the replication and combine these
commands accordingly. Afterward, these Components should output a single response.

Although N copies of a ComponentImplementation provide a high level of reliability, they also require
a lot of effort and care by a system designer. Especially the required changes to components outside
the replicated Component itself reduce the potential reuse and thus increases the development effort
drastically.

State Tracking ComponentImplementations

With state tracking replications only a single instance within the set of replicated instances will generate
any output at a specific point in time. This enables encapsulation of all changes required for this
replication into the replicated Component itself. This simplifies the implementation effort and increases
the potential for reuse between missions as a consequence of the encapsulation, but it cannot provide
the same level of reliability as fully active redundant. Yet it potentially shortens the detection and
recovery time compared to a task migration after a failure.

In contrast to the fully active replicas, the replicated instances know the presence of the other
instances and act accordingly. They all share a single deviceDef and additionally monitor the data topic,
i.e., their own output. All replications receive all commands and process them individually. A single
and dynamically selected replication generates the response to this command; we call this replication
the main instances, all others tracking instances. Tracking instances compare this response to their own
version. If the responses differ or the main instance’s response is entirely absent, the tracking instances
initiate a new selection of the main instance. We suggest the use of the bully algorithm presented in
section 3.9.4 in combination with a prior voting on the response for this process. The additional voting

3.9. RELIABILITY 87

step ensures that only a failed main instance triggers an election; failed tracking instances will disable
themselves if they loose this initial voting.

Similar to the data topic of the replicated Component, tracking instances monitor all output channels
of the main instance. If they ever notice a missing or wrong output, they initiate a reelection of the
main instance.

Chapter 4

Implementation

4.1 Hardware Selection

A concrete hardware platform is necessary for an implementation and demonstration of the DOSIS
framework. While a representative candidate for the OBDH of the CubeSat missions requires a certain
radiation tolerance (see section 2.3), ground testing and development of control applications can be
simplified and sped up with easy to handle and readily available evaluation platforms. Therefore, we
suggest two different platforms for the overall demonstration and evaluation.

Three criteria provide the basic guideline for selection of this hardware platforms:

Design goal 1: The evaluation platforms should be readily available as COTS components including a
ready-to-use evaluation board.

Design goal 3: The platform should be compatible with the power budget of a CubeSat.

Design goal 4: One of the platforms should be well suited for the operation in the radiation environ-
ment of a multi-year LEO mission.

Additionally, support of the target hardware platforms in RODOS should be possible. Therefore, a
32 bit platform should be selected, preferably using a core that was previously demonstrated in one of
the readily available RODOS ports.

The following sections will present the two platforms used within this thesis: Section 4.1.1 presents
the radiation tolerant VA41620 MCU and the corresponding evaluation board. The VA41620 is the
suggested candidate to demonstrate suitability for the space environment of the LRSM missions.
Section 4.1.2 introduces the readily available, simple to use, and cheap STM32L4 platform suggested
for simplified development of software components. Note that the DOSIS framework and the suggested
system is not bound to these specific hardware platforms.

4.1.1 VA41620 Platform

The VA41620 MCU is a radiation tolerant ARM Cortex-M4 based MCU with integrated single-precision
floating-point unit by Vorago Technologies. The MCU is based on HARDSIL [227] — a CMOS based
technology with increased radiation and high temperature tolerance [14] — and utilizes triple modular
redundancy (TMR) for registers and bit error detection and correction for RAM and code memory [227].
This technology has been previously demonstrated on the ARM Cortex-M0 based VA10820 [15] and
was successfully tested for SEE [230].

The ARM Cortex-M4 core used is already used for other ports of RODOS. Additionally, the VA41620
has embedded support for CAN and is thus compatible with the suggested CAN bus based network
selected in section 3.2.4. The wide range of supported peripheral interfaces furthermore simplifies the
use of the VA41620 for various applications on-board a CubeSat. Finally, the pricing of the VA41620 is
reasonable for a CubeSat mission with enhanced reliability requirements and the component is readily

89

90 CHAPTER 4. IMPLEMENTATION

Table 4.1: VA41620 key features according to the data sheet [227].

Core 32 bit ARM Cortex M-4 with floating point unit
Clock rate ≤100 MHz
RAM 64 kB plus external bus interface for additional 16 MB
code memory 320 kB, loaded from external memory during hardware initialization
Peripherals UART, I²C, SPI, CAN, Ethernet, SpaceWire, ADC/DAC, GPIO
TID tolerance guaranteed 3 · 103 Gy
SEE tolerance low soft error ratei due to built in error correction and memory scrubbing;

guaranteed latch up immune for LET of up to 1.1 · 105 MeV cm2 g−1.

i 1 · 10−15 errors per bit per day with 2.54 mm Al shielding in geosynchronous orbit during a solar minimum.

available1. Table 4.1 summarizes the key features of the VA41620 MCU.
Overall, the VA41620 is a reasonable candidate MCU for the ORIGINS LRSM missions’ CDH

subsystem. Within this thesis, we will use the VA41620 MCU to demonstrate the availability of
hardware suitable for the DOSIS framework’s operation in harsh environments such as the SAA.

A VA41620 port of RODOS was developed by Faehling [63] as part of a thesis supervised by the
author of this thesis.

4.1.2 STM32L4 Platform

While the VA41620 is affordable for the LRSM CubeSats, a cheaper microcontroller provides a platform
for software development, testing, and verification. The STM32L4 microcontroller series by ST
Microelectronics provides such a platform. It uses a similar ARM Cortex-M4 core, includes a floating-
point unit, and natively supports CAN. Additionally, it is a relatively cheap COTS part2 readily available
at the LRT. MCUs of the STM32L4 series are also used for the MOVE stratospheric balloons.

The similar architecture and the availability render the STM32L4 MCU a good platform for develop-
ment and testing of software. Within this thesis, we will use the STM32L496zg MCU — the version
with the largest RAM and program memory of the STM32L4 series [207] — for demonstration of
software interfaces and a time synchronization demonstration. Table 4.2 provides an overview of the
key features of this specific controller.

Table 4.2: STM32L496 key features according to the data sheet [206].

Core 32 bit ARM Cortex M-4 with floating point unit
Clock rate ≤80 MHz
RAM 320 kB
code memory ≤1 MB
Peripherals USB, serial audio, I²C, UART, SPI, CAN, single wire, ADC/DAC, GPIO

4.2 DOSIS Framework Implementation

The implementation of the DOSIS framework consists of the framework’s core and a collection of
common features.

The DOSIS core provides the public API of the DOSIS framework consisting of three major parts: The
DOSIS Components including their respective ComponentInterfaces, the DOSIS Modules, and a collection
of types used within the interface of those Components and Modules. An additional implementation
part contains all features used to implement the public interface. This part contains helper types, e.g.,

1Approx. €3.700 e.g., at Mouser Electronics (https://www.mouser.de/)
2An evaluation board for an STM32L4 MCU is available for less than €20, e.g., via Mouser Electronics.

https://www.mouser.de/

4.2. DOSIS FRAMEWORK IMPLEMENTATION 91

DOSIS core DOSIS common

component

module

type

implementation

support

shared components

time synchronizationDriverInterface

Driver

DaemonInterface

Daemon

ReadOnly

Settable

Interval

TimedSettable

Actuator

Doable

Duration

Error

Message

Result

TimeInterval

TimePoint

TimedValue

ClockAdjust

Selector

TimesyncImplementation

Timesync

TimesyncDriver

Figure 4.1: Overview over public parts of the DOSIS implementation and its split into DOSIS core and
DOSIS common. This figure does not depict implementation internals, helper classes, and features
other than the time synchronization in DOSIS common.

for internal message handling, and is not intended for direct use. The framework’s core is maintained
in a Git repository.

The common features contain support features such as the time synchronization and a collection of
shared components. Out of these, this thesis focuses on the time synchronization only. A separate Git
repository contains the DOSIS common features. Access to both Git repositories can be granted by the
author of this thesis upon request3.

Figure 4.1 depicts this separation into DOSIS core and DOSIS common, as well as their internal
structure.

The following sections introduce the framework’s implementation starting with the reasons for C++

template metaprogramming in section 4.2.1 followed by details about the implementation of DOSIS
Modules in section 4.2.2. Section 4.2.3 presents details about the implementation of ComponentInterfaces
followed by information on the DriverImplementation (section 4.2.4) and DaemonImplementation
(section 4.2.5). Finally, the implementation of the DOSIS message handling is presented in section 4.2.6.
Appendix D.1 presents the usage of the DOSIS framework on a simple example.

4.2.1 C++ Template Metaprogramming

Most parts of the DOSIS framework utilize C++ templates. These templates enable generic metapro-
gramming and the creation of a framework that is not bound to a specific data type. The DOSIS

3A release to a public repository is intended for the near future.

92 CHAPTER 4. IMPLEMENTATION

framework uses these features to enable strict typing of all parts of the framework while enabling the
use of user-defined types. This enables a compile-time checked interface based on DOSIS Modules with
pre-defined functionality bound to a specific type by the users of the framework. Similarly, a user of
the framework can define a DOSIS Component based on a combination of DOSIS Modules. Finally, and
in contrast to implementing similar features based on virtual classes, compile-time checks reduce the
risk of runtime errors. The end user never directly accesses raw messages or buffers; instead interfaces
provide a strictly typed and checked interface based on C++ templates. These templates avoid the need
to implement a dedicated version of a method or function for every possible type.

4.2.2 Modules

The DOSIS core implementation contains all Modules as presented in section 3.5. A Module has at least
two template parameters to specify the used data type and the identifying key within the context of
a Component. The only exceptions are the Doable Module, which requires individual data types for
requests and responses, and the Config Module, which requires all other Modules of the Daemon as
template arguments instead of a data type. Each Module at least contains the identifying key and an
inner class for its ModuleInterface and ModuleHandler. Additionally, Modules containing more than one
internal message format provide C++ type definitions, deduced from its template parameter, for safe
access to all messages.

A Modules class is a container only used at compile-time that provides a Module’s key for compile-time
usage. This is required for DOSIS ComponentImplementation and ComponentInterface implementations.
Only the inner Interface and Handler classes are actually instantiated, provide runtime access to the
key, and implement the Modules functionality.

Interface

A Module’s Interface class provides all features to communicate with the corresponding ModuleHandler
as specified in section 3.5 and figure 3.9. Therefore, it contains:

• A buffer to store the latest received value (or error). Modules with more than just a single value,
e.g., an Interval Module that also contains an interval setting, also contain a buffer for these
values. The buffers always store the latest value or error code received.

• Methods to synchronously and asynchronously access the data stored in these buffers. For
each buffer, the interface provides a method to directly access the content if it is available
(getIfExists) and a method to synchronously wait for updated data (getSync). The latter has
an optional timeout parameter to abort the operation if nothing is received at all.

• Methods to request and/or set the value or setting. Similar to the access to local buffers, the
interface contains a one shot version that does not wait for a response (request and set) and a
synchronous version (requestGetSync and setSync) is available. In both versions, they clear
the local buffer first. The synchronous versions are similar to calling the asynchronous version
followed by a getSync.

• Methods to generate messages for this Module. These methods are mostly for internal use, but
may be required for some subsystems that have to pragmatically assemble DOSIS messages. An
example for such a subsystem would be the CDH commanding assembling arbitrary messages for
other components.

• A method to access the identifying key of the Module.

• Callbacks to handle received messages (handleValue and handleError). As shown in figure 3.9,
the ComponentInterface will call these methods (referenced as store in said figure).

• And type aliases for the Module’s types, e.g., for its register, the message body, and the actual
message used for communication between ModuleInterface and ModuleHandler.

4.2. DOSIS FRAMEWORK IMPLEMENTATION 93

A GenericInterface class provides most parts of the functionality regarding the primary value,
a default implementation for the callbacks, and a number of internal helper methods to support
the implementation of extended interfaces for additional functionality or parameters. Although
the GenericInterface class’s methods are not virtual, a specific Interface class may redefine the
handleValue and handleError callbacks. Section 4.2.6 presents message handling and selection of
appropriate callbacks in greater detail.

Handler

The Handler class is the counterpart of the Interface class. It is responsible for message generation
on request or according to its own activities. Each Module’s Handler contains at least:

• A register to store the current value. Optionally, a Handler may contain additional registers for
parameters, e.g., the interval setting in an Interval Module.

• A getRef method to acquire a reference to the Handler instance’s register. No such method
exists for the optional registers for parameters. Instead, dedicated setter and getter methods
provide access to these parameters; e.g., an Interval Module’s Handler provides setInterval and
getInterval methods to access the interval parameter.

• A method to access the identifying key of the Module.

• Methods to publish a data or error message and thus send the message to the corresponding
ModuleInterface. Section 4.2.6 presents more details about the internal message handling.

• Methods to handle the modules internal activity within the context of a Component; i.e., to
determine the next point in time for any internal activity of the Handler (updateTriggerTime),
check if an activation is still pending (needsActivation), and trigger the execution of the activity
(triggerActivity). The Component Implementation uses these methods to trigger a specific
Module’s activity at the appropriate time.

• Callbacks to handle received messages (handle and handleConfig). The Handler implements
the message handling for all commands related to the internal parameters and forwards access to
the data value to the corresponding user-defined get and set callbacks within the ComponentIm-
plementation. Section 4.2.4 provides detailed information about these callbacks.

• A method to generate an error response for unhandled messages. Whenever a message cannot
be handled within a ComponentImplementation, an appropriate error message is published
instead. This may happen if the ComponentImplementation’s queue of received messages is full.
Instead of silently dropping a message, this method enables the Handler to notify the Interface
appropriately.

Again, a GenericHandler provides implementations for common methods and a number of helper
methods, which simplify the implementation of a specific Module’s Handler class. In contrast to the
GenericInterface, the GenericHandler does not provide a default implementation for callbacks.

Figure 4.2 depicts the public interface of the Settable Module including its inner Interface and
Handler classes.

Limitations

The current implementation of the DOSIS framework limits the types possible as template arguments
of Modules. Especially, it requires the types to be:

• default constructible,

• trivially copyable,

• and have an alignment requirement of a single byte.

94 CHAPTER 4. IMPLEMENTATION

Types must be default constructible to initialize registers and temporary values. Trivially copyable
types enable to move the data to and from a message by simply copying the byte representation. The
alignment requirement assures that no excessive padding is part of the data. This is an optimization
to reduce the message size on the shared CAN bus and can be enforced for any type using the
[[gnu::packed]] attribute.

4.2.
D

O
SIS

FR
A

M
EW

O
R

K
IM

PLEM
EN

TATIO
N

95

implementation

module

≪Type→ Type; CmdMsgType→ Type; DataMsgType→ Type≫ ≪Type→ Type; CmdMsgType→ Type; DataMsgType→ Type≫

GenericInterface

+ GenericInterface(cmdTopic: TopicInterface&, key: uint8)
+ getIfExists() : Result<Type>
+ getSync(timeout: Duration) : Result<Type>
+ requestGetSync(timeout: Duration) : Result<Type>
+ request()
+ getKey() : Integer
+ handleValue(msg: Type&, innerKey: uint8)
+ handleError(errorMsg: Error&, innerKey: uint8)
+ generateGet(data: CmdMsgType&, innerKey: uint8): Message

Type: Typename
CmdMsgType: Typename
DataMsgType: Typename

GenericHandler

+ GenericHandler(dataTopic: TopicInterface&, key: uint8)
+ publish(data: DataMsgType&, innerKey: uint8)
+ publishError(error: Error&, innerKey: uint8)
+ getRef() : Type
+ updateTriggerTime(triggerTime: TimePoint&)
+ needsActivation() : bool
+ triggerActivity(driverImpl: DriverImplementation&)
+ getKey() : Integer

Type: Typename
CmdMsgType: Typename
DataMsgType: Typename

Settable

+ KEY: const Integer

Type: Typename
Key: Integer

Interface

+ set(value: Type)
+ setSync(value: Type) : Result<Type>
+ generateSet(key: uint8, data: Type) : Message

Handler

+ handle(type: CmdType, innerKey: uint8, param: Type&, driver: DriverImpl&)
+ handleConfig(config: ConfigType&, daemonImpl: DaemonImpl&)
+ respondWithError(type: CmdType, innerKey: uint8, error: Error)

Figure 4.2: Class diagram of a DOSIS settable including the inner Interface and Handler classes as well as the GenericHandler and GenericInterface.
For simplicity, type aliases, private members, protected members, and template parameters for methods are omitted.

96 CHAPTER 4. IMPLEMENTATION

4.2.3 ComponentInterface

As presented in section 3.4.1, a ComponentInterface is a combination of Modules. These are provided
as C++ template parameter pack enabling an arbitrary number of Modules. Figure 4.3 depicts the
DriverInterface and DaemonInterface classes.

A ComponentInterface mainly consists of:

• A constructor that expects a deviceDef and human-readable name for terminal output. The
deviceDef identifies the associated data and command topics and binds an instance to said topics.

• A get method to access the associated Modules’ Interface instances. This method returns a
reference to said Interface. A type or interface finder deduces the type at compile-time from
the KEY template argument.

• A putGeneric method as required for a RODOS Putter. This method handles all messages the
internal subscriber receives on the associated data topic.

• A method to access the associated data and command topics.

Additionally, a DaemonInterface provides access to the automatically generated Config Module.

Limitations

The communication channel used within a Component accesses the associated Modules via an array
using the Modules’ identifying keys as index. This imposes some limitations on the way these keys and
the Modules provided as template arguments:

• The identifying keys must be represented in an enumeration class named Key.

• This enumeration must not contain any gaps and start with zero.

• For Daemons, an additional key called CONFIG must be the last key in said enumeration.

• And the used Module classes must be provided as template arguments in order according to their
respective keys.

Finally, a Component may only contain as many Modules as a DOSIS message (specified in section 3.6.3)
can address. As an 8 bit field represents the key, 256 different Modules could be theoretically addressed.
The implementation reserves the key of −1 (0xFF or 255 as unsigned integer) for the generic module
types. Thus, a maximum of 255 Modules can be used for a single Component. This includes the
internally generated Config Module in Daemons, thus only 254 user defined modules can be used in this
case.

All of these requirements are verified at compile-time.

Access Modules by Key

Accessing a Module’s Interface by its key using the get<KEY>() method requires a type deduction at
compile-time. A KeyTypeList implements this type deduction.

Each Module contains a compile-time constant KEY with its respective identifier. The KeyTypeList
provides a compile-time usable recursively implemented list of those Modules. Listing 4.1 depicts the
KeyTypeList implementation. The inner TypeFinder class provides access to the Type for a specific
key. The TypeFinderImpl class contains the actual implementation of this functionality. If the key
searched for matches the identifying list of the first element (current Head::KEY), the TypeFinderImpl
returns the type of said element. Otherwise, the result of the type finder applied to the remaining
list (KeyTypeList<Tail...>) is returned. If no match is available, the compilation terminates with a
compile-time error.

The InterfaceChannel is a child class of all ModuleInterfaces of the ComponentInterface. Thus,
once the TypeFinder deduces the Module’s type based on the key, the InterfaceChannel can be casted
to said type. This way, the ComponentInterface’s get<KEY>() method returns a statically type-checked
reference to the Interface instance of the Module identified by the given key.

4.2. DOSIS FRAMEWORK IMPLEMENTATION 97

RODOS

component

implementation

≪Modules. . .→ Modules. . .≫

- dataSubscriber

- cmdTopic&

- channel

≪Interface. . .→ Modules::Generic::Interface. . .≫

Subscriber Topic Putter

DriverInterface

+ AMOUNT_OF_MODULES: const Integer

+ DriverInterface(deviceDef: DeviceDef, name: String)
+ <KEY: Integer>get() : InterfaceFinder<KEY>
+ <DeviceDef: Typename>getTopics() : Topics
+ putGeneric(. . .) : Boolean
- <DeviceDef: Typename>cmdSingleton() : RODOS::Topic
- <DeviceDef: Typename>dataSingleton() : RODOS::Topic

Modules: Typename. . .

DaemonInterface

+ DaemonInterface(deviceDef: DeviceDef, name: String)
+ <KEY: Integer>get() : InterfaceFinder<KEY>
+ applyConfig(config: ConfigData)
+ applyConfigSync(config: ConfigData, timeout: Duration) : Result<ConfigResponse>

Modules: Typename. . .

InterfaceChannel

Interfaces: Typename. . .

Figure 4.3: DriverInterface and DaemonInterface class diagram excluding type aliases. For simplicity,
this figure simplifies RODOS types and internal implementation types and excludes type aliases.
Section 4.2.6 presents more details about the InterfaceChannel class and its functionality.

98 CHAPTER 4. IMPLEMENTATION

1 template <typename... Type>
2 class KeyTypeList {
3 };
4

5 template <typename Head, typename... Tail>
6 class KeyTypeList<Head, Tail...> : public KeyTypeList<Tail...> {
7 public:
8 using EnumType = decltype(Head::KEY);
9 using HeadType = Head;

10

11 static constexpr int getHeadKey();
12 static constexpr int getMaxKey();
13

14 template <EnumType KEY, EnumType CUR>
15 class TypeFinderImpl {
16 public:
17 using Type = typename KeyTypeList<Tail...>
18 ::template TypeFinderImpl<KEY, KeyTypeList<Tail...>::HeadType::KEY>::Type;
19 };
20

21 template <EnumType KEY>
22 class TypeFinderImpl<KEY, KEY> {
23 public:
24 using Type = Head;
25 };
26

27 template <EnumType KEY>
28 class TypeFinder {
29 public:
30 using Type = typename TypeFinderImpl<KEY, Head::KEY>::Type;
31 };
32 };

Listing 4.1: KeyTypeList definition excluding definition of static methods.

deviceDef

As presented in section 3.7, a deviceDef connects an instance of a ComponentInterface (or ComponentIm-
plementation) to a pair of RODOS topics. The DOSIS framework implementation uses C++ classes
containing only type aliases and static compile-time constants. Each deviceDef thus defines a separate
class. Templated constructors of ComponentInterfaces and ComponentImplementations utilize said classes
to prevent deviceDefs misuse and thus assure that the instances connect to the appropriate RODOS
topics. The C++ concept DeviceDefConcept verifies that a deviceDef class contains all the required
information. Additionally, this concept verifies that the used topic identifiers differ and are within the
allowed range for RODOS topics.

While the DeviceDefConcept verifies some basic constraints, it cannot assure that a specific topic
identifier is unique throughout the entire system. Therefore, the selection of appropriate topic identifiers
is the user’s responsibility.

Finally, the deviceDef also contains a type alias InterfaceType for the ComponentInterface type.
The ComponentInterface’s constructor verifies said type and thus assures that a deviceDef is only used
for a specific Component and its respective ComponentInterface.

Topic Singleton

Each Topic must be initialized exactly once on every node using said topic. Therefore, the DOSIS
framework must assure that only one instance of the command and data topics for a specific Component
exists. As multiple instances of a ComponentInterface may exist within a single node, a singleton pattern
assures that they reference the same topic instance and initialize it exactly once. The static methods
cmdSingleton and dataSingleton implement this singleton within the DriverInterface.

4.2. DOSIS FRAMEWORK IMPLEMENTATION 99

4.2.4 Driver Implementation

A DriverInterface provides the necessary information for a Driver class. It provides information
about available Modules, their respective keys, and the TypeFinder to access the Modules’ Handler
instances and all the related information. This DriverInterface is the first template parameter of
a Driver. This way, we guarantee that the Modules and their respective keys of a specific Driver
always match those of the corresponding DriverInterface. Similar to a DriverInterface, a deviceDef
provided to the Driver’s constructor connects the Driver to a pair of RODOS topics. Additionally, it
assures that deviceDef was intended for this Component and thus avoids wrong connections between a
Component and its ComponentInterface at compile-time.

The second template parameter is the user defined implementation class of the Driver, i.e., the
actual implementation. The actual implementation of a Driver inherits from Driver and is provided
as a template argument to the Driver class at the same time. This enables access to the user defined
implementation from the generic Driver class, which is of special interest for the template methods
used for callbacks.

The third template parameter of a Driver is the size of the first in, first out (FIFO) for received
command messages. This parameter is optional and defaults to a size of five messages. Section 4.2.6
provides more information on the use of this FIFO. Figure 4.4 depicts the Driver class in detail.

Accessing a Module’s Register

The reg method of a Driver provides access to the register of a specific Module identified by its key.
This method utilizes the TypeFinder as previously presented and returns the reference provided by the
Module’s getRef. Due to the nature of a reference, this method enables read and update of a specific
Module’s register value.

To assure thread safe access to said register, a lock must be acquired prior to accessing the actual
value. A Driver’s getLock method provides access to this lock and returns a RODOS ScopeProtector.
While this lock is active, the Driver pauses its activity other than enqueueing received commands. Thus,
it should not be held for an extended time.

Callbacks

The callbacks as presented in section 3.4.2 are also part of the DriverImplementation:
At system initialization, RODOS calls the init method of all threads. As a DOSIS Driver is such a

thread, this method can be directly overloaded. Thus, no additional modification point is required.
Additionally, a Driver contains modification points to get and set a specific Module’s data. Three

callbacks are available for this purpose:

getter Whenever a Module has to publish its data, it calls the Driver’s getter callback. This callback
returns a Result object containing an error code and the Module’s data. The default behavior of
the getter is to return the current content of the Module’s register.

setter In addition to updating its register, a Module activates the setter callback whenever it handles a
set command. This callback only returns an error code to indicate if the command was successful.
By default, it returns an Error::OK indicating successful execution of the operation.

doer A Doable Module requires a different callback as it does not support individual get and set
operations. Instead, it calls the doer callback on every do command. This callback expects the
request as its argument and returns a Result object containing the response. In contrast to the
getter and setter callbacks, no default implementation of the doer callback exists. Instead, a
user defined version has to be provided for each Doable module.

Listing 4.2 shows the declaration of these callbacks and the default definitions of the getter and
setter callbacks in a Driver. A user may redefine these callbacks for a specific key by providing a
template specialization. Appendix D.1 presents how a user may modify them.

100 CHAPTER 4. IMPLEMENTATION

RODOS

implementation

component ≪STACK_SIZE→ default≫

- dataAccess

- cmdFifo
≪Type→ Interface::CmdMsg; LEN→ LEN≫

- cmdSubscriber

≪Component→ Driver<Interface,Implementation,LEN>≫

- channel

≪Implementation→ Implementation, Handlers. . .→ Interface::Handler. . .≫

Semaphore
StaticThread

STACK_SIZE: Integer

Channel

Implementation: Typename
Handlers: Typename. . .

CmdSubscriber

Component: Typename

DriverFifo

Type: Typename
LEN: Integer

Driver

+ Driver(deviceDef: DeviceDef)
+ <KEY: Integer>getter() : Result<Type<KEY>>
+ <KEY: Integer>setter(value: Type<KEY>) : Error
+ <KEY: Integer>doer(request: Type<KEY>) : Result<ResponseType<KEY>>
+ <KEY: Integer>getModule() : HandlerFinder<KEY>&
+ <KEY: Integer>reg() : Type<KEY>&
+ getLock() : RODOS::ScopeProtector
- run() «final»
- updateTriggerTime(triggerTime: TimePoint)
- triggerActivity()
- mainSetup()
- respondWithError(data: void*, error: Error)

Interface: Typename
Implementation: Typename
LEN: Integer

Figure 4.4: Simplified DOSIS Driver class diagram. For simplicity, this figure omits type aliases and
types used in method signatures. Additionally, it simplifies some template parameters. The virtual
private methods are not intended for direct use. Instead, they provide the interface internally required
by the Daemon class presented in section 4.2.5.

4.2. DOSIS FRAMEWORK IMPLEMENTATION 101

1 template <auto KEY>
2 dosis::Result<Type<KEY>> getter()
3 {
4 return { reg<KEY>(), dosis::Error::OK };
5 }
6

7 template <auto KEY>
8 dosis::Error setter([[maybe_unused]] const Type<KEY>& val)
9 {

10 return dosis::Error::OK;
11 }
12

13 template <auto KEY>
14 dosis::Result<ResponseType<KEY>> doer(const Type<KEY>& request);

Listing 4.2: Getter, Setter, and Doer callbacks.

4.2.5 Daemon Implementation

The Daemon class provides the implementation of the DOSIS Daemon. It inherits all features from Driver
and adds the additions according to section 3.4.2. Therefore, Daemon provides modification points
for the Daemon’s regular activation through virtual methods that a user may implement, methods to
access the activation interval, and a way to specify if a specific Daemon requires an initial configuration
message.

mainInit The Daemon activates this method after handling a configuration message. In contrast to
the init method of a Driver, this may be called repeatedly and is delayed until a configura-
tion message is received if the Driver requires an initial configuration message. The default
implementation does not perform any operation. A user may overload this method.

mainStep The Daemon activates the mainStep method in a regular interval. The default implementa-
tion does not perform any operation. A user may overload this method.

setInterval The setInterval methods provides a way to modify the interval used for mainStep
invocations. The initial value of the interval entirely disables the mainStep activations. Thus, a
user should call this method either from init, mainInit, or an external location. It may also be
called from within one of the getter, setter, or doer callbacks of the Daemon.

NEEDS_CONFIG The NEEDS_CONFIG constant is a static class member variable. If it is set to true, the
Daemon delays activation of its mainInit and mainStep methods until it receives a configuration
message. NEEDS_CONFIG defaults to true. A user may redefine it to false.

The handling of configuration messages is not part of the Daemon class. Instead, the Daemon
contains a Config Module, which handles these messages. A confirmConfig callback within the Daemon
class provides an interface for this module to notify the Daemon about an updated configuration.

4.2.6 DOSIS Message Handling

The communication between a Component and its ComponentInterface uses DOSIS messages as presented
in section 3.6.3. The messages, originally transmitted via RODOS topics, are handled on a higher level
that removes the burden of parsing raw bytes from users of the framework. The following section
presents the C++ representation, identification, and forwarding of these messages to the respective
ModuleInterface or ModuleHandler, and the general steps of the message handling process.

DOSIS Message

The Message class represents the DOSIS messages in C++. It provides access to access and modify the
individual header fields. Additionally, it provides a template method to access the payload without

102 CHAPTER 4. IMPLEMENTATION

direct access to the raw buffer. Instead of raw bytes, it uses the target type for all accesses. While this
hides type casts from the user, it is still the user’s responsibility to only read data from a message with
the type used to store said data. Other accesses may result in undefined behavior. Figure 4.5 depicts
the Message class.

Channel and InterfaceChannel

The Channel and InterfaceChannel classes implement most of the logic to forward messages and
similar calls to the appropriate Module. While the Channel class takes care of message forwarding
in a Component to the respective ModuleHandler, the InterfaceChannel forwards messages in a
ComponentInterface to the respective ModuleInterface. As the implementation details are similar, this
section will focus on the InterfaceChannel and its capability to forward a received message to the
appropriate Interface instance’s put method. Nevertheless, the same mechanism also applies to a
Channel class forwarding messages to the ModuleHandler’s handle method and enables direct error
replies to received messages. Figure 4.6 depicts the class diagram of the InterfaceChannel class.
Figure D.1 in appendix D depicts the class diagram of the Channel class respectively.

As no type and method inference based on a key only available at runtime exists in C++, the DOSIS
framework uses a custom mechanism instead. This mechanism forwards calls at runtime in three
steps: First, a C-style array provides access to a method with the key as one of its template parameters.
Afterward, this method performs the required type casting. Finally, it forwards the call to the respective
target.

Redirect Call through Array of Function Pointers A C-style array of function pointers to a static template
method with different template arguments identifies the appropriate forwarding method for a given
message. At index k the array contains a pointer to the method with the Interface classe’s type of the
Module with key k as its template argument. As this type includes the Module’s key, it enables a unique
mapping even with multiple instances of a single Module only differentiated by their identifying key
combined into a single Component. Although the referenced methods are static, i.e., only refer to the
class but not a specific object, their first argument is a reference to a InterfaceChannel object. This
enables a behavior similar to a non-static method while still enabling a call based on a regular function
pointer. Overall, the array of function pointers to those methods provides a similar feature as virtual
tables provide for hierarchies of virtual classes.

As specific versions of template methods are only instantiated during compilation if they are
actually used, the array must be filled at compile-time. Listing 4.3 depicts the declaration of the
InterfaceChannel::putGeneric method and the C-style array of function pointers initialized at
compile-time.

1 template <typename Buffer>
2 static void put(InterfaceChannel& channel, DataMsg& dataMsg);
3

4 static constexpr void (*const PUTTERS[])(InterfaceChannel&, DataMsg&) = {
5 InterfaceChannel::put<Interfaces>...
6 };

Listing 4.3: Declaration of the InterfaceChannel class’s put method and the array of pointers to
forward received messages.

To assure the mapping of identifying key to array index in this implementation, the order of
Interfaces is essential. These must be provided in the exact order of their respective keys. A static
assertion assures this order as one of the limitations to the ComponentInterfaces as stated in section 4.2.3.

Accessing the Interface The InterfaceChannel inherits from all the Modules’ Interface classes.
Thus, a simple type-cast to the desired Interface class’s type enables access to said Interface. As this
type is the template argument of the static method called indirectly via the previously mentioned array,

4.2. DOSIS FRAMEWORK IMPLEMENTATION 103

type

implementation

- header

Message

- payload : uint8[SIZE]

+ getHeaderSize() : Integer
+ Message()
+ <MsgKey: Typename, MsgInnerKey: Typename>

Message(type: MsgType, key: MsgKey, innerKey: MsgInnerKey)
+ <MsgKey: Typename, MsgInnerKey: Typename, T: Typename>

Message(type: MsgType, key: MsgKey, innerKey: MsgInnerKey, data: const T&)
+ setKey(key: uint8)
+ getKey() : uint8
+ setInnerKey(innerKey: uint8)
+ getInnerKey() : uint8
+ setType(type: MsgType)
+ getType() : MsgType
+ <T: Typename>set(data: const T&)
+ <T: Typename>get() T
+ operator==(other: Message<SIZE, MsgType>&): Boolean

SIZE: Integer
MsgType: Typename

≪enum≫
CmdType

GET
SET
DO

≪enum≫
ResultType

DATA
ERROR

MsgType must be
either CmdType or
ResultType

MsgType must be
either CmdType or
ResultType

Header

- raw : uint8[2]

+ Header(key: Integer, innerKey: Integer, type: Integer)
+ setKey(key: Integer)
+ getKey() : Integer
+ setInnerKey(innerKey: Integer)
+ getInnerKey() : Integer
+ setType(type: Integer)
+ getType() : Integer + operator==(other: Header&): Boolean

Figure 4.5: Class diagram of the DOSIS Message.

104 CHAPTER 4. IMPLEMENTATION

implementation

InterfaceChannel

- PUTTERS : (const *)(InterfaceChannel&, DataMsg&)

+ <TopicTuple: Typename>Channel(TopicTuple)
+ putSpecific(key: uint8, dataMsg: DataMsg&)
+ <KEY: Integer>getInterface() : InterfaceFinder<KEY>
- <Buffer: Typename>put(channel: InterfaceChannel&, dataMsg: DataMsg&)

Interfaces: Typename. . .

Interfaces...

Interfaces as provided as template arguments for InterfaceChannel.
These should be the Interface classes of the used Modules for a
specific component.

Interfaces as provided as template arguments for InterfaceChannel.
These should be the Interface classes of the used Modules for a
specific component.

Figure 4.6: Class Diagram for a DOSIS InterfaceChannel. InterfaceChannel inherits from its
variadic template parameter Interfaces.

the type of this Interface in a specific instance of said method is known at compile-time. Therefore, a
simple static_cast enables the access to the desired Interface.

Forwarding Calls Once the Interface class can be directly accessed, the call can be forwarded using
the designated methods within said Interface. While the InterfaceChannel class’s put differentiates
messages based on their type and forwards calls to either handleValue or handleError, the Channel
does not further differentiate based on content but directly forwards the call to the Handler class’s
handle or respondWithError methods.

Sending Messages from a ComponentInterface

ModuleInterfaces directly handle sending of messages. In most cases, a Module’s Interface class uses
generator methods, e.g., generateGet or generateSet as shown in figure 4.2, to uniformly assemble
its messages. The Interface classes contain a reference to the Component’s command topic. Thus,
they directly publish the generated message onto said topic.

Receiving Messages in a ComponentImplementation

A ComponentImplementation receives and handles messages in two separate steps: Receiving the
message from a RODOS topic, and actually processing the message.

Receiving a Message A CmdSubscriber within the Component subscribes to the command topic.
Thus, RODOS will forward all messages on said topic to a specific method of this subscriber. The
CmdSubscriber stores the received message into a DriverFifo, which implements a simple FIFO. If this
FIFO cannot store an additional message, the CmdSubscriber automatically replies with an appropriate
error message. The Channel class’s respondWithError method resolves the Handler instance that
would normally handle this message. As the Handle class contains a reference to the data topic, it can
directly generate and transmit an appropriate error message.

4.3. DOSIS TIME HANDLING 105

Processing a Message A Component’s thread waits for messages in the DriverFifo. Whenever a
message is available, it pops the message from this FIFO and triggers the message processing. The
Channel class’s handle method resolves the appropriate Handler instance based on the message’s key
and finally forwards it to the Handler class’s handle method. The Handler class’s handle method
decides how to process the message based on the inner key and either internally handles the message
(for parameters) or updates its register and calls the appropriate setter, getter, or doer callbacks.
Afterward, the Handler generates and publishes a response to the data topic based on the returned
value from these callbacks or its updated state (for parameter updates).

Sending Messages from a ComponentImplementation

In addition to the messages a Handler generates in response to received messages, a user or internal
activity of a Module4 may also send messages at arbitrary times. For this purpose, the Driver’s getModule
method5 returns a reference to a Module’s Handler instance identified by its key. The Handler in turn
provides the publish and publishError methods that assemble a valid message and publish it to the
data topic associated with the Component.

Receiving Messages in a ComponentInterface

In contrast to messages received in a ComponentImplementation, the ComponentInterface does not buffer
the messages in a FIFO for later processing. Instead, messages received are directly handled by the
DriverInterface provided putGeneric method. It forwards the call to the appropriate ModuleInterface
using the InterfaceChannel class’s putGeneric method previously presented. The ModuleInterface
simply stores the content of the received messages. A user may later on retrieve this message via the
Interface class’s public interface.

4.3 DOSIS Time Handling

RODOS does not provide an interface to adapt the system clock used for scheduling purposes. Instead,
it directly uses a hardware timer extended into a 64 bit integer representation of the local node’s uptime
in ns. To enable time synchronization, the DOSIS framework contains an internal time model. The
following sections present the implementation of this time model, its limitations, and the available time
synchronization implementations.

4.3.1 The DOSIS Time Model

The DOSIS time representation consists of two classes: TimePoint representing an absolute point
in time, and Duration representing a certain time span. Their internal representation uses signed
64 bit integers representing the time in steps of 1 ns. To reduce the risk of misinterpretation, no
conversion between TimePoint, Duration, and their respective integer representation exists. Instead,
arithmetic operations and user defined C++ literals enable a user-friendly handling of the DOSIS time
representation. A TimeModel class additionally provides the conversion to and from RODOS time
representation for both DOSIS time types.

The TimeModel uses a linear time model with the RODOS uptime as uncorrected local clock. The
TimeModel converts RODOS time representation into DOSIS time types and vice-versa using a section-
wise defined linear model with parameters for skew and offset compensation. Listing 4.4 shows the
simplified conversion methods. The variables offset, skew, and syncTime are the internal data of
the TimeModel. The listing omits thread-safe access to those variables, boundary checks of input
parameters, and type conversion operations for a better visualization of the conversion operation itself.

The internal state of the TimeModel, i.e., the offset, skew, and syncTime, are stored in a compound
data structure, which is accessed via a pointer. Updating these values generates a new set of these

4E.g., an Interval Module regularly triggers the getter callback and transmits the respective data message.
5This method is also available for Daemons.

106 CHAPTER 4. IMPLEMENTATION

1 TimePoint rodosTimeToTimePoint(int64_t timePoint)
2 {
3 return timePoint + offset + skew * (timePoint - syncTime);
4 }
5

6 Duration rodosTimeToDuration(int64_t duration)
7 {
8 return duration * (1 + skew);
9 }

10

11 int64_t toRodosTime(TimePoint timePoint)
12 {
13 return (timePoint - offset + skew * syncTime) / (1 + skew);
14 }
15

16 int64_t toRodosTime(Duration duration)
17 {
18 return duration / (1 + skew);
19 }

Listing 4.4: RODOS to DOSIS and DOSIS to RODOS time conversion. Boundary condition checks, type
conversion, and atomic access to TimeModel parameters omited for demonstration purposes.

values and swaps the pointer in an atomic operation as final step. The methods for time conversion will
store a local copy of the pointer used for their calculation. This assures that they use the same internal
state throughout the entire conversion operation.

The methods to set new offset or skew parameters are not multi-thread safe. Instead, the current
implementation assumes that on a node only a single time synchronization mechanism is active at a
time. Overall, the buffer for the internal state is safe to use with multiple readers and a single writer.

Time Usage in Components

All DOSIS Components and Modules only use the DOSIS TimePoint and Duration to represent time
related values. Only when interacting with the scheduler, they convert the time to the required RODOS
representation. To avoid the accumulation of errors when using intervals, these are not converted
by incrementing the RODOS time representation accordingly. Instead, a new absolute time point
represented by a DOSIS TimePoint is calculated based on an initial TimePoint and a Duration. Using
this method for all repeatedly activated Modules, the ComponentImplementation calculates the next
absolute point in time for any internal activity. Afterward, it waits for incoming messages until this
point in time is reached. As this involves yielding until data is available, the time is converted to a
RODOS time suitable for scheduling purposes at this point. If the ComponentImplementation receives
a message, it handles the message and repeats the process. If the point in time for the next internal
activity is reached beforehand, the ComponentImplementation triggers the internal activity and repeats
the process for the next activation.

Limitations of Implementation

While this implementation yields good results for short time periods, a long time forward propagation
may result in inaccuracies due to changes of the TimeModel instance’s parameters during this period
of time. Therefore, we advise not to use extended periods for time critical activities. If scheduling an
activity a long time beforehand is necessary, separating the wait time into shorter intervals reduces
the inaccuracies. Repeatedly resuming the corresponding Component during the extended wait time
will reduce the inaccuracies, as the ComponentImplementation repeats the conversion from DOSIS to
RODOS time during each activation using the updated time model parameters.

A modification of the RODOS time model could entirely mitigate this issue. Although it potentially
solves the issue, modifying the scheduling process requires special care not to break other critical parts

4.3. DOSIS TIME HANDLING 107

timesync

SimpleClockAdjuster PControlClockAdjuster PIControlClockAdjuster

ClockAdjuster

TimesyncImplementationCanTimesyncImplementation

Selector

ClientServer Bully

Figure 4.7: Overview of time synchronization classes.

of the system. As the current missions did not show any requirement for a stable long-term forward
propagation, no change to the RODOS scheduling process is advised.

4.3.2 Time Synchronization Implementation

The time synchronization presented in section 3.8 is modular and consists of three main parts: se-
lection of a reference node, transmitting the time, and update of the local clock. The Selector,
TimesyncImplementation, and ClockAdjuster classes implement these parts. These classes are
purely virtual and provide an interface to enable arbitrary combinations and thus to provide the
flexibility to adapt the time synchronization to the needs of a specific mission. Out of these, the
TimesyncImplementation not only implements the time transfer but also contains the connection logic
of the three parts. I.e., the TimesyncImplementation uses the Selector to decide if it must behave
as reference node and forwards all received time update messages to a ClockAdjuster. The DOSIS
framework provides a CAN based implementation of the time synchronization. The other options
suggested in section 3.8 were discarded due to their bad performance6. Figure 4.7 depicts these classes
and the available realizations.

The time synchronization implementation uses the DOSIS TimePoint as its time representation. It
uses a 64 bit signed integer format representing the time in ns since a user defined starting date.

Reference Node Selection

A Selector contains a method to check if the current node is the reference node and a method to
update the decision, i.e., reevaluate the decision.

The DOSIS framework contains three implementations of a Selector. The Server and Client
provide a statically defined behavior; the Server will always act as reference node, whereas the Client
will never become a reference node. The Bully selector provides a dynamic reference-node selection
according to the simplified bully presented in section 3.9.4.

The bully implementation’s core is a state machine. It handles received messages based on the
current state and the type of the received messages. Handling of multiple concurrent activities is
possible as all wait statements from algorithms 3.1 to 3.4 are implemented as asynchronous wait. Thus,
it handles a received message according to the respective algorithm; once it executes a wait statement,

6Chapter 5 presents more information on the performance of the various options.

108 CHAPTER 4. IMPLEMENTATION

it will instead start a timer and change the state. Once the timer activates, the wait time has finished
and the algorithm continues. All instances communicate via a single RODOS topic. This ensures that
the instances do not require a priori knowledge about the availability of other nodes.

Clock Update implementation

The DOSIS framework implements all time update versions suggested in section 3.8.4. Specifically, it
implements a direct-set, P-controlled, and PI-controlled clock update mechanism. While the direct-set
update modifies the offset parameter of the TimeModel, the other options modify the skew parameter.

Chapter 5

Time Synchronization Test

5.1 Time Synchronization Mechanisms

A first comparison of the time synchronization mechanisms proposed in section 3.8 as part of the
author’s own publication “Distributed Computing for Modular & Reliable Nanosatellites” [184]. This
section presents these tests and provides a first insight into the performance of the different options and
the overall system performance for a simple distributed control setup. Instead of the time calculations
presented in section 4.3.2, these tests use a direct modification of the RODOS time representation and
scheduling process.

5.1.1 Test Setup

A prototype consisting of three identical Nucleo-L496ZG evaluation boards provides the basic test
infrastructure. A CAN bus using a transceiver-less setup [12] interconnects these nodes. Additionally,
each node has a dedicated input and output general purpose input/output (GPIO) pin for external
triggers and measurements. A control computer uses the integrated programmer of the evaluation
boards to trigger individual test runs and record the UART output of all nodes.

Load Generator

A CAN load generator simulates the worst-case scenarios regarding the bus utilization. A RODOS thread
implements this load generator and continuously publishes messages of the maximum allowed size
(1300 B). Therefore, it simulates an almost 100 % bus utilization on the CAN bus. The used RODOS
topic has the highest topic identifier in use. This topic identifier translates to the highest CAN identifier
within the prototype. Thus, it has the lowest priority on the CAN bus.

Time Synchronization

The time synchronization test compares the pairwise time difference of all nodes. Therefore, it
repeatedly records the local time on each node at an externally triggered time. For this purpose, an
additional STM32F407G discovery provides a trigger signal. This trigger signal toggles its state every
100 ms and is directly connected to the input pin on all nodes. The input pin on each node triggers an
interrupt on every state change of the trigger signal. The interrupt routine stores the current time. An
asynchronous process prints the recorded time to UART, which the test control computer logs for later
analysis. Figure 5.1 shows the full test setup.

A full comparison of all time synchronization options presented in section 3.8 is enabled by a set of
individual tests. The test compares the time transfer based on

• DOSIS messages,

• RODOS messages,

• and raw CAN messages

109

110 CHAPTER 5. TIME SYNCHRONIZATION TEST

Trigger signal distribution

CAN bus

Trigger
generator

#1 #2 #3

Figure 5.1: Experimental setup with three STM32L4 test nodes and an STM32F4 trigger generator
node.

in combination with

• direct-set,

• and PI-controlled

clock update1. To account for the varying effects of the CAN load origin, the load generator is an
optional part of the clock reference node’s or one of the remaining nodes’ firmware.

An individual test run is conducted for each combination of these mechanisms and the CAN load
origin. The time synchronization interval, i.e., the timespan between consecutive updates, is 1 s for
all test runs. The internal oscillator of all nodes is the reference oscillator for the local clock. These
represent a reasonable worst-case scenario with a long time clock rate error of ∼1 % and a significant
drift over temperature and input voltage [206]. The long time clock rate difference of the used MCU’s
local clocks was ∼0.5 %, the short time deviation was considerably higher.

Control Loop Setup

A simple control setup consisting of a sensor, controller, and actuator node demonstrates the capabilities
of timely execution of the DOSIS framework. It measures the relative error compared to the expected
actuation time point. The sensor and actuator nodes toggle their output GPIO pin whenever they are
activated. External monitoring of these pins enables a comparison of the timespan between sensor
readout and actuator actuation.

Sensor The sensor is a simple DOSIS Driver consisting of a single Interval Module representing the
current state. Instead of actually sensing an external value, it inverts and returns the state of an internal
boolean value. At the same time, the sensor sets the state of its GPIO pin accordingly and thus enables
external observation. The Interval Module generates a readout every 500 ms in all test cases.

Actuator The actuator is also a simple DOSIS Driver. It consists of a single Actuator Module that
enables direct and timed actuation. Similar to the sensor, it sets the state of its GPIO pin according to
the commanded actuation. The set callback implements this update, thus timed actuation only affects
the GPIO pin once it reaches the specified point in time.

1In contrast to the presented clock update in section 4.3.2, the experimental test setup uses a modified version of the
RODOS local time model. The modified version contains a global offset and drift parameter as part of the time model used
within the RODOS scheduling process.

5.1. TIME SYNCHRONIZATION MECHANISMS 111

C
A

N
bu

s

Lo
gi

c
an

al
yz

er

SensorGPIO

Controller

ActuatorGPIO

1

1,2

2

1

3

Figure 5.2: Control loop setup for time synchronization tests. Every 500 ms, the sensor generates a
readout and toggles the corresponding GPIO pin (1). The controller receives the sensor readout and
commands the actuator (2). Finally, the actuator toggles its corresponding GPIO pin after executing the
command (3).

Controller The controller’s only task is forwarding the received sensor data to the actuator. It knows
two modes of operation: Either it directly forwards received data to the actuator for immediate
actuation, or it schedules the actuation to 100 ms after sensor readout.

Used Time Synchronization A raw CAN based time transfer in combination with a PI-controlled clock
update provides the time synchronization of the three nodes for all control loop tests.

External Observer A Saleae Logic Pro 16 logic analyzer monitors the GPIO pins of the sensor and
actuator nodes at a sample rate of 1 MHz. Offline analysis of the recorded state changes of the GPIO
pins provides the delay between sensor readout and actuator activity.

Similar to the plain time synchronization tests, a simulated CAN load originating from different
parts of the system is part of the test scenarios. The CAN load for direct and scheduled actuation tests
originates from:

• no part of the setup,

• the sensor node,

• the controller node,

• or the actuator node.

Figure 5.2 depicts the test components and their interconnections.

5.1.2 Time Synchronization Test Results

Each of the three basic time synchronization mechanisms was evaluated in combination with both time
update mechanisms and different CAN load conditions. Table 5.1 lists the performed tests.

Each recording started 30 s after loading the firmware into the MCUs. Thus, the recordings do not
include the initial synchronization that contains a hard set of the local time. Afterward, 180 s were
recorded for each individual test run. Figure 5.3 depicts the distribution of the pairwise time deviation
as a measure for the quality of the synchronization.

5.1.3 Control Loop Test Results

The control loop setup verifies the usability of the proposed system for distributed control applications.
Figure 5.4 depicts the distribution of the delay of the setup with immediate actuation for different

CAN load scenarios over 350 samples. The sensor generates new data every 500 ms. The controller
receives and forwards this data to the actuator for immediate execution. The actuator updates its
output without any additional delay.

112 CHAPTER 5. TIME SYNCHRONIZATION TEST

Table 5.1: Test cases for time synchronization evaluation for different clock transfer mechanisms, clock
update mechanisms, and CAN load sources.

Id Clock Transfer Clock Update CAN Load Source

a DOSIS message based direct-set none
b DOSIS message based direct-set client side
c DOSIS message based direct-set server side
d DOSIS message based PI control none
e DOSIS message based PI control client side
f DOSIS message based PI control server side
g RODOS message based direct-set none
h RODOS message based direct-set client side
i RODOS message based direct-set server side
j RODOS message based PI control none
k RODOS message based PI control client side
l RODOS message based PI control server side

m CAN message based direct-set none
n CAN message based direct-set client side
o CAN message based direct-set server side
p CAN message based PI control none
q CAN message based PI control client side
r CAN message based PI control server side

a b c d e f g h i j k l m n o p q r

10−1

100

101

∆
t/

m
s

Figure 5.3: Pairwise time deviation for different time synchronization setups. The distribution over
180 s sampled every 100 ms is shown for each setup. The whiskers depict the minimum and maximum
values; The boxes depict the first quartile, median, and third quartile. Table 5.1 lists the used clock
transfer method, clock update mechanism, and CAN load source for test runs (a)–(r).

5.1. TIME SYNCHRONIZATION MECHANISMS 113

no load sensor controller actor

0

20

40

60

CAN load source

∆
t/

m
s

Figure 5.4: Distribution of 350 measurements of delay between sensor and actuator activity. All actions
are executed immediately on arrival. The whiskers depict the minimum and maximum values; The
boxes depict the first quartile, median, and third quartile.

no load sensor controller actor

99

100

101

CAN load source

∆
t/

m
s

Figure 5.5: Distribution of 350 measurements of delay between sensor and actuator activity. The
actuator is scheduled to activate 100 ms after the sensor readout. The whiskers depict the minimum
and maximum values; The boxes depict the first quartile, median, and third quartile.

114 CHAPTER 5. TIME SYNCHRONIZATION TEST

Figure 5.5 depicts the distribution of the delay of a setup with execution scheduled 100 ms after
sensor readout over 350 samples. Again, it shows the different CAN load scenarios separately.

5.1.4 Time Synchronization Test Discussion

The relative error of DOSIS message or RODOS message based time transfer setups without load on the
CAN bus is in the order of a few ms (test cases a, d, g, and j). These tests also show the advantage of
PI-controlled clock update (test cases d and j). While the remaining error of about 1 ms for these setups
are acceptable for most scenarios, the performance degrades rapidly once the CAN bus utilization
rises (test cases b, c, e, f, h, i, k, and l). In those cases, a deviation of the local times of up to 40 ms
can be observed. This is an expected consequence of the RODOS message handling over CAN. It
forwards messages to higher layers in the order of their first CAN frame, which, as already stated
in section 3.8.3, leads to large delays. These DOSIS or RODOS message based tests do not show a
significant difference between direct-set and PI-controlled time update mechanisms under the influence
of high CAN utilization. This can be explained as the expected offset after a 1 s time interval with a
relative clock error of 0.5 % only leads to a time difference of 5 ms for a direct-set clock update. This is
relatively small compared to the message transfer delay uncertainty and thus does not significantly
change the result.

Using RODOS messages directly has no major impact compared to DOSIS messages. This can be
explained by the fact that the expected additional software delay is small compared to the CAN delay
and the error introduced by the local clocks themselves.

The direct usage of CAN circumvents this drawback of the RODOS message handling. Thus, the
CAN load does not significantly influence the CAN message based approach (test cases m and p without
CAN load, test cases n, o, q, and r with CAN load).

The main observable difference between the direct CAN based time synchronization setups is due
to the selected clock update mechanism. The direct-set update suffers from the 5 ms error due to the
different drift of the local clocks. The PI-controlled clock update mechanism on the other hand is
capable of correcting the drift. This matches the expectations from section 3.8.4. The remaining error
for a CAN based time synchronization with PI-controlled clock update mechanism thus stays below
1 ms.

Section 3.8 presents the limit for the remaining time synchronization error of less than 2 ms. Clearly,
the CAN based time synchronization with PI-controlled clock update and the highest CAN priority for
its own messages achieves this goal. Thus, the general time synchronization of the DOSIS framework is
suitable for time-critical distributed control applications such as an ADCS system.

5.1.5 Control Loop Test Discussion

In the absence of additional load on the CAN bus, the direct actuation in a sensor-controller-actuator is
as low as 2 ms. While this may be acceptable for some control applications, its performance significantly
decreases with increased CAN bus utilization.

The main reason for this decreased performance is the RODOS message handling, as explained in
section 3.8, which only forwards complete messages. RODOS processes messages interleaved on the
CAN bus in order of their first respective CAN frame. In the worst-case, a message of 1300 B has just
started and is currently in transmission. Including inter-frame spacing and bit-stuffing, such a message
leads to approximately 30 ms delay independent of the CAN priority of the conflicting messages. Note
that this only affects nodes receiving the unrelated CAN traffic. The node that originates the conflicting
message receives the desired message without additional delay.

Therefore, a setup with CAN load originating from the sensor node experiences the worst-case
delay. In this case, two message transmissions can be severely influenced by the generated traffic:
Both, controller and actuator, have to wait for an ongoing artificial traffic message to complete before
receiving and processing the actual data message. In this case, the expected worst-case delay is
approximately two times the delay due to one 1300 B message, i.e., about 60 ms. If the traffic originates
from the controller node, only the actuator has to wait (and vice versa). In this case the impact is only

5.2. TIME SYNCHRONIZATION VERIFICATION 115

about half as severe compared to the case with load generated at the sensor node. Figure 5.4 depicts
these scenarios and clearly shows the expected worst-case delays of 60 ms and 30 ms respectively.

For scheduled actuation, we expect no timing uncertainty significantly larger than the remaining
time synchronization error. The controller schedules the actuation at 100 ms after the initial sensor
readout. As the worst-case delay of message propagation within the experimental setup is approximately
60 ms, the actuator receives the command before the scheduled point in time is reached. In this case,
the main influence on the actuator’s timing is the time synchronization itself and the concurrent
processes and interrupts within the actuating node. Figure 5.5 depicts the behavior of the scheduled
actuation. The measured delay between sensor readout and actuator activity matches the expected
100 ms with an error of less than ±2 ms for all CAN load scenarios.

While the tests did show the impact of CAN traffic on direct actuation, they also verify that scheduled
actuation is reliable in all tested scenarios. Therefore, not only the time synchronization itself, but
also DOSIS Components are suitable for time critical control applications. A system designer must still
take into account that the scheduled point in time is further in the future than the worst-case message
transmission delay. This delay depends on the largest messages in a certain system and the number of
hops required for a specific distributed controller.

5.2 Time Synchronization Verification

A second set of time synchronization tests verifies the final setup, including the local clock update
mechanisms as presented in section 4.3.2. These tests verify the latest implementation of the DOSIS
framework’s features and confirm an actuation uncertainty below 2 ms, as demanded in section 3.8.

5.2.1 Setup

The general test setup is similar to the setup from section 5.1.1. Again, three identical Nucleo-L496ZG
evaluation boards act as main test platform. A transceiver-less CAN setup interconnects these nodes
and additional GPIO pins on each node provide an interface for external triggers and measurements.

Load Generator

The used CAN load generator is identical to the CAN load generator presented in section 5.1.1.

Time Synchronization

Similar to the previous tests, the time synchronization verification compares the pairwise time difference
of all nodes. For this purpose, the control computer logs the times printed via UART on each node
whenever a trigger signal toggles. A STM32F407G discovery board generates this signal, toggling
every 100 ms, which is directly handled in interrupt handlers on all nodes. In contrast to the previous
setup, the actual DOSIS time model as presented in section 4.3.2 is used for all tests. Node 1 is used as
reference node for all time synchronization tests.

The verification tests use a direct CAN based time transfer for all test cases and compares the
direct-set, P-controlled, and PI-controlled clock update mechanisms. Similar to the previous tests, either
the node containing the reference clock or one of the other nodes may additionally generate CAN traffic
using the CAN load generator.

Within each test case, the measurement start 30 s after reset of all nodes and observes the current
time on each node every 100 ms for a total of 10 min. Similar to the previous tests, the internal
oscillator provides the reference for all local clocks to represent worst-case conditions. Similar to the
previous test, the long term relative clock rate difference is ∼0.5 %. Figure C.1 depicts the relative
difference of the local clocks without additional synchronization for a time span of 10 min. Additionally,
a repetition of all tests using a 32.768 kHz external oscillator2 available on the Nucleo evaluation

2An NX3215SA crystal oscillator with a frequency tolerance of ±20 · 10−6 [157].

116 CHAPTER 5. TIME SYNCHRONIZATION TEST

Figure 5.6: Verification setup of the DOSIS time synchronization. Shown are the three STM32L496ZG
Nucleo nodes, the STM32F407G Discovery trigger generator connected to the input pin on all nodes
and the Saleae logic analyzer connected to the output pin on each node individually. Note that the
trigger generator is only used for time synchronization tests whereas the logic analyzer is only used for
the control loop tests.

boards as source for the local clocks provides insight into the performance of the time synchronization
in a setup closer to the expected setup in actual space applications.

Control Loop

The control loop test setup is again similar to the setup presented in section 5.1.1 but uses the latest
DOSIS framework including the DOSIS time model as presented in section 4.3.2. Besides the used
DOSIS version, the main difference between those setups is the controller implementation. To account
for the computational effort of a real world distributed control system, the controller only forwards a
command after 1 ms delay.

The control loop tests use the internal oscillator on all nodes, a CAN based time transfer, and a
PI-controlled clock update. Similar to the previous tests, load generated at either sensor, controller, or
actuator node optionally simulates a high CAN utilization.

Similar to the time synchronization test, each test case is repeated twice. The first repetition uses the
internal oscillator with a large drift and short term fluctuations within this drift; the second repetition
uses the external 32.768 kHz oscillator.

Figure 5.6 depicts the hardware setup used for the time synchronization and control loop verification
tests.

5.2.2 Time Synchronization Test Results

The time synchronization verification tests compare the time synchronization performance of PI-
controlled, P-controlled, and direct-set clock update with different CAN load conditions each. The

5.2. TIME SYNCHRONIZATION VERIFICATION 117

recording for each test case started 30 s after loading the firmware into all nodes and thus does not
contain the initial synchronization including the potential hard set of the local time. A recording of each
node’s local time every 100 ms for a total of 600 s provides the raw data for each test. The pairwise
time deviations calculated from these recordings are the indicator for the synchronization performance.

Figure 5.7 depicts the minimum, 25th percentile, median, 75th percentile, and maximum of these
deviations for comparison of the time synchronization implementation of DOSIS using the internal
oscillator. Node 1 — the node with the lowest skew factor of the three test nodes — is the reference
node for these tests. Figures C.2 to C.10 in appendix C.4.1 depict the raw data of the pairwise time
difference using the internal oscillator in greater detail.

Figure 5.8 depicts the second repetition of all tests using the external 32.768 kHz. Again, node 1 is
the reference node for these tests. Likewise, figures C.12 to C.20 in appendix C.4.2 depict the raw data
of the pairwise time difference using said external oscillator.

Figure 5.9 depicts the repetition of all tests using the external 32.768 kHz. For these tests, node
3 — the node with the highest skew factor of the three test nodes — is the reference node. Again
figures C.12 to C.20 in appendix C.4.3 depict the raw data of the pairwise time difference for detailed
reference.

none client server none client server none client server10−2

10−1

100

101

direct-set P-controlled PI-controlled

∆
t/

m
s

Figure 5.7: Pairwise time deviation ∆t for different time synchronization setups using the internal
oscillator as source for the local clocks. Shown is the distribution over 600 s sampled every 100 ms for
PI-controlled, P-controlled, and direct-set clock update with different sources of CAN load. Node 1 is
the time synchronization reference node. The whiskers depict the minimum and maximum values; The
boxes depict the first quartile, median, and third quartile.

none client server none client server none client server

10−3

10−2

10−1

direct-set P-controlled PI-controlled

∆
t/

m
s

Figure 5.8: Pairwise time deviation ∆t for different time synchronization setups using the external
32.768 kHz oscillator as source for the local clocks. Shown is the distribution over 600 s sampled every
100 ms for PI-controlled, P-controlled, and direct-set clock update with different sources of CAN load.
Node 1 is the time synchronization reference node. The whiskers depict the minimum and maximum
values; The boxes depict the first quartile, median, and third quartile.

118 CHAPTER 5. TIME SYNCHRONIZATION TEST

none client server none client server none client server

10−3

10−2

10−1

direct-set P-controlled PI-controlled

∆
t/

m
s

Figure 5.9: Pairwise time deviation ∆t for different time synchronization setups using the external
32.768 kHz oscillator as source for the local clocks. Shown is the distribution over 600 s sampled every
100 ms for PI-controlled, P-controlled, and direct-set clock update with different sources of CAN load.
Node 3 is the time synchronization reference node. The whiskers depict the minimum and maximum
values; The boxes depict the first quartile, median, and third quartile.

5.2.3 Control Loop Test Results

Similar to the initial control loop tests, the sensor triggers a readout and thus one cycle every 500 ms.
The first 30 s after loading the firmware may contain artifacts due to the initial time synchronization.
The recording and analysis for each test case contains approximately 370 samples recorded after this
initial delay. All figures depict the minimum, 25-perecentile, mean, 75-percentile, and maximum values
for each test scenario.

The first set of control loop test uses the internal oscillator as source for each node’s local clock.
Figure 5.10 depicts the results of the direct actuation tests, i.e., using a controller that waits for
1 ms upon reception of a sensor readout and afterward commands the actuator for immediate action.
Figure 5.11 depicts the results of the scheduled actuation at 100 ms after sensor readout respectively.

The second set of control loop tests uses an external 32.768 kHz oscillator as source for the local
clocks. Figure 5.12 depicts the results of the direct actuation tests; Figure 5.13 depicts the results of the
scheduled actuation at 100 ms after sensor readout.

5.2. TIME SYNCHRONIZATION VERIFICATION 119

none sensor controller actor
0

20

40

60

CAN load source

∆
t/

m
s

Figure 5.10: Results of the sensor-controller-actuator test with direct actuation using the internal
oscillator as source for the local clocks. The controller simulates its computation time with a static 1 ms
delay and commands the actuator to direct action. ∆t is the time between sensor readout and actuator
activation. The whiskers depict the minimum and maximum values; The boxes depict the first quartile,
median, and third quartile.

none sensor controller actor

−0.5

0

0.5

CAN load source

∆
t/

m
s

Figure 5.11: Results of the sensor-controller-actuator test with scheduled actuation using the internal
oscillator as source for the local clocks. The controller simulates its computation time with a static 1 ms
delay and command the actuator to a scheduled actuation 100 ms after sensor readout. ∆t is the error
between expected and actual actuation time. The whiskers depict the minimum and maximum values;
The boxes depict the first quartile, median, and third quartile.

120 CHAPTER 5. TIME SYNCHRONIZATION TEST

none sensor controller actor
0

20

40

60

CAN load source

∆
t/

m
s

Figure 5.12: Results of the sensor-controller-actuator test with direct actuation using the external
32.768 kHz oscillator as source for the local clocks. The controller simulates its computation time with
a static 1 ms delay and commands the actuator to direct action. ∆t is the time between sensor readout
and actuator activation. The whiskers depict the minimum and maximum values; The boxes depict the
first quartile, median, and third quartile.

none sensor controller actor
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CAN load source

∆
t/

m
s

Figure 5.13: Results of the sensor-controller-actuator test with scheduled actuation using the external
32.768 kHz oscillator as source for the local clocks. The controller simulates its computation time with
a static 1 ms delay and command the actuator to a scheduled actuation 100 ms after sensor readout.
∆t is the error between expected and actual actuation time. The whiskers depict the minimum and
maximum values; The boxes depict the first quartile, median, and third quartile.

5.2. TIME SYNCHRONIZATION VERIFICATION 121

5.2.4 Time Synchronization Test Discussion

The verification experiments for the implemented time synchronization mechanism using each node’s
internal oscillator confirm the previous result for a CAN based time transfer. Independent of the
CAN load’s origin, the direct-set update suffers from a remaining offset of up to 4 ms. This matches
the expected result as the clocks of node 2 and node 3 will move apart about 4 ms/s due to the skew
difference of the local oscillators (see figure C.1) and the time synchronization interval, i.e., the time
between consecutive updates, is set to 1 s.

Similarly, the P-controlled clock update confirms the previous result and again suffers from un-
corrected offset. Although not clearly visible from figure 5.7, figures C.5 to C.7 clearly depict this
static offset as the main reason for the large remaining error. This result is again independent of any
additional CAN load.

The PI-controlled clock update yields the best result with a remaining error of less than 1 ms
independent of the CAN load. Again, this confirms the previous experiments and thus confirms that
the current implementation has a behavior similar to the version used for initial tests. Thus, using the
DOSIS internal time model instead of a direct modification of the RODOS time representation does not
significantly affect the overall time synchronization performance.

As expected, using each node’s external 32.768 kHz oscillator as reference significantly improves
the time synchronization performance. The direct-set clock update already yields good results as the
relative skew is smaller (see figure C.11). Worst case relative skew of the used nodes is approximately
25 · 10−3 ms/s for nodes 1 and 3. With a synchronization interval of 1 s we thus expect a worst-case
error of approximately 25 µs. With any CAN load — which increases the time transfer delay by up to
TCAN frame+ = 160µs (see equation (3.4)) — we expect the worst-case error to increase up to 185 µs.
The test runs with direct-set clock update depicted in figure 5.8 confirm these estimates.

Although the external oscillator reduces the remaining error for a P-controlled clock update, this
update mechanism still suffers from a residual offset. While additional CAN load increases fluctuations
of the remaining error, it also seems to improve the overall result. Such an improvement can be
observed whenever the reference node’s skew is smaller than the synchronized node’s skew. In this
case the added delay due to CAN collisions leads to an over-estimation of the error term. Due to the
P-controller’s nature, this will lead to a proportionally increased output and thus an increased control
response. This increased response stirs the local clock of the synchronized node faster towards the
reference clock and thus potentially reduces the remaining error. From figure C.11 we can see that the
skew of the three test nodes are different and more specifically s3 > s2 > s1. Node 1 — the node with
the lowest skew of the used nodes — is the reference node for all test runs. Both of the synchronized
nodes, nodes 2 and 3, thus overestimate the error term and show an improved result. As the additional
delay due to CAN load affects both synchronized nodes similarly, the relative error between those nodes
does not change significantly. Figures C.16 to C.17 better depict this difference in the individual nodes’
response to CAN load. They also show that node 2 — which has a lower skew difference compared
to the reference node — slightly overshoots. Similarly, the remaining error for nodes with a skew
relatively smaller than the reference node’s skew increases with CAN load. Figure 5.9 depicts the
increased error in this scenario and Figures C.25 to C.27 show the effect on the individual nodes.

The PI-controlled clock update again yields the best result: the remaining error is 10 µs without
CAN load and less than 0.2 ms with CAN load on either side (see figure 5.8). While this is no significant
improvement compared to the direct update, the PI-controller may even yield reasonable results
with synchronization intervals of more than 1 s. Designers of a mission can use this result to find a
trade-off between remaining error, clock update complexity, and synchronization interval matching
their mission’s requirements. Note that the controllers were not specially tuned for the environment,
thus tuning a setup once the hardware and its parameters are known in detail may further improve the
performance.

Overall, the repeated time synchronization tests confirm that the DOSIS framework and its imple-
mentation including the internal time representation without direct modifications of RODOS meet the
requirement for a remaining relative time uncertainty of less than 2 ms from section 3.8. Thus, the
DOSIS time synchronization is suitable for the intended purpose.

122 CHAPTER 5. TIME SYNCHRONIZATION TEST

5.2.5 Control Loop Test Discussion

The control loop tests based on the sensor-controller-actuator setup with internal oscillator as clock
reference yields results similar to the initial tests. Again, the direct actuation suffers from the expected
delays while the timed actuation yields good results. The remaining error for those timed actuation test
runs remains below 1 ms independent of the additional CAN load’s source. For all control loop tests,
the time synchronization’s reference node is node 1. This node also has a skew error compared to the
logging computer connected to the GPIO pin of all boards. Therefore, the results shown in figure 5.11
have a small remaining offset.

Using an external 32.768 kHz reference oscillator on each node has no effect on the observable
delay of direct actuation tests as the CAN delay fluctuations are the major factor.

With timed actuation the average time does not exactly match the expected 100 ms, instead the
average delay between sensor readout and actuator activity for scheduled actuation is about 100.07 ms.
Again, the time synchronization only synchronizes local clocks, whereas it does not synchronize towards
the recording computer. A static offset thus remains and reflects the skew difference between the
recording computer’s clock and the reference node. The remaining relative error is less than 0.01 ms
in the absence of any additional CAN load, which matches the expected uncertainty due to the time
synchronization itself. Additional CAN load generates a few outliers with a larger relative error of up to
±0.5 ms. Multiple possible reasons for these outliers exist: interrupts due to additional CAN messages
received on the actuator node, forward propagation of the time using temporary outliers of the skew
due to time synchronization noise, or a remaining error in the time synchronization. As the outliers
are still within reasonable margins, the author did not conduct a more detailed analysis of their exact
reason.

Overall, these tests confirm that the major influence on the precision of any sensor readout or
actuator activity is the time synchronization. As the time synchronization has a remaining relative error
of about 0.1 ms using the external clock source and the sensor to actuator timing uncertainty is well
below 1 ms, the DOSIS framework is suitable for timing critical applications such as an ADCS control
loop.

Chapter 6

Radiation Test

6.1 Radiation Test Setup

The single event performance of the VA41620 and STM32L496ZG microcontrollers were evaluated at
the πM1 beam line of Paul Scherrer Institute (PSI). The πM1 beam provides protons and pions at a
momentum of 100 MeV c−1 to 500 MeV c−1 [165, 166].

A common hardware test setup for both microcontrollers provides a comparable setup. All test
setups use evaluation boards provided by the respective vendors as carrier board for the respective unit
under test (UUT). For the presented radiation tests, we use a PEB1-VA41620 by Vorago Technologies
to evaluate the VA41620 microcontroller and a NUCLEO-L496ZG-P by STMicroelectronics for the
STM32L496ZG microcontroller. These carrier PCBs provide the electrical and mechanic interface for all
radiation tests.

6.1.1 Mechanical Setup

The hardware setup consists of an upstream trigger detector, a mount for the UUT, and a downstream
trigger detector. The upstream detector counts the particles in a small area right before they reach
the UUT. The active part of the upstream detector is a 10 mm× 10 mm× 5 mm Saint-Gobain BC-408
scintillator [187]. A 1 mm thick Al casing protects the scintillator and the photo-sensitive detector read-
out electronics from light. The UUT mount holding the carrier PCB aligns the UUT 47 mm behind the
upstream detector. A second detector located 111 mm behind the front side of the carrier PCB observes
particles after they pass the UUT. This downstream detectors active part is a 80 mm× 80 mm× 4 mm
Saint-Gobain BC-408 scintillator[187]. Similar to the upstream detector, the downstream detector is
shielded from light using a 1 mm Al casing. A XYZ table is the base for the whole setup. This XYZ table
aligns the whole setup into the center of the particle beam. It finally positions the upstream detector at
a distance of 122 cm from the beam window. Figure 6.1 provides an overview of the test setup and
figure 6.2 visualizes the dimensions of this setup.

6.1.2 Electrical Setup

The electrical setup consists of two parts: the UUT setup and the detector readout electronics.

Unit Under Test

A carrier PCB provides the required electrical interfaces to the UUT. The debug USB port of the carrier
PCB is connected to a sequencing and logging server. An additional UART connection between UUT
and server enables logging of the UUT’s console output. A USB to UART adapter provides the required
UART interfaces for the server. Both USB devices are connected to the server via USB isolators. A Rhode
& Schwarz HMP4040 power supply provides the necessary voltage for these isolators and enables
logging of the electrical current drawn by the UUT and the UART converters.

123

124 CHAPTER 6. RADIATION TEST

Upstream detector

UUT

Downstream detector

Particle beam

Figure 6.1: Overview of the radiation test setup at the πM1 beam line.

Mount on XYZ table

D
ow

ns
tre

am
de

te
ct

or

U
U

T

U
ps

tre
am

de
te

ct
or

B
ea

m
w

in
do

w

111 mm

47 mm1220 mm

Figure 6.2: Mechanical dimensions of the setup at the πM1 beam line.

6.1. RADIATION TEST SETUP 125

Control room

Beam line Legend

SwitchLaptop Internet

SwitchHMP4040 Server

USB isolator USB isolator

USB UARTUUT

#1 #2

Debug port

Ethernet

5 V

USB

UART

Figure 6.3: Electrical setup used for the UUT at the πM1 beam line.

Control room

Beam line

Detector Fan-out

Data Aquisition

Amplifier

Discriminator DiscriminatorScaler Rate monitor

Figure 6.4: Electrical setup for analog readout of the detectors at the πM1 beam line.

A laptop located in the control room provides remote monitoring and control interface for the whole
setup. This is necessary as no physical access to the server or any other equipment located near the
beam line is possible while the beam line is active.

Figure 6.3 depicts the used electrical setup.

Detector Readout

Each detector consists of a scintillator surrounded by a number of silicon photomultipliers. A data
acquisition hardware stores the signal of all detectors as individual channels based on a trigger signal.
Additionally, an analog readout for one channel of each detector provides live information. Figure 6.4
depicts the analog setup. The discriminators suppress noise on the readout and create a signal suitable
for the scaler and monitor. The scaler counts the signal pulses and thus the total amount of particles
passing the upstream detector’s surface of 1 cm2 and thus provides a direct readout of the total fluence
of particles φ of the current test run. The monitor counts the signal pulses for 1 s and resets itself every
2 s and thus provides a readout of the current flux Φ.

126 CHAPTER 6. RADIATION TEST

0x2000 13ff

0x2000 4a00
read-write test region

0x2000 49ff

0x2000 1400
read-only test region

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

test memory region 2 (27 KiB)

0x2000 13ff
0x1fff ec00 stack and globals (10 KiB)

0x1fff ebff

0x1fff b600
read-write test region

0x1fff b5ff

0x1fff 8000
read-only test region

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

test memory region 1 (27 KiB)

Figure 6.5: Memory layout of the VA41620 MCU used for radiation testing.

6.1.3 Test Software

A simple test software monitors the embedded RAM of the UUT for every test run. The software uses
RODOS and implements a custom MAIN function. RODOS calls this function after system startup but
prior to scheduler activation. Thus, the test software is a single-threaded application with minimal
requirements regarding the surrounding system.

The test software first initializes the required hardware features and initializes the memory region
used for testing. After initialization, an infinite loop performs repeated self-checks of the UUT’s RAM.
It performs a check of the read-write memory region every 50 ms, a check of the read-only memory
region every 1 s; and generates a heartbeat every 5 s. The test software outputs any observations as
well as the heartbeat via the UART interface which is finally logged on the previously mentioned server.

System Initialization

The test software initializes the overall system and the memory locations used for testing. The
initialization fills a memory region dedicated for read-write testing and a memory region for read-only
testing with a predefined pattern. This pattern is similar to a checkerboard pattern, but contains a
dependency to the offset into the memory region. This dependency on the memory location avoids
false negative test results if memory access fails and returns content of a different memory location
instead. The content of each 32 bit memory location is 0xCCCC CCCC - offset, where offset is the
array index of the specific memory cell. 32 bit integers are used for all memory accesses.

The used memory layout of the available RAM can be seen in figure 6.5 and figure 6.6. For both
microcontrollers, a region in the center of the available memory hold the stack and global variables
required for the test software itself.

Additional Initialization of VA41620 The memory scrubbing and register refresh of the VA41620 is set up
to regularly scan and restore the microcontroller’s memory. Scrubbing of RAM and code RAM (called
read-only memory (ROM) within the VA41620 documentation) is set to scan one memory word of 4 B
every 32 clock cycles. With a system clock rate of 100 MHz a scrub engine will scan at a rate of

4B · 100 MHz
32

= 12.5Bµs−1 ≈ 12.2KiB ms−1. (6.1)

The 64 KiB RAM are split into two regions with individual scrub engines. Therefore, the whole RAM
is scrubbed every

64KiB

2 · 12.5Bµs−1 ≈ 2.6 ms; (6.2)

6.1. RADIATION TEST SETUP 127

0x2004 ffff

0x2003 ca00

read-write test region

0x2003 c9ff

0x2002 9400

read-only test region

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

test memory region 2 (155 KiB)

0x2002 93ff
0x2002 6c00 stack and globals (10 KiB)

0x2002 6bff

0x2001 3600

read-write test region

0x2001 35ff

0x2000 0000

read-only test region

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

test memory region 1 (155 KiB)

Figure 6.6: Memory layout of the STM32L496ZG MCU used for radiation testing.

the 256 KiB ROM every

256KiB

12.5 Bµs−1 ≈ 21ms. (6.3)

The TMR register refresh is set to refresh all registers every 256 clock cycles. With a system clock
rate of 100 MHz, it refreshes each registers every

256
100 MHz

= 2.56µs. (6.4)

Memory Test

Besides the different memory size of the VA41620 and the STM32L496ZG the memory test routine is
identical. The read-only memory test compares each memory location with the predefined pattern used
for initialization. The read-write memory test verifies the memory in three steps. First, it compares the
memory with the predefined pattern similar to the read-only memory test. Afterward, it overwrites the
memory with the bitwise negated value (i.e., it flips every bit) and reads the memory location again to
verify a successful write operation. Finally, it repeats the second step with the original pattern. This
leaves the memory with the exact same content it initially had for the next iteration.

If any memory test reads an unexpected value, it generates an output with all relevant information.
This output contains the affected memory location, the expected value and the actual value and is
printed on the previously mentioned UART port.

Heartbeat

The heartbeat of both microcontrollers generates an additional UART output to verify that the software
is alive. The VA41620 test software additionally monitors the hardware counters for bit errors in RAM
and ROM corrected by the hardware’s built-in memory scrubbing. If it detects a change of any hardware
counter, the software generates an output containing the affected memory region, the old value, and
the new value and prints this information as part of the heartbeat via the UART port.

128 CHAPTER 6. RADIATION TEST

6.2 Data Analysis Method

The data analysis is a multistep process. First, a preprocessing step converts the raw recordings into
a better understandable format. Afterwards, a statistical analysis provides insight into the observed
bit-flips. Additionally, the deposited energy and an estimate for the flux and fluence errors are derived
from the acquired recordings and instrument readouts.

6.2.1 Raw Data Preprocessing

The test software generates an output contains:

• a heartbeat in a regular interval to detect test software malfunction,

• the memory address, expected content, and actual content whenever the test software detects a
bit-flip, and

• hardware counters with every heartbeat if their values have changed (VA41620 only).

During logging of this output, the logging-computer prepends every line with the current timestamp.
A first processing step summarizes any observed events into 5 s intervals. For each 5 s interval, it

stores the amount of heartbeats, reboots, hardware corrected bit-flips on the VA41620, uncorrected
bit-flips of read-only memory tests, and uncorrected bit-flips of read-write memory tests. Additionally,
information on the test run itself is gathered and combined with the recording. Each processed data
contains information on the particle type (proton, pion+, pion-), the fluence (cm−2), flux (cm−2 s−1),
and momentum of the particles at the beam window (MeV c−1) noted during the specific test run.

6.2.2 Bit-Flip Analysis

A second analysis step estimates the expected bit-flip probability in a 5 s interval and the uncertainty
of said probability using bootstrap statistics [60]. The bootstrap method does not require knowledge
about the probability distribution of the random variable, but instead enables a statistical analysis
based on observed data. The used bootstrap analysis using the Matlab bootci method resamples
the observed data 10’000 times and calculates the mean value on each resampled set. Afterward, it
estimates the 68.2 %, i.e., 1-σ, confidence interval and the overall mean value. Multiple test runs with
identical MCU, particle type, and momentum — excluding test runs with instable beam power, a flux
not in 120 · 103 cm−2 s−1 to 130 · 103 cm−2 s−1, or unexpected system freezes — are combined into a
single data set for this analysis. Test runs with instable beam power are excluded due to the increased
flux and fluence uncertainty. Exclusion of test runs with a flux outside the given range reduces the
uncertainty regarding the pile-up estimation (see section 6.2.4). Finally, test runs with an unexpected
freeze generate incomplete observations only and are thus not suitable for direct comparison. This
result represents the likelihood and 1-σ confidence interval for the likelihood of a bit-flip in a 5 s interval
for a specific MCU, particle type, and particle momentum.

As a final analysis step, the bit-flip analysis normalizes the result to monitored memory size and
fluence of the specific test run into a bit-flip cross-section σbit-flip:

σbit-flip =
Nbit-flip

Smemory · bit−1 ·φ (6.5)

with

σbit-flip : bit error cross section,
Nbit-flip : number of observed bit-flips,
Smemory : size of monitored memory, and
φ : particle fluence.

6.3. VA41620 RADIATION TEST RESULTS 129

6.2.3 Deposited Energy

The deposited energy and LET in the UUT’s active volume enables normalized comparison of different
SEE tests. A simulation based on the observed deposited energy in the upstream and downstream
detector estimates the LET for protons with different initial momenta. For this purpose, a simulation
containing the physical test setup — i.e., the upstream detector, UUT, downstream detector, and their
respective relative distances — traces particles along their path. The initial particle momentum is
tuned to match the simulation result and the observation of the deposited energy in the upstream and
downstream detector1. In contrast to the physical setup, the simulation directly monitors the deposited
energy of the traced particles within the UUT’s active volume, i.e., the MCU’s silicon die. Thus, after
tuning of the initial particle momentum, the simulation generates the deposited energy in the UUT’s
active volume. Finally, the LET as a linearized estimate and the 1-σ interval for the deposited energy
per unit path length calculates from the simulated deposited energy in the UUT and the thickness of
the UUT’s active volume.

6.2.4 Particle Flux and Fluence

While the scaler and rate monitor provide a direct readout of flux Φ and fluence φ, the beam power
was not fully stable during test runs, thus readouts of flux and fluence may not match. To estimate
the uncertainty, the flux is also estimated based on the fluence and the active beam time, i.e., the time
between initially activating the beam for a test run and the end of the test run. The further analysis uses
the mean value. The deviations of the two values provide an estimate for the remaining uncertainty. In
extreme cases the mean value deviates by about 10 % from the two values.

Additionally, the pileup — i.e., the proportion of multiple hits within a single recording frame — is
estimated from upstream detector recordings. The observed pileup ratio is (5± 1) % for all test runs
with a flux readout of between 120 · 103 cm−2 s−1 to 130 · 103 cm−2 s−1. Detailed effect of this pileup
on analog readouts of flux and fluence is unknown as the precise behavior of the analog setup, e.g., of
amplifier and discriminators, is unknown. As the analog readout is potentially faster than the digital
recording (where a single recording has a duration of 800 ns), the estimated pileup from detector
recordings provides a worst-case estimate for the error introduced to the analog readouts.

We will thus assume a worst-case error of ±10 % due to beam fluctuations and the unknown
behavior of the analog instruments, and +5 % due to potential pileup. All analysis will thus include a
total error of −10 % to +15 % on the flux and fluence values.

6.3 VA41620 Radiation Test Results

A total of 21 test runs for two VA41620 MCUs provide the basic data for the further analysis. Table 6.1
depicts the basic information for these test runs. Identifiers are assigned in chronological order. No
software-observable bit-error occurred during these test runs, but a number of hardware-corrected
single-bit errors were reported by the corresponding hardware counters. The further analysis thus
presents the bit-flip cross-section of hardware corrected bit-flips for different scenarios. Figure E.1 in
appendix E visualizes the raw analysis without exclusions for each individual test run.

As presented in section 6.2.2, the further analysis combines all test runs with identical particle type,
used MCU, and particle momentum into a single result. Excluded from this analysis are:

• test runs 1, 2, and 3 due to a deviating flux;

• test runs 3, 18, and 21 due to beam instabilities;

• and test run 8 due to a freeze of the MCU.

1These simulations and the tuning of parameters where conducted by T. Pöschl and M. Losekamm at the TUM department
of physics.

130 CHAPTER 6. RADIATION TEST

A separate analysis and discussion of the reasons for the freeze of the MCU in test run 8 is necessary.
Figure 6.7 visualizes the combined data of the hardware-corrected bit-flip cross-section in the remaining
test runs for various particle momenta.

The LET analysis focuses on proton tests as these are the main source of radiation in a LEO
environment (see section 2.3). Figure 6.8 depicts the combined result of the test runs for different
proton LET.

6.3.
VA

41620
R

A
D

IATIO
N

TEST
R

ESU
LTS

131

Table 6.1: Overview of VA41620 radiation test runs sorted by used MCU, particle type, and momentum. Flux and fluence from scaler and rate monitor
readout as presented in section 6.1. Bit errors are hardware-corrected single-bit errors as reported by hardware counters.

Id Timestamp Used
MCU

Particle
Type

Momentum
p / MeV c−1

Fluence
φ / cm−2

Flux
Φ / cm−2 s−1

Bit Errors
Nbit-flip

Comment

11 2021-06-30 16:37 1 proton 240 84 · 106 126 · 103 0
12 2021-06-30 17:08 1 proton 295 101 · 106 123 · 103 22
1 2021-06-30 08:17 1 proton 310 21 · 106 23 · 103 11 low flux for setup purposes
2 2021-06-30 09:30 1 proton 310 30 · 106 32 · 103 27 low flux for setup purposes
3 2021-06-30 10:55 1 proton 310 270 · 106 230 · 103 56 beam power unstable
4 2021-06-30 11:55 1 proton 310 545 · 106 126 · 103 191

21 2021-07-01 10:58 1 proton 310 106 · 106 27 beam power unstable
8 2021-06-30 15:20 1 proton 325 <77 · 106 126 · 103 6 freeze after ∼2 min
9 2021-06-30 15:34 1 proton 325 101 · 106 129 · 103 24
7 2021-06-30 14:57 1 proton 330 104 · 106 129 · 103 35
5 2021-06-30 13:31 1 proton 345 101 · 106 125 · 103 44

10 2021-06-30 16:01 1 proton 360 102 · 106 128 · 103 33
6 2021-06-30 14:03 1 proton 375 271 · 106 128 · 103 74

14 2021-06-30 18:24 1 pion− 375 100 · 106 32 · 103 78
13 2021-06-30 17:34 1 pion+ 375 104 · 106 122 · 103 59 unexpected reboot

19 2021-07-01 10:02 2 proton 310 102 · 106 123 · 103 21
20 2021-07-01 10:27 2 proton 330 101 · 106 121 · 103 29
18 2021-07-01 09:00 2 proton 345 136 · 106 122 · 103 46 flux of Φ= 15 · 103 cm−2 s−1 for first 40 · 106 cm−2

17 2021-07-01 08:33 2 proton 375 122 · 106 123 · 103 39
15 2021-06-30 23:39 2 pion− 375 522 · 106 32 · 103 302 2 unexpected reboots
16 2021-07-01 08:03 2 pion+ 375 102 · 106 123 · 103 54

132 CHAPTER 6. RADIATION TEST

240 260 280 300 320 340 360 380

0

0.5

1

1.5

2

2.5

3
·10−13

|p|/MeV c−1

σ
bi

t-fl
ip
/

cm
2

MCU 1 Proton
MCU 2 Proton
MCU 1 Pion+
MCU 2 Pion+
MCU 1 Pion-
MCU 2 Pion-

Figure 6.7: Hardware corrected bit-flip cross-section σbit-flip of the VA41620 RAM and ROM memory
regions for different particles and momenta. Each data-point represents the combined and normalized
result for all test runs with identical particle type, momentum, and test hardware including 1-σ error
bars for σbit-flip. Impulse error bars show the πM1 beam line’s full width at half maximum according
to [166].

1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

·10−13

L /MeV mm−1

σ
bi

t-fl
ip
/

cm
2

MCU 1 Proton
MCU 2 Proton

Figure 6.8: Hardware corrected bit-flip cross-section σbit-flip of the VA41620 RAM and ROM memory
regions due to proton irradiation for different LET. Each data-point represents the combined and
normalized result for all test runs with identical LET and test hardware including 1-σ error bars.

6.4. STM32L4 RADIATION TEST RESULTS 133

6.4 STM32L4 Radiation Test Results

The STM32L4 radiation test data consists of a total of nine individual test runs. Table 6.2 depicts the
basic information on these test runs. In contrast to the VA41620 MCU, the STM32L496ZG used for
these tests does not feature any error correction for its RAM. Thus, the reported bit errors are bit errors
detected by the test software itself. Again, some test runs are not suitable for direct comparison: Test
run 1 was excluded from the future analysis due to the low flux of only 23 · 103 cm−2 s−1. Additionally,
test runs 4 and 6 are excluded due to off-nominal behavior of the test itself. While the MCU entirely
stopped its output in test run 4, the node did print excessive output in test run 6. The excessive output
affects the data as it prevents the test loop from its regular operation as it has to wait for the relatively
slow UART.

The data of only a few STM32L4 radiation test runs is available and does not include any duplicate
runs for the same momentum and particle type. Thus, the analysis does not combine multiple test
runs into a single data point but instead analyses each test run individually. Figure 6.9 visualizes the
observed bit-flip cross-section for different particle types and momenta. Similar to the VA41620 test
results, the proton tests were further processed to depict the bit-flip cross-section for different LET.
Figure 6.10 visualizes this additionally processed data.

Although no significant difference between read-only and read-write test patterns could be observed,
figures E.2 and E.3 in appendix E depict this analysis for reference.

134
C

H
A

PTER
6.

R
A

D
IATIO

N
TEST

Table 6.2: Overview of STM32L496ZG radiation test runs sorted by used MCU, particle type, and momentum. Flux and fluence from scaler and rate monitor
readout as presented in section 6.1. The bit errors column shows the sum of software detected bit errors in read-only and read-write memory regions.

Id Timestamp Used
MCU

Particle
Type

Momentum
p / MeV c−1

Fluence
φ / cm−2

Flux
Φ / cm−2 s−1

Bit Errors
Nbit-flip

Comment

1 2021-06-29 22:05 1 proton 310 15 · 106 23 · 103 6 low flux for setup purposes

2 2021-06-30 20:27 2 proton 310 103 · 106 125 · 103 18 flux of Φ= 4 · 103 cm−2 s−1 for first 6 min
3 2021-06-30 20:58 2 proton 330 103 · 106 123 · 103 19
4 2021-06-30 21:21 2 proton 345 30 · 106 128 · 103 2 freeze of MCU
5 2021-06-30 21:29 2 proton 345 70 · 106 128 · 103 18
6 2021-06-30 21:48 2 proton 375 37 · 106 123 · 103 55 565 run-away output / failed software
7 2021-06-30 21:54 2 proton 375 70 · 106 123 · 103 8
9 2021-06-30 22:55 2 pion− 375 30 · 106 31 · 103 1
8 2021-06-30 22:15 2 pion+ 375 101 · 106 124 · 103 21

6.4. STM32L4 RADIATION TEST RESULTS 135

300 310 320 330 340 350 360 370 380

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·10−13

|p|/MeV c−1

σ
bi

t-fl
ip
/

cm
2

Proton
Pion+
Pion-

Figure 6.9: Observed bit-flip cross-section σbit-flip in the monitored STM32L4 memory region of MCU 2
for different particles and momenta including 1-σ error bars for σbit-flip. Impulse error bars show the
πM1 beam line’s full width at half maximum according to [166].

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·10−13

L /MeV mm−1

σ
bi

t-fl
ip
/

cm
2

Figure 6.10: Observed bit-flip cross-section in the monitored STM32L4 memory region of MCU 2 due
to proton irradiation for different LET including 1-σ error bars.

136 CHAPTER 6. RADIATION TEST

6.5 VA41620 Radiation Test Discussion

Previous proton radiation tests of the VA10820 MCU by Wilcox and Seidleck [230] verified the
radiation tolerance and the built-in hardware error-correction for the MCU’s internal memory. For these
tests, the authors of [230] use protons with 200 MeV kinetic energy at a flux of 4.8 · 107 cm−2 s−1 to
7.8 · 107 cm−2 s−1. Their measurements show an average RAM and ROM bit-error cross-section per bit
of memory of 3.2 · 10−14 cm2 to 1.2 · 10−13 cm2. The built-in hardware error-correction successfully
corrected all the observed bit errors during these tests [230].

Vorago uses the same HARDSIL technology for the VA41620 previously used for the VA10820.
Due to the same technology and their similar specifications we expect them to also behave similarly
regarding proton radiation. The results presented in section 6.3 confirm this expectation with a bit-flip
cross-section of 3.8 · 10−14 cm2 to 2.3 · 10−13 cm2. All bit-flips were corrected in hardware and thus no
single bit-error could be seen by memory accesses of the software.

Test run 11 with an initial proton momentum of 240 MeV c−1 acts as a reference to verify that the
observed bit-flips originate from radiation effects. With this relatively low momentum, the protons
barely reach the upstream detector — enabling a flux and fluence estimate — but can not reach the
actual UUT. As no bit-flips occurred during test run 11, the effects observable during the remaining test
runs are related to the radiation and do not originate from other parts of the test setup itself. While a
worst-case estimate for the bit-error cross-section of 2.3 · 10−13 cm2 (2.7 · 10−13 cm2 for pions) can be
given from the test result, no clear trend regarding different particle momenta or LET (for protons) is
visible.

A few anomalies, excluded from the general analysis are present in the test results. During test
run 8 — a proton test run with an initial proton momentum of 325 MeV c−1 corresponding to a
LET of 2.7 MeV mm−1 — the UUT froze after approximately two minutes and did not generate any
additional UART output. At the same time, the power consumption via the UUT’s debug port did grow
significantly from 128 mA to 154 mA. The reason for this behavior is either an interruption of the
MCU’s functionality, a software error triggered by an otherwise unobserved event or series of events, or
an interruption of the functionality of a peripheral device on the evaluation board. An interruption
of the voltage regulators’ functionality due to a SEE caused by a proton would be an example for a
periphery failure explaining the observed behavior. While the exact reason for this failure is unknown,
a power cycle of the entire UUT could resolve the failure. A detailed analysis and careful selection
of peripheral components can mitigate or reduce the risk of such a failure due to a critical external
component. As even a careful selection is unlikely to guarantee uninterrupted operation, the possibility
of a full power cycle should be embedded in a concrete satellite design.

Additionally, a total of three unexpected resets of the VA41620 occurred during two of the pion
test runs: two during test run 15 and one during test run 13. Unfortunately, the test software’s output
does not include VA41620’s register indicating the previous reset reason. Possible reasons for such a
reset are multi-bit errors in the VA41620’s memory or SEEs leading to a temporary interruption of the
periphery’s functionality — for example, a malfunction of a voltage converter causing a brown-out
reset of the MCU. Monitoring this register in future radiation tests may provide further insight into
these reset’s origin. Similar to the previous anomaly, a careful selection of the surrounding components
is suggested. As pions are not one of the main sources of radiation in LEO, the probability of them
causing a mission failure is lower compared to other sources of radiation. Still, certain missions may
require a detailed understanding of this issue and thus further investigation of the root cause of the
unexpected resets.

6.5.1 Implications for Radiation Environment in LEO

As mentioned in section 2.3, we expect the worst-case conditions in the SAA. Assuming shielding of
1.7 mm Al equivalent, only protons with a kinetic energy larger than 20 MeV are relevant. Within the
SAA, we expect a peak flux of approximately 3 · 103 cm−2 s−1 for these protons (see figure 2.4).

The VA41620’s radiation tests show a worst-case estimate for the expected bit-flip cross-section of
2.3 · 10−13 cm2. With a proton flux of 3 · 103 cm−2 s−1 we thus expect a bit-flip rate of 6.3 · 10−9 B−1 s−1,
which corresponds to one bit-flip within the entire internal memory of the VA4162 approximately every

6.6. STM32L4 RADIATION TEST DISCUSSION 137

7.43 h within the SAA. The VA41620’s internal scrubbing and TMR registers will correct these bit-flips,
thus the bit-flips will not affect the firmware’s operation. Therefore, the proton environment of the SAA
does not affect the reliable operation of the VA41620.

While pion tests were conducted, the bit-error cross-section due to pions is not relevant for missions
in LEO since the pions flux is not significant in this environment.

6.6 STM32L4 Radiation Test Discussion

The STM32L4 MCU acts as reference during development of the DOSIS framework and is a cheap
alternative to the VA41620. The radiation test, especially the proton test, provides insight for designers
that may choose the STM32L4 for a specific mission. Similar to the VA41620 radiation test, the
STM32L4 test does not reveal a trend in the expected number of bit-flips for the tested momentum
or LET range. Still, the test results provide an estimated bit-flip cross-section of 9.8 · 10−15 cm2 to
3.1 · 10−13 cm2.

Additionally, the observed anomalies indicate general instabilities in the STM32L4’s functionality.
Due to the missing monitoring of the reset reason register of the STM32L4, a special register indicating
why the previous reset occurred, the reason for the unresponsive MCU in test run 4 is unclear. The
excessive output during test run 6, on the other hand, enables some insight into potential causes of the
observed effect. The output reports numerous memory errors within memory region 1 (see figure 6.6)
for both, the read-only and the read-write test patterns. More precisely, the reported errors are in
memory region 0x2000 8704 to 0x2001 FFFC and follow a common pattern: In all reported errors, the
same bit — which is part of the most significant nibble — is affected. The observable changes in the
most significant nibble change after some time to affect a different bit. Table 6.3 shows the observed bit
errors in the beginning and after a short time into the test run. Additionally, sporadic single-bit errors
(or multi-bit errors if occurring in combination with the regular pattern) or different changes to the
most significant nibble show up in the output. Especially during the transition of the affected bit from
the third bit to the first bit a larger number of different changes to the most significant nibble appear.

Table 6.3: Pattern of bit errors in the most-significant nibble during test run 6.

Expected Actual Comment

0xC≡ 0b1100 0xE≡ 0b1110 third bit flipped to 1
0x3≡ 0b0011 0x1≡ 0b0001 third bit flipped to 0

0xC≡ 0b1100 0x4≡ 0b0100 first bit flipped to 0
0x3≡ 0b0011 0xB≡ 0b1011 first bit flipped to 1

It is unlikely that the observed errors are actual bit-flips in memory as this would require the
radiation to specifically affect a set of bits spread systematically over a large portion of memory. A
functional fault of a component between the MCU’s core and the memory better matches the observation.
For example, an unreliable data line between memory and core could explain why a certain bit returns
what appears to have a random value instead of the actual content of the memory. A full power cycle
did resolve the observed issue and the MCU returned to its nominal behavior.

While the exact origin of the observed behavior during test run 6 is unclear, a functional interruption
of the controller itself seems more likely than individual bit-flips in memory. Therefore, a mission
designer must take this behavior into account. While it only appeared once and thus no reasonable
estimate for the likelihood of such an event exists, the effects are severe and may affect a wide range
of functionalities. The side effects are arbitrary and may even involve periphery — e.g., due to an
unwanted commanding of an actuator or an unwanted memory write operation to persistent memory
— which could lead to a permanent impact on the satellite’s functionality.

Thus, even if the risk of functional interruption with potential permanent damage is acceptable,
every design should include a power cycle mechanism capable of resolving stuck or malfunctioning
nodes such as an external watchdog. A software mechanism within the node is not feasible as it cannot

138 CHAPTER 6. RADIATION TEST

reliably detect those functional interrupts, similar as the test firmware could not distinguish individual
bit errors from a malfunctioning memory interface.

6.6.1 Implications for Radiation Environment in LEO

The proton flux in the peak of the SAA in a LEO is approximately 3 · 103 cm−2 s−1. With the worst-case
bit-flip cross-section of 3.1 · 10−13 cm2 — this is the likelihood observed during the conducted proton
tests — we expect a bit-flip rate of 8.6 · 10−9 B−1 s−1 for an STM32L4. For the entire RAM of the
STM32L496ZG this leads to an uncorrected bit-flip every 1.0 h within the SAA.

Additionally, functional interruptions that could cause effects in other parts of the satellite system
were observed (test run 6). A watchdog or other reset circuitry capable of power-cycling the entire
node may resolve some of those issues, especially the unresponsive cases. Nevertheless, it cannot
avoid permanent effects due to unwanted commands to periphery or memory that may be issued as a
consequence of the malfunction. Thus, the STM32L4 is not suggested for LEO missions with required
reliable operation inside the SAA. If a mission does not require reliable operation within the SAA, the
STM32L4 is still a cheap and power-saving alternative. Still, further tests should provide estimates for
the likelihood of such events and their detailed effects.

6.7 Conclusion

The radiation tests demonstrate that the radiation tolerance of the VA41620 is suitable to neglect
sporadic bit errors. Due to the observed anomalies, an external watchdog should still be embedded
in hardware designs. It should be capable of a full power cycle of all components to mitigate stuck
software due to various reasons.

The STM32L4’s radiation test, on the other hand, did not provide promising results for operation of
the MCU in the SAA. In other regions, especially for missions that do not require operation within the
SAA it may still be a reasonable choice assuming an external reset to recover from anomalies exists.

Chapter 7

Discussion

7.1 Fulfilled Objectives

A comparison of this thesis’ objectives introduced in section 1.5 and the capabilities of the DOSIS
framework and the tested hardware platform enables a better understanding of this thesis’ achievements.
This comparison utilizes the initially defined design goals and highlights not only the implementation’s
features but also the future perspectives for its application on real satellite missions.

7.1.1 Distributed System Framework

Objective 1 — Framework Design and Implementation — demands a framework that enables distributed
control on a CubeSat based on small nodes without enhanced hardware capabilities. The DOSIS
framework designed in this thesis provides the required features with its Components and their respective
ComponentInterfaces that can be used on arbitrary nodes of the satellite. A basic set of Modules enables
pragmatic declarations and definitions of new Components and thus simplifies the development of
individual parts of a CubeSat’s firmware. Finally, the orchestration of those Components to different
nodes and their pragmatic interconnection with so-called deviceDefs enables a quick setup of distributed
CubeSat control applications. As the framework does not rely on enhanced hardware features, the
resulting firmware can be deployed on a wide range of low-power nodes as long as these nodes use a
32 bit platform. Currently, the available ports of RODOS, the used OS for the DOSIS framework, limit
the use cases to a number of available MCUs.

The design goals presented in section 2.4 act as a guideline for the DOSIS framework’s design.
Design goal 1 — Component Availability — demands that all components are accessible, at least for
CubeSat missions at TUM but preferably even for other academic and commercial applications. The
initial selection uses the availability as one of its exclusion criteria (see section 3.1.1) and finally
chooses RODOS, which is published under Apache License version 2.0. This license allows the usage of
RODOS for arbitrary applications free-of-charge and without any restrictions on the custom additions or
modifications made [211]. As the DOSIS framework does not depend on other sources, it is generally
available for any academic or commercial application and is itself published under Apache License
version 2.0.

Due to the lack of detailed knowledge about the MOVE-III and LRSM mission hard- and software
requirements, design goal 2 — Expandability and Flexibility — demands a flexible and expandable
system that can be adapted to the specific mission’s needs. The DOSIS framework provides this
flexibility at all stages of the development. First, it enables development of Components independent of
the remaining system. Therefore, it is possible to start early with Component development and testing.
At the same time, the relatively independent Components also enable a late change to one Component
without affecting other parts of the system. A mission’s firmware consists of a combination of these
Components orchestrated to the available nodes. As this orchestration does not require any changes to
the Components themselves — the Components are fully independent of their node assignment unless
they require direct hardware access — it also enables simplified redistribution at any time during the
development process. Finally, the DOSIS framework does not require a specific number of nodes and

139

140 CHAPTER 7. DISCUSSION

thus can be used in a wide range of systems. A DOSIS setup with a single node and a setup with
more than ten nodes are equally possible. Scaling of the node number can not only scale the available
computational power or available physical interfaces for external components, but also enables scaling
the software to a required level of redundancy. Thus, the DOSIS framework provides all the flexibility
required for adaptations at any stage of the development cycle and encourages the reuse of components
available from other missions.

The limited electrical power available on a CubeSat is a scarce resource. Thus, design goal 3
— Power Consumption — demands a reasonable use of this resource and encourages power-saving.
The RODOS operating system currently supports a few types of MCU, for example ARM M based
controllers. Power consumption of ARM M based microcontrollers is typically in the range of a few
10 · 101 mW to 10 · 102 mW, for example, the STM32L496 with a power consumption of typically less
than 30 mW [206], which is acceptable for CubeSat and small satellite missions. While the use of
RODOS and the low-power ARM M MCUs satisfy design goal 3, the power saving features in RODOS
could be increased in the future, e.g., by better using the available sleep and power saving features of
the MCUs.

For use in harsh environments, design goal 4 — Reliability — demands embedded measures to
improve a system’s reliability or at least the support for user-defined mechanisms. Section 3.9 presents
a few countermeasures for failed components. Out of the suggested mechanisms, only the fail-over
mechanism for time synchronization based on a custom version of the Bully algorithm (see section 3.9.4)
is currently implemented. Developers can add other features, such as TMR features for Components
based on the existing DOSIS infrastructure. Due to the location independent messaging, such a feature
can be added without modifying any Component but the one requiring said feature. Thus, the DOSIS
framework embeds some features, but more importantly enables the development of custom features
where required.

The final design goal 5 — System Load — demands a reduction of the load of all resources where
possible. As we never experienced high load on the MCU or the CAN bus, no additional effort is
required so far. Especially the load introduced due to the DOSIS framework itself is minimal as the
framework does not require heavy computation.

Overall, the DOSIS framework provides the required features to support and encourage the de-
velopment of distributed applications on CubeSats. It provides the flexibility to enable its use on
different missions and encourages the reuse of components. As the DOSIS framework’s design and
implementation is according to the initially formulated design goals, the objective 1 — Framework
Design and Implementation — is fully achieved.

7.1.2 ADCS Capability

The second objective of this thesis — Demonstrate ADCS Capability — demands the demonstration of
all features required for a successful implementation of a timing sensitive control application based on
the DOSIS framework. The suggested example, an ADCS system, is one of the most critical real-time
applications for CubeSat software. It requires a reliable sensor readout, a potentially computing intense
calculation of the next actuation, and the control of the actuators themselves. In DOSIS, each of these
parts would be implemented as an individual Component. While they could be deployed to a single
node, it only becomes a distributed control system once deployed to a set of different nodes. To still
guarantee a synchronized behavior — i.e., a regular readout of all sensor values at a pre-defined point
in time, an update of the control output, and a precisely timed actuation of the actuators — DOSIS
contains a time synchronization mechanism.

Section 3.8 estimates that an ADCS system requires a time uncertainty of less than 2 ms to avoid
significant disturbance of the ADCS system. While section 3.8 presents a few options for such a time
synchronization, only a direct CAN message based synchronization can actually satisfy this requirement
as otherwise delays will affect the synchronization beyond the acceptable limits (see section 3.8.3). A
detailed evaluation and verification of the time synchronization mechanism in chapter 5 shows that
this message transfer has the expected behavior. The tests in sections 5.1 and 5.2 show that this time
transfer scheme in combination with a PI-controlled local time update satisfies the requirement even
for a relatively unstable clock source. Additionally, the verification tests in section 5.2 also show that for

7.1. FULFILLED OBJECTIVES 141

better local clock sources an even simpler direct update mechanism already satisfies the 2 ms constraint.
Furthermore, we could show that the timing of DOSIS Modules like the Interval or Actuator Modules
meet the 2 ms constraint. As additional traffic on the CAN bus does not affect the 2 ms constraint, more
complex control loops or multiple control loops in a single system are also possible unless the local
resources of the individual nodes are sufficient for this workload. If the timing constraints are violated
due to a high temporary load on a single node, e.g., as many sensors attached to said nodes should be
queried at the same time, additional nodes can be added to distribute the load. Thus, ADCS developers
can fully rely on the DOSIS built-in Modules to read out sensor values in specific intervals and actuate
any actuator at a precisely determined point in time.

Overall, the DOSIS framework has shown its capability of synchronizing the local clock of all nodes
with a remaining uncertainty of 2 ms. In combination with timed DOSIS Modules, an ADCS system
can be developed similar to other timing insensitive Components. The final orchestration of the ADCS
system’s DOSIS Components to different nodes of the overall system does not negatively affect the
overall ADCS system’s performance. Thus, the DOSIS framework also fulfills objective 2.

7.1.3 Hardware Platform

The final objective — Demonstrate on Target Hardware — aims at the availability of a hardware
platform suitable for CubeSat missions in harsh environments. Of the upcoming missions at TUM, the
reliable operation of AFIS within the SAA is the most critical constraint. To fulfil objective 3, a platform
that can tolerate the radiation environment in LEO and specifically in the SAA (see section 2.3) is
required. This thesis suggests the VA41620 by Vorago Technologies, which provides this capability, as a
candidate MCU for AFIS and beyond. The critical design goals — availability, power consumption, and
reliability — again provide a better insight into the VA41620’s capabilities in contrast to the low-power
STM32L4.

The hardware availability is critical for a successful mission. The VA41620 is a COTS ARM M4 based
MCU available via common distributors, e.g., Mouser electronics. In contrast to other components
suitable for use in space, it is readily available and, with a cost of about 4000€, reasonable for CubeSat
projects at TUM.

Typical low-power ARM M MCUs consume about 101 mW to 102 mW, for example the STM32L4
with a consumption of less than 30 mW [206]. Due to the used HARDSIL process and the radiation
hardening, the VA41620 consumes significantly more power, depending on the load pattern and
interface activity, about 140 mW [63]. While this may considerably change a CubeSats power budget,
it is still reasonable, especially for a larger 3 U or 6 U CubeSat. Thus, while not optimal regarding the
power consumption, the VA41620 is a valid candidate for designers to find a trade-off between power
consumption and radiation tolerance.

The most critical design goal for objective 3 is design goal 4 — Reliability. An MCU requires a
considerable TID and SEE tolerance for reliable operation in the SAA. The VA41620 tolerates a TID of
3 kGy [227] and can thus operate reliably for extended periods in LEO and beyond. Additionally, it has
a high latch-up immunity and provides a bit-error correction in all registers and the embedded RAM.
Chapter 6 presents a radiation test conducted at the PSI that verifies the error correction capabilities of
the VA41620. During this test no single bit-error could be observed from software. Thus, the reliable
operation of the VA41620 is not affected by the radiation environment of the SAA. Additional thermal
tests by Biswas [21] suggest reliable operation and startup of the VA41620 at temperatures as low as
−109 °C.

Overall, the VA41620 is not a power-saving MCU, but is a viable alternative for applications with
an extended demand for reliability. Reliable operation in radiation environments and at extreme
temperatures has been demonstrated. Thus, objective 3 is also fulfilled with the VA41620, an ARM M4
based MCU that is well supported by RODOS and the DOSIS framework.

142 CHAPTER 7. DISCUSSION

7.2 Simplified and Modular Component Development

As initially presented in section 1.2, the missing modularity of the MOVE-II hardware and software is
one of the main reasons why the MOVE-II platform cannot be used for the upcoming missions. The
LRSM needs a system that can be easily adapted and scaled for a specific mission while keeping the
required workload, and thus the number of required persons, as low as possible. Thus, the DOSIS
framework has to be modular to simplify sharing of components between missions while at the same
time simplifying the development of individual components.

The DOSIS framework is inherently modular due to its strong separation of interface and imple-
mentation of each part. The declaration of a new Component is a declaration of its ComponentInterface.
The ComponentImplementation, including the default behavior of the Component’s Modules, is derived
from this ComponentInterface. It guarantees that the implementation always matches the interface
and assures proper interpretation of messages. With this guarantee, the interface and implementation
can be used arbitrarily on different nodes. As all communication uses the ComponentInterface only, a
Component’s internal behavior can be adapted to a mission’s specific needs without modifications to
any other part of the system. Multiple copies of a Component, possibly using different versions of the
Component’s implementation, can co-exist on a single mission. These are individually connected to the
respective interface instances at compile-time using deviceDefs. Overall, this provides a modular archi-
tecture that enables the design and implementation based on a combination of available Components
from other missions — possibly modified to fit the specific mission — and mission specific Components.

The effort of developing a DOSIS Component or orchestrating Components into multiple nodes,
especially the complexity managed by developers, is reduced in multiple ways. The declaration of
a Component combines multiple Modules and their respective data types into one Component. This
directly defines the Component’s interface and the default behavior thereof. Thus, developers do
not have to repeat commonly used patterns, including the communication between a Component’s
interface and its implementation. Extensive unit tests of the DOSIS framework itself assure this
networking and default functionalities behavior. Thus, developers do not have to repeatedly test the
commonly used functionality and can focus on their Component’s actual functionality. As the use of
C++ templates strongly connects a Component’s interface and its implementation — the interface is a
template parameter of the implementation — the compiler guarantees that they actually match and
have a common understanding of the internal messaging. Additional names assigned to all Modules
used within a Component’s interface enable the access using proper names and thus increases the
readability of code. In combination with strongly typed interface methods, DOSIS Components reduce
risk of misinterpretation of data. C++ types for physical units — an already available extension to
the DOSIS framework (see section 7.5.1) — can help to further reduce the risk of misinterpretation.
Specifically, they help to avoid misinterpretation of a value due to a wrongly assumed unit — for
example interpreting a current given in mA as A and thus resulting in an error of 103.

Callbacks provide the modification point for developers to change the behavior of a Component’s
implementation. Due to the used C++ templates, the compiler assures that all required callbacks
actually exist, all implemented callbacks use the expected data type in their interfaces, and only
callbacks that are actually used are implemented. This avoids a number of software bugs where
a developer accidentally implements a callback that is never called instead of the callback actually
intended. As the interface of any Component can be used even before the Component’s implementation
exists, the development of individual Components is relatively independent. This independence gives
the developers freedom to implement and test their Components even though other parts of the system
are still missing.

The final step of creating the firmware for each node on a satellite is the orchestration of the
Components. This step also connects the Component interface instances to the respective Component
implementation instances. DeviceDefs provide the required information for this connection, including
the data type of the Component interface. Using this data type, the compiler verifies that no wrongful
connection — i.e., connection of a Component interface to the implementation of a different Component
— exists within the system. This again avoids potentially hard-to-detect bugs that may result in
unexpected behavior due to misinterpreted messages.

An example application demonstrating the simple steps of declaring a Component, implementing

7.3. DOSIS ON ORIGINS LRSM MISSIONS 143

this Component’s specific behavior, and accessing the Component via its interface can be found in
appendix D.1.

For these reasons, we see that the DOSIS framework simplifies the firmware development. It also
simplifies and encourages the reuse of software. Nevertheless, no real CubeSat firmware based on the
DOSIS framework was developed so far. Thus, monitoring the impact of the DOSIS framework on the
development process is necessary to reveal potential for future improvement.

7.3 DOSIS on ORIGINS LRSM Missions

Because AFIS and ComPol rely on a number of commercial subsystems, only two computational nodes
are developed in-house: the central CDH system that controls and gathers telemetry of the satellite and
a PDP that controls the scientific payload and processes its data. The remaining primary subsystems
— i.e., ADCS, EPS, or communications subsystem — are off-the-shelf components that provide a
CAN interface. Figure 7.1 shows this setup and all major data connections. A CAN bus provides
the main interconnection to monitor and control the activities of all subsystems. Additional direct
connections via Ethernet and TIA/EIA-422 between the communication system and the PDP and CDH,
respectively, provide means for the transmission of data at higher rates than the CAN bus is capable
of. An additional benefit of this architecture is that it offers redundant paths for the transmission of
science data: Nominally, data is transmitted at high rates directly from the PDP to the communications
system via Ethernet; in case of problems with this link, data can also be sent at lower rates through an
TIA/EIA-422 connection and routed via the CDH.

The IOV-1 experiment as already presented in section 2.1.3 gives us the opportunity to test proto-
types of the CDH and PDP nodes. The experiment will have a separate, flight-proven computer that
controls and monitors all systems, thus it provides greater freedom in testing our new systems.

The CDH’s primary task is the monitoring and control of all other subsystems of the satellite bus. A
VA41620 equipped with radiation-tolerant memory for housekeeping data collected from all subsystems,
for firmware updates, and for configuration parameters for both itself and the PDP is the core of the
CDH. In addition, it has its own housekeeping sensors, such as temperature sensors, and provides
interfaces for additional periphery — e.g., a receiver for a GNSS receiver or an external real-time clock
source. To pave the way for future distributed satellite architectures, two identical copies of the CDH
in the IOV-1 experiment verify various soft-redundancy and the distributed-control capabilities of the
DOSIS framework.

The primary reason for developing a custom PDP is our scientific payloads’ requirement for highly
parallel interfaces. An FPGA on the PDP provides this interface. An additional VA41620 MCU handles
instrument control, telemetry, and the interface to update firmware from the CDH.

7.3.1 On-Board Software

The CDH and PDP each contain a VA41620 MCU executing a RODOS and DOSIS based firmware. As
many parts of the software’s tasks and the distribution of the responsibilities between the first two
nodes is still undefined, the development relies on the DOSIS framework’s capabilities of independent
development. So far, a CubeSat Space Protocol (CSP) implementation and a DOSIS Driver for the
SatLab SRS-4 transceiver were developed as part of an interdisciplinary project supervised by the
author of this thesis [147]. Additional components — e.g., in-orbit update capabilities of the VA41620
or access to external MRAM and a file system to simplify on-board telemetry processing and storage of
generic data — are beeing actively developed.

In future missions, the CDH shall also be able to run the complex control algorithms required for a
distributed EPS or ADCS. The DOSIS frameworks capability to gradually replace other components or
entire subsystems as needed enables an iterative development towards these missions. Multiple new
missions within the LRSM and its successor Space Missions Laboratory (SML) are expected in the near
future. Thus, the development of DOSIS and firmware components based on DOSIS will continue and
is expected to further increase the capabilities of the TUM CubeSat bus.

144 CHAPTER 7. DISCUSSION

CDH PDP

MCU

Memory

Periphery

FPGA MCU

Payload

COTS ADCS COTS EPSCOTS COM

Ethernet

TIA/EIA-422TIA/EIA-422

CAN

Figure 7.1: Schematic hardware overview of the LRSM satellite bus including core subsystems used for
the AFIS and ComPol missions.

7.4 Limitations of Implementation

Although presented in chapter 3, the current implementation of DOSIS does not yet implement all
presented features. Especially the support for redundancy management is rudimentary. Multiple
commanding entities for a single Component are possible, but the developer is fully responsible to
take care of any additional synchronization step. While this may be manageable for simple cases, the
developer must take special care for contradicting commands in situations where multiple Daemons
are responsible for a single Driver. For more complex cases, e.g., for TMR schemes where the Driver
would receive an individual command from each Daemon, this will be a rather complex and thus
error-prone task. Therefore, it is currently suggested to implement a strict chain of command where
each DOSIS Component receives commands only from a single other entity at a time. If a setup requires
multiple commanding entities, e.g., for a TMR setup, a dedicated voting Component should be used as
an intermediate message end-point that receives all commands, pre-processes them, and only forwards
them to the actually commanded DOSIS Component thereafter.

Another limitation of the current implementation is the lack of proper access to historic data. All
currently available Modules return an error code indicating the lack of data if the currently available
data was accessed before. Future versions of DOSIS should update this behavior to match the defined
behavior of returning the currently available data and tagging this data as historic.

Besides the unimplemented features, two additional issues, revealed during the DOSIS framework’s
development, must be addressed. First, the current implementation uses a time model independent
of the hardware’s actual time. Due to the possible changes to the time model’s parameters for clock
synchronization purposes, a long-term forward propagated value may lead to imprecise timing. This
is a result of the one-time conversion of the DOSIS time to a RODOS time for scheduling purposes.
Neither DOSIS nor RODOS update the time used for scheduling if the clock parameter changes, e.g.,
due to a time update message and an updated clock offset and skew.

The second issue is the coexistence with other protocols on a shared CAN bus. While RODOS
messages use extended CAN identifiers with a certain prefix, the CSP uses the entire extended CAN
identifiers. Thus, RODOS messages will be interpreted in CSP implementations as potentially invalid
data and vice versa.

Finally, special care is needed when using the DOSIS framework for purposes other than satellite
control. The entire framework is intended for relatively small messages transmitted in regular inter-
vals. DOSIS Modules transferring large messages, e.g., for large payload measurements, may lead to
unexpected delays of the messaging and may thus lead to timing issues. This is a direct result of the
way RODOS fragments messages on the CAN bus. More details about expected delays with RODOS

7.5. ONGOING EFFORT AND FUTURE EXTENSIONS 145

messages are presented in section 3.8.3. Thus, developers using the DOSIS framework should avoid
large data types for any of the currently available DOSIS Modules.

7.5 Ongoing Effort and Future Extensions

While this thesis presents the general DOSIS framework at its current state, the active development is
still ongoing. A wide range of extensions increase the freedom of designers and developers using the
DOSIS framework. While the design and implementation of these extensions may be incomplete, they
show the wide range of the ongoing effort and the potential for ongoing use of DOSIS at TUM.

7.5.1 Ongoing Development

All extensions presented in this section are part of student theses supervised by the author of this work.

Checkpoint and Restore

Checkpoint and restore mechanisms provide a way to resume work after a critical failure and may thus
be used to increase a system’s reliability and reduce the impact of a failed node on the overall system
(see section 3.9.5). For this purpose, checkpoints of a running application act as a starting point to
resume the application at a known state. A cooperative thread-migration system implemented as an
extension to RODOS provides the capabilities of runtime migration of RODOS threads [65, 96] as a
first step towards a checkpoint and restore mechanism. While the support for interfaces used by such
threads is still limited, e.g., hardware resources are not available for such threads, the communication
via RODOS topics is possible for these threads independent of the used node. Currently, this thread-
migration system does not support DOSIS Components and lacks a mechanism to autonomously detect
failed tasks and trigger a migration or restore from a previously stored checkpoint accordingly.

Scripting Language

Scripting languages enable the execution of code without intermediate compilation steps. On small
MCUs without MMU they are especially useful as the support for runtime linkage is rare and thus each
change of a script would require an update of the entire firmware.

µPython, an open-source1 Python 3 implementation for embedded devices, enables scripting
even on resource constrained MCUs without MMU. First efforts to execute µPython in RODOS were
successful [90]. Currently, Python extensions to enable the access to DOSIS Components are not
available thus no direct communication between Python and other RODOS or DOSIS applications is
possible.

Benchmarking

Benchmarking an application enables insight into the resource utilization and potentially reveals
performance issues in code. Within a DOSIS system, two resources are critical: the CAN bus utilization
and the MCU utilization. Initial benchmark setups based on the built-in performance counters of
the ARM M-4 core and the external observation of CAN messages did not reveal any unexpected
performance issues [88, 138, 195]. Nevertheless, the DOSIS framework and application development
could benefit from a continuous benchmarking. Such a benchmarking, potentially integrated into
regular build pipelines, could track the changes over time and reveal unconsidered side effects of any
changes to the framework’s code.

1µPython is available at https://micropython.org/.

https://micropython.org/

146 CHAPTER 7. DISCUSSION

Physical Units

The C++ language does not contain direct support for International System of Units (SI) dimensions
and units. Instead, sensor readouts or other values calculated from raw measurements use regular data
types, i.e., integer or floating point types. While this does not affect the mathematical operations per
se, it removes information about the units of these values. Static type checks could use this information
to avoid physically illegal operations, such as adding values of different types. Thus, DOSIS includes a
physical unit system providing increased type safety2. Additional literals increase the readability of the
source code and enable direct use of physical constants. While the current implementation already
adds a significant benefit to DOSIS, additional support for less common units and added flexibility
regarding the C++ data type internally would further encourage developers to use the physical unit
type system.

Firmware Updates

Firmware updates are an essential functionality for most CubeSat missions. An update may range from
just a small fix or adding a minor script up to an entire update of the firmware image. A safe and secure
software update mechanism is currently in development as part of an ongoing Master’s thesis [146]. It
will provide safe updates that aim at reducing the risk of rendering the system unresponsive. At the
same time basic security measurements assure that only software updates from a known source are
accepted.

7.5.2 Additional DOSIS Modules

First user applications and their respective DOSIS Components show the need for additional DOSIS
Modules specialized for specific tasks. While the initial set of Modules presented in section 3.5 targets
sensors, actuators, and the infrastructure required for distributed control, they do not cover all scenarios
for payload handling, access to historic housekeeping data, or commanding. They could especially
benefit from three additional Modules:

• A Module enabling larger messages. As previously mentioned, DOSIS currently focuses on
short messages, e.g., sensor readouts. Payload configuration or access to time-series of historic
housekeeping data often provide or require larger chunks of data at a time. Therefore, a Module
that enables fragmentation of larger messages simplifies the development of such applications.

• A Module with variable length messages. Commands issued remotely by satellite controllers do
not have a uniform size. Especially scripts or sequences of commands as often used for satellite
control have a widely varying size. As padding them to the maximum possible size is unreasonable
— not only regarding the CAN bus and memory utilization but also the involved communication
link between ground station and satellite — a special Module is required. Additionally, on-board
error reporting and debugging messages could greatly benefit from such a Module.

• A Module with enumerating and/or identifying commands and their responses. While most
communication is stateless, some commanding requires a way to identify the response due to a
certain command. This identification benefits commanding via a radio link that may lose some
messages where the identification of the received responses is essential. It would avoid execution
of duplicate messages and enable the access to the previous returned value if it did not reach its
destination.

The missing Modules show that the DOSIS framework is not complete for all applications. Once an
application requires features beyond sensor and actuator access for distributed control, the provided
support is limited. While the three suggested additional Modules would certainly solve the remaining
issues for some applications, future satellite missions and their specific requirements will reveal
more applications that require specialized Modules or other supportive features. Thus, the ongoing
development of the DOSIS framework is essential for its future use in a multitude of space missions.

2Developed as part of an Interdisciplinary Project [180].

7.6. SUMMARY 147

7.6 Summary

The three main objectives of this thesis are reached: The DOSIS framework provides the necessary
support for distributed applications on a resource constrained CubeSat. Additionally, the frameworks
can provide suitable timing guarantees for an ADCS control loop. Furthermore, this thesis shows
that the VA41620 controller is a radiation tolerant alternative for the LRSM missions, which is also
compatible with the DOSIS framework.

Nevertheless, the verification in a real environment is still pending. A verification will be conducted
as one of the next setups as part of the IOV-1 LRSM mission. While DOSIS provides the basic
infrastructure for distributed control, additional effort is required in the future to widen the applicability
of DOSIS — especially for CDH software and a flexible payload interface.

Chapter 8

Conclusion

8.1 Summary

A few CubeSat missions at TUM will be developed and launched in the upcoming years. Not only
MOVE-III, a new satellite of the MOVE series, but also the AFIS and ComPol satellites of the ORIGINS
LRSM are developed concurrently. With the tight time-line of all of these projects, we identify the lack
of a flexible and easy to use software framework encouraging the reuse and sharing between those
missions as one of the main problems. We suggest a distributed system that also supports distributed
real-time control applications as a potential solution (see section 1.2). As no such distributed system
exists in literature, and especially none of the available frameworks directly enables the suggested
system, the author suggests the design and development of a custom framework, namely the DOSIS
framework (see section 1.4). Thus, the main objective of this thesis is the design and implementation
of the DOSIS framework, the verification of its applicability to distributed control applications, and the
demonstration of hardware for the target environment (see section 1.5).

Initial design goals based on the upcoming missions — AFIS, ComPol, and MOVE-III — provide a
guideline for the design and implementation of the DOSIS framework (see section 2.4). A comparison
of existing OSs and on-board software frameworks identifies RODOS in combination with a CAN based
network of nodes as the best candidate to provide the basic infrastructure for the DOSIS framework
(see sections 3.1 and 3.2). The following design of the DOSIS framework itself is the main achievement
of this thesis (see sections 3.3 to 3.7). It presents DOSIS Components as the largest building blocks,
which in turn are a combination of DOSIS Modules. These Modules provide pre-defined behavior and
enable simplified development of Custom components. While developers can change the behavior via
optional callbacks, the strict separation of a Component’s interface and its implementation enable early
testing and modular assembly of the final firmware. It not only enables a modular assembly within a
single node, but an orchestration of the Components to different nodes. At the same time this modular
and flexible design encourages sharing of Components between different missions and simplifies the
development due to its well-defined Component interfaces.

In addition to the DOSIS Components, the framework’s design also contains various alternatives for
a time synchronization of all nodes (see section 3.8). This time synchronization is an essential part
of the framework and enables precisely timed and synchronized activities spread over the network
of nodes. A few alternatives to further increase the reliability of the overall system are available and
different solutions are available for a satellite’s designer (see section 3.9).

The implementation (see chapter 4) provides the DOSIS core — i.e., the Components, Modules, and
infrastructure required for their usage — a time synchronization based on a DOSIS internal time model,
and a Bully based fail-over for this time synchronization. Additionally, the implementation contains
some partially finished features that are still in development and not directly part of this thesis (see
section 7.5).

Afterward, a number of tests verify the functionality of the framework and the selected target
hardware. A first set of tests specifically verifies the time synchronization and the DOSIS framework’s
capabilities to guarantee timing for sensor readouts and actuator activations (see chapter 5). These
tests verify that the remaining time uncertainty is below ±2 ms even for a low-quality local clock

149

150 CHAPTER 8. CONCLUSION

reference on each node. Thus, these tests demonstrate the framework’s capability to provide the
required infrastructure for a distributed time-critical control system. As the AFIS mission requires
reliable operation in the SAA, the VA41620 is suggested as microcontroller of the distributed system.
A radiation test campaign (see chapter 6) could verify the built-in error correction of said controller.
All bit-flips were successfully handled in hardware and no bit error could be directly observed from
software. In the SAA, the VA41620’s underlying memory is expected to generate about 1 bit-flip every
few hours. The built-in error correction will automatically correct this bit-flip and thus no additional
software mechanisms recovering corrupted data are required.

8.2 Conclusion

The presented DOSIS framework has been designed and implemented to support the firmware de-
velopment for the LRSM missions — specifically AFIS and ComPol — and the MOVE-III CubeSat.
Furthermore, the framework and the radiation tolerant VA41620 platform fully reach the objectives of
this thesis. Achieving these objectives advances the current state of the art with respect to the identified
research gaps presented in section 1.4:

Research Gap 1 Distributed satellite bus control for a resource constrained CubeSat platform.

Research Gap 2 Reliable time synchronization on a resource constrained platform.

Research gap 1 is addressed with the DOSIS framework itself. It demonstrates a distributed control
setup based on a number of nodes. The suggested platform is based on ARM M-4 MCUs with a
relatively low power consumption and thus suitable for use in a regular CubeSat. With the added time
synchronization, implemented entirely in software, the DOSIS framework also advances research gap 2.
While this synchronization is not optimized, it shows that such a synchronization is clearly possible. In
combination with the failover mechanism based on a simplified Bully algorithm, a reasonable reliable
synchronization mechanism is established.

Advancing the state of the art regarding those gaps also supports the hypothesis of this thesis:

Hypothesis 1 A system based on a network of nodes can improve the flexibility and adaptability of the
overall system and allows simple extensions to meet different mission criteria.

The DOSIS framework provides a simple interface for application development. At the same time, it
encourages the reuse of software components between different missions and enables the scaling of
the network of nodes based on a specific mission’s requirements. In combination with the distributed
control advancements, we have shown that a system based on a network of nodes simplifies extensions,
modifications, and reuse of existing software. While the DOSIS framework may not be optimal for
all applications, it certainly improves the reuse of software between LRSM and MOVE missions and
simplifies the adaptation of the software to the specific mission. Thus, hypothesis 1 is confirmed.

Hypothesis 2 Such a system can meet the timing requirements to implement timing sensitive systems such
as a distributed attitude determination and control system.

We designed the entire DOSIS framework presented in this thesis to support distributed real-time
control applications. With objective 2, achieving the required time synchronization accuracy and
precision for an ADCS system was one of the main goals. The time synchronization design thus aims at
a remaining time uncertainty of less than 2 ms to support an ADCS controller with minimal distortion
due to imprecise timing. In chapter 5 we could demonstrate that the DOSIS framework and the
implemented time synchronization well achieves this goal. With these tests, we could also demonstrate
that the DOSIS framework can meet the timing requirements of an ADCS and scheduled sensor readouts
as well as actuator activations can be reliably scheduled within the acceptable remaining uncertainty of
2 ms. Thus, the time synchronization of the DOSIS framework confirms hypothesis 2.

Overall, we successfully demonstrated the viability of a distributed system for CubeSat control.
The DOSIS framework at this point not only acts as a demonstrator of a principle, but has its direct

8.3. OUTLOOK 151

application in the LRSM and MOVE-III. Although the framework requires some additions for a better
support of applications other than distributed control, developers can already use the framework to
implement first Components for later satellite missions. Therefore, this thesis and the current DOSIS
framework are only the first step towards a full-featured toolbox for CubeSats with distributed software
at TUM.

8.3 Outlook

While this thesis advances the state of the art regarding distributed real-time control on CubeSats,
we have not yet reached a state where the DOSIS framework can be used for arbitrary applications.
The strong focus on real-time control, which certainly is one of the tasks with strict requirements
regarding the system’s performance, has lead to a reduced support for other applications, such as
generic housekeeping or payload configuration and data management. In future efforts, we will thus
extend the framework’s capabilities to not only support control applications but also enable simplified
development of payload interfaces and advanced CDH systems. Therefore, the implementation of the
additions presented in section 7.5 is one of the next steps. Especially the suggested Modules for large
messages and variable sized messages are critical for the use of DOSIS to implement a CDH system’s
data handling capabilities.

At the same time, the DOSIS framework will find its first real-world application — other than
experimental tests on MOVE-BEYOND high altitude balloons — on the ISS based IOV-1 experiment.
The included verification of DOSIS on a VA41620 based platform will provide a better insight into
the need for additional features and provide a test platform for distributed reliability measures. At
the same time, the active development of the AFIS and ComPol missions will drive the extension of
the DOSIS framework’s capabilities as previously suggested. Finally, those experiments will verify the
framework and its application for generic CubeSat control tasks.

Recent publications show that the general idea of a distributed system on a CubeSat is viable. For
example, the CubeSat based Experiment for Space Radiation Analysis [128] also utilizes a distributed
system of VA41630 — a version of the VA41620 with embedded code memory — nodes. Therefore, we
assume that the DOSIS framework will find its application in various future CubeSat missions at TUM.

References

[1] AAC Clyde Space. KRYTEN-M3. Command & Data Handling. Datasheet. July 28, 2020. URL:
https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Kryten.pdf
(visited on 10/26/2022).

[2] AAC Clyde Space. SIRIUS OBC LEON3FT. Commany & Data Handling. Datasheet. July 28, 2020.
URL: https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Sirius-
OBC.pdf (visited on 10/26/2022).

[3] AAC Clyde Space. SIRIUS TCM LEON3FT. Commany & Data Handling. Datasheet. July 28, 2020.
URL: https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Sirius-
TCM.pdf (visited on 10/26/2022).

[4] Abdullah, M., Al-Kohali, I., and Othman, M. “An Adaptive Bully Algorithm for Leader Elections
in Distributed Systems”. In: Lecture Notes in Computer Science. Springer International Publishing,
2019, pp. 373–384. DOI: 10.1007/978-3-030-25636-4_29.

[5] Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E. A.,
Bongi, M., Bonvicini, V., Borisov, S., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carbone, R.,
Carlson, P., Casolino, M., Castellini, G., Consiglio, L., Pascale, M. P. D., Santis, C. D., Simone,
N. D., Felice, V. D., Galper, A. M., Gillard, W., Grishantseva, L., Jerse, G., Karelin, A. V., Kheymits,
M. D., Koldashov, S. V., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Marcelli, L.,
Mayorov, A. G., Menn, W., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Mori, N., Nikonov, N.,
Osteria, G., Palma, F., Papini, P., Pearce, M., Picozza, P., Pizzolotto, C., Ricci, M., Ricciarini,
S. B., Rossetto, L., Sarkar, R., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A.,
Vannuccini, E., Vasilyev, G., Voronov, S. A., Yurkin, Y. T., Wu, J., Zampa, G., Zampa, N., and
Zverev, V. G. “The Discovery of Geomagnetically Trapped Cosmic-Ray Antiprotons”. In: The
Astrophysical Journal 737.2 (July 2011), p. L29. DOI: 10.1088/2041-8205/737/2/L29.

[6] Alaña, E., Carmen Lomba, M. del, Jung, A., Grenham, A., and Fowell, S. “The Avionics SOIS
Services of COrDeT On-Board Software Architecture”. In: Proceedings of Data Systems in
Aerospace (DASIA) 2013 (May 2013). Porto, Portugal, Aug. 2013.

[7] Amazon Web Services. The FreeRTOS™ Reference Manual. API Functions and Configuration
Options. Reference Manual. Version 10.0.0 issue 1. 2017. URL: https://www.freertos.org/
Documentation/RTOS_book.html (visited on 01/07/2022).

[8] Amazon Web Services, Inc. FreeRTOS - free professionally developed and robust real time operating
system for small embedded systems development. Oct. 22, 2020. URL: https://www.freertos.org/
RTOS.html (visited on 01/10/2022).

[9] Amazon Web Services, Inc. FreeRTOS Core - FreeRTOS. Sept. 29, 2021. URL: https://freertos.
org/freertos-core/overview.html (visited on 01/10/2022).

[10] Amazon Web Services, Inc. FreeRTOS Plus TCP - A free thread aware TCP/IP stack for FreeRTOS.
Sept. 12, 2021. URL: https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP (visited on
01/10/2022).

[11] Amazon Web Services, Inc. IoT Libraries - FreeRTOS. Dec. 20, 2021. URL: https://freertos.org/iot-
libraries.html (visited on 01/10/2022).

[12] Barrenscheen, J. On-Board Communication via CAN without Transceiver. ApNote 2921. Siemens,
Dec. 1996.

153

https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Kryten.pdf
https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Sirius-OBC.pdf
https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Sirius-OBC.pdf
https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Sirius-TCM.pdf
https://www.aac-clyde.space/wp-content/uploads/2021/10/AAC_DataSheet_Sirius-TCM.pdf
https://doi.org/10.1007/978-3-030-25636-4_29
https://doi.org/10.1088/2041-8205/737/2/L29
https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org/RTOS.html
https://www.freertos.org/RTOS.html
https://freertos.org/freertos-core/overview.html
https://freertos.org/freertos-core/overview.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP
https://freertos.org/iot-libraries.html
https://freertos.org/iot-libraries.html

154 REFERENCES

[13] Badhwar, G. and O’Neill, P. “Long-term modulation of galactic cosmic radiation and its model
for space exploration”. In: Advances in Space Research 14.10 (Oct. 1994), pp. 749–757. DOI:
10.1016/0273-1177(94)90537-1.

[14] Bannatyne, R., Gifford, D., Klein, K., McCarville, K., Merritt, C., and Neddermeyer, S. “Creation
of an ARM® Cortex®-M0 microcontroller for high temperature embedded systems”. In: Ad-
ditional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2017.HiTEN (July 2017),
pp. 000031–000035. DOI: 10.4071/2380-4491.2017.HITEN.31.

[15] Bannatyne, R., Gifford, D., Klein, K., and Merritt, C. “High temperature / radiation hardened
capable ARM® Cortex®-M0 microcontrollers”. In: IMAPS International Conference and Exhi-
bition on High Temperature Electronics, HiTEC 2016 2016.HiTEC (Jan. 2016), pp. 1–5. DOI:
10.4071/2016-HITEC-46.

[16] Baş, M. E. and Karataş, M. n-ART OBCOMMS. On Board Computer System. Interface Control
Document Version: 1.1. GUMUSH AeroSpace Ltd., Feb. 18, 2021.

[17] Baş, M. E. and Karataş, M. N-ART SMC. Sensor and Mechanical Control Board. Interface Control
Document Version: 1.1. GUMUSH AeroSpace Ltd., Feb. 18, 2021.

[18] Bätz, B. “Design and implementation of a framework for spacecraft flight software”. en. PhD
thesis. Universität Stuttgart, 2020. DOI: 10.18419/OPUS-11205.

[19] Baun, C. Computer Networks / Computernetze. Springer Fachmedien Wiesbaden, 2019. DOI:
10.1007/978-3-658-26356-0.

[20] Benninghoff, H., Borchers, K., Börner, A., Fey, G., Gerndt, A., Höflinger, K., Lüdtke, D., Maibaum,
O., Peng, T., Schwenk, K., Weps, B., and Westerdorff, K. OBC-NG Concept and Implementation.
Forschungsbericht. Deutsches Zentrum für Luft- und Raumfahrt, Simulations- und Softwaretech-
nik, Jan. 20, 2016.

[21] Biswas, J. “Rerating of Electrnic Components for improved Lunar Mission Night Survival”.
PhD thesis. Technical University of Munich, 2022. unpublished.

[22] Bocchino, R. L. J., Canham, T. K., Watney, G. J., Reder, L. J., and Levison, J. W. “F Prime: An
Open-Source Framework for Small-Scale Flight Software Systems”. In: 32nd Annual AIAA/USU
Conference on Small Satellites. Logan, UT, USA, 2018, pp. 1–19. URL: https://digitalcommons.
usu.edu/smallsat/2018/all2018/328/.

[23] Bök, P.-B., Noack, A., Müller, M., and Behnke, D. Computernetze und Internet of Things. Springer
Fachmedien Wiesbaden, 2020. ISBN: 978-3-658-29408-3. DOI: 10.1007/978-3-658-29409-0.

[24] Bouwmeester, J., Langer, M., and Gill, E. “Survey on the implementation and reliability of
CubeSat electrical bus interfaces”. In: CEAS Space Journal 9.2 (Sept. 2016), pp. 163–173. DOI:
10.1007/S12567-016-0138-0.

[25] Brandon, C., Chapin, P., Farnsworth, C., and Klink, S. “CubedOS: A Verified CubeSat Operating
System”. In: ADA USER 38.3 (2017), pp. 151–156.

[26] Brandon, C., Chapin, P., Farnsworth, C., and Klink, S. “From Physicist to Rocket Scientist and
How to Make a CubeSat That Works”. In: ADA USER 41.1 (Mar. 2020), pp. 36–42.

[27] Braun, V., Oikonomidou, X., Sanvido, S., and Lemmens, S. “Fostering Collaborative Concepts
in Space Debris Mitigation”. In: 8th European Conference on Space Debris. Ed. by Flohrer,
T., Lemmens, S., and Schmitz, F. Vol. 8. as. ESA Space Debris Office, 2021. URL: https :
//conference.sdo.esoc.esa.int/proceedings/sdc8/paper/29.

[28] Bruhn, F. C., Selin, P., Kalnins, I., Lyke, J. C., Rosengren-Calixte, J., and Nordenberg, R.
“QuadSat/PnP: A space-plug-and-play architecture (SPA) compliant nanosatellite”. In: AIAA
Infotech at Aerospace Conference and Exhibit 2011. March. Reston, Virigina: American Institute of
Aeronautics and Astronautics, Mar. 2011. ISBN: 9781600869440. DOI: 10.2514/6.2011-1575.

https://doi.org/10.1016/0273-1177(94)90537-1
https://doi.org/10.4071/2380-4491.2017.HITEN.31
https://doi.org/10.4071/2016-HITEC-46
https://doi.org/10.18419/OPUS-11205
https://doi.org/10.1007/978-3-658-26356-0
https://digitalcommons.usu.edu/smallsat/2018/all2018/328/
https://digitalcommons.usu.edu/smallsat/2018/all2018/328/
https://doi.org/10.1007/978-3-658-29409-0
https://doi.org/10.1007/S12567-016-0138-0
https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/29
https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/29
https://doi.org/10.2514/6.2011-1575

REFERENCES 155

[29] Busch, S., Bangert, P., Dombrovski, S., and Schilling, K. “UWE-3, in-orbit performance and
lessons learned of a modular and flexible satellite bus for future pico-satellite formations”. In:
Acta Astronautica 117 (Dec. 2015), pp. 73–89. ISSN: 0094-5765. DOI: 10.1016/J.ACTAASTRO.
2015.08.002.

[30] Bustos, F. P., Calia, D. B., Budker, D., Centrone, M., Hellemeier, J., Hickson, P., Holzlöhner,
R., and Rochester, S. “Remote sensing of geomagnetic fields and atomic collisions in the
mesosphere”. In: Nature Communications 9.1 (Sept. 2018). DOI: 10.1038/S41467-018-06396-
7.

[31] California Institute of Technology. A Quick Look at the Hub Pattern. F Prime User’s Guide.
2020. URL: https://nasa.github.io/fprime/UsersGuide/best/hub-pattern.html (visited on
11/26/2021).

[32] Campola, M. J., Cochran, D. J., Boutte, A. J., Chen, D., Gigliuto, R. A., LaBel, K. A., Pellish, J. A.,
Ladbury, R. L., Casey, M. C., Wilcox, E. P., O’Bryan, M. V., Lauenstein, J.-M., Violette, D., and
Xapsos, M. A. “Compendium of Current Total Ionizing Dose and Displacement Damage for
Candidate Spacecraft Electronics for NASA”. In: 2015 IEEE Radiation Effects Data Workshop
(REDW). IEEE, July 2015. DOI: 10.1109/REDW.2015.7336705.

[33] Caroll, K. Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development
and Demonstration Program. Tech. rep. 2RDU00001 Rev C. Lockheed Martin Corporation, Dec.
2015.

[34] Caulfield, J. “Application of Redundant Processing to Space Shuttle”. In: IFAC Proceedings
Volumes 14.2 (Aug. 1981), pp. 2461–2466. ISSN: 1474-6670. DOI: 10.1016/S1474-6670(17)
63836-9.

[35] CCSDS 301.0-B-4. Time Code Formats. Recommended Standard. Blue Book. Version Issue 4. The
Consultative Committee for Space Data Systems, Nov. 2010. URL: https://public.ccsds.org/
Pubs/301x0b4e1.pdf.

[36] CCSDS TBD.0-O-0. CAST Flight Software as a CCSDS Onboard Reference Architecture. Draft
Experimental Specification. Draft Orange Book Draft A. The Consultative Committee for Space
Data Systems, Oct. 2016. URL: https://cwe.ccsds.org/sea/docs/SEA-SA/Meeting%20Materials/
2016/Fall%202016%20Rome/CAST%20ORANGE%20BOOK.pdf (visited on 11/24/2021).

[37] Cena, G., Bertolotti, I. C., Hu, T., and Valenzano, A. “Performance comparison of mechanisms
to reduce bit stuffing jitters in controller area networks”. In: Proceedings of 2012 IEEE 17th
International Conference on Emerging Technologies & Factory Automation (ETFA 2012). IEEE,
Sept. 2012. DOI: 10.1109/ETFA.2012.6489559.

[38] Cena, G., Bertolotti, I. C., Hu, T., and Valenzano, A. “A Mechanism to Prevent Stuff Bits in CAN
for Achieving Jitterless Communication”. In: IEEE Transactions on Industrial Informatics 11.1
(Feb. 2015), pp. 83–93. DOI: 10.1109/TII.2014.2365153.

[39] Center, K. B., Fronterhouse, D. C., and Martin, M. “The software strategy for SPA Plug and play
spacecraft”. In: 2010 IEEE Aerospace Conference. IEEE, Mar. 2010. DOI: 10.1109/AERO.2010.
5446806.

[40] Christensen, J. H. “Space Plug-and-Play Architecture Networking: A Self-Configuring Heteroge-
neous Network Architecture”. PhD thesis. Utah State University, Dec. 2012. DOI: 10.26076/
C888-977B.

[41] Chulliat, A., Alken, P., and Nair, M. The US/UK World Magnetic Model for 2020-2025. Tech. rep.
National Oceanic and Atmoshperic Administration, 2020. DOI: 10.25923/YTK1-YX35.

[42] Chupp, E. L. “Evolution of our understanding of solar flare particle acceleration: (1942–1995)”.
In: AIP Conference Proceedings. AIP, 1996. DOI: 10.1063/1.50997.

[43] CiA 301. CANopen. Application layer and communication profile. Tech. rep. CAN in Automation
(CiA) e.V., Feb. 2002.

https://doi.org/10.1016/J.ACTAASTRO.2015.08.002
https://doi.org/10.1016/J.ACTAASTRO.2015.08.002
https://doi.org/10.1038/S41467-018-06396-7
https://doi.org/10.1038/S41467-018-06396-7
https://nasa.github.io/fprime/UsersGuide/best/hub-pattern.html
https://doi.org/10.1109/REDW.2015.7336705
https://doi.org/10.1016/S1474-6670(17)63836-9
https://doi.org/10.1016/S1474-6670(17)63836-9
https://public.ccsds.org/Pubs/301x0b4e1.pdf
https://public.ccsds.org/Pubs/301x0b4e1.pdf
https://cwe.ccsds.org/sea/docs/SEA-SA/Meeting%20Materials/2016/Fall%202016%20Rome/CAST%20ORANGE%20BOOK.pdf
https://cwe.ccsds.org/sea/docs/SEA-SA/Meeting%20Materials/2016/Fall%202016%20Rome/CAST%20ORANGE%20BOOK.pdf
https://doi.org/10.1109/ETFA.2012.6489559
https://doi.org/10.1109/TII.2014.2365153
https://doi.org/10.1109/AERO.2010.5446806
https://doi.org/10.1109/AERO.2010.5446806
https://doi.org/10.26076/C888-977B
https://doi.org/10.26076/C888-977B
https://doi.org/10.25923/YTK1-YX35
https://doi.org/10.1063/1.50997

156 REFERENCES

[44] Coelho, C. “A Software Framework for Nanosatellites based on CCSDS Mission Operations
Services with Reference Implementation for ESA’s OPS-SAT Mission”. PhD thesis. Graz Uni-
versity of Technology, Nov. 2017. URL: https://diglib.tugraz.at/a-software-framework-for-
nanosatellites-based-on-ccsds-mission-operations-services-with-reference-implementation-
for-esas-ops-sat-mission-2017.

[45] Coelho, C., Koudelka, O., and Merri, M. “NanoSat MO framework: When OBSW turns into apps”.
In: 2017 IEEE Aerospace Conference. IEEE, Mar. 2017. DOI: 10.1109/AERO.2017.7943951.

[46] Coelho, C., Koudelka, O., and Merri, M. “NanoSat MO Framework: Achieving On-board Software
Portability”. In: SpaceOps 2016 Conference. American Institute of Aeronautics and Astronautics,
May 2016. DOI: 10.2514/6.2016-2624.

[47] Coelho, C., Merri, M., Koudelka, O., and Sarkarati, M. “OPS-SAT Experiments’ Software Man-
agement with the NanoSat MO Framework”. In: AIAA SPACE 2016. American Institute of
Aeronautics and Astronautics, Sept. 2016. DOI: 10.2514/6.2016-5301.

[48] Corley, B. and Steimle, C. “New Bartolomeo Payload Platform on the International Space
Station”. In: AIAA SCITECH 2022 Forum. American Institute of Aeronautics and Astronautics,
Jan. 2022. DOI: 10.2514/6.2022-0860.

[49] Corporation, A. SAM9260. SMART ARM-based Embedded MPU. Datasheet. San Jose, CA, USA,
Jan. 13, 2016.

[50] Cudmore, A. Porting the Core Flight System to the Dellingr Cubesat. Flight Software Workshop
2017. Presentation. Laurel, MD, USA, Dec. 6, 2017. URL: https://ntrs.nasa.gov/citations/
20170011566 (visited on 11/24/2021).

[51] Cypress. S70FL01GS. 1 Gbit (128 Mbyte) 3.0V SPI Flash. Datasheet. Mar. 21, 2018.

[52] Czech, M., Fleischner, A., and Walter, U. “A First-MOVE in Satellite Development at the TU-
München”. In: Small Satellite Missions for Earth Observation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 235–245. DOI: 10.1007/978-3-642-03501-2_22.

[53] Di Mascio, S., Menicucci, A., Furano, G., Szewczyk, T., Campajola, L., Capua, F. D., Lucaroni, A.,
and Ottavi, M. “Towards defining a simplified procedure for COTS system-on-chip TID testing”.
In: Nuclear Engineering and Technology 50.8 (Dec. 2018), pp. 1298–1305. DOI: 10.1016/J.NET.
2018.07.010.

[54] Dorman, L. I. and Venkatesan, D. “Solar cosmic rays”. In: Space Science Reviews 64.3-4 (1993),
pp. 183–362. DOI: 10.1007/BF00750737.

[55] Dubos, G. F., Castet, J.-F., and Saleh, J. H. “Statistical reliability analysis of satellites by mass
category: Does spacecraft size matter?” In: Acta Astronautica 67.5-6 (Sept. 2010), pp. 584–595.
DOI: 10.1016/J.ACTAASTRO.2010.04.017.

[56] ECSS-E-HB-10-12A. Space engineering - Calculation of radiation and its effects and margin policy
handbook. Handbook. Nordwijk, Netherlands: ESA, Dec. 17, 2010. URL: https://ecss.nl/hbstms/
ecss-e-hb-10-12a-calculation-of-radiation-and-its-effects-and-margin-policy-handbook/.

[57] ECSS-E-ST-10-04C. Space engineering - Space environment. Standard. Version Rev. 1. Nordwijk,
Netherlands: ESA, June 15, 2020. URL: https://ecss.nl/standard/ecss-e-st-10-04c-rev-1-space-
environment-15-june-2020/.

[58] ECSS-E-ST-10-12C. Space engineering - Methods for the calculation of radiation received and its
effects, and a policy for design margins. Standard. Nordwijk, Netherlands: ESA, Nov. 15, 2008.
URL: https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-
received-and-its-effects-and-a-policy-for-design-margins/.

[59] ECSS-E-ST-50-15C. Space engineering - CANbus extension protocol. Standard. Nordwijk, Nether-
lands: ESA, May 1, 2015. URL: https://ecss.nl/standard/ecss-e-st-50-15c-space-engineering-
canbus-extension-protocol-1-may-2015/.

[60] Efron, B. “Bootstrap Methods: Another Look at the Jackknife”. In: The Annals of Statistics 7.1
(Jan. 1979). DOI: 10.1214/AOS/1176344552.

https://diglib.tugraz.at/a-software-framework-for-nanosatellites-based-on-ccsds-mission-operations-services-with-reference-implementation-for-esas-ops-sat-mission-2017
https://diglib.tugraz.at/a-software-framework-for-nanosatellites-based-on-ccsds-mission-operations-services-with-reference-implementation-for-esas-ops-sat-mission-2017
https://diglib.tugraz.at/a-software-framework-for-nanosatellites-based-on-ccsds-mission-operations-services-with-reference-implementation-for-esas-ops-sat-mission-2017
https://doi.org/10.1109/AERO.2017.7943951
https://doi.org/10.2514/6.2016-2624
https://doi.org/10.2514/6.2016-5301
https://doi.org/10.2514/6.2022-0860
https://ntrs.nasa.gov/citations/20170011566
https://ntrs.nasa.gov/citations/20170011566
https://doi.org/10.1007/978-3-642-03501-2_22
https://doi.org/10.1016/J.NET.2018.07.010
https://doi.org/10.1016/J.NET.2018.07.010
https://doi.org/10.1007/BF00750737
https://doi.org/10.1016/J.ACTAASTRO.2010.04.017
https://ecss.nl/hbstms/ecss-e-hb-10-12a-calculation-of-radiation-and-its-effects-and-margin-policy-handbook/
https://ecss.nl/hbstms/ecss-e-hb-10-12a-calculation-of-radiation-and-its-effects-and-margin-policy-handbook/
https://ecss.nl/standard/ecss-e-st-10-04c-rev-1-space-environment-15-june-2020/
https://ecss.nl/standard/ecss-e-st-10-04c-rev-1-space-environment-15-june-2020/
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-received-and-its-effects-and-a-policy-for-design-margins/
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-received-and-its-effects-and-a-policy-for-design-margins/
https://ecss.nl/standard/ecss-e-st-50-15c-space-engineering-canbus-extension-protocol-1-may-2015/
https://ecss.nl/standard/ecss-e-st-50-15c-space-engineering-canbus-extension-protocol-1-may-2015/
https://doi.org/10.1214/AOS/1176344552

REFERENCES 157

[61] EnduroSat. ONBOARD COMPUTER (OBC). 2021. URL: https://www.endurosat.com/cubesat-
store/cubesat-obc/onboard-computer-obc/ (visited on 11/17/2021).

[62] Excellence Cluster ORIGINS. LRSM - The Laboratory for Rapid Space Missions. 2021. URL:
https://www.origins-cluster.de/en/infrastructure/lrsm (visited on 04/20/2022).

[63] Faehling, M. “Development and Evaluation of the MOVE on-board Data Handling System on a
Space Qualified Microcontroller”. Bachelor’s Thesis. Technical University of Munich, Mar. 1,
2021.

[64] Faure, P., Tanaka, A., and Cho, M. “Toward lean satellites reliability improvement using
HORYU-IV project as case study”. In: Acta Astronautica 133 (Apr. 2017), pp. 33–49. DOI:
10.1016/J.ACTAASTRO.2016.12.030.

[65] Föger, M. “Run-Time Migration of Communication enabled Processes in the RODOS Operating
System”. Bachelor’s Thesis. Technical University of Munich, Feb. 15, 2021.

[66] Fontanelli, D. and Macii, D. “Towards master-less wsn clock synchronization with a light
communication protocol”. In: 2010 IEEE Instrumentation & Measurement Technology Conference
Proceedings. IEEE, 2010. DOI: 10.1109/IMTC.2010.5488010.

[67] Francis, N., Collier, C., and Lyke, J. “Optical Networking for Aerospace Systems Provisioned
Through Plug and Play Avionics”. In: AIAA Infotech@Aerospace 2010. American Institute of
Aeronautics and Astronautics, Apr. 2010. DOI: 10.2514/6.2010-3476.

[68] Fronterhouse, D., Lyke, J., and Achramowicz, S. “Plug-and-play Satellite (PnPSat)”. In: AIAA
Infotech@Aerospace 2007 Conference and Exhibit. American Institute of Aeronautics and Astro-
nautics, May 2007. DOI: 10.2514/6.2007-2914.

[69] Garcia-Molina. “Elections in a Distributed Computing System”. In: IEEE Transactions on Com-
puters C-31.1 (Jan. 1982), pp. 48–59. ISSN: 0018-9340. DOI: 10.1109/TC.1982.1675885.

[70] Gholipour, M., Kordafshari, M., Jahanshahi, M., and Rahmani, A. “A New Approach for Election
Algorithm in Distributed Systems”. In: 2009 Second International Conference on Communication
Theory, Reliability, and Quality of Service. IEEE, July 2009, pp. 70–74. ISBN: 978-1-4244-4423-6.
DOI: 10.1109/CTRQ.2009.32.

[71] Gonzalez-Velo, Y., Barnaby, H. J., Kozicki, M. N., Gopalan, C., and Holbert, K. “Total Ionizing
Dose Retention Capability of Conductive Bridging Random Access Memory”. In: IEEE Electron
Device Letters 35.2 (Feb. 2014), pp. 205–207. DOI: 10.1109/LED.2013.2295801.

[72] Gumush. N-ART OBCOMMS. 2021. URL: https://gumush.com.tr/product/n-art-obcomms/
(visited on 11/19/2021).

[73] Hanaway, J. F. and Moorehead, R. W. Space Shuttle Avionics System. NASA-SP-504. Washington
DC: National Aironatical, Space Administration; Office of Management; Scientific, and Technical
Information Division, 1989. URL: https://ntrs.nasa.gov/citations/19900015844.

[74] Haynes, W. M., Lide, D. R., and Bruno, T. J., eds. CRC Handbook of Chemistry and Physics. 97th.
CRC Press, June 2016. ISBN: 978-1-4987-5429-3. DOI: 10.1201/9781315380476.

[75] Hess, W. “Energetic particles in the inner Van Allen belt”. In: Space Science Reviews 1.2 (Oct.
1962). DOI: 10.1007/BF00240580.

[76] Igenbergs, E., Hüdepohl, A., Uesugi, K., Hayashi, T., Svedhem, H., Iglseder, H., Koller, G.,
Glasmachers, A., Grün, E., Schwehm, G., Mizutani, H., Yamamoto, T., Fujimura, A., Ishii,
N., Araki, H., Yamakoshi, K., and Nogami, K. “The Munich Dust Counter — A Cosmic Dust
Experiment on Board of the Muses-A Mission of Japan”. In: Origin and Evolution of Interplanetary
Dust. Springer Netherlands, 1991, pp. 45–48. DOI: 10.1007/978-94-011-3640-2_9.

[77] Iglseder, H., Münzenmayer, R., Svedhem, H., and Grün, E. “Cosmic dust and space debris
measurements with the Munich dust counter on board the satellites hiten and brem-sat”. In:
Advances in Space Research 13.8 (Aug. 1993), pp. 129–132. DOI: 10.1016/0273-1177(93)90579-
Z.

https://www.endurosat.com/cubesat-store/cubesat-obc/onboard-computer-obc/
https://www.endurosat.com/cubesat-store/cubesat-obc/onboard-computer-obc/
https://www.origins-cluster.de/en/infrastructure/lrsm
https://doi.org/10.1016/J.ACTAASTRO.2016.12.030
https://doi.org/10.1109/IMTC.2010.5488010
https://doi.org/10.2514/6.2010-3476
https://doi.org/10.2514/6.2007-2914
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1109/CTRQ.2009.32
https://doi.org/10.1109/LED.2013.2295801
https://gumush.com.tr/product/n-art-obcomms/
https://ntrs.nasa.gov/citations/19900015844
https://doi.org/10.1201/9781315380476
https://doi.org/10.1007/BF00240580
https://doi.org/10.1007/978-94-011-3640-2_9
https://doi.org/10.1016/0273-1177(93)90579-Z
https://doi.org/10.1016/0273-1177(93)90579-Z

158 REFERENCES

[78] Ingalls, J. D., Gadlage, M. J., Wang, J., Williams, A. M., Bruce, D. I., and Ranjan, R. Y. “Total
Dose and Heavy Ion Radiation Response of 55 nm Avalanche Technology Spin Transfer Torque
MRAM”. In: 2019 IEEE Radiation Effects Data Workshop. IEEE, July 2019. DOI: 10.1109/REDW.
2019.8906645.

[79] Innoflight. CHAMPS Flight Computer (MPSoC CFC-400). Datasheet. Jan. 26, 2019.

[80] ISISPACE Group. ISIS On Board Computer. 2021. URL: https://www.isispace.nl/product/on-
board-computer/ (visited on 11/17/2021).

[81] ISO 11898-1:2015(E). Road vehicles — controller area network (CAN) — Part 1: Data link layer
and physical signalling. International Standard. Geneva, Switzerland: International Organization
for Standardization, Dec. 15, 2015.

[82] ISO 11898-2:2016(E). Road vehicles — controller area network (CAN) — Part 2: High-speed
medium access unit. International Standard. Geneva, Switzerland: International Organization
for Standardization, Dec. 15, 2016.

[83] ISO 11898-3:2006(E). Road vehicles — controller area network (CAN) — Part 3: Low-speed,
fault-tolerant, medium-dependent interface. International Standard. Geneva, Switzerland: Inter-
national Organization for Standardization, June 1, 2006.

[84] ISO 11898-3:2006/Cor.1:2006(E). Road vehicles — controller area network (CAN) — Part 3:
Low-speed, fault-tolerant, medium-dependent interface — technical corrigendum 1. International
Standard. Geneva, Switzerland: International Organization for Standardization, Dec. 1, 2016.

[85] ISO 11898-4:2004(E). Road vehicles — controller area network (CAN) — Part 4: Time-triggered
communication. International Standard. Geneva, Switzerland: International Organization for
Standardization, Aug. 1, 2004.

[86] ISO/IEC 7498-1:1994(E). Information Technology - Open Systems Interconnection - Basic Refer-
ence Model: The Basic Model. International Standard. International Organization for Standard-
ization, Nov. 1994.

[87] ISO/IEC/IEEE 24765:2017(E). Systems and software engineering–Vocabulary. International Stan-
dard. International Organization for Standardization / Institute of Electrical and Electronicas
Engineers, Sept. 2017. DOI: 10.1109/IEEESTD.2017.8016712.

[88] Johne, N. “Automated Performancetracking of Software for Embedded Systems”. Bachelor’s
Thesis. Technical University of Munich, June 15, 2021.

[89] Kabashi, Q., Zeqiri, A., and Zabeli, M. “The Reduction of Number Messages in Election Bully
Algorithm”. In: International Journal of Computers and Communication 10 (2016), pp. 53–57.

[90] Kale, T. “Dependable and Modular Command and Data Handling Platform for Small Spacecraft
using MicroPython on RODOS”. Master’s Thesis. Technical University of Munich, Sept. 15,
2019. URL: https://mediatum.ub.tum.de/1519584.

[91] KERA. NanoMind A3200. Datasheet 1006901. Version 1.17. GomSpace A/S, Jan. 29, 2021.
URL: https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-
a3200.aspx (visited on 11/17/2021).

[92] Kief, C. J., Zufelt, B., Cannon, S. R., Lyke, J., and Mee, J. K. “The advent of the PnP Cube
satellite”. In: 2012 IEEE Aerospace Conference. IEEE, Mar. 2012. DOI: 10.1109/AERO.2012.
6187237.

[93] Kiesbye, J., Messmann, D., Preisinger, M., Reina, G., Nagy, D., Schummer, F., Mostad, M., Kale,
T., and Langer, M. “Hardware-In-The-Loop and Software-In-The-Loop Testing of the MOVE-II
CubeSat”. In: Aerospace 6.12 (Dec. 2019), p. 130. DOI: 10.3390/AEROSPACE6120130.

[94] Komori, S. and Sakamoto, Y. “Development Trend of Epoxy Molding Compound for Encapsulat-
ing Semiconductor Chips”. In: Materials for Advanced Packaging. Springer US, 2009, pp. 339–
363. DOI: 10.1007/978-0-387-78219-5_10.

https://doi.org/10.1109/REDW.2019.8906645
https://doi.org/10.1109/REDW.2019.8906645
https://www.isispace.nl/product/on-board-computer/
https://www.isispace.nl/product/on-board-computer/
https://doi.org/10.1109/IEEESTD.2017.8016712
https://mediatum.ub.tum.de/1519584
https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-a3200.aspx
https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-a3200.aspx
https://doi.org/10.1109/AERO.2012.6187237
https://doi.org/10.1109/AERO.2012.6187237
https://doi.org/10.3390/AEROSPACE6120130
https://doi.org/10.1007/978-0-387-78219-5_10

REFERENCES 159

[95] Königsmann, H. J., Oelze, H. W., and Rath, H. J. “BREM-SAT - First Flight Results”. In: 8th

Annual AIAA/USU Conference on Small Satellites. Sept. 1994. URL: https://digitalcommons.usu.
edu/smallsat/1994/all1994/5/.

[96] Konlechner, R. “Design of a Run-Time Migration System for Processes within the RODOS
Operating System”. Bachelor’s Thesis. Technical University of Munich, Sept. 15, 2020.

[97] Kordafshari, M. S., Gholipour, M., Mosakhani, M., Haghighat, A. T., Dehghan, M., Kordafshari,
M. S., Gholipour, M., Mosakhani, M., Haghighat, A. T., and Dehghan, M. “Modified bully
election algorithm in distributed systems”. In: Proceedings of the 9th WSEAS International
Conference on Computers. ICCOMP’05. Athens, Greece: World Scientific, Engineering Academy,
and Society (WSEAS), 2005. ISBN: 9608457297.

[98] KPLabs. Antelope OBC. Datasheet. 2021. URL: https://kplabs.space/wp-content/uploads/
Anteleope-technical-sheet.pdf (visited on 11/17/2021).

[99] Krasowski, M. J., Prokop, N. F., Flatico, J. M., Greer, L. C., Jenkins, P. P., Neudeck, P. G., Chen,
L., and Spina, D. C. “CIB: An Improved Communication Architecture for Real-Time Monitoring
of Aerospace Materials, Instruments, and Sensors on the ISS”. In: The Scientific World Journal
2013 (2013), pp. 1–12. DOI: 10.1155/2013/185769.

[100] Kubos Corporation. KubOS Design. Kubos 1.21.0 documentation. 2020. URL: https://docs.kubos.
com/1.21.0/kubos-design.html (visited on 11/26/2021).

[101] Kulu, E. Nanosats Database - Nanosatellite launches with forecast. Jan. 1, 2022. URL: https://
www.nanosats.eu/img/fig/Nanosats_years_forecasts_2022-01-01.pdf (visited on 04/06/2022).

[102] Kuwahara, T., Yoshida, K., Sakamoto, Y., Fukuda, K., Fukuyama, M., and Shibuya, Y. “Inter-
national Scientific Micro-satellite RISESAT based on Space Plug and Play Avionics”. In: 26th

Annual AIAA/USU Conference on Small Satellites. 2012. URL: https://digitalcommons.usu.edu/
smallsat/2012/all2012/8/.

[103] Kuwahara, T., Yoshida, K., Sakamoto, Y., Tomioka, Y., and Fukuda, K. “Satellite system integra-
tion based on Space Plug and Play Avionics”. In: 2011 IEEE/SICE International Symposium on
System Integration (SII). IEEE, Dec. 2011. DOI: 10.1109/SII.2011.6147568.

[104] Langer, M., Olthoff, C., Harder, J., Fuchs, C., Dziura, M., Hoehn, A., and Walter, U. “Results
and lessons learned from the cubesat mission first-move”. In: Small Satellite Missions for Earth
Observation. Berlin: Springer, 2015.

[105] Langer, M. “Reliability Assessment and Reliability Prediction of CubeSats through System Level
Testing and Reliability Growth Modelling”. PhD thesis. Technische Universität München, 2018.
URN: urn:nbn:de:bvb:91-diss-20181008-1446237-1-2. URL: https://mediatum.ub.tum.de/
1446237.

[106] Langer, M., Olthoff, C., and Walter, U. First-MOVE Lessons Learned Report. Tech. rep. TUM,
Lehrstuhl für Raumfahrttechnik, 2014.

[107] Langer, M., Schummer, F., Appel, N., Gruebler, T., Janzer, K., Kiesbye, J., Krempel, L., Lill, A.,
Messmann, D., Rückerl, S., and Weisgerber, M. “MOVE-II the Munich Orbital Verification Exper-
iment II”. In: Proceedings of the 4th IAA Conference on University Satellite Missions & CubeSat
Workshop. Vol. 163. IAA-AAS-CU-17-06-05. Dec. 2017, pp. 441–459. ISBN: 9780877036470.

[108] Langer, M., Schummer, F., Rückerl, S., Vogel, D., Lill, A., Amann, R., Kale, T., Krempel, L.,
Kiesbye, J., Lux, P., and Meßmann, D. MOVE-II System Documentation. Tech. rep. LRT/WARR,
2019.

[109] Lanza, D., Vick, R., and Lyke, J. “The Space Plug-and-Play Avionics Common Data Dictionary –
Constructing the Language of SPA”. In: AIAA Infotech@Aerospace 2010. American Institute of
Aeronautics and Astronautics, Apr. 2010. DOI: 10.2514/6.2010-3496.

[110] Lapeyrere, V., Lacour, S., David, L., Nowak, M., Crouzier, A., Schworer, G., Perrot, P., and Rayane,
S. “PicSat: a Cubesat mission for exoplanetary transit detection in 2017”. In: 31st Annual
AIAA/USU Conference on Small Satellites. Logan, UT, USA, 2017. URL: https://digitalcommons.
usu.edu/smallsat/2017/all2017/86/.

https://digitalcommons.usu.edu/smallsat/1994/all1994/5/
https://digitalcommons.usu.edu/smallsat/1994/all1994/5/
https://kplabs.space/wp-content/uploads/Anteleope-technical-sheet.pdf
https://kplabs.space/wp-content/uploads/Anteleope-technical-sheet.pdf
https://doi.org/10.1155/2013/185769
https://docs.kubos.com/1.21.0/kubos-design.html
https://docs.kubos.com/1.21.0/kubos-design.html
https://www.nanosats.eu/img/fig/Nanosats_years_forecasts_2022-01-01.pdf
https://www.nanosats.eu/img/fig/Nanosats_years_forecasts_2022-01-01.pdf
https://digitalcommons.usu.edu/smallsat/2012/all2012/8/
https://digitalcommons.usu.edu/smallsat/2012/all2012/8/
https://doi.org/10.1109/SII.2011.6147568
http://www.nbn-resolving.org/urn:nbn:de:bvb:91-diss-20181008-1446237-1-2
https://mediatum.ub.tum.de/1446237
https://mediatum.ub.tum.de/1446237
https://doi.org/10.2514/6.2010-3496
https://digitalcommons.usu.edu/smallsat/2017/all2017/86/
https://digitalcommons.usu.edu/smallsat/2017/all2017/86/

160 REFERENCES

[111] Lee, S.-H. and Choi, H. “The Fast Bully Algorithm: For Electing a Coordinator Process in
Distributed Systems”. In: Information Networking: Wireless Communications Technologies and
Network Applications. Springer Berlin Heidelberg, 2002, pp. 609–622. DOI: 10.1007/3-540-
45801-8_58.

[112] Lehmberg, D. Press Release: MOVE student group launches stratospheric balloon with new satellite
prototype. Oct. 28, 2021. URL: https://www.move2space.de/blog/press-release-move-student-
group-launches-stratospheric-balloon-with-new-satellite-prototype/ (visited on 04/08/2022).

[113] Leppinen, H. “Current use of linux in spacecraft flight software”. In: IEEE Aerospace and
Electronic Systems Magazine 32.10 (Oct. 2017), pp. 4–13. DOI: 10.1109/MAES.2017.160182.

[114] Lill, A., Messmann, D., and Langer, M. “Agile Software Development for Space Applications”. In:
Deutscher Luft- und Raumfahrtkongress. Deutsche Gesellschaft für Luft- und Raumfahrt, 2017.

[115] Losekamm, M. J., Milde, M., Pöschl, T., Greenwald, D., and Paul, S. “Real-Time Omnidirectional
Radiation Monitoring on Spacecraft”. In: AIAA SPACE 2016. Long Beach, California: American
Institute of Aeronautics and Astronautics, Sept. 9, 2016. DOI: 10.2514/6.2016-5532.

[116] Losekamm, M. J., Milde, M., Pöschl, T., Greenwald, D., and Paul, S. “A new analysis method
using Bragg curve spectroscopy for a Multi-purpose Active-target Particle Telescope for radiation
monitoring”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 845 (Feb. 11, 2017), pp. 520–523. DOI:
10.1016/J.NIMA.2016.05.029.

[117] Losekamm, M. J., Paul, S., Poschl, T., and Zachrau, H. J. “The RadMap Telescope on the
International Space Station”. In: 2021 IEEE Aerospace Conference. IEEE, Mar. 2021. DOI: 10.
1109/AERO50100.2021.9438435.

[118] Lüdtke, D., Westerdorff, K., Stohlmann, K., Borner, A., Maibaum, O., Peng, T., Weps, B., Fey,
G., and Gerndt, A. “OBC-NG: Towards a reconfigurable on-board computing architecture for
spacecraft”. In: 2014 IEEE Aerospace Conference. IEEE, Mar. 2014, pp. 1–13. ISBN: 978-1-4799-
1622-1. DOI: 10.1109/AERO.2014.6836179.

[119] Lund, A., Haj Hammadeh, Z. A., Kenny, P., Vishav, V., Wovalov, A., and Gerndt, A. “A fault-
tolerant scalable and distributed middleware for future space missions”. In: Deutscher Luft- und
Raumfahrtkongress 2020 (online). Sept. 1, 2020. URL: https://elib.dlr.de/136450/.

[120] Lunze, P. D. J. Regelungstechnik 1. Springer Berlin Heidelberg, 2020. DOI: 10.1007/978-3-662-
60746-6.

[121] Lyke, J., Young, Q., Christensen, J., and Anderson, D. “Lessons Learned: Our Decade in Plug-
and-play for Spacecraft”. In: 28th Annual AIAA/USU Conference on Small Satellites. 28. Logan,
UT, USA, 2014. URL: https://digitalcommons.usu.edu/smallsat/2014/StandMod/2/.

[122] Lyke, J. “Space-Plug-and-Play Avionics (SPA): A Three-Year Progress Report”. In: AIAA In-
fotech@Aerospace 2007 Conference and Exhibit. American Institute of Aeronautics and Astro-
nautics, May 2007. DOI: 10.2514/6.2007-2928.

[123] Lyke, J., Cannon, S., Fronterhouse, D., Lanza, D., and Byers, T. “A Plug-and-Play System for
Spacecraft Components based on the USB Standard”. In: 19th Annual AIAA/USU Conference on
Small Satellites. 28. Logan, UT, USA, 2005. URL: https://digitalcommons.usu.edu/smallsat/
2005/all2005/9/.

[124] Lyke, J., Fronterhouse, D., Cannon, S., Lanza, D., and Byers, W. (“Space Plug-and-Play Avionics”.
In: 3rd Responsive Space Conference. Los Angeles, CA, USA: AIAA, Apr. 2005, pp. 1–12.

[125] Mahadeo, D. M., Rohwer, L. E. S., Martinez, M., and Nowlin, R. N. Assessment of Commercial-
Off-The-Shelf Electronics for use in a Short-Term Geostationary Satellite. Tech. rep. Oct. 2018.
DOI: 10.2172/1481565.

[126] Maibaum, O. and Heidecker, A. “Software Evolution from TET-1 to Eu: CROPIS”. In: 10th IAA
International Symposium on Small Satellites for Earth Observation. 10. Berlin: Wissenschaft und
Technik Verlag, Apr. 2015, pp. 195–198. ISBN: 978-3-89685-575-6. URL: https://elib.dlr.de/
100859/.

https://doi.org/10.1007/3-540-45801-8_58
https://doi.org/10.1007/3-540-45801-8_58
https://www.move2space.de/blog/press-release-move-student-group-launches-stratospheric-balloon-with-new-satellite-prototype/
https://www.move2space.de/blog/press-release-move-student-group-launches-stratospheric-balloon-with-new-satellite-prototype/
https://doi.org/10.1109/MAES.2017.160182
https://doi.org/10.2514/6.2016-5532
https://doi.org/10.1016/J.NIMA.2016.05.029
https://doi.org/10.1109/AERO50100.2021.9438435
https://doi.org/10.1109/AERO50100.2021.9438435
https://doi.org/10.1109/AERO.2014.6836179
https://elib.dlr.de/136450/
https://doi.org/10.1007/978-3-662-60746-6
https://doi.org/10.1007/978-3-662-60746-6
https://digitalcommons.usu.edu/smallsat/2014/StandMod/2/
https://doi.org/10.2514/6.2007-2928
https://digitalcommons.usu.edu/smallsat/2005/all2005/9/
https://digitalcommons.usu.edu/smallsat/2005/all2005/9/
https://doi.org/10.2172/1481565
https://elib.dlr.de/100859/
https://elib.dlr.de/100859/

REFERENCES 161

[127] “Networking Concepts”. In: Satellite Technology. Ed. by Maini, A. K. and Agrawal, V. Third Edi-
tion. John Wiley & Sons Ltd, Apr. 2014. Chap. 9, pp. 433–470. DOI: 10.1002/9781118636459.
CH09.

[128] Maldonado, C. A., Deming, J., Mosley, B. N., Morgan, K. S., McGlown, J., Nelson, A., Fernandes,
P. A., Kroupa, M., Katko, K., Hehlen, M. P., Arnold, D., Barney, J., Safi, C., Pyle, M., Schultz, T.,
Reisenfeld, D., Skoug, R., Guider, A., Holloway, M., Morning, H., Krause, E., Sandoval, B.,
Beckman, D., Miller, Z., Merl, R., Graham, P. S., White, T. P., Tripp, Z., Hoose, B., Roecker, C.,
Klimenko, A., Dutch, R., Kaufeld, K., Cox, E., Cole, Q., Clanton, C., Bloser, P., Larsen, B. A.,
Fairbanks, T., George, J., Michel, J., Alpine, E. L., Kelby, C., and Abbott, B. F. “The Experiment
for Space Radiation Analysis: A 12U CubeSat to Explore the Earth’s Radiation Belts”. In: 2022
IEEE Aerospace Conference. IEEE, Mar. 2022. DOI: 10.1109/AERO53065.2022.9843239.

[129] Mamun, Q. E. K., Masum, S. M., and Mustafa, M. A. R. “Modified bully algorithm for electing
coordinator in distributed systems.” In: WSEAS Transaction on Computers 3.4 (2004), pp. 948–
953.

[130] Maróti, M., Kusy, B., Simon, G., and Lédeczi, Á. “The flooding time synchronization protocol”.
In: Proceedings of the 2nd international conference on Embedded networked sensor systems - SenSys
’04. Ed. by Stankovic, J. A., Arora, A., and Govindan, R. ACM Press, 2004, pp. 39–49. ISBN:
1581138792. DOI: 10.1145/1031495.1031501. URL: http://portal.acm.org/citation.cfm?doid=
1031495.

[131] McCarthy, D. D. “The Julian and Modified Julian Dates”. In: Journal for the History of Astronomy
29.4 (Nov. 1998), pp. 327–330. DOI: 10.1177/002182869802900402.

[132] McComas, D. “NASA / GSFC’s Flight Software Core Flight System”. In: Flight Software Workshop.
11. 2012, pp. 1–32. URL: http://docplayer.net/41145319-Nasa-gsfc-s-flight-software-core-
flight-system.html%20http://flightsoftware.jhuapl.edu/files/2012/FSW12_McComas.pdf.

[133] McComas, D., Wilmot, J., and Cudmore, A. “The Core Flight System (cFS) Community: Provid-
ing Low Cost Solutions for Small Spacecraft”. In: 30th Annual AIAA/USU Conference on Small
Satellites. 2016. URL: https://digitalcommons.usu.edu/smallsat/2016/TS4AdvTech1/1.

[134] McNutt, C. J., Vick, R., Whiting, H., and Lyke, J. “Modular Nanosatellites: Plug-and-Play (PnP)
CubeSat”. In: AIAA 7th Responsive Space Conference. 2009, pp. 1–14.

[135] Meadows, P. and Cong. Introduction to Azure RTOS ThreadX. Mircosoft. Jan. 4, 2021. URL:
https://docs.microsoft.com/en-us/azure/rtos/threadx/chapter1 (visited on 01/13/2022).

[136] Meadows, P., Conger, D., and Teebken, T. Understand Azure RTOS ThreadX. Microsoft. Aug. 3,
2021. URL: https://docs.microsoft.com/en-us/azure/rtos/threadx/overview-threadx (visited
on 01/13/2022).

[137] Meier, M. “TRISTAN Fly High - Design Studies for a CubeSat Compton Telescope”. MA thesis.
Technical University of Munich, Dec. 2, 2019. URL: https://publications.mppmu.mpg.de/
?action=search&mpi=MPP-2019-355.

[138] Melzer, Y. “Benchmarking Utilization of Microcontrollers in Distributed Satellite On-Board
Computers”. Bachelor’s Thesis. Technical University of Munich, Sept. 15, 2020.

[139] Messmann, D., Gruebler, T., Coelho, F., Ohlenforst, T., Bruegge, J. V., Mauracher, F., Doetterl,
M., Plamauer, S., Schnierle, P., Kale, T., Seifert, M., Fuhrmann, A., Karagiannis, E., Ulanowski,
A., Lausenhammer, T., Meraner, A., and Langer, M. “Advances in the Development of the
Attitude Determination and Control System of the CubeSat MOVE-II”. In: Proceedings of the 7th
European Conference for Aeronautics and Space Sciences. 7. Milan, Italy: EUCASS Association,
Aug. 2017, pp. 1–15. DOI: 10.13009/EUCASS2017-660.

[140] Mewaldt, R. “Galactic cosmic ray composition and energy spectra”. In: Advances in Space
Research 14.10 (Oct. 1994), pp. 737–747. DOI: 10.1016/0273-1177(94)90536-3.

[141] Microchip Technology Inc. SAM5D2 Series. SAMA5D21 /22 /23 /24 /26 /27 /28. Datasheet.
2017.

https://doi.org/10.1002/9781118636459.CH09
https://doi.org/10.1002/9781118636459.CH09
https://doi.org/10.1109/AERO53065.2022.9843239
https://doi.org/10.1145/1031495.1031501
http://portal.acm.org/citation.cfm?doid=1031495
http://portal.acm.org/citation.cfm?doid=1031495
https://doi.org/10.1177/002182869802900402
http://docplayer.net/41145319-Nasa-gsfc-s-flight-software-core-flight-system.html%20http://flightsoftware.jhuapl.edu/files/2012/FSW12_McComas.pdf
http://docplayer.net/41145319-Nasa-gsfc-s-flight-software-core-flight-system.html%20http://flightsoftware.jhuapl.edu/files/2012/FSW12_McComas.pdf
https://digitalcommons.usu.edu/smallsat/2016/TS4AdvTech1/1
https://docs.microsoft.com/en-us/azure/rtos/threadx/chapter1
https://docs.microsoft.com/en-us/azure/rtos/threadx/overview-threadx
https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2019-355
https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2019-355
https://doi.org/10.13009/EUCASS2017-660
https://doi.org/10.1016/0273-1177(94)90536-3

162 REFERENCES

[142] Microsoft. Azure RTOS ThreadX Documentation. Microsoft. 2022. URL: https://docs.microsoft.
com/en-us/azure/rtos/threadx/ (visited on 01/13/2022).

[143] Miranda, D. J. F., Ferreira, M., Kucinskis, F., and McComas, D. “A Comparative Survey on
Flight Software Frameworks for ‘New Space’ Nanosatellite Missions”. In: Journal of Aerospace
Technology and Management 11 (Oct. 2019). ISSN: 2175-9146. DOI: 10.5028/JATM.V11.1081.

[144] Miroshnichenko, L. Solar Cosmic Rays. Springer International Publishing, 2015. DOI: 10.1007/
978-3-319-09429-8.

[145] Miroshnichenko, L. I. Radiation Hazard in Space. 2003. ISBN: 978-94-017-0301-7. DOI: 10.
1007/978-94-017-0301-7.

[146] Molz, P. “Reliable On-Orbit Software Updates for CubeSats”. Master’s Thesis. Technical Univer-
sity of Munich, Oct. 14, 2022.

[147] Molz, P. “Software Components for the ORIGINS ISS Mission’s On-board Computer”. Interdisci-
plinary Project. Technical University of Munich, June 8, 2022.

[148] Montenegro, S. and Aumann, A. RODOS - Introduction and Documentation. Jan. 28, 2020. URL:
https://gitlab.com/rodos/rodos/-/blob/master/doc/detailed-doc.pdf (visited on 02/03/2022).

[149] Montenegro, S. and Dannemann, F. “RODOS real time kernel design for dependability”. In:
Proceedings of Data Systems in Aerospace (DASIA) 2009. Istanbul: European Space Agency,
2009. URL: https://elib.dlr.de/112377/.

[150] Montenegro, S., Hilgarth, A., Mikschl, T., Ruffer, M., and Walter, T. “VIDANA - An Extremly
Fault Tolerant Data Management System for Satellites”. In: International Workshop on Fractional
Spacecrafts (IWFS 2014). Delft, Netherlands, 2014.

[151] Montenegro, S. and Richardson, J. “RODOS operating system for Network Centric Core Avion-
ics”. In: Proceedings of the First International Conference on Advances in Satellite and Space
Communications. Colmar, France, 2009. URL: https://www.researchgate.net/publication/
228955862.

[152] Montenegro, S. and Walter, T. “VIDANA : data management system for nanosatellites”. In:
Deutscher Luft- und Raumfahrtkongress. Deutsche Gesellschaft für Luft- und Raumfahrt, 2013.

[153] Mori, K. “Autonomous decentralized systems: Concept, data field architecture and future
trends”. In: Proceedings ISAD 93: International Symposium on Autonomous Decentralized Systems.
IEE Comput. Soc. Press, 1993. DOI: 10.1109/ISADS.1993.262725.

[154] Müller, R. Operating System Abstraction Layer (OSAL). Jan. 13, 2021. URL: https://egit.irs.uni-
stuttgart.de/fsfw/fsfw/src/commit/e6a71086141c3bb9602f7afa843402e3f61adcee/doc/
README-osal.md (visited on 11/30/2021).

[155] Murshed, M. G. and Allen, A. R. “Enhanced Bully Algorithm for Leader Node Election in
Synchronous Distributed Systems”. In: Computers 1.1 (June 2012), pp. 3–23. DOI: 10.3390/
COMPUTERS1010003.

[156] NanoAvionics. CubeSat On-Board Computer - Main Bus Unit SatBus 3C2. 2021. URL: https:
//nanoavionics.com/cubesat- components/cubesat- on- board- computer- main- bus- unit-
satbus-3c2/ (visited on 11/17/2021).

[157] Nihon Dempa Kogyo Co. Ltd. NX3215SA. Crystal Units. Datasheet. 2003.

[158] Nolte, T., Hansson, H., and Norstrom, C. “Minimizing CAN response-time jitter by message
manipulation”. In: Proceedings. Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE Comput. Soc, Aug. 27, 2002. DOI: 10.1109/RTTAS.2002.1137394.

[159] Oikonomidou, X., Karagiannis, E., Schlaak, M., Hacker, A., Pucknus, P., Pretsch, L., and
Iorgulescu, S. “DEDRA On-board MOVE-III: An in-situ detector to support the validation
of MASTER”. In: MASTER Modelling Workshop (Mar. 2, 2021). Ed. by Oikonomidou, X., Braun,
V., and Clormann, M. Vol. 1. ESA, Mar. 2, 2021. URL: https://indico.esa.int/event/370/
contributions/5911/.

https://docs.microsoft.com/en-us/azure/rtos/threadx/
https://docs.microsoft.com/en-us/azure/rtos/threadx/
https://doi.org/10.5028/JATM.V11.1081
https://doi.org/10.1007/978-3-319-09429-8
https://doi.org/10.1007/978-3-319-09429-8
https://doi.org/10.1007/978-94-017-0301-7
https://doi.org/10.1007/978-94-017-0301-7
https://gitlab.com/rodos/rodos/-/blob/master/doc/detailed-doc.pdf
https://elib.dlr.de/112377/
https://www.researchgate.net/publication/228955862
https://www.researchgate.net/publication/228955862
https://doi.org/10.1109/ISADS.1993.262725
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/src/commit/e6a71086141c3bb9602f7afa843402e3f61adcee/doc/README-osal.md
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/src/commit/e6a71086141c3bb9602f7afa843402e3f61adcee/doc/README-osal.md
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/src/commit/e6a71086141c3bb9602f7afa843402e3f61adcee/doc/README-osal.md
https://doi.org/10.3390/COMPUTERS1010003
https://doi.org/10.3390/COMPUTERS1010003
https://nanoavionics.com/cubesat-components/cubesat-on-board-computer-main-bus-unit-satbus-3c2/
https://nanoavionics.com/cubesat-components/cubesat-on-board-computer-main-bus-unit-satbus-3c2/
https://nanoavionics.com/cubesat-components/cubesat-on-board-computer-main-bus-unit-satbus-3c2/
https://doi.org/10.1109/RTTAS.2002.1137394
https://indico.esa.int/event/370/contributions/5911/
https://indico.esa.int/event/370/contributions/5911/

REFERENCES 163

[160] Oikonomidou, X., Braun, V., Pail, R., Gruber, T., Schummer, F., Meßmann, D., Hacker, A., Heapy,
J., Martin, L., and Strasser, F. “MOVE-III - An in-situ detector to support space debris model
validation”. In: 8th European Conference on Space Debris. Ed. by Flohrer, T., Lemmens, S., and
Schmitz, F. Vol. 8. as. ESA Space Debris Office, 2021. URL: https://conference.sdo.esoc.esa.int/
proceedings/sdc8/paper/17.

[161] Oikonomidou, X., Karagiannis, E., Still, D., Strasser, F., Firmbach, F. S., Hettwer, J., Schwein-
furth, A. G., Pucknus, P., Menekay, D., You, T., Vovk, M., Weber, S., and Zhu, Z. “MOVE-III: A
CubeSat for the detection of sub-millimetre space debris and meteoroids in Low Earth Orbit”.
In: Frontiers in Space Technologies 3 (Oct. 2022). DOI: 10.3389/FRSPT.2022.933988.

[162] OrbAstro. TELOS OBC. 2021. URL: https://orbastro.com/subsystems/telos-obc/ (visited on
11/19/2021).

[163] Pasetti, A. The COrDeT Framework. User Manual. Version 1.0. PP-UM-COR-0002. P&P Software
GmbH, Mar. 22, 2019. URL: https://github.com/pnp-software/cordetfw/blob/master/doc/um/
UserManual.pdf (visited on 11/25/2021).

[164] Pasetti, A. The COrDeT Framework. Definition. Version 2.1. PP-DF-COR-0002. P&P Software
GmbH, May 25, 2021. URL: https://github.com/pnp-software/cordetfw/blob/master/doc/
cordetfw/cordetfw.pdf (visited on 11/25/2021).

[165] Paul Scherrer Institut. Secondary beam lines at PSI. URL: https://www.psi.ch/en/sbl/secondary-
beamlines (visited on 08/30/2021).

[166] Paul Scherrer Institut. πM1 Beam Line. URL: https://www.psi.ch/en/sbl/pim1-beamline (visited
on 08/30/2021).

[167] Peng, T., Hoflinger, K., Weps, B., Maibaum, O., Schwenk, K., Ludtke, D., and Gerndt, A.
“A Component-Based Middleware for a Reliable Distributed and Reconfigurable Spacecraft
Onboard Computer”. In: 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS). 35.
IEEE, Sept. 2016, pp. 337–342. ISBN: 978-1-5090-3513-7. DOI: 10.1109/SRDS.2016.051. URL:
http://ieeexplore.ieee.org/document/7794363/.

[168] Petersen, E. Single Event Effects in Aerospace. Ed. by Hanzo, L. Hoboken, New Jersey, USA: John
Wiley & Sons, 2011. ISBN: 978-0-470-76749-8.

[169] Plasson, A., Cuomo, C., Gabriel, G., Gauthier, N., Gueguen, L., and Malac-Allain, L. “GERICOS: A
GENERIC FRAMEWORK FOR THE DEVELOPMENT OF ON-BOARD SOFTWARE”. In: Proceedings
of DAta Systems in Aerospace (DASIA) 2016. Talinn, Estonia, May 2016. URL: https://ui.adsabs.
harvard.edu/abs/2016ESASP.736E..39P.

[170] Pöschl, T., Losekamm, M. J., Greenwald, D., and Paul, S. “A Novel CubeSat-Sized Antiproton
Detector for Space Applications”. In: Proceedings of The 34th International Cosmic Ray Conference
— PoS(ICRC2015). Sissa Medialab, Aug. 28, 2016. DOI: 10.22323/1.236.0590.

[171] Pumpkin Space Systems. Pluggable Processor Module D1 (PPM-D1). Hardware Revision: A.
Datasheet. Oct. 21, 2009. URL: http://www.pumpkininc.com/space/datasheet/710-00527-
A_DS_PPM_D1.pdf (visited on 10/26/2022).

[172] Pumpkin Space Systems. Pluggable Processor Module A1 (PPM-A1). Hardware Revision: B.
Datasheet. Jan. 13, 2010. URL: http://www.pumpkininc.com/space/datasheet/710-00485-
B_DS_PPM_A1.pdf (visited on 10/26/2022).

[173] Pumpkin Space Systems. Pluggable Processor Module A2 (PPM-A2). Hardware Revision: B.
Datasheet. Jan. 13, 2010. URL: http://www.pumpkininc.com/space/datasheet/710-00486-
B_DS_PPM_A2.pdf (visited on 10/26/2022).

[174] Pumpkin Space Systems. Pluggable Processor Module A3 (PPM-A3). Hardware Revision: B.
Datasheet. Sept. 13, 2010. URL: http://www.pumpkininc.com/space/datasheet/710-00516-
B_DS_PPM_A3.pdf (visited on 10/26/2022).

[175] Pumpkin Space Systems. Pluggable Processor Module D2 (PPM-D2). Hardware Revision: A.
Datasheet. Oct. 21, 2010. URL: http://www.pumpkininc.com/space/datasheet/710-00528-
A_DS_PPM_D2.pdf (visited on 10/26/2022).

https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/17
https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/17
https://doi.org/10.3389/FRSPT.2022.933988
https://orbastro.com/subsystems/telos-obc/
https://github.com/pnp-software/cordetfw/blob/master/doc/um/UserManual.pdf
https://github.com/pnp-software/cordetfw/blob/master/doc/um/UserManual.pdf
https://github.com/pnp-software/cordetfw/blob/master/doc/cordetfw/cordetfw.pdf
https://github.com/pnp-software/cordetfw/blob/master/doc/cordetfw/cordetfw.pdf
https://www.psi.ch/en/sbl/secondary-beamlines
https://www.psi.ch/en/sbl/secondary-beamlines
https://www.psi.ch/en/sbl/pim1-beamline
https://doi.org/10.1109/SRDS.2016.051
http://ieeexplore.ieee.org/document/7794363/
https://ui.adsabs.harvard.edu/abs/2016ESASP.736E..39P
https://ui.adsabs.harvard.edu/abs/2016ESASP.736E..39P
https://doi.org/10.22323/1.236.0590
http://www.pumpkininc.com/space/datasheet/710-00527-A_DS_PPM_D1.pdf
http://www.pumpkininc.com/space/datasheet/710-00527-A_DS_PPM_D1.pdf
http://www.pumpkininc.com/space/datasheet/710-00485-B_DS_PPM_A1.pdf
http://www.pumpkininc.com/space/datasheet/710-00485-B_DS_PPM_A1.pdf
http://www.pumpkininc.com/space/datasheet/710-00486-B_DS_PPM_A2.pdf
http://www.pumpkininc.com/space/datasheet/710-00486-B_DS_PPM_A2.pdf
http://www.pumpkininc.com/space/datasheet/710-00516-B_DS_PPM_A3.pdf
http://www.pumpkininc.com/space/datasheet/710-00516-B_DS_PPM_A3.pdf
http://www.pumpkininc.com/space/datasheet/710-00528-A_DS_PPM_D2.pdf
http://www.pumpkininc.com/space/datasheet/710-00528-A_DS_PPM_D2.pdf

164 REFERENCES

[176] Pumpkin Space Systems. Pluggable Processor Module B1 (PPM-B1). Hardware Revision: A.
Datasheet. Sept. 5, 2013. URL: http://www.pumpkininc.com/space/datasheet/710-00487-
A_DS_PPM_B1.pdf (visited on 10/26/2022).

[177] Pumpkin Space Systems. Pluggable Processor Module E1 (PPM E1). URL: https : / / www.
pumpkinspace.com/store/p129/Pluggable_Processor_Module_E1_%28PPM_E1%29.html
(visited on 11/18/2021).

[178] Reames, D. V. Solar Energetic Particles. Springer International Publishing, 2021. DOI: 10.1007/
978-3-030-66402-2.

[179] Reitz, G., Berger, T., and Matthiae, D. “Radiation exposure in the moon environment”. In:
Planetary and Space Science 74.1 (Dec. 2012), pp. 78–83. DOI: 10.1016/J.PSS.2012.07.014.

[180] Ritter, T. “Phyiscal Unit Type System for Simplified Development of the MOVE On-board
Software”. Interdisciplinary Project. Technical University of Munich, July 5, 2022.

[181] Rodríguez, A.-I., Ferrero, F., Alaña, E., Jung, A., Panunzio, M., Vardanega, T., and Grenham, A.
“The Component Layer of COrDeT On-Board Software Architecture”. In: Proceedings of Data
Systems in Aerospace (DASIA) 2021 (May 2012). Dubrovnic, Croatia, Aug. 2012.

[182] Rückerl, S., Appel, N., Klein, R.-D., and Langer, M. “Software-Defined Communication on the
Nanosatellite MOVE-II”. In: Proceedings of the 69th International Astronautical Congress. 69.
Bremen, Germany, Oct. 2018.

[183] Rückerl, S., Meßmann, D., Appel, N., Kiesbye, J., Schummer, F., Markus, F., Krempel, L., Kale,
T., Lill, A., Reina, G., Schnierle, P., Sebastian, W., Langer, M., and Martin, L. “First Flight Results
of the MOVE-II Satellite”. In: 33rd Annual AIAA/USU Conference on Small Satellites. Logan, UT,
USA, Aug. 2019. URL: https://digitalcommons.usu.edu/smallsat/2019/all2019/49/.

[184] Rückerl, S., Ukkola, M., Würl, S., and Faehling, M. “Distributed Computing for Modular &
Reliable Nanosatellites”. In: 2021 IEEE Aerospace Conference. IEEE, Mar. 2021. DOI: 10.1109/
AERO50100.2021.9438474.

[185] Rushby, J. and Miner, P. S. A Comparison and of Bus and Architectures for and Safety-Critical
Embedded and Systems. Contractor Report NASA/CR-2003-212161. National Aeronautics and
Space Administration, Mar. 1, 2003. URL: https://ntrs.nasa.gov/citations/20030032956
(visited on 09/13/2021).

[186] Rutzinger, M., Krempel, L., Salzberger, M., Buchner, M., Hohn, A., Kellner, M., Janzer, K.,
Zimmermann, C. G., and Langer, M. “On-orbit verification of space solar cells on the CubeSat
MOVE-II”. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). Portland, USA: IEEE,
June 2016, pp. 2605–2609. ISBN: 978-1-5090-2724-8. DOI: 10.1109/PVSC.2016.7750120.

[187] Saint-Gobain Ceramics & Plastics, Inc. BC-400,BC-404,BC-408,BC-412,BC-416 Premium Plastic
Scintillators. 2018. URL: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/
documents/bc400-404-408-412-416-data-sheet.pdf (visited on 08/30/2021).

[188] Sasaki, S., Igenbergs, E., Ohashi, H., Münzenmayer, R., Naumann, W., Hofschuster, G., Born,
M., Färber, G., Fischer, F., Fujiwara, A., Glasmachers, A., Grün, E., Hamabe, Y., Iglseder, H.,
Kawamura, T., Miyamoto, H., Morishige, K., Mukai, T., Naoi, T., Nogami, K., Schwehm, G., and
Svedhem, H. “Observation of interplanetary and interstellar dust particles by Mars Dust Counter
(MDC) on board NOZOMI”. In: Advances in Space Research 29.8 (Apr. 2002), pp. 1145–1153.
DOI: 10.1016/S0273-1177(02)00130-8.

[189] Schenato, L. and Gamba, G. “A distributed consensus protocol for clock synchronization in
wireless sensor network”. In: 2007 46th IEEE Conference on Decision and Control. IEEE, 2007.
DOI: 10.1109/CDC.2007.4434671.

[190] Schmelz, J. T., Reames, D. V., Steiger, R. von, and Basu, S. “Composition of the Solar Corona,
Solar Wind, and Soler Energetic Particles”. In: The Astrophysical Journal 755.1 (July 2012),
p. 33. DOI: 10.1088/0004-637X/755/1/33.

http://www.pumpkininc.com/space/datasheet/710-00487-A_DS_PPM_B1.pdf
http://www.pumpkininc.com/space/datasheet/710-00487-A_DS_PPM_B1.pdf
https://www.pumpkinspace.com/store/p129/Pluggable_Processor_Module_E1_%28PPM_E1%29.html
https://www.pumpkinspace.com/store/p129/Pluggable_Processor_Module_E1_%28PPM_E1%29.html
https://doi.org/10.1007/978-3-030-66402-2
https://doi.org/10.1007/978-3-030-66402-2
https://doi.org/10.1016/J.PSS.2012.07.014
https://digitalcommons.usu.edu/smallsat/2019/all2019/49/
https://doi.org/10.1109/AERO50100.2021.9438474
https://doi.org/10.1109/AERO50100.2021.9438474
https://ntrs.nasa.gov/citations/20030032956
https://doi.org/10.1109/PVSC.2016.7750120
https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bc400-404-408-412-416-data-sheet.pdf
https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bc400-404-408-412-416-data-sheet.pdf
https://doi.org/10.1016/S0273-1177(02)00130-8
https://doi.org/10.1109/CDC.2007.4434671
https://doi.org/10.1088/0004-637X/755/1/33

REFERENCES 165

[191] Sebastian Eckl David Werner, A. W. u. U. B. “Towards Real-Time Checkpoint/Restore for
Migration in L4 Microkernel based Operating Systems”. In: Proceedings of the 15th Annual
Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT) 2019.
Stuttgart, Germany, 2019. URL: https://ospert19.tudos.org/ospert19-proceedings.pdf.

[192] Sebastian Eckl Daniel Krefft, U. B. “COFAT 2015 - KIA4SM - Cooperative Integration Architecture
for Future Smart Mobility Solutions”. In: Conference on Future Automotive Technology. 2015.
URL: https://mediatum.ub.tum.de/1278622.

[193] Sebastian Eckl Daniel Krefft, U. B. “Migration of Components and Processes as means for dy-
namic Reconfiguration in Distributed Embedded Real-Time Operating Systems”. In: Proceedings
of the 13th Annual Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT) 2017. Duprovnik, Kings Landing, Croatia, 2017. URL: https://ospert2017.snt.uni.lu/
content/download/3341/16327/version/2/file/OSPERT2017_proceedings.pdf.

[194] Seltzer, S. and Bergstrom, P. Stopping-Powers and Range Tables for Electrons, Protons, and Helium
Ions, NIST Standard Reference Database 124. en. 1993. DOI: 10.18434/T4NC7P.

[195] Sennes, A. “Design and Implementation of a Performance Evaluation Concept of the MOVE-
Beyond System regarding the On-board Computing System”. Bachelor’s Thesis. Technical
University of Munich, May 15, 2020.

[196] Simpson, J. A. “Elemental and Isotopic Composition of the Galactic Cosmic Rays”. In: Annual
Review of Nuclear and Particle Science 33.1 (Dec. 1983), pp. 323–382. DOI: 10.1146/ANNUREV.
NS.33.120183.001543.

[197] Sinclair, D. and Dyer, J. “Radiation Effects on COTSParts in SmallSats”. In: 27th Annual
AIAA/USU Conference on Small Satellites. 2013. URL: https://digitalcommons.usu.edu/smallsat/
2013/all2013/69/.

[198] Sklaroff, J. R. “Redundancy Management Technique for Space Shuttle Computers”. In: IBM
Journal of Research and Development 20.1 (Jan. 1976), pp. 20–28. ISSN: 0018-8646. DOI:
10.1147/RD.201.0020. URL: http://ieeexplore.ieee.org/document/5391157/.

[199] Sommer, P. and Wattenhofer, R. “Gradient clock synchronization in wireless sensor networks”.
In: 2009 International Conference on Information Processing in Sensor Network. 2009, pp. 37–48.
URL: https://ieeexplore.ieee.org/abstract/document/5211944.

[200] Sosinsky, B. Networking Bible. Vol. 567. John Wiley & Sons, Oct. 2009. URL: https://learning.
oreilly.com/library/view/networking-bible/9780470431313/ (visited on 09/13/2021).

[201] Soundarabai, P. B., Sahai, R., J, T., Venugopal, K. R., and Patnaik, L. M. “Improved Bully Election
Algorithm for Distributed Systems”. In: International Journal of Information Processing, 7(4), 43-
54, 2013 (Feb. 28, 2014). arXiv: 1403.3255v1 [cs.DC]. URL: http://arxiv.org/abs/1403.3255.

[202] Space Micro. Proton 200k® Lite Processor Board. Datasheet. Apr. 9, 2015.

[203] Space Micro. Cubesat Space Processor (CSP). Datasheet. Sept. 5, 2019.

[204] SpaceInventor. OBC-P3. 2021. URL: https : / / space - inventor. com / OBC - P3/ (visited on
11/17/2021).

[205] Spacemanic. Eddie The Computer. OBC-MSP430. Datasheet. 2021. URL: https://www.spacemanic.
com/files/datasheet/datasheet_eddie_rev3.pdf (visited on 11/19/2021).

[206] STMicroelectronics. STM32L496xx. Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100
DMPIS, up to 1 MB Flash, 320 KB SRAM, USB OTG FS, audio, external SMPS. Datasheet.
Version Rev 15. Aug. 2021. URL: https://www.st.com/resource/en/datasheet/stm32l496zg.pdf.

[207] STMicroelectronics. STM32L4 - ARM Cortex M4 ultra low power MCUs. 2022. URL: https:
//www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-
32-bit- arm-cortex-mcus/stm32-ultra- low-power-mcus/stm32l4- series.html (visited on
06/14/2022).

https://ospert19.tudos.org/ospert19-proceedings.pdf
https://mediatum.ub.tum.de/1278622
https://ospert2017.snt.uni.lu/content/download/3341/16327/version/2/file/OSPERT2017_proceedings.pdf
https://ospert2017.snt.uni.lu/content/download/3341/16327/version/2/file/OSPERT2017_proceedings.pdf
https://doi.org/10.18434/T4NC7P
https://doi.org/10.1146/ANNUREV.NS.33.120183.001543
https://doi.org/10.1146/ANNUREV.NS.33.120183.001543
https://digitalcommons.usu.edu/smallsat/2013/all2013/69/
https://digitalcommons.usu.edu/smallsat/2013/all2013/69/
https://doi.org/10.1147/RD.201.0020
http://ieeexplore.ieee.org/document/5391157/
https://ieeexplore.ieee.org/abstract/document/5211944
https://learning.oreilly.com/library/view/networking-bible/9780470431313/
https://learning.oreilly.com/library/view/networking-bible/9780470431313/
https://arxiv.org/abs/1403.3255v1
http://arxiv.org/abs/1403.3255
https://space-inventor.com/OBC-P3/
https://www.spacemanic.com/files/datasheet/datasheet_eddie_rev3.pdf
https://www.spacemanic.com/files/datasheet/datasheet_eddie_rev3.pdf
https://www.st.com/resource/en/datasheet/stm32l496zg.pdf
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series.html

166 REFERENCES

[208] Suhadis, N. M. “Statistical Overview of CubeSat Mission”. In: Proceedings of International
Conference of Aerospace and Mechanical Engineering 2019. Ed. by Rajendran, P., Mazlan, N. M.,
Rahman, A. A. A., Suhadis, N. M., Razak, N. A., and Abidin, M. S. Z. Singapore: Springer
Singapore, 2020, pp. 563–573. DOI: 10.1007/978-981-15-4756-0_50.

[209] Swain, A. R. and Hansdah, R. “A model for the classification and survey of clock synchronization
protocols in WSNs”. In: Ad Hoc Networks 27 (Apr. 2015), pp. 219–241. DOI: 10.1016/J.ADHOC.
2014.11.021.

[210] Technolam. FR-4-11PYTL, FR-4-11PYR, FR-4-11PYB. Datasheet. Mar. 2019.

[211] The Apache Software Foundation. Apache License, Version 2.0. Jan. 2004. URL: https://www.
apache.org/licenses/LICENSE-2.0.html (visited on 09/08/2022).

[212] The Cubesat Program. CubeSat Design Specification. (CDS). Tech. rep. Version Rev. 13. California
Polytechnical State University, 2014.

[213] The Cubesat Program. CubeSat Design Specification. (CDS). Tech. rep. Version Rev. 14.1. Califor-
nia Polytechnical State University, Feb. 2022.

[214] The RTEMS Project. RTEMS User Manual. Release 5.1. User Manual. Aug. 26, 2020.

[215] The RTEMS Project. RTEMS Real Time Operating System (RTOS) | Real-Time and Real Free RTOS.
2021. URL: https://ww.rtems.org (visited on 01/13/2022).

[216] TIA/EIA-485-A. Electrical Characteristics of Generators and Receivers for Use in Balanced Digital
Multipoint Systems. Industry Standard. Telecommunications Industry Association, Mar. 3, 1998.

[217] Tirado-Andrés, F. and Araujo, A. “Performance of clock sources and their influence on time
synchronization in wireless sensor networks”. In: International Journal of Distributed Sensor
Networks 15.9 (Sept. 2019). DOI: 10.1177/1550147719879372.

[218] Treudler, C., Benninghof, H., Borchers, K., Brunner, B., Cremer, J., Dumke, M., Gärtner, T.,
Höflinger, K., Langwald, J., Lüdtke, D., Peng, T., Risse, E.-A., Schwenk, K., Stelzer, M., Ulmer,
M., Vellas, S., and Westerdorff, K. “ScOSA - Scalable On-Board Computing for Space Avionics”.
In: 69th International Astronautical Congress (IAC). Bremen, Germany, Oct. 2018.

[219] Twiggs, R. “Origin of cubesat”. In: Small Satellites: Past, Present, and Future, Eds: Helvajian H.,
Janson SW, The Aerospace Press, El Segundo, California (2008).

[220] UM10204. I²C-bus specification and user manual. User Manual Rev. 7.0. NXP Semiconductors,
Oct. 1, 2021.

[221] Van Allen, J. A., Ludwig, G. H., Ray, E. C., and McIlwain, C. E. “Observation of High Intensity
Radiation by Satellites 1958 Alpha and Gamma”. In: Journal of Jet Propulsion 28.9 (Sept. 1958),
pp. 588–592. DOI: 10.2514/8.7396.

[222] Van Allen, J. A. and Frank, L. A. “Radiation Around the Earth to a Radial Distance of 107,400
km.” In: Nature 183.4659 (Feb. 1959), pp. 430–434. DOI: 10.1038/183430A0.

[223] Velazco, R., McMorrow, D., and Estela, J. Radiation Effects on Integrated Circuits and Systems for
Space Applications. 2019. ISBN: 978-3-030-04660-6. DOI: 10.1007/978-3-030-04660-6.

[224] Vermont Technical College. CubedOS Operating System. Documentation generated from online
sources. 2021. URL: https://github.com/cubesatlab/cubedos/tree/master/doc (visited on
12/15/2021).

[225] Vick, R. and Lyke, J. “Development of a Low Power Space Plug-and-Play Avionics Protocol for
Simple Devices”. In: AIAA Infotech@Aerospace 2010. American Institute of Aeronautics and
Astronautics, Apr. 2010. DOI: 10.2514/6.2010-3477.

[226] Villela, T., Costa, C. A., Brandão, A. M., Bueno, F. T., and Leonardi, R. “Towards the Thousandth
CubeSat: A Statistical Overview”. In: International Journal of Aerospace Engineering 2019 (Jan.
2019), pp. 1–13. ISSN: 1687-5966. DOI: 10.1155/2019/5063145.

https://doi.org/10.1007/978-981-15-4756-0_50
https://doi.org/10.1016/J.ADHOC.2014.11.021
https://doi.org/10.1016/J.ADHOC.2014.11.021
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://ww.rtems.org
https://doi.org/10.1177/1550147719879372
https://doi.org/10.2514/8.7396
https://doi.org/10.1038/183430A0
https://doi.org/10.1007/978-3-030-04660-6
https://github.com/cubesatlab/cubedos/tree/master/doc
https://doi.org/10.2514/6.2010-3477
https://doi.org/10.1155/2019/5063145

LIST OF PUBLICATIONS 167

[227] VORAGO Technologies. Radiation Hardened VA416X0. 32-Bit Arm® Cortex®-M4 (with FPU) mi-
crocontroller manufactured with HARDSIL® technology offering best in class radiation performance
and latch-up immunity. Product Datasheet. Version Rev 1.4. Austin, TX, 2021.

[228] Vorago Technologies. Radiation Hardened VA416X0. 32-Bit Arm® Cortex®-M4 (with FPU) micro-
controller manufactured with HARDSIL® technology offering best in class radiation performance
and latch-up immunity. Preliminary Datasheet. Version 0.99. Austin, TX, Sept. 15, 2020.

[229] Walter, T., Hilgarth, A., Mikschl, T., and Montenegro, S. “VIDANA : A fault tolerant approach
for a distributed data management system in nano-satellites”. In: 10th Symposium on Small
Satellites for Earth Observation. 2013.

[230] Wilcox, T. and Seidleck, C. Vorago RC-OBC-1 Single Event Effect Characterization Test Report.
Tech. rep. National Aeronautics and Space Administration1, Aug. 6, 2020. URL: https://
ntrs.nasa.gov/api/citations/20205006200/downloads/Wilcox-TR-18-035-RH-OBC-1-
2019June01-MGH%20-%20RHOBC1_SEE_Report_20200806_v4.pdf (visited on 06/14/2022).

[231] Wilmot, J. Projects - CAST Flight Software as a CCSDS Onboard Reference Architecture. Ed. by
(CNSA), C. N. S. A. June 3, 2021. URL: https://cwe.ccsds.org/fm/Lists/Projects/DispForm.
aspx?ID=595 (visited on 11/24/2021).

[232] Windriver. VXWORKS. Redefining the role of the RTOS. Brochure. Apr. 2021. URL: https://lp.
windriver.com/rs/113-TSG-922/images/VxWorks_Redefining-the-role-of-RTOS-v10.pdf
(visited on 01/14/2022).

[233] Windriver. VxWorks. The World’s Leading Real-Time Operating System for the Intelligent Edge.
Brochure. Jan. 2021. URL: https://resources.windriver.com/vxworks/vxworks- product-
overview (visited on 01/14/2022).

[234] Yaghmour, K., Masters, J., Ben-Yossef, G., and Gerum, P. Building Embedded Linux Systems.
O’Reilly Media, Inc., Aug. 2008. URL: https://learning.oreilly.com/library/view/building-
embedded-linux/9780596529680/ (visited on 10/26/2022).

[235] Yashiro, H., Takahashi, Y., and Fujiwara, T. “Verification of assurance of space on-board
distributed computer system”. In: Proceedings Sixth IEEE International Symposium on High
Assurance Systems Engineering. Special Topic: Impact of Networking. IEEE Comput. Soc, 2001.
DOI: 10.1109/HASE.2001.966810.

[236] Yashiro, H., Takahashi, Y., Fujiwara, T., and Mori, K. “A high assurance space on-board dis-
tributed computer system”. In: 2003 IEEE Aerospace Conference. Vol. 5. IEEE, 2003, pp. 2501–
2509. ISBN: 0-7803-7651-X. DOI: 10.1109/AERO.2003.1235175.

[237] Zangemeister, C. Nutzwertanalyse in der Systemtechnik. eine Methodik zur multidimensionalen
Bewertung aund Auswahl von Projektalternativen. 1970.

List of Publications

[1] Appel, N., Kimpe, A., Kraus, K., Langer, M., Losekamm, M. J., Milde, M., Pöschl, T., Rückerl, S.,
Schäfer, F., Stromsky, A., and Würl, K. “TDP-3 Vanguard: Verification of a New Communication
System for CubeSats on BEXUS 22”. In: 23rd ESA Symposium on European Rocket & Balloon
programmes and related research. Visby, Sweden, June 2017.

[2] Appel, N., Rückerl, S., and Langer, M. “Nanolink : a Robust and Efficient Protocol for Small
Satellite Radio Links”. In: 4S Symposium. Valetta, Malta, May 2016.

[3] Kale, T., Yang, D., Rückerl, S., and Schulz, M. “Low Power Optimizations for Sensor Data
Processing on Cubesats”. In: 10th European Cubesat Symposium 2018. Toulouse, France, Dec.
2018.

https://ntrs.nasa.gov/api/citations/20205006200/downloads/Wilcox-TR-18-035-RH-OBC-1-2019June01-MGH%20-%20RHOBC1_SEE_Report_20200806_v4.pdf
https://ntrs.nasa.gov/api/citations/20205006200/downloads/Wilcox-TR-18-035-RH-OBC-1-2019June01-MGH%20-%20RHOBC1_SEE_Report_20200806_v4.pdf
https://ntrs.nasa.gov/api/citations/20205006200/downloads/Wilcox-TR-18-035-RH-OBC-1-2019June01-MGH%20-%20RHOBC1_SEE_Report_20200806_v4.pdf
https://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=595
https://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=595
https://lp.windriver.com/rs/113-TSG-922/images/VxWorks_Redefining-the-role-of-RTOS-v10.pdf
https://lp.windriver.com/rs/113-TSG-922/images/VxWorks_Redefining-the-role-of-RTOS-v10.pdf
https://resources.windriver.com/vxworks/vxworks-product-overview
https://resources.windriver.com/vxworks/vxworks-product-overview
https://learning.oreilly.com/library/view/building-embedded-linux/9780596529680/
https://learning.oreilly.com/library/view/building-embedded-linux/9780596529680/
https://doi.org/10.1109/HASE.2001.966810
https://doi.org/10.1109/AERO.2003.1235175

168 REFERENCES

[4] Langer, M., Schummer, F., Appel, N., Gruebler, T., Janzer, K., Kiesbye, J., Krempel, L., Lill, A.,
Messmann, D., Rückerl, S., and Weisgerber, M. “MOVE-II the Munich Orbital Verification Exper-
iment II”. In: Proceedings of the 4th IAA Conference on University Satellite Missions & CubeSat
Workshop. Vol. 163. IAA-AAS-CU-17-06-05. Dec. 2017, pp. 441–459. ISBN: 9780877036470.

[5] Langer, M., Schummer, F., Rückerl, S., Vogel, D., Lill, A., Amann, R., Kale, T., Krempel, L.,
Kiesbye, J., Lux, P., and Meßmann, D. MOVE-II System Documentation. Tech. rep. LRT/WARR,
2019.

[6] Losekamm, M. J., Fierlinger, P., Golkar, A., Laurent, P., Manfletti, C., Mertens, S., Paul, S.,
Reiss, P., Rückerl, S., and Walter, U. “The Space Missions Laboratory at the Technical University
of Munich: Rapid Satellite Missions and Instrument Development for Space Research”. In:
Proceedings of the 73rd International Astronautical Confgress. Paris, France, Sept. 2022.

[7] Losekamm, M. J., Hinderberger, P., and Rückerl, S. “Reliable Data Handling and Processing
Systems for Small-Satellite Missions”. In: 2023 IEEE Aerospace Conference. IEEE, Mar. 2023.
DOI: 10.1109/aero55745.2023.10115789.

[8] Rückerl, S., Appel, N., Klein, R.-D., and Langer, M. “Software-Defined Communication on the
Nanosatellite MOVE-II”. In: Proceedings of the 69th International Astronautical Congress. 69.
Bremen, Germany, Oct. 2018.

[9] Rückerl, S. and Losekamm, M. J. “Distributed On-Board Computing on Scientific CubeSat
Missions”. In: Proceedings of the 73rd International Astronautical Confgress. Paris, France, Sept.
2022.

[10] Rückerl, S. and Losekamm, M. J. “Increased Flexibility and Reliability for CubeSats through
Distributed Telemetry and Control. Invited Paper”. In: 20th ACM International Conference on
Computing Frontiers (CF ’23) (May 10, 2023). Bologna, Italy: ACM Press, May 2023. DOI:
10.1145/3587135.3592767.

[11] Rückerl, S., Meßmann, D., Appel, N., Kiesbye, J., Schummer, F., Markus, F., Krempel, L., Kale,
T., Lill, A., Reina, G., Schnierle, P., Sebastian, W., Langer, M., and Martin, L. “First Flight Results
of the MOVE-II Satellite”. In: 33rd Annual AIAA/USU Conference on Small Satellites. Logan, UT,
USA, Aug. 2019. URL: https://digitalcommons.usu.edu/smallsat/2019/all2019/49/.

[12] Rückerl, S., Ukkola, M., Würl, S., and Faehling, M. “Distributed Computing for Modular &
Reliable Nanosatellites”. In: 2021 IEEE Aerospace Conference. IEEE, Mar. 2021. DOI: 10.1109/
AERO50100.2021.9438474.

List of Supervised Theses

[1] Banerjee, A. “Automated Analysis of the MOVE-II Slack for Bugs and Missing Documentation”.
Interdisciplinary Project. Technical University of Munich, 2017.

[2] Bernhardt, N. “Implementation of the Central Monitoring and Control Component for the
MOVE Groundstation”. Interdisciplinary Project. Technical University of Munich, 2019.

[3] Blohm-Sievers, J. “Development of a Method for Failure Identification and Recovery for MOVE-II
Operations”. Semesterthesis. Technical University of Munich, 2018.

[4] Bode, F. “Safe and Secure Software Updates for Cubesats”. Bachelor’s Thesis. Technical Univer-
sity of Munich, Oct. 15, 2021.

[5] Burdurlu, Y. “Radiation Test Software for Embedded Micro-controllers within the MOVE Project”.
Interdisciplinary Project. Technical University of Munich, Nov. 25, 2021.

[6] Costescu, C. E. “Implementiton of Backend microservices and parsers for data provided by
Satellite Mission MOVE-II”. Interdisciplinary Project. Technical University of Munich, 2017.

[7] Dötterl, M. “Hardening the Linux Kernel against Soft Errors”. Master’s Thesis. Technical Univer-
sity of Munich, Dec. 15, 2017.

https://doi.org/10.1109/aero55745.2023.10115789
https://doi.org/10.1145/3587135.3592767
https://digitalcommons.usu.edu/smallsat/2019/all2019/49/
https://doi.org/10.1109/AERO50100.2021.9438474
https://doi.org/10.1109/AERO50100.2021.9438474

LIST OF SUPERVISED THESES 169

[8] Erzar, J. “Porting Electrical Power Subsystem Software onto a new Microcontroller”. Interdisci-
plinary Project. Technical University of Munich, Aug. 19, 2021.

[9] Faehling, M. “Development and Evaluation of the MOVE on-board Data Handling System on a
Space Qualified Microcontroller”. Bachelor’s Thesis. Technical University of Munich, Mar. 1,
2021.

[10] Föger, M. “Run-Time Migration of Communication enabled Processes in the RODOS Operating
System”. Bachelor’s Thesis. Technical University of Munich, Feb. 15, 2021.

[11] Föger, M. “Design and Implementation of a Transport Layer Protocol for a Half-Duplex Satellite
Link”. Interdisciplinary Project. Technical University of Munich, Sept. 5, 2022.

[12] Hefele, A. “Implementation of the Frontend Graph and Visualizations used for the Satellite
Mission MOVE-II”. Interdisciplinary Project. Technical University of Munich, 2017.

[13] Holl, L. “Design eines Mikrocontroller basierten On-Board Flugcomputers für einen CubeSat
und Verifikation im Rahmen von MOVE-ON”. Bachelor’s Thesis. Technical University of Munich,
2018.

[14] Johne, N. “Automated Performancetracking of Software for Embedded Systems”. Bachelor’s
Thesis. Technical University of Munich, June 15, 2021.

[15] Kale, T. “Event Driven Programming for Embedded Systems”. Guided Research. Technical
University of Munich, 2018.

[16] Kale, T. “Dependable and Modular Command and Data Handling Platform for Small Spacecraft
using MicroPython on RODOS”. Master’s Thesis. Technical University of Munich, Sept. 15,
2019. URL: https://mediatum.ub.tum.de/1519584.

[17] Konlechner, R. “Design of a Run-Time Migration System for Processes within the RODOS
Operating System”. Bachelor’s Thesis. Technical University of Munich, Sept. 15, 2020.

[18] Mauracher, F. “Scalable and Modular Architecture for Self-organizing Power Systems on Small
Spacecrafts”. Master’s Thesis. Technical University of Munich, Feb. 15, 2019. URL: https :
//mediatum.ub.tum.de/1475016.

[19] Melzer, Y. “Benchmarking Utilization of Microcontrollers in Distributed Satellite On-Board
Computers”. Bachelor’s Thesis. Technical University of Munich, Sept. 15, 2020.

[20] Molz, P. “Reliable On-Orbit Software Updates for CubeSats”. Master’s Thesis. Technical Univer-
sity of Munich, Oct. 14, 2022.

[21] Molz, P. “Software Components for the ORIGINS ISS Mission’s On-board Computer”. Interdisci-
plinary Project. Technical University of Munich, June 8, 2022.

[22] Ritter, T. “Phyiscal Unit Type System for Simplified Development of the MOVE On-board
Software”. Interdisciplinary Project. Technical University of Munich, July 5, 2022.

[23] Schöttl, F. “Towards energy optimized earth observation missions through modelling data
processing architectures for small satellites”. Master’s Thesis. Technical University of Munich,
Oct. 15, 2019.

[24] Sennes, A. “Design and Implementation of a Performance Evaluation Concept of the MOVE-
Beyond System regarding the On-board Computing System”. Bachelor’s Thesis. Technical
University of Munich, May 15, 2020.

[25] Soare, C.-V. “Implementation of Backend microservices and communication tools for the
Satellite Mission MOVE-II”. Interdisciplinary Project. Technical University of Munich, 2017.

[26] Winter, L. “Design and Verification of Different Filesystem Abstractions for Space-Travelling
Purposes”. Bachelor’s Thesis. Technical University of Munich, May 15, 2021.

[27] Würl, S. “Methodical Comparison of Computer Architectures for Data Processing in Small
Satellites”. Master’s Thesis. Technical University of Munich, May 15, 2020.

[28] Zwickl, T. “Implementation of the Frontend and Backend Connectors used for the Satellite
Mission MOVE-II”. Interdisiciplinary Project. Technical University of Munich, 2018.

https://mediatum.ub.tum.de/1519584
https://mediatum.ub.tum.de/1475016
https://mediatum.ub.tum.de/1475016

Appendix A

COTS CubeSat OBCs

171

172
A

PPEN
D

IX
A

.
C

O
TS

C
U

B
ESAT

O
B

C
s

Table A.1: Available COTS CubeSat on-board computers.

Vendor Name Core Main Memory Persistent Memory Remarks Source

AAC Clyde
Space

KRYTEN-M3 ARM Cortex M3 on Smart
Fusion 2 SoC @ 50 MHz

unknown 256 kB + 8 MB boot memory
8 MB MRAM

- [1]

AAC Clyde
Space

SIRIUS
OBC/TCM

32 bit LEON3-FT core on
FPGA @ 50 MHz

64 MB 16 kB non-volatile RAM
2 GB system memory
32 GB mass memory (TCM
only)

- [2, 3]

EnduroSat OBC 32 bit ARM Cortex M7 512 kB 2 MB program memory
2 SD-card slots

- [61]

GomSpace NanoMind
A3200

32 bit AT32UC3C @ 64 MHz 32 MB 128 MB flash storage
32 kB FRAM

- [91]

Gumush n-ART OB-
COMMS

ARM Cortex M4
(STM32F429) @ 180 MHz

256 kB 2 MB integrated flash
128 MB external flashi

256 kB FRAM
dual SD-card supported

includes a
transceiver

[16, 72]

Gumush n-ART SMC ARM Cortex M4 @ 168 MHz 192 kB unknown - [17]
Innoflight CFC-400 LEON3-FT on MicroSemi

FPGA
ARM Cortex A53 and R5F on
Xilinx MPSoC

2 GB (CPU) +
256 MB (FPGA)

8 MB MRAM
16 GB flash

- [79]

ISISpace iOBC 32 bit ARM9ii @ 400 MHz 64 MB 1 MB code memory
512 kbit FRAM
4 GB to 32 GB SD-card

- [80]

KP Labs Antelope OBC Dual ARM Cortex R5F @
300 MHz on RM57 Herkules

unknown 12 MiB MRAM
256 KiB FRAM
1 GiB to 4 GiB flash memory
ECC protected code flash

includes FPGA
for custom func-
tions

[98]

NanoAvionics 3C2 32 bit ARM Cortex M7
(STM32 H7) @ 400 MHz

1 MB 2 MB integrated flash
2 MB FRAM
256 MB external flash
micro SD-card up to 32 Gbit

- [156]

173

Vendor Name Core Main Memory Persistent Memory Remarks Source

OrbAstro TELOS OBC 64 bit ARM A53 & R5 on Xil-
inx Utrascale+ SoC

up to 64 GB up to 1 TB flash dual redun-
dancy optional
includes FPGA
for custom
functions

[162]

Pumpkin Space
Systems

PPM-A1 – PPM-
A3

16 bit MSP430F @ 7.4 MHz 5 kB to 8 kB 55 kB to 116 kB code memory
SD-card support available

- [172–174]

Pumpkin Space
Systems

PPM-B1 8 bit C8051 @ 100 MHz 8448 B 128 kB code memory
128 kB static RAM
SD-card support available

- [176]

Pumpkin Space
Systems

PPM-D1 16 bit PIC24 @ 32 MHz 16 kB 256 kB code memory
64 Mbit flash memory
SD-card support available

- [171]

Pumpkin Space
Systems

PPM-D2 16 bit dsPIC33 @ 80 MHz 30 kB 256 kB code memory
64 Mbit flash memory
SD-card support available

- [175]

Pumpkin Space
Systems

PPM-E1 16 bit PIC24 @ 23 MHz 96 kB 256 kB code memory
64 Mbit flash memory
SD-card support available

- [177]

Space Inventor OBC-P3 ARM Cortex M7 384 kB 2 MB on-chip flash
32 kB FRAM
64 GB eMMC

all components
fully redundant

[204]

Spacemanic Eddie The Com-
puter

16 bit MSP430iii unknown 256 kbit FRAM code memory
16 Mbit FRAM data storage

- [205]

Space Micro CSP Dual ARM Core on Xilinx
Zynq7020

8 Gbit 32 Gbit flash - [203]

Space Micro Proton 200k
Lite

TI DSP 512 MB 8 MB EEPROM
32 Gbit flash

- [202]

i Cypress S70FL01GS is used according to [16]. It features 128 MB of memory according to [51]. ii AT91SAM9G20 according to [110] iii Not mentioned in [205] directly, but assumed due
to product identifier OBC-MSP430.

Appendix B

Framework and OS Selection

B.1 Criteria

Table B.1: Evaluation guidelines for selection criteria. These guidelines provide a reference for fair
evaluation and scoring of frameworks and OSs. A score of 1 indicates a complete satisfaction of a
certain criterion, a score of 0 indicates that all factors required for a criterion are not present within the
candidate framework or OS.

Criterion Evaluation Guidelines

Open-source (1) Scoring of criterion 1 is based on the flexibility of the license. A score of
0 is used if no license is provided at all; a score of 1 indicates a license
that does not limit the use and enables open-source as well as closed source
applications.

Value Reason

0 No license provided.
0.25 A license is provided, but it does not allow use of the software.
0.5 The license allows use in private and/or institutional applications.
0.75 The license allows use in all applications, but restrictions are avail-

able; e.g., the source code of a project using the license must be
made available with the same license.

1 The license allows use in all applications, including modifications,
sharing, using in closed source projects, or any other use of the
software without any additional restrictions.

175

176 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.1 Continued.

Criterion Evaluation Guidelines

Documentation (2) This criterion includes only publicly available documentation. The availability
of certain pieces of information within the documentation and/or the source
code of a framework or OS is the baseline of the evaluation if this criterion.

• Installation instructions are available.

• Core feature API documentation is available (or self explaining).

• API documentation of other features is available (or self explaining).

• Examples are available.

• The documentation explains the idea behind the framework’s or OS’s
features.

The available items as listed above divided by the total number of possible
items (5) give the score for this criterion.

Support (3) The available support is important if changes to the framework or OS should
be done. A good community helps to avoid the effort of maintaining a fork
of the software due to such changes and can also help to resolve any issues
found throughout the development process. Similar to criterion 2, criterion 3
is evaluated based on the availability of:

• An active maintainer of the software (last update less than 1 y ago).

• A group of people supporting the prime maintainer.

• A way to provide feedback and discuss issues exists.

• Support by the developers or a community to set up things and solve
issues.

• Community suggestions are accepted by the maintainer(s). Merge
requests (or similar) can be submitted and are processed.

The available items as listed above divided by the total number of possible
items (5) give the score for this criterion.

B.1. CRITERIA 177

Table B.1 Continued.

Criterion Evaluation Guidelines

Ports (4) The number of available ports is an indicator for the platforms that can be
supported by the framework or OS. Especially the support for smaller target
platforms is verified by a port for such a platform. The availability of a port
for COTS platforms simplifies the development. A diverse set of available
ports increases the chance of a future use of the software. Ports for high level
operating systems, such as running the software on top of Linux, reduce the
development effort and complexity of tests. A perfect score is given if the
following ports are available:

• A port for a larger MCU with MMU.

• A port for a small MCU without MMU.

• A port for a COTS MCU, which simplifies development as inexpensive
hardware is available.

• A port for a high level OS (e.g. Linux) or another way to execute
applications based on the framework or OS within the development
environment.

If only a subset of these ports are available the score is calculated as the
number of available items from the list above divided by the total number of
items in this list (4).

Porting (5) As the effort of porting a framework or OS to a new platform is difficult to
estimate, we have to rely on the information available by third parties that
performed this before. If no such information is available an estimate of the
effort to port a system to a new platform is given based on some criteria
within the source code of a framework or OS. If porting of a framework is
not directly possible as an underlying OS is used for this purpose, the lowest
score is given. Although this does not strictly represent the porting effort of
the overall system, it requires the developer to be familiar with an additional
piece of software. This additional required knowledge increases the difficulty
as a lot of effort is required by the developer to gain this knowledge. The
scoring is based on the table below:

Value Reason

0 Porting is not possible with reasonable effort or would be part of
another framework OS used in addition to the currently evaluated
framework or OS.

0.25 Porting is possible, but it has been reported difficult.
0.5 Porting is possible, but the port is not independent of the frame-

work. Maintaining a port will still be difficult in this case.
0.75 Porting requires a lot of functions to work, but the code required

for a port is independent of the framework itself. Therefore, main-
taining the port is simplified.

1 Porting is simple with only a minimal set of functions required and
these are clearly marked or documented.

178 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.1 Continued.

Criterion Evaluation Guidelines

Multi-threading (6) Support of multi-threading is required for a simplified distribution of the
applications over a set of nodes. In some cases a node has to execute various
applications at the same time or a single application has to be split into several
threads. The score calculates as the amount of available multi-threading
features in a framework or OS. The list of features used for this evaluation is:

• Multiple threads can be executed simultaneously.

• Thread creation and termination is possible via a simple interface.

• Thread synchronization is available.

• Timed execution of threads or code snippets is supported.

• Waiting for data availability is available. An example would be an input
queue that suspends a thread until data is available.

• Support for external interrupts is available (to resume threads or trigger
other actions).

If only a part of the features listed are available, the score is reduced propor-
tionally.

Real-time (7) Besides the multi-threading features in criterion 6, the scheduler
itself is important for real-time systems. Although a soft real-
time or best-effort system can be suitable for most applications, it
is beneficial for future developments to include hard real-time sup-
port. The table below provides the scoring for this criterion:

Value Reason

0 The framework or OS does not include a scheduler. Even if the
used OS below a framework provides a scheduler no points are
given. The increased effort of fully understanding the framework
and a OS is not desired.

0.25 The framework or OS includes a simplistic scheduler, e.g., a round-
robin based scheduler without any additional features.

0.5 The framework or OS includes a complex scheduler, including at
least priorities based scheduling.

0.75 The included scheduler is a real-time scheduler.
1 The included scheduler is a mixed criticality scheduler combining

real-time and best-effort tasks in a single system.

B.2. PREFERENCE ANALYSIS 179

Table B.1 Continued.

Criterion Evaluation Guidelines

Message-passing (8) Inter process communication is essential for a distributed system. Although
this could be implemented as part of the suggested framework, basic inter
process communication artifacts reduce the development process. The list
below provides a guideline for the evaluation of this criterion:

• Shared memory message-passing is available (at least within a single
node).

• Point-to-point message-passing within a single node is available.

• Point-to-point message-passing within several nodes is available.

• Publisher-subscriber message-passing within a single node is available.

• Publisher-subscriber message-passing within a network of nodes is
available.

The score is proportionally reduced if only a subset of the items above are
fulfilled.

B.2 Preference Analysis

180 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.3: Pairwise criteria comparison for preference analysis. Each cell depicts the winner of the
comparison of two criteria. A 1 indicates the winner is the criterion of this row, a 0 indicates the winner
is the criterion of the column. The diagonal row (pairwise comparison with same criterion) is filled
with 1. This offset ensures that no criterion has zero wins and thus would get a weight of 0. The last
two columns show for the criterion i, the sum of wins of the criterion Ni in this row and its normalized
weight wi. The normalized weight is calculated as wi =

Ni
∑︁8

j=0 Ni
.

i O
pe

n-
so

ur
ce

D
oc

um
en

ta
ti

on

Su
pp

or
t

Po
rt

s

Po
rt

in
g

M
ul

ti
-t

hr
ea

di
ng

R
ea

l-
ti

m
e

M
es

sa
ge

-p
as

si
ng

Ni wi

Open-source 1 1 0 0 0 0 0 0 0 1 0.027
Documentation 2 1 1 1 1 0 0 1 1 6 0.16
Support 3 1 0 1 1 0 0 0 1 4 0.11
Ports 4 1 0 0 1 0 0 0 0 2 0.054
Porting 5 1 1 1 1 1 0 0 0 5 0.14
Multi-threading 6 1 1 1 1 1 1 0 1 7 0.19
Real-time 7 1 1 1 1 1 1 1 1 8 0.22
Message-passing 8 1 0 0 1 1 0 0 1 4 0.11

B.3 Framework Scoring

Table B.4: Scoring of cFS based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 1 Apache License 2.0
Documentation (2) 1 Evaluation based on public documentation available or referenced at

https://github.com/nasa/cFS.

✓ install instructions

✓ core features documented

✓ other API documented

✓ examples

✓ background explained

Support (3) 1 Evaluation based on public community at https://github.com/nasa/
cFS.

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform

✓ direct support

✓ community contributions accepted

https://github.com/nasa/cFS
https://github.com/nasa/cFS
https://github.com/nasa/cFS

B.3. FRAMEWORK SCORING 181

Table B.4: Scoring of cFS continued.

Criterion Score Reason

Ports (4) 1 Evaluation based on public documentation or references given at
https://github.com/nasa/cFS.

✓ larger MCU: via RTEMS or VxWorks

✓ small MCU: via RTEMS or VxWorks

✓ COTS MCU: via RTEMS or VxWorks

✓ high level OS: Linux/Posix supported

Porting (5) 0.25 Porting capability provided via VxWorks and RTEMS porting. Cud-
more [50] report that porting to CubeSat hardware is difficult.

Multi-threading (6) 0.33 Features evaluated based on documentation and source code avail-
able at https://github.com/nasa/cFS.

✓ basic multi-threading

✓ simple thread handling

✓ thread synchronization available

✓ timed execution supported (system-wide time can be used to
support this feature)

✓ waiting for data supported

✗ external interrupts supported (deprecated, thus no point given)

The partial support for timed execution (system-wide time is avail-
able, but not directly supported) and the partial support for waiting
for data (only queues, no other way of waiting for data found) are
combined into a full point. Thus, 4 out of 6 possible items are
fulfilled.

Real-time (7) 0 No scheduler included.
Message-passing (8) 0.6 Features evaluated based on documentation and source code avail-

able at https://github.com/nasa/cFS. The supported message-
passing schemas are:

✓ shared memory

✓ local point-to-point

? point-to-point over several nodes

✓ local publisher-subscriber

? publisher-subscriber over several nodes

As no information on usage of the messaging in a network of nodes
is available, these items are not counted as fulfilled.

https://github.com/nasa/cFS
https://github.com/nasa/cFS
https://github.com/nasa/cFS

182 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.6: Scoring of COrDeT based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 1 Mozilla Public License 2.0
Documentation (2) 0.8 Score based on information provided in [163, 164] and the public

repository available at https://github.com/pnp-software/cordetfw.

✓ install instructions

✓ core features documented

✓ other API documented, documentation in source code files

✗ examples do not exist in repository, although examples are
mentioned in [163]

✓ background explained

Support (3) 0.6 Evaluation based on public repository at https://github.com/
pnp-software/cordetfw.

✓ active maintainer

✓ group of people supporting maintainer

✗ feedback/discussion platform, no external participation found
and not promoted

✓ direct support (supported by company)

✗ community contributions accepted, only internal merge and
pull requests accepted

Ports (4) 0 Based on information available in public repository at https://github.
com/pnp-software/cordetfw and [163, 164]. No hardware specific
code is available, only requirements on used OS are explained.

✗ larger MCU

✗ small MCU

✗ COTS MCU

✗ high level OS

Porting (5) 0 Porting effort unknown and no demo port available. Thus porting
assumed to be not feasible.

https://github.com/pnp-software/cordetfw
https://github.com/pnp-software/cordetfw
https://github.com/pnp-software/cordetfw
https://github.com/pnp-software/cordetfw
https://github.com/pnp-software/cordetfw

B.3. FRAMEWORK SCORING 183

Table B.6: Scoring of COrDeT continued.

Criterion Score Reason

Multi-threading (6) 0 Not supported as part of the framework, but implicitly assumed to
be available.

✗ basic multi-threading

✗ simple thread handling

✗ thread synchronization available

✗ timed execution supported

✗ waiting for data supported

✗ external interrupts supported

Real-time (7) 0 No own scheduler included.
Message-passing (8) 0 Message-passing required in environment, not provided by COrDeT.

✗ shared memory

✗ local point-to-point

✗ point-to-point over several nodes

✗ local publisher-subscriber

✗ publisher-subscriber over several nodes

Table B.8: Scoring of CubedOS based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 0 no license provided
Documentation (2) 0.6 Evaluation based on documentation in [224] and https://github.

com/cubesatlab/cubedos

✓ install instructions

✗ core features documented

✗ other API documented

✓ examples

✓ background explained

https://github.com/cubesatlab/cubedos
https://github.com/cubesatlab/cubedos

184 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.8: Scoring of CubedOS continued.

Criterion Score Reason

Support (3) 0.4 Based on community in public repository at https://github.com/
cubesatlab/cubedos

✓ active maintainer

✓ group of people supporting maintainer

✗ feedback/discussion platform

? direct support

✗ community contributions accepted

No point is given for the direct support item, as it is not known nor
is it suggested within the repository.

Ports (4) 1 Ports are generally available for all platforms with Ada runtime
support.

✓ larger MCU

✓ small MCU

✓ COTS MCU

✓ high level OS

Porting (5) 0 Porting unreasonable if not supported by Ada runtime.
Multi-threading (6) 0 Not supported as part of the framework could be found in any docu-

mentation or the source code. It is implicitly assumed to be available.
Most likely multi-threading is part of the Ada runtime environment.

✗ basic multi-threading

✗ simple thread handling

✗ thread synchronization available

✗ timed execution supported

✗ waiting for data supported

✗ external interrupts supported

Real-time (7) 0 No own scheduler included.
Message-passing (8) 0.4 Evaluation based on [224] and https://github.com/cubesatlab/

cubedos.

✗ shared memory

✓ local point-to-point

✗ point-to-point over several nodes

✓ local publisher-subscriber

✗ publisher-subscriber over several nodes

https://github.com/cubesatlab/cubedos
https://github.com/cubesatlab/cubedos
https://github.com/cubesatlab/cubedos
https://github.com/cubesatlab/cubedos

B.3. FRAMEWORK SCORING 185

Table B.10: Scoring of F’ based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 1 Apache License 2.0
Documentation (2) 1 Evaluation based on the information available at https://nasa.github.

io/fprime/.

✓ install instructions

✓ core features documented

✓ other API documented

✓ examples

✓ background explained

Support (3) 1 Evaluation based on the community at https://github.com/nasa/
fprime/ and https://github.com/fprime-community.

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform

✓ direct support

✓ community contributions accepted

Ports (4) 1 Based on ports available at https://github.com/nasa/fprime/ and
https://github.com/fprime-community.

✓ larger MCU, e.g., using Linux

✓ small MCU, e.g., using VxWorks or FreeRTOS

✓ COTS MCU same as above

✓ high level OS, Linux and Posix supported

Porting (5) 1 Minimal ports are possible (e.g., community supplied Arduino port:
https://github.com/fprime-community/fprime-arduino). The port-
ing process and potential issues are documented at https://nasa.
github.io/fprime/UsersGuide/dev/porting-guide.html.

https://nasa.github.io/fprime/
https://nasa.github.io/fprime/
https://github.com/nasa/fprime/
https://github.com/nasa/fprime/
https://github.com/fprime-community
https://github.com/nasa/fprime/
https://github.com/fprime-community
https://github.com/fprime-community/fprime-arduino
https://nasa.github.io/fprime/UsersGuide/dev/porting-guide.html
https://nasa.github.io/fprime/UsersGuide/dev/porting-guide.html

186 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.10: Scoring of F’ continued.

Criterion Score Reason

Multi-threading (6) 0.92 Available features (partly via OS abstraction) as presented in https:
//nasa.github.io/fprime/ and the git repository at https://github.
com/nasa/fprime.

✓ basic multi-threading

✓ simple thread handling

✓ thread synchronization available

✓ timed execution supported

✓ waiting for data supported

✓ external interrupts supported

External interrupts are only partially supported via events. This is
used as half an item to calculate the score for this criterion.

Real-time (7) 0 No own scheduler included.
Message-passing (8) 0.6 According to the documentation at https://nasa.github.io/fprime/

publisher-subscriber communication is not supported. The frame-
work is based on a well known communication represented in a
directed graph representing point-to-point communication.

✓ shared memory

✓ local point-to-point

✓ point-to-point over several nodes

✗ local publisher-subscriber

✗ publisher-subscriber over several nodes

Table B.12: Scoring of fsfw based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 1 Apache License 2.0
Documentation (2) 0.6 Documentation evaluated based on [18] and the public repository at

https://egit.irs.uni-stuttgart.de/fsfw/fsfw/.

✓ install instructions

✓ core features documented

✗ other API documented, not all features documented and doxy-
gen comments partially incomplete.

✗ examples, link exists but is broken

✓ background explained

https://nasa.github.io/fprime/
https://nasa.github.io/fprime/
https://github.com/nasa/fprime
https://github.com/nasa/fprime
https://nasa.github.io/fprime/
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/

B.3. FRAMEWORK SCORING 187

Table B.12: Scoring of fsfw continued.

Criterion Score Reason

Support (3) 0.8 Community evaluated based on public repository at https://egit.irs.
uni-stuttgart.de/fsfw/fsfw/

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform

✗ direct support (unknown and not advertised)

✓ community contributions accepted

Ports (4) 1

✓ larger MCU using FreeRTOS or RTEMS

✓ small MCU using FreeRTOS or RTEMS

✓ COTS MCU using FreeRTOS or RTEMS

✓ high level OS; Linux port is available

Porting (5) 0.75 Ports to different underlying OS possible and separated from other
parts of the framework. Effort depends on used OS.

Multi-threading (6) 1 Evaluated based on repository at https://egit.irs.uni-stuttgart.de/
fsfw/fsfw/ and [18]. Features are partily provided via OS abstrac-
tions.

✓ basic multi-threading

✓ simple thread handling

✓ thread synchronization available

✓ timed execution supported

✓ waiting for data supported

✓ external interrupts supported

Real-time (7) 0 No own scheduler included.
Message-passing (8) 0.6 According to Bätz [18], message-passing is available but not intended

for distributed applications.

✓ shared memory

✓ local point-to-point

✗ point-to-point over several nodes

✓ local publisher-subscriber

✗ publisher-subscriber over several nodes

https://egit.irs.uni-stuttgart.de/fsfw/fsfw/
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/
https://egit.irs.uni-stuttgart.de/fsfw/fsfw/

188 APPENDIX B. FRAMEWORK AND OS SELECTION

B.4 Operating System Scoring

Table B.14: Scoring of FreeRTOS based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 1 MIT License
Documentation (2) 1 Evaluation based on public documentation available at https://www.

freertos.org and the The FreeRTOS™ Reference Manual [7].

✓ install instructions

✓ core features documented

✓ other API documented

✓ examples

✓ background explained

Support (3) 0.9 Evaluation based on public community at https://github.com/
FreeRTOS/FreeRTOS.

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform

✓ direct support, paid premium support by Amazon Web Services.

✓ community contributions accepted

Ports (4) 1 Evaluation based on supported devices listed at https://
www.freertos.org/RTOS_ports.html and https://www.freertos.org/
emulation-simulation/.

✓ larger MCU

✓ small MCU

✓ COTS MCU

✓ high level OS, via Windows or Linux simulator.

Porting (5) 1 Evaluation based on the FreeRTOS kernel repository at https://
github.com/FreeRTOS/FreeRTOS-Kernel. Ports for various tool chain
and controller combinations exist and demonstrate the minimal effort
required to create a new port.

https://www.freertos.org
https://www.freertos.org
https://github.com/FreeRTOS/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/emulation-simulation/
https://www.freertos.org/emulation-simulation/
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/FreeRTOS/FreeRTOS-Kernel

B.4. OPERATING SYSTEM SCORING 189

Table B.14: Scoring of FreeRTOS continued.

Criterion Score Reason

Multi-threading (6) 0.92 Evaluation based on public documentation available at https://www.
freertos.org.

✓ basic multi-threading

✓ simple thread handling

✓ thread synchronization available

✓ timed execution supported, only delay available, no repeated
activation

✓ waiting for data supported using queues and/or notifications

✓ external interrupts supported

Real-time (7) 0.75 A real-time scheduler is included in FreeRTOS.
Message-passing (8) 0.2

✗ shared memory

✓ local point-to-point using queues

✗ point-to-point over several nodes

✗ local publisher-subscriber

✗ publisher-subscriber over several nodes, only via over TCP/IP
with external message broker. This is not usable in a stand-
alone system of smaller MCUs.

Table B.16: Scoring of RODOS based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 1 Apache 2.0
Documentation (2) 1 Evaluation based on documentation available at https://gitlab.com/

rodos/rodos/.

✓ install instructions

✓ core features documented

✓ other API documented

✓ examples

✓ background explained

https://www.freertos.org
https://www.freertos.org
https://gitlab.com/rodos/rodos/
https://gitlab.com/rodos/rodos/

190 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.16: Scoring of RODOS continued.

Criterion Score Reason

Support (3) 1 Evaluation of community based on GitLab repository at https://gitlab.
com/rodos/rodos.

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform

✓ direct support, contact provided in repository

✓ community contributions accepted

Ports (4) 1 Evaluation based on ports directly available in GitLab at https://
gitlab.com/rodos/rodos.

✓ larger MCU, e.g., RespberryPi 3

✓ small MCU, e.g., STM32F4/L4

✓ COTS MCU, e.g., STM32F4 discovery

✓ high level OS, Linux and general Posix ports available

Porting (5) 1 A minimal port consists only of a few required files and implementa-
tion of basic functions. A documentation with a list of these functions
is available.

Multi-threading (6) 1 Evaluation based on API and examples in GitLab at https://gitlab.
com/rodos/rodos.

✓ basic multi-threading

✓ simple thread handling via statically created objects

✓ thread synchronization available e.g., semaphores

✓ timed execution supported via timed loops or relative/absolute
sleep intervals

✓ waiting for data supported

✓ external interrupts supported

Real-time (7) 0.75 RODOS includes a preemptive, priority based real-time scheduler.
Message-passing (8) 1 Message-Passing is evaluated based on the primitives provided within

the API and documentation at https://gitlab.com/rodos/rodos.

✓ shared memory

✓ local point-to-point

✓ point-to-point over several nodes

✓ local publisher-subscriber

✓ publisher-subscriber over several nodes

https://gitlab.com/rodos/rodos
https://gitlab.com/rodos/rodos
https://gitlab.com/rodos/rodos
https://gitlab.com/rodos/rodos
https://gitlab.com/rodos/rodos
https://gitlab.com/rodos/rodos
https://gitlab.com/rodos/rodos

B.4. OPERATING SYSTEM SCORING 191

Table B.18: Scoring of RTEMS based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 0.75 GNU General Public License v2
Documentation (2) 1 Evaluation of RTEMS documentation based on documentation avail-

able at https://docs.rtems.org.

✓ install instructions

✓ core features documented

✓ other API documented

✓ examples provided at https://git.rtems.org/rtems-examples/

✓ background explained

Support (3) 1 Community evaluation based on information provided at https://
www.rtems.org and the git activity at https://git.rtems.org/rtems.

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform

✓ direct support via RTEMS discord

✓ community contributions accepted

Ports (4) 0.88 Evaluated based on the available board support packages listed
at https://docs.rtems.org/branches/master/user/bsps/index.html.
These are cross-checked with the git repository

✓ larger MCU, e.g., Raspberry Pi

✓ small MCU, e.g., STM32F4

✓ COTS MCU, e.g., the ones named before.

✓ high level OS, only mentioned with QEMU virtualization

Porting (5) 1 Porting of RTEMS is simple and only a few files must be provided.
Other board support packages give a great starting point to adapt for
own custom ports.

Multi-threading (6) 1 Evaluated based on documentation at https://docs.rtems.org/.

✓ basic multi-threading

✓ simple thread handling

✓ thread synchronization available

✓ timed execution supported

✓ waiting for data supported, e.g., via messages

✓ external interrupts supported

https://docs.rtems.org
https://git.rtems.org/rtems-examples/
https://www.rtems.org
https://www.rtems.org
https://git.rtems.org/rtems
https://docs.rtems.org/branches/master/user/bsps/index.html
https://docs.rtems.org/

192 APPENDIX B. FRAMEWORK AND OS SELECTION

Table B.18: Scoring of RTEMS continued.

Criterion Score Reason

Real-time (7) 0.75 Priority based and preemptive scheduling is available. Various set-
tings for the scheduler exist and are documented at https://docs.
rtems.org/branches/master/c-user/scheduling-concepts

Message-passing (8) 0.5 Evaluated based on documentation at https://docs.rtems.org/.

✓ shared memory

✓ local point-to-point

✗ point-to-point over several nodes

✓ local publisher-subscriber, local messaging with broadcast is
possible, but not exactly a publisher-subscriber based messag-
ing scheme

✗ publisher-subscriber over several nodes

Table B.20: Scoring of ThreadX based on the criteria defined in appendix B.1.

Criterion Score Reason

Open-source (1) 0.5 Microsoft Software License
Use only allowed for a very limited set of MCUs. In other cases special
restrictions apply, limiting the usability of ThreadX for commercial
projects.

Documentation (2) 1 Evaluation based on information available at https://github.com/
azure-rtos/threadx and the documentation at https://docs.microsoft.
com/de-de/azure/rtos, specifically the part concerning ThreadX itself
at https://docs.microsoft.com/de-de/azure/rtos/threadx.

✓ install instructions

✓ core features documented

✓ other API documented

✓ examples

✓ background explained

Support (3) 0.8 Evaluated based on the public GitLab project at https://github.com/
azure-rtos/threadx.

✓ active maintainer

✓ group of people supporting maintainer

✓ feedback/discussion platform (Stack Overflow)

✗ direct support, only as paid service

✓ community contributions accepted

https://docs.rtems.org/branches/master/c-user/scheduling-concepts
https://docs.rtems.org/branches/master/c-user/scheduling-concepts
https://docs.rtems.org/
https://github.com/azure-rtos/threadx
https://github.com/azure-rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos
https://docs.microsoft.com/de-de/azure/rtos
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://github.com/azure-rtos/threadx
https://github.com/azure-rtos/threadx

B.4. OPERATING SYSTEM SCORING 193

Table B.20: Scoring of ThreadX continued.

Criterion Score Reason

Ports (4) 1 Evaluation based on ports available at https://github.com/
azure-rtos/threadx/tree/master/ports.

✓ larger MCU, e.g., ARM A35

✓ small MCU, e.g., ARM Cortex M3/M4

✓ COTS MCU, the MCUs mentioned above are available as COTS
modules

✓ high level OS supported via Win32 and Linux ports

Porting (5) 0.75 Evaluation based on ports available at https://github.com/
azure-rtos/threadx/tree/master/ports. No instructions on how to
start a new port and what is needed could be found within the offi-
cial documentation at https://docs.microsoft.com/de-de/azure/rtos/
threadx.
Although porting is possible and encapsulated into a single directory,
a lot of macros are defined. It is not clear, which ones are necessary
for a minimal port.

Multi-threading (6) 1 Evaluation based on the documentation at https://docs.microsoft.
com/de-de/azure/rtos/threadx.

✓ basic multi-threading

✓ simple thread handling

✓ thread synchronization available

✓ timed execution supported

✓ waiting for data supported, using queues

✓ external interrupts supported

Real-time (7) 0.75 Evaluation based on the documentation at https://docs.microsoft.
com/de-de/azure/rtos/threadx. ThreadX includes a priority based
scheduler. The scheduler can operate as preemptive scheduler using
time-slices for threads of equal priority. Due to these properties the
scheduler is a real-time scheduler.

Message-passing (8) 0.2 Evaluation based on the documentation at https://docs.microsoft.
com/de-de/azure/rtos/threadx.

✗ shared memory could be implemented using locking mecha-
nisms, but is not directly supported

✓ local point-to-point possible using queues

✗ point-to-point over several nodes; no messaging over several
nodes is mentioned

✗ local publisher-subscriber

✗ publisher-subscriber over several nodes

https://github.com/azure-rtos/threadx/tree/master/ports
https://github.com/azure-rtos/threadx/tree/master/ports
https://github.com/azure-rtos/threadx/tree/master/ports
https://github.com/azure-rtos/threadx/tree/master/ports
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx
https://docs.microsoft.com/de-de/azure/rtos/threadx

Appendix C

Time Synchronization

C.1 Proof of Offset Compensation with P-Controlled Clock Update

Assuming a clock C(t) as presented in equation (3.11)

C(t) =

¨

o+ s · t + d(t) t ≤ t1

C(tk) + (s+ u(k)) · (t − tk) + d(t) t > t1
(C.1)

with

k ∈ N : identifier of synchronization interval,
tk : start time of synchronization interval k, and
u(k) : skew correction term for synchronization interval k.

Furthermore, we assume the clock’s only error is a static offset, i.e.,

s = 1 and

d(t) = 0 .
(C.2)

Additionally, we assume a regular update interval T > 0 defined by two adjacent synchronization time
points:

T = tk+1 − tk (C.3)

Equation (C.1) can now be rewritten by inserting equation (C.2) and extracting a special case for t = tk
to

C(t) =

⎧

⎪

⎨

⎪

⎩

o+ t t ≤ t1

C(tk−1) + T + T · u(k− 1) t = tk , k ≥ 2

C(tk) + (1+ u(k)) · (t − tk) otherwise .

(C.4)

Using the error and clock update functions from equation (3.12)

e(k) = trx,k − C(tk) , and (C.5)

u(k) = Kp · e(k) , (C.6)

with

Kp : proportional gain, and
trx,k : received reference time after message delay compensation in time update message k,

and assuming a perfect time transfer, thus trx,k = tk, we can calculate the remaining error after n ∈ N
synchronization intervals. At the first synchronization, the error calculates as

e(k = 1) = t1 − C(t1)

= t1 − o− t1

= −o .

(C.7)

195

196 APPENDIX C. TIME SYNCHRONIZATION

The error for k = n+ 1 can be calculated based on the error of the previous step as

e(k = n+ 1) = tn+1 − C(tn+1) definition C.5

= tn + T − C(tn+1) using C.3

= tn + T − C(tn)− T − T · u(n) using C.4

= tn − C(tn)− T · u(n)
= tn − C(tn)− T · Kp · e(n) using C.6

= e(n)− T · Kp · e(n) using C.5

= e(n) · (1− T · Kp) .

(C.8)

Due to the recursive character, e(k) can be rewritten as

e(k) = e(1) · (1− T · Kp)
k−1

= −o · (1− T · Kp)
k−1 using C.7.

(C.9)

Thus, the error of a clock with static offset only and a P-controlled clock update converges to

lim
k→∞

e(k) = lim
k→∞

−o · (1− T · Kp)
k−1

= 0 if |1− T · Kp|< 1 ,
(C.10)

otherwise it does not converge. As T > 0,

|1− T · Kp|< 1 ∀Kp ∈]0,
2
T
[. (C.11)

Thus, a P-controlled clock update compensates an offset if and only if Kp ∈]0, 2
T [. ■

C.2 Proof of Remaining Offset due to Skew Compensation with P-Controlled
Clock Update

Similar to appendix C.1, we assume a clock C(t) as presented in equation (3.11)

C(t) =

¨

o+ s · t + d(t) t ≤ t1

C(tk) + (s+ u(k)) · (t − tk) + d(t) t > t1
(C.12)

with

k ∈ N : identifier of synchronization interval,
tk : start time of synchronization interval k, and
u(k) : skew correction term for synchronization interval k.

This time, we assume a clock that only suffers from a skew different to the reference clock. Thus,

o = 0 and

d(t) = 0 .
(C.13)

Again, we assume a regular update interval T > 0 defined by two adjacent synchronization time points:

T = tk+1 − tk (C.14)

Equation (C.12) can now be rewritten by inserting equation (C.13) and extracting a special case for
t = tk to

C(t) =

⎧

⎪

⎨

⎪

⎩

s · t t ≤ t1

C(tk−1) + T · s+ T · u(k− 1) t = tk , k ≥ 2

C(tk) + (s+ u(k)) · (t − tk) otherwise .

(C.15)

C.2. PROOF OF SKEW COMPENSATION WITH P-CONTROLLED CLOCK UPDATE 197

Using the error and clock update functions from equation (3.12)

e(k) = trx,k − C(tk) , and (C.16)

u(k) = Kp · e(k) , (C.17)

with

Kp : proportional gain, and
trx,k : received reference time after message delay compensation in time update message k,

and assuming a perfect time transfer, thus trx,k = tk, we can calculate the remaining error after n ∈ N
synchronization intervals. At the first synchronization, the error calculates as

e(k = 1) = t1 − C(t1)

= t1 − s · t1

= t1(1− s) .
(C.18)

The error for k = n+ 1 can be calculated based on the error of the previous step as

e(k = n+ 1) = tn+1 − C(tn+1) definition C.16

= tn + T − C(tn+1) using C.14

= tn + T − C(tn)− T · s− T · u(n) using C.15

= tn − C(tn) + T − T · s− T · u(n)
= e(n) + T − T · s− T · u(n) using C.16

= e(n) + T − T · s− T · Kp · e(n) using C.17

= e(n) · (1− T · Kp) + T · (1− s) .

(C.19)

Using this recursive definition, e(k) can be rewritten as

e(k) = e(k− 1) · (1− T · Kp) + T · (1− s)

=
��

e(1) · (1− T · Kp) + T · (1− s)
�

· (1− T · Kp) + T · (1− s)
� · . . . repeated k− 1 times

= e(1) · (1− T · Kp)
k

+ T · (1− s) · (1− T · Kp)
k−1

+ T · (1− s) · (1− T · Kp)
k−2

+ . . .

+ T · (1− s) · (1− T · Kp)

+ T · (1− s)

= e(1) · (1− T · Kp)
k−1 +

k−2
∑︂

n=0

�

T · (1− s) · (1− T · Kp)
n
�

geometric series

= e(1) · (1− T · Kp)
k−1 + T · (1− s) · 1− (1− T · Kp)k−3

1− (1− T · Kp)
geometric series

= e(1) · (1− T · Kp)
k−1 + T · (1− s) · 1− (1− T · Kp)k−3

T · Kp

= e(1) · (1− T · Kp)
k−1 + (1− s) · 1− (1− T · Kp)k−3

Kp
.

(C.20)

Thus, the error of a clock with drift as only error and a P-controlled clock update converges to

lim
k→∞

e(k) = lim
k→∞

�

e(1) · (1− T · Kp)
k−1 + (1− s) · 1− (1− T · Kp)k−3

Kp

�

= lim
k→∞
�

e(1) · (1− T · Kp)
k−1
�

+ lim
k→∞

�

(1− s) · 1− (1− T · Kp)k−3

Kp

�

.

(C.21)

198 APPENDIX C. TIME SYNCHRONIZATION

With

lim
k→∞

⎛

⎜

⎝
e(1) · (1− T · Kp)

k−1

⏞ ⏟⏟ ⏞

→0 if |1−T ·Kp|<1

⎞

⎟

⎠
= e(1) · 0= 0 if |1− T · Kp|< 1 (C.22)

and

lim
k→∞

⎛

⎜

⎜

⎜

⎜

⎝

(1− s) · 1−
→0 if |1−T ·Kp|<1
⏟ ⏞⏞ ⏟

(1− T · Kp)
k−3

Kp

⎞

⎟

⎟

⎟

⎟

⎠

=
1− s
Kp

if |1− T · Kp|< 1 , (C.23)

this can be simplified to

lim
k→∞

e(k) = 0+
1− s
Kp
=

1− s
Kp

if |1− T · Kp|< 1 . (C.24)

For other values of |1− T · Kp| it does not converge. As T > 0,

|1− T · Kp|< 1 ∀Kp ∈]0,
2
T
[. (C.25)

Thus, a P-controlled clock update does not fully compensate a clock skew and instead converges to a
static offset of 1−s

Kp
for Kp ∈]0, 2

T [. ■

C.3 Proof of Separation of Error within P-Controlled Clock Update

To combine the result of appendix C.1 and appendix C.2 we have to show that the error term can be
separated, i.e., that

ecombined(k) = eoffset(k) + eskew(k) ∀k ∈ N . (C.26)

Note that if a function or variable name is not unique in the two previous proofs, we will use a subscript
to reference the two versions. To proof equation (C.26) we have to show that

ecombined(1) = eoffset(1) + eskew(1) and (C.27)

ecombined(k) = eoffset(k) + eskew(k) ∀k ≥ 2 . (C.28)

Similar to the previous proofs, we define a clock with offset and skew error as

C(t) =

⎧

⎪

⎨

⎪

⎩

o+ s · t t ≤ t1

C(tk−1) + T · s+ T · u(k− 1) t = tk , k ≥ 2

C(tk) + (s+ u(k)) · (t − tk) otherwise ,

(C.29)

Note that only the initial case is different to equation (C.15). The generic definition of the error and
clock update functions and the interval T are identical to those of both previous proofs:

e(k) = trx,k − C(tk) identical to C.5 and C.16, (C.30)

u(k) = Kp · e(k) identical to C.6 and C.17, and (C.31)

T = tn+1 − tn identical to C.3 and C.14. (C.32)

The proof for equation (C.27) can be by applying the definitions of the respective functions:

ecombined(1) = t1 + C(t1) definition

= t1 − o− s · t1 using C.29

= −o+ t1 − s · t1

= eoffset(1) + eskew(1) using C.5 and C.16.

(C.33)

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 199

Similarly, we can show that equation (C.28) is valid:

ecombined(k = n+ 1) = tn+1 − C(tn)− T · s− T · u(n) using C.30 and C.29

= tn + T − C(tn)− T · s− T · Kp · e(n) using C.32 and C.31

= ecombined(n) · (1− T · Kp) + T · (1− s) using C.30.
(C.34)

Thus, again as geometric series

ecombined(k) = ecombined(1) · (1− T · Kp)
n−1 + T · (1− s) · 1− (1− T · Kp)k−3

1− (1− T · Kp)

= eoffset(1) · (1− T · Kp)
n−1

+ eskew(1) · (1− T · Kp)
n−1 + (1− s) · 1− (1− T · Kp)k−3

Kp)

= eoffset(k) + eskew(k) .

(C.35)

As equation (C.27) and equation (C.28) can be shown, equation (C.26) is valid, and thus the error
terms can be analyzed separately. ■

C.4 Time Synchronization Verification Test Results

C.4.1 Internal Oscillator

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−1.5

−1

−0.5

0

0.5

1

1.5

2

t / s

∆
t/

s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.1: Unsynchronized local time difference of nodes used for verification tests using internal
oscillator. Static offset compensated and set to zero at t = 0.

200 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−3

−2

−1

0

1

2

3

4

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.2: Pairwise comparison of local time differences of nodes during verification test with direct-set
clock updated and no additional CAN load using internal oscillator.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 201

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−3

−2

−1

0

1

2

3

4

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.3: Pairwise comparison of local time differences of nodes during verification test with direct-set
clock updated and client side generated CAN load using internal oscillator.

202 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−3

−2

−1

0

1

2

3

4

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.4: Pairwise comparison of local time differences of nodes during verification test with direct-set
clock updated and server side generated CAN load using internal oscillator.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 203

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−20

−15

−10

−5

0

5

10

15

20

25

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.5: Pairwise comparison of local time differences of nodes during verification test with P-
controlled clock updated and no additional CAN load using internal oscillator.

204 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650
−25

−20

−15

−10

−5

0

5

10

15

20

25

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.6: Pairwise comparison of local time differences of nodes during verification test with P-
controlled clock updated and client side generated CAN load using internal oscillator.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 205

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−20

−15

−10

−5

0

5

10

15

20

25

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.7: Pairwise comparison of local time differences of nodes during verification test with P-
controlled clock updated and server side generated CAN load using internal oscillator.

206 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.8: Pairwise comparison of local time differences of nodes during verification test with PI-
controlled clock updated and no additional CAN load using internal oscillator.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 207

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.9: Pairwise comparison of local time differences of nodes during verification test with PI-
controlled clock updated and client side generated CAN load using internal oscillator.

208 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.10: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and server side generated CAN load using internal oscillator.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 209

C.4.2 External 32.768 kHz Oscillator and Reference Node 1

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·10−2

t / s

∆
t/

s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.11: Unsynchronized local time difference of nodes used for verification tests using external
32.768 kHz oscillator. Static offset compensated and set to zero at t = 0.

210 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

·10−2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.12: Pairwise comparison of local time differences of nodes during verification test with
direct-set clock updated and no additional CAN load using external 32.768 kHz oscillator. Node 1 is
the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 211

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.16

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.13: Pairwise comparison of local time differences of nodes during verification test with
direct-set clock updated and client side generated CAN load using external 32.768 kHz oscillator. Node
1 is the time synchronization reference node.

212 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.14: Pairwise comparison of local time differences of nodes during verification test with
direct-set clock updated and server side generated CAN load using external 32.768 kHz oscillator. Node
1 is the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 213

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.15: Pairwise comparison of local time differences of nodes during verification test with
P-controlled clock updated and no additional CAN load using external 32.768 kHz oscillator. Node 1 is
the time synchronization reference node.

214 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.16: Pairwise comparison of local time differences of nodes during verification test with
P-controlled clock updated and client side generated CAN load using external 32.768 kHz oscillator.
Node 1 is the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 215

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.17: Pairwise comparison of local time differences of nodes during verification test with
P-controlled clock updated and server side generated CAN load using external 32.768 kHz oscillator.
Node 1 is the time synchronization reference node.

216 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−6

−4

−2

0

2

4

6

8

·10−3

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.18: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and no additional CAN load using external 32.768 kHz oscillator. Node 1 is
the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 217

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.19: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and client side generated CAN load using external 32.768 kHz oscillator.
Node 1 is the time synchronization reference node.

218 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.20: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and server side generated CAN load using external 32.768 kHz oscillator.
Node 1 is the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 219

C.4.3 External 32.768 kHz Oscillator and Reference Node 3

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·10−2

t / s

∆
t/

s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.21: Unsynchronized local time difference of nodes used for verification tests using external
32.768 kHz oscillator. Static offset compensated and set to zero at t = 0. Node 3 is the time synchro-
nization reference node.

220 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

·10−2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.22: Pairwise comparison of local time differences of nodes during verification test with
direct-set clock updated and no additional CAN load using external 32.768 kHz oscillator. Node 3 is
the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 221

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.23: Pairwise comparison of local time differences of nodes during verification test with
direct-set clock updated and client side generated CAN load using external 32.768 kHz oscillator. Node
3 is the time synchronization reference node.

222 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.24: Pairwise comparison of local time differences of nodes during verification test with
direct-set clock updated and server side generated CAN load using external 32.768 kHz oscillator. Node
3 is the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 223

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.25: Pairwise comparison of local time differences of nodes during verification test with
P-controlled clock updated and no additional CAN load using external 32.768 kHz oscillator. Node 3 is
the time synchronization reference node.

224 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.26: Pairwise comparison of local time differences of nodes during verification test with
P-controlled clock updated and client side generated CAN load using external 32.768 kHz oscillator.
Node 3 is the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 225

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.27: Pairwise comparison of local time differences of nodes during verification test with
P-controlled clock updated and server side generated CAN load using external 32.768 kHz oscillator.
Node 3 is the time synchronization reference node.

226 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−6

−4

−2

0

2

4

6

·10−3

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.28: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and no additional CAN load using external 32.768 kHz oscillator. Node 3 is
the time synchronization reference node.

C.4. TIME SYNCHRONIZATION VERIFICATION TEST RESULTS 227

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.29: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and client side generated CAN load using external 32.768 kHz oscillator.
Node 3 is the time synchronization reference node.

228 APPENDIX C. TIME SYNCHRONIZATION

−50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

−0.14

−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

t / s

∆
t/

m
s

tNode 2 − tNode 1
tNode 3 − tNode 1
tNode 2 − tNode 3

Figure C.30: Pairwise comparison of local time differences of nodes during verification test with
PI-controlled clock updated and server side generated CAN load using external 32.768 kHz oscillator.
Node 3 is the time synchronization reference node.

Appendix D

Implementation

implementation

Channel

- HANDLERS : (const *)(Channel&, CmdMsg&, Implementation&)
- ERROR_RESPONDERS : (const *)(Channel&, CmdMsg&, Error)

+ <TopicTuple: Typename>Channel(TopicTuple)
+ handleCommand(cmdMsg: CmdMsg&, implementation: Implementation&)
+ respondWithError(cmdMsg: CmdMsg&, error: Error)
+ <KEY: Integer>getHandler() : HandlerFinder<KEY>
+ updateTriggerTime(timePoint: TimePoint&)
+ triggerActivity(implementation: Implementation&)
- <Buffer: Typename>handle(

channel: Channel&, cmdMsg: CmdMsg&, implementation: Implementation&)
- <Buffer: Typename>errorResponder(

channel: Channel&, cmdMsg: CmdMsg&, error: Error&)

Implementation: Typename
Handlers: Typename. . .

Handlers...

Handlers as provided as template arguments for Channel. These must
be the Handler classes of the used Modules for a specific component.
Handlers as provided as template arguments for Channel. These must
be the Handler classes of the used Modules for a specific component.

Figure D.1: Class diagram of the DOSIS Channel. Channel expects the Implementation template
argument to be a ComponentImplementation class. Channel inherits from its variadic template parameter
Handlers.

D.1 Usage of DOSIS

This section presents the usage of the DOSIS framework for a simple light emitting diode (LED) toggling
example. Therefore, it presents the implementation of a simple DOSIS Driver controlling a GPIO pin
and a RODOS thread that controls the toggling of the LED.

229

230 APPENDIX D. IMPLEMENTATION

D.1.1 GPO Driver

Interface

Listing D.1 depicts the general purpose output (GPO) Driver’s DriverInterface. The Driver consists of a
single Module to access and modify the current state of the GPO pin. The enumerator Key (lines 3-5)
provides the identifier for the Driver’s Modules. The surrounding namespace (dosis::io::gpo) avoids
name clashes of the Key enumerators of different Components. The rather simple GPO Driver uses a
single Actuator Module representing the state of the pin as a boolean value (declared in line 7). The
DriverInterface is declared as a combination of all its Modules, in this case only the GPOState Module
(line 8). Finally, the GPO class, which is the DriverInterface used to access the Driver’s modules, is defined
(lines 9-13). The state member provides simplified access to the Module’s Interface class (line 12).

1 namespace dosis::io::gpo {
2

3 enum class Key : uint8_t {
4 STATE,
5 };
6

7 using GPOState = dosis::Actuator<gpo::Key::STATE, bool>;
8 using GPOInterface = dosis::\gls{driver}Interface<GPOState>;
9 class GPO : public GPOInterface {

10 public:
11 using GPOInterface::GPOInterface;
12 GPOState::Generic::Interface& state = get<Key::STATE>();
13 };
14 }

Listing D.1: DriverInterface of GPO Driver.

Implementation

Listing D.2 presents the Driver’s declaration, which is again part of the dosis::io::gpo namespace.
This GPODriver inherits from the general Driver using the DriverInterface and the GPODrive itself as
template arguments. The constructor (line 5) forwards the deviceDef to the parent constructor and sets
the GPODriver instance’s member variables accordingly. The following getter and setter methods are
a copy of the template provided within the generic Driver (lines 15-20). This is a requirement of the
C++ language to allow template specialization of those methods for the individual Module’s identifiers.
Finally, line 31 and line 34 declare these specific template specializations. Such a specialization must be
explicitly declared as otherwise C++ cannot know that a specialized definition of those methods exists.

Listing D.3 depicts the definition of the Driver’s methods. Note that this simple implementation
relies on the RODOS provided HAL_GPIO. Therefore, it forwards the get and set operation to the specific
methods of the RODOS GPIO interface.

D.1.2 Using a DriverInterface

Listing D.4 depicts the usage of the GPO Driver from within a simple RODOS thread. It contains an
instance of GPO, i.e., the DriverInterface, and a duration used to regularly enable the LED. Line 18 and
line 20 initialize the default-value and hold-time parameters of the Actuator Module to default-off,
i.e., false, and the specified duration respectively. Afterward, a RODOS loop starting at line 22
synchronously activates the LED.

A deviceDef provides the required topic identifiers to connect a driver and its interface. Listing D.5
depicts the used deviceDef for a green LED. Note that this deviceDef does not actually reference any
specific hardware, but assigns a human-readable name and a pair of RODOS topics to any instances
using this deviceDef .

D.1. USAGE OF DOSIS 231

1 namespace dosis::io::gpo {
2 class GPODriver : public dosis::Driver<GPO, GPODriver> {
3 public:
4 template <typename DeviceDef>
5 GPODriver(DeviceDef device, const RODOS::GPIO_PIN pin, bool initVal = false)
6 : Driver<GPO, GPODriver>::Driver { device }
7 , m_gpio { pin }
8 , m_initVal { initVal }
9 {

10 }
11

12 void init() final;
13

14 template <auto KEY>
15 dosis::Result<Type<KEY>> getter()
16 {
17 return { reg<KEY>(), dosis::Error::OK };
18 }
19 template <auto KEY>
20 dosis::Error setter([[maybe_unused]] const Type<KEY>& val)
21 {
22 return dosis::Error::OK;
23 }
24

25 private:
26 gpio::GPIO m_gpio;
27 bool m_initVal;
28 };
29

30 template <>
31 dosis::Result<bool> GPODriver::getter<Key::STATE>();
32

33 template <>
34 dosis::Error GPODriver::setter<Key::STATE>(const bool& newval);
35

36 }

Listing D.2: GPO Driver declaration.

The final application instantiates the required Driver and the RODOS thread interfacing with said
Driver. Listing D.6 depicts these instantiations. Line 2 instantiates the GPO Driver using the GreenLED
deviceDef and the pin-number of the green LED. This example uses an STM32L496ZG-P Nucleo board,
which includes a green LED connected to the pin C07 of the MCU. Afterward, line 7 initializes the
controlling RODOS thread. It assigns a name, the deviceDef of the green LED and the interval of 100 ms
for the regular actuation.

After compilation, the resulting binary will toggle the LED every 100 ms. Additional LEDs may be
added by duplicating the respective lines for instantiation.

The Driver and controlling thread may be deployed to individual microcontrollers. In this case, the
developer has to split the application file and generate separate binaries. An additional RODOS gateway
connects the nodes and enables such a setup. No changes to the Driver or the DriverInterface are
necessary as the DOSIS framework entirely abstracts this aspect from the users of the framework. More
advanced examples, including distributed applications, can be found in the DOSIS GitLab repository,
which is provided upon request.

232 APPENDIX D. IMPLEMENTATION

1 namespace dosis::io::gpo {
2

3 void GPODriver::init()
4 {
5 m_gpio.configureOutputPin(m_initVal);
6 RODOS::PRINTF("GPO␣Driver␣ready");
7 }
8

9 template <>
10 dosis::Error GPODriver::setter<Key::STATE>(const bool& newval)
11 {
12 m_gpio.setPin(newval);
13 return dosis::Error::OK;
14 }
15

16 template <>
17 dosis::Result<bool> GPODriver::getter<Key::STATE>()
18 {
19 return { m_gpio.getPin(), dosis::Error::OK };
20 }
21 }

Listing D.3: GPO Driver definitions.

1 class Blinky : public RODOS::StaticThread<> {
2 dosis::io::gpo::GPO m_led;
3 dosis::Duration m_interval;
4

5 public:
6 template <class DeviceDef>
7 Blinky(const char* name, DeviceDef led, dosis::Duration interval)
8 : StaticThread<> { name }
9 , m_led { led, name }

10 , m_interval { interval }
11 {
12 }
13

14 void run() final
15 {
16 /* set the default state to disabled */
17 const bool defaultState = false;
18 m_led.state.setDefaultSync(defaultState);
19 /* set the on-time (hold-time) of the led */
20 m_led.state.setHoldTimeSync(m_interval);
21

22 TIME_LOOP(0, (m_interval * 2).asRodosLocalTime())
23 {
24 /* Trigger blinking cycle */
25 dosis::Timed<bool> switchOn = { .time = dosis::TimePoint::now(), .value = true };
26 m_led.state.setSync(switchOn);
27 }
28 }
29 };

Listing D.4: RODOS thread using the Driver.

1 struct GreenLED {
2 using InterfaceType = dosis::io::gpo::GPO;
3 static constexpr char NAME[] = "green␣LED␣GPO";
4 static constexpr int CMD_ID = 3001;
5 static constexpr int DATA_ID = 3002;
6 };

Listing D.5: DeviceDef for a green LED.

D.1. USAGE OF DOSIS 233

1 // STM32L496ZG-P NUCLEO PC07, green LED
2 dosis::io::gpo::GPODriver greenLED { GreenLED(), RODOS::GPIO_039 };
3

4 using namespace dosis::literal;
5 constexpr dosis::Duration GREEN_LED_INTERVAL { 100_ms };
6

7 Blinky blinky { "green␣Blinky", GreenLED(), GREEN_LED_INTERVAL };

Listing D.6: Example application.

Appendix E

Radiation Test Additional Figures

290 300 310 320 330 340 350 360 370 380

10−13.8

10−13.6

10−13.4

10−13.2

10−13

10−12.8

10−12.6

10−12.4

|p|/MeV c−1

σ
bi

t-fl
ip
/

cm
2

MCU 1 Proton MCU 2 Proton MCU 1 Pion+
MCU 2 Pion+ MCU 1 Pion- MCU 2 Pion-

Figure E.1: Hardware corrected bit-flip cross-section of the VA41620 RAM and ROM memory regions
for different particles and momentum for all test runs including 1-σ error bars. Impulse error bars show
the πM1 beam line’s full width at half maximum according to [166].

235

236 APPENDIX E. RADIATION TEST ADDITIONAL FIGURES

300 310 320 330 340 350 360 370 380

0

0.5

1

1.5

2

2.5

3

·10−13

|p|/MeV c−1

σ
bi

t-fl
ip
/

cm
2

Proton ro Pion+ ro Pion- ro
Proton rw Pion+ rw Pion- rw

Figure E.2: Observed bit-flip cross-section in the monitored STM32L4 read-only (ro) and read-write
(rw) memory region of MCU 2 for different test patterns, particles, and momenta including 1-σ error
bars. Impulse error bars show the πM1 beam line’s full width at half maximumaccording to [166] .

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

0

0.5

1

1.5

2

2.5

3

·10−13

L /MeV mm−1

σ
bi

t-fl
ip
/

cm
2

read-only
read-write

Figure E.3: Observed bit-flip cross-section in the monitored STM32L4 memory region of MCU 2 for
different test patterns and momenta due to proton irradiation including 1-σ error bars.

DOSIS Terms

Actuator An Actuator Module is similar to a TimedSettable, but the value will
automatically revert to a default value after a specified timeout is
reached. A detailed description is presented in section 3.5.5.

ActuatorHandler An ActuatorHandler is the ModuleHandler of an Actuator Module. Within
the implementation, it is represented by the Actuator::Handler class.

ActuatorInterface An ActuatorInterface is the ModuleInterface of an Actuator Mod-
ule. Within the implementation, it is represented by the
Actuator::Interface class.

Component Components are the largest basic building blocks within the DOSIS
framework. A detailed description is presented in section 3.4. (see also
Driver & Daemon)

ComponentImplementation A ComponentImplementation is the counterpart to a ComponentInterface
and implements the actual functionality of a Component. A detailed
description is presented in section 3.4.2.

ComponentInterface A ComponentInterface is the public interface to a Component. It pro-
vides a user-friendly way to remotely access the functionality of the
Component from arbitrary nodes of the network. A detailed description
is presented in section 3.4.1 and details about the implementation are
presented in section 4.2.3.

Config A Config Module is a special module which is used for Daemons only. It
provides a way to modify the parameters of all other Modules within a
Component with a single command. A detailed description is presented
in section 3.5.7.

ConfigHandler A ConfigHandler is the ModuleHandler of a Config Module. Within the
implementation, it is represented by the Config::Handler class.

ConfigInterface A ConfigInterface is the ModuleInterface of a Config Module. Within the
implementation, it is represented by the Config::Interface class.

Daemon A Daemon is a Component that, in contrast to a Driver, does not require
direct hardware access and operates on data only.

DaemonImplementation A Daemon’s ComponentImplementation is called DaemonImplementation.
Within the implementation, a class represents a DaemonImplementation
if it inherits from the Daemon class. Details about the implementation
are presented in section 4.2.5.

DaemonInterface A Daemon’s ComponentInterface is called DaemonInterface. Within the
implementation, a class represents a DaemonInterface if it inherits from
the DaemonInterface class. Details about the implementation are
presented in section 4.2.3.

deviceDef A device definition (deviceDef) binds a Component’s instances to a spe-
cific pair of RODOS topics. More information on deviceDefs is presented
in section 3.7.

237

238 DOSIS Terms

Doable A Doable Module is a special module intended for remote procedures. It
does not represent a single value, but instead supports different data
types for request and response. A detailed description is presented in
section 3.5.6.

DoableHandler A DoableHandler is the ModuleHandler of a Doable Module. Within the
implementation, it is represented by the Doable::Handler class.

DoableInterface A DoableInterface is the ModuleInterface of a Doable Module. Within the
implementation, it is represented by the Doable::Interface class.

Driver A Driver is a Component that, in contrast to a Daemon, requires direct
hardware access.

DriverImplementation A Driver’s ComponentImplementation is called DriverImplementation.
Within the implementation, a class represents a DriverImplementation if
it inherits from the Driver class. Details about the implementation are
presented in section 4.2.4.

DriverInterface A Driver’s ComponentInterface is called DriverInterface. Within the
implementation, a class represents a DriverInterface if it inherits from
the DriverInterface class. Details about the implementation are
presented in section 4.2.3.

Interval An Interval Module represents a value that is published to users of the
Component at a specific frequency. While a user may change the fre-
quency, the value itself cannot be modified and behaves like a ReadOnly.
A detailed description is presented in section 3.5.3.

IntervalHandler An IntervalHandler is the ModuleHandler of an Interval Module. Within
the implementation, it is represented by the Interval::Handler class.

IntervalInterface An IntervalInterface is the ModuleInterface of an Interval Module. Within
the implementation, it is represented by the Interval::Interface
class.

Module Modules are the smallest building blocks within the DOSIS framework.
They represent individual bits of a Component’s interface and function-
ality. Details about Modules in general are presented in section 3.5 and
details about their implementation are presented in section 4.2.2.

ModuleHandler A ModuleHandler provides the actual functionality of a specific Module
including a register to store the associated value and an implementa-
tion of the Module’s default behavior. Within the implementation, a
ModuleHandler is represented by the specific Module’s inner Handler
class. Details about the implementation are presented in section 4.2.2.
(see also ModuleInterface & ComponentImplementation)

ModuleInterface A ModuleInterface provides methods to remotely access a Module’s
functionality remotely. Within the implementation, a ModuleInterface
is represented by the specific Module’s inner Interface class. Details
about the implementation are presented in section 4.2.2. (see also
ModuleHandler & ComponentInterface)

ReadOnly A ReadOnly Module represents a single value that cannot be modified
via the Component’s public interface. A detailed description is presented
in section 3.5.1.

ReadOnlyHandler A ReadOnlyHandler is the ModuleHandler of a ReadOnly Module. Within
the implementation, it is represented by the ReadOnly::Handler class.

ReadOnlyInterface A ReadOnlyInterface is the ModuleInterface of a ReadOnly Module. Within
the implementation, it is represented by the ReadOnly::Interface
class.

DOSIS Terms 239

Settable A Settable Module represents a single value that can be read and mod-
ified via the Component’s public interface. A detailed description is
presented in section 3.5.2.

SettableHandler A SettableHandler is the ModuleHandler of a Settable Module. Within
the implementation, it is represented by the Settable::Handler class.

SettableInterface A SettableInterface is the ModuleInterface of a Settable Module. Within
the implementation, it is represented by the Settable::Interface
class.

TimedSettable A TimedSettable Module is similar to a Settable, but setting the value
is delayed until a specified time is reached. A detailed description is
presented in section 3.5.4.

TimedSettableHandler A TimedSettableHandler is the ModuleHandler of a TimedSettable
Module. Within the implementation, it is represented by the
TimedSettable::Handler class.

TimedSettableInterface A TimedSettableInterface is the ModuleInterface of a TimedSettable
Module. Within the implementation, it is represented by the
TimedSettable::Interface class.

List of Figures

1.1 First-MOVE in its deployed configuration. 3
1.2 PCB stack of first-MOVE. 4
1.3 PC/104 stack of MOVE-II. 5
1.4 MOVE-II software architecture. 5
1.5 MOVE-II ADCS architecture. 6
1.6 Example setup of an OBC-NG system. 12

2.1 IOV-1 schematic overview. 19
2.2 Differential flux of selected nuclei in galactic cosmic rays in a 600 km polar orbit. 21
2.3 Differential flux of selected nuclei in solar cosmic rays in a 600 km polar orbit. 22
2.4 World map of trapped proton flux for a 600 km polar orbit. 23
2.5 Differential flux of trapped electrons and protons in a 600 km polar orbit. 24
2.6 TID in SiO2 after 1 year in a polar 600 km LEO. 26
2.7 Stopping power of SI for electrons, protons, and He nuclei. 27
2.8 Range of electrons, protons, and He nuclei in Al . 28

3.1 Basic DOSIS setup with three nodes. 42
3.2 Generic associations between Components and Modules . 43
3.3 Top level packages of the DOSIS core framework. 44
3.4 DOSIS Components split to Driver and Daemon . 45
3.5 Internal activities of a Driver- or DaemonImplementation. 47
3.6 Communication diagram with multiple ComponentInterfaces. 48
3.7 Split of the DOSIS Settable Module into SettableInterface and SettableHandler. 50
3.8 Relation between DOSIS Components and Modules. 51
3.9 Interactions between Components and Modules . 55
3.10 Layered communication within the DOSIS framework. 56
3.11 Network stack of DOSIS messaging . 57
3.12 CAN data frame with extended identifier according to ISO 11898-1:2015(E). 61
3.13 RODOS use of the CAN identifier. 61
3.14 Fragmentation of RODOS topic messages over CAN. 61
3.15 Header of DOSIS messages. 61
3.16 Usage of a deviceDef. 62
3.17 Visual representation of different clock errors. 68
3.18 Qualitative comparison of clock update mechanisms. 71
3.19 Leader election using the original Bully algorithm. 78
3.20 Leader election using a nomination or grant based Bully algorithm. 79
3.21 Leader election using a Bully algorithm where an election initiating node announces the

new leader. 79
3.22 Concurrently initiated elections with the proposed Bully algorithm. 81

4.1 Overview over DOSIS implementation. 91
4.2 Class diagram of a DOSIS Settable . 95
4.3 DriverInterface and DaemonInterface class diagram. 97
4.4 DOSIS Driver class diagram. 100

241

242 LIST OF FIGURES

4.5 DOSIS Message class diagram. 103
4.6 DOSIS InterfaceChannel class diagram . 104
4.7 Overview of time synchronization classes. 107

5.1 Experimental setup with three STM32L4 test nodes and an STM32F4 trigger generator
node. 110

5.2 Control loop setup for time synchronization tests. 111
5.3 Pairwise time deviation for different time synchronization setups. 112
5.4 Distribution of 350 measurements of delay between sensor and actuator activity with

immediate execution. 113
5.5 Distribution of 350 measurements of delay between sensor and actuator activity with

scheduled execution. 113
5.6 Time synchronization verification test setup. 116
5.7 Time synchronization verification tests with internal oscillator. 117
5.8 Time synchronization verification tests with external 32.768 kHz oscillator. 117
5.9 Time synchronization verification tests with external 32.768 kHz oscillator and alternate

reference node. 118
5.10 Sensor-controller-actuator test results with internal oscillator and direct actuation. . . . 119
5.11 Sensor-controller-actuator test results with internal oscillator and scheduled actuation. 119
5.12 Sensor-controller-actuator test results with external 32.768 kHz oscillator and direct

actuation. 120
5.13 Sensor-controller-actuator test results with external 32.768 kHz oscillator and scheduled

actuation. 120

6.1 Overview of the radiation test setup at the πM1 beam line. 124
6.2 Mechanical dimensions of the setup at the πM1 beam line. 124
6.3 Electrical setup used for the UUT at the πM1 beam line. 125
6.4 Electrical setup for analog readout of the detectors at the πM1 beam line. 125
6.5 Memory layout of the VA41620 MCU used for radiation testing. 126
6.6 Memory layout of the STM32L496ZG MCU used for radiation testing. 127
6.7 Hardware corrected bit-flip cross-section of the VA41620 RAM and ROM memory regions

for different particles and momenta. 132
6.8 Hardware corrected bit-flip cross-section of the VA41620 RAM and ROM memory regions

due to proton irradiation for different LET. 132
6.9 Observed bit-flip cross-section in the monitored STM32L4 memory region for different

particles and momenta. 135
6.10 Observed bit-flip cross-section σbit-flip in the monitored STM32L4 memory region due to

proton irradiation for different LET. 135

7.1 Schematic hardware overview of the LRSM satellite bus. 144

C.1 Unsynchronized local time difference of nodes used for verification tests using internal
oscillator. 199

C.2 Direct set node synchronization without CAN load using internal oscillator. 200
C.3 Direct set node synchronization with client-side CAN load using internal oscillator. . . . 201
C.4 Direct set node synchronization with server-side CAN load using internal oscillator. . . . 202
C.5 P-controlled node synchronization without CAN load using internal oscillator. 203
C.6 P-controlled node synchronization with client-side CAN load using internal oscillator. . 204
C.7 P-controlled node synchronization with server-side CAN load using internal oscillator. . 205
C.8 PI-controlled node synchronization without CAN load using internal oscillator. 206
C.9 PI-controlled node synchronization with client-side CAN load using internal oscillator. . 207
C.10 PI-controlled node synchronization with server-side CAN load using internal oscillator. . 208
C.11 Unsynchronized nodes using external 32.768 kHz oscillator. 209
C.12 Direct set node synchronization without CAN load using external 32.768 kHz oscillator. 210

LIST OF FIGURES 243

C.13 Direct set node synchronization with client-side CAN load using external 32.768 kHz
oscillator. 211

C.14 Direct set node synchronization with server-side CAN load using external 32.768 kHz
oscillator. 212

C.15 P-controlled node synchronization without CAN load using external 32.768 kHz oscillator. 213
C.16 P-controlled node synchronization with client-side CAN load using external 32.768 kHz

oscillator. 214
C.17 P-controlled node synchronization with server-side CAN load using external 32.768 kHz

oscillator. 215
C.18 PI-controlled node synchronization without CAN load using external 32.768 kHz oscillator. 216
C.19 PI-controlled node synchronization with client-side CAN load using external 32.768 kHz

oscillator. 217
C.20 PI-controlled node synchronization with server-side CAN load using external 32.768 kHz

oscillator. 218
C.21 Unsynchronized nodes using external 32.768 kHz oscillator. 219
C.22 Direct set node synchronization without CAN load using external 32.768 kHz oscillator. 220
C.23 Direct set node synchronization with client-side CAN load using external 32.768 kHz

oscillator. 221
C.24 Direct set node synchronization with server-side CAN load using external 32.768 kHz

oscillator. 222
C.25 P-controlled node synchronization without CAN load using external 32.768 kHz oscillator. 223
C.26 P-controlled node synchronization with client-side CAN load using external 32.768 kHz

oscillator. 224
C.27 P-controlled node synchronization with server-side CAN load using external 32.768 kHz

oscillator. 225
C.28 PI-controlled node synchronization without CAN load using external 32.768 kHz oscillator. 226
C.29 PI-controlled node synchronization with client-side CAN load using external 32.768 kHz

oscillator. 227
C.30 PI-controlled node synchronization with server-side CAN load using external 32.768 kHz

oscillator. 228

D.1 DOSIS Channel class diagram. 229

E.1 Hardware corrected bit-flip cross-section of the VA41620 for all test runs. 235
E.2 Observed bit-flip cross-section in the monitored STM32L4 memory region for different

test patterns, particles, and momenta. 236
E.3 Observed bit-flip cross-section in the monitored STM32L4 memory region for different

test patterns and momenta. 236

List of Tables

1.1 Summary of COTS on-board computers for CubeSats. 7
1.2 Features of available frameworks. 14

2.1 Density of material used for shielding estimation. 25

3.1 Weight of selection criteria based on result of preference analysis. 34
3.2 Exclusion of frameworks not suitable for selection. 34
3.3 Rating of candidate frameworks. 35
3.4 Exclusion of operating systems not suitable for selection. 36
3.5 Rating of candidate operating systems. 37
3.6 Result of the baseline framework/OS selection. 37
3.7 Comparison of network topologies. 39

4.1 VA41620 key features. 90
4.2 STM32L496 key features. 90

5.1 Test cases for time synchronization evaluation for different clock transfer mechanisms,
clock update mechanisms, and CAN load sources. 112

6.1 Overview of VA41620 radiation test runs. 131
6.2 Overview of STM32L4 radiation test runs. 134
6.3 Pattern of bit errors in the most-significant nibble during test run 6. 137

A.1 Available COTS CubeSat on-board computers. 172

B.1 Evaluation guidelines for selection criteria. 175
B.3 Pairwise criteria comparison for preference analysis. 180
B.4 Scoring of cFS. 180
B.6 Scoring of COrDeT. 182
B.8 Scoring of CubedOS. 183
B.10 Scoring of F’. 185
B.12 Scoring of fsfw. 186
B.14 Scoring of FreeRTOS. 188
B.16 Scoring of RODOS. 189
B.18 Scoring of RTEMS. 191
B.20 Scoring of ThreadX. 192

245

List of Algorithms and Programm Code

3.1 Initiate election . 83
3.2 Receive election . 83
3.3 Receive coordinator . 84
3.4 Resume . 84
3.5 Receive query . 84
4.1 KeyTypeList Definition . 98
4.2 Getter, Setter, and Doer callbacks. 101
4.3 Declaration of the InterfaceChannel’s put method and the array of pointers to forward

received messages. 102
4.4 RODOS to DOSIS and DOSIS to RODOS time conversion. 106
D.1 DriverInterface of GPO Driver. 230
D.2 GPO Driver declaration. 231
D.3 GPO Driver definitions. 232
D.4 RODOS thread using the Driver. 232
D.5 DeviceDef for a green LED. 232
D.6 Example application. 233

247

	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	Acronyms
	Glossary
	Symbols
	1 Introduction
	1.1 Motivation
	1.1.1 Future MOVE Missions
	1.1.2 ORIGINS LRSM Missions

	1.2 Problem Statement
	1.3 State of the Art
	1.3.1 Satellites at the Institute of Astronautics
	1.3.2 Commercially Available CubeSat On-Board Computers
	1.3.3 On-Board Software Frameworks
	1.3.4 Space Shuttle Avionics
	1.3.5 Data Field Systems

	1.4 Gap Analysis
	1.5 Scope of this Thesis
	1.5.1 Approach

	1.6 Structure of this Thesis

	2 Background and Design Goals
	2.1 ORIGINS LRSM Missions
	2.1.1 AFIS
	2.1.2 ComPol
	2.1.3 IOV-1

	2.2 MOVE-III
	2.2.1 DEDRA Sensor
	2.2.2 CubeSat Platform

	2.3 Radiation Environment in Space
	2.3.1 Radiation Sources
	2.3.2 Effects on Electronics
	2.3.3 Summary

	2.4 Design Goals

	3 System Design
	3.1 Baseline Framework
	3.1.1 Exclusion Criteria
	3.1.2 Selection Criteria
	3.1.3 Available Frameworks
	3.1.4 Available Operating Systems
	3.1.5 Selection

	3.2 Physical Interconnection of Nodes
	3.2.1 Network Topology Constraints
	3.2.2 Candidate Topologies
	3.2.3 Topology Selection
	3.2.4 Interface Standard

	3.3 DOSIS Framework Introduction
	3.4 DOSIS Components
	3.4.1 DOSIS ComponentInterfaces
	3.4.2 DOSIS ComponentImplementations
	3.4.3 General Interactions between Components
	3.4.4 Concurrent ComponentInterfaces
	3.4.5 Concurrent ComponentImplementations

	3.5 DOSIS Modules
	3.5.1 ReadOnly
	3.5.2 Settable
	3.5.3 Interval
	3.5.4 TimedSettable
	3.5.5 Actuator
	3.5.6 Doable
	3.5.7 Config
	3.5.8 Interaction between Components and Modules

	3.6 DOSIS Communication Abstraction
	3.6.1 CAN
	3.6.2 RODOS Publisher-Subscriber Message-Passing
	3.6.3 DOSIS Messages

	3.7 DOSIS Device Definitions
	3.8 Time Synchronization
	3.8.1 Reference Node Selection
	3.8.2 Time Format
	3.8.3 Time Transfer
	3.8.4 Local Time Update

	3.9 Reliability
	3.9.1 Classification
	3.9.2 Considered Scenarios
	3.9.3 Mitigation Strategies
	3.9.4 Simplified Bully for Leader Election
	3.9.5 Task Migration
	3.9.6 Redundant Execution

	4 Implementation
	4.1 Hardware Selection
	4.1.1 VA41620 Platform
	4.1.2 STM32L4 Platform

	4.2 DOSIS Framework Implementation
	4.2.1 C++ Template Metaprogramming
	4.2.2 Modules
	4.2.3 ComponentInterface
	4.2.4 Driver Implementation
	4.2.5 Daemon Implementation
	4.2.6 DOSIS Message Handling

	4.3 DOSIS Time Handling
	4.3.1 The DOSIS Time Model
	4.3.2 Time Synchronization Implementation

	5 Time Synchronization Test
	5.1 Time Synchronization Mechanisms
	5.1.1 Test Setup
	5.1.2 Time Synchronization Test Results
	5.1.3 Control Loop Test Results
	5.1.4 Time Synchronization Test Discussion
	5.1.5 Control Loop Test Discussion

	5.2 Time Synchronization Verification
	5.2.1 Setup
	5.2.2 Time Synchronization Test Results
	5.2.3 Control Loop Test Results
	5.2.4 Time Synchronization Test Discussion
	5.2.5 Control Loop Test Discussion

	6 Radiation Test
	6.1 Radiation Test Setup
	6.1.1 Mechanical Setup
	6.1.2 Electrical Setup
	6.1.3 Test Software

	6.2 Data Analysis Method
	6.2.1 Raw Data Preprocessing
	6.2.2 Bit-Flip Analysis
	6.2.3 Deposited Energy
	6.2.4 Particle Flux and Fluence

	6.3 VA41620 Radiation Test Results
	6.4 STM32L4 Radiation Test Results
	6.5 VA41620 Radiation Test Discussion
	6.5.1 Implications for Radiation Environment in LEO

	6.6 STM32L4 Radiation Test Discussion
	6.6.1 Implications for Radiation Environment in LEO

	6.7 Conclusion

	7 Discussion
	7.1 Fulfilled Objectives
	7.1.1 Distributed System Framework
	7.1.2 ADCS Capability
	7.1.3 Hardware Platform

	7.2 Simplified and Modular Component Development
	7.3 DOSIS on ORIGINS LRSM Missions
	7.3.1 On-Board Software

	7.4 Limitations of Implementation
	7.5 Ongoing Effort and Future Extensions
	7.5.1 Ongoing Development
	7.5.2 Additional DOSIS Modules

	7.6 Summary

	8 Conclusion
	8.1 Summary
	8.2 Conclusion
	8.3 Outlook

	References
	List of Publications
	List of Supervised Theses

	A COTS CubeSat OBCs
	B Framework and OS Selection
	B.1 Criteria
	B.2 Preference Analysis
	B.3 Framework Scoring
	B.4 Operating System Scoring

	C Time Synchronization
	C.1 Proof of Offset Compensation with P-Controlled Clock Update
	C.2 Proof of Skew Compensation with P-Controlled Clock Update
	C.3 Proof of Separation of Error within P-Controlled Clock Update
	C.4 Time Synchronization Verification Test Results
	C.4.1 Internal Oscillator
	C.4.2 External 32.768 kHz Oscillator and Reference Node 1
	C.4.3 External 32.768 kHz Oscillator and Reference Node 3

	D Implementation
	D.1 Usage of DOSIS
	D.1.1 GPO Driver
	D.1.2 Using a DriverInterface

	E Radiation Test Additional Figures
	DOSIS Terms
	List of Figures
	List of Tables
	List of Algorithms and Programm Code

