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Abstract

The present work proposes novel methods and strategies for enhancing the
robustness, accuracy, and efficiency of multiphysics simulations with a par-
ticular focus on fluid-structure interaction (FSI) problems. At its core, the
present work deals with two main aspects of the FSI problems: stable and
accurate temporal discretization of FSI problems, including non-matching
time steps, and enhanced robustness and efficiency of interface quasi-Newton
convergence acceleration methods for the FSI simulations.

An end-of-step-equilibrium form of the generalized-α scheme, abbreviated
as EG-α scheme, is presented for the temporal discretization of FSI problems.
The equilibrium equation of the problem is satisfied exactly at discrete time
points instead of the classical averaged form. The EG-α scheme particularly
benefits the temporal discretization of stabilized formulations for incompress-
ible Navier-Stokes equations on fixed and moving domains. For the structural
problems, a variant of the EG-α scheme for first-order systems is proposed
that avoids doubling the number of unknowns in the problem’s linear system
of equations. The consistent temporal discretization of the FSI problem using
the EG-α scheme alleviates the need for temporal interpolation of interface
quantities between the fluid and solid domains required by the classical form
of the G-α scheme.

The present contribution also proposes multi-time-step coupling algorithms
for partitioned, strongly coupled FSI problems. Both fluid and structure
subcycling schemes are proposed and analyzed with a particular focus on
the role of discrete coupling conditions in multi-time-step FSI problems,
interpolation of the kinematic quantities from coarse to fine time scales, and
transferring of interface forces between different time levels. The proposed
schemes allow accurate and stable multi-time-step FSI simulations with high
time step ratios.

In this work, some of the issues surrounding the robustness and efficiency
of the interface quasi-Newton methods are addressed. The efficient and robust
solution of the least squares problem, arising from the interface quasi-Newton
methods, via QR factorization is addressed. The use of column scaling
technique in filtering based on QR factorization is proposed, and the positive
effect of column scaling on the robustness and efficiency of the interface
quasi-Newton methods is demonstrated. Furthermore, this work proposes a
strategy for combining filtering techniques and automatic determination of
the time step history in the IQN-ILS method. A major question concerning
the reuse of information from the previous time steps in the IQN-ILS method
is the optimal combination of values for the maximum time step history and
the filtering tolerance. The proposed strategy reduces the need for trial and
error to determine the optimal number of previous time steps in the IQN-ILS
method and achieves a good performance for various FSI problems with a set
of default parameters.





Kurzfassung

In der vorliegenden Arbeit werden neue Methoden und Strategien zur Er-
höhung der Robustheit, Genauigkeit und Effizienz von Multiphysik-Simulationen
mit besonderem Schwerpunkt auf Fluid-Struktur-Interaktionsproblemen (FSI)
vorgeschlagen. Im Kern befasst sich diese Arbeit mit zwei Aspekten von FSI-
Problemen: stabile und genaue zeitliche Diskretisierung von FSI-Problemen,
einschließlich nicht übereinstimmender Zeitschritte, und Robustheit und Ef-
fizienz von Quasi-Newton-Methoden für FSI-Simulationen.

Für die zeitliche Diskretisierung der FSI-Problemen wird eine End-of-step-
equilibrium-Form des generalized-α Schemas, abgekürzt EG-α Schema, präsen-
tiert. Die Gleichgewichtsgleichung des Problems wird anstelle der klassischen
Durchschnittsform genau zu diskreten Zeitpunkten erfüllt. Das EG-α Schema
ist besonders vorteilhaft für die zeitliche Diskretisierung von stabilisierten
Formulierungen für inkompressible Navier-Stokes-Gleichungen. Für Struk-
turprobleme wird eine Variante des EG-α Schemas vorgeschlagen, die eine
Verdoppelung der Anzahl der Unbekannten in den linearen Gleichungssyste-
men des Problems vermeidet. Durch die konsistente zeitliche Diskretisierung
des FSI-Problems mit dem EG-α Schema entfällt die Notwendigkeit der
zeitlichen Interpolation von Größen zwischen Fluid und Struktur, die bei der
klassischen Form des G-α Schemas erforderlich ist.

In diesem Beitrag werden auch Multi-time-step-Kopplungsalgorithmen
für partitionierte, stark gekoppelte FSI-Probleme vorgeschlagen. Es werden
sowohl Fluid- als auch Struktur-Subcycling-Verfahren vorgeschlagen, wobei
ein besonderer Schwerpunkt auf der Rolle diskreter Kopplungsbedingungen in
Multi-time-step-FSI-Problemen, der Interpolation der kinematischen Größen
von groben zu feinen Zeitskalen und der Übertragung von Schnittstellenkräften
zwischen verschiedenen Zeitskalen liegt. Die vorgeschlagenen Schemata er-
möglichen genaue und stabile Multi-time-step-FSI-Simulationen mit hohen
Zeitschrittverhältnissen.

In dieser Arbeit werden einige der Fragen bezüglich der Robustheit und Ef-
fizienz der Quasi-Newton-Methoden für FSI-Probleme behandelt. Die Verwen-
dung der Spaltenskalierung bei der Filterung auf Basis der QR-Faktorisierung
wird vorgeschlagen, und der positive Effekt der Spaltenskalierung auf die
Robustheit und Effizienz der Quasi-Newton-Methoden wird demonstriert.
Darüber hinaus wird in dieser Arbeit eine Strategie zur Kombination von
Filterverfahren und automatischer Bestimmung des Zeitschrittverlaufs in
der IQN-ILS-Methode vorgeschlagen. Eine wichtige Frage bezüglich der
Wiederverwendung von Informationen aus den vorherigen Zeitschritten in der
IQN-ILS-Methode ist die optimale Kombination von Werten für die maxi-
male Zeitschritt-Historie und die Filtertoleranz. Die vorgeschlagene Strategie
reduziert die Notwendigkeit von Versuch und Irrtum, um die optimale An-
zahl von vorherigen Zeitschritten in der IQN-ILS-Methode zu bestimmen
und erreicht eine gute Leistung für verschiedene FSI-Probleme mit Default-
Parametern.
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Chapter 1

Introduction

1.1 Motivation

Fluid-structure interaction (FSI) is of importance in many scientific and
engineering applications. Some Examples of FSI are aerodynamics and
flutter of airplane wings, wind turbines, vortex-induced vibrations, blood
flow in arteries and circulatory system, Coriolis mass flow meters, lightweight
and membrane structures in flows, and turbomachinery. The simulation of
FSI problems has presented many formidable numerical challenges and has
been one of the leading areas of research in the field of multiphysics and
coupled simulations. The inherently dynamic nature of many FSI problems
demands special attention to the temporal discretization and raises the issue
of maintaining temporal stability and accuracy in coupled problems. Another
important issue in the FSI problems is the computational cost per the desired
level of accuracy. In this work, we deal with a class of partitioned iterative
coupling strategies that allow the coupling of established and customized
solvers for fluid and structural problems with minimal intrusion. The solvers
exchange only limited data (related to the boundary conditions) restricted to
the coupling interface. In such an approach, the computational cost is mostly
dominated by the cost of the fluid and structural solvers in each coupling
iteration. Therefore, accelerating the convergence of the coupling iterations
is crucial for achieving a reasonable computational cost for a desired level
of accuracy. Furthermore, the robustness of the convergence acceleration
technique is a prerequisite for any potential gain through reducing the number
of coupling iterations. The temporal accuracy and stability of FSI problems,
including non-matching time steps, and enhancing the robustness and efficiency
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of convergence acceleration techniques for the FSI simulations are the main
themes of the present work.

The FSI problems pose a unique challenge of handling deforming domains
due to moving boundaries. Many interface-tracking and interface-capturing
techniques have been developed and matured over the years. Arguably,
enhancing the robustness and accuracy of the spatial discretization in the
interface-capturing methods has been the main focus of researchers in recent
years. In comparison, the temporal discretization aspects of the problems with
moving interfaces is less explored. The generalized-α family of time integration
schemes is one of the established and proven time integration schemes for the
FSI problems. Such schemes satisfy the equilibrium equation in an average
sense in every time step and require the evaluation of terms at intermediate
time instants. Those intermediate evaluations lead to higher computational
costs (especially in interface-capturing methods) and often a tedious and more
complicated implementation. Those issues are more pronounced when using
(residual-based) stabilization techniques in the discretization of flow problems
due to the added complexity of discretizing the stabilization terms. Therefore,
it is highly desirable to avoid evaluating the terms at intermediate time
instants while still taking advantage of the temporal accuracy, robustness, and
user-controlled high-frequency damping offered by the generalized-α family of
methods.

In an FSI simulation, one may wish to use a combination of different (and
possibly specialized) time integration schemes in the solid and fluid domains
in order to meet the stability and accuracy requirements of integrating initial
value problems of different characteristics. Depending on the nature of the
problem, one may use different combinations of implicit and/or explicit time
integration schemes for different subdomains. The widely varying physical
properties of the interacting fluids and structures and the different accuracy
and stability requirements of the numerical schemes utilized for solving the
fluid and structure problem often pose different requirements on the temporal
discretizations in the structural and fluid domains. It is highly desirable
to choose the temporal discretizations in the fluid and solid domains based
on their respective physical and numerical requirements. Another aspect of
the temporal discretization of the problem is the choice of time step size
in the structure and fluid domains. The required time step size in the two
subdomains could be vastly different due to different physical parameters and
the type of governing equations in the two subproblems leading to different
physical time scales in the structure and fluid, stability requirements due to
the type of the utilized time integration scheme (e.g., explicit schemes in each
of the subdomains) , convergence requirements of the nonlinear solvers in the
presence of highly nonlinear phenomena, e.g., high-Reynolds turbulent flows.
In the literature, schemes with different time step sizes for different subdomains
are sometimes referred to as asynchronous, multi-time-step, multi-rate, or
subcycling schemes. Under the premise that such methods do not impair the
stability and accuracy of the simulations, substantial gains in computational
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efficiency (through reductions in computational time and transferring of data)
can be achieved.

One of the earliest convergence acceleration techniques used in strongly
coupled partitioned FSI simulations is the Gauss-Seidel method with or with-
out relaxation. The stability issues of partitioned methods based on the
Gauss-Seidel scheme, due to the artificial added-mass effect, have been exten-
sively studied in the literature. The convergence of Gauss-Seidel iterations is
usually slow but can be accelerated by using dynamic relaxation, e.g., Aitken
relaxation. More stable and efficient convergence acceleration techniques
have been since introduced and successfully used for partitioned strongly
coupled problems in the literature. Interface quasi-Newton methods have
been since developed based on the idea of approximating Jacobians using
least squares models. The IQN-ILS method, which is based on approximating
the inverse of the Jacobian of the interface problem, has been one of the
most successful convergence acceleration techniques for the partitioned FSI
problems in recent years. It has been shown that by reusing data from the
previous time steps, the IQN-ILS method can exhibit excellent efficiency in
time-dependent partitioned coupled simulations. However, The performance
of this technique depends on user-defined parameters that might have to
be tuned for different problems. Another technique that has been proven
effective (and sometimes essential) in enhancing the robustness and efficiency
of interface quasi-Newton methods is the filtering of columns in the matrix
used for the arising least squares problem. Various filtering techniques with
different levels of robustness and efficiency have been used in the literature.
However, there are still some unaddressed issues surrounding the robustness
and efficiency of those methods in practice.

1.2 Objectives

One of the goals of the present work is to alleviate the need to evaluate
the terms of equilibrium equations in the FSI problems at intermediate
time instants within a time step while retaining the temporal accuracy,
robustness, and user-controlled high-frequency damping of the generalized-
α time integration scheme. Satisfying the equilibrium equations exactly
at the discrete time points is particularly advantageous for solving fluid
problems (specially stabilized formulations for incompressible Navier-Stokes
equations) on moving domains in terms of numerical accuracy and complexity
of implementation. Those advantages transfer naturally to FSI simulations.

Another goal of this work is to enhance the robustness and efficiency
of interface quasi-Newton methods for the convergence acceleration of FSI
problems. Despite a plethora of research on quasi-Newton methods for
partitioned FSI problems and tremendous advancements in this field, there
are still some unaddressed issues surrounding the robustness and efficiency
of those methods in practice. The present contribution intends to address a
few of those issues. Some of the fine details regarding the algorithms involved
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in the interface quasi-Newton methods are revisited, and several algebraic
techniques are proposed to be used in order to enhance the robustness and the
efficiency of the interface quasi-Newton methods at the implementation level
as well as at the algorithmic level. The proposed solutions are relevant for
many variants of interface quasi-Newton methods in the literature, especially
for the IQN-ILS method.

The final goal of this work is to propose and analyze multi-time-step
algorithms for partitioned strongly coupled FSI problems. The proposed
schemes allow accurate and stable multi-time-step FSI simulations with high
time step ratios. An important factor in the design of the multi-time-step
schemes considered here is the applicability in a wide range of FSI applications.
The iterative strongly coupled method allows the simulation of FSI problems
with strong added mass effect. The previous contributions regarding the time
discretization and convergence acceleration of FSI problems are incorporated
into the proposed multi-time-step algorithms. The attributes of the presented
schemes allow a straightforward integration into already existing software
environments capable of performing FSI simulations.

1.3 Outline of the contributions

In the following, a short description of the content of each chapter is given,
and a summary of the main contributions of this work is presented.

Chapter 2 deals with the time discretization of FSI problems using an
end-of-step-equilibrium form of the generalized-α time integration scheme.

• An end-of-step-equilibrium form of the generalized-α time integration
scheme for incompressible Navier-Stokes equations is proposed. Using
this scheme, the equilibrium equation of the problem is satisfied exactly
at discrete time points instead of the classical averaged form. The
benefits of the end-of-step-equilibrium form of the scheme are demon-
strated for the stabilized finite element formulations for incompressible
Navier-Stokes equation on fixed and moving domains.

• A comprehensive analysis and comparison of different variants of the
generalized-α scheme for incompressible Navier-Stokes equations on
fixed and moving domains is presented.

• The end-of-step-equilibrium form of the generalized-α scheme for first-
order systems is presented for the time discretization of the structure in
FSI problems. The proposed form of the scheme avoids doubling the
number of unknowns in the problem’s linear system of equations, which
is common in the state-space (displacement-velocity) formulations. The
presented scheme is consistent with the time integration scheme used in
the fluid problem.

• The consistent temporal discretization of the FSI problem using the
end-of-step-equilibrium generalized-α scheme is presented, which avoids
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the need for temporal interpolation of interface values between the fluid
and solid domains in order to maintain the second-order accuracy for
the whole FSI problem.

Chapter 3 presents the techniques for enhancing the robustness and
efficiency of interface quasi-Newton methods for convergence acceleration of
FSI problems.

• Algebraic techniques for the efficient solution of the least squares problem
using QR factorization via Householder and modified Gram-Schmidt
orthogonalization are presented.

• Using the column scaling technique is proposed for the interface quasi-
Newton methods, and the benefits of column scaling for the conditioning
of the least squares problem and the filtering of columns in the interface
quasi-Newton methods are demonstrated.

• Different Choices for filtering criterion based on the diagonal entries of
the R-factor in the QR factorization are analyzed and compared.

Chapter 4 presents a strategy for the automatic determination of time
step history in interface quasi-Newton methods.

• A strategy for combining filtering techniques and automatic determi-
nation of the number of previous time steps in IQN-ILS method based
on modifying the standard Householder QR factorization with column
pivoting is proposed.

• Using an incremental condition estimator for the accurate estimation of
minimum and maximum singular values in the least squares problem of
interface quasi-Newton methods is proposed. This technique is beneficial
for filtering techniques based on the QR factorization with or without
column pivoting.

Chapter 5 presents multi-time-step algorithms for partitioned strongly
coupled FSI problems.

• Fluid and structure subcycling schemes for partitioned strongly coupled
FSI problems based on Dirichlet-Neumann decomposition are proposed
and analyzed. The proposed schemes allow accurate and stable multi-
time-step FSI simulations with high time step ratios.

• The proposed fluid subcycling scheme is based on an almost linear
fluid acceleration profile in each coarse time step and a cubic Hermite
interpolation for the fluid velocity from coarse to fine time steps.

• The fluid subcycling scheme based on the discrete velocity continuity
condition is shown to yield considerably more accurate results compared
to the traditional approach based on the discrete displacement continuity
condition.
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• The proposed structure subcycling scheme based on the discrete velocity
continuity condition is shown to be stable and accurate for very high
time step ratios, while the scheme based on the discrete displacement
continuity condition is unstable even for very small time step ratios.

Chapter 6 demonstrates the application of the contributions in chapters
2-4 to an industrial FSI example of an omega-shaped Coriolis mass flow meter.



Chapter 2

Time discretization of fluid-structure
interaction problems

2.1 Time discretization of the fluid problem

2.1.1 Introduction

This section is concerned with the time discretization of stabilized finite
element formulations for unsteady incompressible Navier-Stokes (INS) equa-
tions on fixed and moving domains. Analyzing and enhancing the temporal
accuracy and stability of time integration schemes have been an important
topic of research in the field of unsteady flow simulations. The implicit time
integration schemes have been popular for discretizing the INS equations due
to the presence of the incompressibility constraint and to avoid restrictions on
the time step size due to the CFL condition as in explicit schemes [1]. A vari-
ety of time integration schemes have been used for discretizing unsteady INS
equations: the well-known backward Euler, Crank-Nicolson and second-order
backward differentiation (BDF2) schemes [2, 3, 4], implicit one-step-θ schemes
[4, 3, 1, 5, 6], fractional-step-θ scheme [7, 8], linear continuous and discontinu-
ous finite element in time [5], different variants of Runge-Kutta methods [1, 9,
10, 11], and generalized-α scheme [12, 5, 13, 14, 15, 16], among others. The
generalized-α scheme (hereafter referred to as G-α) for the first-order systems
was proposed in [12] for the time discretization of compressible Navier-Stokes
equations and was later applied to INS equations. This scheme has since
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become a popular choice in fluid dynamics and FSI problems, [72, 206, 61,
210, 79, 209, 65, 211], due to its second-order accuracy, unconditional stabil-
ity for linear systems and flexibility in choosing the desired high-frequency
numerical dissipation. The equilibrium equation of the problem is satisfied in
an average sense in every time step using the G-α scheme. Different terms
in the equilibrium equation are evaluated using generalized averaged values
at time instants within each time step. The differential-algebraic nature of
the INS equations poses a dilemma with regard to the temporal evaluation of
the pressure term and the incompressibility constraint. The aforementioned
terms can be evaluated using the generalized average values, similar to the
rest of the terms, or evaluated fully implicitly leading to different variants of
the G-α scheme for INS equations. In [16], a review and comparison of two
G-α variants for INS equations are presented.

Another level of difficulty is added to the time discretization of INS equa-
tions by the introduction of stabilized formulations. It is well known that the
application of standard finite element method to the INS equations might lead
to numerical instabilities. The reason for such instabilities is twofold. First,
the system resulting from the INS equations has a saddle-point structure.
The combination of finite element spaces for velocity and pressure can not be
chosen arbitrarily in such problems and should satisfy the so-called inf-sup
condition (also called the LBB condition) [17, 18, 19, 20]. The standard
finite elements with equal-order interpolation for the velocity and pressure
do not satisfy the inf-sup condition and lead to wiggles and instabilities in
the solution. For a more detailed discussion about the stable mixed finite
elements and the inf-sup condition, see, e.g., [22, 23] and the references therein.
The second type of numerical instabilities in the Galerkin discretization of
the INS equations occurs in the convection-dominated flows. Both of the
aforementioned numerical instabilities can be remedied using stabilization
techniques. Stabilized finite element methods have been successfully applied
to many different numerical problems. Some of the prominent and influential
stabilization techniques targeting the instabilities mentioned above and the
improvement of the conservation properties of the numerical schemes are
SUPG [24, 25], PSPG [26], grad-div stabilization (also known as bulk viscos-
ity or LSIC) [27], the combination of those methods, e.g., SUPG/PSPG [28,
29], SUPG/PSPG/grad-div [30, 31], GLS [32], and VMS [33, 34]. The extra
terms introduced by the mentioned residual-based stabilization techniques
complicates the time discretization of the INS equations. In particular, the
previously mentioned dilemma regarding the evaluation of specific terms
either fully implicitly or using generalized averaged values also enters the
stabilization terms through the residuals.

The consistent discretization of the INS equations on moving domains poses
yet another challenge for the time integration schemes with weighted average
evaluation of the equilibrium equation. While the previously mentioned
challenges of the temporal evaluation of different terms remain, an important
new question arises regarding the instance of the moving domain, on which
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different terms of the equilibrium equation are evaluated. The most common
choice is to solve the INS on the most recent instance of the moving domain
at the end of each time step. However, this choice of the integration domain
is not necessarily consistent with all the time integration schemes, e.g., the
G-α scheme. Furthermore, different variants of the G-α scheme may require
evaluations of different terms on multiple instants of the moving domain in
order to preserve consistency of the results. The evaluation of the equations
on the intermediate instances of the moving domain complicates the solution
procedure and might even increase computational cost, specially in unfitted
approaches for solving problems with moving domains. Therefore, a time
integration scheme that consistently evaluates the terms of the equilibrium
equation on the instance of the moving domain at exactly the end of each
time step is preferred in such situations.

In this section, a variant of the G-α family of time integration schemes
for INS equations is presented, which satisfies the equilibrium at the end of
each time step instead of the classical weighted average form. Furthermore,
different variants of the G-α scheme for INS equations are systematically
analyzed and compared. The consistent temporal evaluation of the different
terms in the equilibrium equation is studied for stabilized formulations of the
INS equations on fixed and moving domains. The new variant is beneficial
for accurately satisfying the incompressibility constraint in INS equations,
reducing complexity in temporal discretization of residual-based stabilized
formulations, and consistent evaluation of the equilibrium equations of the
fluid problems on the instance of the moving domain at the end of each time
step.

2.1.2 Incompressible Navier-Stokes equations

Let Ω ⊂ Rd, d = {2,3}, be the domain where the INS equations are solved,
and Γ be the boundary of Ω, i.e., Γ = ∂Ω. The INS equations over the time
interval [0, T ] read:

ρ∂tv + ρ (v ⋅ ∇)v − 2µ∇ ⋅ (∇
sv) +∇p = f in Ω, t ∈ (0, T ] ,

∇ ⋅ v = 0 in Ω, t ∈ (0, T ] ,
(2.1)

where v and p denote the fluid velocity and the pressure, ρ and µ stand for
the constant density and dynamic viscosity, respectively, f represents the
body forces, and ∇

sv = 1
2
(∇v + (∇v)T ) is the symmetric strain-rate tensor.

Eq. 2.1 is subjected to the following initial and boundary conditions:

v = v0 in Ω, t = 0,

v = vD on ΓD, t ∈ (0, T ] ,

(2µ (∇
sv) − pI) ⋅n = tN on ΓN , t ∈ (0, T ] ,

(2.2)
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where ΓD and ΓN are, respectively, the Dirichlet and Neumann portions of
the boundary, such that ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅, I is the identity
matrix, n is the unit normal vector, and tN is the normal traction prescribed
on the Neumann boundaries.
A few concise definitions are shortly introduced, which will facilitate the
presenting the weak form of INS equations. We denote by L2

(Ω) the space of
the square-integrable functions in Ω. The L2 inner product of two scalar-valued
functions in Ω is denoted by

(w, v)Ω ∶= ∫
Ω
wv dΩ. (2.3)

With a slight abuse of notation, the product of any two functions in domain
Ω is denoted by the same notation as in 2.3, even if the functions are not
defined in L2

(Ω) (assuming that the integral is well defined). The L2 inner
product of two functions on Γ = ∂Ω is denoted by

(w, v)Γ ∶= ∫
Γ
wv dΓ. (2.4)

The space of functions with the distributional derivatives up to the first
order belonging to L2

(Ω) is denoted by H1
(Ω). The space of functions in

H1
(Ω) with zero traces on Γ = ∂Ω is denoted by H1

0 (Ω), and the space of
functions in H1

(Ω) that satisfy the Dirichlet boundary conditions on ΓD is
denoted by H1

D (Ω). The dual space of H1
(Ω) is denoted by H−1

(Ω). Similar
notations hold for vector-valued functions, albeit using bold symbols. At every
t ∈ (0, T ], the velocity and pressure in the INS equations belong, respectively,
to the spaces V ∶= H1

D (Ω) and P ∶= L2
(Ω) /R, and the corresponding test

functions used in the weak form belong toW ∶=H1
0 (Ω) and Q ∶= L2

(Ω) /R,
respectively. With these definitions at hand, the weak form of the problem
reads:
At every t ∈ (0, T ], find [v, p] ∈ V ×P such that

(w, ρ∂tv)Ω + (w, ρ (v ⋅ ∇)v)Ω + (∇
sw,2µ∇sv)Ω − (∇ ⋅w, p)Ω = (w,f)Ω,

(q,∇ ⋅ v)Ω = 0,
(2.5)

for every [w, q] ∈W ×Q, while satisfying the initial and boundary conditions.
If Eq. 2.5 is discretized using the standard (Bubnov-) Galerkin Finite element
method, the discrete solutions vh and ph belong to the finite-dimensional
spaces Vh ⊂ V and Ph ⊂ P, respectively. The semi-discrete problem reads:
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At every t ∈ (0, T ], find [vh, ph] ∈ Vh ×Ph such that

(wh, ρ∂tv
h
)

Ω
+ (wh, ρ (vh ⋅ ∇)vh)

Ω
+ (∇

swh,2µ∇svh)
Ω

− (∇ ⋅wh, ph)
Ω
= (wh,f)

Ω
,

(qh,∇ ⋅ vh)
Ω
= 0, (2.6)

for every [wh, qh] ∈ Wh
× Q

h, while satisfying the initial and boundary
conditions.

However, the standard Galerkin Finite element formulation is generally not
stable for INS equations and requires stabilization. The stabilized formulation
in the present work is based on the VMS framework and follows closely the
formulation presented in [35] and originally introduced in [36, 37, 6]. For
more references on the origins and derivation of different VMS formulations,
the interested readers are referred to [38, 39] and the references therein. In
the following, the VMS formulation used in this work is concisely introduced.

2.1.2.1 Variational multiscale method

In the VMS method with a two-scale decomposition, the velocity and pressure
are decomposed into large-scale (also called coarse-scale) and subgrid-scale
(also called fine-scale, subscale, small-scale) components

v = vh + v′,
p = ph + p′, (2.7)

where vh and ph represent the large-scale component of the velocity and
pressure resolved by the finite elements, while v′ and p′ represent the subgrid-
scale components of the velocity and pressure that are unresolved by the finite
elements. Accordingly, the functional spaces of the velocity and pressure are
also decomposed into large and fine-scale components

V = Vh ⊕V ′,
P = P

h
⊕P

′, (2.8)

where Vh and Ph are the finite-dimensional space of the function used for the
discretization of the problem, whereas V ′ and P ′ are the infinite-dimensional
spaces of the velocity and pressure fine scales. A similar decomposition is done
for the spaces of the test functions. Using the introduced scale decomposition,
the continuous problem, Eq. 2.5, can be split into the large-scale and fine-scale
problems as follows:
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At every t ∈ (0, T ], find [vh, ph] ∈ Vh ×Ph and [v′, p′] ∈ V ′
×P

′ such that

(wh, ρ∂t(v
h
+ v′))

Ω
+ (wh, ρ (va ⋅ ∇) (vh + v′))

Ω

+ (∇
swh,2µ∇s(vh + v′))

Ω
− (∇ ⋅wh, ph + p′)

Ω
= (wh,f)

Ω
,

(qh,∇ ⋅ (vh + v′))
Ω
= 0, (2.9)

and

(w′, ρ∂t(vh + v′))
Ω
+ (w′, ρ (va ⋅ ∇) (vh + v′))

Ω

− (w′,2µ∇ ⋅ (∇
s
(vh + v′)))

Ω
+ (w′,∇(ph + p′))

Ω
= (w′,f)

Ω
,

(q′,∇ ⋅ (vh + v′))
Ω
= 0, (2.10)

for every [wh, qh] ∈Wh
×Q

h and [w′, q′] ∈W ′
×Q

′. The convective velocity
in the second term of Eqs. 2.9 and 2.10 is shown by va, which may either take
the form va = vh +v′ or va = vh. Each choice for va leads to a different VMS
formulation. The former choice of va leads to the so-called nonlinear scale
splitting (or nonlinear subgrid scales) [39], while the latter leads to linear scale
splitting (or linear subgrid scales). The nonlinear scale splitting is used in [40,
41, 37, 6, 13], among others, which opens the doors to modeling turbulence
using the VMS framework.

After Integrating by parts the terms in Eq. 2.9 that contain derivatives of
the subgrid scales, Eq. 2.9 can be reformulated as

(wh, ρ∂tv
h
)

Ω
+ (wh, ρ (va ⋅ ∇)vh)

Ω
+ (∇

swh,2µ∇svh)
Ω
− (∇ ⋅wh, ph)

Ω

+ (qh,∇ ⋅ vh)
Ω
+ (wh, ρ∂tv

′
)

Ω
− (ρ (va ⋅ ∇)wh

+ 2µ∇ ⋅ (∇
swh

) +∇qh,v′)
ΩK

− (∇ ⋅wh, p′)
ΩK

= (wh,f)
Ω
. (2.11)

In deriving Eq. 2.11, it is assumed that the subgrid scales vanish on the
boundaries of the elements and the boundary terms arising from the integration
by parts are equal to zero. Furthermore, The following short notation is used:
(⋅, ⋅)ΩK = ∑

ne
K=1 (⋅, ⋅)ΩK , where ΩK denotes the interior of the element K and

ne is the total number of the elements in the mesh.
Eq. 2.11 governs the evolution of large-scale quantities. The left-hand-side

terms on the second line of equation Eq. 2.11 describe the action of the
subgrid scales on the large-scale quantities. A concrete definition of the fine-
scale velocity and pressure is needed in order to close the large-scale problem.
Those definitions are sought in the solution of the fine-scale problem, Eq.
2.10. However, Eq. 2.10 is defined in the infinite-dimensional space of the
fine scales and, therefore, can not be solved directly. Instead, the fine-scale
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velocity and pressure in each element are modeled as

∂tv
′
+ (τ v)

−1
v′ =Π (rm) ,

(τp)
−1
p′ =Π (rc) ,

(2.12)

where τ v and τp are the so-called stabilization parameters, Π denotes a
projection onto the space of the subgrid scales, which will be discussed shortly
(the same symbol is used here for the projection of the scalar-valued and
vector-valued functions), rm and rc are the strong-form residuals of the coarse
scale momentum and the continuity equations, defined as

rm = f − ρ∂tv
h
− ρ (va ⋅ ∇)vh + 2µ∇ ⋅ (∇

svh) −∇ph,

rc = −∇ ⋅ vh.
(2.13)

The stabilization parameters τ v and τp play a central role in the stabilized
formulations, and their inverses approximate the action of the spatial operators
acting on the fine scales in Eq. 2.10. In [33, 34, 42], it is shown that
the stabilization parameters represent local approximations to the fine-scale
Green’s operator. In practice, in particular, for the INS equations, the
definitions of the stabilization parameters are derived using asymptotic scaling
arguments [13]. In [37, 39], an approximate Fourier analysis is used to motivate
the design of the stabilization parameters. Following [43, 37], τ v is defined in
each element as a diagonal matrix: τ v = diag(τv). Furthermore, τv and τp

are defined as

τv = (
c1µ

h2
+
c2ρ∥v

a
∥

h
)

−1

, (2.14)

τp =
h2

c1τv
, (2.15)

where c1 and c2 are algorithmic constants usually defined as c1 = 4 and c2 = 2
for elements with linear shape functions, h is the characteristic length of each
element, and ∥va∥ is the norm of the advective velocity. There are other
definitions for the stabilization parameters available in the literature, e.g., in
[13], which typically have similar asymptotic behavior with respect to h, ρ, µ,
and ∥va∥. Following [44], the values of c1 and c2 for higher-order elements are
replaced by c1r2 and c2r, respectively, where r is the interpolation order of
the elements. In the present work, linear and quadratic elements are used. It
is worth noting that there are other definitions for c1 and c2 for higher-order
elements, e.g., in [45], where c1 is taken to be proportional to r4 (See also
[44] for a discussion in this regard).

The inclusion of the ∂tv′ term in Eq. 2.12 is introduced in [37, 6] and leads
to the so-called dynamic subscales. In a dynamic subscale formulation, the
velocity subscales are tracked in time, and the effect of the time dependency
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of the subscales on the large-scale problem is also taken into account through
the ρ(wh, ∂tv

′
)

Ω
term in Eq. 2.11. In [6], it is shown that dynamic subscales

lead to the correct behavior of the time integration scheme, and allow to use
arbitrary small time steps regardless of the size of the spatial discretization.
Dropping the ∂tv′ term in Eq. 2.12, and subsequently, the ρ(wh, ∂tv

′
)

Ω
term

in Eq. 2.11, leads to quasi-static subscales [37, 6], which is the formulation
used classically in the stabilized methods.

If the projection Π in Eq. 2.12 is taken to be I (unity), the so-called
algebraic subgrid-scale (ASGS) formulation arises [43]. This choice implies
that the subgrid scales belong to the space of the large-scale residuals. ASGS
is the classical choice in the stabilized formulations. Another option for the
projection Π is presented in [36, 37], where the space of the subgrid scales
is chosen to be orthogonal to the finite element space (where the large-scale
quantities are defined). Therefore Π is taken as Π�

h = I −Πh, where Πh
represents the L2 projection onto the proper finite element space and Π�

h is its
orthogonal projection. This formulation is called the orthogonal subgrid-scale
(OSS) method. Considering the above-mentioned choices of Π, Eq. 2.12 can
be rewritten as

∂tv
′
+ (τ v)

−1
v′ = rm − ξh, (2.16)

(τp)
−1
p′ = rc − δh, (2.17)

where ξh and δh are equal to zero in the ASGS formulation, and in the case
of OSS formulation, ξh and δh represent, respectively, the projection of the
residuals rm and rc onto the space of finite elements:

(wh,ξh)
ΩK

= (wh,rm)
ΩK

∀wh
∈Wh,

(qh, δh)
ΩK

= (qh, rc)
ΩK

∀qh ∈ Qh.
(2.18)

If the space of the subgrid scales is orthogonal to the finite element space,
simplifications can be made in rm and rc compared to the definitions provided
in Eq. 2.13. It is immediately apparent that the projection of the term ρ∂tv

h

onto the space of the subgrid scales is zero due to the choice of orthogonal
subgrid scales. Furthermore, in the case of minimal regularity, the body
force term f in Eq. 2.13 can be neglected without upsetting the order of
accuracy of the method [37]. In [37, 46], it is suggested that dropping the term
2µ∇ ⋅ (∇

svh) in Eq. 2.13 leads to a formulation that is still consistent when
using orthogonal subgrid scales (see remark 4 in [37]). Note that using linear
elements, the terms with second spatial derivatives are exactly zero in any case.
As a side note, it should be remarked that by virtue of the incompressibility
constraint ∇ ⋅vh = 0, the term 2µ∇ ⋅ (∇

svh) in Eq. 2.13 is usually replaced by
∆vh in practice, where ∆ is the Laplacian operator (see [13, 37]). Another
direct consequence of the choice of orthogonal subgrid scales is that the term
ρ(wh, ∂tv

′
)

Ω
in Eq. 2.11 is equal to zero. It should be remarked that in
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order to get truly orthogonal subgrid scales, the projections in Eq. 2.18 must
be weighted by the local stabilization parameters [37]. Therefore, the L2

projections used in Eq. 2.18 are generally an approximation.

2.1.3 G-α scheme for the first-order systems

The G-α scheme, hereafter refereed to as the G-α scheme, was originally
proposed in [47] for the time integration of the second-order ordinary differ-
ential equations (ODE) in structural mechanics. The extension of the G-α
scheme to the first-order ODEs, in particular to the equations arising from
the spatial discretization of the compressible Navier-Stokes equations, was
later proposed in [12]. It has since become a popular choice in fluid dynamics
and fluid-structure interaction (FSI) simulations, due to its second-order
accuracy, unconditional stability for linear systems and flexibility in choosing
the amount of the desired high-frequency dissipation introduced by the time
integration scheme.

Let the time interval [0, T ] be divided into Nt subintervals, with the
discrete points in time {tn}

Nt
n=0, and let ∆tn = tn+1− tn be the time step size in

the nth interval. Let us introduce a model first-order ODE which facilitates
discussing some of the concepts discussed in the following. The model problem
reads:

∂tv − λv = 0, t ∈ (0, T ] ,

v = v0, t = 0,
(2.19)

where v is a scalar variable and λ is a constant scalar. The G-α scheme
satisfies the equilibrium equation of the problem in an average sense in every
time step. Integrating the model problem, Eq. 2.19, using the G-α scheme
leads to the following average equilibrium equation in the nth time step:

˜̇vn+αm − λvn+αf = 0, (2.20)

with αf and αm being algorithmic parameters of the G-α scheme, and vn+αf
and ˜̇vn+αm (the reason for using ˜ will be made clear later) representing
the generalized midpoint values of the variable v and its time derivative,
respectively:

vn+αf = (1 − αf) vn + αfvn+1,

˜̇vn+αm = (1 − αm) ˜̇vn + αm ˜̇vn+1.
(2.21)

The variable v and its time derivative ˜̇v are related to each other using the
following (Newmark) update formula:

vn+1 = vn +∆t ((1 − γ) ˜̇vn + γ ˜̇vn+1) , (2.22)

where γ is another algorithmic parameter of the G-α scheme.
The generalized midpoint values vn+αf and ˜̇vn+αm correspond, respectively,
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to the intermediate time instants tn+αf and tn+αm , within the nth time step:

tn+αf = (1 − αf) tn + αf tn+1,

tn+αm = (1 − αm) tn + αmtn+1.
(2.23)

Note in Eq. 2.20 that the term containing the discrete time derivative of
v is evaluated at tn+αm and the term containing the variable v (and, in
general, any other possible term except those containing the time derivative)
is evaluated at tn+αf .

In order to achieve second-order accuracy in time, unconditional stability
and optimal amount of numerical dissipation, the parameters αf , αm and γ
can not be chosen arbitrarily and are dependent on each other. It is shown in
[12] that second-order accuracy in time is for the variable v is guaranteed if

γ =
1

2
+ αm − αf , (2.24)

and unconditional stability is achieved if

αm ⩾ αf ⩾
1

2
. (2.25)

The amount of the high-frequency numerical dissipation is conveniently con-
trolled by the user-controlled parameter ρ∞ ∈ [0,1] which is the spectral
radius of the amplification matrix of the scheme as ∆t→∞. Having decided
about the desired amount of the high-frequency dissipation through ρ∞, the
parameters αf , αm and γ are determined as [12]

αf =
1

1 + ρ∞ , αm =
1

2
(

3 − ρ∞
1 + ρ∞ ) , γ =

1

2
+ αm − αf . (2.26)

Instead of the linear initial value problem (IVP) represented by Eq. 2.19,
many problems of interest are governed by a nonlinear IVP

∂tv −N (v) = 0, t ∈ (0, T ] ,

v = v0, t = 0,
(2.27)

where N (v) is any nonlinear operator depending on v (which itself is time
dependent). Considering the integration of the nonlinear term using the G-α
scheme, there are two apparent choices for the quadrature rule conceivable: the
generalized midpoint quadrature rule (GMQ) and the generalized trapezoidal
quadrature rule (GTQ) leading, respectively, to

N
GMQ
n+αf (αf , vn, vn+1) = N (vn+αf ), (2.28)

N
GTQ
n+αf (αf , vn, vn+1) = (1 − αf)N (vn) + αfN (vn+1). (2.29)
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For linear systems, the generalized midpoint and generalized trapezoidal
quadrature rules lead to the same results. However, the two lead to (usually
slightly) different results when treating nonlinear problems. The role and
effect of the aforementioned quadrature rules in the time integration of the
Navier-Stokes equations will be discussed in the following. The naming
convention used in this work for the quadrature rules in Eqs. 2.28–2.29 is
adopted from [48], with an additional emphasis on the quadrature (in time)
for the nonlinear terms. We do so, in order to remove the ambiguity between
the quadrature rules for nonlinear terms in the context of the G-α family
of time integration schemes, as used in the present work, with the use of
"generalized midpoint rule" and "generalized trapezoidal rule" in, e.g., [5, 37],
which are other names used for the one-step-θ scheme. It is worth mentioning
that in [49, 50], quadrature rules similar to those presented in Eqs. 2.28–2.29
are refereed to as the tangent and secant versions, when discretizing nonlinear
terms in the Navier-Stokes equations using the one-step-θ family of time
integration schemes.

2.1.4 G-α scheme for the incompressible Navier-Stokes
equations

The application of the G-α scheme to the INS equations requires the evaluation
of intermediate values for the velocity, pressure, and acceleration variables

vhn+αf = (1 − αf)v
h
n + αfv

h
n+1, (2.30)

phn+αf = (1 − αf)p
h
n + αfp

h
n+1, (2.31)

˜̇vhn+αm = (1 − αm) ˜̇vhn + αm˜̇vhn+1. (2.32)

Additionally, the velocity and the acceleration variables are related through
the following formula:

vhn+1 = v
h
n +∆t ((1 − γ) ˜̇vhn + γ˜̇vhn+1) . (2.33)

Following the G-α rules presented in section 2.1.3, the INS equations are
satisfied in an average sense in the nth time step and read in the time-discrete
form as

(wh, ρ˜̇vhn+αm)
Ω
+ (wh, ρ(van+αf ⋅ ∇)vhn+αf )Ω

+ (∇
swh,2µ∇svhn+αf )Ω

− (∇ ⋅wh, phn+α1
)

Ω
+ (qh,∇ ⋅ vhn+α2

)
Ω
+ (L

∗
n+αf (wh, qh) ,v′n+αf )ΩK

− (∇ ⋅wh, p′n+αf )ΩK
= (wh,fn+αf )Ω

, (2.34)

where

L
∗
n+αf (wh, qh) = − (ρ(van+αf ⋅ ∇)wh

+ 2µ∇ ⋅ (∇
swh

) +∇qh) , (2.35)
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v′n+αf = τvn+αf rmn+αf,m , (2.36)

p′n+αf = τpn+αf rcn+α2
, (2.37)

τvn+αf = (
c1µ

h2
+
c2ρ∥v

a
n+αf ∥
h

)

−1

, (2.38)

τpn+αf = h2

c1τvn+αf
, (2.39)

rmn+αf,m = fn+αf − ρ˜̇vhn+αm − ρ (van+αf ⋅ ∇)vhn+αf + 2µ∇ ⋅ (∇
svhn+αf ) −∇phn+α1

,

(2.40)

rcn+α2
= −∇ ⋅ vhn+α2

. (2.41)

Note the use of α1 and α2 in the subscripts of the terms phn+α1
and ∇ ⋅ vhn+α2

in Eqs. 2.34, 2.37, 2.40, and 2.41, which indicate the evaluation of the terms
phn+α1

and ∇ ⋅ vhn+α2
at time instants yet to be defined. Different choices for

α1 and α2 lead to different variants of the formulation, which differ only in
the temporal evaluations of at least one of the terms included in the pair
{phn+α1

,∇ ⋅ vhn+α2
}. Note also the special case in the subscript of the term

rmn+αf,m in Eqs. 2.38 and 2.40, where it indicates that rmn+αf,m contains a
term which is evaluated at the intermediate time instant tn+αm and other
terms which are evaluated at the intermediate time instant tn+αf . At first
sight, the simultaneous presence of the terms evaluated at tn+αm and tn+αf
renders using a generalized trapezoidal quadrature rule impossible, a topic
which will be discussed later.

The issue surrounding the temporal evaluation of the terms phn+α1
and

∇ ⋅ vhn+α2
, when using time integration schemes that require evaluation at

intermediate time instants, arises from the differential-algebraic nature of
the INS equations due to the presence of the incompressibility constraint
and the role of pressure field as the Lagrange multiplier in imposing this
condition. It is often argued that the pressure should not be subjected to
time integration due to its role as Lagrange multiplier. Furthermore, It has
been suggested that including contributions from the velocity at previous time
steps in the incompressibility constraint should be avoided. That is to avoid
the propagation of the errors in the incompressibility constraint due to the
nonsolenoidal initial velocity field or not fully satisfying the incompressibility
constraint in the previous time steps. These considerations prompt the
evaluation of pressure term and incompressibility constraint at the end of
the time step, where unknowns are sought, i.e., choosing α1 = α2 = 1 and
replacing the pair {phn+α1

,∇ ⋅ vhn+α2
} in Eq. 2.34– 2.41 with {phn+1,∇ ⋅ vhn+1}.

This approach can be interpreted as applying the G-α scheme only to the
terms of the momentum equation containing velocities, and treating the DAE
aspects of the INS equations fully implicitly as done, e.g., in the backward
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Euler time integration scheme.
On the other hand, it is possible to apply the G-α scheme, initially conceived

for ODEs, without distinction to all terms of the INS equations that constitute
the DAE system. Following the approach presented in [2] for the application
of the Trapezoidal rule to a model DAE system, the discrete INS equations
(without stabilization, for simplicity) are written in the so-called time-singular
form

[
M 0
0 0

] [
∂tV
∂tP

] + [
N +A −B
BT 0

] [
V
P

] = [
F
0
] , (2.42)

where M , N , A, B, and F represent the discrete counterparts of the iner-
tial, (nonlinear) convection, diffusion, pressure, and right-hand side terms,
respectively. Eq. 2.42 can be rewritten as

M∂tY + CY = F , (2.43)

where

Y = [
V
P

] , M = [
M 0
0 0

] , C = [
N +A −B
BT 0

] , F = [
F
0
] . (2.44)

The application of the G-α scheme to Eq. 2.43 is straightforward and leads
to the time-discrete equilibrium equation

M ˜̇Y n+αm + CY n+αf = Fn+αf . (2.45)

Considering the relation of Eq. 2.45 to Eq. 2.42 and Recalling that the term
CY n+αf contains the pressure term and the incompressibility constraint from
the INS equations, it is evident that the mentioned terms should be evaluated
at the intermediate time instant tn+αf , which leads to a natural extension of
the G-α scheme to the DAE system of the INS equations. Using this point of
view, the application of the G-α scheme to the VMS formulation presented
in Eq. 2.34– 2.41 prompts choosing α1 = α2 = αf and replacing the terms in
the pair {phn+α1

,∇ ⋅ vhn+α2
} with {phn+αf ,∇ ⋅ vhn+αf }, where phn+αf and vhn+αf

are defined by Eqs. 2.31 and 2.30, respectively. Note that using phn+αf raises
the need for proper initial value for pressure and storage of the old pressure
values in each time step.

The two versions of the G-α scheme for INS equations with {phn+1,∇⋅v
h
n+1}

and {phn+αf ,∇ ⋅ vhn+αf } are compared in [16] using inf-sup stable Taylor-Hood
elements. It is shown in [16] that the version with the pair {phn+1,∇⋅v

h
n+1} leads

to a first-order temporal approximation for pressure, which is a reduction from
the theoretical second-order accuracy, while using the pair {phn+αf ,∇ ⋅ vhn+αf }
retains the expected second-order accuracy for both velocity and pressure, as
underlined in [14] as well.

Another consequence of the choice between phn+1 and phn+αf in the time
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discretization of the INS equations is related to the evaluation of the integrated
reaction force and the corresponding normal traction (flux) on certain parts
of the boundary with Dirichlet boundary conditions. The integrated reaction
force on the boundary is used, e.g., for calculating the drag and lift forces on
the objects in a flow, and normal traction is required in, e.g., fluid-structure
interaction simulations. We take a short detour to explain how the integrated
boundary tractions are calculated and will then make the connection to the
time integration of the INS equations using the G-α scheme and the choice
between phn+1 and phn+αf .

After solving the INS equations for vh and ph, there are two possible
approaches for calculating the total reaction force on a boundary Γs with
a strong homogeneous Dirichlet boundary condition. The first possibility is
to use the solution to vh and ph to calculate the total reaction force acting
on the subset of the boundary denoted by Γs using direct evaluation of the
integral

F = ∫
Γs

(2µ (∇
svh) − phI) ⋅n dΓs. (2.46)

Let nD and nL be unit vectors denoting the direction of the incoming flow
and its normal, respectively (for simplicity assume nD = [1,0,0]T and nL =

[0,1,0]T in 3D). The drag and lift forces FD and FL are calculated using
the direct evaluation approach as

FD = ∫
Γs

((2µ (∇
svh) − phI) ⋅n) ⋅nD dΓs, (2.47)

FL = ∫
Γs

((2µ (∇
svh) − phI) ⋅n) ⋅nL dΓs. (2.48)

Instead of the direct evaluation of the total reaction force as in Eq. 2.46, one
can calculate the so-called variationally consistent reaction force using the
information already contained in the variational form of the solved problem [51,
52, 53, 54, 55, 56, 57, 58, 59]. The variationally consistent total reaction force
on the boundary Γs with strong homogeneous Dirichlet boundary condition
is calculated as

F = (wh, ρ∂tv
h
)

Ω
+n (wh,vh,va)+a (wh,vh)−(∇ ⋅wh, ph)

Ω
+(qh,∇ ⋅ vh)

Ω

+ (L
∗
(wh, qh) ,v′)

ΩK
− (∇ ⋅wh, p′)

ΩK
− (wh,f)

Ω
, (2.49)

for arbitrary qh and wh
∈ H1

(Ω) such that wh
∣
Γs

= ws, where ws is a
known value and wh

= 0 on all other boundaries except Γs. The drag and
lift forces FD and FL ensue from Eq. 2.49 by setting ws

= nD and ws
= nL,

respectively. The calculation of the boundary reaction forces (total fluxes in
general) through a variationally consistent approach using Eq. 2.49 is shown
to possess superior accuracy and robustness compared to the calculation using
direct evaluation of integrals as in Eq. 2.46 [51, 52]. The traction on the
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boundary Γs, denoted by ts, can be derived using the same variationally
consistent approach:

(wh, ts)
Γs

= (wh, ρ∂tv
h
)

Ω
+ n (wh,vh,va) + a (wh,vh) − (∇ ⋅wh, ph)

Ω

+ (qh,∇ ⋅ vh)
Ω
+ (L

∗
(wh, qh) ,v′)

ΩK
− (∇ ⋅wh, p′)

ΩK
− (wh,f)

Ω
, (2.50)

for arbitrary qh and for wh
∈Ws

(Ω), withWs
(Ω) being the complement

of W (Ω) in H1
(Ω), that is, W ⊕Ws

= H1 and W (Ω) being the usual
space of the test functions with zero traces on the boundary Γs for the INS
momentum equation. The variationally consistent tractions are conservative
quantities if the discrete form of the variational formulation is conservative
[52]. However, there is a subtlety when dealing with the INS equations in
the advective form. As shown in [60] and later extended in [6] to the case
of dynamic subgrid scales in VMS formulations, an inf-sup stable Galerkin
formulation for the advective form of the INS equations does not generally
conserve the linear momentum. However, using stabilized formulations allows
us to retain the momentum-conserving property in the discrete sense if the
contribution of the velocity subgrid scale is included in the advective velocity,
that is, va = vh + v′. The presence of the term (wh, ρ (v′ ⋅ ∇)vh)

Ω
in the

weak form is a crucial component in preserving the conservation of momentum
[60, 6]. Therefore, using VMS methods with nonlinear scale splitting, i.e.,
including the contribution of the velocity subgrid scale in the advective
velocity, guarantees the variationally consistent tractions in Eq. 2.50 to be
truly conserved quantities.

Going back to the topic of time integration of the INS equations using
the G-α scheme, choosing to evaluate the pressure terms in Eq. 2.34 at
the intermediate time instant tn+αf leads to a clear interpretation of the
time-discretized variationally consistent tractions at the intermediate time
instant tn+αf :

(wh, tsn+αf )Γs
= (wh, ρ˜̇vhn+αm)

Ω
+ n (wh,vhn+αf ,van+αf ) + a (wh,vhn+αf )

− (∇ ⋅wh, phn+αf )Ω
+ (qh,∇ ⋅ vhn+α2

)
Ω
+ (L

∗
n+αf (wh, qh) ,v′n+αf )ΩK

− (∇ ⋅wh, p′n+αf )ΩK
− (wh,fn+αf )Ω

, (2.51)

for arbitrary qh and wh as defined for Eq. 2.50. The tractions at time instant
tn+1 are then calculated using the G-α update formula

tsn+1 =
1

αf
tsn+αf − (1 − αf)

αf
tsn. (2.52)

Note that the calculation of tsn+1 requires the storage of tsn. Calculating the
time-dependent drag and lift forces follows the same consideration as for
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the time-discretized tractions. Interpreting the tractions on the left-hand
side of Eq. 2.51 to be at the intermediate time instant tn+αf is also crucial
in retaining the second-order accuracy of the G-α scheme in the coupled
simulations, e.g., FSI, as shown in [61].

On the other hand, if the pressure in the fourth term on the right-hand side
of Eq. 2.51 is taken to be at tn+1 instead of tn+αf , there appears a dilemma
in interpreting to which time instant the time-discretized tractions on the
left-hand side of Eq. 2.51 belong. The reason is that the calculated tractions
would seemingly correspond to (2µ (∇

svhn+αf ) − phn+1I) ⋅ n, which contains
the evaluation of terms at two different time instants.

Two variants of the G-α scheme for the INS equations have been analyzed
so far that incorporate the pairs {phn+1,∇ ⋅ vhn+1} and {phn+αf ,∇ ⋅ vhn+αf } in
the time discretization of Eq. 2.34– 2.41, respectively, and are otherwise
identical in the discretization of the other terms. In the context of the time
integration of INS equations, we refer to the variant of the G-α scheme
with the pair {phn+1,∇ ⋅ vhn+1} as the G-α scheme with first-order accurate
pressure, or G-α with p−O(∆t) for short, and we call the variant with the
pair {phn+αf ,∇ ⋅ vhn+αf } the direct form of the G-α scheme since this variant
is the direct application of the G-α scheme to the INS equations as a system
of DAEs. As recently reviewed and compared in [16] as well, these two
variants make up the bulk of the literature on the application of the G-α
scheme to the INS equations, with the former variant being the more common
choice despite possessing deficiencies underlined previously and also shown in
[16]. The common denominator of the two approaches is the evaluation and
interpretation of the pressure term and the incompressibility constraint at
the same time instant.

Another seemingly less well-known variant of the G-α scheme for the INS
equations is pointed out in the following. Starting from the direct form of the
G-α scheme with the pair {phn+αf ,∇ ⋅vhn+αf }, we assume that the old velocity
field vhn is solenoidal in every time step, i.e., ∇ ⋅ vhn = 0, and therefore, the
incompressibility constraint in the strong form reduces to ∇ ⋅ vhn+1 = 0. This
assumption prompts using the pair {phn+αf ,∇ ⋅ vhn+1} in Eq. 2.34– 2.41. This
approach follows the discussion presented in [2] regarding the application of
the trapezoidal rule to the INS equations. As mentioned in [2], by assuming vhn
to be solenoidal, one solves a (slightly) different, but still consistent, problem
than the original one. This variant of the scheme prevents the errors in the
incompressibility constraint from propagating in time while retaining the
second-order temporal accuracy for pressure. As in the direct form of the
G-α, proper initial values for pressure and storage of the old pressure values
in each time step are required. We call this variant of the G-α scheme the
shortened form of the G-α scheme, following a similar naming convention used
in [2] for the application of the trapezoidal rule to DAE systems. A similar
approach is presented in [10] for the θ schemes, and the resulting schemes
are termed pressure corrected θ-schemes. In addition to replacing vhn+αf
with vhn+1 in the incompressibility constraint, phn+αf can be also replaced by
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p̄hn+αf , where p̄hn+αf denotes the pressure degree of freedom at the intermediate
time instant tn+αf while phn+αf denotes, as usual, the generalized average
pressure at tn+αf as given by Eq. 2.31. This change helps with preserving
the (skew-)symmetry of the off-diagonal blocks in the global system of linear
equations. In order to further clarify this point, consider the direct form of
the G-α scheme applied to the INS equations without the stabilization terms
for simplicity. Taking into account the G-α rules Eqs. 2.30–2.33, the updates
for the unknown velocity and pressure DoFs in the nth time step, Un+1 and
Pn+1, are calculated through solving the following algebraic system in every
iteration of the nonlinear solution strategy:

[

αm
γ∆t

M + αfN
lin

+ αfA −αfB

αfB
T 0

] [
∆V n+1
∆P n+1

] = − [
Rm

Rc ] , (2.53)

where M , N lin, A, and B represent the discrete counterparts of the inertial,
(linearized) convection, diffusion, and pressure terms, respectively. Rm and
Rc denote the residuals of the weak forms of the momentum and continuity
equations, respectively. Note that the (skew-)symmetry of the off-diagonal
blocks, arising from the pressure and the incompressibility constraint, is
preserved after time integration. If it is desired to remove the coefficient in
front of the M , all of the terms in Eq. 2.53 are divided by αm

γ∆t
.

In the case of applying the shortened G-α scheme to the INS equations,
the updates for the unknown velocity and pressure vectors of DoFs in the
nth time step, Un+1 and P̄ n+αf , are calculated through solving the following
algebraic system in every iteration of the nonlinear solution strategy:

[

αm
γ∆t

M + αfN
lin

+ αfA −B

BT 0
] [

∆V n+1
∆P̄ n+αf ] = − [

Rm

Rc ] , (2.54)

and the pressure values at tn+1 are subsequently updated through

P n+1 =
1

αf
P̄ n+αf − (1 − αf)

αf
P n. (2.55)

Note that the (skew-)symmetry of the off-diagonal blocks is preserved in Eq.
2.54. That is the main reason for using the pair {p̄hn+αf ,∇ ⋅ vhn+1} instead of
{phn+αf ,∇ ⋅ vhn+1} in Eqs. 2.34–2.41 when using the shortened form of G-α
scheme. Another possibility for keeping the symmetry properties of the off-
diagonal blocks of the algebraic system when using the shortened form of the
G-α scheme is to use the pair {phn+αf ,∇⋅vhn+1} and scale the incompressibility
constraint as αf∇ ⋅ vhn+1 = 0. This approach is most useful when using inf-sup
stable elements since other terms are added to the off-diagonal and diagonal
blocks of the system using the stabilized methods. Another advantage of
using p̄hn+αf as pressure unknown is the straightforward interpretation of the
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pressure p̄hn+αf as the Lagrange multiplier at the intermediate time instant,
which satisfies the (shortened) incompressibility constraint.

2.1.5 An end-of-step-equilibrium form of G-α scheme for
INS equations

2.1.5.1 Second-order accurate time derivatives using the G-α
scheme

It should be pointed out that the time derivative of velocity, although part
of the INS equations, may not be of much interest in many applications.
Furthermore, the time derivative of pressure is absent in the INS equations.
However, as pointed out in [16], the time derivatives of velocity and pressure
are needed in Hemodynamic simulations as "inputs to reduced-order models
of the upstream and downstream vasculature, which are commonly used as
boundary conditions coupled to the three-dimensional domain"[16]. Therefore,
it is worth examining the order of accuracy of velocity and pressure time
derivatives in the INS equations using the G-α time integration scheme.
Furthermore, the second-order accurate acceleration variable plays a crucial
role in the alternative form of the G-α scheme, as will be presented shortly.

The G-α scheme for the INS equations possesses second-order (temporal)
accuracy for the velocity variable and can retain the second-order accuracy for
the pressure variable, as discussed previously. On the contrary, it is commonly
believed that the G-α scheme demonstrates only first-order accuracy for the
acceleration variable and the time derivative of the pressure variable if needed
[16]. However, it is shown in [48] how the second-order accuracy of acceleration
can be restored using the G-α scheme for second-order systems (possessing
displacement, velocity, and acceleration variables) arising from structural
mechanics. The present section discusses how the second-order accuracy for
the time derivatives of velocity and pressure can be retained using the G-α
scheme. The following discussion is an adaptation of the results first presented
in [48] to the present discussion of the time integration of INS equations.

Recall the first-order model problem introduced in Eq. 2.27. Denoting
by vex (t) the exact solution of v at time t, the equilibrium equation of the
model problem using the exact solution at time t reads

∂tv
ex

(t) −N (vex (t)) = ∂tv
ex

(t) −N ex
(t) = 0. (2.56)

On the other hand, the time-discretized equilibrium equation using the G-α
scheme at the nth time step reads

˜̇vn+αm −Nn+αf (αf , vn, vn+1) = 0, (2.57)

where either of the definitions in Eq. 2.28 or 2.29 could be used for Nn+αf .
Recall that by satisfying the condition in Eq. 2.24 for the G-α scheme, the
second-order temporal accuracy is obtained for v at all discrete time instants,
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e.g., for vn+1, we have

vn+1 = v
ex

(tn+1) +O(∆t2), (2.58)

which if inserted in Eq. 2.57 leads to

˜̇vn+αm −N
ex
n+αf (αf , vn, vn+1) = O(∆t2). (2.59)

Using

N
ex
n+αf (αf , vn, vn+1) = (1 − αf)N

ex
(vn) + (αf)N

ex
(vn+1) +O(∆t2) (2.60)

in Eq. 2.59 in conjunction with the definition of the exact equilibrium
equation in Eq. 2.56, one finally arrives at the following relation between ˜̇v,
the acceleration variable of the G-α scheme, and the exact value of acceleration
∂tv

ex:

(1 − αm) ˜̇vn +αm ˜̇vn+1 = (1 − αf)∂tv
ex

(tn)+αf∂tv
ex

(tn+1)+O(∆t2). (2.61)

Motivated by Eq. 2.61, one can introduce a new variable v̇ for acceleration
with the following relation to ˜̇v:

(1 − αm) ˜̇vn + αm ˜̇vn+1 = (1 − αf) v̇n + αf v̇n+1. (2.62)

In contrast to ˜̇v, which is generally only a first-order accurate approximation
to acceleration (hence distinguished by ˜), v̇ enjoys second-order temporal
accuracy. ˜̇v is referred to as the auxiliary acceleration or an acceleration-like
variable, while v̇ is called the true acceleration variable. The true acceleration
can be calculated in a post-processing step using Eq. 2.61 and, the its price
is the storage of an extra variable.

With regard to the INS equations, it is immediately apparent that the
second-order accurate true acceleration vector v̇hn+1 can be calculated using

(1 − αm) ˜̇vhn + αm˜̇vhn+1 = (1 − αf) v̇
h
n + αf v̇

h
n+1, (2.63)

where ˜̇vhn+1 itself is updated using Eq. 2.33.
In [16], the pressure time derivative ˜̇phn+1 is calculated using the same G-α
update rule as in Eq. 2.33:

phn+1 = p
h
n +∆t ((1 − γ) ˜̇phn + γ ˜̇phn+1) , (2.64)

which implicitly implies that the pressure and its time derivative are related
through a first-order ODE. It is demonstrated in [16] that the pressure deriva-
tive calculated using Eq. 2.64 is first-order accurate in time, an observation
also expected from the discussion in the present section. In analogy to the
velocity time derivative, and given that the pressure variable retains second-
order accuracy, a true pressure time derivative ṗhn+1 can be calculated using
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(1 − αm) ˜̇phn + αm ˜̇phn+1 = (1 − αf) ṗ
h
n + αf ṗ

h
n+1. (2.65)

2.1.5.2 Deriving the end-of-step-equilibrium form of G-α

Recall the time-discretized INS equations given in Eqs. 2.34–2.41 and the
earlier comment about the presence of terms evaluated at different time
instants t + αm and t + αf preventing us from restating the entirety of the
INS equations using a generalized trapezoidal quadrature rule. In light of the
possibility for calculating the true acceleration using Eq. 2.63, the idea arises
to replace ˜̇vhn+αm with v̇hn+αf in Eqs. 2.34–2.41. Doing so allows us to use the
generalized trapezoidal quadrature rule for all terms in the time-discretized
INS equations. The terms at time instant tn+1 and with coefficient αf can
be collected together and separated from those at time instant tn and with
the coefficient (1 − αf). Requiring the equilibrium to hold for each collected
group of terms at tn+1 and tn leads to the following equilibrium equation in
the nth time step:

(wh, ρv̇hn+1)
Ω
+ (wh, ρ(van+1 ⋅ ∇)vhn+1)

Ω
+ (∇

swh,2µ∇svhn+1)
Ω

− (∇ ⋅wh, phn+1)
Ω
+ (qh,∇ ⋅ vhn+1)

Ω
+ (L

∗
n+1 (wh, qh) ,v′n+1)

ΩK

− (∇ ⋅wh, p′n+1)
ΩK

= (wh,fn+1)
Ω
, (2.66)

where

L
∗
n+1 (wh, qh) = − (ρ(van+1 ⋅ ∇)wh

+ 2µ∇ ⋅ (∇
swh

) +∇qh) , (2.67)

v′n+1 = τ
v
n+1r

m
n+1, (2.68)

p′n+1 = τ
p
n+1r

c
n+1, (2.69)

τvn+1 = (
c1µ

h2
+
c2ρ∥v

a
n+1∥

h
)

−1

, (2.70)

τpn+1 =
h2

c1τvn+1

, (2.71)

rmn+1 = fn+1 − ρv̇
h
n+1 − ρ (v

a
n+1 ⋅ ∇)vhn+1 + 2µ∇ ⋅ (∇

svhn+1) −∇p
h
n+1, (2.72)

rcn+1 = −∇ ⋅ vhn+1. (2.73)
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Eqs. 2.66–2.73 are accompanied by the following update formula for the true
acceleration v̇hn+1:

v̇hn+1 =
αm

αfγ∆t
(vhn+1 − v

h
n) +

(αm − γ)

αfγ
˜̇vhn −

(1 − αf)

αf
v̇hn. (2.74)

The update formula in Eq. 2.74 is derived by combining Eqs. 2.33 and
2.63 and rearranging terms. Note in Eq. 2.74 that the storage of only ˜̇vhn
is necessary and not that of ˜̇vhn+1. The algorithmic parameters αf , αm and
γ are calculated using the formulae given in Eq. 2.26. Note that the Eqs.
2.66–2.73 are written in terms of the end-of-step velocity, pressure, and (true)
acceleration and that the equilibrium equation is satisfied also at the end of
the time step, as opposed to the standard form of G-α, where the equilibrium
is satisfied in an average sense in each time step. Therefore, we call the new
form of the G-α scheme for the INS equations the end-of-step-equilibrium
G-α scheme, or EG-α for short. This idea was also used in [62] to derive a
similar form of the G-α scheme for the second-order systems, arising from the
simulation of the constrained multibody mechanical systems represented by
index-3 DAEs. It is also worth highlighting the work in [63], where (in our
terminology) an end-of-step-equilibrium form of the one-step-θ scheme for the
INS equations is derived. The advantage of the EG-α scheme in the present
work over the one-step-θ scheme utilized in [63] is that the EG-α scheme is
second-order accurate for all admissible values of ρ∞, whereas the one-step-θ
scheme is second-order accurate only for θ = 1/2, which is equivalent to the
Crank-Nicolson scheme that provides no high-frequency dissipation and is in
practice more prone to numerical oscillations. Furthermore, the G-α family
of schemes introduces less numerical dissipation in the low and mid-frequency
range than the one-step-θ family for the same value of ρ∞ [5].

The variationally consistent traction on the boundary Γs using the EG-α
scheme is calculated as

(wh, tsn+1)
Γs

= (wh, ρv̇hn+1)
Ω
+ n (wh,vhn+1,v

a
n+1) + a (w

h,vhn+1)

− (∇ ⋅wh, phn+1)
Ω
+ (qh,∇ ⋅ vhn+1)

Ω
+ (L

∗
n+1 (wh, qh) ,v′n+1)

ΩK

− (∇ ⋅wh, p′n+1)
ΩK

− (wh,fn+1)
Ω
. (2.75)

Note that tsn+1 is directly calculated from Eq. 2.75, and no storage and
updating of the old traction values tsn is required. The same holds for
calculating the drag and lift forces on Γs.

Since the INS equations are nonlinear, a predictor-multicorrector solution
procedure consistent with the time integration scheme is required. The
predictor assumes that the values of velocity and pressure remain the same
when moving from one time step to the next. Using the EG-α scheme, the
values of the variables at the predictor stage (the zeroth nonlinear iteration)
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are:

V
h,(0)
n+1 = V h

n (2.76)

P
h,(0)
n+1 = P h

n (2.77)

V̇
h,(0)
n+1 =

(αm − γ)

αfγ
˜̇V h
n −

(1 − αf)

αf
V̇
h

n. (2.78)

Different linearization approaches are conceivable for INS equations. In the
present work, a Picard linearization of the nonlinear convective term is carried
out and the derivatives of the stabilization terms with respect to the velocity
and pressure unknowns are excluded from the left-hand side matrix. For a
detailed discussion on different linearization techniques for INS equations,
see [35, 1, 13, 206]. After spatial discretization, the semi-discrete problem in
matrix form can be generally expressed as

M [
∂tV

0
] + C [

V
P

] = [
F
0
] . (2.79)

From Eq. 2.74, the derivative of the true acceleration variable in the EG-α
scheme with respect to the velocity variable reads

∂V̇
h

n+1

V h
n+1

=
αm

αfγ∆t
. (2.80)

Therefore, the linear system of equations to be solved in the kth nonlinear
iteration is

(
αm

αfγ∆t
M + C)[

∆V (k+1)
∆P (k+1)] = −R(k)

n+1, (2.81)

where ∆V
(k+1)
n+1 = V

(k+1)
n+1 −V

(k)
n+1, ∆P

(k+1)
n+1 = P

(k+1)
n+1 −P

(k)
n+1, and R

(k)
n+1 is the

residual of INS equations (LHS minus RHS of Eq. 2.66) at the kth iteration.
After solving the linear system of equations in the kth nonlinear iteration,

the vectors of variables are updated in the corrector stage as follows:

V
(k+1)
n+1 = V

(k)
n+1 +∆V

(k+1)
n+1 , (2.82)

P
(k+1)
n+1 = P

(k)
n+1 +∆P

(k+1)
n+1 , (2.83)

V̇
(k+1)
n+1 = V̇

(k)
n+1 +

αm
αfγ∆t

∆V
(k+1)
n+1 . (2.84)

The vector of auxiliary variable ˜̇V n+1 is updated at the end of time step using
Eq. 2.62.

The satisfaction of the equilibrium equation at the discrete time points
has advantages in specific applications and situations, as will be shown in
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section 2.1.6. Furthermore, by satisfying the incompressibility constraint
exactly at the discrete time points, the errors in the continuity equation are
not propagated in time, a feature that is achieved in the G-α scheme only
by solving a (slightly) modified problem through the shortened form of the
G-α scheme. Moreover, no initial value is required for pressure when using
the EG-α scheme, as opposed to the direct and shortened forms of the G-α
scheme. An initial value is required for the acceleration in the EG-α and all
other previously mentioned variants of the G-α scheme. When using EG-α, if
no restart information from previous simulations is available, the initial value
for v̇h is also set to ˜̇vh. The EG-α scheme retains the second-order accuracy
for the velocity, pressure, and acceleration variables. Lastly, implementing
the EG-α scheme is relatively easy compared to the G-α scheme, particularly
in existing frameworks geared towards working with the end-of-step values,
e.g., through using the BDF2 time integration scheme, as opposed to the
generalized averaged values used in the G-α scheme.

It is also worth mentioning that, as pointed out in [64, 14, 15, 65], the G-α
scheme is equivalent to the midpoint rule (equivalent to Crank-Nicolson for
linear systems) for ρ∞ = 1 and is equivalent to the BDF2 scheme for ρ∞ = 0.
Therefore, one may think of the G-α scheme as the interposition between the
midpoint and the BDF2 schemes. On the other hand, the EG-α scheme is
equivalent to an end-of-step-equilibrium form of the Crank-Nicolson scheme
(trapezoidal rule) for ρ∞ = 1 and equivalent to the BDF2 scheme for ρ∞ = 0
and can be thought of as the interpolation between those two schemes for the
rest of the admissible values of ρ∞.

2.1.5.3 Time integration of the dynamic algebraic and
orthogonal subgrid scales

So far, we have dealt with the quasi-static subgrid scales in our VMS formu-
lation. In this section, the dynamic subgrid scales, first in combination with
the ASGS formulation, are discussed. The evolution of the dynamic velocity
subscales is governed by Eq. 2.16, with ξh set to zero. The first "natural"
choice for discretizing Eq. 2.16 in time is to use the same time integration
scheme for the large-scale problem [6]. In the case of the G-α scheme, the
evolution of the dynamic subgrid scales on each integration point of each
element follows

ρ˜̇v′n+αm + (τvn+αf )−1
v′n+αf = rmn+αf,m , (2.85)

where τvn+αf and rmn+αf,m are defined according to Eq. 2.36 and Eq. 2.40,
respectively. As before, the subscript n + αf,m means that rmn+αf,m contains
terms that are evaluated at tn+αf and tn+αm . Closed-form formulae for v′n+1

and ˜̇v′n+1 are given in [66] and are restated here for comparison (attention:ρ
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is missing):

v′n+1 =
αmτ

v
n+αf + (αf − 1)γ∆t

αmτvn+αf + αfγ∆t
v′n +

(αm − γ) τvn+αf∆t

αmτvn+αf + αfγ∆t
˜̇v′n

+ (
αmγ

∆t
+

αf
τvn+αf

)

−1

rmn+αf,m , (2.86)

˜̇v′n+1 =
(αm − 1) τvn+αf + αf (γ − 1)∆t

αmτvn+αf + αfγ∆t
˜̇v′n

+
τvn+αf

αmτvn+αf + αfγ∆t
(rmn+αf,m −

1

τvn+αf
v′n) . (2.87)

Eqs. 2.86 and 2.87 are used to update the fine-scale velocity and acceleration
variables at the end of the time step. The intermediate quantities ˜̇v′n+αm and
v′n+αf for use in Eq. 2.34 are calculated with the help of Eqs. 2.86 and 2.87.
Note that the term (wh, ρ˜̇v′n+αm)

Ω
is added to Eq. 2.34 when using dynamic

ASGS formulation. The variables ˜̇v′n and v′n on the right-hand side of Eqs.
2.86 and 2.87 are stored at the integration points of each element. It is also
worth noting that the scaling factor in front of rmn+αf,m in Eq. 2.86 works
as the effective stabilization parameter when using the G-αf scheme. This
interpretation follows [6], where a similar interpretation of the stabilization
parameter is given when using the one-step-θ scheme.

Another possibility for the time discretization of the subgrid scales is
introduced in [67], where the first-order backward Euler scheme is used for
the time discretization of the subgrid scales instead of using the same time
integration scheme used for the large-scale problem. It is shown in [67] that
the error introduced by evaluating the subgrid scales at tn+1, instead of the
intermediate time instant, introduces an error of order O(∆t2), which is the
same order as the error in the time integration scheme of the large-scale
problem. Therefore, a lower-order time integration scheme can be used for
the fine-scale problem without upsetting the second-order temporal accuracy
of the large-scale quantities. Using the backward Euler scheme for the subgrid
scales helps with the stability of the problem in time as well. The strong-
form residuals of the INS equations are not smooth and are discontinuous
across inter-element boundaries. Consequently, the possibility of developing
high-frequency oscillations might increase. Therefore, it is reasonable to use
a dissipative scheme for the time discretization of the subgrid scales [67].
Adding numerical dissipation to the integration of the subgrid scale is also
possible using Eqs. 2.85–2.87. However, it simultaneously dictates adding
more numerical dissipation to the large-scale problem since the same time
integration scheme is used for the large and fine-scale problems. Another
advantage of using the backward Euler scheme for the subgrid scales is the
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reduced storage requirements only for storing v′n, instead of v′n and ˜̇v′n in
Eqs. 2.86 and 2.87. This storage saving could be of importance, in particular,
when using higher-order elements since v′n and ˜̇v′n should be stored on all
integration points.

Discretizing Eq. 2.16 using backward Euler scheme leads to

ρ
v′n+1 − v

′
n

∆t
+ (τvn+1)

−1
v′n+1 = r

m
n+1. (2.88)

Closed-form formulae for the velocity subscale and its derivative are straight-
forward to derive and read

v′n+1 = (
ρ

∆t
+

1

τvn+1

)

−1

(rmn+1 +
ρv′n
∆t

) , (2.89)

v̇′n+1 =
v′n+1 − v

′
n

∆t
= (

ρ

∆t
+

1

τvn+1

)

−1

(
rmn+1

∆t
+
ρv′n
∆t2

) −
v′n
∆t

, (2.90)

where the scaling factor of the term rmn+1 is the effective stabilization param-
eter. Note that it is similar to the relation used in the step-size-dependent
stabilization parameter. However, as remarked in [67], the difference is that
the subgrid scales are properly integrated and tracked in time when using Eq.
2.89, which allows using arbitrarily time step sizes and preventing instabilities
due to small time step sizes.

Eqs. 2.88–2.90 fit very well with the large-scale INS equations integrated
by the EG-α scheme, Eqs. 2.66–2.73, since all the terms are evaluated at the
end of the time step tn+1. Therefore, when using a dynamic ASGS formulation
integrated by the EG-α scheme, v′n+1 in Eq. 2.66 is replaced by the definition
given in Eq. 2.89, and the term (wh, ρv̇′n+1)Ω

is added to the left-hand side
of Eq. 2.66, where v̇′n+1 is calculated according to Eq. 2.90. One could also
integrate the subgrid scales using the EG-α. However, we avoid doing so
for the same reasons stated for the case of G-α scheme (The EG-α scheme
would pose even higher storage requirements due to the inclusion of true and
auxiliary acceleration variables for the subgrid scales).

If an OSS formulation is used instead of ASGS, the quantity ξh in Eq.
2.16 is not zero. Therefore, ξhn+1, the projection of rhn+1 onto the space of
finite elements, is calculated using

(wh,ξhn+1)
ΩK

= (wh,rmn+1)
ΩK

∀wh
∈Wh, (2.91)

where rmn+1 is defined in Eq. 2.72. Furthermore, rmn+1 is replaced by rmn+1−ξ
h
n+1

on the right-hand sides of Eqs. 2.88–2.90, which then leads to the time
discretization of Eq. 2.16 using backward Euler scheme. Since the information
about the finite element residuals is required to carry out the projection in Eq.
2.91, a closed-form formulation of the large-scale problem is no longer possible,
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when using the OSS variant. Instead, the fine and large-scale problems are
usually solved iteratively until convergence, see, e.g, –. Theoretically, if the
calculated subgrid scales are truly orthogonal to the space of the coarse scales
as done in –, the term (wh, ρv̇′n+1)Ω

does not need to be added to Eq. 2.66,
and the contribution of – is removed from Eq. 2.72 for rmn+1, and subsequently
from ξhn+1, due to the orthogonality assumption between the fine and large-
scale spaces. As suggested in [37], the terms fn+1 and 2µ∇ ⋅ (∇

svhn+1) could
be also dropped from rmn+1 and the calculation of ξmn+1, when using orthogonal
subgrid scales.

2.1.6 Incompressible Navier-Stokes equations on moving
domains

This section focuses on the time integration of the INS equations on moving
domains. The EG-α and different variants of the G-α are derived consistently
and analyzed for simulations on moving domains, and the advantage of the
EG-α scheme for such simulations is highlighted. The moving meshes are
handled using the Arbitrary Lagrangian-Eulerian (ALE) method [68, 69, 70]
in this work. However, the EG-α scheme benefits also other approaches for
simulations on moving domains.

In an ALE formulation, the deforming domain at the current time t
Ωt = Ω (t) is referred to as the current configuration. On the other hand, the
ALE or reference configuration, typically chosen to be equal to the initial
configuration, is denoted by Ω0. We distinguish between the spatial (Eulerian)
coordinates x ∈ Ωt and the reference (ALE) coordinates x ∈ Ω0 (there is also
a third coordinate expressing the material (Lagrangian) coordinate, which we
do not directly deal with in the present section). The current and the reference
configurations are related through the mapping At, which is assumed to be
sufficiently regular and invertible (see [71] for more complete definitions and
derivation):

At ∶ Ω0 → Ωt, x (x, t) = At (x) ∀x ∈ Ω0. (2.92)

The time derivative of the mapping At is denoted by vm, i.e., vm = ∂tAt (x) =
∂tx (x, t), and is referred to as the domain velocity (or mesh velocity in a
discrete setup). The ALE time derivative of a vector-valued function v defined
in the current configuration ∂v

∂t
∣
x
is known to be related to its local (partial)

time derivative in the spatial frame ∂v
∂t

∣
x
through

∂v

∂t
∣
x

=
∂v

∂t
∣
x

+ (∇xv)v
m, (2.93)

or equivalently,
∂v

∂t
∣
x

=
∂v

∂t
∣
x

− (∇xv)v
m, (2.94)
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where ∇x denotes the gradient with respect to the spatial coordinates x. From
Eq. 2.94, it is clear that the difference between the two types of time derivatives
is the appearance of the advective-like term (∇xv)v

m
= (vm ⋅ ∇x)v. In the

following, the subscript from the partial time derivative. Similarly, the
subscripts from the spatial operators with respect to the spatial coordinates
are dropped, e.g., the gradient in the spatial coordinates is denoted by ∇.
With these definitions at hand, the ALE formulation of the INS equations on
a moving domain reads

(wh, ρ∂tv
h
)

Ωt
+ (wh, ρ ((va − vm) ⋅ ∇)vh)

Ωt
+ (∇wh,σv,h)

Ωt

+ (∇wh,σp,h)
Ωt
+ (qh,∇ ⋅ vh)

Ωt
− (ρ ((va − vm) ⋅ ∇)wh

+∇qh,v′)
ΩKt

− (∇ ⋅wh, p′)
ΩKt

= (wh,f)
Ωt
, (2.95)

with

σv,h = 2µ∇svh, σp,h = −phI, (2.96)

v′ = τvrm, (2.97)

p′ = τprc, (2.98)

τv = (
c1µ

h2
+
c2ρ∥v

a
− vm∥

h
)

−1

, (2.99)

τp =
h2

c1τv
, (2.100)

rm = f − ρ∂tv
h
− ρ ((va − vm) ⋅ ∇)vh +∇ ⋅ (σv,h) +∇ ⋅ (σp,h) , (2.101)

rc = −∇ ⋅ vh. (2.102)

The main difference between Eqs. 2.95–2.102 and the INS equations on fixed
domains, Eqs. 2.11–2.15, is the appearance of the mesh velocity vm in the
convective terms in Eqs. 2.95, 2.99, and 2.101. Furthermore, the integrals are
calculated on the current domain Ωt. Also, note that the pressure-dependent
component of the stress term, σp,h in Eq. 2.95, is kept intact for clearer
presentation and comparison with the formulations presented hereafter.

The application of the G-α family of time integration schemes to Eqs.
2.95–2.102 follows mostly the same procedure as for the INS equations on a
fixed domain. However, an important question arises regarding the instance
of Ωt, on which the terms of Eq. 2.95 are evaluated. The most common choice
in the literature is to solve Eq. 2.95 on the most recent instance of Ωt, i.e.,
Ωn+1 = Ω (tn+1) in the time interval [tn, tn+1]. However, in [72], the equations
are evaluated on Ωn+αf , the domain at the intermediate time instant tn+αf ,
when using the G-α scheme. Similarly, in [73], the integrals are evaluated on
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the domain at an intermediate time instant when using the one-step-θ scheme.
In [63] it is argued that the equations should be solved on the instance of
the moving domain corresponding to the unknowns, i.e., Ωn+1 in the case
of the (end-of-step-equilibrium form of) one-step-θ scheme. A test case of
INS equations on moving domains with constant-in-time analytical solution
for pressure is studied in [63], where it is shown that numerical results using
integration on the domain at an intermediate time instant, within [tn, tn+1],
does not preserve the expected constant-in-time value for pressure. A similar
numerical test case will be later studied in the present work. Apart from the
test case studied in [63], not many comparisons are available in the literature
regarding the choice of the integration domain’s instance when using the G-α
or related time integration schemes. In the following, we will study, in more
detail, the question of which instance of the moving domain Ωt should be
used when using the G-α family of time integration schemes and will later
present numerical evidence supporting our choice.

In deriving Eqs. 2.95–2.102, only the inertial terms are written in the
ALE reference frame, while all the other terms are stated with respect to the
spatial frame, and the computations are carried out on the current domain Ωt,
which leads to a similar form as the INS equations in the Eulerian coordinates.
The geometrical nonlinearity related to the moving domain is dealt with by
explicitly moving and updating the computational domain in every time step.
Another possibility is to transform all the terms in Eq. 2.95 to a fixed reference
domain Ω0 and, by doing so, avoid the need for moving the computational
domain. In this case, the geometrical nonlinearity explicitly enters the INS
equations. This approach is followed in [74, 50, 75, 49], among others. We
will use this approach to pursue the ”correct” choice of the integration domain
when using the G-α family of time integration schemes.

A key component in the transformation between the spatial and the
reference configurations is the deformation gradient (Jacobian) of the domain
mapping

F =
∂At (x)

∂x
=
∂x (x, t)

∂x
= ∇xx, (2.103)

and its determinant J = det(F). We will also require the inverse and the
transpose of the deformation gradient, F−1 and FT , respectively. For each
function v in the spatial coordinates, the corresponding representation in the
reference coordinates is denoted by upright type letter v = v ○At, i.e.,

v (x, t) = v (At(x), t) . (2.104)

Given the function v stated in the reference configuration, its representation
in the current configuration is denoted by v = v ○A−1

t , i.e.,

v (x, t) = v (A
−1
t (x), t) . (2.105)

We will later deal with the transformation of variables between domains at
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two different time instants as well. For instance, when dealing with the time
interval [tn, tn+1], the variable vn stated on domain Ωn+1 refers formally to
vn ○An ○A

−1
n+1. However, such details are dropped in the following for the

sake of brevity.
The transformation of the INS equations from the current configuration to

the reference configuration can be split into two steps. First, all the integrals
should be evaluated on the reference domain instead of the current domain,
which is achieved with the help of the determinant of the deformation gradient

∫
Ωt

1 dΩt = ∫
Ω0

J dΩ0. (2.106)

Secondly, all the spatial operators should be taken with respect to the reference
coordinates instead of the spatial coordinates. The gradients of the scalar p,
vector v, and tensor σ in the spatial coordinates are respectively transformed
to the reference coordinates by

∇p = F−T
∇xp, (2.107)

∇v = ∇xv F−1, (2.108)

∇σ = ∇xσ F−1. (2.109)

The transformation of the divergence of vector v, i.e., ∇ ⋅ v to the reference
configuration leads to

∇x ⋅ (JF−1v) . (2.110)

The direct evaluation of Eq. 2.110 would seemingly require the second order
derivatives of the domain’s deformation with respect to x. However, those
second-order derivatives cancel out and the following relation ensues (see [76]
for the proof):

∇x ⋅ (JF−1v) = J tr (∇xv F−1
) , (2.111)

where tr () denotes the trace operator.
With these definitions at hand, the INS equations transformed to the

reference domain read

(wh, ρJ∂tv
h
)

Ω0

+ (wh, ρJ (F−1
(va − vm) ⋅ ∇x)vh)

Ω0

+ (∇xwh,Jσv,hF−T
)

Ω0

+ (∇xwh,Jσp,hF−T
)

Ω0

+ (qh,J tr (∇xvh F−1
))

Ω0

− (ρ (F−1
(va − vm) ⋅ ∇x)wh

+F−T
∇xqh,Jv′)

ΩK
0

− (tr (∇xwh F−1
) ,Jp′)

ΩK
0

= (wh,Jf)
Ω0

, (2.112)
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with

σ
v,h

= µ (∇xvh F−1
+F−T

∇
−T
x vh) − phI, σ

p,h
= −phI, (2.113)

v′ = τ
vrm, (2.114)

p′ = τ
prc, (2.115)

τ
v
= (

c1µ

h2
+
c2ρ∥v

a
− vm∥

h
)

−1

, (2.116)

τ
p
=

h2

c1τv
, (2.117)

rm = f − ρ∂tv
h
− ρ (F−1

(va − vm) ⋅ ∇x)vh +∇x ⋅ (σ
v,hF−1

) +∇x ⋅ (σ
p,hF−1

) ,

(2.118)

rc = − tr (∇xvh F−1
) . (2.119)

2.1.6.1 G-α time integration scheme for INS equations on
moving domains

We now focus on the application of the G-α time integration scheme to
Eqs. 2.112–2.119. The approach followed here is to apply the G-α scheme
consistently to all terms, including the J and F terms that represent the effect
of the geometrical nonlinearity of the domain’s movement. Subsequently, the
time discrete equations can be transformed back to the current configuration,
which then determines the instance of the integration domain. According to
the G-α rules the inertial term should be evaluated at tn+αm , leading to

(wh, ρJn+αm ˜̇vhn+αm)
Ω0

. (2.120)

If transformed back to the the spatial configuration, Eq. 2.120 leads to

(wh, ρ˜̇vhn+αm)
Ωn+αm . (2.121)

Similarly, the second term in Eq. 2.112 is integrated using the G-α scheme as

(wh, ρJn+αf (F−1
n+αf (van+αf − vmn+αf ) ⋅ ∇x)vhn+αf )Ω0

, (2.122)

which, if transformed back to the spatial coordinates leads to

(wh, ρ ((van+αf − vmn+αf ) ⋅ ∇)vhn+αf )Ωn+αf
. (2.123)

There are two issues with Eq. 2.120. The first issue is that, per definition, αm
is not bound to be in [0,1]. Therefore, for certain choices of the parameter
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αm, Jn+αm results from an extrapolation (as opposed to interpolation) of
the mesh deformations at tn and tn+1. The extrapolated mesh deformation
at tn+αm is not guaranteed to lead to a valid regular mapping between the
reference and the current domains (Equivalently, one can say that sufficient
mesh quality on Ωn+αm , used in Eq. 2.121, is not guaranteed). In contrast,
αf is bound to be in the interval [0,1] and, therefore, Jn+αf is always an
interpolation between Jn and Jn+1, which are expected to have reasonable
values by solving an auxiliary mesh deformation (mesh moving) problem at tn
and tn+1. The second issue with Eq. 2.120 is that it corresponds to integration
on the domain Ωn+αm if transformed back to the spatial coordinates, while
all the other terms would be integrated on Ωn+αf . Evaluation of terms on
two instances of the domain leads to an extra complexity and cost of the
solution procedure when solving the equations on moving domains (obviously,
this disadvantage does not exist when solving the equations on the reference
domain). In order to alleviate this issue, we make use of the true accelerations
defined in section 2.1.5. Recall that the true acceleration v̇h is evaluated at
the intermediate time instant tn+αf , in contrast to the auxiliary acceleration
variable ˜̇vh. Therefore, the time-discrete form of the inertial term in Eq.
2.112 can be restated as

(wh, ρJn+αf v̇hn+αf )Ω0

. (2.124)

One can then use the relation v̇hn+αf = ˜̇vhn+αm in order to rewrite Eq. 2.124
as

(wh, ρJn+αf ˜̇vhn+αm)
Ω0

, (2.125)

which, if transformed back to the spatial coordinates, leads to

(wh, ρ˜̇vhn+αm)
Ωn+αf

. (2.126)

Similar to the case of applying the G-α scheme to INS equations on the
fixed domains, one can think of three variants of the G-α scheme for INS on
moving domains: the direct, shortened, and p−O(∆t) variants. As before,
the difference between the three variants is in the time discretization of
the pressure term and the continuity equation. The direct G-α scheme is
derived by direct application of the G-α scheme to all terms of the equations
in a straightforward manner. Therefore, the deformation gradient and its
determinant, F and J, in all of the terms are evaluated at tn+αf when solving
the system in the fixed reference configuration. Equivalently, all the terms
are evaluated on the domain Ωn+αf when solving the system in the current
configuration. The disadvantage of evaluating the integrals on a domain at
the intermediate time instant is the need to form the additional domain Ωn+αf
as the computational mesh in a discrete problem. In addition to the extra
complexity and computational cost of handling the intermediate computational
mesh, it may sometimes be impossible (or prohibitively expensive) to form
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Ωn+αf , e.g., when the spatial discretization changes between two time steps or
when using embedded or immersed techniques. The most common alternative
is evaluating the gradients and integrals on the domain Ωn+1, the most recent
instance of the moving domain, and apply the G-α rules only to the velocity
and pressure terms. This approach translates to evaluating the deformation
gradient and its determinant, F and J, in all terms, at tn+1 when solving the
system in the fixed reference configuration. However, using Fn+1 and Jn+1 in
the equations is inconsistent with the G-α rules. We will compare the validity
and accuracy of the two choices for the integration domain in the numerical
studies presented in section 2.1.7. By consistent application of the direct
G-α scheme, the time discretization of the pressure term and the continuity
equation, formulated in the reference configuration read, respectively

(∇xwh,Jn+αfσp,hn+αfF−T
n+αf )Ω0

, (2.127)

(qh,Jn+αf tr (∇xvhn+αf F−1
n+αf ))Ω0

= 0. (2.128)

The derivation of the shortened and p−O(∆t) forms of the G-α scheme is
not as straightforward as the direct form when dealing with INS equations on
moving domains. Recall that on fixed domains, the shortened G-α scheme is
derived by reducing the continuity equation from ∇ ⋅vhn+αf = 0 to ∇ ⋅ vhn+1 = 0.
Extending this idea to the case of moving domains, one may try to replace
Eq. 2.128 with

(qh,Jn+αf tr (∇xvhn+1 F−1
n+αf ))Ω0

= 0. (2.129)

The advantage of Eq. 2.129 is that F and J in the continuity equation are
evaluated at tn+αf , which is the same in all the other terms. This choice
amounts to evaluating all terms on the same instance of the domain Ωn+αf
when solving the system in the current configuration. However, the calculated
velocity vhn+1 would be divergence-free on the domain Ωn+αf and not on
Ωn+1. Therefore, one can instead restate the shortened form of the continuity
equation in the reference configuration as

(qh,Jn+1 tr (∇xvhn+1 F−1
n+1))

Ω0

= 0. (2.130)

Eq. 2.130 can be justified by evaluating the continuity equation using a GTQ
rule instead of the GMQ rule and assuming that (qh,Jn tr (∇xvhn F−1

n ))
Ω0

= 0

holds from the previous time step. When transforming the equations to the
current configuration, the disadvantage of Eq. 2.130 is that it equates to
evaluating the continuity equation on the domain Ωn+1, while all the other
terms are evaluated on Ωn+αf . Therefore, we will need to deal with multiple
instances of the domain. Regarding the pressure term using the shortened
form of G-α, if the continuity equation is discretized according to Eq. 2.129,
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then the pressure term is unchanged compared to the direct form of the
G-α scheme and follows Eq. 2.127. However, if the continuity equation is
discretized using Eq. 2.130, it seems logical to discretize the pressure term in
time also using the GTQ rule leading to

(1 − αf) (∇xwh,Jnσ
p,h
n F−T

n )
Ω0

+ αf(∇xwh,Jn+1σ
p,h
n+1F

−T
n+1)

Ω0

, (2.131)

which is equal to the pressure term in Eq. 2.127 if the domain’s deformation
is linear in time. After transforming the equations back to the current
configuration, the time discretization of the pressure term corresponding to
Eq. 2.131 prompts evaluations on yet another instance of the domain Ωn,
necessary for the first part of Eq. 2.131, in addition to already evaluating some
terms on Ωn+αf and Ωn+1. Furthermore, more ambiguities arise in the time
discretization of the stabilization terms due to the residual-based stabilization
technique used in the present work. In the weak form in Eq. 2.112, the
term containing the subgrid-scale velocity v′ comprises many terms, including
contribution from the pressure gradient in the strong form of the large-scale
residuals (see Eq. 2.118). Discretizing the pressure in the stabilization terms
using a GTQ rule in time, similar to Eq. 2.131, leads to terms in which
F and J are evaluated at different time instants. Such terms would not be
straightforwardly transformed to the current configuration. For the reasons
just mentioned and considering that in many cases, the domain’s deformation
behaves almost linearly in time in each time step, we choose to discretize the
pressure term in time using Eq. 2.127 when using the shortened form of the
G-α scheme.

The p−O(∆t) form of the G-α scheme is derived similarly to the shortened
form. The continuity equation is discretized using Eq. 2.130. Additionally,
the pressure term is also evaluated at tn+1 as

(∇xwh,Jn+1σ
p,h
n+1F

−T
n+1)

Ω0

. (2.132)

Using the p−O(∆t) G-α, difficulties surround the time discretization of the
terms containing the fine-scale velocities, similar to the shortened form of the
G-α scheme discussed previously. For that reason, we will also analyze and
compare the behavior of the p−O(∆t) G-α variant when using inf-sup stable
P2P1 (Taylor-Hood) elements without stabilization terms.

In order to concisely present and later compare different variants of the
G-α scheme using different choices for the integration domain, we define and
make use of the variables α1, α2, α3, α4, and α5, which are used to identify
time instants. The time evaluation of many terms in the INS equations is
shared among all three variants of the G-α scheme. The terms making a
difference among the variants are identified using the newly defined variables.
α1 is used for the pressure term, α2 for the divergence of the velocity, α3 for
the integration domains (or for deformation gradient and its determinant),
α4 for the integration domain of the pressure term specifically, and α5 for
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the integration domain of the continuity equation. Each of the variables α1,
α2, α3, α4, and α5 can take a value from the set {αf ,1}. For example, for
α3 = αf , we have Ωn+α3 = Ωn+αf .

The final form of the time-discretized INS equations on the reference
domain using the three variants of the G-α scheme can by concisely stated
using

R (α1, α2, α3, α4, α5) = (wh, ρJn+α3
˜̇vhn+αm)

Ω0

+ (wh, ρJn+α3 (F−1
n+α3

(van+αf − vmn+αf ) ⋅ ∇x)vhn+αf )Ω0

+ (∇xwh,Jn+α3σ
v,h
n+αfF−T

n+α3
)

Ω0

+ (∇xwh,Jn+α4σ
p,h
n+α1

F−T
n+α4

)
Ω0

+ (qh,Jn+α5 tr (∇xvhn+α2
F−1
n+α5

))
Ω0

− (ρ (F−1
n+α3

(van+αf − vmn+αf ) ⋅ ∇x)wh
+F−T

n+α3
∇xqh,Jn+α3v′n+αf )ΩK

0

− (tr (∇xwh F−1
n+α5

) ,Jn+α5p′n+α2
)

ΩK
0

= (wh,Jn+α3 fn+αf )
Ω0

, (2.133)

with

σ
v,h
n+αf = µ (∇xvhn+αf F−1

n+α3
+F−T

n+α3
∇
−T
x vhn+αf ) , σ

p,h
n+α1

= −phn+α1
I,

(2.134)

v′n+αf = τ
v
n+αf rmn+αf , (2.135)

p′n+α2
= τ

p
n+αf rcn+α2

, (2.136)

τ
v
n+αf = (

c1µ

h2
+
c2ρ∥v

a
n+αf − vmn+αf ∥

h
)

−1

, (2.137)

τ
p
n+αf = h2

c1τvn+αf
, (2.138)

rmn+αf =fn+αf − ρ˜̇vhn+αm − ρ (F−1
n+α3

(van+αf − vmn+αf ) ⋅ ∇x)vhn+αf
+∇x ⋅ (σ

v,h
n+αfF−1

n+α3
) +∇x ⋅ (σ

p,h
n+α1

F−1
n+α4

) , (2.139)

rcn+α2
= − tr (∇xvhn+α2

F−1
n+α5

) . (2.140)

Transforming Eqs. 2.133–2.140 to the current domain leads to the final form
of the INS equations on the current moving domain and discretized in time
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using the three variants of the G-α scheme

R (α1, α2, α3, α4, α5) = (wh, ρ˜̇vhn+αm)
Ωn+α3

+ (wh, ρ ((van+αf − vmn+αf ) ⋅ ∇)vhn+αf )Ωn+α3

+ (∇wh,σv,hn+αf )Ωn+α3

+ (∇wh,σp,hn+α1
)

Ωn+α4

+ (qh,∇ ⋅ vhn+α2
)

Ωn+α5

− (ρ ((van+αf − vmn+αf ) ⋅ ∇)wh
+∇qh,v′n+αf )ΩKn+α3

− (∇ ⋅wh, p′n+α2
)

ΩKn+α5

= (wh,fn+αf )Ωn+α3

, (2.141)

with

σv,hn+αf = 2µ∇svhn+αf , σp,hn+α1
= −phn+α1

I, (2.142)

v′n+αf = τvn+αf rmn+αf , (2.143)

p′n+α2
= τpn+αf rcn+α2

, (2.144)

τvn+αf = (
c1µ

h2
+
c2ρ∥v

a
n+αf − vmn+αf ∥

h
)

−1

, (2.145)

τpn+αf = h2

c1τvn+αf
, (2.146)

rmn+αf = fn+αf − ρ˜̇vhn+αm − ρ ((van+αf − vmn+αf ) ⋅ ∇)vhn+αf
+∇ ⋅ (σv,hn+αf ) +∇ ⋅ (σp,hn+α1

) , (2.147)

rcn+α2
= −∇ ⋅ vhn+α2

. (2.148)

Different variants of the G-α scheme for INS equations on moving domains
are gathered in Table 2.1, together with their respective choices for the
parameters α1, α2, α3, α4, and α5. The naming of the G-α variants in
Table 2.1 conforms best to the case of solving the equations in the current
configuration. Despite that, we also use the same naming convention for
the corresponding G-α variants when solving the equations in the reference
configuration. A comparison of the accuracy of the G-α variants in Table 2.1
will be carried out in section 2.1.7.

The mesh velocity vmn+αf in Eq. 2.133, equivalently vmn+αf in Eq. 2.141, is
evaluated at the intermediate time instant tn+αf and is so far assumed to be
exact in time through an analytical solution. In practice, the discrete mesh
velocity is calculated from the mesh deformation. If the domain’s boundaries
deform, the internal mesh should be adapted to preserve a reasonably good
mesh quality (or equivalently, to keep a reasonably smooth ALE mapping if the
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Table 2.1: Different variants of the G-α scheme for INS equations on moving
domains.

G-α variant’s identifier Parameter values

direct G-α on Ωn+αf α1 = α2 = α3 = α4 = α5 = αf
direct G-α on Ωn+1 α1 = α2 = αf , α3 = α4 = α5 = 1

shortened G-α, multi-domain α1 = α3 = α4 = αf , α2 = α5 = 1

shortened G-α on Ωn+αf α1 = α3 = α4 = α5 = αf , α2 = 1

shortened G-α on Ωn+1 α1 = αf , α2 = α3 = α4 = α5 = 1

p−O(∆t) G-α, multi-domain α3 = αf , α1 = α2 = α4 = α5 = 1

p−O(∆t) G-α, multi-domain, P2P1 α3 = αf , α1 = α2 = α4 = α5 = 1

p−O(∆t) G-α on Ωn+1 α1 = α2 = α3 = α4 = α5 = 1

equations are solved in the reference domain). The mesh adaptation is usually
carried out by solving an auxiliary problem called the mesh moving or mesh
motion problem at the discrete time points ti, i = 1, . . . , n + 1. The outcome
of the mesh moving problem is the mesh displacement dmi , i = 1, . . . , n + 1,
at the discrete time points. See, e.g., [77, 78] for details on different mesh
moving strategies. In [72, 79], the mesh velocity vmn+1 is taken to be equal
to ˜̇

dmn+1, the time derivative of the mesh displacement according to the G-α
scheme for the first-order systems

˜̇
dmn+1 =

1

γm∆t
(dmn+1 − dmn ) −

1 − γm

γm
(
˜̇
dmn ) , (2.149)

where γm is chosen to be equal to the γ parameter used for the time integration
of the fluid problem, which is in turn dependent on the αf and αm parameters
of the G-α scheme for the INS equations. Subsequently, ˜̇

dmn+αf is calculated
to be used as the weighted average mesh velocity in Eq. 2.133 or 2.141.
However, as explained in section 2.1.5.1, the time derivative calculated using
Eq. 2.149, in conjunction with γ, αf and αm of the G-α scheme, is in general
only first-order accurate and is not as accurate as the true time derivative of
the mesh displacement ḋ

m

n+1, calculated as

ḋ
m

n+1 =
αm

αfγ∆t
(dmn+1 − dmn ) −

(1 − αf)

αf
ḋ
m

n −
(αm − γ)

αfγ
˜̇
dmn . (2.150)

Therefore, one approach for accurately calculating the mesh velocity is to
calculate the true time derivative of the mesh displacement at tn+1, according
to Eq. 2.150, and later use vmn+αf = ḋ

m

n+αf as the weighted average of the

mesh velocity in Eq. 2.133 or 2.141. Another approach is to calculate ˜̇
dmn+1

according to Eq. 2.149 and later use ˜̇
dmn+αm (and not ˜̇

dmn+αf ) as the weighted
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average of the mesh velocity in Eq. 2.133 or 2.141. The latter approach
is valid based on the relation ˜̇

dmn+αm = ḋ
m

n+αf = vmn+αf , shown previously in
section 2.1.5.1. Furthermore, it is also more consistent with the original rules
of the G-α scheme to evaluate the time derivative terms at the intermediate
time instant tn+αm .

The conclusion we would like to draw from the present investigation is
that the consistent application of the G-α scheme to the INS equations on
moving domains requires the evaluation of the integrals on the domain Ωn+αf ,
and that the integration on domain Ωn+1 is not consistent with the time
integration scheme. Numerical studies will be carried out in section 2.1.7 in
order to verify this point.

2.1.6.2 EG-α time integration scheme for INS equations on
moving domains

Recall from section 2.1.5 that in the EG-α scheme, the equilibrium equation in
the interval [tn, tn+1] is satisfied at tn+1 in contrast to the weighted equilibrium
equation in the G-α scheme. This advantage of the EG-α scheme is of even
greater importance in the context of INS equations on moving domains. The
INS equations transformed to the reference domain and discretized in time
using the EG-α reads

(wh, ρJn+1v̇
h
n+1)

Ω0

+ (wh, ρJn+ (F−1
n+1(v

a
n+1 − vmn+1) ⋅ ∇x)vhn+1)

Ω0

+ (∇xwh,Jn+1σ
h
n+1F

−T
n+1)

Ω0

+ (qh,Jn+1 tr (∇xvhn+1 F−1
n+1))

Ω0

− (ρ (F−1
n+1(v

a
n+1 − vmn+1) ⋅ ∇x)wh

+F−T
n+1∇xqh,Jn+1v

′
n+1)

ΩK
0

− (tr (∇xwh F−1
n+1) ,Jn+1p′n+1)

ΩK
0

= (wh,Jn+1fn+1)
Ω0

, (2.151)

with

σ
h
n+1 = µ (∇xvhn+1 F−1

n+1 +F−T
n+1∇

−T
x vhn+1) − phn+1I, (2.152)

v′n+1 = τ
v
n+1r

m
n+1, (2.153)

p′n+1 = τ
p
n+1rcn+1, (2.154)

τ
v
n+1 = (

c1µ

h2
+
c2ρ∥v

a
n+1 − vmn+1∥

h
)

−1

, (2.155)

τ
p
n+1 =

h2

c1τvn+1

, (2.156)
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rmn+1 = fn+1 − ρv̇
h
n+1 − ρ (F

−1
n+1(v

a
n+1 − vmn+1) ⋅ ∇x)vhn+1 +∇x ⋅ (σ

h
n+1F

−1
n+1) ,

(2.157)

rcn+1 = − tr (∇xvhn+1 F−1
n+1) . (2.158)

The mesh velocity vmn+1 is either known analytically or is taken to be equal
to the true time derivative of the mesh displacement, i.e., vmn+1 = ḋ

m

n+1, where
ḋ
m

n+1 is calculated according to Eq. 2.150.
Transforming Eqs. 2.151–2.158 back to the spatial configuration leads to

the final form of the INS equations on moving domains discretized in time by
the EG-α scheme

(wh, ρv̇hn+1)
Ωn+1 + (wh, ρ ((van+1 − v

m
n+1) ⋅ ∇)vhn+1)

Ωn+1 + (∇wh,σhn+1)
Ωn+1

+ (qh,∇ ⋅ vhn+1)
Ωn+1 − (ρ ((van+1 − v

m
n+1) ⋅ ∇)wh

+∇qh,v′n+1)
ΩK
n+1

− (∇ ⋅wh, p′n+1)
ΩK
n+1

= (wh,fn+1)
Ωn+1 , (2.159)

with

σhn+1 = 2µ∇svhn+1 − p
h
n+1I, (2.160)

v′n+1 = τ
v
n+1r

m
n+1, (2.161)

p′n+1 = τ
p
n+1r

c
n+1, (2.162)

τvn+1 = (
c1µ

h2
+
c2ρ∥v

a
n+1 − v

m
n+1∥

h
)

−1

, (2.163)

τpn+1 =
h2

c1τvn+1

, (2.164)

rmn+1 = fn+1 − ρv̇
h
n+1 − ρ ((v

a
n+1 − v

m
n+1) ⋅ ∇)vhn+1 +∇ ⋅ (σhn+1) , (2.165)

rcn+1 = −∇ ⋅ vhn+1. (2.166)

The main advantage of the EG-α scheme over the G-α scheme for the INS
equations on moving domains is that the integrals are directly evaluated on
Ωn+1, and there is no need for evaluations on Ωn+αf .

2.1.7 Results and discussion

In this section, two examples of flows with analytical solutions on fixed
domains are used to study the temporal accuracy of the velocity, pressure and
their time derivatives using different variants of the G-α and EG-α schemes.
Afterwards, two numerical benchmarks with more complex flow structures
are presented and the stability and accuracy of the schemes, using different
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algorithmic parameters, are compared. Finally, two numerical benchmarks
of flows on moving domains are presented. In addition to studying similar
quantities of interest as in flows on fixed grids, the effect of the choice of the
integration domain on the accuracy of the results will be studied.

2.1.7.1 Pulsatile flow in a channel

In this example, a fully developed flow in a channel subjected to an oscillatory
streamwise pressure gradient is studied. The channel is assumed to be oriented
along the x-axis. The pressure gradient comprises constant and oscillatory
components and is defined by the Fourier series

−
∂p

∂x
= g0 +

N

∑
n=1

gne
inωt, (2.167)

where i is the imaginary unit, g0 is the absolute value of the constant part
of the pressure gradient, gn denotes the amplitude of the oscillatory part of
the pressure gradient at the n-th mode, and ω is the fundamental angular
frequency of the oscillations defined by ω = 2π/T , with T being the period of
oscillation.

The velocity in the streamwise direction is defined by [80]

vx =
g0

2µ
(r2

− y2
) + i

N

∑
n=1

gn
ρnω

⎛
⎜
⎝

cosh (y
√
inω/ν)

cosh (r
√
inω/ν)

− 1
⎞
⎟
⎠
einωt, (2.168)

where the first and the second terms on the right-hand side of Eq. 2.168
correspond, respectively, to the constant and oscillatory components of the
velocity. Furthermore, y denotes the y-coordinate measured from the middle
of the channel (see Fig. 2.1), and r is equal to h/2, where h is the width
of the channel. ρ, µ, and ν are the constant density, dynamic viscosity and
kinematic viscosity values, respectively. Eq. 2.168 leads to a complex value,
and its real component is used as the reference value for the velocity.

The analytical solution of the pressure takes the form

p = −(g0 +
N

∑
n=1

gne
inωt

)(x − l) + p0, (2.169)

where p0 is the reference pressure value at the outlet of the channel (see Fig
2.1), x is the distance from the inlet along the x-axis, and l is the length of
the channel.

For the simulations in this section, the Fourier series is truncated at n = 1,
and the following parameter values are used: g0 = 17, g1 = 35 − 45i, p0 = 0,
ω = 2π, h = 0.5, l = 1, ρ = 1, µ = 0.05. The velocity profile in the channel,
normalized by the maximum velocity, is depicted in Fig. 2.2 at different
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Figure 2.1: Pulsatile flow in channel: the computational domain and an
example 30×25 mesh.

fractions of the period of oscillation. A similar pulsatile flow problem, but in
a rigid pipe instead of a channel, is used in [16] using the Womersley solution
[81].
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Figure 2.2: Pulsatile flow in channel: velocity profile along the width of the
channel at different fractions of the period of oscillation.

In the numerical examples, no-slip boundary conditions are applied to the
top and bottom walls of the channel. The velocity profile is applied at the inlet,
and the do-nothing boundary condition is applied at the outlet, which sets the
mean pressure across the outlet boundary to zero [82, 83]. For a modification
of the do-nothing condition that allows the flow to leave the channel without
disturbance when using the so-called strain tensor formulation of the viscous
term used in this work, see, e.g., [76, p. 54]. The initial values are calculated
using the exact values of velocity and pressure, according to Eqs. 2.168 and
2.169, respectively. The domain is discretized using triangular elements with
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quadratic shape functions in order to avoid the lack of consistency in the
numerical solution (due to the spatial discretization) commonly occurring
when using stabilized formulations with linear shape functions. An example
computational mesh with 30 elements along the length and 25 elements along
the height of the channel is shown in Fig. 2.1 for better visibility. In the
actual computations, a similar mesh with respectively 60 and 50 elements
along the length and width of the channel is used.

We are interested in verifying the temporal order of accuracy of the EG-α
scheme and comparing it with the three variants of the G-α scheme: the
direct, shortened and p−O(∆t) variants for the velocity, pressure, and their
time derivatives. For problems with smooth enough solutions and by fully
satisfying the continuity equation, the direct and the shortened forms of the
G-α scheme are equivalent and are simply referred to as the G-α scheme. The
p−O(∆t) form of the G-α scheme differs from the direct and shortened forms
in approximating the pressure (and its time derivative if required). In the
following, the numerical rate of convergence of the relative error of velocity
measured in H1-norm and the pressure in L2-norm, together with the relative
errors of their time derivatives measured in L2-norm are studied as the time
step size is uniformly refined. For instance, the relative error of velocity is
calculated as ∣∣vh − ve∣∣H1/∣∣ve∣∣H1 , where vh and ve are the numerical and
analytical values of velocity, respectively. The errors are calculated at the end
of one period of oscillation (T = 1). The absolute and relative tolerances of
the nonlinear solver in each time step are set to 10−13 and 10−11, respectively.
For all the time integration schemes in this section, ρ∞ = 0.5 is used.

The relative error of the velocity measured in H1-norm is plotted in Fig.
2.3a. As expected, the calculated velocities using the EG-α scheme and all
three variants of the G-α scheme are second-order accurate in time, and the
convergence lines are overlapping.

The relative error of the pressure plotted in Fig. 2.3b shows some differences
among the schemes. While the EG-α and the direct and shortened G-α schemes
result in second-order accurate approximations for pressure, the p−O(∆t)
form of the G-α provides only first-order temporal accuracy for pressure. On
the other hand, the direct and shortened G-α scheme require a consistent
initial value for the pressure, while the p−O(∆t) G-α and EG-α schemes do
not require any initial value for the pressure.

The errors in the time derivatives of velocity and pressure are plotted in
Fig. 2.4 for the EG-α scheme and the direct and shortened forms of the G-α
scheme. The p−O(∆t) G-α scheme is skipped in this comparison since it
provides only first-order accurate pressure approximation and would naturally
lead to a first-order accurate pressure time derivative. The plots reveal that
while the calculated time derivatives of the velocity and pressure, v̇h and ṗh,
using the EG-α are second-order accurate in time, the G-α scheme provides
by default only first order accurate approximations for the time derivatives of
the velocity and pressure, ˜̇vh and ˜̇ph. As verified by Fig. 2.4, second-order
accurate time derivatives of the velocity and pressure can also be obtained
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Figure 2.3: Pulsatile flow in channel: (a) Relative error of velocity vh; (b)
Relative error of pressure ph.

from the G-α scheme as well by performing a post-processing step at every
time step, as shown in section 2.1.5.1.
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Figure 2.4: Pulsatile flow in channel: (a) Relative error of velocity time
derivatives v̇h and ˜̇vh; (b) Relative error of pressure time derivatives ṗh
and ˜̇ph.

2.1.7.2 Taylor-Green vortex problem in 2D

The example presented in section 2.1.7.1 was a uni-directional flow. In this
section, the convergence of the time integration schemes in a more complex
flow pattern is studied. The Taylor-Green solution, originally derived in [84],
is used as a reference solution for benchmarking in CFD [85, 86, 87]. The
Taylor-Green vortex problem admits a spatially periodic and time-dependent
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solution for the velocity and pressure

vx = − cos (πx) sin (πy) e−2π2νt, (2.170)

vy = sin (πx) cos (πy) e−2π2νt, (2.171)

p = −
cos (2πx) cos (2πy)

4
e−4π2νt, (2.172)

where ν denotes the kinematic viscosity.
We consider the solution on a square domain with 0 ⩽ x, y ⩽ 1. The

computational mesh is a 150 by 150 structured grid in which each quadrilateral
cell is divided into four triangular elements with quadratic shape functions.
In the simulations, traction boundary conditions are applied to all boundaries.
The tractions and initial conditions are calculated using the exact values for
the velocity and pressure given in Eqs. 2.170–2.172. The initial pressure and
velocity fields, together with the velocity streamlines, are depicted in Fig. 2.5.
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Figure 2.5: Taylor-Green vortex problem: (a) the velocity field together
with the velocity streamlines; (b) the pressure field.

In the numerical examples in this section, The errors are calculated at
t = 1.0. For all the time integration schemes in this section, ρ∞ is set to
0.5. The absolute and relative tolerances of the nonlinear solver are set to
10−13 and 10−11, respectively, and a direct solver is used to solve the resulting
system of equations.

The relative errors of the velocity and pressure are plotted in Fig. 2.6,
which shows that the velocities calculated using the EG-α scheme and all three
variants of the G-α scheme are second-order accurate in time. In this example,
the velocity using the G-α scheme has a slightly smaller error than the EG-α
scheme, which points to a slightly smaller coefficient in the leading error term
of velocity. On the contrary, the pressure calculated using the EG-α scheme
shows a slightly smaller error than the pressure calculated using the direct
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and shortened forms of the G-α scheme. All three of those schemes possess
second-order temporal accuracy for pressure. Finally, the pressure calculated
using the p−O(∆t) form of the G-α scheme is only first-order accurate in
time, similar to the pulsatile flow example.
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Figure 2.6: Taylor-Green vortex problem: (a) Relative error of velocity vh;
(b) Relative error of pressure ph.

The errors in the time derivatives of velocity and pressure are plotted in Fig.
2.7 for the EG-α scheme and the direct and shortened forms of the G-α scheme.
The time derivatives of the velocity v̇h and pressure ṗh calculated using the
EG-α are second-order accurate in time. Without doing post-processing
on the time derivatives, the G-α scheme provides only first-order accurate
approximations for the time derivatives of the velocity and pressure, ˜̇vh and
˜̇ph. As in the previous example, second-order accurate time derivatives of the
velocity and pressure are recovered for the G-α scheme by performing the
post-processing step at every time step.

The results of this section are consistent with those of section 2.1.7.1 and
confirm the second order temporal accuracy of the EG-α scheme for the
velocity, pressure, and their time derivatives. Furthermore, the results suggest
that the direct and shortened forms of the G-α scheme should be preferred
over its p−O(∆t) form due to possessing higher temporal accuracy for the
pressure.

2.1.7.3 Flow around cylinder

The numerical examples in sections 2.1.7.1 and 2.1.7.2 focused on verifying
the temporal order of accuracy of the schemes by comparison to analytical
solutions. In this section, in addition to the general accuracy of the schemes,
the stability of the time integration schemes is studied using more complex
flow problems.

The well-known example of flow around a cylinder in a channel is studied
in the present section. The flow develops into periodic vortex shedding
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Figure 2.7: Taylor-Green vortex problem: (a) Relative error of velocity time
derivatives v̇h and ˜̇vh; (b) Relative error of pressure time derivatives ṗh
and ˜̇ph.

downstream of the cylinder, known as the von Kármán vortex street. Due to
the vortex shedding, oscillating drag and lift forces are exerted on the cylinder.
The specific benchmark problem solved in this section is taken from [88],
where it is denoted by "test case 2D-2". The geometry of the problem solved
here follows the definitions provided in detail in [88]. The inflow velocity is
prescribed by

vx(y) = 4Um
y (h − y)

h2
, vy = 0, (2.173)

with Um = 1.5 m/s. The fluid has a density of 1.0 kg/m3 and kinematic
viscosity of 10−3 m2

/s, leading to a Reynolds number Re = ŪD/ν = 100, where
Ū = 2Um/3 is the mean velocity across the inlet. It has been suggested to
run the simulation with a coarse time step for about 3.5 seconds in order to
obtain the initial conditions for the actual simulation with a fine time step.
Here, a different initialization procedure similar to the approach in [89] is
used. The simulation is started with zero initial conditions and the inflow
velocity is ramped up to the nominal value in the first 3 seconds. Therefore,
the time-dependent inlet velocity takes the form

vx (y, t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

vx (y)
1 − cos (πt

3
)

2
if t < 3

vx (y) otherwise
, (2.174)

with vx (y) defined by Eq. 2.173.
In order to compare the stability of different variants of the schemes,

we deliberately do not use a very fine mesh to more closely replicate the
challenging situation in which high-frequency oscillations occur while still
simulating the correct behavior of the flow. Two different meshes with medium
and coarse resolutions are used here. In addition, elements with linear shape
functions are used in all the simulations in this section. The coarse mesh,
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depicted in Fig. 2.8, has 8632 triangular elements and 4327 nodes. The
medium mesh follows a similar distribution of the nodes as in the coarse mesh
but is finer and has 33162 elements and 16874 nodes.

Figure 2.8: Flow around cylinder: The coarse mesh.

The simulations are carried out for 8 seconds with a time step size of 0.1
seconds and a relative tolerance of the nonlinear solver in every time step
equal to 10−8. Fig. 2.9 shows the velocity field and streamlines, together with
the pressure contours at the end of a simulation on the coarse mesh and using
the EG-α scheme.

-1.3e+00 2.0e+00-0.5 0 0.5 1 1.5
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Velocity magnitude

Figure 2.9: Flow around cylinder: (a) the velocity field and the streamlines;
(b) the pressure contours.

Two values of interest in the flow around the cylinder example are the drag
and lift coefficients, CD and CL, which are defined respectively as

CD =
2FD

ρŪ2D
, CL =

2FL

ρŪ2D
, (2.175)

where FD and Fl are the drag and lift forces on the cylinder, calculated in the
present work using the variationally consistent approach (see section 2.1.4).
The evolution of the drag coefficient on the cylinder over time is plotted
in Fig. 2.10 for the coarse and the medium meshes. The drag coefficient
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undergoes harmonic oscillations as expected with the values of CD lying in
the ranges [3.18, 3.124] and [3.17, 3.123] using the coarse and medium meshes,
respectively, which are satisfactory when compared to the results presented
in [88] where the lower and upper bounds of the maximum value of CD are
3.22 and 3.4 respectively.

Figure 2.10: Flow around cylinder: Evolution of the drag coefficient CD.

The evolution of the lift coefficient on the cylinder is plotted in Fig. 2.11
for the coarse and the medium meshes. The magnitude of the lift coefficient
oscillations has almost converged to 1.0 at t = 8, and a longer simulation is
generally required to reach a fully developed results. However, the results
after 8 seconds are enough for the comparisons carried out in this section.
For comparison, the lower and upper bounds of the results reported in [88]
for the maximum value of CL are 0.99 and 1.01 respectively.
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Figure 2.11: Flow around cylinder: Evolution of the lift coefficient CL.



54 Chapter 2. Time discretization of fluid-structure interaction problems

We are interested in comparing the stability and accuracy of the EG-α
scheme to the direct and shortened variants of the G-α scheme. In order to
do so, we compare the values of the drag and lift coefficients as well as the
pressure value in front of the cylinder and the flow velocity in the y-direction
at a point located 0.15 m downstream of the cylinder for different schemes
and different values of ρ∞. The results for ρ∞ = 0.5 are plotted in Fig. 2.12
in a time interval right at the end of the simulation. The plots reveal that
the results using the EG-α, direct G-α and shortened G-α schemes perform
very similarly. Any possible high-frequency oscillation is damped out because
of the introduced high-frequency dissipation by setting ρ∞ = 0.5. There is a
slight difference in the pressure values obtained by the shortened G-α scheme
compared to the other two schemes. This difference is attributed to the
fact that the shortened G-α scheme actually solves an ever slightly different
problem (due to the shortening of the time-discrete continuity equation).
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Figure 2.12: Flow around cylinder: comparison of the EG-α, direct G-α and
shortened G-α schemes with ρ∞ = 0.5. (a) velocity at 0.15 m downstream
of cylinder; (b) pressure in front of cylinder; (c) lift coefficient; (d) drag
coefficient.

While the choice of ρ∞ = 0.5 is commonly recommended for the G-α
scheme, a higher value of ρ∞, i.e., less numerical dissipation, is enough for
many problems and leads to more accurate results. The schemes are also
compared for ρ∞ = 0.95, leading to a minimal amount of high-frequency
dissipation. The results, plotted in Fig. 2.12, reveal that while the EG-α and
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the shortened G-α schemes lead to stable results for all the plotted values,
the pressure and drag coefficient calculated using the direct G-α scheme
develop high-frequency oscillations which grow in time. This is due to the
fact that very small errors in the continuity equation are propagated and
accumulate over time when using the direct form of the G-α scheme. The
shortened G-α scheme avoids the propagation of such errors by shortening
the continuity equation and solving the modified problem. The EG-α solves
the equilibrium equation, including the continuity equation, at every discrete
time point separately and, therefore, does not suffer from the propagation of
the errors in the continuity equation.

7.6 7.7 7.8 7.9 8.0

Time [s]
−1.0

−0.5

0.0

0.5

1.0

v
h

[m/
s]

(a)

EG-α

shortened G-α

direct G-α

7.6 7.7 7.8 7.9 8.0

Time [s]
1.98

1.99

2.00

2.01

2.02

p
h

[Pa
]

(b)

7.6 7.7 7.8 7.9 8.0

Time [s]
−1.0

−0.5

0.0

0.5

1.0

C
L

(c)
7.6 7.7 7.8 7.9 8.0

Time [s]

3.18

3.20

3.22

3.24

C
D

(d)

Figure 2.13: Flow around cylinder: comparison of the EG-α, direct G-α and
shortened G-α schemes with ρ∞ = 0.95. (a) velocity at 0.15 m downstream
of cylinder; (b) pressure in front of cylinder; (c) lift coefficient; (d) drag
coefficient.

2.1.7.4 Oscillating driven cavity flow

In this section, another example of unsteady flows is studied in order to verify
the findings in section 2.1.7.3. The driven cavity is a well-known benchmark
in the CFD community. However, it is usually used for verifying steady-state
solutions. An unsteady oscillating version of the benchmark is proposed in
[90]. The computational domain is a unit square. No-slip boundary conditions
are applied on the left, bottom, and right sides of the square. On the top
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boundary, an oscillating velocity along the x-axis is applied:

vx = U sin (ωt) , (2.176)

with U = 1 m/s and ω = π. The fluid has a density of 1 kg/m3 and kinematic
viscosity of 0.002 m2

/s, leading to a Reynolds number Re = 500. Since the
pressure is defined up to a constant in this enclosed domain, the pressure
value at a point located in the middle of the bottom boundary is set to zero.
Two triangular meshes are considered for the simulations, a coarse and a fine
mesh with 60 and 140 divisions along each side, respectively. The meshes are
refined towards the boundaries. For the sake of clarity, only the bottom left
quarter of the coarse mesh is shown in Fig. 2.14.

Figure 2.14: Oscillating driven cavity flow: The bottom left quarter of the
coarse mesh with 60 divisions along each side.

The simulations in this section are carried out for 10 seconds with a time
step size of 0.02 seconds, triangular elements with linear shape functions, and
a relative tolerance of the nonlinear solver in every time step equal to 10−9.
Fig. 2.15 shows the velocity field and streamlines, together with the pressure
contours at the end of a simulation on the coarse mesh and using the EG-α
scheme.

A value of interest in the current example is the integrated skin friction
coefficient (or simply friction coefficient) on the top boundary, defined as

CF =
2FF
ρU2

, (2.177)

where FF is the integrated shear force on the top boundary and U is the
characteristic velocity. In [90], a slightly different definition of the friction
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Figure 2.15: Oscillating driven cavity flow: (a) the velocity field and the
streamlines; (b) the pressure contours at t = 10 s.

coefficient is used, which would be equal to Re ⋅ CF /2, with Re being the
Reynolds number and CF defined by Eq. 2.177. The friction coefficients
calculated using the EG-α scheme on the fine and coarse meshes are plotted
in Fig. 2.16. For comparison, Fig. 2.16 plots also the reference values from
[90] obtained using a structured 121 × 121 grid and with a time step size
of 2 × 10−4, and rescaled to follow the friction coefficient definition in Eq.
2.177. For the numerical stability studies in this section, the coarse mesh is
deliberately used.
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Figure 2.16: Oscillating driven cavity flow: The evolution of the friction
coefficient using the fine and coarse meshes and comparison with the reference
values from [90]. The reference values are resealed here to match the present
definition of the friction coefficient.

Similarly to the friction coefficient, Eq. 2.177, we define a force coefficient
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for the normal force exerted on the top boundary by the flow:

CN =
2FN
ρU2

, (2.178)

where FN is the integrated normal force applied on the top boundary by the
flow. Note that in the current example, CF is independent of the pressure
value, but CN depends on the pressure. In addition to CF and CN , we monitor
the pressure value at a point located in the middle of the top boundary, with
the coordinates [0.5, 1], and the velocity value at a point with the coordinates
[0.5, 0.75] (the left bottom corner of the domain has the coordinates [0,0]).

The results from the last two seconds of the simulations using the EG-α,
direct G-α, and shortened G-α schemes with ρ∞ = 0.5 are shown in Fig.
2.17. The Results in Fig. 2.17 indicate that the three schemes perform very
similarly in this example, and are practically indistinguishable when enough
numerical high-frequency damping is used.
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Figure 2.17: Oscillating driven cavity flow: comparison of the EG-α, direct
G-α and shortened G-α schemes with ρ∞ = 0.5. (a) velocity along the x-axis
at the point [0.5, 0,75]; (b) pressure at the point [0.5, 0,75]; (c) friction
coefficient; (d) normal force coefficient.

In order to compare the three schemes with lower amount of algorithmic
high-frequency dissipation, the simulations are repeated with ρ∞ = 0.95. The
results from the last two seconds of the simulations are shown in Fig. 2.18. The
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pressure value calculated using the direct G-α scheme develops high-frequency
oscillations which grow in time. Consequently, the normal force coefficient
CN starts to oscillate using the direct G-α scheme. The velocity and the
friction coefficient CF calculated using the direct G-α scheme are oscillation
free due to the independence of CF from the pressure values. In contrast to
the direct G-α scheme, the results using the EG-α and the shortened G-α
are stable in the current example, even when using very small amounts of
high-frequency dissipation.

The results of this section are in agreement with the observations made in
section 2.1.7.3 and indicate that the EG-α and the shortened G-α schemes
are generally more stable than the direct G-α scheme. While the direct G-α
scheme performs as well as the other two schemes for higher amounts of
high-frequency dissipation, it is prone to developing pressure oscillations when
using lower amounts of high-frequency dissipation. The situation may get
worse for the direct G-α scheme when solving more complex flow problems
with rough initial and boundary conditions.
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Figure 2.18: Oscillating driven cavity flow: comparison of the EG-α, direct
G-α and shortened G-α schemes with ρ∞ = 0.95. (a) velocity along the
x-axis at the point [0.5, 0,75]; (b) pressure at the point [0.5, 0,75]; (c) friction
coefficient; (d) normal force coefficient.
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2.1.7.5 Poiseuille flow on moving domain

After studying the accuracy and stability of the EG-α and variants of G-α
schemes on fixed grids, the accuracy of different schemes is compared on
moving grids in the current and the following section. Particular focus is
placed on the correct instance of the integration domain when solving the
equations in the current configuration (equivalently, the correct time instant
at which the domain’s deformation gradient F and its determinant J are
evaluated when solving the equations in the reference configuration).

The current example is taken from [63] and consists of the Poiseuille flow
in a channel with a moving grid. The velocity field in the Poiseuille flow is
steady-state and has a quadratic profile along the width of the channel. The
steady-state pressure field changes linearly in space along the length of the
channel. The domain is discretized using a structured quadrilateral 10 × 6
mesh with quadratic shape functions in each element. The computational
domain, together with the initial mesh, is depicted in Fig. 2.19. The physical

Figure 2.19: Poiseuille flow on moving domain: The computational domain
and an the 10 × 6 initial mesh.

parameters of the problem are h = 1, l = 2, ρ = 1, and ν = 0.2. A parabolic
velocity profile with the maximum value of 0.5 is applied at the Inlet, and
do-nothing boundary condition is applied at the outlet. The computational
grid undergoes a deformation such that the vertical middle line of the mesh
is moved 0.8 units to the right at one extreme and 0.8 units to the left at the
other one, according to the horizontal elongation function x = 0.8 sin(πt/2).
The deformed mesh at the two extremes of the deformation is depicted in Fig.
2.20. The simulations are carried out using a time step size of 0.05.

We intend to compare the accuracy of the EG-α scheme and the variants
of the G-α scheme listed in Table 2.1. The time evolution of the pressure
value at point M in the middle of the domain (in the current configuration)
is monitored using different schemes. The schemes are expected to preserve
the constant value for pressure at point M. Note that since the velocity field
is steady-state and the same everywhere along the x-axis, no difference in
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Figure 2.20: Poiseuille flow on moving domain: The computational domain at
the (a) left extreme of the deformation; (b) right extreme of the deformation.

the velocity values among the different variants of the schemes is revealed in
this example. The evolution of the pressure value at point M using different
schemes is plotted in Fig. 2.21.

Figure 2.21: Poiseuille flow on moving domain: The evolution of the pressure
value in the middle of the domain using different schemes. Refer to Table
2.1 for the details of the schemes.

The EG-α scheme used on domain Ωn+1 yields correct results for the
pressure. This is the advantage of the EG-α scheme for problems on moving
domains and is the result of satisfying the equilibrium equation at tn+1. Among
the variants of the G-α scheme, two groups of variants lead to the correct
results for the pressure. The first group consists of the direct G-α evaluated
on Ωn+αf , shortened G-α evaluated on multiple instances of Ω, and shortened
G-α evaluated on Ωn+αf (see Table 2.1 for the naming convention). The first
group of G-α variants is characterized by the evaluation of the pressure term
at tn+αf and on the intermediate domain Ωn+αf . The second group of the G-α
variants, leading to the correct results for pressure, comprises the p−O(∆t)
G-α evaluated on Ωn+1 and p−O(∆t) G-α evaluated on multiple instances of
Ω. This second group of the schemes is characterized by the evaluation of the
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pressure term at tn+1 and on the domain Ωn+1. There are also variants of the
G-α that do not yield correct results for the pressure, namely: the direct and
shortened G-α evaluated on Ωn+1 and the p−O(∆t) G-α evaluated on Ωn+αf .
The last group of variants has a mismatch between the time instant at which
the pressure term and its integral are evaluated.

The conclusion drawn from the present example, which is strictly valid
only for the pressure approximation, is that the EG-α scheme yields the
expected results for the pressure. For the G-α family of schemes, the integrals
should be evaluated on a domain consistent with the time instant at which the
pressure term is evaluated. Of course, from an accuracy point of view, using
a variant of the G-α with a second-order approximation for pressure is more
desirable. As mentioned previously, Due to a combination of the constant
velocity field along the x-axis and the grid’s motion being also uni-directional
in the x-direction, the current example is incapable of revealing any difference
among different variants of the G-α scheme in the approximation of velocity.
Therefore, a more complex flow on a moving domain will be studied in the
following section in order to gain a full understating and comparison of the
different schemes.

2.1.7.6 Taylor-Green vortex problem in ALE coordinates

In this section, the Taylor-Green flow example, presented in section 2.1.7.2, is
revisited by solving the problem on a moving domain. The velocity and the
pressure fields are not constant in time and space and are, therefore, suitable
for comparing different time integration schemes on moving domains. The
same physical parameters as in section 2.1.7.2 are used here. However, the
domain moves along the x and y axes according to the following formulae:

x = (1 − cos(ωt))xy (x − h) (y − h) , (2.179)
y = (1 − cos(ωt))xy (x − h) (y − h) , (2.180)

where ω = 2π is the frequency of the oscillatory motion and h = 1 is the
length of each side of the domain. The nodes on the boundary do not move,
and the grid’s internal nodes move along one of the diagonals of the square
domain. The deformed mesh at the extreme of oscillatory motion is depicted
in Fig. 2.22 for a mesh with 25 divisions along each edge of the domain (for
better clarity). In the actual simulations, a mesh with 50 divisions along each
domain edge is used. The simulations are carried out for 2 seconds with a
time step size of 0.025.

First, the temporal order of accuracy of the calculated mesh velocity using
the G-α family of schemes is compared. It was pointed out in section 2.1.6.1
that the mesh velocity calculated using Eq. 2.149 is generally first-order
accurate. In contrast, the true mesh velocity calculated using Eq. 2.150 is
second-order accurate in time. The errors in the calculated mesh velocities
˜̇
dm and ḋm using Eqs. 2.149 and 2.150 are measured at t = 0.9 and are plotted
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Figure 2.22: Taylor-Green vortex problem on a moving domain: (a) the
initial mesh and the computational domain at one extreme of the oscillatory
motion; (b) the computational domain at the other extreme of the oscillatory
motion for a mesh with 25 elements along each edge.

against a uniform refinement of the time step size in Fig. 2.23. It is verified
that the calculated mesh velocity using Eqs. 2.149 and 2.150 are indeed first
and second-order accurate in time, respectively.
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Figure 2.23: Taylor-Green vortex problem on a moving domain: The global
error of the calculated mesh velocities ˜̇

dm and ḋm using, respectively, Eqs.
2.149 and 2.150.

Next, the accuracy of the calculated pressure and velocity along the x-axis
at point P, located in the middle of the top boundary, using different variants
of the G-α scheme listed in Table 2.1 are compared. The analytical solution of
both the pressure and the velocity in x-direction at point P is zero throughout
time (see Fig. 2.5).

The evolution of the pressure and velocity at point P approximated using
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the direct G-α variants are plotted in Fig.2.24. The results reveal that using
the direct G-α and evaluating the terms on Ωn+αf yields values very close
to the analytical solution. Those values would converge to the analytical
solution using finer time steps and spatial discretizations. In contrast, using
the direct G-α and conveniently evaluating the terms on Ωn+1 yields results
which deviate from the expected values.
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Figure 2.24: Taylor-Green vortex problem on a moving domain: comparison
of the direct G-α variants in the approximation of (a) the velocity along
the x-axis; (b) the pressure at point P.

The results using the shortened G-α variants are presented in Fig. 2.25
and indicate that the only variant of the shortened G-α scheme capable of
approximating the expected analytical solutions is the one with evaluations
of the integrals on multiple instances of the domain. This is a drawback
of the shortened G-α scheme for flows on moving domains since the terms
containing the continuity equation must be evaluated on Ωn+1, while all the
other terms are evaluated on Ωn+αf . This drawback is alleviated when solving
the equations in the reference configuration. Note in Fig. 2.25 that using the
shortened G-α and evaluating all the integrals on Ωn+αf does not yield the
correct results, neither for the pressure nor for the velocity.

The results using the p−O(∆t) G-α variants are presented in Fig. 2.26.
Using the p−O(∆t) G-α scheme and evaluating the integrals on multiple
instances of the domain, according to Table 2.1, generally leads to accepted
results. However, the pressure and velocity approximations are not as accurate
as the direct and shortened variants with the correct setups. The combination
of the p−O(∆t) G-α scheme and evaluation of integrals on multiple instances
is also tried together with the inf-sup stable P2P1 elements, which lead to
similar results.

The EG-α scheme, used on the domain Ωn+1, is compared in Fig. 2.27 to
the most accurate variants of the G-α family of schemes, that is, the direct
G-α used on the domain Ωn+αf and shortened G-α with the evaluation of
integrals on multiple instances of the domain. The EG-α alpha and direct
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Figure 2.25: Taylor-Green vortex problem on a moving domain: comparison
of the shortened G-α variants in the approximation of (a) the velocity along
the x-axis; (b) the pressure at point P.
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Figure 2.26: Taylor-Green vortex problem on a moving domain: comparison
of the p−O(∆t) G-α variants in the approximation of (a) the velocity along
the x-axis; (b) the pressure at point P.

G-α schemes behave very similarly, with the EG-α scheme being slightly more
accurate in approximating the pressure. The shortened G-α scheme performs
slightly worse than the two other schemes in the approximation of velocity.

After the quantitative comparison of the schemes using the results at point
P, the global solution of the pressure field using different variants of the
schemes is plotted and compared in Fig. 2.28. The sub-figures on the top row
of Fig. 2.28 show results using the EG-α, direct and shortened G-α schemes
using their corresponding correct integration domains. The sub-figures on
the bottom row of the figure show examples of distorted pressure fields
approximated using the wrong integration domains. A similar comparison for
the velocity field is made using Fig. 2.29, showing examples of the distorted
velocity fields in the sub-figures in the bottom row.
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Figure 2.27: Taylor-Green vortex problem on a moving domain: compari-
son of the EG-α scheme with the best performing variants of G-α in the
approximation of (a) the velocity along the x-axis; (b) the pressure at point
P.
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Figure 2.28: Taylor-Green vortex problem in ALE framework: pressure
field at time t = 2.0 using (a) EG-α on Ωn+1; (b) direct G-α on Ωn+αf ; (c)
shortened G-α, multi-domain; (d) p−O(∆t) G-α on Ωn+1; (e) direct G-α
on Ωn+1; (f) shortened G-α on Ωn+αf

2.2 Time discretization of the solid problem

2.2.1 The solid problem

The solid problem is posed in the Lagrangian reference frame. The governing
equation of the solid is determined by the momentum equation

ρ∂ttd −∇X ⋅ (FΣ) = ρf in Ω0, t ∈ (0, T ] , (2.181)
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Figure 2.29: Taylor-Green vortex problem in ALE framework: velocity
field at time t = 2.0 using (a) EG-α on Ωn+1; (b) direct G-α on Ωn+αf ; (c)
shortened G-α, multi-domain; (d) p−O(∆t) G-α on Ωn+1; (e) direct G-α
on Ωn+1; (f) shortened G-α on Ωn+αf

where ρ is the solid density in the reference frame, ∂tt stands for the second
derivative with respect to time, F is the deformation gradient of the solid
deformation mapping, Σ is the second Piola–Kirchhoff stress, and f is the
body force per unit mass. The deformation gradient F is defined as

F =
∂At (X)

∂X
=
∂x (X, t)

∂X
= ∇Xx, (2.182)

where X and x stand for the material and spatial coordinates, respectively.
For St. Venant Kirchhoff material, the second Piola–Kirchhoff stress is defined
as

Σ = 2µE + λ tr (E)I, (2.183)

where µ and λ are the Lamé parameters, and E is the Green–Lagrange strain
tensor defied as

E =
1

2
((F)

TF − I) . (2.184)

The solid problem in Eq. 2.181 is subjected to the following initial and
boundary conditions

d = d0 in Ω0, t = 0,

∂td = v0 in Ω0, t = 0,

d = ds,D on Γs,D0 , t ∈ (0, T ] ,

FΣ ⋅n0 = t
s,N on Γs,N0 , t ∈ (0, T ] ,

(2.185)
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where d0 and v0 are the initial values for displacement and velocity respectively,
Γs,D0 and Γf,N0 represent the Dirichlet and Neumann portions of the solid
boundary Γ, n0 is the unit normal vector of the solid domain’s boundary
in the reference configuration, and ts,N is the normal traction prescribed on
the Neumann section of the solid domain’s boundary. Let V ∶=H1

D (Ω0) and
W ∶=H1

0 (Ω0) be the spaces of trial solution and test functions, respectively,
and Vh and Wh be their corresponding finite-dimensional spaces. After
spatial discretization using Galerkin method, the semi-discrete form of the
solid problem reads: Find d ∈ Vh such that ∀w ∈Wh

B (w,d) = F (w) , (2.186)

where

B (w,d) = (w, ρ∂ttd)Ω0
+ (∇Xw,FΣ)Ω0

, (2.187)

F (w) = (w, ρf)Ω0
+ (w, ts,N)

Γ
f,N
0

. (2.188)

The solid problem in Eq. 2.181 is a second-order system in time. It is
possible to write the system in Eq. 2.181 as a system of two coupled first-order
equations in time. By introducing v as an independent variable, the solid
problem can be restated as

ρ∂tv −∇X ⋅ (FΣ) = ρf in Ω0, t ∈ (0, T ] , (2.189)
∂td = v in Ω0, t ∈ (0, T ] , (2.190)

where the second equation is a kinematic constraint between the displacement
and velocity variables. Recasting the solid problem, as in Eqs. 2.189-2.190,
has been attractive in the literature in the context of FSI simulations [50,
203, 204, 79]. This approach has the advantage that one can treat the solid
and fluid problems uniformly. On the other hand, the number of degrees
of freedoms (DoFs) in the system represented by Eqs. 2.189-2.190, and
subsequently the size of the system of linear equations arising from the spatial
discretization, is doubled compared to the system in Eq. 2.181 since there
are now two unknown variables instead of one. However, as was shown in
[205], it is possible to reduce the unknown variables to only d (or equally v)
by taking advantage of Eq. 2.190 and algebraic manipulations through the
update formulas of the time integration scheme.

2.2.2 G-α time integration scheme for second-order systems

The G-α scheme for second-order was introduced in [47] and includes as
subsets many of popular time integration schemes in structural mechanics,
e.g., Newmark [212], HHT-α [213], WBZ-α [214]. For a unified presentation
of those family of schemes, see [187, 189]. Let the time interval [0, T ] be
divided into Nt subintervals, with the discrete points in time {tn}

Nt
n=0, and
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let ∆tn = tn+1 − tn be the time step size in the nth interval. Using the G-α
scheme, the Following kinematic variables, evaluated at different instants
within the time step, are required

dn+αf = (1 − αf)dn + αfdn+1, (2.191)

ḋn+αf = (1 − αf)ḋn + αf ḋn+1, (2.192)
˜̈
dn+αm = (1 − αm)

˜̈
dn + αm

˜̈
dn+1, (2.193)

where dn+1, ḋn+1 and ˜̈
dn+1 are the displacement, velocity and auxiliary

acceleration variables at tn+1, and dn, ḋn and ˜̈
dn represent the same variables

at time tn, respectively. The values αf and αmf are algorithmic parameters

of the scheme. Evaluating the auxiliary acceleration variable ˜̈
d at a different

time instant than the rest of the terms is one of the mechanisms used in the
G-α scheme for introducing an optimal amount of numerical high-frequency
damping. However, the auxiliary acceleration variable ˜̈

d(also called the
acceleration-like variable) is shown in [48] to possess only first-order accuracy
in time (in contrast to the second-order accuracy for displacement and velocity
variables). The second-order accuracy of the acceleration can be restored by
introducing the true acceleration variable d̈, which is related to the auxiliary
acceleration variable ˜̈

d through the following relation [48]:

(1 − αm)
˜̈
dn + αm

˜̈
dn+1 = (1 − αf) d̈n + αf d̈n+1. (2.194)

Using the second-order accurate acceleration values is crucial in the fluid-
subcycling method presented in section 5.3.1. Therefore, the true acceleration
d̈ is calculated and tracked in time. The kinematic variables are related
through the following two update formulae

dn+1 = dn +∆tḋn +∆t2 ((
1

2
− β)

˜̈
dn + β

˜̈
dn+1) , (2.195)

ḋn+1 = ḋn +∆t((1 − γ)
˜̈
dn + γ

˜̈
dn+1) , (2.196)

where β and γ are algorithmic parameters of the scheme. The following
relations for the algorithmic parameters ensure the second-order accuracy and
unconditional stability of the scheme

αf =
1

1 + ρ∞ , αm =
2 − ρ∞
1 + ρ∞ , β =

(1 + αm − αf)
2

4
γ =

1

2
+ αm − αf ,

(2.197)
where 0 ⩽ ρ∞ ⩽ 1 is the spectral radius of the amplification matrix of the
scheme as ∆t → ∞ and is used to control the amount of numerical high-
frequency damping of the scheme.
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The equilibrium equation of the problem is satisfied in a weighted average
sense in each time step. For the solid model problem, the time-discretized
equilibrium equation reads

M
˜̈
dn+αm +Kdn+αf = λn+αf . (2.198)

Note that the solid interface force λ is also evaluated at tn+αf .
The G-α scheme for first-order systems can also be used for the time

integration of the solid problems by rewriting the structural equations as
a system of two first-order equations and without increasing the number
of unknowns, as shown in [205]. In this work, the structural problem is
discretized using the EG-α scheme in order to have a consistent and uniform
time discretization of the FSI problem.

2.2.3 EG-α time integration scheme for structural problems

In this section the EG-α scheme for the time discretization of structural
mechanics problems is derived. The main advantage of the EG-α for struc-
tural mechanics problems is that it allows a uniform and consistent temporal
discretization of the FSI problems. It is possible to directly apply the EG-α
scheme derived in section 2.1.5 to Eqs. 2.189-2.190. However, the resulting
linear system of equations would have double the number of unknowns corre-
sponding to the displacement and velocity variables, d and v, respectively.
Inspired by the approach in [205] for the classical averaged form of the G-α
scheme for first-order systems, a variant of the EG-α for structural problems
without increasing the number of unknowns in the system of linear equations
is derived in the following.

The variables involved in the temporal discretization of Eqs. 2.189-2.190
using the EG-α scheme are: d, ˜̇

d, ḋ, v, ˜̇v, v̇, which are related to each other
using the following G-α formulae:

dn+1 = dn +∆t((1 − γ)
˜̇
dn + γ

˜̇
dn+1), (2.199)

vn+1 = vn +∆t ((1 − γ)˜̇vn + γ˜̇vn+1) , (2.200)

(1 − αm)
˜̇
dn + αm

˜̇
dn+1 = (1 − αf) ḋn + αf ḋn+1, (2.201)

(1 − αm) ˜̇vn + αm˜̇vn+1 = (1 − αf) v̇n + αf v̇n+1. (2.202)

Discretizing the kinematic constraint in Eq. 2.190 using the EG-α scheme
leads to

ḋn+1 = vn+1, ḋn = vn. (2.203)

Therefore, only one of the variables ḋ and v is required to be stored. Replacing
ḋn+1 and ḋn with vn+1 and vn in Eq. 2.201 and inserting the resulting
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expression for vn+1 in Eq. 2.199 leads to

vn+1 =
αm

αfγ∆t
(dn+1 − dn) +

γ − αm
αfγ

˜̇
dn −

1 − αf
αf

vn. (2.204)

Inserting Eq. 2.204 and the expression for v̇n+1 from Eq. 2.202 into Eq. 2.200
leads to

v̇n+1 =
α2
m

α2
fγ

2∆t2
(dn+1−dn)+

αm(γ − αm)

α2
fγ

2∆t
˜̇
dn−

αm
α2
fγ∆t

vn+
γ − αm
αfγ

˜̇vn−
1 − αf
αf

v̇n.

(2.205)
From Eqs. 2.204 and 2.205, we have

∂vn+1

∂dn+1
=

αm
αfγ∆t

,
∂v̇n+1

∂dn+1
=

α2
m

α2
fγ

2∆t2
. (2.206)

For a semi-discretized linear structural problem with the mass matrix M ,
stiffness matrix K and damping matrix C, and external force vector F , the
solution to dn+1 can be found through solving the following system:

⎛

⎝

α2
m

α2
fγ

2∆t2
M +

αm
αfγ∆t

C +K
⎞

⎠
dn+1 =

M
⎛

⎝

α2
m

α2
fγ

2∆t2
dn −

αm(γ − αm)

α2
fγ

2∆t
˜̇
dn +

αm
α2
fγ∆t

vn −
γ − αm
αfγ

˜̇vn +
1 − αf
αf

v̇n
⎞

⎠

+C (
αm

αfγ∆t
dn −

γ − αm
αfγ

˜̇
dn +

1 − αf
αf

vn)

+F n+1. (2.207)

After solving for dn+1, the values of vn+1, v̇n+1, ˜̇
dn+1, and ˜̇vn+1 are updated

using Eqs. 2.204, 2.205, 2.201, and 2.202, respectively. Note that the values
of ˜̇
dn+1, and ˜̇vn+1 do not necessarily need to be stored separately and can

overwrite the values of ˜̇
dn, and ˜̇vn before proceeding to the next time step.

For nonlinear problems, a predictor-multicorrector approach is suitable.
The predictor used here is based on the assumption that the value of velocity
remains the same when moving from one time step to the next. The values of
the kinematic variables at the predictor stage (the zeroth nonlinear iteration)



72 Chapter 2. Time discretization of fluid-structure interaction problems

read:

v
(0)
n+1 = vn (2.208)

d
(0)
n+1 = dn −

(γ − αm)∆t

αm

˜̇
dn +

γ∆t

αm
vn (2.209)

v̇
(0)
n+1 =

γ − αm
αfγ

˜̇vn −
1 − αf
αf

v̇n. (2.210)

The nonlinear problem in the kth iteration is solved using

⎛

⎝

α2
m

α2
fγ

2∆t2
M +

αm
αfγ∆t

C +Kt⎞

⎠
∆d

(k+1)
n+1 = −R

(k)
n+1, (2.211)

where ∆d
(k+1)
n+1 = d

(k+1)
n+1 − d

(k)
n+1, K

t is the tangent stiffness matrix, and R(k)
n+1

is the residual of the momentum equation at the kth iteration, defined as

R
(k)
n+1 =Mv̇

(k)
n+1 +Cv

(k)
n+1 +G

(k)
n+1(d

(k)
n+1) −F n+1, (2.212)

where G(k)
n+1 is the vector of internal forces at the kth iteration.

After solving the linear system of equations in the kth nonlinear iteration,
the kinematic variables are updated in the corrector stage as follows:

d
(k+1)
n+1 = d

(k)
n+1 +∆d

(k+1)
n+1 , (2.213)

v
(k+1)
n+1 = v

(k)
n+1 +

αm
αfγ∆t

∆d
(k+1)
n+1 , (2.214)

v̇
(k+1)
n+1 = v̇

(k)
n+1 +

α2
m

α2
fγ

2∆t2
∆d

(k+1)
n+1 . (2.215)

The values of the auxiliary variables ˜̇
dn+1, and ˜̇vn+1 are updated at the end

of the time step using Eqs. 2.201, and 2.202, respectively.

2.3 Fluid-structure interaction problem

In an FSI problem, the initial configuration of the problem’s domain Ω0 ⊂ Rd,
d = {2,3}, is partitioned into the solid and fluid subdomains such that there
are no overlapping or gaps between the two domains, i.e., Ω0 = Ωs

0 ∪ Ωf
0 .

The shared interface of the fluid and structural domains is denoted by Γi0,
i.e., Γi0 = ∂Ωs0 ∩ ∂Ωf0 . The problem’s domain undergoes deformations during
an FSI simulation. The initial configuration often serves as the reference
configuration. Let Ast and Aft be sufficiently regular and invertible mappings
that relate the reference and the current configurations of the solid and fluid
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subdomains, i.e.,

A
s
t ∶ Ω

s
0 → Ωst , x (x, t) = Ast (x) ∀x ∈ Ωs0, (2.216)

A
f
t ∶ Ω

f
0 → Ωft , x (x, t) = Aft (x) ∀x ∈ Ωf0 . (2.217)

The mappings Ast and A
f
t define the motion of the solid and fluid subdomains

respectively and coincide on the FSI interface Γi. The partitioning of the
problem’s domain holds as well for any time 0 < t such that Ω(t) ≡ Ωt = Ωst ∪Ωft
and Γit = ∂Ωs

t ∩ ∂Ωf
t . In the present work, the structural problem is solved

in Lagrangian reference frame and the fluid problem is solved in the ALE
reference frame [68, 69, 70]. Therefore, the motion of the solid domain
coincides with the motion of the material particles. However, the motion of
the fluid domain does not define the motion of the material particles.

2.3.1 Motion of the fluid problem

The ALE mapping Aft defines the motion of the fluid domain and is updated
in accordance with the motion of the FSI interface. The mapping Aft can
be characterized using a partial differential equation subjected to Dirichlet
boundary conditions on the FSI interface due to the motion of the structure.
Let x and x be the coordinates of the current and reference configuration of
the fluid domain, respectively, and dm be the displacement of the domain
with respect to the reference configuration. It holds that

x (x, t) = x + dm (x, t) = Aft (x) . (2.218)

The displacement of the reference domain is governed by a PDE representing
a fictitious elastic structure

−∇x ⋅ (2µ
m
∇
s
xd

m
+ λm(∇x ⋅ d

m
)I) = 0 in Ωf0 , (2.219)

where µm and λm are the Lamé parameters of the fictitious elastic structure
which are selected with the aim of preserving the mesh quality of the deformed
fluid domain throughout the simulation. An effective approach presented in
[78, 202] for preserving the mesh quality is to make the smaller elements,
which are usually placed next to the FSI interface, stiffer by dividing the
parameters of the fictitious structure by the Jacobian determinant of the
mapping from the reference cell to each element in the mesh. Eq. 2.219 is
subjected to the following Dirichlet boundary condition

dm = di on Γi0, (2.220)

where di is the displacement of the FSI interface dictated by the structure’s
motion.

Let Vm ∶= H1
D (Ωf0) and Wm ∶= H1

0 (Ωf0) be the spaces of trial and
test functions, respectively, and Vmh andWm

h be their corresponding finite-
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dimensional spaces. After spatial discretization using the Galerkin method,
the semi-discrete form of the mesh moving problem reads: Find dm ∈ Vmh
such that ∀wm

∈Wm
h

Bm (wm,dm) = (∇
s
xw

m,2µm∇sxd
m
)
Ω
f
0
+ (∇x ⋅w

m, λm∇x ⋅ d
m
)
Ω
f
0
= 0.

(2.221)
The displacement in the fluid domain is then related to the mesh velocity
through the time integration rules of the fluid solver.

2.3.2 Coupling of the fluid and solid problems

The numerical FSI simulation is carried out by solving the fluid, fluid mesh
deformation, and solid problems together with appropriate interface coupling
conditions. The first interface condition is the so-called geometric coupling
condition which specifies that the solid and the fluid subdomains match at the
FSI interface throughout the time without any gaps or overlapping between
them. In other words, the deformation mappings of the solid and the fluid
domains, Ast and Aft , coincide at the FSI interface at all times. Assuming
that the initial configurations of the solid and fluid domains match exactly at
the FSI interface, the condition on the solid and fluid deformation mappings
leads to

A
f
t (x, t) = A

s
t(x, t)⇒ x + dm = x + ds ⇒ dm = ds ∀x ∈ Γi0. (2.222)

In other words, The displacement of the solid matches the mesh displacement
of the fluid domain on the FSI interface. This coupling condition has a
geometrical nature and plays an essential role in guaranteeing the consistency
of coupling the two problems solved in different reference frames [206]. The
geometric coupling condition can be also stated in the spatial configuration
as

dm ○ (A
f
t )

−1
= ds ○ (Ast)

−1 on Γit. (2.223)

For the sake of simplicity, we will hereafter write the condition as dm = ds

even on Γit, which belongs to the current configuration.
Another interface coupling condition between the solid and the fluid prob-

lems is the kinematic coupling condition which states that the solid particle
velocity matches the fluid velocity on the FSI interface. In certain situations,
the kinematic condition can be relaxed to include only the equality of the
normal velocities of the solid and fluid on the FSI interface. Note that the
particle velocity in the solid vs is defined in the Lagrangian reference frame,
but the fluid velocity vf is defined in the spatial configuration. Therefore,
the kinematic condition on the FSI interface is more correctly written as
vf = vs ○ (Ast)

−1. However, for the sake of brevity, the kinematic condition is
hereafter written as

vf = vs on Γit. (2.224)
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The final coupling condition on the FSI interface is the dynamic coupling
condition, stating that the fluid and solid normal stresses on the FSI interface
are in equilibrium, i.e.,

FsΣs
⋅ns0 +σ

f
⋅nft = 0. (2.225)

Note again that the solid problem is stated in the initial configuration, while
the fluid problem is stated in the deformed configuration. In order to simplify
the notation, the solid stresses are hereafter stated in terms of the transformed
Cauchy stresses σs consistent with the second Piola–Kirchhoff stresses, leading
to the following simple presentation of the dynamic coupling condition

σs ⋅nst +σ
f
⋅nft = 0 on Γit. (2.226)

Furthermore, the normal vector on the FSI boundary is unified by setting
n = nst = −n

f
t , leading to the following simple presentation of the dynamic

coupling condition

σsn = σfn ⇒ λs = λfon Γit, (2.227)

where λs and λf are the traction vectors on the FSI boundary.
In the present work, the overall FSI problem is decomposed into the fluid

and the solid problems using a Dirichlet-Neumann decomposition approach.
The geometric and the kinematic coupling conditions are included in the
mesh-moving and the fluid problems as Dirichlet boundary conditions. On the
other hand, the dynamic coupling condition is contained in the solid problem
as a Neumann boundary condition on the FSI interface. The normal stresses
of the fluid problem on the FSI interface are calculated using the so-called
variationally consistent approach through the information already contained
in the variational form of the discrete fluid problem [51, 52, 53, 54, 56, 58,
59] (see Eq. 2.49).

2.3.3 Partitioned strongly-coupled FSI problem

The FSI problem is solved here using a partitioned strongly coupled approach
based on the Dirichlet-Neumann decomposition of the overall problem. The
solid, mesh-moving and fluid problems are solved iteratively until the coupling
conditions are fully satisfied, and convergence is achieved (up to a numerical
tolerance). In addition to being straightforward to implement, this approach
fits naturally to (most) FSI problems, as the motion of the fluid domain
is determined by the motion of the structure and, in return, the normal
stresses of the fluid are applied on the structure which subsequently prompts
the deformation of the structure. This coupling approach can also be very
efficient when combined with advanced convergence acceleration techniques.
The partitioned strongly coupled technique considered in the present study
requires only the iterative exchange of interface data between the subdomains
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without the need to solve additional systems on the FSI interface, which
can be costly for large FSI problems, in particular in the context of coupling
domains with non-matching time step sizes.

The partitioned FSI problem can be concisely written in terms of operators
acting on the interface data. These nonlinear interface operators represent
the fluid and the structural solvers with the input and output data restricted
to the FSI interface. The Dirichlet-to-Neumann map of the fluid solver is
represented by the operator

λ = F (d) , (2.228)

where d and λ = −σ ⋅n are the fluid displacement and reaction force on the
FSI interface, respectively (Note that instead of the displacement, the solver
operators can be formulated in terms of velocity as well). The mesh-moving
problem is included in the fluid interface operator, i.e., the mesh-moving
problem is solved using the interface displacement as input, the fluid domain
is updated, the mesh velocity is calculated, and finally, the fluid problem is
solved using the interface velocity as input. The Neumann-to-Dirichlet map
of the structural solver is represented by

d = S (λ) . (2.229)

Using a Gauss-Seidel type scheme for solving the partitioned FSI problem,
the fluid and the structure are solved sequentially in an iterative manner. One
iteration of solving the fluid and the structure sequentially can be represented
by the combined operator H

H (d) ∶= S ○F (d) . (2.230)

The coupled problem can be solved using fixed point iterations d(l+1)
=

H (d(l)), possibility with under-relaxation, where d(l) denotes the displace-
ment iterate at the lth iteration. Alternatively, the interface problem can be
stated as a root-finding problem R (d) ∶=H (d) − d = 0, where R ∶=H − I
represents the interface residual operator. The root-finding problem is
solved in this work using an interface quasi-Newton method. Denoting by
r ∶=R (d) =H (d)−d the interface residual vector, the interface quasi-Newton
method is formulated as

δd(l) = −K(l)r(l), (2.231)

where K(l) is an approximation to the inverse of the interface Jacobian
R′(l)

= ∂R
∂d

∣
d(l) . Various quasi-Newton methods have been proposed in the

literature for the convergence acceleration of partitioned strongly coupled
problems, which differ mainly in generating the approximation of the interface
Jacobian or directly its inverse [111, 120, 121, 110, 119, 122]. Chapters 3 and
4 in this work are concerned with the convergence acceleration of partitioned
strongly coupled problems using quasi-Newton methods.



2.3. Fluid-structure interaction problem 77

2.3.4 Time discretization of the coupled problem

In this section, the time discretization of the coupling conditions is discussed.
The dynamic coupling condition is satisfied in every time step at tn+1

λsn+1 = λ
f
n+1. (2.232)

As discussed previously, the fluid interface force λfn+1 is updated from λf
n+αf

f

when using the G-α scheme. Furthermore, the solid interface force is required
at the intermediate time instant tn+αs

f
, which can be interpolated using the

values λsn+1 and λsn. The effect of this consistent (temporal) interpolation
of the interface forces between the fluid and structure on the stability and
accuracy of FSI simulations was first studied in [61] using the G-α time
integration scheme. However, λsn+1 and λfn+1 are naturally evaluated at tn+1

using the EG-α scheme. Therefore, no further interpolation of interface forces
is required.

The kinematic coupling conditions 5.3 are simultaneously satisfied at
the continuous level. However, at the discrete level, the continuity of dis-
placements, velocities and accelerations at the coupling interface can hold
simultaneously only if the same time step size and time integration scheme
with the same set of parameters is used in the fluid and solid subdomains.
Here, three approaches for handling discrete kinematic coupling constraints
in FSI problems are discussed. A common approach in the literature is based
on strongly satisfying the discrete displacement continuity condition at tn+1

dmn+1 = d
s
n+1 on Γit. (2.233)

Subsequently, the fluid velocity on the FSI boundary vf,Γ
i

n+1 is calculated such
that it is consistent with the time integration scheme of the fluid domain.
Note that in this approach, the kinematic coupling condition, Eq. 2.224, is
in general not guaranteed to be exactly satisfied at the discrete level. The
input to the combined mesh-moving and fluid interface operator, Eq. 2.228,
is naturally the interface displacement dn+1 = d

m
n+1 = d

s
n+1, i.e.,

λn+1 = F (dn+1) . (2.234)

Consequently, the FSI convergence acceleration technique operates as well on
the interface displacement, i.e., it predicts in every coupling iteration a new
iterate for dn+1 [106, 91, 110, 111, 92, 115, 119]. The same approach is used
in [177, 178], where the quasi-Newton convergence acceleration techniques
are used in the FSI problems with non-matching time steps.

In the second approach for treating the time-discretized geometric and
kinematic coupling conditions, the discrete velocity continuity condition is
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strongly satisfied at tn+1, i.e.,

vfn+1 = v
s
n+1 on Γit. (2.235)

Subsequently, the mesh displacement on the FSI boundary is calculated
consistently using the rules of the time integration scheme of the fluid domain.
In this approach, the satisfaction of the geometric coupling condition is
generally not guaranteed at the discrete level. The input to the combined
mesh-moving and fluid interface operator is naturally the interface velocity
vn+1 = v

m
n+1 = v

s
n+1, i.e.,

λn+1 = F (vn+1) , (2.236)

and the combined fluid and solid interface operator is

H (vn+1) ∶= S ○F (vn+1) . (2.237)

The FSI convergence acceleration technique operates on the interface velocity
(instead of displacement), i.e., it predicts in every coupling iteration a new
iterate for vn+1.

Choosing to fulfill either Eq. 2.233 or 2.235 at the discrete level has its
advantage. Satisfying the geometric coupling condition ensures that the solid
and fluid domains match at the discrete level at all times, which follows the
theoretical assumptions. On the other hand, the kinematic coupling condition
is one of the two physically-related coupling conditions which drive the FSI
problem. Therefore, satisfying the kinematic coupling condition is expected
to have an important role in the physical accuracy of the results. A final
possibility is to simultaneously enforce the continuity of discrete displacement,
Eq. 2.233, and discrete velocity, Eq. 2.235, across the interface (dictated
by the values in the solid domain in a Dirichlet-Neumann decomposition).
However, the relation between the fluid velocity and displacement values on
the coupling interface will not be anymore consistent with the time integra-
tion scheme utilized in the fluid domain. Furthermore, more operations are
required for exchanging data between the fluid and structural solvers in a
partitioned coupling environment. We will later compare these approaches for
satisfying the kinematic coupling condition in the context of coupling domains
with non-matching time steps. When coupling domains with matching time
steps, choosing to satisfy either the discrete displacement or velocity continu-
ity conditions generally has no significant impact on the simulation results.
However, the choice of discrete kinematic continuity condition significantly
impacts the FSI problems with non-matching time steps, as shown in section
5.3.

The final remark in this section is on the consistent prediction of the
kinematic values at the beginning of each time step. As stated previously,
a predictor-multicorrector solution procedure is used in both fluid and solid
problems for solving the nonlinear systems (see Eqs. 2.76–2.76, and 2.208–
2.210). The predictor stage in both problems is consistent with the EG-α
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scheme and follows the same assumption that the velocity does not change
when proceeding from one time step to the next. Consistent predictions
for the kinematic variables of the moving mesh on the FSI interface at the
beginning of the nth time step are given by

vmn+1 = v
m
n (2.238)

dmn+1 = d
m
n −

(γ − αm)∆t

αm

˜̇
dmn +

γ∆t

αm
vmn (2.239)

v̇mn+1 =
γ − αm
αfγ

˜̇vmn −
1 − αf
αf

v̇mn . (2.240)

The presented EG-α time integration scheme for the mesh motion, fluid,
and structural problems is used for the temporal discretization of the FSI
problems in chapters 3, 4, 5, and 6.





Chapter 3

Enhancing the robustness and
efficiency of interface quasi-Newton
methods

3.1 Introduction

In this work, we deal with a class of partitioned coupling strategies that allow
the coupling of black-box solvers [91, 92, 93]. In such an approach, the black-
box solvers exchange only limited data (related to the boundary conditions)
restricted to the coupling interface. The scope of the present work further
narrows down to partitioned strong (implicit) coupling methods in which the
coupling conditions are fully satisfied through carrying out coupling iterations.
One of the earliest coupling schemes used in strongly coupled partitioned FSI
simulations is the (block) Gauss-Seidel method with or without relaxation
[94, 95, 96, 97, 98]. The stability issues of partitioned methods based on
the Gauss-Seidel scheme, due to the artificial added-mass effect, has been
extensively studied in the literature [99, 100, 101, 102, 103]. The convergence
of Gauss-Seidel (fixed-point) iterations is usually slow but can be accelerated
by using dynamic relaxation, e.g., Aitken relaxation [91, 103, 104]. The fixed-
point iterations with dynamic relaxation technique is simple to implement, and
it can be effective in accelerating the convergence of the coupling iterations
in certain cases. However, it still suffers from numerical instabilities due to
strong added-mass effect. More stable and efficient convergence acceleration
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techniques have been since introduced and successfully used for partitioned
strongly coupled problems in the literature. The Interface-GMRES(R) method
is introduced and analyzed in [105, 106, 107, 108], where the convergence of
the fixed-point iterations is accelerated by Krylov-subspace methods. The
application of vector extrapolation methods for the convergence acceleration
of strongly coupled FSI simulations is studied in [109]. In [110], a method
is introduced for solving the partitioned FSI problem using a block quasi-
Newton method. In this method, later known as IBQN-LS [111, 112, 113,
92], the Jacobians of the fluid and the structural solvers are approximated
using least squares models. A few other quasi-Newton methods have been
since developed based on the idea of approximating Jacobians using least
squares models. In [111], the IQN-ILS method is introduced for approximating
the inverse of the Jacobian of the interface problem in the partitioned FSI
simulations. The IQN-ILS method, further analyzed in [113, 114, 92, 112,
115], has been one of the most successful convergence acceleration techniques
for the partitioned FSI problems in recent years. It has been shown that by
reusing data from the previous time steps (a concept introduced first for the
Interface-GMRES(R)), the IQN-ILS method (also referred to as QN-ILS [115,
112]) can exhibit excellent efficiency in time-dependent partitioned coupled
simulations [113, 114, 116, 115, 117, 118, 119]. However, The performance
of this technique depends on user-defined parameters that might have to be
tuned for different problems. Another quasi-Newton method that performs
well in partitioned coupled problems is the MVQN method [120, 121] (also
referred to as IQN-MVJ or MVJ [116, 118, 119, 122]). This method has the
advantage that it does not depend on a user-defined parameter (in contrast to
IQN-ILS with reuse of information from the past time steps). However, the
MVQN method requires the explicit storage of a dense square matrix with a
size equal to the number of degrees of freedom (DOF) on the FSI interface.
Therefore, the MVQN could be prohibitively costly in large problems. Different
solutions have been suggested in the literature to address the issue of high
costs associated with the explicit storage of the inverse Jacobian in the MVQN
method [119, 122], albeit at the expense of reintroducing some user-defined
parameters. In [123, 124, 116, 117, 119, 125], different aspects of parallel
and/or efficient implementation of quasi-Newton methods are discussed. For
some comparisons among different quasi-Newton methods for the convergence
acceleration of partitioned coupled problems, see [92, 113, 116, 118, 121, 126,
122].

The remainder of this chapter is organized as follows. In section 3.2, the
general concept of the interface quasi-Newton methods and, in particular, the
IQN-ILS method are briefly introduced. In section 3.3, the issues surrounding
the efficiency and robustness of some of the algorithms used in solving the
least squares problem arising from the interface quasi-Newton methods are
addressed. In sections 3.4–3.6, the techniques for enhancing the robustness
and efficiency of the interface quasi-Newton methods, particularly the IQN-
ILS method, in terms of convergence acceleration of the partitioned coupling
iterations are introduced. The numerical results are presented and discussed
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in section 3.7.

3.2 Quasi-Newton methods for solving partitioned FSI
problems

By treating the solvers as black-box, the fluid and the structural solvers can be
concisely represented as nonlinear operators with input and the output data
restricted to the FSI interface. The fluid solver together with the mesh motion
solver is represented by y = F (x) and the structural solver is represented by
x = S (y), where x and y denote the position of the nodes and the traction on
the FSI interface, respectively. If a Gauss-Seidel type scheme is used for solving
the partitioned FSI problem, the fluid and the structure are solved sequentially
in an iterative manner. We define a new operator H, which represents one
iteration of solving the fluid and the structure sequentially: H (x) ∶= S○F (x).
The coupled problem can be written as a fixed point problem x = H (x)
or equivalently as a root-finding problem R (x) ∶= H (x) − x = 0, where
R ∶=H − I is called the interface residual operator. The fixed point problem
can be solved using fixed point iterations x(l+1)

=H (x(l)), where x(l) denotes
the iterate at the lth iteration. Alternatively, one can solve the root-finding
problem using Newton-Raphson technique. If we denote the output of the H
operator in every iteration by x̃, i.e., x̃ ∶=H (x), the interface residual vector
can be defined as r ∶=R (x) =H (x) − x. The Newton-Raphson method is
formulated as

R′(l)δx(l) = −r(l), (3.1)

where R′(l)
= ∂R

∂x
∣
x(l) is the Jacobian of R with respect to x at the lth

iteration, and δx(l) = x(l+1)
− x(l). Deriving and assembling the Jacobian

could be a tedious or impossible task, if the black-box solvers do not provide
the information needed for calculating the Jacobian. A solution to this
problem is to approximate the Jacobian

J (l) ≈R′(l) (3.2)

or its inverse
K(l)

∶= (J (l))−1
≈ (R′(l)

)
−1

(3.3)

using only the input and output information of the solvers in every iteration.
This is the basis for the quasi-Newton methods.

3.2.1 IQN-ILS method

Assuming that l coupling iterations have already been carried out, the set
of vectors x̃(l), x̃(l−1), . . . , x̃(1), x̃(0) and r(l),r(l−1), . . . ,r(1),r(0) are available.
After each coupling iteration, the difference between each vector of that
iteration and the corresponding vector from the previous iteration is calculated:
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∆x̃(l) = x̃(l) − x̃(l−1), ∆r(l) = r(l) − r(l−1). (3.4)

The available difference vectors at the lth iteration are appended to the
matrices W (l) and V (l) from the left

W (l)
= [∆x̃(l) ∣ ∆x̃(l−1)

∣ . . . ∣ ∆x̃(1)] , V (l)
= [∆r(l) ∣ ∆r(l−1)

∣ . . . ∣ ∆r(1)] .
(3.5)

When dealing with time-dependent problems, the information from the previ-
ous time steps might be relevant for the current time step due to the similar
characteristics of the interface fixed point problem in the consecutive time
steps. Reusing information from the previous time steps for accelerating the
convergence of the coupling iterations was first introduced for the Interface-
GMRES(R) method in [105, 106] and was subsequently used for the IQN-ILS
method in [111, 113]. It has been demonstrated, e.g., in [111, 113, 115,
118, 116], that reusing the information from the previous time steps can
substantially accelerate the convergence of the quasi-Newton iterations. In
this technique, the difference vectors from s previous time steps are reused to
enrich the V and W matrices, where s is a user-defined parameter.

The vector ∆r = 0 − r(l) is approximated as a linear combination of the
previous ∆r(i), i.e.,

∆r ≈ V (l)α, (3.6)

where the vector α contains the unknown coefficients of the linear combination.
Eq. 3.6 is an over-determined system of linear equations, whose solution is
equal to the solution of the following linear least squares problem

min
α

∥∆r −V (l)α∥
2
. (3.7)

In the present work, Eq. 3.7 is solved using the QR factorization of V (l).
The details of the factorization process will be discussed in section 3.3. Let
V (l)

=Q1R be the thin (economy-size) QR factorization of V (l). Then, the
solution of α in Eq. 3.7 can be found by solving the triangular system

Rα =QT
1 ∆r. (3.8)

After solving for α, ∆x̃ is written as a linear combination of the previous
∆x̃(i) using the same α coefficients, which are now known: ∆x̃ ≈W (l)α. By
noting that ∆r = ∆x̃ −∆x, one finally arrives at a relation for the prediction
of the next iterate x(l+1):

∆x = x(l+1)
−x(l) =W (l)α −∆r. (3.9)

By inserting the solution of α from Eq. 3.8 in Eq. 3.9 and comparing the
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results to Eq. 3.1, it becomes clear that one can regard

K(l)
=W (l)R−1QT

1 − I (3.10)

as an approximation for the inverse of the Jacobian in the quasi-Newton
iterations.

3.3 Solving the least squares problem

In this section, a brief description of the methods for the calculation of the
QR factorization and solving the least squares problem is given in order to
facilitate the presentation of the techniques used for enhancing the efficiency
and robustness of the algorithms used in the interface quasi-Newton methods.
In the following, the matrices are denoted by bold capital letters, e.g., V . An
element of matrix V is denoted by Vi,j , i.e., Vi,j = V (i, j). A column of the
matrix, e.g., the jth column, is denoted by V ∶,j , i.e., V ∶,j = V (∶, j). A block
of matrix V is denoted by a subscript, e.g., V 1 is the first column block of V ,
and V 11 denotes the first diagonal sub-block of V . Hereafter, the superscript
l representing the coupling iterations, e.g., in V (l), is dropped as it is clear
that the problem is solved in the current iteration. A new superscript k will
be used for denoting the iterations in the QR factorization process. We are
interested in solving the least squares problem

min
α=[α1,...,αm]T ∥∆r −V α∥2 , (3.11)

where V ∈ Rn×m, ∆r ∈ Rn and α ∈ Rm. The QR factorization of V leads to

V =Q[
R
0
] = [Q1 ∣Q2] [

R
0
] =Q1R, (3.12)

where Q ∈ Rn×n is an orthogonal matrix, and R ∈ Rm×m is upper triangular.
If matrix Q is partitioned into two blocks Q1 and Q2 such that Q1 holds the
first m columns, matrices Q1 and Q2 form orthogonal bases for the range of
A and its complement, respectively [127, 128]. V = Q1R is called the thin
(or economy-size) QR factorization of V . Owing to the fact that the vector
2-norm is invariant with respect to the orthogonal transformations, one can
write

∥∆r −V α∥
2
2 = ∥QT∆r −QTV α∥

2

2
= ∥QT

1 ∆r −Rα∥
2

2
+ ∥QT

2 ∆r∥
2

2
. (3.13)

Let

b ∶=QT∆r = [
QT

1 ∆r
QT

2 ∆r
] = [

b1

b2
] . (3.14)
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The solution αls to the least squares problem is found by solving the upper
triangular system

Rαls = b1 =Q
T
1 ∆r, (3.15)

and ∥b2∥2 is equal to the norm of the minimum residual:

∥b2∥2 = ∥∆r −V αls∥2 . (3.16)

3.3.1 Solving the least squares problem using Householder
QR factorization

In the earlier works on the interface quasi-Newton methods using Householder
QR factorization, e.g., in [111, 113, 92], economy-size QR factorization is used
for solving the least squares problem. This requires the explicit calculation
and storage of the Q1 matrix. In the current section, it is shown that the
explicit representation of Q1 is not required, and a more efficient algorithm
can be used instead.

Householder transformation (or reflection) P is a symmetric and orthogonal
matrix of the form

P = I − γvvT , γ =
2

vTv
. (3.17)

For any vector a, the Householder vector v can be defined such that Pa =

∥a∥2 e1, where e1 is the first unit vector. There are some practical considera-
tions regarding the computation of the Householder vector v (see, e.g., [128,
p. 235]). For the sake of brevity, it is sufficient here to assume that there is a
function available that if given a vector a, generates the Householder vector:
[γ,v] = house(a). Note that when applying a Householder transformation to
a vector, matrix P is never explicitly created, i.e.,

Pa = (I − γvvT )a = a − γ (vTa)v. (3.18)

Likewise, the premultiplication of a matrix A by P entails a matrix-vector
multiplication and a rank one update to matrix A:

PA = (I − γvvT )A =A − γv (vTA) . (3.19)

The Householder QR factorization is calculated by transforming matrix V
in iterations. In every iteration, the elements of a column under the main
diagonal of V are eliminated. Starting from V (1)

= V , one Householder
transformation is applied at every iteration, i.e., V (k+1)

= P (k)V (k), for
1 ≤ k ≤m. Therefore, after the kth iteration, we have

V (k+1)
= P (k) . . .P (1)V = [

R11 R12

0 Ṽ
(k+1)] , (3.20)

where the first k rows and columns of matrix V have been already transformed.
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The lower right block of matrix V which is not transformed yet after the kth
iteration is denoted by Ṽ

(k+1)
. In Eq. 3.20, P (k) has the form

P (k)
= [
Ik−1 0

0 P̃
(k)] , (3.21)

where P̃
(k)

is a Householder transformation. After the mth iteration, the QR
factorization is complete, and we have

V (m+1)
= P (m) . . .P (1)V = [

R
0
] . (3.22)

By comparing Eq. 3.22 with Eq. 3.12, it becomes apparent that

P (m) . . .P (1)
=QT and P (1) . . .P (m)

=Q. (3.23)

This is the basis for the so-called factored-form representation of Q [127, 128].
Instead of explicitly forming and storing Q1 for the calculation of QT

1 ∆r, as
done in the economy-size QR factorization, one can apply QT to ∆r in the
factored-form after the factorization is completed, i.e.,

QT∆r = P (m) . . .P (1)∆r. (3.24)

In order to do so, the Householder vector v(k) and the scalar γ(k) from all
iterations of the factorization must be stored in order to recursively calculate
QT∆r in a post-factorization loop. Recall that in the kth factorization step,
the elements below the main diagonal in the kth column of V are annihilated.
If each Householder vector v(k) is constructed such that v(k)(1) = 1.0, then
v(k)(1) does not need to be stored and the remaining elements of v(k) can
be stored in the empty space below the main diagonal in the corresponding
column of V . This algorithm is usually available in the state-of-the-art general-
purpose linear algebra libraries. In the context of interface quasi-Newton
methods for the coupled interface problems, the fact that matrix Q (or Q1)
does not need to be explicitly created and stored is appreciated in [125] as well,
where a parallel implementation of Householder QR factorization is used for
solving the least squares problem. In [125], the Householder vectors v(k) are
stored but not constructed to have v(k)(1) = 1.0. Therefore, the Householder
vectors can’t be stored in the space below the main diagonal of V . If care
is not taken, the Householder vectors must be stored separately, which for
matrices with large number of rows requires almost as much memory as matrix
V itself. However, we underline that even storing all the Householder vectors
is not strictly necessary in the application of interface quasi-Newton methods.
The only use of QT , in our application, is to calculate the product QT∆r.
Furthermore, QT is the product of successive Householder matrices P (k),
which are available through the Householder vectors v(k) in the factorization
process. Therefore, it is possible to apply the Householder transformation in
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every iteration of the factorization to the corresponding block of the vector
∆r and by doing so, gradually calculate the product QT∆r on-the-fly (in
the factorization loop) [129]. Using this technique, not only the Householder
matrix P and matrix Q (or Q1), but also the Householder vectors v(k)
and scalars γ(k) from all factorization iterations do not strictly need to be
stored, and the post-factorization loop for recursively calculating QT∆r in
the factored-form is spared. The necessary steps for the least squares solution
via Householder QR factorization and employing the on-the-fly calculation of
QT∆r are presented in Algorithm 1.

Algorithm 1 Solving the linear least squares problem minα ∥∆r −V α∥2 by
Householder QR factorization, employing the on-the-fly calculation of QT∆r
in the factorization loop.

Input: V ∈ Rn×m,∆r ∈ Rn
Output: α ∈ Rm

1: for k = 1, . . . ,m do ▷ QR factorization loop
2: Ṽ

(k)
= V (k ∶ n, k ∶m) ▷ The block of V that is not transformed yet

3: [γ(k),v(k)] = house (Ṽ
(k)∶,k )

4: P̃
(k)
Ṽ
(k)

= Ṽ
(k)

− γ(k)v(k) (v(k)T Ṽ (k)
)

5: ∆̃r = ∆r(k ∶ n) ▷ Trailing part of ∆r that is not transformed yet
6: P̃

(k)
∆̃r = ∆̃r − γ(k) (v(k)T ∆̃r)v(k) ▷ Calculating QT∆r on-the-fly

7: if k =m then
8: b = ∆r ▷ Auxiliary variable b is used here only for clarity
9: end if
10: end for
11: b = [b1,b2]

T
▷ Partition b after the mth row. note that b1 =Q

T
1 ∆r

12: R = triu (V (m+1)
(∶m, ∶m)) ▷ Upper triangular part of V (m+1)

13: Rα = b1 ▷ Solve the triangular system using back substitution

3.3.2 Solving the least squares problem via modified
Gram-Schmidt orthogonalization

The Gram-Schmidt process produces the thin QR factorization V =Q1R by
successively orthogonalizing the columns of V . Given V ∈ Rn×m, Q1 ∈ R

n×m
is orthogonal and R ∈ Rm×m is upper triangular. There are different versions
of the Gram-Schmidt process. For a survey on different variants of the Gram-
Schmidt process, see [130]. The column-oriented version of the modified
Gram-Schmidt, presented in Algorithm 2, is studied here. The modified
Gram-Schmidt algorithm is numerically more stable than the classical Gram-
Schmidt. However the loss of orthogonality occurs in the modified Gram-
Schmidt algorithm as well, albeit more gradually. It is shown that the loss of
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orthogonality in the modified Gram-Schmidt algorithm is proportional to the
condition number of matrix V [130][127, p. 61].

Algorithm 2 Modified Gram-Schmidt algorithm
Input: V ∈ Rn×m
Output: Q1 ∈ R

n×m, R ∈ Rm×m
1: R1,1 = ∥V ∶,1∥2 , Q1 =

V ∶,1
R1,1

2: for j = 2, . . . ,m do
3: v(j) = V ∶,j
4: for i = 1, . . . , j − 1 do
5: Ri,j =Q

T∶,iv(j)
6: v(j) = v(j) −Ri,jQ∶,i
7: end for

8: Rj,j = ∥v(j)∥
2

Q∶,j = v
(j)
Rj,j

9: end for

In the previous works on the use of modified Gram-Schmidt orthogonal-
ization in the context of interface quasi-Newton methods, e.g., [123, 117,
119], the product QT

1 ∆r is calculated explicitly after the QR factorization
V =Q1R is carried out. This product is subsequently used as the right hand
side of the triangular system Rα =QT

1 ∆r. This procedure does not always
give an accurate solution. Here we point out to a more stable procedure.
As noted, e.g., in [131, pp. 272–273] or [127, pp. 64–65], due to the loss of
orthogonality which happens in modified Gram-Schmidt algorithm as well,
the explicit calculation of QT

1 ∆r followed by Rα =QT
1 ∆r does not guarantee

an accurate solution and should not be used. Instead, one sweep of the
orthogonalization algorithm is carried out in order to make ∆r orthogonal to
the columns of the Q1 matrix. This can be symbolically written as

[V ,∆r] = [Q1,q
′
] [
R b
0 1

] . (3.25)

Then, b ∈ Rm is used to solve the system Rα = b, and q′ is the residual of
the least squares problem. The steps for solving the least square problem
minα ∥∆r −V α∥2 via the modified Gram-Schmidt algorithm are presented
in algorithm 3.

Based on the discussion in section 3.3.1 and the current section, it is
concluded that the explicit calculation of QT∆r or QT

1 ∆r for solving the
least squares solution via either Householder or (modified) Gram-Schmidt
QR factorization should be avoided, by reason of efficiency and stability of
the algorithms.
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Algorithm 3 Solving the least squares problem minα ∥∆r −V α∥2 via the
modified Gram-Schmidt algorithm

Input: V ∈ Rn×m,∆r ∈ Rn
Output: α ∈ Rm

1: [Q1,R] = modified Gram-Schmidt(V ) ▷ Calculate the QR factorization
of V using algorithm 2

2: ∆r(1) = ∆r ▷ The intermediate variables ∆r(j) are used for clarity
3: allocate b = [b1, . . . , bm]

T

4: for j = 1, . . . ,m do
5: bj =Q

T∶,j∆r(j)
6: ∆r(j+1)

= ∆r(j) − bjQ∶,j
7: end for
8: q′ = ∆r(m+1)

▷ q′ is the minimum norm residual vector
9: Rα = b ▷ Solve the triangular system using back substitution

3.3.3 Updating Householder QR factorization after
removing a column

Matrices V and W in the interface quasi-Newton methods change between
two consecutive coupling iterations by inserting a new column (from left) and
possibly by removing a column (from right) if a sliding window scheme is
used. In addition, a column might be removed from anywhere in the matrix
due to filtering (see Section 3.4). For the sake of efficiency, it is desirable to
update the existing QR factorization when a column is inserted or removed,
rather than computing a new factorization from scratch.

The task of updating Gram-Schmidt QR factorization of a general matrix
is first addressed in [132]. In the context of interface quasi-Newton methods,
updating the (modified) Gram-Schmidt QR factorization by inserting or
removing columns is dealt with in [123, 117, 119] . However, in the previous
studies on quasi-Newton methods, where householder QR factorization in
conjunction with filtering techniques is used, e.g., in [114, 92, 125], the QR
factorization is discarded and subsequently recalculated every time a column is
removed from matrix V . Consequently, the computational cost is substantially
increased, considering that removing columns might happen frequently in
the filtering process. Householder QR factorization can be updated as well
after a column is removed. However, a simple extension of the updating
algorithms for the Gram-Schmidt QR factorization to the case of Householder
QR factorization requires the explicit storage of the full Q matrix, which is
highly undesirable for big matrices. Hereafter, it is shown how the Householder
QR factorization can be updated after a column is removed1 from matrix
V by filtering, without explicitly creating and storing matrix Q or Q1 (see
also [133]). The updating process is carried out through applying a series of

1 Updating Householder QR factorization by inserting a column always requires the
explicit creation of the Q matrix. Therefore, it is not suitable for our application.
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Givens transformations. A Givens rotation in R2 is presented by the matrix

G = [
c s
−s c

] , (3.26)

where c and s stand for cos(θ) and sin(θ), respectively. If a vector w =

[w1,w2]
T is premultiplied by the transpose of G, i.e., GTw, it is rotated

counterclockwise by θ. One could define θ such that the premultiplication
by GT would zero out the second element in w, i.e., GTw = [w′

1,0]
T . In

practice, explicit calculation and storage of θ orG is not needed and only c and
s are calculated. See [128, p. 240] for a stable algorithm for the calculating c
and s. Note that the same task can be equally well carried out using clockwise
rotations through Gw, as done in [131], or using plane reflectors, as done in
[132].

In Rn, the Givens rotation G(i,j) ∈ Rn×n takes the form of a rank two
modification of the identity matrix. GT(i,j) is determined such that when the
vector w ∈ Rn is premultiplied by GT(i,j), the ith element of w is changed and
the jth element of w is set to zero. See, e.g., [128, p. 241] for details on how
to apply Givens transformations to vectors and matrices without explicitly
forming GT(i,j). Recall that the goal is to solve the least squares problem
3.11 by updating the QR factorization, after a column is removed. Given a
Householder QR factorization for V ∈ Rn×m

V =Q[
R
0
], (3.27)

one can update the factorization after removing a column from matrix V to
arrive at the updated factorization

Ṽ = Q̃[
R̃
0
], (3.28)

where Ṽ ∈ Rn×(m−1), Q̃ ∈ Rn×n and R̃ ∈ R(m−1)×(m−1). Assume that the kth
column of V , i.e., V ∶,k, is to be removed (1 < k <m). Denote by V 1 and V 2

the column blocks before and after V ∶,k, respectively. Then, one can write

[V 1 ∣ V ∶,k ∣ V 2] =Q [
R1 R∶,k R2

0 0 0
] . (3.29)

By removing the kth column from matrices V and R, we have

[V 1 ∣ V 2] =Q [
R1 R2

0 0
] =Q [

Ř
0
] . (3.30)

Matrix Ř ∈ Rm×(m−1) is upper Hessenberg. In order to restore the triangular
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form of the R-factor, a series of Givens transformations are applied in order
to zero out the elements under the main diagonal in the columns k, . . . ,m − 1
of matrix Ř:

GT(m−1,m) . . .GT(k,k+1) [Ř0 ] =GT
[
Ř
0
] = [

R̃
0
] . (3.31)

Note that the mth row of Ř is zeroed out. The updated R-factor is R̃ ∈

R(m−1)×(m−1). The updated Q̃ can be also calculated as

Q̃ =QG =QG(k,k+1) . . .G(m−1,m). (3.32)

However, as stated previously, storing Q̃ explicitly is undesirable. For the
updated least squares problem, one needs to calculate

b̃ ∶= Q̃
T

∆r = (QG)
T∆r =GTQT∆r (3.33)

By recalling that b =QT∆r has been already calculated, without the explicit
generation of Q (see section 3.3.1), one can write

b̃ =GT b =GT(m−1,m) . . .GT(k,k+1)b. (3.34)

Therefore b̃ is calculated by applying the series of Givens rotations to b and
neither Q, nor Q̃ are created explicitly. Finally, b̃1 = b̃(1 ∶m − 1) is used to
solve the triangular system

R̃α = b̃1 (3.35)

3.4 Filtering

It is not uncommon that some of the columns in matrix V become almost
linearly dependent on the other columns. This could happen due to stagnation
of the iterations or when the information from many previous time steps
is reused, leading to matrix V having many columns, which increases the
probability of occurrence of (almost) linearly dependent columns. The practice
of removing some of the columns of matrix V for avoiding ill-conditioned
systems or (in some cases) for improving the convergence rate in quasi-Newton
algorithms has been referred to as filtering [115, 117, 119, 121, 125]. When
using a QR factorization of V , linearly dependent columns may lead to the
occurrence of small diagonal elements in the R-factor. Therefore, one can try
to detect small diagonal elements in the R-factor as a measure for linearly
dependent columns, and subsequently remove the corresponding columns
from matrix V (and W ). In this work, we focus on the filtering techniques
based on detecting small diagonal entries of the R-factor in QR factorization.
The first use of such a technique in the context of interface quasi-Newton
methods was in [111], where an absolute criterion is used for detecting small
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diagonal elements. This absolute criterion is problem dependent and does not
take into account the scale of matrix V . In [115], the relative cut-off criterion
∣Ri,i∣ < ε ⋅ ∥R∥F is used instead, where ∥R∥F

2 is the Frobenius norm of matrix
R. Not much has been discussed in [115] or later publications regarding the
choice of ∥R∥F in the relative criterion. We will elaborate more on this topic
in section 3.6.

Note that filtering based on the diagonal entries of R might filter out
some columns merely because they have smaller norms compared to the other
columns (see the results in section 3.7 and also [115]). Therefore, another
method for filtering is proposed in [115]. This method, later referred to as
QR2 filtering in [117, 119], filters out the columns of V which lead to a
small diagonal elements in the R-factor during the construction of the QR
factorization via the modified Gram-Schmidt algorithm. In this filtering
technique, the ratio of the norm of each orthogonalized vector to the norm of
the corresponding column in V is monitored during the factorization process,
and the column is removed from V if this ratio falls below a certain threshold.
The filtering criterion in this technique can be also rewritten as [115]

∣Ri,i∣ < ε ⋅ ∥R∶,i∥2, (3.36)

where R∶,i is the ith column of the R-factor. In the QR2 filtering technique,
the QR factorization must be recalculated in every coupling iteration after
a new column is appended to the left of matrix V [119, 117]. This can be
considered as a drawback of this filtering technique since otherwise, the QR
factorization via modified Gram-Schmidt algorithm could be updated rather
than recalculated after a column is inserted. Moreover, the QR2 filtering
technique, as presented in [115], is specific to modified Gram-Schmidt orthog-
onalization, and therefore, can not be used in conjunction with Householder
QR factorization.

3.5 Column scaling

We propose to use the column scaling technique (sometimes called column
weighting [128]), when solving the least squares problem in interface quasi-
Newton methods for partitioned coupled simulations. For any positive diagonal
matrix D ∈ Rm×m, one can rewrite the least squares system 3.11 as ([128, p.
306][134, p. 185])

min
α

∥∆r −V α∥2 = min
α

∥∆r −V D−1Dα∥
2
. (3.37)

Through a change of variables, we arrive at a new least squares problem

min
ᾱ

∥∆r − V̄ ᾱ∥
2
, (3.38)

2 In [115], the Frobenius norm of R is denoted by ∥R∥2. In this work, ∥R∥2 refers to the
spectral norm (matrix 2-norm).
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where V̄ = V D−1 is said to be scaled. Note that since D is diagonal, no
matrix-matrix or matrix-vector multiplication is carried out. Postmultiplying
by D−1 scales each column of V̄ by the corresponding diagonal entry of D−1.
After solving 3.38 for ᾱ and recalling that from 3.37 we have ᾱ =Dα, the
solution of the original least squares problem is determined by

α =D−1ᾱ. (3.39)

Note again that no explicit matrix-vector multiplication is carried out. One
can choose matrix D according to the requirements of the application field.
However, one particular choice of scaling has desirable properties for the
present application. Let D = diag(d1, . . . , dm) be the scaling matrix. If the
diagonal elements of D are chosen to be the 2-norms of the columns of V , i.e.,
dj = ∥V ∶,j∥2 for 1 ≤ j ≤m, then the columns of matrix V̄ have the same (unit)
2-norm ∥V̄ ∶,j∥2

= 1, for 1 ≤ j ≤m. Consequently, when filtering techniques are
used, no column is removed from matrix V̄ merely because it has a small
size compared to the other columns. In other words, the judgment about the
linear dependence among the columns of V is not polluted by the disperse
column norms of V . This is important since usually the norms of the columns
decrease as the convergence of the coupling iterations is approached. Those
columns represent the state of the system more accurately. However they
might get filtered out because of their small norm if no scaling is used. This
is a major reason for the (sometimes prohibitively) slow convergence of the
coupling iterations when a higher filtering tolerance is used and matrix V is
not scaled (see section 3.7).

Another advantage of scaling the columns of V by their norms is that,
matrix V̄ has a better conditioning than matrix V . In [135], it is shown
that choosing the scaling such that the columns of V̄ have equal 2-norm
approximately minimizes the condition number of V̄ . To be more precise, the
condition number of V̄ will be no more than a factor of

√
m away from the

minimum obtainable value (see [135] and also [134, p. 187]). The steps for
solving the least square problem 3.11 using column scaling are presented in
algorithm 4.

Algorithm 4 Solving the linear least squares problem minα ∥∆r −V α∥2,
incorporating column scaling

Input: V ∈ Rn×m,∆r ∈ Rn
Output: α ∈ Rm

1: d = [∥V ∶,1∥2 ∣ . . . ∣ ∥V ∶,m∥2] ▷ D = diag(d1, . . . , dm)

2: V̄ = [
V ∶,1
d1

∣ . . . ∣
V ∶,m
dm

] ▷ V̄ = V D−1

3: solve minᾱ = ∥∆r − V̄ ᾱ∥
2
using either Algorithm 1 or 3

4: α = [
ᾱ1

d1
∣ . . . ∣

ᾱm
dm

] ▷ α =D−1ᾱ
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Column scaling can be used, equally well, in conjunction with Householder
and (modified) Gram-Schmidt QR factorizations. Furthermore, when using
column scaling, the QR factorization via (modified) Gram-Schmidt can still
be updated as before by either inserting or removing columns. In an imple-
mentation of column scaling for quasi-Newton methods, both matrices V and
V̄ do not need to be stored. One possibility is to store only V̄ . Before a
new column is appended to V̄ , it is scaled by its 2-norm. The norms of the
columns are also stored in a separate vector. There is another potentially
more efficient way for incorporating column scaling in an implementation of
interface quasi-Newton methods. The key is the invariance of QR factorization
under column scaling [136][131, p. 272]. It means that if we have V =QR,
the QR factorization of V̄ = V D−1 is Q(RD−1

), for any positive diagonal
matrix D. Therefore, instead of scaling the columns of V and then carrying
out the QR factorization of V̄ , one can carry out the QR factorization of V
and subsequently scale the columns of the R-factor to arrive at R̄ =RD−1.
Doing so can save the computational cost associated with scaling the columns
of V if the size of the interface coupled problem (therefore the number of
rows in V ) is very big.

With the columns of matrices V̄ and R̄ having equal and unit norms,
the diagonal entries of the (scaled) R-factor, R̄i,i for 1 ≤ i ≤ m, are better
indicative of the possible presence of linear dependence among the columns
of V̄ . Therefore, one possible filtering criterion is

∣R̄i,i∣ < ε. (3.40)

Considering that the column norms of a matrix are invariant under orthogonal
transformations, assuming that no considerable loss of orthogonality occurs
in the factorization process, Eq. 3.40 can be rewritten as

∣R̄i,i∣ =
∣Ri,i∣

∥V ∶,i∥2

=
∣Ri,i∣

∥R∶,i∥2

< ε, (3.41)

where V ∶,i and R∶,i stand for the ith column of the (unscaled) matrices V
and R, respectively. This means that for the sake of filtering, the scaling can
possibly be taken into account implicitly in the filtering criterion as opposed
to explicitly carrying out column scaling on the matrices. On the other hand,
there are a few drawbacks associated with such an approach. As discussed
previously, matrix R (without scaling) has usually worse conditioning than
matrix R̄ (with column scaling such that the columns have equal 2-norms).
Furthermore, since scaling is not carried out explicitly on the columns of
R, the effect of scaling must be taken into account implicitly on all further
possible operations on the R matrix. Such operations include filtering with
possibly more elaborate filtering criteria and estimating the condition number
(see section 3.6). Note that the filtering criterion 3.41 is the same criterion
3.36 used in the QR2 filtered modified Gram-Schmidt method in [115]. We
can now interpret the QR2 filtering method as a technique that also takes
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into account the column scaling implicitly in the filtering criterion. However,
the QR factorization can not be updated and must be recalculated after a new
column is appended to the left of matrix V using the QR2 filtering technique
[119, 117].

3.6 Choice of filtering criterion

In this section we elaborate on the choices of filtering criteria (which directly
affects the choice of the filtering tolerance) and show their relation with each
other and to the singular values and condition number of matrix V ∈ Rn×m
(or V̄ ). Let

V = Ǔ[
Σ
0
]V̌

T (3.42)

be the singular value decomposition (SVD) of matrix V . Ǔ ∈ Rn×n and
V̌ ∈ Rm×m hold the left and right singular vectors, respectively. The diagonal
matrix Σ ∈ Rm×m holds the singular values, σi, of V , which are sorted from
biggest to smallest, i.e.,

Σ = diag(σ1, σ1, . . . , σm), σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0. (3.43)

The minimum and maximum singular values provide useful information regard-
ing the conditioning of a matrix. The maximum and minimum singular values
of V are designated by σmax(V ) and σmin(V ), respectively, i.e., σmax(V ) ∶= σ1

and σmin(V ) ∶= σm.
We need a few matrix norm definitions (see, e.g., [127, 128] for details) in

further discussions. The matrix 2-norm (also known as the spectral norm),
subordinate to the vector 2-norm, is defined for matrix V as

∥V ∥2 = max
y≠0

∥V y∥2

∥y∥2

= max∥y∥2=1
∥V y∥2. (3.44)

This matrix norm is not straightforward to calculate. The following two
relations relate the 2-norm of a matrix and its pseudo inverse to the singular
values of V :

∥V ∥2 = σmax(V ), ∥V †
∥

2
=

1

σmin(V )
. (3.45)

A commonly used matrix norm is the Frobenius norm

∥V ∥F =

¿
Á
ÁÀ

n

∑
i=1

m

∑
j=1

∣Vi,j ∣
2. (3.46)

The 1-norm and ∞-norm of matrix V are defined as the maximum column
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sum and row sum of V respectively, i.e.,

∥V ∥1 = max
1≤j≤m

n

∑
i=1

∣Vi,j ∣ , ∥V ∥∞ = max
1≤i≤n

m

∑
j=1

∣Vi,j ∣ . (3.47)

The (2-norm) condition number of matrix V ∈ Rn×m is defined as

κ(V ) = ∥V ∥2∥V
†
∥

2
=
σmax(V )

σmin(V )
. (3.48)

It is convenient to work with the inverse of the condition number, called the
reciprocal condition number, defined as

κ−1
(V ) =

1

κ(V )
=
σmin(V )

σmax(V )
. (3.49)

LetR be the R-factor from the QR factorization of matrix V and assume that
no substantial loss of orthogonality has happened during the factorization. It
is known that the singular values and condition numbers of matrices V and
R are equal (see, e.g., [137]).

σmax(V ) = σmax(R), σmin(V ) = σmin(R), κ(V ) = κ(R) (3.50)

We now focus on estimating the maximum and minimum singular values
of matrix R based solely on the information available from the entries of
R. Those estimations will be subsequently used for estimating κ−1

(R). The
estimated values will be designated by an overhead hat, i.e., σ̂max(R) ≈

σmax(R) and σ̂min(R) ≈ σmin(R). We first deal with estimating the minimum
singular value of R. Let dmin(R) be the minimum diagonal element in R,
i.e.,

dmin(R) = min
i=1,...,m

∣Ri,i∣ . (3.51)

It can be shown that dmin(R) is bounded by the singular values of R (see
[138]):

σmin(R) ≤ dmin(R) ≤ σmin(R)(
σmax(R)

σmin(R)
)

1− 1
m

. (3.52)

dmin(R) is an upper bound for σmin(R). The bounds in 3.52 are not tight,
and as discussed in [138], the probability of dmin(R) being much larger than
σmin(R) is not insignificant. However, solely based on the elements of R
and without any further operations (e.g., column pivoting) there is no better
approximation for σmin(R) at hand. Therefore, as an estimation for the
minimum singular value of R, we have

σ̂min(R) = dmin(R). (3.53)
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There are more possibilities for estimating the maximum singular value of
R. Recall that σmax(R) is equal to ∥R∥2. We will look at matrix norm
equivalences in order to find approximations for ∥R∥2 (the relations among
the 2-norm, 1-norm, ∞-norm and the Frobenius norm can be found, e.g., in
[128]). An upper bound for the 2-norm of R is available through either of the
two following relations: For any matrix A ∈ Rn×m, it holds that

∥A∥2 ≤

√

∥A∥1∥A∥∞, ∥A∥2 ≤ ∥A∥F ≤
√
m∥A∥2. (3.54)

Therefore, two estimates (both are upper bounds) for the maximum singular
value of R are

σ̂max(R) =

√

∥R∥1∥R∥∞ and σ̂max(R) = ∥R∥F . (3.55)

For any matrix A ∈ Rn×m, the following relation between the 2-norm and
1-norm of A holds:

1
√
n
∥A∥1 ≤ ∥A∥2 ≤

√
m∥A∥1. (3.56)

Therefore, another upper bound estimate for the maximum singular value of
R is

σ̂max(R) =
√
m∥R∥1, (3.57)

which is expected to be a not very tight estimation. For comparison, ∥R∥1

will be also used in the numerical examples as an estimation for the maximum
singular value of R. Another possibility for estimating the maximum singular
value of R is based on the maximum column norm of R, i.e., max ∥R∶,j∥2, for
1 ≤ j ≤m. The following relation holds between the maximum singular value
and the maximum column norm of R (see [139]):

max ∥R∶,j∥2 ≤ σmax(R) ≤
√
m ⋅ (max ∥R∶,j∥2), 1 ≤ j ≤m. (3.58)

Therefore, we have the following two estimations for the maximum singular
value of R

σ̂max(R) = max ∥R∶,j∥2 and σ̂max(R) =
√
m ⋅ (max ∥R∶,j∥2), 1 ≤ j ≤m.

(3.59)
Based on the fact that max ∥R∶,j∥2 and

√
m ⋅ (max ∥R∶,j∥2) are respectively

lower and upper bounds for the maximum singular value of R, a heuristic
value between them might be a better estimation. The following estimation
for the maximum singular value of R is suggested in [140]:

σ̂max(R) = 3
√
m ⋅ (max ∥R∶,j∥2), 1 ≤ j ≤m. (3.60)

Recalling that κ̂−1
(R) =

σ̂min(R)

σ̂max(R)
, it is now possible to determine estimations
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for the reciprocal condition number of R based on σ̂min(R) = dmin(R) and
any σ̂max derived previously in this section. For example, if the Frobenius
norm is used to estimate the maximum singular value of R, we have

κ̂−1
(R) =

dmin(R)

∥R∥F
. (3.61)

Recall the filtering criterion ∣Ri,i ∣∥R∥F < ε from section 3.4. Using this filtering
criterion, the minimum diagonal element of R (i.e., dmin(R)) is bigger than
ε⋅∥R∥F after the filtering is carried out. By comparing this filtering criterion to
Eq. 3.61, it becomes apparent that the filtering tolerance, ε, is a threshold for
the (estimated) minimum reciprocal condition number of R after the filtering
is carried out. This relation is of importance since one gets an estimation of
the reciprocal condition number of R without doing any further operations.
Furthermore, by comparing how accurately any particular filtering criterion
allows to estimate the reciprocal condition number, the confidence in a chosen
filtering tolerance can be assessed. The correlation between the estimated
and the actual reciprocal condition numbers differs from one coupled problem
to another. Therefore, when studying the effect of filtering tolerances for a
variety of numerical problems, a filtering criterion that allow a more accurate
estimation of the reciprocal condition number is more desirable.

We have now a basis for comparing and choosing filtering criterion to be
used in interface quasi-Newton methods, using either unscaled matrix R or
scaled matrix R̄ (see section 3.5). Based on the correlation with estimation
for the reciprocal condition number, different filtering criteria are defined and
listed in Table 3.1. These filtering criteria will be compared in numerical test
cases in section 3.7.

Table 3.1: Different filtering criteria compared in the numerical examples.
Ri,i, 1 ≤ i ≤ m, are the diagonal entries of R ∈ Rm×m. max∥R∶,j∥2 for,
1 ≤ i ≤m, represents the maximum column norm of R ∈ Rm×m. If column
scaling is carried out, R is replaced by R̄, and some of the relations are
simplified.

Criterion 1 Criterion 2 Criterion 3 Criterion 4

∣Ri,i∣
√
m∥R∥1

< ε
∣Ri,i∣

√
∥R∥1∥R∥∞

< ε
∣Ri,i∣

√
m ⋅ (max ∥R∶,j∥2)

< ε
∣Ri,i∣

∥R∥F
< ε

Criterion 5 Criterion 6 Criterion 7

∣Ri,i∣
3
√
m ⋅ (max ∥R∶,j∥2)

< ε
∣Ri,i∣

∥R∥1

< ε
∣Ri,i∣

max ∥R∶,j∥2

< ε

If column scaling is used such that the columns of matrix R̄ have equal and
unit norms, max ∥R̄∶,j∥2

is equal to unity. Therefore, some of the relations
in Table 3.1 are simplified. Filtering criterion 7 simplifies to ∣R̄i,i∣ < ε, and
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implicitly comprises an approximation of the maximum singular value of R̄
equal to unity. This is true when column scaling is carried out explicitly, as
well as when column scaling is taken into account implicitly in the filtering
criterion, as done in QR2 filtering method introduced in [115]. Note that
the QR2 filtering method was interpreted in section 3.5 as a method that
also implicitly takes into account column scaling in the filtering criterion
∣R̄i,i∣ < ε. With the columns of matrix R̄ having equal and unit norms, it
is straightforward to show that ∥R̄∥F =

√
m, where m is the number of

columns in R̄. On the other hand, since max ∥R̄∶,j∥2
= 1, it is also true that

√
m ⋅ (max ∥R̄∶,j∥2

) =
√
m. Therefore, filtering criteria 3 and 4, in Table

3.1, are equal when column scaling is used. Furthermore, when using those
filtering criteria, no further operations need to be carried out to calculate
the (Frobenius or maximum column) norms. This is another advantage of
applying column scaling.

3.7 Results and discussion

All the simulation in this section are carried out in the Kratos Multiphysics3

open-source framework [141, 142]. The least squares problem entailed in
the IQN-ILS method is solved using Householder QR factorization. A linear
predictor is used in all simulations for predicting the displacements of the
nodes on the FSI interface in all simulations. A few different convergence
criteria are used for evaluating the convergence status of coupling iterations at
each time step. The first criterion is an absolute one, based on the magnitude
of the interface residual:

∥r(l)∥2
√
n

< εdabs, (3.62)

where r(l) =R (x(l)) is the interface (displacement) residual at the lth coupling
iteration and n is the number of DOFs on the FSI interface. Instead of an
absolute criterion, one can use a relative one

∥r(l)∥2

∥x̃(l)∥2

< εdrel. (3.63)

In certain applications it might be necessary to make sure that the equilibrium
of interface tractions is fully satisfied. For further discussions on this topic,
see [117]. Therefore, in addition to the criterion 3.63, one can simultaneously
use a relative convergence criterion based on the interface tractions:

∥f (l) − f (l−1)
∥2

∥f (l)∥2

< εfrel, (3.64)

3 https://github.com/KratosMultiphysics/Kratos

https://github.com/KratosMultiphysics/Kratos
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where f (l) and f (l−1) are the interface traction vectors at the current and
previous coupling iteration, respectively. In the numerical examples presented
hereafter, the choice of convergence criteria among 3.62, 3.63 and 3.64 will be
made such that a better comparison can be done with the results available in
the literature.

3.7.1 Wave propagation in a 3D elastic tube

This test case simulates the pressure wave propagation through a flexible
elastic tube. The benchmark problem appeared first in [143, 144] and is also
described in [145, 146]. This benchmark problem has been widely used for
the verification and comparison of quasi-Newton methods for the convergence
acceleration of partitioned FSI simulations (see, e.g., [113, 120, 116, 115, 118,
119]). The problem consists of a straight elastic tube containing a fluid, with
a length of 0.05 m, an inner diameter of 0.01 m, and a wall thickness of 0.001
m. Initially, the fluid and the structure (i.e., the tube’s wall) are at rest. The
two ends of the tube are fixed. The pressure at the outlet boundary is set to
zero for the duration of the simulation. During the first 3×10−3 seconds of the
simulation, an overpressure of 1333.2 Pa is applied at the inlet boundary and
set to zero afterward. Consequently, a pressure wave propagates through the
tube. The simulation is carried out for 10−2 s. The tube’s wall is described
by a linear elastic (Saint Venant–Kirchhof) material with a density of 1200
kg/m3, Young’s modulus of 3 × 105 N/m2 and Poisson’s ratio of 0.3. The
fluid is assumed to be incompressible and has a density of 1000 kg/m3 and a
dynamic viscosity of 3 × 10−3 Pa s.

Figure 3.1: Wave propagation in a 3D elastic tube: computational domain’s
dimensions and the spatial discretization.

The fluid domain is discretized using 13824 tetrahedral finite elements,
utilizing linear, equal-order interpolation for velocity and pressure (referred to
as P1P14 element hereafter) and stabilized through the Variational Multiscales
Method (VMS) [147, 148]. The structural domain is discretized using 9216

4 To be specific, by P1P1 we designate the tetrahedral (in 3D) or triangular (in 2D) finite
elements with linear interpolation for velocity and pressure.
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linear tetrahedral elements based on a Total Lagrangian formulation. The
number of degrees of freedom (DOF) in the fluid and structural domains
are 11220 and 7128, respectively. The fluid and the structural domains
have matching spatial discretizations on the FSI interface. The number of
(displacement) DOFs on the FSI interface is 2376. The time integration
schemes used is the 2nd order backward differentiation (BDF2) scheme for the
fluid domain and Bossak (WBZ − α) scheme [149] for the structural domain.
The time step size for both domains is 10−4 s. For assessing the convergence of
the coupling iterations, relative convergence criteria for interface displacement
residuals 3.63 and tractions 3.64 are used simultaneously with the convergence
tolerances εdrel = 10−5 and εfrel = 10−4, respectively. Fig. 3.2 illustrates the
pressure wave propagation in the elastic tube.

-2.0e+02 1.4e+030 200 400 600 800 1000

Pressure

Figure 3.2: Wave propagation in a 3D elastic tube: pressure contours on
the deformed fluid domain. The deformations are scaled by a factor of 5.

We first compare the different convergence criteria, presented in Table
3.1, with respect to how accurately they allow to estimate the minimum and
the maximum singular values, as well as the reciprocal condition number of
matrix R (or R̄). In order to have a fair comparison, a set of unique matrices
needs to be used for all the filtering criteria. Therefore, a simulation is carried
out using IQN-ILS with information from 30 previous time steps and with no
filtering applied. A unique set of 406 V matrices used in the quasi-Newton
method, from all the coupling iterations between the time steps 25 and 100,
is generated and stored. For each of the filtering criteria, QR decomposition
of all the matrices in the unique set is calculated, while column filtering
is carried out using the same filtering tolerance ε = 10−5. The analysis is
carried out on the matrices with and without applying column scaling. We are
interested in knowing how the estimated values (denoted by the overhead hat
symbol) associated with the filtering criteria, compares to the exact values.
We monitor the ratio σ̂max(R)

σmax(R) for which a value of one is ideal. The ratio
σmin(R)
dmin(R) quantifies how well dmin(R), the smallest diagonal entry of R (or R̄),
estimates the exact minimum singular value of R (or R̄). This ratio admits a
value between zero and one. A higher value for this ratio indicates a better
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estimation. Finally, the ratio κ−1(R)
κ̂−1(R) indicates how the estimated reciprocal

condition number compares to the exact one. A value of one for this ratio is
ideal.

The box (candle) plots of the ratios σ̂max(R̄)
σmax(R̄) and σmin(R̄)

dmin(R̄) , using column
scaling, are depicted for different filtering criteria (see Table 3.1) in Figs. 3.3a
and 3.3b, respectively.
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Figure 3.3: Wave propagation in a 3D elastic tube: comparison of different
filtering criteria (listed in Table 3.1) based on the accuracy of the estimation
for (a) the maximum singular value; (b) the minimum singular value. Column
scaling is applied.

Fig. 3.3a reveals that filtering criteria 1–4 lead to overestimating, and
filtering criteria 5–7 lead to mostly underestimating the maximum singular
value of R̄. Filtering criteria 3 and 4 generate equal results, which also follows
the expectation from the theoretical analysis in section 3.6. Concerning the
accuracy of the estimation for the maximum singular value, filtering criteria
3 and 4 provide the best upper bound estimation. Filtering criterion 5 also
provides a good estimation, albeit it underestimates the exact value. Filtering
criteria 1 and 7 lead to the highest amount of overestimation and underesti-
mation, respectively. The plot in Fig. 3.3b shows that the minimum diagonal
element of R̄ overestimates the minimum singular value of R̄, sometimes by
a factor of more than 103.

The above analysis can be carried out for the matrices without applying
column scaling as well. The results are depicted in Fig. 3.4. The results
from the estimation for the maximum singular value of R, depicted in Fig.
3.4a, reveal that the filtering criteria 1, 3, 5, 6 and 7 do not provide very
tight estimations. The reason is that these estimations rely on the size of the
biggest column (in the sense of either ∥R∥1 or max∥R∶,j∥2 ) of the matrix.
Without column scaling, an estimation of the maximum singular value that
relies on the column with the biggest size may lead to less tight bounds.
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Figure 3.4: Wave propagation in a 3D elastic tube: comparison of different
filtering criteria (listed in Table 3.1) based on the accuracy of the estimation
for (a) the maximum singular value; (b) the minimum singular value. Column
scaling is not applied.

Our primary interest in comparing different filtering criteria is to quantify
how well a particular criterion allows to estimate the reciprocal condition
number of the R (or R̄) matrix. This comparison is presented in Fig. 3.5. The
first point to note is that all of the filtering criteria lead to overestimating the
reciprocal condition number. However, the amount by which they overestimate
the exact value differs from one another. Filtering criterion 1 allows a better
estimation of the reciprocal condition number. Recall from Figs. 3.3 and 3.4
that filtering criterion 1 leads to the highest amount of overestimation of the
maximum singular value. On the other hand, by using merely the minimum
diagonal entry of the R-factor as an indication, the minimum singular value
is overestimated (by a few orders of magnitude in some cases). Consequently,
the overestimation of the maximum singular value by criterion 1, while not
desirable as such, allows to compensate the overestimation of the minimum
singular value to some degree and, therefore, leads to a better estimation
of the reciprocal condition number. Filtering criterion 7 leads to the worst
estimation of the reciprocal condition number.

We now focus on the effects of column scaling on the performance of the
quasi-Newton method in the present example. It is worth comparing the
number of columns removed by filtering with and without column scaling. In
Fig. 3.6, the number of matrix columns before filtering and after filtering
with and without column scaling are plotted. Filtering criterion 4 (based on
the Frobenius norm) and filtering tolerance ε = 10−5 are used for both cases.
From Fig. 3.6, it is evident that considerably more columns are removed from
the matrix when no column scaling is applied. This behavior is observed
across many numerical examples. In order to better study the origin of this
behavior, it is constructive to look more carefully at what happens during
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Figure 3.5: Wave propagation in a 3D elastic tube: comparison of different
filtering criteria (listed in Table 3.1) based on the accuracy of the estimation
for the reciprocal condition number of the matrices (a) together with column
scaling; (b) without column scaling.
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Figure 3.6: Wave propagation in a 3D elastic tube: the number of columns
before and after filtering with and without applying column scaling. The
last 106 matrices (out of 406 generated matrices) are used here.

the filtering process when column scaling is carried out compared to when it
is not. Fig. 3.7 plots the norms of the columns in matrix V , together with
the diagonal entries of R and R̄ resulting from QR factorization with and
without column scaling at a certain coupling iteration. In matrix V , The
columns corresponding to the initial coupling iterations in each time step have
frequently bigger norms than the other columns. As the coupled problem
approaches convergence in each time step, the columns’ norms are reduced.
Since information from previous time steps is reused in IQN-ILS, the pattern
of mostly decreasing column norms among the columns added in one time
step, followed by an increase in the column norm when moving to the next
time step is repeated. This pattern is observed in the column norms of matrix
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Figure 3.7: Wave propagation in a 3D elastic tube: (a) Column norms
of matrix V ; (b) the absolute values of the diagonal entries of matrix R,
divided by the Frobenius norm of R; (c) the absolute values of the diagonal
entries of matrix R̄, divided by the Frobenius norm of R̄. The dashed
horizontal lines in (b) and (c) represent the filtering tolerance ε = 10−5. For
clarity, only the first 50 columns of the matrices are shown here.

V plotted in Fig. 3.7a. The absolute values of the diagonal entries in R,
presented in 3.7b, follow a similar pattern as the column norms of matrix V
(and R). The dependence of the diagonal entries of R on the disperse column
norms adversely affects the decision about the presence of linear dependence
among the columns of R. In Fig. 3.7b, the diagonal entries are scaled by the
Frobenius norm of R, and a horizontal dashed line, representing the filtering
tolerance ε = 10−5, is depicted as well. It is evident that, due to the small
norm of their corresponding columns, the majority of data points in 3.7b
(including the one from the most recent iteration) fall below the filtering
tolerance and, therefore, are filtered out. Furthermore, the columns from
the final iterations of each time step frequently produce smaller diagonal
entries and end up being filtered out first. However, these columns may better
represent the system at each time step since they are from iterations closer
to the convergence. Filtering out those columns, particularly in the current
time step, might be detrimental to the convergence rate of the quasi-Newton
method. When column scaling is applied such that the columns have equal
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norms, the diagonal entries of the R̄ matrix are not affected by the disperse
norms of the columns. Therefore, the decision about the linear dependency
among the columns of V̄ based on the diagonal entries of R̄ is more reliable.
As shown in Fig. 3.7c, the diagonal entries of R̄ do not follow the pattern of
the column norms depicted in 3.7a.

As pointed out in section 3.5, column scaling often leads to better-
conditioned matrices. The amount of improvement in the conditioning of the
matrix varies from case to case and is usually dependent on the dispersion
of the column norms in matrix V . In Fig. 3.8, the reciprocal condition
numbers of the matrices with and without column scaling are plotted. In the
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Figure 3.8: Wave propagation in a 3D elastic tube: reciprocal condition
number of V matrices (without applying column scaling) and V̄ matrices
(with applying column scaling). The matrices from all coupling iterations
of all time steps are used for the comparison. No filtering is applied, and
information from 30 previous time steps is reused.

present example, the improvement in the conditioning is more pronounced
in the matrices from the early phase of the simulation, where more coupling
iterations are performed per times step (because the information from many
prior time steps is not fully available yet).

The average numbers of iterations per time step are presented in Table 3.2
for simulations with different combinations of input parameters. In order to
allow comparison with the results from the literature (e.g., [115]), filtering
criterion 4, based on the Frobenius norm, is used for all the simulations.
The first point to notice in Table 3.2 is that for filtering tolerance of 10−4

and higher, the simulations in which column scaling is not applied do not
converge before the maximum number of coupling iterations of 40 is reached
(the corresponding entries in Table 3.2 are designated by "div."). The reason
for that is excessive removal of the wrong columns when column scaling is not
applied as already discussed (see Fig. 3.7 and the related discussion about it).
The convergence is achieved in all the simulations in which column scaling is
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Table 3.2: Wave propagation in a 3D elastic tube: average number of
coupling iterations per time step.

time step history column scaling filtering tolerance (ε)

10−14 10−8 10−7 10−6 10−5 10−4 10−3 10−2

0 true 13.12 13.12 13.12 13.12 13.12 13.12 13.12 13.13
false 13.12 13.12 13.14 13.17 13.31 div. div. div.

10 true 6.74 6.73 6.77 6.70 6.77 6.75 6.75 7.25
false 6.73 6.73 6.67 7.01 8.98 div. div. div.

20 true 6.24 6.33 6.32 6.24 6.41 6.43 6.32 6.43
false 6.31 6.29 6.31 6.79 9.14 div. div. div.

30 true 6.32 6.33 6.32 6.35 6.32 6.32 6.12 6.06
false 6.37 6.30 6.27 6.72 9.19 div. div. div.

40 true 6.21 6.21 6.22 6.33 6.33 6.35 6.02 5.92
false 6.21 6.23 6.34 6.75 8.93 div. div. div.

applied. For the filtering tolerance of 10−5, the simulations without column
scaling do converge, albeit considerably slower than the simulations with lower
filtering tolerances. From the results in Table 3.2 and the discussion presented
earlier about the plots in Fig. 3.7, it can be inferred that without column
scaling, the efficiency and robustness of IQN-ILS in conjunction with filtering
is too sensitive to the choice of filtering tolerance in the present example.
Moreover, without column scaling, it is not at all possible to explore higher
values for filtering tolerance. On the other hand, when column scaling is
applied, all simulations converge. Moreover, for any particular value of the
time step history, the average number of iterations per time step does not
change drastically with different filtering tolerances.

It is worth emphasizing that, while the primary purpose of filtering is to
prevent ill-conditioning of the matrix in the least squares problem at hand,
filtering sometimes leads to enhanced efficiency, i.e., a lower average number
of iterations per time step. The reason being that sometimes by removing
the columns that are not necessarily (almost) linearly dependent on the other
columns but do not represent the interface coupled problem accurately (e.g.,
because they are from iterations far from the convergence), the remaining
columns of V̄ describe the status of the interface fixed point problem more
accurately. In the current example, a higher number of previous time steps
(e.g., 40) and filtering with a higher tolerance (e.g., 10−3 or 10−2) together
with column scaling leads to the lowest number of coupling iterations. A
more detailed discussion on the optimal combination of time step history and
filtering tolerance for IQN-ILS is beyond the scope of the present work. The
emphasis in the present study lies on the importance of column scaling in
enhancing the robustness and efficiency of quasi-Newton methods.

3.7.2 Flow-induced oscillation of a flexible beam in the
wake of a square bluff body

This benchmark problem was introduced by Wall and Ramm [150, 151]
(hereafter, we refer to this benchmark problem as Wall benchmark for the sake
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of brevity). A flexible beam attached to a square bluff body is submerged in
incompressible fluid flow. Due to the interaction with the wake of the square
body, the flexible beam starts to oscillate. The rationale for choosing this
example is to analyze the not fully harmonic motion of the flexible beam in
the initial phase of the simulation. The geometry and the boundary conditions
of the problem are illustrated in Fig. 3.9.

Figure 3.9: Wall benchmark: fluid domain’s spatial discretization

The fluid domain is discretized using 5008 P1P1 finite elements, stabilized
by VMS. The Fluid mesh is illustrated in Fig. 3.10. The structure is
discretized using 20 nine-nodded quadratic Total Lagrangian elements. The
number of DOFs in the fluid and structural domains are 10444 and 369,
respectively. The fluid and the structural domains have non-matching spatial
discretizations on the FSI interface. The nearest element interpolation method
[152] is used for transferring the data between the two domains. The number
of fluid domain’s mesh displacement DOFs on the FSI interface (used in the
quasi-Newton method) is 306.

The flow initialization follows the procedure in [72]. The fluid and the
structure are initially at rest. At t = 0, the inflow velocity is applied in-
stantaneously. The inflow velocity is uin = 51.3. Zero-traction (do-nothing)
boundary condition is applied at the outlet, and slip boundary conditions are
applied at the top and bottom domain boundaries. The fluid is considered
to be incompressible, with a density of 1.18 × 10−3 and a dynamic viscosity
of 1.82 × 10−4. For the structure, we assume plane stress and small strain
elastic behavior with Young’s modulus of 2.5× 106 and Poisson’s ratio of 0.35.
Bossak time integration scheme is used for both the fluid and the structural
domains. The coupled simulation is carried out for 3 s with a time step size
of 5 × 10−3 s for both domains. To assess the convergence of the coupling
iterations, the absolute convergence criteria 3.62 with the absolute tolerances
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Figure 3.10: Wall benchmark: fluid domain’s spatial discretization.

of εdabs = 10−7 is used. Fig. 3.11 illustrates the pressure contours around the
flexible beam at time instance t = 2.55 s. The plot of the vertical displacement
at the tip of the beam against the time is depicted in Fig. 3.12.

0.0e+00 2.1e+000.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Pressure

Figure 3.11: Wall benchmark: pressure contours around the flexible beam
at t = 2.55 s.

The set of matrices used for the comparison of the filtering criteria is
generated by carrying out a simulation using IQN-ILS with information from
10 previous time steps and without filtering. A unique set of 1950 matrices
used in the quasi-Newton method, from coupling iterations between the time
steps 20 and 600, is generated. For each filtering criterion, QR decomposition
of all the V (or V̄ ) matrices in the unique set is calculated, and column filtering
is carried out using the same filtering tolerance ε = 10−5. The comparison of
the filtering criteria with regard to the estimation for the extremum singular
values is presented in Fig. 3.13 for the cases where column scaling is applied.
The results generally follow the same trend as in the example in section 3.7.1.
As indicated by the box plots in Fig. 3.13a, filtering criterion 1 gives rise
to the highest amount of overestimation for the maximum singular value.
Filtering criteria 3 and 4 (which are equal if column scaling is used) provide
tight upper bounds for the maximum singular value of R̄ in the present
example. Criterion 5 leads, as well, to a close estimation of the maximum
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Figure 3.12: Wall benchmark: time history of the vertical displacement at
the tip of the beam.

singular value, although it mostly underestimates the exact value. For the
minimum singular value of R̄, filtering based on the minimum diagonal entry
of R̄ results in overestimating the exact value. The box plots in Fig. 3.13b
confirm this anticipated overestimation.
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Figure 3.13: Wall benchmark: comparison of different filtering criteria (listed
in Table 3.1) based on the accuracy of the estimation for (a) the maximum
singular value; (b) the minimum singular value. Column scaling is applied.

For the matrices without column scaling, the estimations for the maximum
and minimum singular values of R are presented in Figs. 3.14a and 3.14b,
respectively. The plots in 3.14a suggest that without column scaling, the
estimations for the maximum singular value of R based on the size of the
biggest column in R result in less tight bounds. The same observation was
made for the wave propagation in elastic tube example, presented in section
3.7.1, as well. The comparison of the filtering criteria with regard to the
accuracy of the estimated reciprocal condition number of the R-factor is
presented in Fig. 3.15. Compared to the other filtering criteria, filtering
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Figure 3.14: Wall benchmark: comparison of different filtering criteria
(listed in Table 3.1) based on the accuracy of the estimation for (a) the
maximum singular value; (b) the minimum singular value. Column scaling
is not applied.

criterion 1 and 7 provide the best and worst estimations for the reciprocal
condition number, respectively.
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Figure 3.15: Wall benchmark: comparison of different filtering criteria (listed
in Table 3.1) based on the accuracy of the estimation for the reciprocal
condition number of the matrices (a) with column scaling; (b) without
column scaling.

In Fig. 3.16, the reciprocal condition numbers of the matrices V and V̄ are
plotted. By comparing the two graphs in Fig. 3.16, it is apparent that when
column scaling is applied, the reciprocal condition number of the matrices
are very often a few orders of magnitude higher than in the matrices without
column scaling.

The average numbers of iterations per time step are presented in Table 3.3
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Figure 3.16: Wall benchmark: reciprocal condition number of V matrices
(without applying column scaling) and V̄ matrices (with applying column
scaling). For the sake of clarity, the last 950 available matrices (out of a
total number of 1950 matrices) are used for the comparison. No filtering is
applied.

for different combinations of input parameters. Filtering criterion 4, based
on the Frobenius norm, is used for all the simulations. In contrast to the

Table 3.3: Wall benchmark: average number of coupling iterations per time
step.

time step history column scaling filtering tolerance (ε)

10−14 10−8 10−7 10−6 10−5 10−4 10−3 10−2

0 true 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74
false 4.74 4.74 4.74 4.74 4.74 4.77 4.88 6.07

2 true 3.73 3.75 3.73 3.76 3.74 3.76 3.73 3.67
false 3.73 3.73 3.72 3.74 3.74 3.83 4.03 4.50

5 true 4.02 4.01 4.02 4.02 3.89 3.82 3.78 3.70
false 4.03 4.0 3.98 3.99 4.04 4.09 4.21 4.42

10 true 4.33 4.37 4.33 4.17 4.07 3.87 3.79 3.72
false 4.35 4.35 4.33 4.31 4.26 4.30 4.49 4.46

15 true 4.58 4.57 4.58 4.43 4.13 3.87 3.79 3.72
false 4.63 4.60 4.61 4.58 4.42 4.62 5.02 4.60

previous example in section 3.7.1, reusing information from a relatively low
number of previous time steps leads to the lowest number of iterations per
time step. The best results are achieved using 2 previous time steps. This
observation may be explained by the fact that the behavior of the coupled
problem in the current example is less predictable and more instantaneous in
the initial phase of the simulation. Therefore, information from many previous
time steps may not contribute to an accurate prediction at the current time
step. By analyzing the results in Table 3.3 corresponding to different time
step histories and lowest filtering tolerance (10−14), it is confirmed that by
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increasing the time step history in IQN-ILS the number of coupling iterations
per time step increases. When column scaling is carried out, for any value
(bigger than zero) of time step history presented in Table 3.3, the average
number of coupling iterations per time step almost always decreases as the
filtering tolerance increases. This trend is more pronounced for higher values
of time step history. The same is not true when column scaling is not applied.

3.7.3 Flow-induced oscillation of a flexible beam in the
wake of a cylinder

This benchmark problem was proposed by Turek and Hron in [89], and has
been since used frequently in the literature. See, e.g., [113, 124, 119, 118,
153] for the application of quasi-Newton methods on this benchmark problem.
There are three different configurations of the benchmark available. We choose
the FSI3 configuration, which entails the strongest added-mass effect and the
highest Reynolds number. This benchmark problem is conceptually similar
to the example presented in section 3.7.2. Here, the fully harmonic motion of
the flexible beam in the later stages of the simulation is analyzed, as opposed
to the initial and not fully harmonic behavior studied in section 3.7.2. For
the exact dimensions and geometry of the benchmark, see [89]. The fluid is
considered to be incompressible, with density of 103 kg/m3 and kinematic
viscosity of 10−3 m2

/s. For the structure we assume plane stress and small
strain elastic behavior, with a density of 103 kg/m3, Young’s modulus of
5.6 × 106 N/m2 and Poisson’s ratio of 0.4. A parabolic inflow profile with the
mean flow value of 2 m/s is applied at the left boundary. In the first 2 seconds
of the simulations, the inflow velocity is smoothly increased from zero to
the nominal value. Do-nothing (zero traction) boundary condition is applied
at the outlet. No-slip condition is applied at the top and bottom domain
boundaries, as well as at the cylinder. The fluid domain is discretized using
30530 P1P1 finite elements stabilized by VMS. The Fluid mesh is illustrated
in Fig. 3.17. The structure (the flexible beam) is discretized using 3290 linear
quadrilateral Total Lagrangian elements. The number of DOFs in the fluid
and structural domains are 63588 and 10620, respectively. The fluid and the
structural domains have matching spatial discretizations on the FSI interface.
The number of DOFs on the FSI interface (used in the quasi-Newton method)
is 1455.

For the sake of the comparisons to follow in the remainder of the current
section, a portion of the simulation between the times 19.6 s and 20 s is
used. At t = 19.6 s, when the comparison starts, all the information from the
previous time steps, needed for the IQN-ILS are available in each simulation.
Bossak time integration scheme is used for both the fluid and the structural
domains. The coupled simulation is carried out with the time step size of 10−3

s for both domains. For assessing the convergence of the coupling iterations,
the absolute convergence criteria 3.63, with a tolerances of εdrel = 10−6 is used.

Fig. 3.18 illustrates the pressure contours in the whole fluid domain at
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Figure 3.17: FSI3 benchmark: fluid domain’s spatial discretization around
the flexible beam. The grid extends uniformly downstream of the illustrated
section.

the time instance of t = 19.743 s. The plots of the horizontal and vertical
displacement at the tip of the beam against the time are depicted in Fig. 3.19.
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Figure 3.18: FSI3 benchmark: pressure contours at t = 19.743 s.
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Figure 3.19: FSI3 benchmark: time history of the horizontal and vertical
displacement at the tip of the beam.

The set of matrices used for comparing the different filtering criteria is
generated by carrying out a simulation using IQN-ILS with information from
8 previous time steps and without filtering. A unique set of 1089 matrices,
from coupling iterations of all 400 time steps, is generated. Sebsequently,
filtering is carried out using the filtering tolerance ε = 10−5. The comparison of
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the filtering criteria with regard to the estimation for the extremum singular
values is presented in Figs. 3.20 and 3.21 for the matrices with and without
columns scaling, respectively. The results generally follow the same trend as
in the example in sections 3.7.1 and 3.7.2. Filtering criterion 4 provides a
tight upper bound for the maximum singular value of R̄ and R. Filtering
criterion 5 leads, as well, to a good estimation of the maximum singular value,
although it mostly underestimates the exact value. Filtering based on the
minimum diagonal entry of the R-factor results in overestimating the exact
minimum singular value of R̄ and R. The comparison of the filtering criteria
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Figure 3.20: FSI3 benchmark: comparison of different filtering criteria
(listed in Table 3.1) based on the accuracy of the estimation for (a) the
maximum singular value; (b) the minimum singular value. Column scaling
is applied.

with regard to the accuracy of the estimated reciprocal condition number of
the R-factor is presented in Fig. 3.22. Filtering criteria 1 and 7 lead to the
best and worst estimation for the reciprocal condition number, respectively.
Nonetheless, criterion 1 provides an estimation for the reciprocal condition
number that is slightly less than the exact value in some cases.

The influence of column scaling on the conditioning of the matrix used
in the least squares solution is shown in Fig. 3.23. As in the previous two
examples, the reciprocal condition numbers of the matrices with column
scaling are higher than those of the matrices without column scaling.

The average numbers of iterations per time step are presented in Table 3.4
for different combinations of input parameters. Filtering criterion 4 (listed in
Table 3.1), based on the Frobenius norm, is used for all the simulations. In
contrast to the previous example in section 3.7.2, reusing information from a
moderate number of previous time steps helps with decreasing the average
number of coupling iterations per time step. The best results are achieved
using information from 8 previous time steps and with little to no filtering.
By analyzing the results in Table 3.4 corresponding to each value of time
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Figure 3.21: FSI3 benchmark: comparison of different filtering criteria
(listed in Table 3.1) based on the accuracy of the estimation for (a) the
maximum singular value; (b) the minimum singular value. Column scaling
is not applied.
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Figure 3.22: FSI3 benchmark: comparison of different filtering criteria (listed
in Table 3.1) based on the accuracy of the estimation for the reciprocal
condition number of the matrices (a) with column scaling; (b) without
column scaling.

step history, it is revealed that the average number of iterations per time step
mostly increases as higher values of filtering tolerance are used. However, the
difference in performance using different filtering tolerances is not substantial
when column scaling is used, except for the filtering tolerance of 10−2. On
the other hand, when column scaling is not applied, filtering with a tolerance
higher than 10−5 is detrimental to the convergence of the coupling iterations.
It can be deduced that column scaling enhances the robustness of filtering in
IQN-ILS by reducing the sensitivity of the number of coupling iteration to
the filtering tolerance.
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Figure 3.23: FSI3 benchmark: reciprocal condition number of V matrices
(without applying column scaling) and V̄ matrices (with applying column
scaling). No filtering is applied.

Table 3.4: FSI3 benchmark: average number of coupling iterations per time
step.

time step history column scaling filtering tolerance (ε)

10−14 10−8 10−7 10−6 10−5 10−4 10−3 10−2

0 true 10.81 10.81 10.81 10.81 10.81 10.81 10.82 10.82
false 10.82 10.81 10.81 10.82 10.89 div. div. div.

5 true 3.82 3.82 3.81 3.79 3.82 4.16 4.42 5.05
false 3.82 3.84 3.84 3.88 4.46 div. div. div.

8 true 3.72 3.71 3.73 3.71 3.74 3.96 4.07 4.90
false 3.72 3.72 3.72 3.73 4.41 div. div. div.

10 true 3.81 3.81 3.82 3.81 3.86 4.06 4.06 4.83
false 3.81 3.82 3.82 3.90 4.44 div. div. div.

15 true 4.54 4.52 4.62 4.61 4.71 4.52 4.08 4.93
false 4.54 4.20 4.12 4.04 4.55 div. div. div.



Chapter 4

A strategy for automatic
determination of time step history in
interface quasi-Newton methods

4.1 Introduction

The convergence acceleration of partitioned FSI problems using interface quasi-
Newton methods was reviewed in chapter 3, and techniques for enhancing
the robustness and efficiency of those methods were proposed. The IQN-ILS
method with information from previous time steps, together with filtering
techniques and column scaling, prove to be very effective in accelerating the
convergence of partitioned FSI problems. However, the determination of
optimal parameters controlling the filtering and the number of previous time
steps in IQN-ILS method requires a lot of trial and error for every new problem,
as shown in section 3.7. An approach for alleviating the trial and error for the
IQN-ILS method with filtering is proposed in [119], where a practically infinite
number of previous time steps are reused together with filtering in order to
remove the outdated or contradicting columns from the least square problem.
In [119], the so-called QR1 and QR2 filtering techniques are used (see [115,
117, 119] or section 3.4), and it is concluded that the QR1 filtering is not
robust enough for this purpose, and the QR2 filtering technique shows "fairly
good" results but is relatively costly due to need for frequently recalculating
the QR factorization. In the present work, a strategy for combining filtering
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techniques and automatic determination of the number of previous time steps
(time step history) in IQN-ILS method based on modifying the standard
Householder QR factorization with column pivoting is proposed. The basic
solution to the least squares problem via Householder QR factorization with
column pivoting is used as the base algorithm for filtering the columns of
the V matrix involved in the least squares solution. The base algorithm
is modified using several techniques in order to find a good compromise
between filtering outdated and contradicting columns in matrix V . The
proposed strategy is not parameter-free. However, it allows for combining
the determination of parameters such that only one user-defined parameter is
left to be chosen. Furthermore, the performance of the strategy is not very
sensitive to the user-defined parameter, and a default value leads to quite
good results for many scenarios, as will be shown using several numerical
examples. The present chapter builds upon chapter 3. See section 3.2 for a
concise presentation of the IQN-ILS method, section 3.3 for the introduction
to the least squares problem in interface quasi-Newton methods, section 3.4
for filtering techniques, and section 3.5 for column scaling.

4.2 Solving the least squares problem using
Householder QR factorization with column
pivoting

In the following, the matrices are denoted by bold capital letters, e.g., V . An
element of matrix V is denoted by Vi,j , i.e., Vi,j = V (i, j). A column of the
matrix, e.g., the jth column, is denoted by V ∶,j , i.e., V ∶,j = V (∶, j).

Householder transformation (or reflection) P is a symmetric and orthogonal
matrix of the form

P = I −
1

γ
vvT , γ =

1

2
vTv. (4.1)

The vector v, called the Householder vector, can be defined such that when the
Householder transformation P is applied to a vector a, all elements of a after
its first element are set to zero, i.e., Pa = ∥a∥2 e1, where e1 is the first unit
vector. There are some practical considerations regarding the computation of
the Householder vector v (see [127, sec. 2.3.1] or [128, sec. 5.1.3]). For the
sake of brevity, it is sufficient here to assume that the function

[γ,v] = genHouseholder(a) (4.2)

is available that, given a vector a, generates the Householder vector.
Note that when applying a Householder transformation to a vector, matrix

P is never explicitly created, i.e.,

Pa = (I −
1

γ
vvT )a = a −

1

γ
(vTa)v. (4.3)
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Likewise, the premultiplication of a matrix A by P entails a matrix-vector
multiplication and a rank one update to matrix A:

PA = (I −
1

γ
vvT )A =A −

1

γ
v (ATv)

T
. (4.4)

We define the function

applyHouseholder (γ,v,A) , (4.5)

which applies the Householder transformation P formed by γ and v to the
matrix A.

An elementary permutation is mathematically represented by a matrix
Π and, if multiplied by matrix A, interchanges two columns of A. When
applying a permutation to matrixA, the permutation matrix Π or the product
AΠ are not explicitly calculated. Instead, two columns of A are interchanged,
and the effect of the permutation matrix Π is concisely encapsulated in a
permutation vector piv. Permutation vector piv is an integer vector that
holds the relation between the column indices of VΠ and V . For example,
j = piv(i) means that the ith column of VΠ was the jth column of V .

The Householder QR factorization is calculated by transforming matrix
V in iterations. Starting from V (1)

= V , the elements of a column under
the main diagonal of V are eliminated in every iteration. When column
pivoting is carried out, the first step in every iteration of the factorization
is to choose the next pivot column among the columns of V that are not
transformed yet. We will discuss the criterion for choosing the pivot column
later. Subsequently, the chosen pivot column is permuted to the front of
the trailing block of V that is not yet transformed. Finally, a Householder
transformation is generated and applied. Assume that k − 1 iterations have
already been carried out, and we have

V (k)
= P (k−1) . . .P (1) V Π(1) . . .Π(k−1)

= [
R11 R12

0 Ṽ
(k)] , (4.6)

where the first k rows and columns of matrix V have already been transformed.
The lower right block of matrix V that is not transformed yet after k − 1

iterations is denoted by Ṽ
(k)

. Let Ṽ
(k)

= [Ṽ
(k)∶,k ∣ . . . ∣ Ṽ

(k)∶,m] be a column

partitioning of Ṽ
(k)

, and let s(k)j , k ≤ j ≤m, be the norm of the jth column

of Ṽ
(k)

, i.e, s(k)j = ∥Ṽ
(k)∶,j ∥

2
, k ≤ j ≤m. In the standard pivoting strategy, the

pivot column is chosen to be the column with the largest norm among the
columns of Ṽ

(k)
, i.e.,

pivot column index = p ∣ s(k)p = max (s(k)j ) , k ≤ j ≤m. (4.7)
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Subsequently, the pth and the kth columns are interchanged. The column
norms s(k)j , k ≤ j ≤ m do not need to be recalculated in every iteration. In
practice, the column norms are updated using the values from the previous
factorization iteration. The column norms are calculated once at the beginning
of the factorization, i.e.,

s(1)j = ∥V ∶,j∥2, 1 ≤ j ≤m. (4.8)

In the following iterations, the column norms are updated as [127, pp. 103–
104][128, p. 277]

(s(k+1)
j )

2
= (s(k)j )

2
− (Rk,j)

2 , 1 ≤ k ≤m, k + 1 ≤ j ≤m. (4.9)

Updating column norms instead of recalculating them reduces the computa-
tional overhead associated with column pivoting. However, special care must
be taken in order to prevent excessive numerical cancellation in the partial
column norm updating process[154].

After the mth iteration, the QR factorization is completed:

V (m+1)
= P (m) . . .P (1) V Π(1) . . .Π(m)

=QTVΠ = [
R
0
] . (4.10)

Using the standard column pivoting, the diagonal elements of the R-factor
form a non-increasing sequence [127, p. 103], i.e.,

R1,1 ≥ R2,2 ≥ . . . ≥ Rm,m. (4.11)

The QR factorization with standard column pivoting, first introduced in
[155], is presented in Algorithm 5.

4.2.1 Basic solution via QR factorization with column
pivoting

QR factorization with column pivoting is a useful technique for solving rank-
deficient least squares problems. We are interested in solving the least squares
problem

min
α=[α1,...,αm]T ∥∆r −V α∥2 , (4.12)

where V ∈ Rn×m, ∆r ∈ Rn and α ∈ Rm. Suppose V is exactly rank-deficient
and has rank r (r <m).

The QR factorization of V using column pivoting leads to

QTVΠ = [
R11 R12

0
] , (4.13)



4.2. Solving the least squares problem using Householder QR factorization
with column pivoting 123

Algorithm 5 Householder QR factorization with standard column pivoting
Input: V ∈ Rn×m
Output: −−

1: for k = 1, . . . ,m do ▷ The QR factorization loop
2: Ṽ

(k)
= [Ṽ

(k)∶,k ∣ . . . ∣ Ṽ
(k)∶,m] = V (k ∶ n, k ∶m) ▷ Ṽ

(k)
is the block of V

that is not transformed yet
3: s(k)j = ∥Ṽ

(k)∶,j ∥
2
, k ≤ j ≤m

4: p = argmax (s(k)j ) , k ≤ j ≤m

5: Ṽ
(k)∶,k ⇆ Ṽ (k)∶,p

6: piv(k)⇆ piv(p)

7: [γ(k),v(k)] = genHouseholder (Ṽ
(k)∶,k )

8: applyHouseholder (γ,v, Ṽ
(k)

)

9: ∆̃r = ∆r(k ∶ n) ▷ ∆̃r is the trailing part of ∆r that is not
transformed yet

10: applyHouseholder (γ,v, ∆̃r) ▷ Gradually calculating QT∆r
on-the-fly

11: if k =m then
12: b = ∆r ▷ Auxiliary variable b is used here only for clarity
13: end if
14: end for
15: b = [b1,b2]

T
▷ Partition b after the mth row. note that b1 =Q

T
1 ∆r

16: R = triu (V (m+1)
(∶m, ∶m)) ▷ R is the upper triangular square part of

A after the factorization
17: Rα = b1 ▷ Solve the triangular system using back substitution

where R11 ∈ Rr×r and R12 ∈ Rr×(m−r). The elements in the lower right block
of the R-factor are zero. Since the 2-norm is invariant under orthogonal
transformations, it holds that

∥∆r −V α∥
2
2 = ∥QT∆r − (QTVΠ)(ΠTα)∥

2

2
. (4.14)

We define

b ∶=QT∆r = [
QT

1 ∆r
QT

2 ∆r
] = [

b1

b2
] , (4.15)

and

α̃ ∶= ΠTα, α̃ = [
α̃1

α̃2
] . (4.16)

Using these definitions, Eqs. 4.13 and 4.14 can be rewritten as

∥∆r −V α∥
2
2 = ∥(b1 −R12α̃2) −R11α̃1∥

2
2 + ∥b2∥

2
2 . (4.17)
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Using Eq. 4.16, 4.17, the general solution to the least squares problem 4.12 is

α = Πα̃ = Π [
R−1

11(b1 −R12α̃2)

α̃2
] . (4.18)

If α̃2 is set to zero, we arrive at the basic solution [128, p. 292][127, p. 106]

αb = Π [
R−1

11b1

0
] . (4.19)

As discussed previously, permutation matrix Π is not created explicitly in
Eq. 4.19. Instead, α̃b =R−1

11b1 is calculated first. Then, the elements of αb
are determined from the elements of α̃b using the permutation information
encapsulated in vector piv:

αb (piv (i)) = α̃b(i), 1 ≤ i ≤ r. (4.20)

Note that the basic solution is generally different from the minimum norm
solution. The minimum norm solution can be calculated by applying a further
orthogonal transformation on 4.13 in order to annihilate R12 [127, p. 111][128,
p. 289].

In a numerical setup, matrix V might become almost (as opposed to
exactly) rank-deficient. Therefore, the lower right block in 4.13 will have
a small norm instead of being exactly zero. In the basic solution, a subset
of columns formed by the first r columns of R is used for calculating the
solution. The part of the solution corresponding to the trailing m− r columns
of R is set to zero. Therefore, the basic solution via QR factorization with
column pivoting can be used as a filtering technique for interface quasi-Newton
methods. After QR factorization with column pivoting is carried out, the
basic solution is calculated and, subsequently, the columns of matrix V (and
W ) corresponding to the trailing m − r columns of VΠ are removed.

The remaining question is how to determine the numerical rank r of matrix
V . Recall from Eq. 4.11 that the diagonal elements of the R-factor from
a QR factorization with column pivoting form a non-increasing sequence.
The diagonal elements of the R-factor approximate the singular values of V .
Although there are analytically generated matrices for which this relation does
not hold, this approximation usually works well in practice. The numerical
ε-rank r of R is determined by

r = max
1≤j≤m(j) ∣

Rj,j
R1,1

≥ ε, (4.21)

where Rj,j
R1,1

approximates the reciprocal condition number of the leading block
of R, and ε is a user-defined threshold for the minimum allowed reciprocal
condition number. Note that we are not necessarily interested in determining
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the correct numerical rank of V . We use the basic solution viaQR factorization
with column pivoting as a column subset selection or filtering technique. The
ε-rank determined by Eq. 4.21 is affected by the choice of ε and should be
interpreted in the context of column subset selection.

In the following, we investigate the application of QR factorization with
column pivoting on an example V matrix arising from the least squares
problem in the IQN-ILS method. Matrix V has 100 columns and is taken
from the numerical example presented in section 4.3 using IQN-ILS with
reuse of information from 18 previous time steps. In all the following graphs,
the discrete data points are connected via a line to present their sequence
better. In Fig. 4.1, a comparison among the singular values and the diagonal
elements of the R-factor from a QR factorization with and without column
pivoting is presented. The diagonal elements of the R-factor from the QR
factorization with column pivoting, presented in Fig. 4.1b, approximate
the distribution of the singular values of V , presented in Fig. 4.1a, very
well. On the other hand, without column pivoting, the diagonal elements of
the R-factor, presented in Fig. 4.1c, unsurprisingly do not approximate the
distribution of the singular values well. When performing column pivoting, the
last columns of the permuted matrix, corresponding to the smallest singular
values, can be dropped in the basic solution of the least squares problem. It
shows the advantage and the potential of performing column pivoting.

Besides the approximation of the singular values, there is another important
factor to bear in mind when performing column pivoting, and that is the
column ordering in matrix R (and VΠ). Matrix V is formed by appending
data columns from consecutive iterations and time steps. Hence, the ordering
of the columns is important. In the basic solution via QR factorization with
column pivoting, the trailing columns of the permuted matrix are dropped
if the reciprocal condition number falls below the user-defined threshold.
Therefore, it is worth looking at the column ordering of the permuted matrix
when column pivoting is carried out. The graph in Fig. 4.2a shows the
situation where all the columns have the same column index after column
pivoting as they had before (no column permutation has happened). Fig.
4.2b plots the column numbers after column pivoting against the column
numbers in the original matrix. It is evident that the columns of matrix V are
completely "shuffled" in the column pivoting process. This is a disadvantage in
the present application, where we intend to use filtering via QR factorization
with column pivoting as a means of automatically limiting the number of
previous time steps used in the IQN-ILS method. Note that the excessive
column interchanges are not due to the columns of V having disperse norms
since the columns of V are scaled to have equal norms. The permutations
are required for approximating the sequence of the singular values of V .

To conclude, the generally good approximation of the singular values of
matrix V via the standard column pivoting strategy comes at the price of
completely changing the column ordering in matrix V . Recall that our goal
is to use column pivoting as a column subset selection or filtering technique.
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Figure 4.1: Comparison of SVD and QR factorization with and without
column pivoting on an example matrix V . (a) singular values from SVD;
(b) diagonal elements of the R-factor from QR factorization with standard
column pivoting; (c) diagonal elements of the R-factor from QR factorization
without column pivoting

In that respect, it is enough to permute the much smaller pivot to the back
of the matrix and have an approximation of the distribution of the singular
values, while better maintaining the ordering of the columns. In other words,
a compromise should be made between a very good approximation of the
distribution of the singular values and the column ordering. In the following,
we will introduce a few techniques for achieving that goal.

4.2.2 Closest column and threshold pivoting

In this section, the column pivoting strategy in Eq. 4.7 and line 4 of Algorithm
5 is modified in order to emphasize the original column ordering. The column
pivoting strategy based on Eq. 4.7 strives in every iteration of the factorization
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Figure 4.2: Comparison of the original and permuted column numbers in
the permutation vector from (a) QR factorization without column pivoting;
(b) QR factorization with standard column pivoting

to permute the largest column pivot to the front. For example, if in the kth
iteration of the factorization, the mth column has the largest partial norm,
then columns m and k are interchanged. A first modification to the pivoting
strategy in Eq. 4.7 is to use the threshold pivoting strategy

pivot column index = p ∣ s(k)p = max (s(k)j ) and
s(k)p
s(k)k

> ρpiv, k ≤ j ≤m,

(4.22)
where ρpiv > 1.0 is a threshold for pivoting. In this strategy, the column with
the largest partial norm in the kth iteration of the factorization is permuted
to the kth column only if its partial column norm is larger than that of the
kth column by at least a factor defined by ρpiv. If the conditions in Eq. 4.22
are not met, then no column permutation occurs in the kth iteration of the
factorization, and the kth remains in its place. A further modification to
the pivoting strategy is what we call the closest column pivoting strategy. In
this strategy, Instead of the column with the maximum partial norm, the
candidate for the pivot column is chosen to be the closet column that satisfies
the threshold pivoting condition. The combination of the threshold pivoting
and the closest column pivoting strategies leads to the following condition:

pivot column index = min(j) ∣
s(k)j
s(k)k

> ρpiv, k ≤ j ≤m. (4.23)

In this strategy, there is more tendency to preserve the original column
ordering of matrix V . At the kth iteration of the factorization, a column
permutation happens only if a column has a partial norm larger than that of
the kth column by a user-defined factor. Otherwise, the kth column remains
in its place. Furthermore, if a permutation happens, the kth column is
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interchanged with the closest column that meets the pivoting criterion in Eq.
4.23. Based on experience, a value between 5 and 10 for the threshold ρpiv
leads to a good compromise between column permutation and preserving the
column ordering, with ρpiv = 10 being the default value.

An alternative threshold pivoting criterion, discussed, e.g., in [156] for
preserving the structure of the QR factorization of sparse matrices is

pivot column index = min
k≤p≤mp ∣ s(k)p ≥

max (s(k)j )

ρpiv
, k ≤ j ≤m, (4.24)

where ρpiv ≥ 1.0 is a user-defined threshold. In this strategy, the columns with
thee larger partial norms are permuted towards the front, as in the standard
pivoting strategy. However, instead of permuting the column with the largest
partial norm, the closest column with a norm at least as large as a user-defined
fraction of the maximum partial norm is permuted to the kth column. Both
pivoting criteria 4.24 and 4.23 help preserve the original column ordering
compared to the standard pivoting criterion 4.7. In practice, the pivoting
criterion in Eq. 4.24 prioritizes moving the columns with larger partial norms
to the front more, while the pivoting criterion 4.23 rather prioritizes keeping
the original column ordering unless in the kth iteration, a relatively small
pivot is placed in the kth column, prompting a permutation.

4.2.3 Cyclic permutation

In the standard column pivoting, a permutation interchanges the position of
two columns. In the kth iteration of the factorization, if the pth column is
chosen to be the pivot column (k < p), then the pth column is moved towards
the front by interchanging the kth and the pth columns. By doing so, the
sequence of the columns k, k + 1, . . . , p − 1 is interfered with since the kth
column is moved to the back of the sequence. In order to further preserve the
ordering of the columns, one can perform a right cyclic shift ([140, 157, 156])
of the sequence of columns between k and p instead of column interchanges
when a permutation occurs, i.e., for k < p,

k Ð→ k + 1, k + 1Ð→ k + 2, . . . , p − 1Ð→ p, pÐ→ k. (4.25)

Note that by cyclic permutation, we mean the technique of performing cyclic
shifts instead of column interchanges. This should not be confused with the
cyclic pivoting method introduced in [139].

The QR factorization of the example V matrix from section 4.2.1 is
recalculated using the threshold and closest column pivoting criteria 4.23
and the cyclic permutation technique. In Fig. 4.3, the diagonal entries of
the R-factor after the modifications to the standard pivoting strategy are
depicted. As expected, the sequence of the diagonal elements of R does not
approximate the distribution of the singular values as well as the standard
pivoting strategy would allow (see Fig. 4.1). However, by comparison with
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Fig. 4.1a, the diagonal elements ofR reflect the general pattern of the singular
values of V . This is the comprise that we made in order to preserve the
column ordering to some degree.
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Figure 4.3: Diagonal elements of the R-factor from QR factorization with
column pivoting using the threshold and closest column pivoting criteria,
and the cyclic permutation technique

In Fig. 4.4, the permutation vector is plotted after the modifications are
applied to the standard pivoting strategy. By comparison with Fig. 4.2b, it
is evident that the column ordering is quite better preserved compared to the
standard column pivoting strategy. At the same time, Fig. 4.4 shows that
the columns with significantly smaller partial norms are successfully placed
at the trailing part of the matrix and, thus, can be filtered when solving the
basic solution via QR factorization with column pivoting.
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Figure 4.4: The permutation vector from QR factorization with column
pivoting using the threshold and closest column pivoting criteria, and the
cyclic permutation technique
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4.2.4 Age-based column scaling

So far, the columns of matrix V are scaled to have equal and unit norms.
This scaling improves the conditioning of the matrix and allows a correct
assessment of linear dependency among the columns of V . Without column
scaling, column pivoting would lead to misleading results as the columns with
much bigger norms would always be moved to the front. When the columns
of V are scaled to have equal norms, they are in a "neutral" state for column
pivoting. No column is prioritized over the other based on the initial column
norms.

Recall that we intend to use the filtering (or column subset selection)
technique for removing the linearly dependent or less relevant columns as
well as for automatically deciding the number of previous time steps used
in the IQN-ILS method (i.e., no explicit user-defined parameter for the time
step history is required). Through the modifications to the QR factorization
with standard column pivoting strategy, a combination of the columns with
small pivots and columns from older time steps are placed at the trailing
part of matrix R. Those columns are excluded from th basic solution via
QR factorization with column pivoting (the number of dropped columns
depends on a user-defined threshold for deciding the ε-rank). Therefore,
the combination of threshold pivoting and cyclic permutation techniques, in
principle, allows for simultaneously removing the linearly dependent or less
relevant columns and controlling the time step history in the IQN-ILS method.
However, it is not uncommon in practice that some columns from time steps
far back in history remain in matrix V , as no explicit parameter for the
maximum time step history is used, which can degenerate the convergence
rate of the IQN-ILS method. Therefore, a mechanism is required to make
sure that the data from very old time steps are consistently removed.

Column scaling does not change the solution of the least square problem.
We are free to choose the scaling factor for each column, As long as the
diagonal scaling matrix is positive definite. Here, a scaling is chosen that
allows prioritizing the columns from newer over the older time steps. In
addition to scaling the columns with their corresponding norms, the columns
are scaled based on the age of their corresponding time step. The age here
refers to how far back in history a particular time step is. The age is determined
by parameter s. s = 0 corresponds to the current time step, s = 1 refers to the
previous time step, and so on. A function for determining the column scales
based on age should return 1 for the columns from the current time step and
a progressively smaller value for the columns from the older time steps. The
following function is chosen for determining the age-based column scales:

scale =
1

(ρage)
s , (4.26)

where s is the age of the time step to which each column belongs, and ρage is
a user-defined parameter. Note that the columns from the same time step
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have the same age-based scaling. The choice of the scaling function in Eq.
4.26 leads to a straightforward implementation of age-based column scaling.
In a new time step, the existing matrix V (from the previous time steps)
is divided by the scalar ρage before the very first column of the new time
step is inserted. The age-based scaling affects the singular values of matrix
V . Therefore, ρage is recommended to be chosen such that matrix V is not
drastically changed since it is known that by having equal column norms,
matrix V has close to optimum conditioning. In this work, ρage = 1.2 is used.
The age-based scaling factors for columns of the example V matrix from
section 4.2.1, with 18 previous time steps, are plotted in Fig. 4.5.
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Figure 4.5: Age-based scaling factors for columns of the example matrix V
with 18 previous time steps

In Figs. 4.6a and 4.6b, the singular values of the example matrix V without
age-based scaling (all columns have equal and unit norm) and with age-based
scaling are plotted, respectively. It is shown that the age-based scaling does
not change the singular values drastically. The diagonal elements of the R-
factor from QR factorization with column pivoting utilizing age-based column
scaling are plotted in Fig. 4.6c. By comparing Figs. 4.6c and 4.6b, it can be
observed that the diagonal elements of the R-factor approximate the general
distribution of the singular values well.

The permutation vector after using age-based column scaling is plotted
in Fig. 4.7. By comparing Figs. 4.7 and 4.4, it is clear that the age-based
column scaling helps as well with better preserving the column ordering of V .

4.2.5 Restricted column pivoting

Restricted column pivoting is a strategy introduced in [158, 159, 156] for
restricting the choice of the pivot columns to a pivot window, which is a subset
of the columns of a matrix. Restricted pivoting was initially used to enhance
the efficiency of QR factorization with column pivoting in parallel or block
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Figure 4.6: The effect of age-based scaling on the example matrix V . (a)
singular values from SVD without age-based scaling; (b) singular values from
SVD with age-based scaling; (c) diagonal elements of the R-factor from QR
factorization with column pivoting using the threshold and closest column
pivoting criteria, cyclic permutation technique, and age-based scaling

algorithms. In [159], restricted pivoting is used to restrict the choice of pivot
columns to the ones in local memory in a distributed memory environment. In
[156], the pivot columns are restricted to the ones that preserve the structure
and sparsity of a sparse matrix. In the following, the idea of restricted column
pivoting is borrowed in order to develop a technique to further control the
range of the previous time steps used in the IQN-ILS method.

It occasionally happens that the age-based column scaling introduced
in section 4.2.4 does not control the range of the previous time steps to a
satisfactory degree unless a sharp scaling function is used. An idea to help
control the aforementioned range is to remove columns from very old time
steps before removing the almost linearly dependent or less-relevant columns
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Figure 4.7: The permutation vector from QR factorization with column
pivoting using the threshold and closest column pivoting criteria, cyclic
permutation technique, and age-based scaling

(depending on the user-defined threshold). In terms of the original column
ordering of matrix V , removing columns from the middle of the matrix forces
removing columns from very old time steps as well. Recall that in the basic
solution via QR factorization with column pivoting, the columns at the trailing
part of the R-factor are dropped. Therefore, to force the columns from the
very old time steps to be removed, we must prevent the pivoting strategy
from choosing and moving those old columns to the front of the matrix. Here,
the idea of restricted pivoting comes in handy. The pivot window is restricted
to a subset of the columns of matrix V excluding the ones from very old
time steps. The columns with small pivots are pushed towards the back of
the matrix up to the columns from very old time steps (excluded from the
pivoting window). In this way, any method that determines the ε-rank by
processing the columns (or column pivots) of R incrementally would process
the columns with small pivots before the columns from the old time steps, and
if required (depending on the user-defined threshold), the (almost) linearly
dependent columns together with the very old columns are dropped.

The remaining question is: what is the criterion for choosing the size of
the pivot window? As previously discussed, restricted pivoting is intended
for controlling the range of the previous time steps when the columns from
too many time steps are present in matrix V . However, restricted column
pivoting should not prevent matrix V from growing when columns from fairly
recent time steps are used. We choose the number of old time steps whose
columns are excluded from the pivot window based on a percentage of the
maximum age of columns in matrix V . If the oldest time step used in forming
matrix V has age smax, the pivot window includes all the columns from swin
previous time steps, defined by

swin = ceil ((1 − ξ) ⋅ smax) , (4.27)
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where ξ, defined as a percentage of smax, controls the range of the old time
steps whose columns are excluded from the pivoting window. We use ξ = 0.1
in this work. The function ceil(x) in Eq. 4.27 returns the least integer greater
than or equal to x. Using Eq. 4.27 together with ξ = 0.1 means that if the
oldest time step used for forming matrix V has an age less than 10, then
swin = smax, i.e., the pivot window includes all columns of matrix V . If
10 ≤ smax < 20, then the columns from the oldest time step are excluded from
the pivot window. If 20 ≤ smax < 30, then the columns from the two oldest
time steps with age smax and smax − 1 are excluded from the pivot window.

For the example matrix V from section 4.2.1, where the oldest time step
used in forming V has an age equal to 18, the presented restricted pivoting
strategy excludes the columns from the oldest time step from the pivot window.
The diagonal entries of the R-factor using restricted pivoting are plotted in
Fig. 4.8. The last three columns (which are from the oldest time step) are
kept at the end of the matrix and are the candidates to be dropped.
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Figure 4.8: Diagonal elements of the R-factor from QR factorization with
column pivoting using the threshold and closest column pivoting criteria,
cyclic permutation technique, age-based scaling, and restricted column
pivoting

The permutation vector plotted in Fig. 4.9 confirms that the last three
columns from the oldest time step are excluded from the column window.

4.2.6 Incremental condition estimation

The classical technique for determining the numerical rank of a matrix via
QR factorization with column pivoting is based on the diagonal entries of the
R-factor as presented in Eq. 4.21, which relies on the fact that the diagonal
entries of R via the QR factorization with standard column pivoting form a
non-increasing sequence. However, by the modifications made to the standard
column pivoting strategy, the diagonal entries of R do not form a strictly
non-increasing sequence anymore. Therefore, determining the ε-rank using Eq.
4.13 is not reliable anymore. We need a more reliable method for determining
the ε-rank, which does not rely on the diagonal entries of R forming a non-
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Figure 4.9: The permutation vector from QR factorization with column
pivoting using the threshold and closest column pivoting criteria, cyclic
permutation technique, age-based scaling, and restricted column pivoting

increasing sequence. We use the Incremental condition estimator introduced
in [160, 161] for that purpose.

The Incremental condition estimator can incrementally and cheaply es-
timate the minimum and the maximum singular values (therefore also the
condition number) of a matrix generated one column at a time. Those features
suit our application very well, where matrix R is generated one column at a
time, and we look to determine the ε-rank of R incrementally by processing
the columns of R starting from the first column and moving towards the back
of the matrix. Assume R ∈ Rm×m is upper triangular. It is known that

1

σmin(R)
= ∥R−1

∥
2
, (4.28)

where σmin(R) is the minimum singular value of R. However, computing the
inverse of R for calculating σmin(R) is undesirable. Very often, an estimation
for σmin(R) is more desirable. An idea commonly used in estimating σmin(R)

is to find a large norm solution x to a moderately sized right-hand side b in
the following equation ([137, 162, 163, 160]):

RTx = b, (4.29)

and, subsequently, calculating

σ̂min(R) =
∥b∥2

∥x∥2

, (4.30)

where σ̂min(R) is an estimation for σmin(R) (Note that R and RT have
the same singular values). If ∥b∥2 = 1, then σ̂min(R) = 1/∥x∥2, and x is the



136
Chapter 4. A strategy for automatic determination of time step history in

interface quasi-Newton methods

approximated singular vector associated with σ̂min(R).
Assume that a good estimation for the minimum singular value σ̂min(R) =

1/∥x∥2 is available through a large norm solution to Eq. 4.29 with ∥b∥2 = 1.
We are interested in finding a large norm solution y to

R′Ty = [
R w
0 γ

]

T

y = b′, (4.31)

where matrix R′ is R after a column is added to it, and ∥b′∥2 = 1. The
incremental condition estimator achieves this goal by calculating y based
on x and without accessing R again. The idea of the incremental condition
estimator is as follows: set

b′ = [
sb
c
] , (4.32)

where s = sinϕ and c = cosϕ. By inserting Eq. 4.32 in 4.31, the solution y is
calculated as

y =

⎡
⎢
⎢
⎢
⎢
⎣

sx
c − sα

γ

⎤
⎥
⎥
⎥
⎥
⎦

, (4.33)

where α =wTx. s and c in Eq. 4.33 are found such that ∥y∥2 is maximized.
The proper values of s and c are calculated analytically in [160, 161]. Having
calculated the values of s and c, y is calculated based on x using Eq. 4.33,
without accessing R. The estimation for the minimum singular value of the
updated matrixR′ is σ̂min(R

′
) = 1/∥y∥2, and y is the corresponding estimated

singular vector.
The Incremental condition estimator can also be used to calculated an

estimated maximum singular value σ̂max(R) based on the idea of finding a
small norm solution to Eq. 4.29 with ∥b∥2 = 1, where b is different than the
one used for estimation the minimum singular value. Using this idea, the
values of s and c in Eq. 4.33 are determined such that ∥y∥2 is minimized
[160, 161]. A stable implementation of the incremental condition estimator
based on [161] is provided in LAPACK [164]. Note that an estimation for
the maximum singular value of R can be also attained using matrix norm
inequalities.

Using the incremental condition estimator, σ̂min(R) and σ̂max(R) are
updated as R grows one column at a time, and the ε-rank r of matrix R is
determined by

r = max
1≤j≤m(j) ∣

σ̂min (R(r)
)

σ̂max (R(r)) ≥ ε, (4.34)

where R(r)
∈ Rr×r is a block of R containing the first r columns and rows of

R. Note that the determination of ε-rank can be done incrementally during
the factorization process. By doing so, the factorization can be stopped as
soon as the ε-rank is determined.
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4.2.7 The IQN-ILS method with automatic time step
history

Recall that the IQN-ILS method with reuse of information from previous time
steps requires a problem-dependent user-defined parameter for the maximum
reused previous time steps (time step history). In addition, filtering has been
shown to enhance the robust and sometimes the efficiency of the IQN-ILS
method. Therefore, an additional user-defined parameter is required for the
filtering tolerance. Using the developments in the previous sections, we are
able to effectively combine the task of determining the time step history with
that of column subset selection (filtering). Therefore, no explicit user-defined
parameter for the maximum time step history is required. The IQN-ILS
method with automatic time step history uses the basic solution via QR
factorization with column pivoting as a column subset selection (filtering)
technique. The standard pivoting strategy is modified by: threshold pivoting
(Eq. 4.24) with ρpiv = 10, cyclic permutation, age-based column pivoting
(Eq. 4.26) with ρage = 1.2, restricted column pivoting with the pivot window
defined by Eq. 4.27 with ξ = 0.1, and ε-rank determination using incremental
condition estimator. Only one parameter remains to be set by the user, and
that is, the threshold ε for determining the ε-rank, which decides the extend
to which we keep the columns of R in the column subset selection process.
We use ε = 10−4 as the default value. The user can change the value of ε for
decreasing or increasing the number of columns chosen in the column subset
selection process in order to increase the convergence rate of the method. That
requires prior knowledge about a specific numerical problem or simply trying
out the alternative ε. However, the presented strategy is not so sensitive to
the change of ε from the default value.

4.3 Results and discussion

In this section, the proposed strategy for automatic determination of time
step history in IQN-ILS method is compared to other well-known convergence
accelerator techniques for the simulation of FSI benchmark problems from the
literature: Aitken relaxation, IQN-ILS method with different fixed number
of previous time steps, and MVQN method. For the Aitken relaxation, an
initial relaxation factor of 0.5 is used. For all the quasi-Newton methods,
the conditioning of the matrix used for solving the least squares problem is
monitored and filtering is applied only for keeping the system well-conditioned.
The simulations in this section are carried out in the Kratos Multiphysics1

open-source framework [141, 142]. The least squares problem entailed in
the IQN-ILS method is solved using Householder QR factorization. A linear
predictor is used for predicting the displacements of the nodes on the FSI
interface in all simulations. A few different convergence criteria are used for
evaluating the convergence status of coupling iterations at each time step.

1 https://github.com/KratosMultiphysics/Kratos

https://github.com/KratosMultiphysics/Kratos
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The first criterion is an absolute one, based on the magnitude of the interface
residual:

∥r(l)∥2
√
n

< εdabs, (4.35)

where r(l) =R (x(l)) is the interface (displacement) residual at the lth coupling
iteration and n is the number of DOFs on the FSI interface. Instead of an
absolute criterion, one can use a relative one

∥r(l)∥2

∥x̃(l)∥2

< εdrel, (4.36)

where r(l) =R (x(l)) is the interface residual and x̃(l) =H (x(l)) is the output
of the fixed point map at the lth coupling iteration. When used in conjunction
with Gauss-Seidel iterations and displacements as interface unknowns, The
convergence criteria 4.35 and 4.36 monitor only the displacement residuals
and provide no direct information about the convergence of interface traction
residuals. In certain applications, it might be necessary to make sure that
the equilibrium of interface tractions is fully satisfied. For further discussions
on this topic, see [117]. Therefore, in addition to the criterion 4.36, one can
simultaneously use a relative convergence criterion based on the interface
tractions:

∥f (l) − f (l−1)
∥2

∥f (l)∥2

< εfrel, (4.37)

where f (l) and f (l−1) are the interface traction vectors at the current and
previous coupling iteration, respectively. In the numerical examples presented
hereafter, the choice of convergence criteria among Eqs. 4.35, 4.36 and 4.37
will be made such that a better comparison can be done with the results
available in the literature.

4.3.1 Driven cavity with flexible bottom

This benchmark problem, proposed in [151, 103], consists of a square cavity
with a flexible bottom. The flow inside the cavity is driven by a prescribed
periodical velocity at the top boundary. The dimensions of the problem and
the boundary conditions are shown in Fig. 4.10a. The definitions of the
boundary conditions are taken from [165], which are slightly different from
the ones used in [151, 103]. The boundary conditions introduced in [165] lead
to a larger deformation of the flexible bottom. The prescribed oscillatory
velocity at the top boundary is defined by

ū = 1 − cos(
2πt

5
) , (4.38)
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Figure 4.10: Driven cavity: (a) computational domain’s dimensions in [m]
and the discretization; (b) the pressure contours overlaid by the velocity
streamlines at t = 45.5 s.

which leads to a velocity range between 0 m/s and 2 m/s. The fluid inflow and
outflow defined close to the top of the cavity allow the volume of the cavity
to change in time. The fluid domain is discretized using 4096 triangular finite
elements, utilizing linear, equal-order interpolation for velocity and pressure
(referred to as P1P12 element hereafter) and stabilized through the Variational
Multiscale Method (VMS) [147, 148]. The Fluid mesh is illustrated in Fig.
4.10. The flexible membrane at the bottom is discretized using 2 × 32 linear
quadrilateral Total Lagrangian elements. The fluid and the structural domains
have matching spatial discretizations on the FSI interface. The incompressible
fluid has a density of 1.0 kg/m3 and a kinematic viscosity of 0.01 m2

/s. For
the structure, a material with a density of 500 kg/m3, Young’s modulus of
250 N/m2, and Poisson’s ratio of 0 are used. Furthermore, plane stress and
small strain elastic behavior is assumed. The coupled simulation is carried
out for 70 s with a time step size of 0.1 s for both domains. The absolute
convergence criteria 4.35 with the absolute tolerances of εdabs = 10−7 is used to
check the convergence of the coupling iterations. The pressure contours and
the velocity streamlines in the deformed fluid domain at the time instance
t = 45.5 s are shown in Fig. 4.10b. The vertical displacement of the point in
the middle of the flexible membrane is plotted in Fig. 4.11.

The average number of coupling iterations for different convergence accel-
eration techniques is presented in table 4.1. As expected, the quasi-Newton
methods perform better than the Aitken relaxation. Among the quasi-Newton
methods, IQN-ILS(3), with information from three previous time steps, per-
forms the best. However, Increasing the time step history to 5 and 10 leads
to an increase in the coupling iterations. The IQN-ILS method with auto-
matic time step history (with default parameters) performs almost as good

2 We designate the triangular (in 2D) or tetrahedral (in 3D) finite elements with linear
interpolation for velocity and pressure by P1P1.
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Figure 4.11: Driven cavity: vertical displacement in the middle of the flexible
bottom

Table 4.1: Driven cavity: comparison of different convergence acceleration
techniques

method average number of iterations

Aitken Relaxation 9.37

IQN-ILS(0) 5.17

IQN-ILS(3) 3.88

IQN-ILS(5) 4.20

IQN-ILS(10) 4.74

MVQN 4.04

IQN-ILS + automatic time step history, ε = 10−4 3.96

as the IQN-ILS(3) and slightly better than MVQN. The main takeaway of
the current comparison is that the determination of the time step history in
IQN-ILS method can be automatized and combined with the filtering process,
without sacrificing too much of performance (in terms of number of coupling
iterations).

4.3.2 Flow-induced oscillation of a flexible beam in the
wake of a square bluff body

A flexible beam attached to a square bluff body is submerged in incompressible
fluid flow. Due to the interaction with the wake of the square body, the flexible
beam starts to oscillate. The details of the problem’s numerical setup are
presented in section 3.7.2.

The average number of coupling iterations using different convergence
acceleration techniques is presented in table 4.2 for the Wall benchmark
problem. The IQN-ILS method with the automatic determination of time
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Table 4.2: Wall benchmark: comparison of different convergence acceleration
techniques

method average number of iterations

Aitken Relaxation 6.6

IQN-ILS(0) 4.74

IQN-ILS(2) 3.73

IQN-ILS(5) 4.02

IQN-ILS(10) 4.33

IQN-ILS(15) 4.58

MVQN 4.36

IQN-ILS + automatic time step history, ε = 10−4 3.74

history leads to the least number of coupling iterations. The IQN-ILS(2)
method achieves the same performance. The trend of the results for IQN-ILS
with fixed number of time step history shows a reduction in efficiency (in
terms of number of iterations) as the time step history increases.

4.3.3 Wave propagation in a 3D elastic tube

This benchmark problem consists of a pressure wave propagation through the
flexible elastic tube. Initially, the fluid and the structure are at rest. The two
ends of the tube are fixed. The pressure at the outlet boundary is set to zero
for the duration of the simulation. During the first 3 × 10−3 seconds of the
simulation, an overpressure of 1333.2 Pa is applied at the inlet boundary and
set to zero afterward. Consequently, a pressure wave propagates through the
tube. The problem’s detailed description is given in section 3.7.1.

The average number of coupling iterations using different convergence
acceleration techniques is presented in table 4.3 for the current problem. The

Table 4.3: Wave propagation in a 3D elastic tube: comparison of different
convergence acceleration techniques

method average number of iterations

Aitken Relaxation 40.2

IQN-ILS(0) 13.12

IQN-ILS(10) 6.74

IQN-ILS(30) 6.32

IQN-ILS(40) 6.21

MVQN 5.34

IQN-ILS + automatic time step history, ε = 10−4 6.55

IQN-ILS + automatic time step history, ε = 10−7 6.38
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first thing to notice in table 4.3 is that the quasi-Newton methods outperform
the Aitken relaxation substantially in the current example. The trend of the
results for the IQN-ILS method reveals that significantly increasing the time
step history leads to better results. However, MVQN is the best performing
method in the current example. The performance of MVQN in this example
can be attributed to the fact that the approximation for the inverse of interface
Jacobian is updated in every time step and then passed to the subsequent
time steps. Therefore, information from all previous time steps are implicitly
included in the approximation of the Jacobian. The IQN-ILS with automatic
determination of time step history has an average performance using the
default value of ε = 10−4 compared to the other quasi-Newton methods. The
proposed column selection strategy with ε = 10−4 limits automatically the
size of time step history. The user can decrease the ε value in order to retain
information from older time steps. Using ε = 10−7 leads to a slightly better
performance, confirming the previous discussion on the effect of time step
history size in the current example.

4.3.4 Flexible restrictor flap in converging channel

This example, taken from [166, 167], consists of a flexible restrictor flap in
a converging channel. Due to the symmetry, only one half of the channel is
simulated. The geometry, the dimensions, and the boundary conditions of the
problem are shown in Fig. 4.12. Points A and B, placed on the left side of
the flexible flap in Fig. 4.12, are used to sample the pressure and the velocity
in the domain. The inflow velocity uin has a parabolic profile

uin (y, t) =
y (1 − y)

(0.5)2
uin (t) , (4.39)

where the time dependent reference velocity uin (t) increases in time gradually
from zero to a nominal value according to

uin (t) =

⎧⎪⎪
⎨
⎪⎪⎩

0.06067

2
(1 − cos (πt

10
)) if t ≤ 10

0.06067 otherwise
. (4.40)

The fluid domain is discretized using 6922 P1P1 finite elements stabilized
by VMS. The Fluid mesh is illustrated in Fig. 4.13. The structure (the
flexible flap) is discretized using 4 × 100 linear quadrilateral Total Lagrangian
elements. The number of DOFs in the fluid and structural domains are 14748
and 1515, respectively. The fluid and the structural domains have matching
spatial discretizations on the FSI interface. The number of DOFs on the
FSI interface is 615. The incompressible fluid has a density of 956 kg/m3

and dynamic viscosity of 0.145 Pa s. The structural material has a density
of 1500 kg/m3, a Young’s modulus of 2.3 × 106 N/m2 and a Poisson’s ratio
of 0.45, and plane stress and small strain elastic behavior is assumed. The
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Figure 4.12: Mok benchmark: the domain’s dimensions and boundary
conditions

Figure 4.13: Mok benchmark: the fluid’s computational grid

coupled simulation is carried out for 25 s with a time step size of 0.1 s for both
domains. The absolute convergence criteria 4.35 with the absolute tolerances
of εdabs = 10−8 is used to check the convergence of the coupling iterations. The
horizontal component of the velocity is shown in Fig. 4.14. The pressure and

-2.3e-02 1.3e-010 0.02 0.04 0.06 0.08 0.1

Velocity X

Figure 4.14: Mok benchmark: the contours of fluid velocity in horizontal
direction at the end of the simulation

the horizontal component of the velocity at points A and B are plotted in Fig.
4.15.

The average number of coupling iterations using different convergence
acceleration techniques is presented in table 4.4 for the Mok benchmark
problem. The least number of coupling iterations is achieved using the MVQN
method, followed by the IQN-ILS method with automatic determination of
time step history. Among the IQN-ILS methods with fixed time step history,
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Figure 4.15: Mok benchmark: evolution of (a) horizontal displacements and;
(b) pressure values at reference points A and B

Table 4.4: Mok benchmark: comparison of different convergence acceleration
techniques

method average number of iterations

Aitken Relaxation 15.34

IQN-ILS(0) 5.52

IQN-ILS(3) 4.67

IQN-ILS(5) 4.6

IQN-ILS(10) 4.36

IQN-ILS(15) 4.42

MVQN 3.55

IQN-ILS + automatic time step history, ε = 10−4 3.72

IQN-ILS(10) performs the best, yet not as good as the proposed column
selection strategy.

4.3.5 Flow-induced oscillation of a flexible beam in the
wake of a cylinder

This benchmark problem was proposed by Turek and Hron in [89], and
has since been used frequently in the literature. There are three different
configurations of the benchmark available. We choose the FSI3 configuration,
which entails the strongest added-mass effect and the highest Reynolds number.
This benchmark problem is conceptually similar to the example presented in
section 4.3.2. In this example, we focus on the fully harmonic motion of the
flexible beam in the later stages of the simulation. The description and the
numerical setup of the benchmark problem are presented in section 3.7.3.

The average number of coupling iterations using different convergence
acceleration techniques is presented in table 4.5 for the Turek FSI3 benchmark
problem. The IQN-ILS(8) method performs the best in the present example.
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Table 4.5: Turek FSI3 benchmark: comparison of different convergence
acceleration techniques

method average number of iterations

Aitken Relaxation 23.7

IQN-ILS(0) 10.81

IQN-ILS(5) 3.82

IQN-ILS(8) 3.72

IQN-ILS(15) 4.54

MVQN 4.81

IQN-ILS + automatic time step history, ε = 10−4 4.05

The IQN-ILS method with automatic determination of time step history
performs quite good as well. The MVQN method performs worst (among the
quasi-Newton methods) in the present example.





Chapter 5

Multi-time-step algorithms for
partitioned strongly coupled
fluid-structure interaction problems

5.1 Introduction

The present work deals with accurate and efficient multi-time-step coupling al-
gorithms for FSI simulations allowing heterogeneous time integration schemes.
The application of subcycling schemes has a long history in certain classes of
FSI problems. In particular, there is a rich body of research on fluid subcycling
in aeroelastic simulations [170, 171, 172, 173, 174, 175, 176]. The term fluid
subcycling means that the time step size of the fluid solver is smaller than that
of the structural solver. Hence, for every time step of the structural solver, the
fluid solver performs potentially many time steps. Three important choices
in the design of the aforementioned fluid subcycling schemes are: transferring
the average value of the fluid interface forces over a coarse time step to the
structure [174]; handling the interface kinematic coupling conditions on the
continuity of discrete interface displacement values; and even distribution of
the predicted solid interface displacement to the fluid solver, for which a linear
interpolation of interface displacements is advocated [171, 173]. Another
dominant theme in [170, 171, 172, 173, 174, 175, 176] is the use of partitioned
staggered coupling algorithms for the FSI problem. In the staggered (also
called loosely coupled, weakly coupled, explicit, segregated) algorithms, the
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structure and fluid problems are solved only once in every time step, i.e., no
coupling iterations are performed between the fluid and structure.

While the staggered coupled algorithms are inherently fast and relatively
easy to implement, they are known to possess poor stability and accuracy in
FSI problems involving high fluid-to-structure density ratios and structures
with low stiffness or high slenderness. This class of FSI problems is associated
with the strong artificial added mass effect [99, 100, 102]. In such FSI problems,
it is often essential to sufficiently satisfy the FSI coupling conditions in each
time step in order to reach the desired level of accuracy and stability. The
methods that fully satisfy the coupling conditions are referred to as strongly
coupled (or implicit) algorithms. Generally, such methods are categorized as
either monolithic or partitioned strongly coupled algorithms. The extension of
the monolithic approach to FSI problems with non-matching time step sizes for
fluid and structure could be computationally very demanding since that entails
solving the structure and fluid equations over many time steps simultaneously.
On the other hand, the use of some partitioning or domain decomposition
methods, in the context of FSI simulations with non-matching time steps,
allows the structural and fluid solvers to advance in time as per usual and
exchange information at regular intervals in order to solve the interface
problem governing the partitioned coupling between the two subdomains.
Compared to the staggered algorithms, there are not as many studies available
in the FSI literature that investigate, either numerically or analytically, the
use of subcycling in the partitioned strongly coupled problems. In [177], the
temporal stability of fluid and structure subcycling schemes in partitioned
strongly coupled algorithms are studied analytically using a one-dimensional
flow in an elastic cylindrical tube and numerically using axisymmetric FSI
calculations. For the case of fluid subcycling, a cubic interpolation of interface
displacements within a coarse time step (constructed using displacement and
acceleration values at the boundaries of the coarse time step) is proposed
in [177]. The handling of the interface kinematic conditions is based on
the continuity of discrete interface displacement values. In addition, the
structure subcycling scheme based on the continuity of the discrete interface
displacement is shown to be unstable for bigger fluid-to-structure time step
ratios. The convergence of coupling iterations is accelerated using an interface
quasi-Newton method [111] formulated using the information at the coarse
time steps.

In [178], a multi-rate coupling scheme is proposed for the partitioned
strongly coupled problems based on dynamic iterations (waveform relaxation
[179]) accelerated by interface quasi-Newton methods [111, 180]. In [178], B-
Splines of up to third order are used to interpolate the interface displacements
and forces within a time window. In [181], iterative strongly coupled schemes
that use different time step sizes for each subdomain are developed for the
coupling of heat and wave equations inspired by FSI problems. Furthermore,
adaptive time step control for such schemes is proposed. The subdomains are
advanced using their own micro time steps within a macro time step used
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for coupling. Interpolation of entities between the subdomains is carried out
using linear interpolation functions over a macro time step. The convergence
of coupling iterations is accelerated using either a relaxation method or a
matrix-free Newton-Krylov method.

All the previously cited multi-time-step schemes are based on a Dirichlet-
Neumann partitioning of the FSI problem. In [182], a multi-rate extension of
the loosely-coupled β-scheme [183, 184] for the case of structure subcycling in
FSI problems is proposed. In the algorithm proposed in [182], the structure
is advanced in time using a constant Neumann boundary condition predicted
from the fluid state at the end of the previous coarse time step. Subsequently,
the fluid is advanced one coarse time step using Robin boundary condition
set up with the help of the calculated structure’s velocity at the last fine time
step. In [185], a FETI-based coupling algorithm is used for FSI problems
involving fast phenomena requiring explicit time integration schemes in both
subdomains but with different time step sizes. The multi-time-step FETI-
based coupling schemes were originally developed in the field of structural
mechanics, where different methods have been proposed [186, 187, 188, 189,
190, 191, 192, 193]. The common characteristics of the multi-time-step FETI-
based coupling methods in the literature are: solving the problem using a
dual Schur complement approach, and satisfying the velocity continuity at
the common boundaries of the subdomains. The main differences among the
FETI-based methods are the satisfaction of kinematic continuity conditions
at either the fine or coarse time scales, and interpolation assumptions used for
the kinematic entities and Lagrange multipliers. In a different approach to
FSI problems with different time scales, a temporal homogenization approach
is presented in [194] for long-term simulation of atherosclerotic plaque growth.
In this approach, a periodic-in-time fine-scale FSI solution is solved in each
long-scale time step and the average of (plaque) growth function is calculated,
which is taken into account in the long-scale problem.

Multi-rate coupling schemes have been used as well in other multiphysics
problems. In [195], a multi-time-step loosely coupled scheme is presented
for coupled free flow and porous media problems. Subcycling in the coupled
discrete element method and lattice Boltzmann simulation of particle transport
and suspension problems is presented in [196, 197]. Dirichlet-Neumann and
Neumann- Neumann waveform relaxation methods are introduced in [198, 199]
for parabolic problems and wave equation. Multi-rate Neumann-Neumann
waveform relaxation methods are suggested in [200, 201] for heterogeneous
coupled heat equations and thermal fluid-structure interaction problems.

In the present work, fluid and structure subcycling schemes are proposed
and analyzed for partitioned strongly coupled FSI problems based on Dirichlet-
Neumann decomposition. The proposed schemes allow accurate and stable
multi-time-step FSI simulations with high time step ratios. An important
factor in the design of the multi-time-step schemes considered here is the
applicability in a wide range of FSI applications. The iterative partitioned
strongly coupled method allows the simulation of FSI problems with strong
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added mass effect. Combined with the state-of-the-art interface quasi-Newton
methods, the fast convergence of the coupling iterations is achieved. The
attributes of the presented schemes allow a straightforward integration into
already existing software environments capable of performing FSI simulations.
The proposed schemes are applied to some of the challenging FSI benchmark
problems, and the effect of subcycling in the fluid and structural solvers are
investigated in those problems.

5.2 A model problem

In this section, we first introduce a model problem which facilitates the
presentation of the time integration methods as well as the methods related to
the coupling of methods with non-matching time step sizes in section 5.3. The
model problem is a 1D damped spring-mass system stated by the following
ordinary differential equation (ODE)

M∂ttd +C∂td +Kd = 0, (5.1)

where d is the displacement of the mass, ∂td and ∂ttd represent the first and
second derivatives of d with respect to time, while M , C and K are the
mass, damping and stiffness of the system, respectively (in order to unify the
notation with the general FSI problems, the variables are written using bold
symbols). This model problem is used as well in [207, 61, 208] and is shown
in [209] to be essentially equivalent in behavior to the 2D linearized problem
of a fluid-conveying elastic tube used in [99]. The 1D model problem is handy
for studying the influence of time integration schemes in coupled problems,
especially concerning the kinematic constraints on the coupling interface.
In order to use the model for studying time discretization in partitioned FSI
problems, the model is split into two systems. The splitting is done such that
one system models the solid domain in time using a second-order ODE, and
the other system models the fluid problem using a first-order ODE. Hereafter,
we will refer to the two split systems of the model problem simply as the solid
and fluid systems. LetMs andMf be the portions of the total mass assigned
to the solid and fluid systems, respectively. Furthermore, the stiffness and
damping terms are assigned to the solid and fluid systems, respectively, i.e.,
Ks

=K and Cf
= C. Eq. 5.1 is rearranged as

Ms∂ttd
s
+Ksds = −Mf∂ttd

f
−Cf∂td

f , (5.2)

where the left and right-hand sides of the equation represent the solid and
fluid problems respectively. in the present work, the following physical
parameters are used for the model problem: Ms

= Mf
= 0.5, Ks

= 1,
Cf

= 0.02, ds0 = df0 = 0.1, ∂tds0 = ∂td
f
0 = 0. Consequently, the undamped

natural frequency and the corresponding period of oscillation are ω = 1.0 and
P = 2π, respectively. Eq. 5.2 is subjected to the following continuous-in-time
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kinematic constraints:

df = ds, ∂td
f
= ∂td

s, ∂ttd
f
= ∂ttd

s. (5.3)

In the fluid problem, a simple change of variable is carried out as

∂td
f
= vf , (5.4)

where vf is the velocity of the fluid. The fluid problem then reads

Mf∂tv
f
+Cfvf = 0, (5.5)

which is a first-order ODE. Eq. 5.5 is subjected to the kinematic coupling
conditions. The velocity and displacement of the damper are related through
Eq. 5.4 which is similar to the way the fluid velocity and fluid domain’s
displacement are related on the coupling interface in 2D or 3D FSI problems.
A time-discretized form of Eq. 5.4 can be later used to determine the position
of the damper through calculating the displacement df . The equation for the
solid problem is stated as

Ms∂ttd
s
+Ksds = λs, (5.6)

where λs is the interface reaction force applied to the structure and defined
by the equilibrium of forces at the coupling interface

λs = λf , and λf = −Mf∂tv
f
−Cfvf . (5.7)

5.3 Coupling domains with non-matching time steps

Let us start by motivating the choice of the time grids in the multi-time-step
schemes considered here. In the most general setting, the fluid and structural
solvers advance in time with their independent and potentially adaptive time
step sizes and are required to synchronize their data only at specific time
instants. The waveform relaxation methods are iterative coupling methods
that are very close to the aforementioned general multi-time-step concept. In
waveform relaxation methods, the time interval is usually split into several
time windows. In every coupling iteration in each time window, the structure
and fluid solvers advance in time with their own time step sizes (in other words,
they can both subcycle) till the end of the time window and, subsequently,
exchange interface data over the whole time window. This property facilitates
adaptive determination of structure and fluid time steps and allows higher
interpolation of interface data (if enough data points are available in the
time window). On the other hand, the convergence of the dynamic iterations
for highly nonlinear problems like FSI is influenced by the length of the
time window. Typically, the convergence is faster in shorter time windows.
Furthermore, finding a good initial guess for the iterate over the whole time
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window is a less trivial task for longer time windows. Finally, the convergence
acceleration of waveform iterations is computationally more involved than
the classical iterative methods for problems with matching time steps due to
the space-time definition of the interface problem in the waveform iteration
methods. The more time steps exist in one time window, the more interface
data must be stored and operated on for the convergence acceleration, e.g.,
via quasi-Newton methods. Based on the considerations above, it is decided
in this work to choose the coupling windows as short as possible, which is
equal to the largest local time step size of the fluid and structural solvers.
Designating the larger and smaller time steps of the fluid and structural solvers
by the coarse and fine time steps, respectively, the coupling window is chosen
to be always equal to the coarse time step. By doing so, the convergence
acceleration techniques, e.g., interface quasi-Newton methods, are formulated
pointwise in time at the discrete time instants of the coarse time steps without
any changes to the formulation required. This approach has the added benefit
that the convergence of the coupling iterations is typically achieved faster
due to the short coupling window. Furthermore, closed-form definitions of
(temporal) interpolation and projection operators between the subdomains
are possible since the coupling window is always equal to the coarse time step.
On the other hand, the subproblem with the biggest time step size loses the
possibility of subcycling in every coupling window in this approach. However,
all the other subproblems have the possibility to march with an arbitrary
number and size of time steps within a coupling window. The subproblem
with the biggest time step size can still adapt its time step when moving
from one coupling window to the next, and the coupling window is adapted
accordingly.

5.3.1 Fluid subcycling scheme

In this section, we focus on the fluid subcycling case, i.e., the fluid problem is
discretized using smaller time steps than the solid problem, either due to the
small time scale of the problem or due to the solver requirements. The time
grids of the one coupling window are schematically shown in Fig. 5.1. The
time indices of the coarse and fine time steps are indicated using n and m,
respectively. The coupling between the fluid and solid domains is carried out
by iteratively exchanging information through interpolation and projection
operators. For the sake of simplicity, it is assumed here that the subproblems
have constant time step sizes, and the number of the fine time steps Ns,f in
each coupling window is an integer number, i.e., Ns,f

= ∆Ts

∆tf
is an integer.

We now focus on the problem of satisfying the coupling conditions and
transferring the data between the solid and fluid subdomains with coarse
and fine time steps, respectively. The combination of Dirichlet-Neumann
decomposition of the FSI problem and fluid subcycling dictates that the
kinematic variable on the FSI interface must be interpolated from the course
time step of the solid to the fine time steps in the fluid domain. On the other
hand, the fluid tractions on the FSI interface must be transferred from the
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Figure 5.1: From top: the structure, coupling and fluid time grids in the
fluid subcycling scheme

fluid domain with fine time step to the solid with the coarse time step. For
transferring the interface forces, the most straightforward option is to simply
set the values of the fluid and solid tractions at the end of the coarse time
step equal, i.e.,

λsn+1 = λ
f
n+1. (5.8)

However, using Eq. 5.8 implies a pointwise satisfaction of the dynamic
equilibrium condition at the end of the coarse time step. Therefore, any
variation in the fluid force within the coarse time step will not be captured
in the solid domain, and the interface forces will not be conserved in the
coupling window. A better solution for transferring interface forces on the
FSI interface arises from the integral form of the dynamic coupling condition
over the coarse time step

∫

Tn+1
Tn

λs(t) dt = ∫
Tn+1

Tn

λf(t) dt. (5.9)

In order to evaluate the integrals, we need to know how the forces evolve
within the coupling window. We make the assumption that the interface forces
vary linearly in time within a fine and coarse time step and are continuous
across the time steps. This assumption is reasonable when using the G-α
family of time integration schemes since the force term is evaluated as a
linear combination of the values at tn and tn+1. It is then straightforward to
formulate the discrete form of Eq. 5.9 over a coupling window and arrive at
the following formula for λsn+1:

λsn+1 =
2

∆Tn
(
Ns,f−1

∑
m=0

∆tm
2

(λfm +λfm+1)) −λ
s
n. (5.10)

Using Eq. 5.10, the interface force is preserved in an integral sense over the
coupling interface. However, it is not guaranteed that the local maxima and
minima in the interface force curve are strictly preserved using Eq. 5.10. It is
also worth mentioning that the simple closed-form solution in Eq. 5.10 comes
as a result of limiting the coupling window to the coarse time step size of the
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solid problem.
Regarding the treatment of the kinematic constraints on the FSI interface,

the general approach here is to strongly fulfill the constraints on the discrete
interface kinematic variables at the beginning and end of each coarse time
step and determine the kinematic variables at the fine time scale through
interpolation from the values at the coarse time scale. With the help of the
model problem introduced in section 5.2, different approaches for satisfying
the FSI kinematic constraints will be presented and compared. The coarse and
fine time step sizes are chosen as ∆T s = P /10 and ∆tf = P /1000, subsequently,
where P = 2π is the period of oscillation of the undamped system. Therefore,
the structure-to-fluid time step ratio is Ns,f

= 100. The coarse time time
size is intentionally chosen to be relatively large in order to test the accuracy
and robustness of the presented approaches. For the same reason, the time
integration parameters for the solid and fluid problems are set to ρs∞ = ρf∞ = 0
unless stated otherwise. As will be discussed later, the chosen time integration
parameters are the most challenging for interpolation operations. Typically,
larger values for ρs∞ and ρf∞ are used in practice.

Utilizing the common approach of strongly satisfying the discrete displace-
ment continuity condition, Eq. 2.233, at the end of every coarse time step and
assuming a linear variation of displacement within the coarse time step (i.e.,
the most straightforward option using two data points), the fluid interface
displacement is calculated by interpolating between dsn and dsn+1 as

dfm+1 = (1 −
tm+1 − Tn

∆Tn
)dsn +

tm+1 − Tn
∆Tn

dsn+1, 0 ⩽m < Ns,f . (5.11)

The fluid velocity and acceleration will be determined by the time integra-
tion scheme in the fluid domain. Therefore, the discrete velocity continuity
condition, Eq. 2.235, will not be exactly satisfied at the end of the coarse
time step. The simulation results of the model problem using the linear
interpolation of the displacement within a coarse time step are plotted in
Fig. 5.2. Note that, in all of the following figures, the data are plotted using
continuous curves for the sake of a more clear presentation of data. By design,
the fluid displacement profile in Fig. 5.2a is linear within every coarse time
step. Consequently, it is expected that the fluid velocity is piecewise constant
and discontinuous at the boundaries of two consecutive coupling windows,
which is observed in Fig. 5.2b. However, there is an overshoot of fluid velocity
at the beginning of each coupling window due to the difficulty of precisely
capturing discontinuities at the boundaries of the coupling windows by the
time integration scheme. Due to the linear evolution of fluid displacements
within the coarse time step, the fluid acceleration profile is expected to be
constant at zero value. This is generally true in Fig. 5.2c. However, there
are significant overshoots at the boundaries of the coupling windows showing
as spikes in Fig. 5.2c. These big overshoots are due to the discontinuous
fluid velocity profile. Finally, the interface forces in Fig. 5.2d reflect the
pattern of the acceleration profile as it is directly related to the acceleration
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Figure 5.2: Model problem: fluid subcycling results using linear interpolation
of displacement values

in our model problem. The numerical solutions in Fig. 5.2 are also generally
very diffusive. We can conclude that the assumption of linear variation of
the fluid displacement within a coarse time step is not satisfactory, and a
better approximation is required. In particular, we will require that the fluid
acceleration profile is continuous across the coupling windows, since it will
also directly affect the smoothness of the interface forces, as concluded from
the results in Fig. 5.2.

An approach based on interpolating the interface displacement while satis-
fying the continuity of the fluid acceleration across the coupling windows is
proposed in [177]. In particular, a cubic interpolation function for the fluid
displacement within each coarse time step is constructed using the values of
solid displacement and acceleration at the beginning and end of each coupling
window, i.e., dsn, dsn+1, v̇sn, v̇sn+1. This approach is examined for the model
problem, and the results are presented in Fig. 5.3. As expected, the fluid
displacement curve in Fig. 5.3a interpolates the solid displacement smoothly.
However, the fluid velocity curve in Fig. 5.3b possesses discontinuities across
the consecutive coupling windows. Since no constraint on the continuity of
the fluid velocity across the coupling windows is imposed, a smooth profile
of the fluid velocity is not guaranteed. Even though the solid acceleration
data at the beginning and end of the coupling window were utilized in the
cubic interpolation of the displacements within a coupling window, the actual
evolution of the discrete fluid acceleration obeys the time integration rules
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Figure 5.3: Model problem: fluid subcycling results using cubic interpolation
of displacement values

and the other kinematic variables in the fluid domain. Hence, the discrete
fluid acceleration does not necessarily match the solid acceleration values,
specially, at the boundaries of the coupling windows. The fluid acceleration
curve in Fig. 5.3c undergoes overshoots across the coupling windows, which
is also reflected in the evolution of the interface forces in the fluid domain.

The second approach for tackling the problem of continuity of interface
kinematic variables is to strongly fulfill the discrete velocity continuity con-
dition Eq. 2.235 at the beginning and end of each coupling window. The
evolution of the displacement and acceleration variables at the interface fol-
lows the interface velocity and the time integration scheme used in each
subproblem. The simplest method for interpolating the fluid velocity is the
linear interpolation between the solid velocities at the beginning and end of
each coupling window

vfm+1 = (1 −
tm+1 − Tn

∆Tn
)vsn +

tm+1 − Tn
∆Tn

vsn+1, 0 ⩽m < Ns,f . (5.12)

The simulation results of the model problem using the linear interpolation
of the velocity in each coupling window are presented in Fig. 5.4. By
construction, the fluid velocity in Fig. 5.4b is linear in time within each
coupling window. The fluid displacement curve plotted in Fig. 5.4a is smooth
but, as expected, does not interpolate the solid displacement values at the
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Figure 5.4: Model problem: fluid subcycling results using linear interpolation
of velocity values

beginning and end of the coupling windows. The fluid acceleration, plotted in
Fig. 5.4c, has a piecewise constant profile and relatively small overshoots at
the beginning of each coupling window. The same behavior is also observed
in the plot of the fluid interface force in Fig. 5.4d. The (temporal) projection
of the fluid forces onto the solid characterized by continuous linear functions
in each coupling window can now be better observed. For comparison, the
simulation results with the direct (pointwise) transfer of the interface force
from fluid to structure at the end of each coarse time step are presented in Fig.
5.5. By comparing the results in Fig. 5.5 to those in 5.4, it is evident that
the (temporal) projection of interface forces leads to more accurate results
than the direct transfer of forces.

By comparing the results in Fig. 5.4 and Fig. 5.2, it can be concluded
that the linear interpolation of the velocities leads to less diffusive results and
smaller overshoots in the fluid interface force compared to the case with the
linear interpolation of the interface displacements. The plots in Fig. 5.4c and
Fig. 5.4d already hint that a smoother interpolation (compared to a linear
one) of the interface velocities in the coupling windows might lead to a better
representation of the fluid acceleration and interface force.

We can use the solid velocity and acceleration values at the beginning and
end of each time window in order to set up a cubic Hermite interpolation for
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Figure 5.5: Model problem: fluid subcycling results using linear interpolation
of velocity values and simple transfer of interface force

the fluid velocity in the same coupling window as

vfm+1 = (2pn − 2pn+1 + ṗn + ṗn+1)ξ
3
+ (−3pn + 3pn+1 − 2ṗn − ṗn+1)ξ

2

+ ṗnξ + pn, 0 ⩽m < Ns,f , ξ =
tm+1 − Tn

∆Tn
, (5.13)

where the coefficients are chosen as pn = vsn, pn+1 = vsn+1, ṗn = v̇sn, and
ṗn+1 = v̇

s
n+1. The simulation results of the model problem utilizing a cubic

Hermite interpolation for the velocity in each coupling window are depicted in
Fig. 5.6. The fluid velocity curve in Fig. 5.6b is smooth everywhere, owing to
the fact that the derivative values (accelerations) are also continuous across
consecutive coupling windows. The term "smooth" is used here to imply a C1

continuous function, i.e., the first derivatives of a function are also continuous.
In contrast, the fluid acceleration curve in Fig. 5.6c is only C0 continuous
across the coupling windows. This is due to the fact that the continuity of the
second derivative (the temporal derivative of acceleration here) is generally
not guaranteed when interpolating values using cubic Hermite interpolation.
The kinks in the acceleration curve are also reflected in the fluid interface
force depicted in Fig. 5.6d. However, the non-smooth profile of the fluid
forces is not transferred to the solid domain due to the (temporal) projection
method adopted for transferring the interface forces.

As depicted in Fig. 5.6a, the discrete displacement continuity condition is
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Figure 5.6: Model problem: fluid subcycling results using a cubic Hermite
interpolation of velocity values

not exactly satisfied at the boundaries of the coupling windows, i.e., there is a
drift in the discrete displacement continuity condition Eq. 2.222. A parametric
study of the constraint drift will be carried out shortly. The results using
the cubic Hermite interpolation of the velocities are generally much better
than those using the previously discussed approaches. In particular, much
less numerical damping is introduced in the solution due to the coupling of
the domains with non-matching time steps. Furthermore, no overshooting
occurs in the fluid interface force, although the curve is not smooth due to
the fluid acceleration’s derivative being discontinuous and possessing varying
slopes in the consecutive coupling windows. The smooth and higher order
(cubic Hermite) interpolation of the velocities comes at the cost of having no
control over the evolution of the accelerations variable within the coupling
windows. It is instructive to study the effect of algorithmic parameters on
the evolution of the fluid acceleration in each coupling window when using
a cubic Hermite interpolation for the fluid velocity. One such parameter is
the amount of the high-frequency numerical damping introduced by the G-α
time integration scheme in the solid domain and determined by ρs∞. The
importance of ρs∞ concerning the fluid velocity and acceleration is that the
fluid velocities are determined in each coupling window by a cubic Hermite
interpolation of the solid velocity and acceleration values whose relation is
affected by ρs∞. The evolution of fluid acceleration is plotted in Fig. 5.7 for
different values of ρs∞. It is observed that the fluid acceleration profile is
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Figure 5.7: Model problem: the effect of ρs∞ on the fluid acceleration profile
in fluid subcycling scheme using cubic Hermite interpolation of velocity
values. The solid and dashed lines depict the fluid and solid acceleration
graphs respectively

linear within each coupling window for ρs∞ = 1.0, which implies that the fluid
velocity evolves quadratically over each coupling window. As the value of ρs∞
decreases, the fluid acceleration curve in each coupling window deviates from
a linear profile. The same behavior is also reflected in the fluid interface force,
which is directly related to the fluid acceleration in the model problem.

As a possible solution for alleviating the fluid acceleration’s evolution
problem, one may think of increasing the interpolation order by adding extra
constraints on the acceleration derivatives. However, accurate values for
the acceleration derivatives are generally not available. Hence, the higher
interpolation functions are prone to generating oscillatory results. Another
approach is to reduce the interpolation order to two in order to constrain the
evolution of acceleration in each coupling window.

The quadratic interpolation of the velocities requires three data values: the
solid velocity values at the beginning and end of the coupling window, vsn and
vsn+1, and an acceleration value. Considering the requirement that the fluid
acceleration must be continuous at the boundaries of the consecutive coupling
windows, the fluid acceleration value at the beginning of each coupling window,
v̇fn, is used for constructing the quadratic interpolation. The quadratic fluid
velocity profile can be equally achieved using the cubic Hermite interpolation
as in Eq. 5.13, for which an acceleration value at the end of the coarse time
step is required, which respects the linear acceleration profile. The fluid linear
acceleration value v̇f,linn+1 is calculated as

v̇f,linn+1 =
2

∆Tn
(vsn+1 − v

s
n) − v̇

f
n. (5.14)

Therefore, the quadratic fluid velocity profile can also be achieved by using
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the cubic Hermite interpolation, Eq. 5.13, with the coefficient values pn = v
s
n,

pn+1 = v
s
n+1, ṗn = v̇

f
n, and ṗn+1 = v̇

f,lin
n+1 .

The simulation results of the model problem using a quadratic interpolation
for the velocity in each coupling window are depicted in Fig. 5.8. The fluid
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Figure 5.8: Model problem: fluid subcycling results using quadratic Hermite
interpolation of velocity values

acceleration in 5.8c evolves linearly over a coupling window. Note that the
discrete values of the fluid and solid accelerations do not generally match at
the boundaries of the coupling windows when assuming the linear evolution
of the fluid acceleration over each coupling window. The quadratic Hermite
interpolation of the velocities in a coupling window seems ideal for the present
linear model problem. However, the coupled solution using the quadratic
Hermite interpolation is, unfortunately, more prone to developing oscillations
in nonlinear problems as shown in section 5.4.3. The issue with the quadratic
Hermite interpolation is that, while the fluid velocity curve interpolates the
solid velocity values vsn and vsn+1, the fluid acceleration value at the end of the
coarse time step is decoupled from the solid acceleration values. This issue
can be best seen in Eq. 5.14, where v̇f,linn+1 is dependent on v̇fn. Therefore, the
accumulation of errors in the fluid acceleration values at the fine time scale
may lead to growing oscillations in the interpolated fluid velocity values.

After analyzing the pros and cons of the two approaches using the quadratic
or cubic Hermite interpolation of the velocities in coupling windows, we will
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try to combine the advantages of the two approaches by requiring the following
criteria:

• The fluid velocity curve interpolates the solid velocity values at the
beginning and end of the coupling windows.

• Acceleration values (not precisely those of the solid) at the beginning and
end of the coupling windows are used as constraints for the interpolation.

• The fluid acceleration curve evolves almost linearly within a coupling
window and is continuous (in time) across consecutive coupling windows.

• The acceleration values used in the Hermite interpolation of the velocities
should not be totally decoupled from the solid acceleration values at
the coarse time scale.

The approach taken here is to construct a cubic Hermite interpolation, Eq.
5.13, using the solid velocities vsn and vsn+1. The continuity requirement on
the fluid acceleration across the coupling windows leads naturally to using
v̇fn as the derivative value at the beginning of the coupling window. For the
derivative value at the end of the coupling window, a weighted acceleration
value is used. The weighted acceleration value is a weighted average of the
fluid linear acceleration v̇f,linn+1 , Eq. 5.14, and the solid acceleration value v̇sn+1

as
v̇ζn+1 = ζv̇

f,lin
n+1 + (1 − ζ)v̇sn+1, 0 ⩽ ζ ⩽ 1. (5.15)

The motivation is to constrain the velocity and acceleration values at both
ends of the coupling windows while achieving an almost linear profile for the
accelerations (and an almost quadratic profile for the interpolated velocities).
Based on the aforementioned interpolation criteria, the ζ value should be
chosen close to one in order to achieve the almost linear fluid acceleration
profile while still including a small contribution from the solid acceleration
value v̇sn+1. In this work, ζ = 0.9 is used for all the simulations.

The simulation results of the model problem using a Hermite interpolation
for the velocities and employing the almost linear acceleration assumption
are plotted in Fig. 5.9. As desired, the plots in Fig. 5.9 are very similar to
those using quadratic Hermite interpolation plotted in Fig. 5.8. However,
the new approach is more robust than the approach with quadratic Hermite
interpolation in the nonlinear FSI simulations as a result of including a
contribution of the solid acceleration value in the interpolation constraints
(see section 5.4.3). Note that the fluid acceleration curve in Fig. 5.9c is not
strictly piecewise linear everywhere, specially close to the peaks. Nonetheless,
the fluid acceleration and interface force in Figs. 5.9c and 5.9d are smoother
than those in Figs. 5.6c and 5.6d, respectively. The fluid acceleration’s
evolution in every coupling window gets closer to a linear profile as the value
of ρs∞ converges to 1.0, as shown in Fig. 5.10.

By choosing to enforce only the discrete velocity continuity condition, Eq.
2.235, at the coarse time level, the evolution of the fluid displacement on
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Figure 5.9: Model problem: fluid subcycling results using Hermite interpo-
lation of velocity values and almost linear fluid acceleration assumption

the FSI interface, dictating the fluid domain’s deformation in a general FSI
problem, is left to be determined by the time integration scheme used in the
fluid domain. This approach guarantees a consistent temporal integration of
the fluid velocity and (mesh) displacement on the FSI boundary as well as in
the interior of the fluid domain. As mentioned previously, the drawback of
this approach is that it generally leads to a drift in the discrete displacement
continuity condition Eq. 2.233. This drift results partly from using different
time integration schemes (or different parameters) in the solid and fluid
domains and partly due to the assumptions made in the interpolation of
velocities within a coupling window. The drift in the discrete displacement
continuity condition is typically more pronounced in the long-term simulations
and is affected by the size of the coarse time step. The long-term evolution of
the solid and fluid displacements in the model problem is plotted in Fig. 5.11
for the same fine time step size but different values of the coarse time step. It
is observed that the drift in the discrete displacement continuity condition
is directly related to the coarse time step size. More specifically, the fluid
displacement consistent with a cubic (or quadratic) Hermite interpolation of
the velocity within a coupling window does not necessarily match the solid
displacement values at the coarse time scale. The bigger the coarse time
step is, the more assumption is involved in determining the evolution of the
interpolated fluid velocity and interface displacement.

Another factor influencing the drift in the discrete displacement continuity



164
Chapter 5. Multi-time-step algorithms for partitioned strongly coupled

fluid-structure interaction problems

0 2 4 6 8 10 12

Time

−0.10

−0.05

0.00

0.05

0.10

A
cc

el
er

a
ti

o
n

Analytical

ρs = 0.0

ρs = 0.4

ρs = 1.0

Figure 5.10: Model problem: the effect of ρs∞ on the fluid acceleration profile
in fluid subcycling scheme using Hermite interpolation of velocity values
and almost linear fluid acceleration assumption. The solid and dashed lines
depict the fluid and solid acceleration graphs respectively
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Figure 5.11: Model problem: the effect of the coarse time step size on the
long-term drift in the displacement constraint in fluid subcycling scheme
using Hermite interpolation of velocity values and almost linear fluid accel-
eration assumption. The solid and dashed lines depict the fluid and solid
displacement graphs respectively

condition is the use of different (also called heterogeneous) time integration
schemes in the solid and fluid domains. This work deals with the family of G-α
time integration schemes for both fluid and solid problems. The G-α scheme
for first-order systems is used in the fluid problem. For the solid problem, there
is the possibility of either using the G-α scheme for second-order or first-order
systems. Here, the effect of integrating the solid problem using either of the
two variants of the G-α scheme on the drift in the displacement constraint is
investigated. In Fig. 5.12, the evolution of drift in the displacement constraint,



5.3. Coupling domains with non-matching time steps 165

measured as the difference of the fluid and solid displacements at the coarse
time level, is plotted for the two variants of the G-α scheme and different values
of ρs∞. For ρs∞ = 0, the drift in the displacement constraint is quite higher
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Figure 5.12: Model problem: the effect of ρs∞ on the long-term drift in the
displacement constraint in fluid subcycling scheme using Hermite interpola-
tion of velocity values and almost linear fluid acceleration assumption. (a)
ρs∞ = 0; (b) ρs∞ = 0.4

; (c) ρs∞ = 0.7; (c) ρs∞ = 1.0

when using the G-α scheme for second-order systems in the solid problem
compared to the G-α scheme for first-order systems. The difference between
the two variants of the G-α scheme concerning the drift in the displacement
constraint decreases as the amount of the high-frequency damping is reduced,
and for ρs∞ = 1, they produce identical results. The results in Fig. 5.12
suggest that using the G-α scheme for first-order systems in both the fluid
and solid problems is favorable for reducing drifts of kinematic constraints in
the context of FSI simulations with non-matching time steps.

The present discussion concludes that if the coarse time step of the solid
problem is reasonably fine to resolve the evolution of solid velocity adequately,
and proper caution is taken in choosing the time integration schemes and
their corresponding parameters, then the drift in displacement constraint is
kept at a reasonable level by strongly enforcing the discrete velocity continuity
condition at the coarse time scale. In practice, it is not so difficult to fulfill
the required conditions. Due to the accuracy requirements, the coarse time
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steps usually resolve the solid velocity history better than the quite coarse
time steps used in the model problem. Moreover, the typical values of ρs∞
and ρf∞ in G-α methods are 0.5 or higher, which lead to smaller drift in
the displacement constraint. Therefore, the preferred approach in this work
for dealing with the kinematic coupling conditions is to strongly satisfy the
discrete velocity continuity at the coarse time level and choose reasonable
time integration parameters (see the results in section 5.4). Nevertheless, a
solution based on simultaneously satisfying the continuity of discrete velocities
and displacements at the coarse time level will be presented for the cases
where the drift in the displacement constraint remains large otherwise.

By strongly satisfying the continuity of displacements at the coarse time
level, the fluid interface displacement within a coupling window is determined
by interpolation from the solid values at the coarse time level. The kinematics
of the FSI interface is then effectively determined by the kinematic values of
the solid problem. The interpolation of the displacements must be compatible
with the assumptions made on the evolution of the accelerations and veloci-
ties. Recall that we assume an almost linear evolution of acceleration and
a quadratic evolution of the velocity within a coupling window. Therefore,
it is reasonable to assume a cubic evolution of displacement in a coupling
window. To that end, the fluid displacement is determined using a cubic
Hermite interpolation, Eq. 5.13, with the coefficients pn = dsn, pn+1 = d

s
n+1,

ṗn = v
s
n, and ṗn+1 = v

s
n+1. The proposed interpolation is also compatible with

the fact that the continuity of velocities is strongly enforced at the coarse time
scale. Note that two separate functions are set up for interpolating displace-
ments and velocities. Consequently, the evolution of the fluid displacement
and velocity within a coarse time step is not necessarily precisely consistent.
However, at every time instant of the coarse time level, the fluid interface
displacement and velocity become exactly consistent with respect to the time
integration scheme of the structural solver. Therefore, any slight inconsistency
between the evolution of fluid displacement and velocity within a coupling
window does not propagate in time beyond the end of each coupling window.
The simulation results of the model problem using separate cubic Hermite
interpolations of displacements and velocities (together with almost linear
fluid accelerations) in each coupling window are depicted in Fig. 5.13.

The influence of integrating the solid problem using the G-α scheme for first
or second-order systems on the drift in the displacement coupling constraint
was previously shown in Fig. 5.12. The long-term solution of the model
problem using the new approach of interpolating the fluid displacements and
velocities is compared in Fig. 5.14 for two variants of the G-α scheme for the
solid problem. The overall solution of the model problem is less diffused when
integrating the solid problem using the G-α scheme for first-order systems.
This observation comes as no surprise since integrating the solid problem
using the G-α scheme for firs-order systems is more consistent with the time
integration scheme in the fluid domain.

We can now elaborate on the details of the coupling algorithm used for
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Figure 5.13: Model problem: fluid subcycling results using Hermite inter-
polation of velocity values and almost linear fluid acceleration assumption,
together with a cubic Hermite interpolation of displacement values

FSI simulations with fluid subcycling. The flowchart of the proposed FSI
coupling algorithm with fluid subcycling is sketched in Fig. 5.15, where
different colors distinguish different groups of coupling actions. There is room
for adapting an actual implementation of the algorithm to different code
environments based on, e.g., whether the coupling is handled centrally or
peer-to-peer or the ability of the solvers to perform all the required actions
internally. In every coupling window, the algorithm starts by checkpointing
the essential data of the fluid solver (with fine time steps) for restarting the
fluid solver from the beginning of the coupling window if a new coupling
iteration is required. It is assumed that the fluid solver is capable of performing
checkpointing/restarting. In the next step, the solid interface velocity at the
end of the coupling window vsn+1 is predicted. A linear prediction of vsn+1 is
carried out here, requiring vsn and vsn−1 from the last two coupling windows.
It is also possible to use the derivative values in the prediction if one wishes
to since they are also available. Limiting the coupling window’s size to that
of the coarse time step has the advantage that the prediction is probably
more accurate due to the coupling window being as short as possible. Next,
the interpolation functions for the fluid interface velocity and displacement
(if required) within the coupling window are constructed. A more detailed
flowchart of the interpolation step is depicted in Fig. 5.16. If a cubic Hermite
interpolation is used for interpolating the predicted interface velocity values,
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Figure 5.14: Model problem: comparison of integrating the solid problem
using the G-α schemes for first or second-order systems in long-term fluid
subcycling simulation using Hermite interpolation of velocity values and
almost linear fluid acceleration assumption, together with a cubic Hermite
interpolation of displacement values

the solid interface acceleration at the end of the coarse time step v̇sn+1 and fluid
linear acceleration v̇f,linn+1 are required. However, in every coupling window’s
very first coupling iteration, the predicted values of vsn+1 and v̇sn+1 might
be far from the final solution. Consequently, a cubic Hermite interpolation
using those prediction values might lead to a fluid velocity evolution far
from the final solution, thus hindering the convergence rate of the iterative
coupling. Therefore, a quadratic Hermite interpolation using vsn, vsn+1, and v̇fn
is carried out when interpolating the predicted solid interface velocities in the
fluid domain. From the second coupling iteration onward, the interpolation
function for the velocities is set up as a cubic Hermite interpolation using the
values of vsn, vsn+1, v̇fn and v̇f,linn+1 . The steps related to the interpolation of
displacement can be dropped If one decides to allow the fluid displacement to
be determined consistently from the interface velocities with the help of the
time integration scheme of the fluid problem. Next, the fluid solver marches
through the coupling window using its fine step steps. In every fluid time
step m, the fluid interface velocity vfm+1 and displacement dfm+1 (if required)
are interpolated using the constructed interpolation functions as the input,
and the fluid problem is then solved. At every fluid time step, the local time
integral of the interface is calculated using the information available in the
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Figure 5.15: The flowchart of the proposed fluid subcycling scheme. The
interpolation step is shown in more detail in Fig. 5.16. The steps for inter-
polating the interface displacement values can be dropped if not required.
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Figure 5.16: The flowchart of the interpolation steps required for the pro-
posed fluid subcycling scheme

time step, i.e., λfm and λfm+1. The local integrated interface force is added
up on the fly as the fluid solver marches through the coupling window and
builds up the total time integral of the fluid interface force required for the
projection onto the solid domain. By doing so, we avoid storing the fluid
interface values at every fine time step for processing at the end of the coupling
window. Next, the fluid interface force is projected onto the solid domain
by calculating λfn+1 using Eq. 5.10, and the solid problem is solved in the
coarse time step n resulting in ṽsn+1. Finally, the convergence of the interface
velocities is checked by comparing ṽsn+1 to vsn+1. If the desired convergence is
not achieved, a new coupling iteration is started by resetting the fluid solver
back to the checkpoint state and predicting a new iterate for vsn+1. Note
that the interface quasi-Newton method is set up using the iterate values of
velocity at the coarse time scale.

5.3.2 Structure subcycling scheme

This section investigates the structure subcycling scheme for the FSI problems
with finer temporal discretization in the solid domain. The difference in the
time step sizes in the structure and fluid domains could be due to the different
time scales, the specific requirements of certain time integration schemes
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(e.g., explicit schemes), or the convergence requirements in the employed
nonlinear solvers. Similar to the fluid subcycling schemes in section 5.3.1, the
coupling window is equal to the largest time step of the subproblems, i.e., the
fluid problem in this case. The time grids of the one coupling window are
schematically shown in Fig. 5.17. The time indices of the coarse and fine time
steps are indicated using n andm, respectively. The coupling between the fluid

Figure 5.17: From top: the structure, coupling and fluid time grids in the
structure subcycling scheme

and solid domains is carried out by iteratively exchanging information within
each coupling window. The interface quasi-Newton method is formulated
pointwise in time at the discrete time instants of the coupling window. For
the sake of simplicity, it is assumed here that the subproblems have constant
time step sizes and the number of the fine time steps Nf,s in each coupling
window is an integer number, i.e., Nf,s

= ∆Tf

∆ts
.

The combination of Dirichlet-Neumann splitting of the FSI problem and
structure subcycling indicates that the fluid traction values on the FSI interface
can be interpolated within the course time step to derive the solid traction
values at the fine time steps. This interpolation might seem similar to the
interpolation of velocity values from the coarse to fine time steps in the fluid
subcycling scheme. However, accurate information about interface traction’s
time derivative is unavailable. Therefore, it is not possible to construct
a higher order (Hermite) interpolation function for the interface traction
using the information available within a coarse time step. We make the
assumption that the interface traction varies linearly within a coarse time
step. Therefore, the transfer of interface traction from the fluid to the solid
domain is carried out using linear interpolation within a coarse time step. The
same approach for interpolating interface forces is investigated in [177] for the
strongly coupled FSI problems with structure subcycling as well. Furthermore,
a similar assumption is made in some FETI-based asynchronous coupling
methods in structural mechanics. The implications of the linear interpolation
(in time) of the interface traction will be discussed with the help of numerical
examples.

As previously discussed, a common approach for dealing with the con-
straints on the kinematic variables at the FSI interface is to strongly satisfy
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the discrete displacement continuity condition, Eq. 2.233. The discrete fluid
velocity value at the FSI interface follows the evolution of the interface dis-
placement with the help of the consistent time integration rules employed in
the fluid domain. This approach is also used in [177] for handling the interface
kinematic constraints in FSI simulations with structure subcycling. Using
this approach, the discrete velocity continuity condition, Eq. 2.235, is not
guaranteed to be exactly satisfied at the end of the coupling window. In the
following, the effects of this structure subcycling scheme on the partitioned
simulation of our model problem will be investigated. The same physical
and numerical parameters are used for the model problem as in section 5.3.1,
except that the fine time steps are used in the solid domain. Each natural
period of oscillation of the system is discretized using 10 coarse time steps,
and a time step ratio of Nf,s

= 100 is used in the structure subcycling scheme.
The simulation results of the model problem using the structure subcycling
scheme based on the satisfaction of the discrete displacement continuity con-
dition, Eq. 2.233, at the coarse time level are plotted in Fig. 5.18. The
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Figure 5.18: Model problem: structure subcycling results based on satisfying
the discrete displacement continuity condition

first and most important observation in Fig. 5.18 is that the simulation with
the aforementioned structure subcycling scheme is unstable and begins to
diverge right from the beginning, even for the present linear model problem.
This observation is in line with the analytical and numerical studies of model
problems in [177], where it is concluded that the simulations using structure
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subcycling and two considered combinations of time integration schemes are
unstable for a time step ratio of Nf,s

⩾ 3.
The critical factor leading to the unstable simulation results in Fig. 5.18

is the choice of strongly satisfying (only) the discrete displacement continuity
condition, Eq. 2.233, at the coarse time level. In this approach, the fluid
displacement at the coarse time level is determined from the solid displacement
value at the end of each coupling window. The displacement graphs in Fig.
5.18a confirm that this goal is achieved in numerical results, despite the
growing oscillations in the solution. However, the fluid velocity at the coarse
time scale, which is consistently derived from the fluid displacement, does
not immediately respond to the change of velocity in the solid domain at the
fine time scale and lags behind (see Fig. 5.18b). Subsequently, the fluid and
solid acceleration graphs in Fig. 5.18c evolve with (almost) opposite phase.
The solid interface forces in Fig. 5.18b are linearly interpolated from the fluid
forces, which are directly determined by the fluid acceleration. This faulty
cycle is repeated and leads to diverging oscillations in the solution. More
numerical insight about the unstable solutions using the structure subcycling
scheme is provided in [177], where the instability is attributed to the maximum
amplitude of eigenvalues of the amplification matrix being greater than one for
two different combinations of time integration schemes in a model problem.

Alternatively, the structure subcycling algorithm in this work is formulated
based on satisfying the discrete velocity continuity condition, Eq. 2.235, at the
coarse time scale in conjunction with the same (temporal) linear interpolation
of the interface forces. The simulation results of the model problem using
the proposed structure subcycling scheme are plotted in Fig. 5.19. The
results using the subcycling scheme based on the discrete velocity continuity
condition are stable. By comparing the results in Fig. 5.19 to those using
the fluid subcycling scheme presented in Fig. 5.9, it is evident that the
structure subcycling leads to a more accurate solution of the system, which is
expected as the model structure contains the stiffness term while the model
fluid problem contains the damping term. The solid acceleration curve in
Fig. 5.19c is not smooth at the boundaries of the coupling windows due to
relatively large coarse time steps combined with the assumed linear evolution
of the interface force within a coarse time step. Therefore, a key consideration
in using the structure subcycling scheme is whether the assumed linear profile
for the interface force is reasonable in combination with the chosen coarse
time step size. Another issue to point out is the drift in the displacement
constraint observed in Fig. 5.19, which is also directly influenced by the size
of the coarse time step and is further exacerbated by choice of ρs∞ = ρf∞ = 0.

In order to study the effect of the coarse time step size on the results using
the structure subcycling scheme, three simulations of the model problem with
the same fine time step size of ∆ts = P /1000 and different coarse time step
sizes of ∆T f = P /10, ∆T f = P /20 and ∆T f = P /40 are carried out. The
comparison of the acceleration graphs presented in Fig. 5.20 reveals that the
solid acceleration curve becomes more smooth as the coarse time step size
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Figure 5.19: Model problem: structure subcycling results based on satisfying
the discrete velocity continuity condition

decreases. The displacement values from the three simulations are compared
in Fig. 5.21. It is observed that the drift in the displacement constraint is
reduced by decreasing the coarse time step size.

Another factor affecting the drift in the displacement constraint is the
ρs∞ parameter of the G-α time integration scheme in the solid domain. The
model problem’s solid and fluid displacement graphs are plotted in Fig. 5.22
for three different values of ρs∞. The drift in the displacement constraint
increases as the ρs∞ parameter is reduced, mainly due to a bigger phase shift
between the solid and fluid displacement curves. Recall that a similar trend
was also observed for the fluid subcycling scheme. Therefore, it seems logical
to increase the ρs∞ value in order to control the drift in the displacement
constraint, as a result of which the introduced high-frequency damping by
the G-α scheme is reduced. However, one should be careful not to remove the
high-frequency damping, mainly because of the numerical artifacts introduced
in the solid acceleration due to the assumed (temporal) profile of the interface
forces in the structure subcycling scheme. Fig. 5.23 shows the long-term
response of the model problem using the structure subcycling scheme for the
three different values of ρs∞. For ρs∞ = 1.0, the solution undergoes nonphysical
oscillations, which grow in amplitude as time goes on. This behavior is mainly
the accumulation of errors in the solid acceleration and is best observed in the
acceleration and interface force graphs in Fig. 5.23c and 5.23d, respectively.
The simulation is stable for ρs∞ = 0.0, but the results are too diffusive. A good
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Figure 5.20: Model problem: the effect of the coarse time step size on
the solid acceleration profile in the structure subcycling scheme based on
satisfying the discrete velocity continuity condition. The solid and dashed
lines depict the solid and fluid graphs respectively
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Figure 5.21: Model problem: the effect of the coarse time step size on
the drift in the displacement constraint in the structure subcycling scheme
based on satisfying the discrete velocity continuity condition. The solid and
dashed lines depict the solid and fluid graphs respectively

compromise is achieved by using ρs∞ = 0.5.
Similar to the fluid subcycling case, the preferred approach in this work for

dealing with the discrete kinematic coupling conditions in FSI simulations is
to satisfy the discrete velocity continuity condition, 2.235, and subsequently
derive the fluid interface displacement consistently using the time integration
rules in the fluid domain. Doing so reduces the amount of transferring
and managing data between the structure and fluid solver in a partitioned
simulation. By choosing a sensible value for ρ∞ (e.g., 0.4 ⩽ ρ∞ ⩽ 0.9) in the G-
α time integration scheme and the coarse time step size such that the temporal
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Figure 5.22: Model problem: the effect of ρs∞ on the drift in the displacement
constraint in the structure subcycling scheme based on satisfying the discrete
velocity continuity condition. The solid and dashed lines depict the solid
and fluid graphs respectively

evolution of the solution is reasonably resolved, the drift in the displacement
constraint will be minimal in most cases. Consistently deriving the fluid
interface displacement using the time integration rules in the fluid domain is
particularly advantageous for satisfying the discrete geometric conservation
law in the fluid domain. If the drift in the displacement constraint is deemed
unacceptably large, one can satisfy both discrete displacement and velocity
coupling constraints, Eqs. 2.233 and 2.235, respectively. As discussed in
the fluid subcycling case as well, the kinematics of the interface will then be
determined by the structure solver, i.e., the interface velocity and displacement
at the coarse time scale will be consistent with respect to the time integration
scheme of the solid domain but not necessarily with respect to the time
integration scheme in the fluid domain.

5.4 FSI Results and discussion

5.4.1 Transverse galloping of a square body

Let us first present the motivation behind choosing the current test case. A
large body of research has been devoted to the numerical FSI simulation of
vortex-induced oscillation of bodies in flows. The vortex-induced oscillation
is characterized by the so-called lock-in effect, which is the result of the
structure’s natural frequency almost coinciding with the flow’s vortex shedding
frequency, leading to bigger amplitudes of oscillations. With regard to the
temporal resolution of the discrete FSI problem, a similar time step size for
the fluid and solid domains, which adequately resolves the period of oscillation
of the vortex shedding and the structure’s oscillation, is sufficient in order to
capture the vortex-induced oscillation phenomenon. However, there are other
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Figure 5.23: Model problem: the effect of ρs∞ on the long-term structure sub-
cycling results based on satisfying the discrete velocity continuity condition.
The solid and dashed lines depict the solid and fluid graphs respectively

types of flow-induced vibrations of structures, which occur at frequencies much
lower than that of the vortex shedding in the flow [72]. One such phenomenon
is the so-called galloping of bodies (with a single degree of freedom) immersed
in flows. The numerical FSI simulation of traverse galloping of a square body
is carried out in, e.g., [215, 72] using matching time step sizes for the fluid and
solid domains. This test case is suited for studying the effects of subcycling in
the fluid domain on the accuracy of FSI simulations. Since the period of the
flow’s vortex shedding is much smaller than that of the structural oscillations,
a finer time step size is required in the fluid domain in order to resolve the
flow’s vortex shedding adequately, while the structure’s vibrations can be
accurately simulated using bigger time steps.

The numerical test case consists of a square body immersed in a 2d cross
flow. The body is supported by an elastic spring and a damper with a small
damping coefficient such that it oscillates perpendicularly with respect to
the flow direction. The geometrical and physical properties of the problem
are taken from [72]. The fluid density and dynamic viscosity are ρ = 1.0 and
µ = 0.01, respectively. The inflow velocity is v∞ = 2.5, which results in a
Reynolds number Re = v∞Dρ/µ = 250, with D = 1 being the side length of the
square body. The rigid body has a mass m = 20 and is supported by a spring
with stiffness k = 3.08425 and a damper with the coefficient c = 0.0581195. The
geometry of the numerical domain is sketched in Fig. 5.24. The fluid domain
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Figure 5.24: Traverse galloping of square body: the computational domain.

is discretized using 11354 triangular stabilized finite elements with linear
Lagrange shape functions and based on a variational multiscale formulation.
The fluid computational mesh around the square body is depicted in Fig. 5.25.

Figure 5.25: Traverse galloping of square body: the fluid’s spatial discretiza-
tion around the square body.

The fluid and solid problems are discretized in time using the G-α scheme
for first-order systems with the high-frequency numerical damping determined
by ρs∞ = 0.6 and ρf∞ = 0.5 in the solid and fluid domains, respectively. We are
interested in choosing the time step size in the solid and fluid domains based
on the local temporal accuracy requirements in each subproblem, determined
in the present case by the natural frequency of the structural problem and the
flow’s vortex shedding frequency. The natural frequency and the corresponding
period of oscillation of the structural problem read fn = 0.0625 and Tn = 16,
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respectively. We aim to discretize each period of structural oscillation using
about 20 time steps, leading to a time step size of ∆ts = 0.8 for the solid
problem. On the other hand, the vortex shedding frequency of the flow and its
corresponding period of oscillation is approximately fv ≈ 0.398 and Tv ≈ 2.512,
respectively. The fluid problem is discretized in time using the time step
size ∆tf = 0.04, leading to almost 63 time steps in each period which suffices
for an adequate temporal resolution of each vortex shedding period of the
flow. The solid-to-fluid time step ratio is Ns,f

= 20. Note that the time step
sizes are chosen solely based on the minimum requirements of capturing the
essential physical behaviors in the subproblems.

The results of the FSI simulation with fluid subcycling are presented in
Fig. 5.26. Both the fluid and solid quantities (with different time scales) on
the FSI interface are plotted in Fig. 5.26. Note that the square rigid body
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Figure 5.26: Traverse galloping of square body: fluid subcycling results using
Hermite interpolation of velocity values and almost linear fluid acceleration
assumption

is allowed to move only in the vertical direction. In the present numerical
example, the fluid interface displacement is calculated from the fluid interface
velocity using formulae consistent with the time integration scheme in the
fluid domain. In spite of that, the fluid and solid displacement values on the
interface are very close at the coarse time level.The time evolution of the solid
and fluid interface velocities plotted in Fig. 5.26b reveals the significance of
the Hermite interpolation used for the velocity values at the fine time scale.
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The fine details in the fluid interface velocity curve would not have been
captured if no derivative information had been leveraged. In fig. 5.26c, the
fluid and solid interface acceleration values are plotted over time. For better
clarity, the plot of the second half of the time period is presented. The fluid
interface acceleration evolves almost linearly within most of the coarse time
steps, which is consistent with the assumptions made regarding the temporal
profile of the acceleration. The solid and fluid interface forces are compared
in Fig. 5.26d. In contrast to the model problem, the fluid interface force does
not evolve almost linearly within a coarse time step since the fluid interface
reaction also depends on the gradient of velocities and pressure when solving
INS equations. The fluid interface forces (at the fine time scale) are projected
to the solid interface (at the coarse time level) according to Eq 5.10. Note
in Fig. 5.26d that the projection does not preserve the extrema of the fluid
interface force curve, which is a characteristic of the projection operator,
especially when the time step size in the target domain does not allow to
reasonably capture the profile of the fluid interface force. This issue is not
very pronounced in the current example, although a slightly smaller time step
size in the solid domain would allow a more accurate projection of the fluid
interface force.

In order to better analyze the effect of fluid subcycling in the present test
case, a comparison is carried out between the results of the simulation with
subcycling and those of the simulation with matching time steps for fluid and
solid domains. Two simulations with matching time steps are carried out: One
with the fine time step size ∆ts = ∆tf = 0.04 and another with the coarse time
step size ∆ts = ∆tf = 0.8. The time evolution of the interface displacement
from different simulations is plotted in Fig. 5.27. For the simulations with
non-matching time steps, both fluid and solid quantities are plotted. The FSI
simulation with the matching coarse time step size ∆ts = ∆tf = 0.8 leads to a
displacement history that is almost 50 percent different than the results with
the fine time step size ∆ts = ∆tf = 0.04 when comparing the extrema values.
Additionally, there is a substantial period elongation in the displacement
curve when using the coarse time step size for both solid and fluid domains.
In contrast, when using subcycling in the flow solver, with ∆ts = 0.8 and
∆tf = 0.04, the fluid and solid displacement curves are very similar to the
curve from the simulation with matching fine step sizes. There is only a small
phase shift due to the effect of high-frequency damping in the solid domain by
setting ρs∞ = 0.6, which is more pronounced when using ∆ts = 0.8 compared
to ∆ts = 0.04.

In Fig. 5.28, the velocity values from the three simulations are compared.
While the results from the simulation with fluid subcycling, ∆ts = 0.8 and
∆tf = 0.04, and the simulation with matching fine time steps, ∆ts = ∆tf = 0.04,
capture the small fluctuations in the velocity over time, the velocity values
from the simulation with matching coarse time steps, ∆ts = ∆tf = 0.8, are
smeared out and are also different in the values of extrema.

The comparison of the acceleration values from the three simulations is
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Figure 5.27: Traverse galloping of square body: comparison of displacement
from fluid subcycling scheme to those from simulations with fine and coarse
matching time steps. For the subcycling scheme, both the fluid and solid
displacement graphs are plotted using solid and dashed lines, respectively

85 90 95 100 105 110 115 120

Time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

V
el

o
ci

ty

∆tf = ∆ts = 0.04

∆tf = ∆ts = 0.8

∆ts = 0.8 non-matching

∆tf = 0.04 non-matching

Figure 5.28: Traverse galloping of square body: comparison of velocity
from fluid subcycling scheme to those from simulations with fine and coarse
matching time steps. For the subcycling scheme, both the fluid and solid
velocity graphs are plotted using solid and dashed lines, respectively

carried out in Fig. 5.29. The acceleration curve from the simulation with
matching coarse time steps, ∆ts = ∆tf = 0.8, does not possess the (physical)
high-frequency fluctuations. In contrast, the high-frequency acceleration
fluctuations from the simulation with fluid subcycling, ∆ts = 0.8 and ∆tf =
0.04, match very well with the simulation with matching fine time steps.
However, the assumption made on the acceleration profile being almost linear
within a coarse time step is clearly reflected in the results from the simulation
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Figure 5.29: Traverse galloping of square body: comparison of acceleration
from fluid subcycling scheme to those from simulations with fine and coarse
matching time steps. For the subcycling scheme, both the fluid and solid
acceleration graphs are plotted using solid and dashed lines, respectively

with non-matching time steps, while the acceleration curve from the simulation
with matching fine time steps is smooth.

The interface forces from different simulations are compared in Fig. 5.30.
The fluid interface force from the simulation with fluid subcycling evolves
very similarly to the interface force from the simulation with matching fine
time steps. This observation is consistent with our expectation since the fluid
time step size in the problem with not-matching time steps was chosen to
resolve the vortex shedding in the flow adequately. The projection of the
fluid interface force onto the solid domain (using linear functions in time) can
reasonably capture the fluctuations in the interface force, with the caveat that
there exist slight overshoots in the extrema values, as previously discussed.
In contrast, the interface forces are not captured correctly in the simulation
with matching coarse time steps since the flow is not adequately resolved in
time. This result was anticipated from analyzing the flow’s vortex shedding
frequency and natural frequency of the solid problem. The presented coupling
methodology for FSI problems with non-matching time steps proves to be
accurate and robust enough to allow reproducing the anticipated results in
numerical simulations.

For comparison, the results of fluid subcycling using two other fluid sub-
cycling schemes studied in section 5.3.1 will also be presented. The results
using a cubic interpolation for displacement (as proposed in [177]) together
with the projection of the interface forces are presented in Fig. 5.31. Similar
to the model problem, the continuity of the fluid interface velocity across
the boundaries of coarse time steps is lost (due to the construction of the
interpolation function for displacements) which leads to big spikes in the
graph of the fluid interface acceleration and interface force.



5.4. FSI Results and discussion 183

85 90 95 100 105 110 115 120

Time

−4

−2

0

2

4

In
te

rf
a
ce

fo
rc

e
∆tf = ∆ts = 0.04

∆tf = ∆ts = 0.8

∆ts = 0.8 non-matching

∆tf = 0.04 non-matching

Figure 5.30: Traverse galloping of square body: comparison of interface
traction values from fluid subcycling scheme to those from simulations with
fine and coarse matching time steps. For the subcycling scheme, both the
fluid and solid interface traction graphs are plotted using solid and dashed
lines, respectively

The results of fluid subcycling using a linear interpolation of velocities
and the projection of the interface forces are presented in Fig. 5.32. The
fine details in the fluid interface velocity are not captured due to the linear
interpolation. As expected, the fluid acceleration graph overshoots at the
beginning of each coupling window. Consequently, the fluid interface force
also has discontinuities across the boundary of the coarse time steps, which
are more clearly visible in Fig. 5.33.

5.4.2 Flow-induced oscillation of a flexible beam in the
wake of a square bluff body

In this benchmark problem, a flexible beam attached to a square bluff body
is submerged in incompressible fluid flow. Due to the interaction with the
wake of the square body, the flexible beam starts to oscillate. For the detailed
description of the problem and setup of the simulation, see section 3.7.2. In
this section, an absolute convergence criterion with the absolute tolerances of
εabs = 10−6 is used to assess the convergence of the coupling iterations. Both
fluid and solid problems are discretized in time using the G-α scheme for
first-order systems with the high-frequency numerical damping determined
by ρs∞ = ρf∞ = 0.5.

In this example, the effects of both fluid and structure subcycling on
the FSI simulation are studied. Furthermore, higher ratios of time step
sizes will be used. For the simulation with fluid subcycling, the time step
sizes are chosen as ∆ts = 1e−2 and ∆tf = 5e−5, leading to a time step ratio of
Ns,f

= 200. In the simulation with structure subcycling, the time step sizes are
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Figure 5.31: Traverse galloping of square body: fluid subcycling results
using cubic interpolation of displacement values

chosen as ∆ts = 5e−5 and ∆tf = 1e−2 with a time step ratio of Nf,s
= 200. For

comparison, two FSI simulations with matching time steps of ∆ts = ∆tf = 5e−5

and ∆ts = ∆tf = 1e−2 are also carried out. The simulation with matching fine
time step will be used as the reference for further comparisons. By comparing
the results from the fluid and structure subcycling schemes with high time
step ratios, we aim to identify the role of accurately resolving the fluid forces
and capturing the kinematic behavior of the structure in the accuracy of
the FSI simulations. For better clarity, the results from a time interval are
presented in which all the simulations are developed. All the results presented
in this section are values in the vertical direction of nodal quantities of a point
located at the tip of the flexible beam.

The evolution of interface traction from the four simulations is plotted in
Fig. 5.34. For the simulations with subcycling, both fluid and solid values are
plotted. The quantities at the fine and coarse time scales are plotted as solid
and dashed lines, respectively. Barring some fine details, the pattern of the
interface traction graph from the simulation with fluid subcycling is similar to
that from the simulation with matching fine time steps. There is also a phase
shift between the two graphs, partly due to the introduced high-frequency
numerical damping in the solid domain combined with a rather large time
step size. These observations suggest that, in the current example, the more
important factor in accurately capturing the interface traction is the adequate
temporal resolution of the flow. However, the fine details in the traction graph
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Figure 5.32: Traverse galloping of square body: fluid subcycling results
using linear interpolation of velocity values

from the simulation with matching fine time steps can be attributed to the
fine temporal resolution of the structure’s kinematic behavior, which is not
well captured in the simulation with fluid subcycling and large time step ratio.
It is also worth noticing that the (temporal) projection of fluid traction onto
the structure performs very well in the fluid subcycling scheme. It is observed
that the traction graphs from the simulations with structure subcycling and
matching coarse time steps are quite similar but different from the reference
simulation with matching fine time steps. This observation supports the prior
argument that resolving the flow structure properly has the biggest impact
on the accuracy of the interface traction in the current example.

The acceleration values from the four simulations are plotted in Fig. 5.35.
Here is where the effect of finely resolving the kinematic behavior of the
structure is most pronounced. The acceleration graph from the simulation
with structure subcycling and that of the simulation with matching coarse
time steps have similar phase shifts with respect to the reference results with
matching fine time steps. However, the structure subcycling allows capturing
the fluctuations in the evolution of the interface acceleration. Recall that
the simulations with the coarse time step size in the fluid domain results in
similar interface traction. Therefore, capturing the acceleration fluctuations
can be attributed to properly resolving higher modes in the oscillation of the
structure. The pattern of those acceleration fluctuations in the simulations
with structure subcycling is similar to that from the reference simulation with
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Figure 5.33: Traverse galloping of square body: details of the interface
traction from the fluid subcycling scheme using linear interpolation of
velocity values
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Figure 5.34: Wall Benchmark: comparison of interface traction values from
fluid and structure subcycling schemes to those from simulations with fine
and coarse matching time steps. For the subcycling schemes, both the
fine and coarse time level values are plotted using solid and dashed lines,
respectively

matching fine time steps. There are, however, very small (non-physical) high-
frequency oscillations in the solid acceleration’s graph from the simulation with
structure subcycling compared to the reference results. Those high-frequency
fluctuations are artifacts due to the assumption in the interpolation of fluid
interface traction (at coarse time scale) to the structure (at fine time scale).
This issue is magnified by the fact that the structure in the current example
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Figure 5.35: Wall Benchmark: comparison of acceleration values from fluid
and structure subcycling schemes to those from simulations with fine and
coarse matching time steps. For the subcycling schemes, both the fine and
coarse time level values are plotted using solid and dashed lines, respectively

possesses no structural damping. In the simulation with matching fine time
step, the fluid’s viscous forces act as damping on the structure at every fine
time step. However, The fluid forces are interpolated within a coarse time step
when doing structure subcycling which leads to the fluid damping effects on
the structure being affected by the interpolation assumptions. Nevertheless,
the small numerical artifacts in the structure acceleration do not significantly
impact the system’s general response in this example. The acceleration graph
from the simulation with fluid subcycling is closer to the reference graph from
the simulation with matching fine time step in terms of the phase shift and
extrema values but does not quite accurately capture the higher frequency
acceleration fluctuations, which were argued to be due to the higher modes
of the structure. Note also the almost linear temporal profile of the fluid
acceleration within each coarse time step when using fluid subcycling, making
it almost indistinguishable from the solid acceleration graph.

The velocity values from the four simulations are compared in Fig. 5.36.
The evolution of velocity values from each simulation is consistent with the
earlier arguments regarding the role of fluid and structure subcycling in the
present example. The graph from the simulation with fluid subcycling is
closer to the reference graph with respect to the phase shift and amplitude.
On the other hand, the graph from the simulation with structure subcycling
better captures the higher modes of velocity oscillation.

The comparison of the displacement histories presented in Fig. 5.37
confirms the observations made earlier that, in the present example, resolving
the flow vortices has the most impact on the general accuracy of the FSI
simulation. It is also worth mentioning that for both simulations with fluid and
structure subcycling, the fluid displacement on the FSI interface is determined
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Figure 5.36: Wall Benchmark: comparison of velocity values from fluid and
structure subcycling schemes to those from simulations with fine and coarse
matching time steps. For the subcycling schemes, both the fine and coarse
time level values are plotted using solid and dashed lines, respectively
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Figure 5.37: Wall Benchmark: comparison of displacement values from fluid
and structure subcycling schemes to those from simulations with fine and
coarse matching time steps. For the subcycling schemes, both the fine and
coarse time level values are plotted using solid and dashed lines, respectively

using the fluid velocity and the time integration scheme in the fluid domain.
The drift in displacement constraint is quite small in both cases, such that
the fluid and solid displacement graphs are almost indistinguishable in the
simulations with subcycling.

In the following, the results from two other fluid subcycling schemes and
the structure subcycling scheme based on the discrete displacement continuity
condition are presented for comparison. In Fig. 5.38, the results from the fluid
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subcycling scheme with cubic interpolation for displacements are presented.
The fluid velocity graph possesses discontinuities at the boundaries of the
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Figure 5.38: Wall benchmark: fluid subcycling results using cubic interpola-
tion of displacement values

coarse time steps, leading to considerable nonphysical oscillations in the fluid
acceleration that are also reflected in the interface force graph.

The results using the fluid subcycling scheme with linear interpolation of
velocities are illustrated in Fig. 5.39. The general quality of the solution using
linear interpolation of velocities seems acceptable in the current example.
The chosen coarse time step size is small enough such that a linear profile
of velocity within a coarse time step sufficiently resolves the evolution of the
velocity in Fig. 5.39b. However, the fluid acceleration curve overshoots at
the beginning of each coarse time step and leads to a nonsmooth profile of
the fluid interface force in Fig. 5.39d.

The results using the structure subcycling scheme with the discrete dis-
placement continuity condition in conjunction with the linear interpolation
of interface forces are presented in Fig. 5.40. As expected, the simulation is
unstable and diverges right at the beginning (see section 5.3.2 for an expla-
nation of this behavior), which highlights the importance of satisfying the
discrete velocity continuity condition in the proposed structure subcycling
scheme based on the Dirichlet-Neumann decomposition.

This section concludes that the presented subcycling schemes can be
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Figure 5.39: Wall benchmark: fluid subcycling results using linear interpo-
lation of velocity values

robustly used with high time step ratios without compromising the accuracy
of the numerical results. Furthermore, the precise effect of resolving the
flow vortices and the higher structural modes on the accuracy of the FSI
simulations are studied using the presented schemes.

5.4.3 Driven cavity with flexible bottom

This benchmark problem consists of a square cavity with a flexible bottom.
The flow inside the cavity is driven by a prescribed periodical velocity at
the top boundary. The problem definition and the numerical parameters are
described in section 4.3.1. Here, a convergence criterion with the absolute
tolerances of εabs = 10−6 is used to check the convergence of the coupling
iterations. Both fluid and solid problems are discretized in time using the G-α
scheme for first-order systems with the high-frequency numerical damping
determined by ρs∞ = ρf∞ = 0.5.

Similar to the studies in section 5.4.2, the effects of structure and fluid
subcycling on the FSI simulation are investigated. Furthermore, the present
example provides a more demanding challenge with regard to satisfying the
incompressibility constraint in the INS equations and its effect on the pressure
distribution in the domain. For the simulation with structure subcycling,
the time step sizes are chosen as ∆ts = 0.005 and ∆tf = 0.2 with time step
ratio of Nf,s

= 40. In the simulation with fluid subcycling, the time step
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Figure 5.40: Wall benchmark: structure subcycling results based on satisfy-
ing the discrete displacement continuity condition

sizes are chosen as ∆ts = 0.2 and ∆tf = 0.005 leading to a time step ratio of
Ns,f

= 40. For comparison, two FSI simulations with matching time steps
of ∆ts = ∆tf = 0.005 and ∆ts = ∆tf = 0.2 are carried out as well. The
simulation with matching fine time step will be used as the reference for
further comparisons.

The evolution of different quantities at a point located in the middle of
the flexible bottom of the cavity is plotted in Fig. 5.41 for the simulation
with structure subcycling. The graphs in Fig. 5.41 show that at t = 30, the
FSI solution is almost fully developed and the flexible bottom of the cavity
undergoes a periodic oscillation. The Interface traction graph in Fig. 5.41d
reveals that the coarse time step size, ∆tf = 0.2, used in the fluid domain is fine
enough to resolve the general (temporal) profile of the traction’s oscillation by
the assumption of linear evolution of traction within each coarse time step. In
the current example, the fluid’s interface displacement is derived consistently
from the fluid velocity. The solid and fluid displacement graphs in Fig. 5.41
reveal that the drift in the geometrical constraint is small (and remains small
even for longer simulations). In the following, a portion of the time history of
the quantities plotted in Fig. 5.41 will be used for a more detailed comparison
of the simulations with subcycling and those with matching time steps.

The acceleration values at the reference location from the simulations with
structure and fluid subcycling and the two simulations with matching fine
and coarse time steps are compared in Fig. 5.42. For the simulations with
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Figure 5.41: Driven cavity with flexible bottom: structure subcycling results
based on satisfying the discrete velocity continuity condition

subcycling, the results at the fine and coarse time scales are plotted using solid
and dashed lines, respectively. The boundaries of the coarse time steps are
also marked using markers. The graphs in Fig. 5.42 are generally not so much
different from each other as opposed to the case in section 5.4.2. However,
it is still noticeable that the acceleration values from the simulation with
structure subcycling is quite close to the reference values from the simulation
with matching fine time steps. On the other hand, the results from the
simulation with fluid subcycling are quite close to those from the simulation
with matching coarse time steps. We can conclude that the adequate temporal
resolution of the structure requires finer time steps than the fluid problem, and
consequently, the structure subcycling is advantageous in the current example.
It is worth noting that the almost linear temporal profile of acceleration
within each coarse time step when using fluid subcycling complies well with
the theoretical assumptions. The fluid and solid acceleration graphs are also
almost indistinguishable in Fig. 5.42 when using either fluid or structure
subcycling schemes.

The velocity values at the reference location from the simulations with
structure and fluid subcycling and the two simulations with matching fine
and coarse time steps are compared in Fig. 5.43. The velocity graphs in Fig.
5.43 confirm that the results from the simulation with structure subcycling
are closer to the reference results, indicating that structure subcycling is of
advantage in the present case.
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Figure 5.42: Driven cavity with flexible bottom: comparison of acceleration
values from fluid and structure subcycling schemes to those from simulations
with fine and coarse matching time steps. For the subcycling schemes, both
the fine and coarse time level values are plotted using solid and dashed lines,
respectively

As shown in Fig. 5.35 and discussed in detail in section 5.4.2, the linear
interpolation of fluid traction in the structure subcycling scheme leads to small
amplitude (non-physical) fluctuations in the solid acceleration’s evolution,
especially when no structural damping is present. For the present example, a
close-up of the solid and fluid acceleration graphs with structure subcycling
is presented in Fig. 5.44 using two different time step ratios of Nf,s

= 40
and Nf,s

= 80. The small amplitude fluctuations in the solid acceleration are
observed in the graphs in Fig. 5.44 (for a sense of the scale, compare Fig.
5.44 with Fig. 5.42). The small-amplitude acceleration fluctuations are more
pronounced in the simulation with a higher time step ratio of Nf,s

= 80. This
observation can be attributed to the fact that, under the same linear temporal
profile of traction within a coarse time step as per the assumption, higher
modes in the acceleration’s evolution are triggered when using a smaller time
step size in the solid domain. The fluctuations in the solid acceleration depend
on the size of the coarse time step in the fluid domain. If the evolution of the
fluid interface traction is adequately resolved by the coarse time step, such that
a linear interpolation of traction within a coarse time step is reasonable, the
small-amplitude oscillations generally have a minimal effect on the solution of
the FSI problem. The latter statement is confirmed by comparing a close-up
of the velocity profiles from the two simulations with time step ratios of
Nf,s

= 40 and Nf,s
= 80, as shown in Fig. 5.45. The graphs of velocity

presented in Fig. 5.45 are very similar, which confirms the previous statement
on the effect of the high-frequency small-amplitude acceleration fluctuations.

In the following, a few numerical aspects of the simulations with fluid
subcycling will be investigated. In Fig. 5.46, the fluid and solid interface
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Figure 5.43: Driven cavity with flexible bottom: comparison of velocity
values from fluid and structure subcycling schemes to those from simulations
with fine and coarse matching time steps. For the subcycling schemes, both
the fine and coarse time level values are plotted using solid and dashed lines,
respectively
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Figure 5.44: Driven cavity with flexible bottom: the effect of fine time step
size on the acceleration values from structure subcycling scheme. Both the
fine and coarse time level values are plotted using solid and dashed lines,
respectively

traction values at the reference point from a portion of the simulation with
fluid subcycling are plotted. The fluid traction graph in Fig. 5.46 is not
smooth in certain sections. These non-smooth irregularities in the fluid
traction are due to the fluid’s pressure distribution on the FSI interface,
which is affected by the velocity interpolation from the solid domain. Recall
that the interpolation is applied to the interface velocities while controlling
the evolution of the interface acceleration (i.e., the assumption that fluid
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Figure 5.45: Driven cavity with flexible bottom: the effect of fine time step
size on the velocity values from structure subcycling scheme. Both the
fine and coarse time level values are plotted using solid and dashed lines,
respectively
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Figure 5.46: Driven cavity with flexible bottom: the interface traction values
from the fluid subcycling scheme using Hermite interpolation of velocity
values and almost linear fluid acceleration assumption

acceleration evolves linearly within a coarse time step). When solving the
INS equations, the pressure in the fluid domain is determined in conjunction
with satisfying the incompressibility constraint. However, no measures are
taken to control the evolution of fluid pressure’s time derivative at the FSI
interface within a coarse time step. Therefore, in the problems where the
pressure’s behavior is sensitive, e.g., solving INS equations in almost closed
domains, any slight non-smoothness in the interpolated interface velocity or
the corresponding acceleration values might impact the evolution of pressure
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in the fluid domain. In the current example, the irregularities in the fluid
pressure are relatively small and do not affect the FSI solution due to the
projection carried out for determining the solid traction at the FSI interface
(See Fig. 5.46). The irregularities in the evolution of fluid pressure increase as
the coarse time step size in the solid domain increases in the current example.

It was mentioned in section 5.3 that a quadratic Hermite interpolation
of the velocities could also be constructed using the solid velocity values
at the two boundaries of the coarse time step and the fluid acceleration
value at the beginning of the coarse time step.In the following, the results
using a quadratic Hermite interpolation are compared to those using a cubic
Hermite interpolation in conjunction with the almost linear acceleration
profile. For comparison, simulations with fluid subcycling are carried out
using the time step sizes ∆ts = 0.1 and ∆tf = 0.005, and the high-frequency
numerical damping is determined by ρs∞ = ρf∞ = 0.5. The fluid acceleration
and velocity values from the two simulations are compared in Figs. 5.47 and
5.48, respectively. Up to t = 17 s, the solutions from the two simulations are
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Figure 5.47: Driven cavity with flexible bottom: comparison of the exactly
linear and almost linear fluid acceleration assumption in the fluid subcycling
scheme using Hermite interpolation

very similar. However, the solution of the simulation with quadratic Hermite
interpolation of velocities starts to oscillate and eventually diverges. The
reason is the accumulation of numerical errors in the fluid acceleration since
only the acceleration value at the beginning of each coarse time step is used
for constructing the velocity’s interpolation function.

Similar to the previous sections, the results using alternative subcycling
schemes are presented hereafter for comparison. In Fig. 5.49, the results using
the fluid subcycling scheme with cubic interpolation for displacements are
presented. The same numerical behavior, characterized by jumps in the fluid
velocity curve at the boundaries of the coarse time step and subsequent spikes
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Figure 5.48: Driven cavity with flexible bottom: comparison of the exactly
linear and almost linear fluid acceleration assumption in the fluid subcycling
scheme using Hermite interpolation

in the fluid acceleration and interface force graphs, is observed. The results
of the simulation using the fluid subcycling scheme with linear interpolation
of velocities presented in Fig. 5.50 show a similar behavior.

The numerical artifacts in the fluid interface traction are considerably
more pronounced compared to the previous test cases due to the fact that
the pressure in the fluid domain is much more sensitive to the interface
acceleration in the current example.

The results of the structure subcycling scheme based on the discrete
displacement continuity condition, presented in Fig. 5.51, confirm that this
subcycling scheme leads to unstable results for most of the FSI problems.

5.4.4 Flexible restrictor flap in converging channel

This example, taken from [166, 167], consists of a flexible restrictor flap in
a converging channel. Due to the symmetry, only one half of the channel is
simulated. The problem’s geometry, dimensions, and boundary conditions
are given in section 4.3.4.

The current FSI example is challenging due to the low ratio of structural
to fluid density. Therefore, the numerical simulations with very small time
steps in the solid domain lead to very high-frequency acceleration fluctuations,
especially at the tip of the flap. Here, we will focus on using the fluid
subcycling scheme to alleviate this issue. The simulation with fluid subcycling
is carried out with the time step sizes ∆ts = 0.5 and ∆tf = 0.005 in the solid
and fluid domains, respectively, leading to a time step ratio of Ns,f

= 100.
For comparison, a simulation with matching time steps of ∆ts = ∆tf = 0.005
is also carried out. Both fluid and solid problems are discretized in time using
the G-α scheme for first-order systems with the high-frequency numerical
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Figure 5.49: Driven cavity with flexible bottom: fluid subcycling results
using cubic interpolation of displacement values

damping determined by ρs∞ = ρf∞ = 0.5.
The interface quantities at a reference point located at the tip of the flap

are plotted in Fig. 5.52 for the simulation with fluid subcycling. The plots
in Fig. 5.52 reveal that there is little to no drift in the interface constraints
of all kinematic quantities. The time step ratio of Ns,f

= 100 is used in the
current simulation. The fluid time step size could be further decreased (thus
increasing the time step ratio) without affecting the numerical results. One
motivation for subcycling in the current example could be enhancing the
convergence of the nonlinear iterations required for solving the fluid problem
at every time step (due to using a smaller time step size).

In Fig. 5.53, the acceleration value from the simulation with fluid subcycling
is compared to that from the simulation with matching fine time steps. The
acceleration graph from the simulation with matching time steps possesses
high-frequency fluctuations. In the simulation with fluid subcycling, quite
large time steps are used in the solid domain, leading to the disappearance of
the acceleration fluctuations at the reference point.

The comparisons of velocity and displacement values from the two simula-
tions are presented in Figs. 5.54 and 5.55, respectively. The graphs in Figs.
5.54 and 5.55 indicate that the results from the simulation with fluid subcy-
cling are as accurate as those from the reference simulation with matching
time step sizes.
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Figure 5.50: Driven cavity with flexible bottom: fluid subcycling results
using linear interpolation of velocity values
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Figure 5.51: Driven cavity with flexible bottom: structure subcycling results
based on satisfying the discrete displacement continuity condition
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Figure 5.52: Mok benchmark: fluid subcycling results using Hermite inter-
polation of velocity values and almost linear fluid acceleration assumption
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Figure 5.53: Mok benchmark: comparison of acceleration values from fluid
subcycling scheme to those from simulation with fine matching time steps.
For the subcycling scheme, both the fine and coarse time level values are
plotted using solid and dashed lines, respectively
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Figure 5.54: Mok benchmark: comparison of velocity values from fluid
subcycling scheme to those from simulation with fine matching time steps.
For the subcycling scheme, both the fine and coarse time level values are
plotted using solid and dashed lines, respectively
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Figure 5.55: Mok benchmark: comparison of displacement values from fluid
subcycling scheme to those from simulation with fine matching time steps.
For the subcycling scheme, both the fine and coarse time level values are
plotted using solid and dashed lines, respectively



Chapter 6

Fluid-structure interaction
simulation of an omega-shaped
Coriolis mass flow meter

6.1 Introduction

The FSI model of the omega-shaped CMF was developed in collaboration with
Rheonik Messtechnik GmbH and supported by Zentrales Innovationsprogramm
Mittelstand (ZIM) within the research project ZF4593301RE8. The details
of the FSI model and the comparison of numerical and experimental results
are published in [168]. Some figures and parts of the text in this chapter are
taken in an adjusted form from [168]. The simulations in this section are
carried out in the Kratos Multiphysics framework [141, 142, 169].

In this chapter, some of the methods developed in the present work are
applied to an industrial example of FSI simulation of an omega-shaped Coriolis
mass flow meter (CMF). In particular, the numerical results using the EG-α
time integration scheme (see chapter 2) and the enhanced interface quasi-
Newton methods (see chapters 3, and 4) are presented. The study presented in
[168] shows that the fluid and structural solvers require very similar time step
sizes for accurately capturing the physical behavior of the CMF. Therefore,
the multi-time-step coupling algorithms developed in chapter 5 are not used
in this example.
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CMFs measure the mass flow rate in pipes using a principle based on
induced Coriolis forces on the fluid particles. The structure of CMF undergoes
a harmonic oscillatory motion induced by two drive actuators. Due to this
oscillating motion, the fluid particles passing through the CMF experience a
relative velocity with respect to the CMF’s structure in the plane of oscillation.
Consequently, a Coriolis force is induced on the fluid particles. The resulting
reaction force influences the motion of the CMF’s structure. Therefore,
strongly coupled fluid-structure interaction phenomenon plays a crucial role
in the operation of CMFs.

CMFs are generally comprised of tube(s), drive actuator(s), two motion
detection sensors and a control unit. A harmonic load is applied by the drive
actuator on the tube and the structure is brought to forced oscillation. The
aim is to bring the CMF’s structure to resonance at one of its specific mode
shapes in order to achieve a desired magnitude of motion, while minimizing
energy consumption. The oscillating motion is then captured by motion
detection sensors at two different locations on the tube structure. When there
is no fluid in the CMF’s tubes, the captured motion signals by the two motion
detection sensors have the same phase. When there is a stationary fluid in the
tubes, the response of the system is different than previous operational mode,
but the two captured motion signals still have the same phase. Finally, when
there is a flow passing through the CMF a phase-shift is induced between the
captured signals as a result of the Coriolis forces driven by the interaction
between the flow and the oscillating structure. The CMFs are designed such
that the induced phase-shift is linearly proportional to the mass flow rate in
the pipeline [168].

6.2 The FSI model

In omega-shaped CMFs, the symmetrical torsional mode shape is excited by
the drive actuators and the Coriolis forces excite a symmetrical bending mode
shape. As depicted schematically in Fig. 6.1a, two counteracting actuators
excite the symmetrical torsional mode shape and each omega tube oscillates
around its oscillation axis (see Fig. 6.1b). The plane, on which each omega
tube (together with its oscillation axis) lies, is called the plane of oscillation.
The two motion detection sensors, which are located symmetrically with
respect to the oscillation axes, capture the motion signals. With flow passing
through the CMF’s tubes, the oscillatory torsional excitation results in Coriolis
forces distributed over the length of the tubes. These Coriolis forces act in
the direction perpendicular to the planes of oscillation. The resultant of the
torsional motion (induced by the drive actuators) and the bending motion
(induced by the Coriolis forces) leads to a phase-shift between the signals
captured by the two motion detection sensors.

The omega-shaped CMF’s structure is mainly comprised of two symmetric
tubes. In general, the motion of the structure can be non-symmetric under
different loading conditions. However, under operational conditions, the
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Figure 6.1: Illustration of an omega-shaped CMF composed of omega
tubes, counteracting actuators, motion detection sensors, oscillation axes,
horizontal bars and connectors and b: top view of the CMF with symmetrical
torsional motion [168]

symmetric tubes are excited in symmetric torsional and bending mode shapes.
Therefore, in order to reduce the computational costs, only one side of the
structure is modeled by applying symmetry BC on the symmetry plane shown
in Fig. 6.2.

The torsional mode shape of the structure is excited by applying two
dynamic forces with the same amplitude but in opposite directions at the
positions where the actuators are located (see Fig. 6.2). The phase-shift can
be found by a forced vibration at the resonance. However, there are two issues
with this approach. First, the eigenfrequency must be determined in order to
have a forced vibration at the resonance. This can be done by analyzing the
free vibration response to an impulse. Secondly, to calculate the phase-shift,
the simulation must be carried out for a long enough time in order to get only
the harmonic particular solution without the transient homogeneous solution.
Therefore, in the present work, in order to reduce the computational costs,
the impulsive forces are applied and the phase-shift is calculated through
analyzing the free vibration response. The impulse forces are modeled by a
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Figure 6.2: One half of the CMF model simulated due to the symmetry in
the geometry and operational loading and boundary conditions. The green
sections indicate the clamped portions of the CMF’s structure [168]

Dirac delta function and applied as distributed loads on the CMF’s structure
in the position of drive actuators.

In the following, the setup of the FSI problem is concisely presented.
For more details on the parameters and numerical setup of the model, the
interested readers are referred to [168]. A schematic FSI problem is depicted
in Fig. 6.3. The structural domain is discretized using linear tetrahedral
elements. This type of element is known to behave stiffer than hexahedral
elements or tetrahedral elements with quadratic shape functions. Therefore,
in order to have reliable results higher mesh resolutions are usually needed.
In addition, to accurately capture the motion of the structure, especially in
torsional and bending modes, the mesh refinement is focused on the omega-
shaped tube, the oscillation axis and the connectors. The computational
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Figure 6.3: The FSI domain divided into the structural and fluid domains
[168]

mesh of the structural domain is depicted in Fig. 6.4. The mesh of the
omega-shaped tube is structured in radial direction and along the tube. The
oscillation axis and connectors have a semi-structured mesh while, the mesh
of the rest of the structure is unstructured.

Modeling the structural damping is crucial in correctly capturing the
dynamic behavior of the CMF. The structural damping is modeled using
Rayleigh damping. The corresponding Rayleigh damping coefficients are calcu-
lated from the measured damping ratios of torsional and bending frequencies
from the experimental data.

In the fluid domain, spatially constant velocity profiles are assigned to
the inlet as a Dirichlet BC. The inlet velocity is ramped up in time to the
nominal value in order to initialize the flow simulation. On the boundaries a
no-slip BC is defined and the relative outlet pressure is set to 0. In order to
prevent the flow inside the CMF to be influenced by the inlet and outlet (e.g.
flow development in the inlet and back-flow in the outlet), the fluid domain
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Figure 6.4: The mesh of the structural domain

is extended beyond the CMF’s structure. The fluid domain is discretized
using linear tetrahedral elements. The fluid grid is structured in flow stream
direction from inlet to outlet and is semi-structured in radial direction. The
computational mesh of the fluid domain is depicted in Fig. 6.5.

The fully developed flow velocity and the pressure profiles in the omega
tube are depicted in Fig. 6.6.

The spatial discretizations of the structural and fluid domains are in general
non-conforming on the FSI interface because the grid size requirements are
different for the solution of each domain. Due to different discretizations, even
the interface geometry can be non-matching with gaps and overlaps between
boundaries of fluid and structural grids. Since the displacements and tractions
must be transferred through the interface, data mapping technique must be
employed to perform this data exchange on the FSI interface. In the present
work, the nearest element interpolation method is used. In this method, e.g.
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Figure 6.5: The mesh of the fluid domain

for transferring displacement from the structural domain (source) to the fluid
domain (target), each node of the fluid interface is projected onto the nearest
element on the structural interface and the unknown displacement at the
projected point is interpolated from the element’s nodes and is assigned to
the fluid node.

The deformation of the CMF’s structure in the FSI simulation is depicted
in Fig. 6.7.

In the following, a comparison will be carried out between the methods
developed in the present work and the numerical methods used in [168] for
FSI simulation of the omega-shaped CMF. In particular, the advantages of
the EG-α time integration scheme (see chapter 2) and the enhanced interface
quasi-Newton methods (see chapters 3, and 4) are highlighted for the present
industrial FSI example.
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Figure 6.6: The flow velocity and the pressure profiles in the Omega tube.
(a) The pressure profile; (b) the velocity profile; (c) the velocity profile at
five slices marked in b

The measured mass flow rate in the CMF is (by design) linearly proportional
to the induced phase-shift between the outputs of the two sensors. Therefore,
the temporal accuracy is of utmost importance in the dynamic simulations of
CMFs since the numerically calculated phase-shift is affected by the numerical
dissipation introduced by the time integration scheme. The EG-α scheme (as
well as other members of the G-α family of schemes) allows for desired amount
of high-frequency damping controlled by ρ∞. In the current example, EG-α
scheme is used in both the fluid and structural solvers with ρf∞ = ρs∞ = 0.5.
The results from the simulation with EG-α scheme are compared with those
from a simulation with BDF2 scheme in the fluid solver and Bossak scheme
(with αm = −0.33) in the structural solver. In Fig. 6.8, a comparison is carried
out between the two simulations with regard to the displacement response
at sampling point S1. The graphs in Fig. 6.8 reveal that the EG-α scheme
leads to lower numerical dissipation both in terms of the amplitude decay and
period elongation, which is important for the calculation of the phase-shift.

Another area of focus in this work is enhancing the robustness and effi-
ciency of convergence acceleration techniques for FSI problems. The IQN-ILS
algorithm with automatic determination of time history presented in chapter
4 is applied to the present example and the results are compared to the
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Figure 6.7: The CMF at rest together with the deformed states at the two
extremes of deformation. The deformations are magnified 10 times for the
sake of clarity
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Figure 6.8: The response of the CMF at sampling point S1 to impulse.
Comparison between the EG-α scheme and the combination of BDF2 scheme
in fluid and Bossak scheme in the structural domain

Aitken relaxation (with initial relaxation factor 0.5) used in [168] for the
same tolerance values. The average number of iterations per time step is 5.81
using the Aitken relation and 3.05 using the IQN-ILS with the automatic
column selection strategy presented in chapter 4. The efficiency improvement
through the reduced number of FSI iterations is substantial in the current
example due to the high evaluation costs of the fluid and structural solvers
with detailed high-fidelity models.





Chapter 7

Conclusion and outlook

7.1 Summary of the contributions

The present work contributes to enhancing the robustness, accuracy, and
efficiency of multiphysics and coupled simulations, in particular fluid-structure
interaction problems, by proposing methods and solution strategies for the time
discretization and convergence acceleration of partitioned strongly coupled
problems. A Summary of the main contributions and findings in each chapter
is presented in the following.

Chapter 2 presents the EG-α time integration scheme, an end-of-step-
equilibrium form of the G-α scheme, for FSI problems. The time discretization
of the fluid, structural, and mesh motion problems using the EG-α is detailed
and analyzed. Using this scheme, the equilibrium equation of the problem is
satisfied exactly at discrete time points instead of the classical averaged form.
The benefits of the EG-α scheme are demonstrated for the stabilized finite
element formulations for incompressible Navier-Stokes equations on fixed and
moving domains.

• The incompressibility condition is satisfied precisely at the discrete time
points. Therefore, the errors in the incompressibility condition are
not propagated in time, and the velocity field remains divergence-free
throughout the simulation.

• The EG-α allows the consistent and straightforward temporal discretiza-
tion of stabilized methods for incompressible Navier-Stokes equations.
When using dynamic subgrid scales in the context of the variational
multiscale method, an elegant and simple blend of the EG-α scheme for
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the discretization of the large-scale problem and the backward Euler
scheme for the fine-scale problem is viable, which keeps the overall
second-order temporal accuracy of the large-scale problem intact.

• In the fluid problems on moving domains, the spatial integrals are
naturally evaluated on the most recent configuration of the moving do-
main, which reduces the implementation’s complexity while maintaining
temporal stability and accuracy.

• The second-order temporal accuracy for velocity, pressure, acceleration,
pressure time derivative and mesh velocity variables are retained using
the EG-α scheme.

In addition to the derivation of the EG-α scheme, this chapter presents a
comprehensive analysis of different variants of the generalized-α scheme for
the incompressible Navier-Stokes equations and compares them in the case of
discretization on fixed and moving domains.

A variant of the EG-α scheme for first-order systems is presented for
the temporal discretization of the structure in FSI problems. The proposed
variant of the scheme avoids doubling the number of unknowns in the problem’s
linear system of equations, which is common in the state-space (displacement-
velocity) formulations. The presented scheme is consistent with the time
integration scheme used in the fluid problem.

The consistent temporal discretization of the FSI problem using the EG-α
scheme is presented, which avoids the need for temporal interpolation of
interface values between the fluid and solid domains in order to maintain the
second-order accuracy for the whole FSI problem.

Chapter 3 addresses some previously open issues regarding the efficiency
and robustness of interface quasi-Newton methods for the convergence accel-
eration of the partitioned coupled problems by bridging the gap between the
state-of-the-art knowledge in interface quasi-Newton methods and some of
the lesser-known techniques in dense linear algebra.

Algorithmic enhancements are suggested for solving the least squares
problem arising from the interface quasi-Newton methods using modified
Gram-Schmidt or Householder QR factorization.

The use of column scaling is proposed in the solution of the least squares
problem associated with the interface quasi-Newton methods. By scaling
the columns of the matrix involved in the least squares problem such that
all columns have equal and unit norms, the adverse effect of very dispersed
column norms is removed from the matrix. It is demonstrated that the quasi-
Newton matrices have better conditioning when column scaling is carried out,
even without applying any filtering. Column scaling enhances the robustness
of filtering in the quasi-Newton methods as well. It is demonstrated that
without column scaling, filtering removes (very often) the columns with the
lowest norms, including the columns added in the most recent iterations. For
some choices of filtering tolerance, filtering without column scaling leads to
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a lack of convergence even after a substantial number of coupling iterations.
When using column scaling in conjunction with filtering, the convergence rate
of the quasi-Newton methods is less sensitive to the filtering tolerance.

Another aspect of the filtering process elaborated in the current work is the
choice of filtering criterion and its relation to the reciprocal condition number
of the matrix used in the least squares solution by QR factorization. Based
on the information available from the R-factor, different filtering criteria are
provided and numerically compared. Furthermore, it is shown that filtering
based on the diagonal entries of the R-factor leads to overestimating the
exact minimum singular value of the R-factor (sometimes by a few orders of
magnitude). This fact should be taken into account when choosing a tolerance
for filtering based on the diagonal entries of the R-factor.

Chapter 4 presents a strategy for automatically determining the time
step history in interface quasi-Newton methods. A major question concerning
the reuse of information from the previous time steps in the IQN-ILS method
is the optimal combination of values for the maximum time step history and
the filtering tolerance. This issue is tackled in the present work.

A strategy for combining filtering techniques and automatic determination
of the number of previous time steps in IQN-ILS method is proposed by
combining the basic solution via QR factorization with column pivoting, with
the closest column and threshold pivoting, cyclic permutation, age-based
column scaling, and restricted column pivoting techniques. The advantage
of the proposed strategy is that it achieves a good performance (in terms
of the number of coupling iterations) for various FSI problems with a set of
default parameters. Therefore, the need for trial and error for determining the
optimal time step history in IQN-ILS method is reduced. It is still possible
to tune the method for different problems if one wishes to by changing the
parameters. However, by combining the filtering and determination of the
time step history, the number of parameters directly defined by the user
is reduced to one. The various numerical examples presented in this work
suggest that the performance of the proposed strategy is not very sensitive
to the user-defined parameter ε, and a default value leads, in most cases, to
a good performance compared to other variants of interface quasi-Newton
methods.

Using an incremental condition estimator for the accurate estimation of
minimum and maximum singular values in the least squares problem of
interface quasi-Newton methods are proposed. This technique is beneficial for
filtering techniques based on the QR factorization with or without column
pivoting.

Chapter 5 proposes multi-time-step coupling schemes for FSI problems.
The schemes are based on partitioned strongly coupled fluid-structure interac-
tion algorithms and Dirichlet-Neumann decomposition. For the convergence
acceleration of the iterative coupling procedure, state-of-the-art quasi-Newton
methods are successfully used without the need for any adaptation due to
the multi-time-step nature of the considered problems. Those features of the
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proposed schemes allow a straightforward extension of the existing coupling
environments to include multi-time-step capabilities.

Both fluid and structure subcycling schemes are proposed and analyzed.
The schemes are based on satisfying the discrete velocity continuity across
the FSI interface. It is shown that the approaches based on satisfying the
discrete displacement continuity suffer from loss of accuracy in the case of fluid
subcycling and lack stability in the case of structure subcycling in strongly
coupled FSI problems. In contrast, the fluid and structure subcycling schemes
based on satisfying the discrete velocity continuity are stable and accurate
even for very high time step ratios.

For the interpolation of kinematic values in the fluid subcycling scheme, a
Hermite interpolation of velocity values together with an almost linear acceler-
ation profile is proposed. The assumed acceleration profile is generated using
a weighted average of the fluid’s linear acceleration value and the structure’s
actual acceleration value. Consequently, the interpolated velocity profile is
almost quadratic. Furthermore, a cubic Hermite interpolation of displacement
values is proposed for the cases where the drift in the displacement constraint
is unacceptably large. However, the numerical examples show that the drift in
the displacement constraint remains small for most combinations of physical
and reasonable algorithmic parameters.

Another important aspect of the multi-time-step FSI algorithms addressed
here is the transferring of interface forces between different time levels. We
make the assumption that the interface forces have a linear profile within a
coarse and fine time step. It is shown that this assumption is reasonable for
a wide range of time step sizes and algorithmic parameters of the considered
family of time integration schemes. Based on this assumption, an averaging
formula is deduced for transferring the interface forces from the fine to coarse
time scale in the fluid subcycling scheme.

7.2 Outlook

It was previously mentioned that the presented EG-α time integration scheme
is very useful for discretizing unsteady INS equations using unfitted methods,
including embedded methods based on cutting the elements in a background
mesh using a boundary representation of the objects in the domain. One of
the challenges in such techniques is that the variables’ domain of definition
changes when proceeding from one time step to the next. A solution proposed
in the literature is the use of so-called extension operators, which extend
the solutions from the previous time step to the current domain. Such
operators must be consistent with the time integration scheme in order to
allow preserving the original order of accuracy of the scheme in the unfitted
techniques. A natural extension of the present work is to apply the EG-α
time integration scheme to the problems discretized using unfitted methods
and derive the required consistent extension operators. Another logical step
in the development of EG-α schemes is deriving consistent explicit forms of
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the scheme, which are useful for discretizing multiphysics problems with fast
dynamics, e.g., the simulation of impact in FSI problems.

With regard to the quasi-Newton convergence acceleration techniques,
a further development is the extension of the proposed automatic column
selection strategies to allow solving the least squares problem using QR
factorization based on modified Gram-Schmidt, which allows a more efficient
solution of the least squares problems in very large systems compared to
the Householder QR factorization. An interesting idea worth investigating is
augmenting the interface quasi-Newton methods with ideas borrowed from
the Machine learning and surrogate modeling techniques in order to further
accelerate the convergence of multiphysics simulations by predicting better
initial guesses for the iterates or enhanced column selection strategies.

The multi-time-step FSI algorithms developed in the present work are
based on the Dirichlet-Neumann decomposition of the problem. While sim-
ple to implement and quite effective when combined with state-of-the-art
convergence acceleration techniques, the approaches based on the Dirichlet-
Neumann decomposition have limitations in certain simulations. In recent
years, coupling approaches based on Robin-Neumann decomposition have
gained traction and are demonstrated to be efficient for many coupled prob-
lems. The extension of the present multi-time-step methods to the coupling
techniques based on Robin-Neumann decomposition is the subject of future
works. The multi-time-step coupling algorithms are also of interest in FSI
simulations with separate reduced order models for the fluid and structure
with different requirements on their time step sizes. Therefore, extending
and applying the proposed methods to the model order reduction techniques
for FSI problems is another topic of further research. Finally, the robust
and efficient implementation of the proposed algorithms, including efficient
checkpointing and restart mechanisms, transferring of the data between dif-
ferent time scales, and incorporation in the existing software frameworks for
simulations with matching time steps are potential subjects for future works.
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