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Abstract

Acoustic signals have been utilized by medical professionals for centuries, for example for
the diagnostic assessment of human body sounds using a stethoscope, but are rarely used in
conventional computer aided diagnostics and surgery. However, acoustic signals have great
potential for the development of novel multimodal sensing solutions for medical applications
and can provide solutions for problems where conventional systems, such as surgical navigation
or medical imaging reach their limits. This dissertation shows that the combination of a highly
sensitive sensor technology, advanced signal processing, and powerful cutting-edge analysis
methods based on Deep Learning enables the utilization of acoustic signals for the design of
easy-to-integrate, non-invasive, radiation-free, and low-cost multimodal sensing systems in
computer aided medicine.

The contributions of this work include solutions for unmet clinical problems in diagnostics and
surgical interventions which were identified in close collaboration with medical experts. For
diagnostics, we present an experimental setup for vibration excitation and deep learning-based
vibroacoustic detection of pedicle screw loosening being a post-operative complication after
spinal fusion surgery. For interventional use, we propose a system for automated orthopedic
drill breakthrough detection based on structure-borne vibroacoustic sensing and a spatio-
temporal learning-based framework for the identification of the optimal insertion endpoint
for the femoral stem component in Total Hip Arthroplasty using structure-borne hammer
blow sounds. All proposed systems were thoroughly evaluated in extensive and realistic
human cadaveric experimental setups. To address the problem of limited access to realistic
data, which is a common issue in the medical domain due to limited access to the relevant
environments as well as strict guidelines and regulations, a novel data augmentation method
based on a conditional generative adversarial network is proposed which is able to generate
realistic synthetic samples from a learned dataset distribution to improve the performance of
medical acoustic sensing systems.

Our results proof that automated decision and support systems based on acoustic sensing have
great potential for the development of new multimodal sensing paradigms for a wide range
of applications in medical diagnostics, interventions, and the analysis of surgical workflows.
Acoustic sensing systems can be utilized to complement existing computer aided surgery,
surgical guidance, and decision support systems and provide information beyond the limits of
established methods such as surgical navigation systems or medical imaging.
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Zusammenfassung

Akustische Signale werden von Mediziner*innen seit Jahrhunderten verwendet, z. B. zur
diagnostischen Beurteilung menschlicher Körpergeräusche mit Hilfe eines Stethoskops, fin-
den aber nur selten in der herkömmlichen computergestützten Diagnostik und Chirurgie
Anwendung. Die Nutzung von akustischen Signalen hat jedoch großes Potenzial für die Ent-
wicklung neuartiger multimodaler Sensorlösungen in der Medizin und kann Lösungen für
Probleme bieten, bei denen herkömmliche Systeme wie chirurgische Navigation oder medi-
zinische Bildgebung an ihre Grenzen stoßen. Diese Dissertation zeigt, dass die Kombination
von hochsensibler Sensortechnologie, fortschrittlicher Signalverarbeitung und leistungsstarker,
auf Deep Learning basierender Analysemethoden die Nutzung akustischer Signale für die
Entwicklung einfach zu integrierender, nicht-invasiver, strahlungsfreier und kostengünstiger
multimodaler Sensorsysteme in der computergestützten Medizin ermöglicht.

Die Beiträge dieser Arbeit umfassen Lösungen für ungelöste klinische Probleme in der Diagno-
stik und Chirurgie, die in enger Zusammenarbeit mit medizinischen Expert*innen identifiziert
wurden. Als diagnostische Anwendung stellen wir einen experimentellen Aufbau für die
Schwingungsanregung und die vibroakustische Erkennung von Pedikelschraubenlockerun-
gen, eine postoperative Komplikation nach Wirbelsäulenfusionsoperationen, vor. Für die
interventionelle Anwendung schlagen wir ein System zur automatischen Erkennung von
Bohrerdurchbrüchen in der Orthopädie, sowie ein auf spatiotemporal Learning basierendes
System zur Identifizierung des optimalen Einführungsendpunkts der Femurschaftkomponente
in der Hüfttotalendoprothetik vor. Alle, im Rahmen dieser Dissertation entwickelten Systeme
wurden in umfangreichen und realistischen Versuchen mit menschlichen Kadavern evaluiert.
Da im medizinischen Bereich aufgrund des begrenzten Zugangs zur relevanten Umgebung
sowie strenger Richtlinien und Vorschriften der Zugang zu realistischen Daten oft begrenzt
ist, wird eine neuartige Methode zur Vergrösserung einen Datensatzes auf der Grundlage
eines Generative Adversarial Networks vorgestellt, die die Genauigkeit medizinischer Acoustic
Sensing Systeme zu verbessern kann.

Unsere Ergebnisse belegen, dass automatisierte Unterstützungssysteme auf der Basis akusti-
scher Sensorik großes Potenzial für die Entwicklung neuer multimodaler Sensorik-Paradigmen
für eine Vielzahl von Anwendungen in der medizinischen Diagnostik, für Interventionen
und bei der Analyse chirurgischer Arbeitsabläufe haben. Akustische Sensorsysteme können
zur Ergänzung bestehender computergestützter Chirurgie- und medizinischer Entscheidungs-
unterstützungssysteme eingesetzt werden und Informationen liefern, die über die Grenzen
etablierter Methoden wie chirurgischer Navigationssysteme oder medizinischer Bildgebung
hinausgehen.
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1Introduction

1.1 Thesis Outline

In the following paragraphs, a brief outline of this dissertation is presented.

Chapter 1 introduces the concept of using acoustic signals in the context of medical history
and in current clinical practice. In this scope, the clinical motivation of this work is illustrated.
An overview about the technical background and related work is given and the objective of the
present thesis based on the clinical motivation and technical state-of-the-art is presented.

Chapter 2 explains the technical background of acoustic signals, from signal capturing and
digitization to signal processing and feature extraction methods for audio signals.

Chapter 3 presents an overview of learning-based methods for medical acoustic sensing,
starting from classical approaches using handcrafted features to the author’s contributions in
state-of-the-art frame-based and spatio-temporal learning-based acoustic sensing solutions
in the context of computer assisted orthopedic surgery and diagnosis. Furthermore, raw
waveform-based approaches are briefly discussed and a contribution in the field of data
augmentation for clinical audio data is presented.

Chapter 4 summarizes the findings of this dissertation. The thesis is concluded with an
outlook for future research directions in Chapter 5.

1.2 Motivation

1.2.1 Acoustic Signals in Medicine

The usage of acoustic signals has a long history in medicine. Immediate auscultation, a
technique which is characterized by placing the ear directly onto the patients’s chest to detect
abnormal chest sounds was first described in ancient times by Hippocrates (approx. 460 - 370
BC) [56]. In 1816, a french physician called Rene Theophile Hyacinthe Laennec invented
the stethoscope by rolling 24 papers in the shape of a cone and placing the instrument on the
patient’s chest to transmit structure-borne chest sounds to the examining physician’s ear. He
furthermore published an article in 1822, describing techniques for the auscultation of lung
and heart sounds, e.g. for diseases such as tuberculosis [50] and improved the design of the
stethoscope as illustrated in figure 1.1. Since these early usages of acoustic signals in medical
diagnosis, the assessment, description, and analysis of human body sounds has become an
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Fig. 1.1. The Laennec stethoscope. The examining physician would place the wooden stethoscope on the patient’s
chest and their ear on the other end of the tubular structure to listen to heart and lung sounds for
abnormalities. 1

integral part for the training and education of medical professionals. The modern version of
the stethoscope is an important tool for doctors all around the world and closely associated
with the medical profession. Especially for cardiac and pulmonary applications, auscultation
is a widely adopted method for the examination of patients. Also in other use cases, such as
the examination of bowel sounds or the assessment of cartilage degeneration in bone joints,
auscultation has proven to be a reliable medical tool.

Also in the operating theatre, acoustic signals are always present which includes sounds gener-
ated by the surgeon’s interaction with the patient, such as diathermy, drilling, or hammering,
continuous signals from surgical devices such as heart monitors, alarms and notification
signals, as well as the communication of the surgical staff during interventions. These acoustic
signals contain highly dense information about the current state of the procedure and char-
acteristic surgical events. Especially in orthopedics, where drilling, hammering, chiseling,
sawing, and other mechanical interactions with the anatomy generate characteristic noise,
experienced surgeons report that together with visual and haptic cues, they are able to infer
additional information about the surgical action from acoustic signals. Examples include
the assessment of the seating of orthopedic implants during insertion, the differentiation
between different tissue types, such as cancellous bone, cortical bone, and cartilage during
chiseling, sawing, or drilling, and the assessment of biomechanical properties of the bone and
degenerative diseases, such as osteoporosis, e.g. during bone screw insertion. In addition,
also interaction with soft tissues such as coagulation, needle insertion or cutting with sharp
tools creates distinct audible noise or structure-borne vibrations.

Through the advances in sensor hardware, medical acoustic signals can nowadays be captured
using highly sensitive and easy-to-integrate sensors in an air-borne and/or structure-borne
manner. By using high-quality airborne microphones, it is possible to capture room sounds
(using microphones with sphere or cardioid polar patterns) or sound sources (using directed
microphones). Contact microphones allow the acquisition of high quality structure-borne
acoustic signals from tools or directly attached to the patient skin or anatomy. The following

1retrieved from https://de.wikipedia.org/wiki/Ren%C3%A9_Laennec#/media/File:Laennecs_stethoscope,_c_1820.
_(9660576833).jpg on August 11th, 2022, released under Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0)
[background removed]
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section gives an overview about challenges for clinical decision making in clinical diagnosis and
interventions and illustrates how acoustic sensing can be used to address these challenges.

1.2.2 Clinical Motivation

Clinical decision making is a challenging task, in both the diagnostic and intraoperative con-
text. In diagnostics, decision making is often based on the examination of medical images such
as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) or planar radiographs
(X-Rays) which involves the assessment and interpretation of the imaging data by medical
professionals. This process is however not flawless and errors in decision making can not be
fully excluded [49]. While in current clinical practice, examination and diagnosis is moving
towards objective decision-making procedures involving medical tests and medical imaging,
medical professionals utilize subjective senses, such as vision, hearing (as described above) or
smell, which still plays a crucial role for the interpretation of images, test results, the monitor-
ing of a patient during hospitalization, and the final decision making in patient diagnosis [64].
Therefore, multimodal machine sensing can play an important role in supporting medical
diagnostics and has great potential to improve the diagnostic outcome by analyzing additional
sensor data for an informed decision.

Intraoperative decision making is a complex process and involves intuitive and analytic aspects,
the assessment of the patient risk, the individual anatomical patient characteristics, and many
more factors [82]. One example for challenges in intraoperative decision making is tissue
differentiation which is especially demanding in minimally invasive procedures due to lack of
haptic feedback, visual occlusion, limited access, and the similar visual appearance of different
types of tissue [65]. Also in open surgery, tissue differentiation, e.g. for the differentiation
between tumor and healthy tissue or the navigation of power tools in occluded and hard-
to-reach areas of the anatomy, is an important part of an intervention. Computer assisted
surgical navigation has been introduced to provide surgical guidance by determining the
position of the patient anatomy and the surgical tools in 3D space, usually through optical
and electromagnetic tracking systems, or robotic devices [42]. However, there are several
limitations of surgical navigation systems, for example line-of-sight issues, the requirement of
offline or online registration procedures to align the patient anatomy with the preoperative
plan, the lack of capturing semantic information from the area of operation, or the estimation
of tissue deformation in relation to the preoperative plan. Furthermore, it is impossible to
assess certain surgical measures, such as the seating and press-fit of an implant in the bone,
only with optical systems. For instance, the optimal insertion endpoint, e.g. for a femoral
hip implant, is still dependent on the expertise of the operating surgeon [4]. Surgeons rely
on multiple senses to interpret and interact with the world which gives them the ability to
combine information from different sources to make a decision. Inspired by the multimodal
sensing of humans, there is an increasing body of research in the direction of multimodal
sensing for improved surgical guidance and autonomous surgical robotics. In this context,
advanced methods, for example hyperspectral imaging [26] or vibroacoustic sensing [19]
have great potential to capture valuable additional information about the intervention.

Acoustic signals, which have been used by physicians and medical professionals since ancient
times, provide an easy-to-integrate, non-invasive, radiation-free, and low cost sensing modality.

1.2 Motivation 7



They contain dense and high quality information which can be used for multimodal sensing
approaches in medical diagnostics and interventions. The advances in signal processing and
pattern recognition enable the design of automated decision making systems which have
the potential to support and inform physicians while performing surgical actions, prevent
surgical and diagnostic errors, detect adverse events, provide additional information, e.g. for
tissue differentiation in computer aided surgery, or analyze surgical workflow. Furthermore,
medical acoustic sensing systems can be a valuable tool to support medical diagnostics in
applications such as chest diseases, cartilage degeneration, or bone joint implant monitoring.
The following sections give an overview about the state-of-the-art of applications for acoustic
signals in diagnostic and monitoring applications, as well as surgical interventions.

1.3 Technical Background and Related Work

1.3.1 Acoustic Sensing for Medical Diagnostics and
Monitoring

There is a wide variety of applications for acoustic sensing in medical diagnostics. The
following paragraphs give an overview of the state-of-the-art of acoustics in medical diagnosis.
As described in section 1.2.1, the first applications of acoustics for the diagnosis of chest
diseases originate from ancient times, where the examining physician placed the ear directly
on the patient’s chest to listen to abnormalities in lung and heart noise. In the modern times,
the field of automated chest sound analysis is widely covered. Example applications are a
phonocardiogram automatic classification model based on a CNN classifier which is able to
assist physicians in the diagnosis of heart sounds [119]. A RNN-based method for the analysis
of heart sounds was proposed by Yang et al. [120]. Marshall et al. published an algorithm
which allows non-specialists to screen for pulmonary fibrosis [63]. A smart stethoscope which
analyzes respiratory sounds using a deep learning-based classifier was proposed by Ma et
al. [60] in 2019. Further related applications include voice pathology classification using
speech recordings of patients, e.g. a system proposed by Miliaresi et al. [69]. In the COVID-19
pandemic, systems for the automated analysis of cough sounds for characteristics of the
COVID-19 virus have been proposed [51].

The Assessment of orthopedic implants based on acoustic sensing has the advantages of being
non-destructive and radiation-free and can be used for early diagnostics. The main applications
in the literature are the analysis of hip and knee replacement implants [44]. Schwarzkopf et
al. analyzed data of different types of knee implants using a handheld measurement system
which revealed correlations of the acoustic signature to the implant status and time from
implantation [97]. Rodgers et al. characterized the squeaking of hard-on-hard bearing surface
combinations by acoustic emission analysis of Total Hip Arthroplasty (THA) implants [90]. A
monitoring system to assess the wear of THA implants was developed by Fitzpatrick et al.,
who compared the frequency characteristics of in-vivo and in-vitro signals [27]. Ewald et
al. developed a measurement prototype and simulator-based experimental setup to detect
loosening of THA implants using an acoustic sensor [25]. Arami et al. applied harmonic
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vibration to the tibia and captured the resulting vibrations at the surface of a total knee
replacement implant using an accelerometer-based sensor [6].

Another research area that is covered in the literature is the field of Virbroarthrography
(VAG), a technique that uses vibroacoustic signals captured with accelerometers or contact
microphones on the patient’s skin to record movement noise of the joint and determine various
stages of cartilage degeneration, usually in the knee joint. Frank et al. published a paper
in 1990 in which they analyzed knee joint acoustic signals and described their nature and
diagnostic potentials [28]. Krishnan et al. conducted a clinical study which showed that
VAG has potentials as a diagnostic tool for the screening of chondromalacia patella [47].
An automated algorithm based on handcrafted features and a FCNN to classifcy knee joint
acoustic signals was proposed by Kim et al. [45] which showed promising performance for
the diagnosis of diseases such as osteoarthritis. Further research projects involved different
handcrafted features, employing automated feature selection techniques [73], wavelet filter
bank features [104], or frequency features from multiple sensors [7], using classical supervised
learning techniques such as SVMs or RFs.

The monitoring of the elderly in their home, e.g. for fall and other acoustic event detection,
has great potential to minimize hospitalization costs, reduce the need for nursing staff, and
enable the patients to live in their own home, therefore improving the quality of life in
old age. For this type of monitoring application, ambient assisted living systems have been
introduced which mainly rely on the analysis of acoustic signals recorded from environmental
microphones. Example systems include a concept for the monitoring of an entire flat which
uses a two-stage acoustic event classification approach that is able to detect events related to
dangerous health conditions and was proposed by Navarro et al. [75]. Another example was
proposed by Ghayvat et al., who developed a system involving a microphone prototype and a
detection method based on a CNN for at-home monitoring of elderly [29].

Acoustic signal analysis is also an integral part of wearables for health monitoring. Applications
include the precise monitoring of the daily food intake of a person [8], the mechano-acoustic
monitoring of cardiopulmonary signals [35], or the discrimination of featal movement during
pregnancy [52].

1.3.2 Interventional Acoustic Sensing

In the context of clinical interventions, acoustic signals provide meaningful and highly dense
information about surgical actions, the process, and state. The following paragraph gives
an overview of how acoustic signals are used in interventional applications in the current
state-of-the-art and research literature.

Especially in orthopedic interventions, where surgical interactions with hard tissues (bone and
cartilage) such as hammering, drilling, sawing, reaming, chiseling, etc. cause characteristic
sounds, medical acoustic sensing systems have been researched for decades. For example in
surgical drilling, which is one of the most frequent tasks in orthopedic surgery and is part of
many orthopedic interventions, a study by Praamsma et al. showed, that surgeons implicitly
utilize the sounds generated by surgcial drilling to guide the drilling motion [86]. Therefore,
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the automated analysis of drilling sounds is a promising research direction which has been
extensively covered in the literature. Boesnach et al. developed a method to analyze drill
sounds in spine surgery by applying FCNNs, Support Vector Machines (SVM) and Hidden
Markov Models (HMM) to spectral density estimates [9]. Shine et al. recorded acoustic signals
in a cadaveric experiment during otologic drill and analyzed the spectral energy of different
frequency bands. They could show that the acoustic signature of drill burr-bone interface
differs between thick calvarial bone and thin tegmen bone [105]. Furthermore, systems have
been developed that leverage drill sounds to perform automated drill state detection, i.e.
performing tissue differentiation based on recorded drilling noise. Sun et al. [109] proposed
a system based on power spectral density estimates to perform drill state detection in an
experiment with porcine specimens. A method for the differentiation between cortical and
cancellous bone drilling samples in an experiment with bovine specimens which is based on
Short-term Fourier Transform (STFT) features combined with SVM, HMM and Random Forest
(RF) classifiers was proposed by Zakeri et al. [122, 123]. Guan et al. proposed a system to
control the drilling of pedicle screw based on handcrafted features computed from acoustic
singals and a FCNN [34]. A system for the detection of drill breakthrough in a rat skull was
developed by Pohl et al. [85] who utilized spectral density features and a SVM classifier. Torun
et al. developed a method based on four frequency-based handcrafted features and a FCNN
for the task of drill breakthrough detection in an experimental setup [112].

Also for surgical milling, in which the bone is cut with a rotary tool which is, in contrast to
drilling, moved orthogonal to the rotation axis, process monitoring using acoustic signals
has been covered in the literature. Dai et al. developed a method based on lifting wavelet
packet transform to compute wavelet energy which serves as input for a SVM classifier to
differentiate between cancellous and cortical bone [18], as well as between vertebra, spinal
cord and muscle tissue [20]. A similar method was developed by Ying et al., who developed a
system using acoustic signals to distinguish between cortical bone, cancellous bone and idle
state in lumbar laminectomy [121].

Another application for acoustic sensing technology is the monitoring of implant insertion
in orthopedic surgery. Morohashi et al. identified correlations of hammer blow sounds to
complications during the insertion of femoral stem implants in THA [71]. The research
direction was continued by Oberst et al., who performed a nonlinear timeseries analysis
with the impulse response of air-borne hammer blow sounds [76] and Tijou et al. [111]
and Dubory et al. [23], who developed a sensorized hammer and found correlations to
implant displacement in time-domain and peak-based features computed from the captured
structure-borne vibrations. Goossens et al. computed a set of handcrafted features based
on the energy distribution in the frequency spectrum of hammer blow sounds captured
with an air-borne microphone and validated the approach in a real surgery setting [32].
They furthermore observed a resonance frequency shift during the insertion process of the
acetabular hip implant component in an in-vitro experiment [31]. Wei et al. found certain
peak frequencies to statistically increase with the insertion depth of the femoral component of
THA implants in a lab experiment using a custom bone phantom [117].

For the application of interventions involving needles, promising results have been obtained
using acoustic signal analysis. A prototype for the identification of tissue penetration based
on time-varying auto-regressive (TV-AR) was proposed by Illanes et al. [38]. They showed
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that the structure-borne audio captured by a sensor placed on the distal end of the needle
could provide complementary information for intraoperative guidance with different setups
and interventional devices [39]. Their research group furthermore proposed the usage of a
similar system for Veress needle insertion in minimally invasive surgery (MIS) [96] and for
the differentiation of varying degrees of cartilage degeneration in arthroscopy by palpating
the cartilage surface with a Veress needle [108].

While in conventional surgery physicians rely on visual, auditory, and haptic cues for informa-
tion retrieval, the haptic sensation is strongly reduced in robotic surgery which, on the other
hand, offers many advantages such as tremor compensation, micro-precision through gear
reduction, or teleoperation [79]. Chen et al. proposed a prototype to analyze structure-borne
vibrations caused by the interaction of a robotic grasper with different biological texture
samples. In their experiments, they could show a correlation between spectral information
and grasped textures. [14]

Soft tissue differentiation is challenging because structures appear visually similar and critical
structures are not clearly distinguishable. For the application in burn surgery for necrotic
tissue removal, a system for tissue differentiation was proposed by Nahen et al., who used
acoustic signals generated by the application of an Er:YAG laser to vital and necrotic tissues
[72]. Alperovich et al. developed a system for the differentiation of acoustic signals generated
by ultraviolet laser ablation in vascular procedures using Mel-frequency cepstral coefficients
and SVM and FCNN classifiers [5]. The limited visual access of a laparoscope makes the tissue
differentiation in minimally invasive surgery even more difficult. To tackle this problem, the
author developed a system in his Master Thesis to differentiate between muscle, fat, fascia
and liver tissue by analyzing cauterization sounds from within the surgical operation area, a
work which was published as a journal paper during the course of the PhD studies [78]. This
first proof-of-concept study serves as the basis for the works discussed in the course of this
thesis.

In addition to the above mentioned interventional use-cases and applications of acoustic
signals for medical application, acoustic signals have also been utilized as a complementary
source of information for the automated analysis of surgical workflow [116].

1.3.3 The Rise of Deep Learning for Audio Signal Processing

The year 2012, when a deep learning-based method by Krizhevsky et al. called AlexNet
[48] won the prestigious ImageNet competition [92] and outperformed the competition by a
top-5 error margin of 10.8%, is commonly considered as the breakthrough of deep learning.
This success was made possible by novel neural network architectures with large numbers
of parameters trained on huge data sets utilizing powerful dedicated parallel computing
hardware. Since then, deep learning methods have been applied to a plethora of problems in
various research fields. Popular architectural designs for deep learning models are feedforward
neural networks [70], Convolutional Neural Networks (CNNs) [53], recurrent neural networks
(RNNs) such as long short-term memory (LSTM) [37] or gated recurrent units (GRU) [16],
and more recently attention- [114] and graph-based [10] architectures. The training of deep
neural networks is based on gradient computation using the backpropagation algorithm [91]
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Supervised Learning Unsupervised
Learning

Reinforcement
Learning

Definition The model learns to
map inputs to outputs
using input-output
pairs of data.

The models learns pat-
terns from unmapped
data.

An agent learns to
maximize a reward by
taking actions in an en-
vironment.

Problems Classifcation,
Regression

Association,
Clustering,
Synthetic Data Gener-
ation

Reward-based
problems

Examples Image Classification,
Object Detection,
Pose Estimation

Anomaly Detection,
Data generation (Au-
toencoders, GANs),
Recommendation
Systems

Autonomous Driving,
Recommendation Sys-
tems, Games

Tab. 1.1. The three types of machine learning including definitions, typical problems and example applications.

and parameter optimization such as the infamous Gradient Descent algorithm, which was first
proposed by the french mathematician Augustin-Louis Cauchy in 1847. Many different variants
of deep neural networks have been proposed in the literature which can be categorized into
three types of machine learning, Supervised Learning, Unsupervised Learning, and Reinforcement
Learning, which are illustrated in Table 1.1. This thesis covers supervised learning methods for
the design of automated medical acoustic decision support systems, as well as unsupervised
learning aspects of synthetic data generation for data augmentation. Reinforcement learning,
which can be utilized in the medical domain for example for surgery planning [3], is included
in table 1.1 for completeness, but not discussed in the scope of the present work. Until now,
deep learning systems have been continuously improved and specialized architectures have
been developed to tackle complex problems. State-of-the-art models achieve astonishing
results in image classification with Vision Transformers [46], novel view synthesis for complex
scenes using Neural Radience Fields (NeRF) [68], synthetic image generation with DALL-E-2
[89] or Imagen [93], text generation with GPT-3 [11], or protein folding with AlphaFold
[43].

Besides advances in the fields such as Computer Vision, Natural Language Processing, Au-
tonomous Driving, or Recommender Systems, deep learning has also revolutionized the field
of acoustics and audio signal processing [87]. For example in the field of human speech
recognition, the established methods, which were usually based on classical Machine Learning
techniques such as Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs), or
simple fully connected neural networks (FCNNs) were outperformed by large-scale deep
learning models [74]. A similar development can be observed in the fields of Acoustic Scene
Classification [1] and Environmental Sound Event Recognition [12]. In comparison to classical
approaches such as GMMs, HMMs, or FCNNs, deep learning-based methods do not rely on
the computation of selected handcrafted features, but are able to learn the feature extraction
implicitly by using raw waveforms or audio spectrograms as input [87]. In addition, it is not
only possible to use recorded acoustic signals as input for learning-based systems, but also use
the power of deep learning to synthesize computer-generated audio for realistic text-to-speech
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(TTS) conversion like WaveNet [77] or for music synthesis [40]. Acoustic emission monitoring
based on neural networks is also employed for failure prediction of industrial equipment by
analyzing the mechanical noise and vibrations of engines, bearings, valves [88] or drill bits
[115]. Furthermore, deep-learning based acoustic sensing has been employed for first medical
applications, such as COVID-19 through cough sound detection [51], anomaly detection in
heart [120] and lung [60] sounds, or voice pathology classification [69].

1.4 Thesis Objective and Contributions

As discussed in section 1.2.2, there is an unmet clinical need to complement and replace
established processes and systems for clinical decision making with multimodal sensing data.
To this end, as described in sections 1.3.1 and 1.3.2, acoustic signals provide an easy-to-
integrate, non-invasive, radiation-free, and low-cost sensing modality and have already been
successfully employed for a variety of diagnostic medical applications, e.g. in chest medicine,
orthopedic implant assessment, and the monitoring of cartilage degeneration, as well as
for patient monitoring and surveillance. The combination of high-quality signal acquisition,
advanced signal processing, and state-of-the-art deep learning-based analysis methods, enables
the utilization of air- and structure-borne acoustic signals in the medical context to design
automated decision making systems and develop surgical and diagnostic guidance and decision
support solutions. Therefore the objective of this dissertation is to find novel ways for using
acoustic signals to improve clinical decision making, develop clinically feasible hardware
setups that allow the translation to clinical applications, and design novel state-of-the-art
deep learning-based methods and reliable automated acoustic sensing solutions for orthopedic
applications. The present thesis explores the field of deep learning-based acoustic sensing for
medical applications and presents novel and specialized methods for the automated analysis
of acoustic signals for multiple medical applications in interventional and diagnostic scenarios
which have been developed in the course of the author’s PhD studies.

The conceptualization of this project started with the Master Thesis of the author which
was conducted at the research group Minimally Invasive Interdisciplinary Therapeutical
Intervention (MITI) at the university hospital "Rechts der Isar" in Munich based on discussions
with Navid Navab from the Topological Media Lab at Concordia University Montreal, Canada.
The work was published and received the best paper award at the IPCAI conference. The
abstract of the published paper is included in the appendix of this work in section A. Within this
work, a system for the differentiation of different types of soft tissue by analyzing coagulation
sounds in minimally invasive surgery was developed [78]. In the context of the present thesis,
which was conducted in cooperation with Balgrist University Hospital, University of Zurich,
the concept of acoustic sensing in medical applications was advanced, extended, and improved
towards unmet clinical needs in orthopedic surgery and diagnostics. Hereby, a goal was to
develop signal processing pipelines and state-of-the-art deep learning methods customized
on specialized use cases in clinical orthopedics and incorporate the individual challenges in
the medical domain such as task-specific algorithm design and the handling of small data set
sizes and imbalanced data sets. The system development and data collection was performed
in realistic environments, including extensive human cadaver experiments, biomechanical
testing setups, and data acquisition in the real-world operating room. In addition, practical
concepts for capturing high-quality audio signals in diagnostic and surgical environments
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have been developed, including custom, modular structure-borne microphones to capture
vibroacoustic signals directly from the patient anatomy or surgical tools, as well as air-borne
recording setups to capture room audio or acoustic signals from the area of operation during
surgery.

Within the course of the present thesis, contributions for multiple acoustic sensing applica-
tions in the orthopedic domain have been achieved and published in high-quality scientific
journals and conferences. The thesis presents multiple solutions for clinical applications
where established computer aided surgery and diagnosis systems such as surgical navigation
systems or medical imaging reach their limits. In the first presented application (section
3.2.1), the purpose of the system is to provide surgical error prevention for hand-held drilling
which has to be realized with as minimal latency as possible to minimize the risk of drill
breakthrough and therefore potential harm to soft tissue. The second presented paper (section
3.2.2) proposes a novel sensing paradigm to assess the hold of pedicle screws2, a clinical
challenge where established diagnosis methods such as medical imaging have been shown to
fail in a substantial amount of cases. The third work, described in section 3.3.1 introduces
a novel system based on spatio-temporal learning which analyzes structure-borne hammer
blow sounds captured with a contact microphone from the inserter tool during THA surgery
to assess the press-fit during femoral stem insertion. The system enables the identification
of the optimal insertion endpoint of the femoral stem component, a measure which is not
obtainable neither with medical imaging, nor with conventional surgical navigation systems.
Furthermore, a novel data augmentation strategy based on a generative model for clinical
audio data sets is presented in section 3.5.1 which is able to improve the performance of
medical acoustic sensing systems and tackle the problem of limited data set sizes in the
medical domain. The method was subsequently improved and extended which is described in
section 3.5.2.

2This work did not undergo peer-review and is not relevant for the grading of this dissertation.
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2Audio Signal Processing

2.1 Acoustic Signals„Acoustics is defined as the science that deals with the
production, control, transmission, reception, and
effects of sound.

— Marriam-Webster Dictionary

Acoustics1 is a vast research field and covers many aspects related to acoustic signals, from
music theory to architectural acoustics, from infrasound which is used in sonar systems to
ultrasound used for medical imaging. The wheel of acoustics, as illustrated in Figure 2.1 gives
an overview of the scope of acoustics, as well as the fields involved in the science of acoustics
[55]. Hereby, the inner ring represents the underlying physical principles of sound creation
and transmission. The middle ring illustrates the subdivisions of acoustics in terms of scientific
categories. The outmost ring covers the technical and artistic fields that investigate and
utilize acoustic signals. Acoustic Sensing for Medical applications covers aspects from Sonic
Engineering and Vibration Analysis at the intersection of Electrical Engineering, Mechanical
Engineering, and Computer Science to Bioacoustics and Medical Sciences.

Sound is a wave phenomenon, i.e. an osciallatory disturbance moving away from a source
without transporting a significant amount of matter over a propagated distance through
compressible media [83]. An acoustic wave can be received by the human ear or another form
of detecting device such as a microphone or other vibration measurement device. The most
important parameters to describe an acoustic wave are amplitude, the highest derivation of
a wave from its central position, and frequency, the rate of complete oscillation cycles per
second. Frequency f can be derived from the wavelength of a signal and is defined as:

f = c

λ
(2.1)

where λ is the wavelength and c is the speed of sound, which is dependent on the medium,
with a value of cair = 343 m

s in air and cwater = 1480 m
s in water. The unit of frequency is

Hertz [Hz], where 1 Hz = 1 m s−1. An increasing density of a medium results in more closely
packed molecules and therefore an increased speed of sound propagation. Figure 2.2 a)
illustrates the relationship between frequency and wavelength of a sound wave. While an
acoustic signal with only one frequency signal component like shown in Figure 2.2 a) can be
constructed artificially, e.g. using a synthesizer, real world audio is usually characterized by

1Definition retrieved from https://www.merriam-webster.com/dictionary/acoustics on September 23rd, 2022
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Fig. 2.1. The wheel of acoustics as defined by R. B. Lindsay, Adapted from [55].

the additive overlay of many different acoustic waves with different frequencies and result in
a waveform as shown in Figure 2.2 b), an audio sample taken from the dataset created within
the contribution described in section 3.2.1.

The audible range of the human hearing, which is also the range that most common micro-
phones capture, is 20 Hz - 20 kHz. In the context of the present thesis, this audible range of
acoustic waves is used to design acoustic sensing systems for medical interventions. The audi-
ble range of acoustic waves contains rich information and besides the benefit of interpretability
by human listeners, working with the audible range of acoustic signals also has the advantage
of being able to use professional high-quality microphones for capturing. Hereby, one should
differentiate between two types of sound propagation types, air-borne and structure-borne
sound propagation.

While the mechanism of sound propagation is identical, the capturing of air-and structure
borne acoustic signals is associated with different challenges. Air-borne acoustic signals are
propagated through the air and can be captured with a variety of different microphone tech-
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Amplitude

Wavelength

a) b)

Fig. 2.2. a) A simple sine wave which illustrates the properties amplitude (highest derivation from central position)
and wavelength (one full sine cycle). b) A real world waveform is composed of many different frequency
components. The waveform is taken from the dataset created within the contribution presented in
section 3.2.1 containing structure-borne drilling sound and a breakthrough event.

nologies, such as dynamic microphones (which use the same principle as speakers), condenser,
or ribbon microphones. These types of microphones usually consist of a thin membrane which
is excited by acoustic waves propagating through the air. This vibration of the membrane is
then transformed to changes in electrical voltage. Air-borne microphones typically have differ-
ent frequency responses and directionality patters. Hereby, the directionality can range from
spherical (captures sound in all directions) to cardioid (most sensitive to on-axis sounds) and
directed (captures only sound in one direction and dampens sound from other directions).

Structure-borne microphones capture vibrations from structures and typically do not capture
air-borne sounds. They use Micro-Electro-Mechanical Systems (MEMS) components such
as accelerometers, or piezoelectric elements which transform structure-borne vibrations to
changes in electrical voltage. In the context of the presented thesis, a custom highly sensitive
modular contact microphone setup was developed which was used in the majority of research
projects and is described in the contribution in section 3.2.1.

2.2 Processing Acoustic Signals

2.2.1 Audio Capturing and Preprocessing

While analog audio is still used, e.g. in music production, to capture the exact continuous
signal with theoretically unlimited bandwidth, the prominent way of storing, streaming, and
processing acoustic signals nowadays is digital audio. In order to digitize an analog voltage
signal coming from a source, e.g. a contact microphone, it has to be amplified to a range
required by the following Analog Digital Converter (ADC) stage. The input voltage range for
ADCs is usually 0 V to 10 V or −5 V to 5 V. The standard method for digitizing audio signals
is Pulse-Code Modulation (PCM) which consists of three stages, Sampling, Quantization and
Encoding. In the Sampling stage, an electronic switch samples the analog signal in defined
intervals, the so-called sampling frequency. The sampling frequency must be at least two
times larger than the highest measured frequency to be able to recover the original analog
signals from the discrete digital values, a correlation defined by the Nyquist-Shannon sampling
theorem [102] as described in equation 2.2. Therefore, a common sampling frequency (e.g.
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used for Compact Discs) for digital audio is 44 100 Hz, theoretically capturing the audible
range up to 22 050 Hz.

fsample ≥ 2 ∗ fsignal (2.2)

The following Quantization stage assigns a digital value corresponding to the instantaneous
value of the analog signal at each discrete sampling interval corresponding to the bit depth of
the digital signal, e.g. 16, 24, or 32 bit. Finally, the Encoding stage converts the quantized
sample to the binary PCM word code, the final digital uncompressed format of digital audio.

2.2.2 Audio Features

Feature extraction is the process of computing numerical features that capture significant
information about the data while reducing the complexity. Commonly, a sliding window is
applied to the original signal to slice it into smaller segments for the computation of features
per individual time step. Hereby, often overlapping windows are used as the basis feature
extraction to increase the amount of training data for learning-based algorithms.

For the analysis of acoustic signals (and signal processing in general), the frequency domain is
a powerful representation because it contains the frequency components and their amplitudes
present in the signal. Figure 2.3 visualizes a signal which is composed of two sine waves and
the respective frequency spectrum which shows the two frequencies of the signal components
as individual peaks. The transformation from signal into the spectral domain can be performed
using the Fourier Transform. The discrete version of the Fourier Transform, the Discrete Fourier
Transform (DFT) is described by the following formula:

X(k) =
N−1∑
n=0

x(n)e−2πikn/N , k = 0, ..., N − 1 (2.3)

where N is the number of samples per signal segment, x(n) is a data point in the original
signal, and X(k) are the resulting Fourier coefficients. The DFT is commonly computed
using Fast Fourier Transform (FFT) and its most prominent implementation, the Cooley-Tukey
algorithm [17].

The following paragraphs present a small selection of common time and frequency domain
audio features for illustration purposes and without claim of completeness. Examples for
common audio features are Root Mean Square (RMS) Energy, a measure for the loudness of a
specific audio segment which is calculated using the following formula:

RMSt =

√√√√ 1
N

N−1∑
n=0

x(n)2 (2.4)
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Fig. 2.3. The relationship between signal and frequency domain. The signal in the time domain is composed of
two frequency components which are visible in the frequency spectrum as two peaks. The transformation
from time to frequency domain is computed using the Fast Fourier Transform.

Another useful time domain feature is the Zero Crossing Rate of a signal segment which is
computed using the equation 2.5, where sgn is the sign function. Zero Crossing Rate has been
applied for speech and music recognition algorithms, especially for percussive sounds.

ZCRt = 1
2

N−1∑
n=0

|sgn(x(n)) − sgn(x(n + 1))| (2.5)

A common frequency domain feature is the Spectral Centroid which represents the center of
mass of a frequency spectrum. It is associated to the brightness of a given sound segment
and computed as the weighted mean of the signal’s frequency components x(k) using their
magnitudes f(k) as weights. K corresponds to the number of frequency bins in the spectrum.

SCf =
∑K−1

k=0 f(k)x(k)∑K−1
k=0 x(k)

(2.6)

Perceptual studies indicated that humans perceive the pitch of an acoustic signal on a non-
linear scale. Therefore, in 1937, Stevens et al. [107] proposed the Mel scale, a nonlinear
mapping from frequency components which resembles the human perception of acoustic
signals and can be computed using equation 2.7. For automated speech and music recognition,
a widely used feature which applies the mel scale are Mel Frequency Cepstral Coefficients
(MFCCs) which were introduced by Davis et al. in 1980 [21].

fmel = 2595 log10(1 + f

700) (2.7)

MFCCs provide a compact representation of the frequency spectrum and are computed using a
series of transformations applied to the power frequency spectrum derived from a time-domain
signal. In the first step of the MFCC computation, a sliding window is applied to the signal

2.2 Processing Acoustic Signals 21



Amplitude STFT STFT Power (linear) STFT Power (log) Mel Power

Fig. 2.4. Spectrogram visualization of an audio sample taken from the dataset of the work presented in section
3.2.2, all spectrograms are computed from the same source waveform. The visualizations illustrate, from
left to right, an amplitude spectrogram with linear frequency scaling as computed using equation 2.8,
a power STFT spectrogram as described in equation 2.9 and linear frequency scaling, the same power
STFT spectrogram with a logarithmic frequency scaling, and rightmost, a Mel power spectrogram.

to slice it into (overlapping) windows and every window is Fourier-transformed. The Mel
filterbank, a number of triangular filters spaced evenly on the Mel scale, is applied to the
absolute power spectrum of a signal and the energy in each filter is summed up. In the last
step, the Direct Cosine Transform (DCT) is computed from the summed up frequency bins
which results in the desired cepstrum.

2.2.3 Spectrograms

Spectrograms are two-dimensional matrices, containing time on the x-axis and frequency
components (bins) on the y-axis. Spectrograms as a representation for digital audio have the
advantage of being a compact, grid-like data format while capturing the relevant characteristics
from the frequency and time domain of the signal for further processing. However, it needs to
be stated that the transformation from raw audio to a spectrogram is a lossy process and the
reconstruction of waveforms from spectrograms is not trivial. The development of algorithms
for performing this reconstruction is an active field of research which produced a variety of
different methods such as the Griffin-Lim algorithm [33] or more recently also learning-based
methods [110] that achieve superior reconstruction results.

The basic form of the spectrogram is the Short Time Fourier Transform (STFT) spectrogram.
To compute the STFT, the data to be transformed is split into overlapping frames x[n], each
frame is Fourier transformed and the result is stored in a matrix. The formula to compute the
STFT from a time-domain signal is defined as:

X(m, k) =
N−1∑
n=0

x(n + mH)w(n)e−2πikn/N (2.8)

where X is a matrix containing the kth Fourier coefficient for the mth time frame as row
and column values, respectively. The term w(n) corresponds to a windowing function which
smooths the start and end of the signal segment to avoid spectral leakage during FFT computa-
tion [59]. The variable H corresponds to the hop length used for STFT computation. As the
amplitude of acoustic signals is commonly measured in decibels (dB), the STFT spectrum can
be converted to a decibel scale using equation 2.9. If most of the information of the signal is
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contained in the low frequency range, a logarithmic scale can be applied to the frequency axis
of the spectrogram.

XdB(m, k) = 10 log10(X(m, k)2) (2.9)

To transform a STFT spectrogram into a Mel spectrogram, the resulting spectrum of the
Fourier transformation is filtered with triangular filters spaced evenly on the Mel scale as
described in equation 2.7. The result of the different methods for spectrogram computation
are illustrated and visualized in figure 2.4. Mel spectrograms have become the dominant
feature representation for the design of audio deep learning systems and provide a compact
data representation which achieves state-of-the-art results while having lower computational
and data requirements compared to raw waveform input [87].

Furthermore, there are other spectrogram variants, such as Constant-Q Spectrograms which
use an alternative transform, the Variable-Q (VQT) and Constant-Q Transform (CQT), to
compute the frequency spectrum from a time-domain signal or Chromagrams which provide
harmonic information which has proven to be useful for music related problems.

Data normalization is commonly used to normalize the numeric range of all data points in a
dataset to improve the convergence of learning-based algorithms. Hereby, a common practice
is to normalize all data points in a dataset to have a mean value of zero and a standard
deviation of one, using the following formula where µ is the mean and σ is the standard
deviation computed over the entire dataset:

xnorm = x − µ

σ
(2.10)
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3Machine Learning-based Acoustic
Sensing

3.1 Classical Approaches

Traditional machine learning methods for acoustic signal processing have been around for
decades and are usually characterized by first extracting a number of features from the signal
to build a feature vector which serves as the input to a learnable model. For the application
to acoustic signals, the feature vector is usually composed of different time and frequency
domain features of the source signal as described in section 2.2.1. The contained features are
engineered by the expert designing the system in order to capture important characteristics
and information about the source samples.

In the literature, a wide variety of classical machine learning methods using classical audio
features as described in section 2.2.2 have been applied to classify and cluster acoustic signals.
Examples for classical machine learning methods that have been applied to features computed
from audio signals include Support Vector Machines (SVMs) [22], Random Forests (RF) [94],
K-Nearest Neighbor (KNN) [58], Guassian Mixture Models (GMMs) [41], or Hidden Markov
Models (HMMs) [57]. Also in the medical domain, these methods have been applied to various
acoustic signal-based applications, such as diagnostic applications, e.g. for the assessment of
cartilage degeneration [7], and the analysis of interventional sounds of surgical drilling [123],
milling [20], or needle insertion [38], as described in section 1.3.1 and 1.3.2.

The advances in computational resources and deep learning algorithms enabled the automatic
feature extraction from more complex data representations than the reduced dimensionality
of engineered and precomputed feature vectors, e.g. using Convolutional Neural Networks,
and have outperformed classical machine learning techniques, which will be discussed in the
following sections.

3.2 Spectrogram-based Audio Processing

For the design of learning-based acoustic sensing systems, automated feature extraction from
digital audio signals using deep neural networks has outperformed classical handcrafted
features in a variety of audio-related tasks [87]. Hereby spectrogram representations have
advantages over feature extraction from raw waveforms in terms of computational resources
and data requirements, as the filters are predetermined and do not additionally have to be
implicitly learned by the model during the training process. Hereby, the mel spectrogram,
which resembles the way humans perceive sound, has been shown to be a particularly
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beneficial representation for deep learning-based audio processing tasks. While spectrogram-
based deep learning methods have been applied to acoustic signal processing outside of the
medical domain for various applications [87], these methods have only been scarcely used for
medical applications so far.

In the medical domain, a frame-based acoustic sensing system has the advantages of capturing
temporal aspects of the acoustic signal which can be controlled through the window size of
the computed spectrogram, while being fast and responsive. In the following sections, we
present two scientific contributions, the first work proposes a fast and reliable system for the
detection of breakthrough events in orthopedic drilling for surgical error prevention. The
second work presents a novel paradigm and methodology to detect loose pedicle screws as a
complication after spinal fusion surgery based on vibroacoustic excitation and sensing.

3.2.1 Contribution (Interventional): Real-time acoustic sensing
and artificial intelligence for error prevention in
orthopedic surgery (Scientific Reports 2021)

Summary: The work illustrates the potential of using structure-borne acoustic signals for
interventional surgical error prevention. In surgical interventions, human errors are inevitable
and can result in severe patient harm and trauma. Previous studies have shown that acoustic
signals are used by medical experts implicitly to guide them through the drilling process and
have therefore great potential for the design of automated interventional guidance systems.
We designed a system for the automated detection of drill breakthrough events, one of the
most common tasks in orthopedic surgery, based on a custom modular contact microphone
capturing high quality drilling vibration signals, placed directly on the patient’s skin and
a breakthrough detection pipeline based on mel spectrograms and a modified ResNet-18
classifier. Because the drill breakthrough events are short and occur scarcely compared to
cortical bone drilling, the generated dataset is highly imbalanced which is explicitly handled
in the training process utilizing the Focal Loss function. We compare the execution speed
of different configurations of the pipeline which shows promising performance while being
multiple times faster than the human reaction time. The method is validated in a human
cadaveric experiment with six cadaveric hip specimens and evaluated using a cross validation
scheme. The work advances the state-of-the-art in drill breakthrough detection by proposing
the first deep learning-based detection pipeline which outperforms the results of previous
studies. We evaluated the system in a realistic cadaveric setup in comparison to previous work
which utilized artificial bone models or animal bone specimens for validation. Hence, the paper
represents an important step towards the translation of acoustic-based drill breakthrough
detection into clinical applications.

Contributions: The author of this thesis was responsible for formulating the problem and
approach with medical consultations from Steven Maurer, Armando Hoch, Patrick Zingg, and
Mazda Farshad, as well as for capturing the data in the experimental setup, designing the
data processing, detection, and evaluation pipeline and writing the manuscript. All human
cadaveric experiments were conceptualized and performed by the author, Steven Maurer, and
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Armando Hoch. Nassir Navab and Philipp Fürnstahl contributed in the form of discussions
and feedback throughout the whole project and for proofreading of the manuscript.
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Real‑time acoustic sensing 
and artificial intelligence for error 
prevention in orthopedic surgery
Matthias Seibold1,2*, Steven Maurer3, Armando Hoch3, Patrick Zingg3, Mazda Farshad3, 
Nassir Navab1 & Philipp Fürnstahl2,3

In this work, we developed and validated a computer method capable of robustly detecting drill 
breakthrough events and show the potential of deep learning‑based acoustic sensing for surgical error 
prevention. Bone drilling is an essential part of orthopedic surgery and has a high risk of injuring vital 
structures when over‑drilling into adjacent soft tissue. We acquired a dataset consisting of structure‑
borne audio recordings of drill breakthrough sequences with custom piezo contact microphones in an 
experimental setup using six human cadaveric hip specimens. In the following step, we developed a 
deep learning‑based method for the automated detection of drill breakthrough events in a fast and 
accurate fashion. We evaluated the proposed network regarding breakthrough detection sensitivity 
and latency. The best performing variant yields a sensitivity of 93.64± 2.42 % for drill breakthrough 
detection in a total execution time of 139.29ms . The validation and performance evaluation of 
our solution demonstrates promising results for surgical error prevention by automated acoustic‑
based drill breakthrough detection in a realistic experiment while being multiple times faster than 
a surgeon’s reaction time. Furthermore, our proposed method represents an important step for the 
translation of acoustic‑based breakthrough detection towards surgical use.

Surgical interventions are conducted by trained and experienced experts, however, human errors are inevitable. 
In the operating room, surgical errors can lead to significant and severe consequences for the patient, in the 
worst case to  death1. Prior studies showed that surgical factors account for more than 70% of intraoperative 
 complications2,3. For example in orthopedic surgery, iatrogenic femoral  arterial4 and  nerve5 injury are frequently 
happening complications caused by surgical errors. Detecting and preventing these incidents is crucial to improve 
the patient safety and the outcome of  surgery6.

There is a variety of causes for surgical errors and resulting iatrogenic injuries. They range from anatomical 
differences between patients and proximity of risk  structures7 or lack of surgical access and overview, for example 
in obese  patients8, to pathologically altered tissue substance, e.g. in patients with  osteoporosis9. Furthermore, 
the condition of the surgeon and the surgical staff plays an important role on the performance and therefore 
the outcome of the surgery, as lack of concentration and technical incapacity can lead to an increased risk of 
iatrogenic  injury10.

To assess the patient-specific risk of treatment complications in orthopedic surgery, commonly a pre-operative 
plan based on the patient anatomy and medical imaging data, such as radiographs, computed tomography (CT) 
or magnetic resonance imaging (MRI)11, is made. Furthermore, specialized imaging modalities, for example 
 angiography7 or  ultrasound12,13 are utilized to visualize anatomical risk structures such as nerves and arteries. 
Conventional navigation systems provide a way to transition pre-operative information into surgery by displaying 
it in relation to intraoperative information on an external  monitor14 or even actively guide the surgeon through 
robotic  assistance15, but prompt a need for additional optical tracking systems and time-consuming registration 
procedures which can introduce additional errors by registration  failures16. Learning-based systems have great 
potential to support the surgeon during the intervention and enable augmented decision making based on real-
time sensor data and additional learned  knowledge17–19. They can be employed for active error prevention by 
detecting surgical states and important or adverse events during surgery in an automated fashion.

A relevant target task for an error prevention system in surgery is drill breakthrough detection. Drill break-
through is defined by the drill perforating the bone and over-drilling beyond the far cortex into the adjacent soft 
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tissue. With the rise of machine learning methods, learning-based techniques also have been applied for the task 
of automated drill state and breakthrough detection using real-time sensor data and achieved promising results. 
Bone drilling is an essential part of orthopedic surgery and is conducted in about 95% of the interventions, for 
example to fixate bones with plates, external fixators and traction  equipment20. One of the most common ways of 
drilling in orthopedic procedures is to use free-hand power drills to manually pre-drill holes for bone screws. A 
 study21 investigated free-hand drilling with a total number of 153 participating surgeons and found the average 
penetration of the soft tissue beyond the far cortex to be 6.31 mm which implies a great risk, especially when 
nerves, vessels or other vital structures are situated in close proximity to the target anatomy. The most important 
factor to stop the hand-operated drill as soon as possible after a breakthrough is the human reaction time. Even 
though trained surgeons have comparatively fast reaction times, their mean response time was measured to be 
in the range of 313 to 358ms which additionally decreases with advancing  age22. A low-latency and robust detec-
tion system could enable a fast and automated stopping of the drill as soon as a breakthrough event is detected.

Drilling into a bone creates distinct vibrations resulting in the generation of acoustic signals which can be 
exploited for drill state and breakthrough analysis and have benefits over force/torque or current measurement 
approaches, such as easy integration and general applicability. Praamsma et al. showed in a study that experienced 
surgeons benefit from these audible sounds by utilizing them to support the drilling  process23. In this work, we 
used a custom piezo contact microphone to capture drill vibration signals in an experimental setup and propose 
a fast and robust deep-learning based drill breakthrough event detection method. The key contributions of our 
work are:

• We developed a custom high-sensitive piezo-based contact microphone prototype and impedance matching
/ pre-amplification stage for capturing structure-borne drill vibration signals non-invasively from the skin
surface.

• We propose a low-latency and robust deep learning-based drill breakthrough detection method based on a
modified ResNet-18 architecture, handling imbalanced data through the application of the Focal Loss func-
tion.

• We trained and validated our method on a dataset captured in an experimental setup using 6 unprepared
human cadaveric hips including soft tissue.

• The proposed method outperforms the results of prior studies (using artificial bone models or prepared
animal bone specimens) in a realistic cadaveric experiment.

State‑of‑the‑art in acoustic‑based drill breakthrough and drill state detection. Acoustic signals 
have been analyzed in prior work in order to detect both, drill breakthrough (penetration from bone into soft 
tissue) and drill state (type of tissue being drilled), using synthetic and animal bone models. The following para-
graph gives an overview of the state-of-the-art in acoustic-based drill breakthrough and drill state detection and 
the transition from signal processing approaches to learning-based solutions in recent years.

One possible approach to implement automated drill state and breakthrough detection is based on force and 
torque measurements. Force/torque sensors offer reliable and accurate measurements of the force between drill 
bit and tissue and are therefore well suited for drill state and breakthrough  detection24–26. Recently, Torun et al. 
proposed a closed-loop method based on force sensor data to detect breakthrough events in an experimental 
setup operating on a sheep  femur27. As explained in their follow-up  work28, this approach has disadvantages 
for the application in real surgery, because they require physical modifications to the surgical device, in form of 
sensors attached to the drill which are costly and bulky. Another approach has been proposed to detect break-
through events in electric drills by measuring changes in the current flow through the  motor29, which is however 
not suited for all types of surgical drills, such as pneumatic drills.

Because bone tissue consists of substructures with different density (cortical bone, cancellous bone and 
bone marrow), the friction between drill bit and tissue results in force and torque  differences30 and therefore in 
distinct vibrations for different tissue types during bone drilling. Drill breakthrough events result in an abrupt 
vibration change when perforating from high density cortical bone into soft tissue surrounding the bone. These 
distinct vibrations can be measured as acoustic signals. Therefore, acoustic-based drill state and breakthrough 
detection have been proposed in the literature as a low-cost and easy-to-integrate alternative to force/torque-
based solutions.

Acoustic-based drill state detection has been introduced to classify different types of bone tissue during drill-
ing by analyzing audio signals recorded from the area of operation. The first approaches achieved this task using 
signal processing-based techniques. A power spectral density based classification system was introduced by Sun 
et al. and evaluated in an experimental setup with five porcine scapulae using an air-borne room  microphone31. 
Yu et al. proposed a sound-based solution for distinguishing between cortical and cancellous bone during surgi-
cal milling utilizing a wavelet package transform energy based state  identification32.

Furthermore, learning-based approaches have been proposed to classify drill vibration signals based on prior 
knowledge. Boesnach et al. developed a method to analyze drill sounds in spine surgery by applying neural 
networks, support vector machines (SVM) and Hidden Markov Models (HMM)33 to spectral density estimates. 
Zakeri et al. developed an experimental setup and learning-based classification method to distinguish between 
cortical and cancellous bone using six bovine tibiae by analyzing air-borne acoustic signals captured with a 
 microphone34. Their method is based on short-time Fourier transform (STFT) features in combination with a 
SVM classifier which achieved accuracies of up to 83%. In their follow-up research, they investigated different 
logistic regression, SVM, random forest (RF) and HMM classifiers and compared time and frequency features in 
regard to classification performance. The highest average accuracy of 84.3% could be achieved by using wavelet 
packet transform  features35. For the application in pedicle screw placement, a state recognition approach with 
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handcrafted features and a neural network classifier was proposed by Guan et al.36. They showed that the detection 
of different bone layers using acoustic emission signals is more accurate and precise compared to force/torque 
measurements in a bovine test specimen. The recognition rate was reported as 84.2%.

The task of drill breakthrough detection differs from the drill state classification problem, as short break-
through events have to be detected with high accuracy and as fast as possible. The aim is here to stop the drill 
after perforating the cortical bone to avoid damage to surrounding soft tissue. An automatic method to stop 
the drill when perforating a rat skull based on spectral density features and a SVM classifier was proposed by 
Pohl et al.37 for the application in fully automated animal surgery. In a recent work, Torun et al. proposed a drill 
breakthrough detection method based on parametric power spectral density estimation. By computing four 
frequency features and applying a neural network classifier they could reach a breakthrough detection accuracy 
of 92.37±1.09% in a 311.2ms time frame, using an artificial bone  model28 and acoustic signals captured with an 
air-borne microphone.

Drill breakthrough detection and state classification based on acoustic signals has been shown to be a prom-
ising approach to supervise the surgical drilling  process28,31,32,34–36. In prior work, studies have been conducted 
in an experimental setup using artificial bones or resected animal bone specimens and air-borne microphones 
attached to the drill or placed in close proximity to the area of operation. This is a limitation for the application 
in real surgery as the operating room is a noisy environment and the anatomy is not directly accessible because of 
surrounding soft tissue. To the best knowledge of the authors all previous studies implemented classical machine 
learning approaches, such as HMM, SVM or simple neural network classifiers. Recent advantages in deep learn-
ing methods for acoustic event classification have been shown to yield superior performances compared to 
classical  approaches38. These approaches typically employ higher dimensional feature representations, such as 
spectrograms, which enable the deep network to learn the optimal features itself during the training process. 
Furthermore, typical window lengths in acoustic breakthrough detection of 300ms , such as used  in28, achieved 
promising results and have been applied for robotic drilling applications, where the robot is programmed with a 
slow feeding rate. However, they are not sufficient for free-hand drilling supervision, as a surgeon can react just 
as fast as the automated  system22. To translate automated drill breakthrough detection into clinical use, adapta-
tions to the hardware and data acquisition setup, as well as the development of a robust and fast classification 
method are crucial. The main goal of this approach is preventing surgical errors in form of over-drilling into the 
adjacent soft tissue, therefore increasing the safety of intervention and reducing patient risk.

Cadaver experiments
In the following sections we will describe the experimental setup in detail, including recording hardware, conduc-
tion of the experiment and data preparation. Subsequently, the breakthrough detection method is introduced 
which is trained and validated on the dataset acquired in cadaver experiments.

Low‑cost contact microphone, impedance matching and amplification. Piezo-electric elements 
are made of crystalline material and produce small voltages when force or pressure is applied. This principle can, 
when amplified, be utilized to record vibrations as structure-borne sound from a surface by using piezo-electric 
elements as contact microphones. Structure-borne sounds have been shown to have great potential for analysis 
and information retrieval in medical  applications39. Due to the physical nature of piezo-electric elements, the 
output impedance of the contact microphone lies typically in the range of several M� . This results in an imped-
ance mismatch with microphone or line inputs of recorders or mixers, which usually have an input impedance in 
the range of a few k� . The mismatch results in high-pass filtering and poor transmission of signal energy in the 
low frequency region. Because we are interested in capturing also low-frequency components of the structure-
borne vibration signal for breakthrough detection, an impedance matching stage is necessary. Furthermore, a 
high common-mode rejection ratio (CMRR) is desired to minimize electromagnetic interference. We use a 48V 
phantom-powered impedance matching circuit designed by Alex Rice (circuit design available under: https:// 
www. zachp off. com/ resou rces/ alex- rice- piezo- pream plifi er/) and released under a Creative Commons Share-
Alike 3.0 license. This circuit combines impedance-matching with a shielded and balanced connection, which
suits the needs of our application. As contact sensor, we utilize a standard piezo disk with a diameter of 27mm. 
The contact microphone, impedance matching stage and analog/digital conversion stage are modular and con-
nected through rugged XLR connector cables to allow different connection lengths for easy use.

To reduce the noise of the contact microphone and influence of electromagnetic fields, we electromagnetically 
shielded the entire circuit from piezo-element to the analog/digital converter and connected it to the system’s 
ground. Furthermore, before shielding, the piezo disk was covered in epoxy resin (WEICON GmbH & Co. KG, 
Münster, Germany) to make it rugged and avoid noise introduced by moving cables. Every cable connection 
(from piezo-element to impedance matching stage and from impedance matching stage to audio interface) is 
designed as balanced line to remove any electrical interference during signal transmission. This results in a highly 
sensitive and low-noise contact microphone which can be attached to the skin of patients to capture structure-
borne signals. For amplification and analog/digital conversion we use the PreSonus Studio 68 (PreSonus Audio 
Electronics, Inc., Baton Rouge, LA, USA) audio interface and the Audio Stream Input/Output (ASIO) low-latency 
driver. The microphone amplifiers have a frequency response of 20 Hz–20 kHz with a tolerance of ±0.15 dB.

Another advantage of our setup is its modular design, which allows the contact microphone to be used as 
a disposable surgical instrument. All components of the contact microphone are low-cost ( < 10 USD) and 
therefore suited for single-use. The whole hardware setup can be built with an associated cost of about 300 USD. 
Figure 1 provides an overview of the recording chain which was used in the experiments described in the fol-
lowing section.
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Cadaver study design and data acquisition. To build an experimental setup which is as realistic and 
close to a clinical scenario as possible, we used three fresh frozen and unresected human cadaveric hip speci-
mens to generate a dataset for training and validating the proposed network. An ethical approval for all ex-vivo 
experiments (Kantonale Ethikkommission Zurich, protocol number: 2020-01913), as well as informed consent 
from all subjects involved in this study and/or their legal guardians has been obtained. The experiments were 
conducted by a trained physician according to relevant guidelines and regulations. None of the cadavers used 
in our experiment had a record of previously assessed osteoporosis. The specimens were thawed, prepared, and 
incision in the lower extremities were made to access the area of operation at the proximal femur until the upper 
shaft of the anterior femur. For the surgical approach we used a direct transmuscular access for optimal presen-
tation of the femur. The incisions were executed by intersecting the midline of the musculus quadriceps longi-
tudinally with a scalpel and detaching it anteriorly from the surface of the femur. We then attached two contact 
microphones to the specimen’s skin surface using kinesiology tape. As illustrated in Fig. 2, one microphone was 
attached about 2 cm next to the incision to minimize the distance that the acoustic waves propagate from source 
to microphone through the soft tissue, referred to as diaphysis position. The medical expert placed the second 
microphone on the skin where the greater trochanter is located. This placement was chosen because acoustic
waves propagate well through bony tissue, a principle which has already been applied for bone quality assess-
ment of long  bones40, and the bone structure is easily identifiable for consistent placement in a clinical scenario. 

Figure 1.  The recording chain consisting of (a) a shielded piezo contact microphone, (b) an impedance 
matching stage, and (c) an analog/digital conversion and amplification stage which allows to capture recordings 
from four sensors in parallel.

Figure 2.  The experimental setup with a human cadaveric hip specimen. Two microphones are attached to the 
specimen’s skin surface with kinesiology tape to permit synchronously recording in parallel. The contact sensors 
are placed (a) at the trochanter major and (b) next to the incision, in diaphysis position.
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The effects of different sensor placement on drill breakthrough detection accuracy have been evaluated in this 
study as well and are presented in the section “Comparison of microphone positioning”.

We utilized a Colibri II battery powered drill (DePuy Synthes, Raynham, MA, USA) which is a standard power 
tool used in orthopedic surgery and a drill bit with a diameter of 3.2mm to drill holes into the femur. To create 
as realistic acoustic conditions as possible and to stabilize the drill on the periosteum, a tissue guard was used as 
seen in the Fig. 2. The drill bit was then placed in a right angle on the exposed periosteum of the anterior surface 
of the proximal femur and drilled in a continuous clockwise rotation. To be able to separate the recordings and 
assign them to the respective class, we recorded the breakthrough sequence from drilling through the second 
cortical layer of the femur until breaking through into the adjacent soft tissue. For each cadaver, we recorded 
data from both the left and right hip resulting in a total number of six individual bones. Overall, we captured 
audio recordings from 136 individual drill holes and respective breakthrough events in the experimental setup 
illustrated in Fig. 2. On average, about 22 holes were drilled in each femur, which corresponds to a realistic 
clinical scenario, as big Locking Compression Plates (LCP) plates with 20 and more holes exist for large bones.

After capturing, the recordings were manually cut, labelled and separated into two subsets 
C := {cortical, breakthrough} , where ci denotes the respective class. We thoroughly identified each breakthrough 
sequence in the audio recordings by repeated acoustic and visual inspection in the respective spectrogram. In this 
context, the class c1 , cortical, contains samples of drilling cortical bone and the class c2 , breakthrough, contains 
samples of drill breakthrough events. All recordings processed within the digital audio workstation software 
REAPER. The samples were rendered without further application of software gain or processing. The record-
ings were captured with a sample rate of 44.1kHz and a bit depth of 24 bit. With a buffer size of 128 samples, 
the ASIO driver latency was measured as 6.8ms . In this configuration, up to four contact microphones can be 
recorded synchronously in parallel.

Breakthrough detection method
Pre‑processing, feature extraction, data augmentation. Spectrogram features are the dominant 
representation in deep learning for audio signal  processing38. They have been shown to yield superior classifi-
cation performances and achieve promising results in combination with convolutional neural network-based 
architectures for  speech42, audio event  detection43, and medical  applications44. Log-mel spectrograms, a widely-
used spectrogram variant, are two-dimensional matrices with time windows as columns, mel-bins (frequency) 
as rows, and amplitude as scalar values contained in the matrix. Because of their grid-like regular structure, they 
are well suited to be processed using CNN classifiers. To compute log-mel spectrograms, the discrete signal was
first segmented with a rectangular sliding window into short frames x : [0 : L− 1] := {0, 1, . . . , L− 1} → R 
of length L with 75% overlap. Short-Time Fourier Transformation (STFT) for each framed clip was computed
using:

Equation (2) denotes the Hann window function of length N, used for Eq. (1) to avoid spectral leakage45. The 
sliding window was shifted across the signal, using a step size specified by the parameter H, in samples. The 
resulting matrix X is a STFT spectrogram and contains the kth Fourier coefficient for the mth time frame.

To evaluate the performance of the proposed system in regard to the window length used for spectrogram 
generation, we implemented different hop lengths H = {64, 32, 16} for the window lengths evaluated in this 
paper, L = {4410, 2205, 1102} , respectively, to keep the final spectrogram dimensions constant. The result was 
converted to a power spectrogram representation by squaring the amplitude and subsequently mapped to a 
logarithmic decibel scale by computing:

For transferring the matrix to the Mel scale, the result was filtered in the spectral domain with a triangular 
shaped Mel filter bank. The triangular filters are spaced evenly on the Mel scale which can be calculated from 
frequency with Eq. (4).

The log-mel spectrogram representation provides sparse, high resolution features for audio  sources46. A
total number of 256 Mel filter bands were applied to combine the Fast Fourier Transform (FFT) bins into Mel-
frequency bins. All spectrograms were normalized by Xnorm,mel = (Xmel − µ)/σ , where ( µ ) is mean and ( σ ) is 
the standard deviation computed over the entire training data.

Because the length of the breakthrough events is in the range of 100 to 250ms and much shorter compared to 
non-breakthrough sequences in our dataset, the number of spectrograms computed for the non-breakthrough 
class is more than an order of magnitude larger. This results in a highly unbalanced dataset. To balance the 
dataset, we use a data augmentation strategy and apply it to the underrepresented class by varying the gain 
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( −5dB, 5dB ), as well as applying time stretching (0.5, 0.7, 1.2, 1.5 times play rate) and pitch shifting ( −3 , −1 , +1 , 
+3 semitones) to the breakthrough event training samples.

A high-level overview of the pre-processing pipepline is illustrated in Fig. 3 in the left part of the Figure. All 
spectrograms were computed using the python library librosa 0.7.247, are of size 256x69x1 and serve as input for 
the convolutional neural network architecture which is described in detail in the following paragraph.

Deep learning model and training. The deep residual network (ResNet)  architecture41 has been shown 
to perform exceptionally well on spectrogram-based audio classification  tasks48. Because our aim is to develop a 
low-latency and reactive system we chose to implement a 18-layer ResNet variant which enables fast  inference49. 
We found empirically to achieve the best results with a slightly modified architecture, stacking a global aver-
age pooling  layer50, a dropout layer with a dropout rate of 0.5, a fully connected (FC) layer with 1024 neurons,
another dropout and an output FC layer on top of ResNet-18’s final batch normalization layer. By introducing 
additional dropout layers for regularization, we reduce the model’s tendency towards overfitting. The final model 
has a total number of 11,715,393 parameters and its architecture is illustrated in Fig. 3.

To handle the problem of imbalanced data, we apply the Focal Loss51 as loss function for training. For imbal-
anced datasets, standard crossentropy is inefficient, as most samples fed to the network are classified with large 
confidence and therefore contribute no useful learning signal. The Focal Loss influences the network to focus on 
the underrepresented class which in our case corresponds to the breakthrough events that are crucial to detect 
with high accuracy for our particular application. The Focal Loss function is defined as:

The factors γ and αt are introduced as focusing and balancing parameter, respectively. In our implementation 
we use the by Lin et al. empirically determined optimal values αt = 0.25 and γ = 251. The variable pt is defined 
for convenience, where p corresponds to the estimated probability for the class with label y = 1 . We trained the 
model end-to-end on the spectrogram features explained in the section “Pre-processing, feature extraction, data 
augmentation” using the Adam optimizer and reduced the learning rate when stagnating loss was observed over 
three epochs by a factor of 10.

Model, training and inference were implemented using the open-source deep learning library TensorFlow 
2.2 and run on a NVIDIA GeForce RTX 2080 SUPER GPU. All results presented in the following sections have 
been evaluated using 5-fold cross-validation.

Results
We split the evaluation section into three parts. First, we present the best performing variant of the proposed 
detection method and analyze the influence of design decisions on our detection pipeline. Afterwards, we com-
pare the two microphone positions described in the section “Cadaver experiments” by analyzing the performance 
using synchronously acquired audio data. Subsequently, we evaluate different sliding window lengths L to assess 
the trade-off between detection latency and accuracy.

(5)FL(pt) = −αt(1− pt)
γ log(pt), where pt =

{

p if y = 1

1− p otherwise
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Figure 3.  A breakthrough sequence with a total length of about 1 s , taken from the dataset acquired during the 
cadaver experiments. The raw waveform was split into frames by applying a rectangular sliding window and 
mel spectrogram features were computed. For better illustration, the spectrograms in this Figure are plotted 
using a colormap, however, the features used in the implementation of this work are two-dimensional only. 
Furthermore, the window length is chosen arbitrarily for better visualization and is not representative for the 
windows which have been evaluated in this work and are much shorter. Frames (a) to (c) correspond to the non-
breakthrough class, in frame (d) the breakthrough event is present and visible in the spectrogram. The features 
were normalized and augmented which is described in detail in the section “Pre-processing, feature extraction, 
data augmentation”. A modified ResNet-1841 architecture, which is introduced in the section “Deep learning 
model and training”, was implemented to classify breakthrough events from spectrogram features. The output 
dimensions of each pipeline stage are given in red color.
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Detection accuracy and performance. Figure 4 shows the confusion matrix for the best performing 
variant of our proposed algorithm, evaluated on the independent test set with a 100ms rectangular sliding win-
dow and for the data recorded in greater trochanter position. We measured a mean overall accuracy of 97.29% 
in the training and 91.90% in the test phase. The recall (sensitivity) of correctly detecting breakthrough events, 
which is the main performance measure for our application, is measured as 93.64± 2.42%.

Compared to the original ResNet-18  implementation41, we implemented several modifications which resulted 
in a performance gain. First, we modified the ResNet-18 architecture by including additional dropout and dense 
(FC) layers as described in the section “Deep learning model and training”. Through these modifications, we 
could boost the performance of the classification pipeline by about 3.5% for breakthrough recall. By implement-
ing the Focal Loss as described in the section “Deep learning model and training” instead of the standard cros-
sentropy loss, we could furthermore increase the model’s sensitivity for breakthrough event detection by 11.2%.

Comparison of microphone positioning. We synchronously captured all recordings with two micro-
phones in different positions as described in the section “Cadaver experiments”. One microphone was positioned 
directly above the greater trochanter to exploit the bone conductivity of acoustic waves. The second microphone 
was placed next to the incision (diaphysis position) to minimize the distance that the sound waves propagate 
through the soft tissue. The experimental setup and microphone positions are illustrated in Fig. 2. We treat the
data acquired from the individual microphones as independent datasets to compare the microphone positions 
in regard to the resulting detection accuracy using a rectangular sliding window length of L = 4410 samples 
(100ms).

In comparison to the results for the data recorded in greater trochanter position and illustrated in Fig. 4, it can 
be observed in Fig. 5 that positioning the microphone in diaphysis position yields inferior detection performance. 
The recall for detecting breakthrough events is lowered by roughly 3% to 90.61± 1.77%.

0.06±
0.024

0.10±
0.021

0.90±
0.021

0.94±
0.024

Figure 4.  The normalized confusion matrix for a rectangular sliding window size of length L = 4410 samples 
which corresponds to a time frame of 100ms , recorded in the greater trochanter position.

0.91±
0.018

0.09±
0.018

0.11±
0.013

0.89±
0.013

Figure 5.  The normalized confusion matrix for a rectangular sliding window size of length L = 4410 samples 
which corresponds to a time frame of 100ms , recorded in the diaphysis position.
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For evaluating the influence of the window length L in the following section, we focus on the dataset recorded 
by the microphone in the greater trochanter position.

Comparison of window lengths. The length L of the rectangular sliding window determines the detec-
tion latency. With decreasing window length, the system is able to provide a detection result faster, as the audio 
chunk has to be acquired before it can be fed into the classification pipeline. However, the smaller the audio 
frame, the less information can be used by the network for feature extraction. We evaluated three window
lengths, 100ms , 50ms and 25ms to gain insights about the performance of the proposed pipeline in comparison 
to the latency. We did not evaluate larger window lengths, as the shortest samples of breakthrough events are 
only a few ms longer than 100ms.

To investigate the influence of shorter window lengths, we systematically reduced the window length and 
evaluated the detection performance which is illustrated in Table 1. By lowering the frame length, the sensitivity 
for breakthrough detection and for classification of non-breakthrough samples is reduced. In general, it can be 
observed that the model’s performance decreases with shorter window lengths.

In Table 2, we show the measured execution time for each part of the proposed pipeline and the total execu-
tion time for one pass for a sample through the pipeline, given for different window lengths. All presented 
results have been averaged over 100 passes through the pipeline. Because we keep the spectrogram dimensions 
constant, spectrogram generation and ResNet-18 inference show very similar measured duration. We compare 
the above presented results to the average surgeon reaction time as measured in a previous study by Boom-Saad 
et al.22 in Fig. 6.

Discussion
Automated drill breakthrough detection is a promising approach for reducing the risk of surgical errors and 
iatrogenic injuries during the drilling process. To the best knowledge of the authors, our proposed method out-
performs the results of all previous published work, for example Torun et al., who used 300ms windows combined 
with handcrafted frequency features and achieved a detection sensitivity of 92.37± 1.09 % for breakthrough 
detection in a simplified experimental setup based on a single artificial bone  model28. Our best performing 
algorithm variant achieves a breakthrough detection sensitivity of 93.64± 2.42 % using a 100ms window. We 

Table 1.  Comparison of window length.

Window length (ms) Sensitivity breaktrough % Sensitivity cortical %

25 84.38± 2.69 75.58± 2.55

50 88.49± 3.88 82.52± 1.84

100 93.64± 2.42 90.16± 2.09

Table 2.  Pipeline execution times.

Pipeline stage Execution (ms) Execution (ms) Execution (ms)

ASIO driver latency 6.8 6.8 6.8

Window length 25 50 100

Spectrogram generation 7.01 6.92 6.98

ResNet-18 inference 25.03 25.02 25.51

Total execution time 63.84 88.74 139.29

surgeon
reaction

time

Time [ms]

Figure 6.  Pipeline execution speed and detection performance in comparison with surgeon reaction time, 
which has been measured to be in the range of 313 to 358ms and degrading with advancing  age22. The execution 
times 63.84ms , 88.74ms and 139.29ms correspond to window lengths of 25ms , 50ms and 100ms , respectively, as 
explained in the section “Comparison of window lengths”.
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showed that our method performs well, even when reducing window lengths down to 25ms . We are not only 
using much shorter window lengths, but also transferred breakthrough detection to pre-clinical experiments 
using human cadavers with soft tissues to mimic a realistic surgical intervention.

Low-latency detection is crucial to stop the drill as fast as possible when a breakthrough event is observed. 
The total latency of the best performing variant of our algorithm amounts to 139.29ms . However, by reducing 
the window length we still achieve sensitivities of 88.49± 3.88 % in 88.74ms and 84.38± 2.69 % in 63.84ms for 
breakthrough detection. The larger the observed window, the more temporal context is provided to the model 
as basis for feature extraction and classification. As the performance of our solution still reaches fairly high clas-
sification accuracies with short window length, the trade-off between accuracy and latency has to be chosen for 
the particular application. The detection speed of our pipeline clearly outperforms the human reaction time and 
has therefore great potential to increase the safety during drilling in surgery .

Using easy-to-integrate contact microphones, we acquired structure-borne audio signals during drilling 
execution directly from the skin surface with very little noise disturbances. Acquiring a dataset in a realistic 
scenario such as cadaveric experiments has the advantage of capturing realistic characteristics of structure-borne 
acoustic signal dampening through soft tissue which is not possible to simulate with artificial bone models or 
prepared bones. Concerning the positioning of the contact microphones, our results show that the sounds cap-
tured in greater trochanter position yield better classification performance, compared to placing the microphone 
close to the incision in the diaphysis position. By exploiting the bone conductivity of acoustic waves and at the 
same time providing a reproducible positioning of the microphone, the greater trochanter position is optimal 
for the task of drill breakthrough detecting with contact sensors in hip surgery.

We believe that the deep-learning based analysis of structure-borne acoustic signals is a promising approach 
to supervise the surgical drilling process and that the proposed solution paves the path for deployment and 
testing the approach in real surgery. However, to translate the proposed system into clinical use in the operat-
ing room, the following limitations of the presented study have to be overcome. A clinical study is necessary to 
evaluate the reliability and robustness of the solution in-vivo. Furthermore, the performance of the algorithm 
could potentially be further improved by increasing the size of the dataset to expand the model’s capability for 
generalization, including multiple surgeons and different anatomies. The proposed hardware setup, illustrated 
in detail in Fig. 1, is modular, low-cost and the contact microphones can be replaced easily. However, the the 
sterilizability of the electrically shielded contact sensor (part a in Fig. 1) has to be investigated and validated. 
We did not measure the frequency transmission characteristics of the deployed circuitry explicitly, however the 
presented configuration enables high quality and low-noise audio recordings and increased bandwidth of the 
piezo element through impedance matching. Even though we thoroughly labelled each breakthrough sequence 
in the audio recordings by repeated acoustic (with professional studio-grade headphones) and visual inspection 
in the respective spectrogram (with high resolution in time), small uncertainties in the ground truth labelling 
process cannot be ruled out.

Currently, our system is running on a development computer, using high-end and high power hardware. 
To transfer the developed solution to an embedded solution, strategies such as model quantization can be 
employed to decrease the model size and resource  requirements52. In addition, it is crucial to stop the drill as 
soon as a breakthrough event is detected to reliably increase the safety of surgical procedures by automated drill 
breakthrough detection. To this end, a stopping mechanism or circuitry has to be integrated into the drill which 
should be able to stop the drill with as minimal additional latency as possible.

Conclusion
In this paper, we present a deep-learning based approach for automated drill breakthrough detection in orthope-
dic interventions using acoustic emission signals. We developed a hardware setup employing piezo-based contact 
microphones to capture vibration signals non-invasively from the skin surface. The proposed experimental setup 
was utilized to capture a dataset of drill vibration signals from six human cadaveric hips.

Our classification pipeline reaches a sensitivity of 93.64± 2.42 % on the task of drill breakthrough detection, in 
a total execution time of 139.29ms . Faster versions of our solution yield a sensitivity of 88.49± 3.88 % in 88.74ms 
and 84.38± 2.69 % in 63.84ms execution time. We show, that the proposed system is able to detect breakthrough 
events with high accuracy while being multiple times faster than the reaction time of trained surgeons. In addi-
tion, we evaluated different positioning of the contact sensors and observed that best results can be obtained 
by exploiting the conductivity of acoustic waves through bone tissue and placing the microphone as close as 
possible to subcutaneous bony structures.

The proposed solution has great potential to be used as a system for error prevention in surgery by preventing 
a damage to soft tissue and vital adjacent structures during bone drilling. Because drilling is an essential part in 
the vast majority of orthopedic interventions, the proposed system could have a great impact on patient safety and 
surgery outcome. Our exemplary application shows that acoustic sensing offers a very accurate, easy-to-integrate 
and low-cost approach to prevent errors in surgery which can be easily transferred to other surgical applications.
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Summary: Pedicle screw loosening is one of the most common complications after spinal
fusion surgery which is characterized by the implant loosing hold in the surrounding bone
and causing severe pain for affected patients. The current state-of-the-art for the detection
of loose pedicle screws is CT imaging which is not able to confirm implant loosening in a
substantial number of cases. Therefore, there is a clinical need to develop novel paradigms and
methodologies for the diagnosis of pedicle screw loosening. In this work, we propose a reliable,
easy-to-integrate, radiation-free and non-destructive solution for the intraoperative detection
of loose screws using an excitation device placed on top of the spinous process of the vertebra
of interest and exciting the bone tissue using a sine sweep vibration. Contact microphones
attached to the screw heads capture the resulting vibration characteristics transmitted through
the excited bone to the implant. We design a custom pipeline based on a SE-ResNet-18 to
detect a loose pedicle screw based on the vibration propagation pattern represented in mel
spectrograms. We built an experimental setup consisting of four human cadaveric spine
specimens and simulated the screw loosening using a 3D printed drill guide which was
designed by a biomedical engineer according to the characteristics of screw loosening in
patients based on the related literature. We validate the screw loosening simulation by
analyzing the relative movement of vertebra and implant in a biomechanical testing machine
using realistic loads during movement and the analysis of optical tracking data. Our results
show promising performance for the development of an alternative assessment method for
pedicle screw loosening. We furthermore believe that our work can be the starting point for
the design of smart implants in spinal fusion surgery.

Contributions: The author of this thesis was responsible for formulating the problem and
approach with medical consultations from Sandro Hodel, Mazda Farshad, and Christoph J.
Laux, as well as for capturing the data in the experimental setup, designing the data pro-
cessing, detection, and evaluation pipeline and writing the manuscript. All human cadaveric
experiments were conceptualized and performed by the author and Christoph J. Laux. Bastian
Sigrist supported the project by creating the preoperative plan based on 3D models segmented
from CTs of the anatomy and designed the 3D printed drill guides. Tobias Götschi and Jonas
Widmer supported the project for the design of the biomechanical experimental setup. Nassir
Navab and Philipp Fürnstahl contributed in the form of discussions and feedback throughout
the whole project and for proofreading of the manuscript.

Copyright Statement: This work is not peer-reviewed. The preprint has been published
under https://arxiv.org/abs/2210.16170

3.2 Spectrogram-based Audio Processing 39

https://arxiv.org/abs/2210.16170


A new sensing paradigm for the vibroacoustic detection of pedicle

screw loosening

Matthias Seibold1,2, Bastian Sigrist1, Tobias Götschi3,
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Abstract

There is an unmet clinical need for developing novel methods to complement and replace the current
radiation-emitting imaging-based methods for the detection of loose pedicle screws as a complication
after spinal fusion surgery which fail to identify a substantial amount of loose implants. In this work, we
propose a new methodology and paradigm for the radiation-free, non-destructive, and easy-to-integrate
detection of pedicle screw loosening based on vibroacoustic sensing. Furthermore, we propose a novel
simulation technique for pedicle screw loosening, which is biomechanically validated. For the detection of
a loose implant, we excite the vertebra of interest with a sine sweep vibration at the spinous process and
attach a custom highly-sensitive piezo contact microphone to the screw head to capture the propagated
vibration characteristics which are analyzed using a detection pipeline based on spectrogram features
and a SE-ResNet-18. To validate the proposed approach, we conducted experiments using four human
cadaveric lumbar spine specimens and evaluate our algorithm in a cross validation experiment. Our
method reaches a sensitivity of 91.50 ± 6.58% and a specificity of 91.10 ± 2.27%. The proposed system
shows great potentials for the development of alternative assessment methods for implant loosening based
on vibroacoustic sensing.

1 Introduction

Spinal instrumentation with pedicle screws is an broadly established and increasingly used intervention in the
surgical treatment of degenerative diseases, injuries, deformities or tumors of the spine. [1, 2, 3]. Hereby, the
spinal segment is stabilized by driving screws into both pedicles of the respective vertebra and connect them
with rods on either side that absorb most of the biomechanical forces. One of the most common postoperative
complications of this surgical procedure is screw loosening, which is often associated with persistent pain
and therefore eventually requires revision surgery. Pedicle screw loosening usually manifests itself in a fan-
shaped cavity around the screw shaft and results in screw toggling, therefore allowing movement between
the instrumented segments [4, 5, 6] The risk of pedicle screw loosening has been reported in literature as
1 − 3% per screw and 12.3% per patient [7]. In osteoporotic bone there is an even higher risk of pedicle
screw loosening in the range of 50− 60% [8, 9] which imposes a highly relevant clinical problem in an ageing
population [10].

When patients report implant-related pain or instabilities, the standard way to asses potential implant
loosening is to employ different medical imaging modalities, such as Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), or planar radiographs. In a prospective clinical study, Spirig et al. found the
sensitivity and specificity in detection of screw loosening to be 43.9% and 92.1% for MRI, 64.8% and 96.7%
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for CT, and 54.2% and 83.5% for standard radiographs, respectively [11]. In clinical practice, CT remains the
gold standard for the assessment of pedicle screw loosening but fails to detect a substantial amount of loose
implants and exposes the patient to radiation, even though it is recommended to use low-dose CT protocols
if possible [12]. Therefore, there is a clinical need to develop alternative non-invasive and radiation-free
methods for the detection of loose pedicle screws and better understand their clinical correlation.

After screw loosing was diagnosed by imaging, a loose screw is confirmed intraoperatively by measuring
a low torque when removing the screw [11, 13] which destroys the bone-implant interface in tight screws and
further weakens the spine segment, if the screw was incorrectly identified as loose. Therefore, a reliable and
non-invasive method for the intra-operative assessment of pedicle screw loosening for the intraoperative use
in revision surgery would be highly desirable.

Acoustic sensing is a non-invasive, radiation-free and easy-to-integrate modality which has been shown
to have great potential for various medical applications such as intraoperative tissue classification [14, 15],
surgical error prevention [16], or patient monitoring [17]. Acoustic emission analysis has furthermore been
employed in the condition assessment and early diagnosis of orthopedic implants, but has mainly been applied
to artificial hip and knee joints so far [18]. Schwarzkopf et al. recorded the acoustic emissions of different
types of knee implants using a handheld measurement system. The analysis of the data revealed correlations
to the implant status and time from implantation [19]. Rodgers et al. proposed a system for monitoring
the acoustic emissions of THA implants and characterized the squeaking of hard-on-hard bearing surface
combinations [20]. Fitzpatrick et al. developed a monitoring system based on acoustic emission sensing to
measure the wear of total hip replacement implants and compared the frequency characteristics of in-vivo
and in-vitro recordings [21]. For the assessment of implant stability, a proof-of-concept-study was published
by Ewald et al., who developed a prototype and simulator-based experimental setup for the detection of
total hip replacement implant loosening using an acoustic sensor system [22]. Arami et al. developed a
vibroacoustic system for ex vivo detection of loosening of total knee replacement implants. They applied
harmonic vibration to the tibia and measured the resulting vibrations on the implant surface using an
accelerometer [23].

The systems described above employ frequency analysis or classical signal processing methods to define
thresholds or describe the characteristics of frequency components. However, as deep learning-based methods
have recently replaced and outperformed classical approaches for solving audio specific tasks such as speech
recognition [24] and environmental sound processing [25], these techniques have also successfully been applied
to medical applications [17, 16, 26, 27].

In this work, we propose a novel method to assess the hold of pedicle screws based on vibroacoustic
sensing. In the first step, we developed an experimental approach to simulate pedicle screw loosening in
human cadaveric specimens. We instrumented four human cadaveric lumbar spine specimens and validated
the screw loosening by analyzing the relative movement between implant and instrumented vertebra in
fixed and loose configurations using a biomedical testing machine and an optical tracking system. For the
detection of screw loosening, we excite the anatomy by using a vibration device to send a sine sweep into
the bone and measure the propagated vibrations directly at the screw head. Subsequently, we developed an
automated algorithm based on log-mel spectrograms and a SE-ResNet-18 to detect screw loosening based
on the characteristics of the captured signal and thoroughly evaluate the performance of the proposed
algorithm in a leave-one-specimen-out cross validation experiment. The proposed proof-of-concept system
can be directly used for the intraoperative assessment of pedicle screw loosening during revision surgery.

2 Material and methods

2.1 Experimental approach for the simulation of Pedicle Screw Loosening

Pedicle screw loosening is usually simulated in biomechanical experiments by applying dynamic loading over
thousands of cycles in experimental setups [4, 28, 29]. As we are not interested in measuring the biomechanical
forces but rather simulate a loose implant in terms of relative movement between target anatomy and implant
(screw toggling), we developed a different approach capable of simulating the mechanics of pedicle screw
loosening in a faster way. To this end, CT scans of the cadaver specimens were acquired and the screw entry
points and target angles were planned by an experienced spine surgeon according to the standard clinical
routine in a 3D surgical planning software (CASPA, University Hospital Balgrist, Switzerland).
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Figure 1: Instrumentation of the cadaveric spine specimens and simulation of the pedicle screw loosening
using the 3D printed drill guide. On the left side, the sagittal view with an angle deviation of 25◦ is
illustrated; the right side shows the transversal view with with an angle deviation of 5◦. The custom 3D
printed drill guide is colored in orange, the planned screw trajectory in pink, and the fan-shaped cavity in
light blue.

A two-step data acquisition procedure was performed were first stable screws were inserted and measured
(control group) and, in a second step, screw loosening was simulated (intervention group). In the first step,
we inserted Medacta pedicle screws (Medacta, Castel San Pietro, Switzerland) along the planned screw
trajectory using a classical approach without predrilling. In the second step, the screws were intentionally
loosened. Therefore, we used the planned screw trajectories to design custom 3D printed drill guides, as
illustrated in figure 1, to drill a fan-shaped hole with an angle deviation of 25◦ in the sagittal and 5◦ in
the transversal plane into the respective vertebra. The CTs were manually segmented and the drill guides
leveraged the concept of patient specific instruments (PSI) [30] where the undersurface of the guide is shaped
as a negative of the target anatomy surface, therefore only fitting in one unique position on the vertebrae.
All custom drill guides were manufactured using a highly accurate laser sinter 3D printer (EOS Formiga
P396, EOS Systems, Krailling, Germany).

For all four lumbar spine specimens, the vertebrae L2 and L4 were instrumented and only the screws in
vertebra L2 were intentionally loosened in a second step. This approach allows to maintain a fixation on
one implant side (L4) to measure the relative movement between implant and target vertebra (L2) during
movement using an optical tracking system. All surgical steps were performed by an experienced spine
surgeon and a bilateral posterior approach through the Wiltse interval was chosen to preserve the skin
directly over the spinous processes.

2.2 Validation of Pedicle Screw Loosening

To validate the simulated screw loosening, we mounted each specimen in a biomechanical testing machine
ZwickRoell Z010 (ZwickRoell GmbH & Co. KG, Ulm, Germany) which allows a defined and reproducible
flexion-extension movement of the anatomy. To analyze the movement of the implants and the vertebrae, we
attached passive optical tracking markers to the two rods, as well as to vertebrae L2 and L4. A high-fidelity
optical tracking system, Atracsys fusionTrack 500 (Atracsys LLC, Puidoux, Switzerland), was used to record
the trajectories of all tracked objects during movement. The experimental setup is shown in figure 2.

The protocol of the biomechanical testing machine was programmed with a maximal torque of 7.5Nm
in both directions, which determines the endpoint of the flexion-extension movement, and an angular speed
of 5 ◦ s−1. These values are standard settings for the biomechanical testing of the human lumbar spine
according to empirical findings [31]. For the experimental validation of screw loosening, we run 30 - 50
cycles of flexion-extension movement and record the tracking data of the rigidly attached markers.

For all implants and specimens, screw loosening was confirmed by an experienced spine surgeon who
conducted all experiments. As an additional experimental quantification metric for screw loosening, we
introduce a ratio defined as the relation between fixed and loose configurations of the relative movement
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Figure 2: One of four cadaveric human lumbar spine specimens fixed in the biomedical testing machine.
Individual passive infrared tracking markers are attached to vertebrae L2 and L4, as well as to the two rods
of the implant.

between target vertebra and implant. In biomechanical screw toggling experiments, the level of screw
loosening is usually measured as the relative displacement between implant and bone through optical tracking
data as described in the work of Liebsch et al. [4]. However, these setups usually only include a single
vertebra and screw mounted in a biomechanical testing machine which is only a simplified version of our
setup. Furthermore, the proposed ratio compensates for subject-specific variations of relative displacement
due to inter-subject bone quality differences.

First, we compute the relative movement ∆x of each respective rod and the vertebra L2 for all configu-
rations, where x is the reference point for each individual tracking target:

∆xi = ||xL2 − xRodi
|| (1)

The centered mean absolute relative movement is computed as a scalar measure of the amount of relative
movement between the implant and the vertebra L2, where n is the number of synchronized measurements:

x̄i =
1

n

n∑

i=1

|∆xi −
1

n

n∑

i=1

∆xi| (2)

Finally, we define the ratio of the relative movement between loose and fixed configuration as the loosening
criterion and consider the screw as loose if the computed ratio exceeds a threshold of 2, which corresponds
to a doubled relative movement of implant in regard to the target vertebra from fixed to loose configuration.

Rlf,i =
x̄i,loose

x̄i,fixed
> 2 (3)

2.3 Vibro-Acoustic Sensing for Screw Loosening Detection

2.3.1 Experimental Setup

For the detection of pedicle screw loosening, we apply active vibration excitation to the target anatomy. We
place a vibration device (shaker type 4810, Brüel and Kjær, Teknikerbyen 28, DK-2830 Virum, Denmark)
on the skin centered on top of the spinous process of the target vertebra L2 in an upright position and excite
the tissue with a sine sweep in a frequency range of 10 to 500 Hz and with a duration of 2.5 s. To standardize
the applied pressure and to make the system easily usable, we use the weight of the shaker (1080 g) to define
the contact pressure on the skin of the specimen and hold it manually in place. We use a digital oscilloscope,
Digilent Analog Discovery 2 (Digilent, 1300 NE Henley Ct. Suite 3, Pullman, WA 99163, USA), and its
MATLAB (MathWorks, 1 Apple Hill Drive, Natick, MA, USA) interface to generate the excitation signal.
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Figure 3: The vibration device is placed on top of the spinous process of the vertebra L2. The structure-
borne vibrations are propagated through the bone into the screw shaft and measured with custom piezo-based
contact microphones directly at the screw head.

We amplify (type 2706, Brüel and Kjær) the generated analog signal to drive the shaker. Figure 3 illustrates
the experimental setup for the vibration experiments.

The vibration is propagated through the bony tissue of the vertebra to the screw shaft and recorded with
custom piezo contact microphones which are directly glued to the screw head. The piezo contact microphones
use a custom preamplification and impedance buffering stage to preserve low frequency content as described
in [16]. We recorded a total number of 50 sine sweeps per screw and lifted and replaced the shaker device
between the individual sweeps to have variation in the captured training data. We first measure every
specimen in fixed configuration as illustrated in section 2.2, afterwards we intentionally loosen the screws
of vertebra L2 using the protocol described in section 2.1 and repeat the whole procedure which results in
200 samples recorded per specimen. Using four human cadaveric lumbar spine specimens, we recorded a
balanced dataset with a total number of 800 individual samples. All signals were captured in lossless wave
file format, using a sample rate of 44.1 kHz and a bit depth of 24.

2.3.2 Pedicle Screw Loosening Detection Algorithm

State-of-the-art systems in audio classification use a combination of log-mel spectrogram representation
for the audio signal and a feature extraction backbone based on convolutional neuronal networks [33, 34].
Therefore, we generate log-mel spectrograms with dimensions 256x218 from all individual samples in the
dataset. The log-mel spectrograms serve as input for a modified 18-layer ResNet [35] and are computed using
the python library librosa 0.7.2 [36]. Log-mel spectrograms are two-dimensional matrices with time windows
as columns, frequency mel-bins as rows, and amplitude as scalar matrix values. The first step to compute
the log-mel spectrogram of an audio sample of length N is to compute Short-Time Fourier Transformation
(STFT):

X(m, k) =
N−1∑

n=0

x(n+mH)w(n)exp(
−2πikn

N
) (4)

We use the Hann window function as w(n) to compensate for spectral leakage [37] and apply a hop length
of H = 256. We map the resulting STFT X which is structured as the kth Fourier coefficient (on the y-axis)
for the mth time frame (on the x-axis) from amplitude to decibel by computing:

XdB(m, k) = 10 log10(X(m, k)2) (5)

Finally, the spectrogram is mapped to the mel scale by applying a total number of 256 triangular filters
which are evenly distributed on the Mel scale defined by:

fmel = 2595 log10(1 +
f

700
) (6)

Compared to previous work, we extended the ResNet-18 backbone with Squeeze & Excitation (SE) [32]
blocks which add a channel-wise attention mechanism to each residual block while introducing minimal
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Figure 4: The overview of the proposed pedicle screw loosening detection pipeline. The spectrograms are fed
to an 18 layer ResNet variant which implements Squeeze & Excitation [32] in each residual block. We define
the detection as a binary classification problem, where the model is trained to differentiate between fixed
and loose samples. In the SE-ResNet block schematic, the dimensions of each layer are illustrated where the
variable r stands for the reduction ratio as described in [32]. The number of filters for each SE-ResNet block
are given below, every layer employs a filter size of 3x3. The spectrograms are colorized for visualization
purposes, however all spectrogram used in the implementation of this work are two-dimensional matrices
with dimensions 256x218.
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ID Screw1 fixed Screw1 loose Screw2 fixed Screw2 loose

0 0.5998 mm 2.5323 mm 0.9927 mm 3.3198 mm
1 0.5122 mm 1.3140 mm 0.2181 mm 1.5746 mm
2 0.9234 mm 2.0103 mm 0.6141 mm 6.2079 mm
3 1.2149 mm 3.3013 mm 0.4763 mm 4.8975 mm

Table 1: The relative displacement of implant and target vertebra.

ID Rlf ,screw1 Rlf ,screw2

0 6.9462 4.2048
1 4.7403 28.3358
2 2.6498 14.1524
3 3.1605 15.5463

Table 2: The values of Rlf,screw1 and Rlf,screw2 for all specimens and screws. The ratios have been computed
according to the measurements and formulas described in sections 2.1 and 2.2.

computational overhead. This modification resulted in a substantial performance improvement in our ex-
periments. In our implementation, we use a reduction ratio of r = 8 in all SE blocks. An overview of the
proposed detection pipeline is illustrated in figure 4.

The network is trained for 10 epochs using the Adam optimizer, a learning rate of LR = 1e − 5, and
a binary crossentropy loss. We normalize all log-mel spectrograms Xnorm,mel = (Xmel − µ)/σ, where µ is
overall mean and σ is the standard deviation computed over the entire dataset. Furthermore, we augment
the dataset by applying pitch shifting in the range of [-3, 3] semitones and time stretching with the factors
[0.9, 1.1] to the raw waveforms directly. All experiments were implemented in Tensorflow/Keras 2.6 and
executed on a NVidia RTX 2080 SUPER GPU.

3 Results

3.1 Validation of Screw Loosening

Table 1 shows the relative displacement of implant and vertebra L2 measured using the optical tracking
system for every implant and specimen in both fixed and loose configurations. It can be observed that
every specimen and implant shows an increased displacement after intentional loosening. To compensate for
inter-subject variations in relative displacement due to differences in bone quality, anatomy and mounting in
the biomechanical testing machine, we computed the loosening ratio for each individual screw as described
in section 2.2 as the main metric for the assessment of screw loosening. Table 2 contains the computed ratios
for all screws and specimens tested in our experiment.

3.2 Screw Loosening Detection Results

The spectrograms are analyzed using the detection pipeline proposed in section 2.3.2. To thoroughly evaluate
the model performance, we perform a four-fold cross validation experiment and split the data on a specimen
level. To this end, we train an individual model from scratch on the data collected from three specimens
and test on the remaining specimen. All results are reported in the format mean ± standard deviation.

For the detection of pedicle screw loosening, our model reaches a sensitivity of 91.50 ± 6.58% and a
specificity of 91.10 ± 2.27%. These values correspond to a mean accuracy of the detection algorithm of
91.29 ± 4.28%. To give further insights, we report the results on the individual folds in table 3, where the
specimen ID corresponds to the specimen used for the test set, the model is trained on the remaining three
specimens.

We furthermore performed an ablation study to show the benefit of modifying the ResNet-18 backbone
with Squeeze & Excitation modules for the given problem. Without Squeeze & Excitation modules, the
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Specimen ID Sensitivity Specificity

0 94.00% 94.00%
1 81.00% 87.76%
2 92.00% 90.62%
3 99.00% 92.00%

Table 3: Sensitivity and specificity reported for each individual fold in the four-fold cross validation experi-
ment conducted for the evaluation of the proposed pedicle screw detection algorithm.

model reached a sensitivity of 87.75± 9.91% and a specificity of 90.04± 7.19% which corresponds to a mean
accuracy of 88.89± 4.08%.

4 Discussion

In this work, we propose a detection method for pedicle screw loosening based on vibroacoustic sensing which
could be an important step towards a novel radiation-free and non-invasive assessment method to improve
the diagnostics in clinical practice and patient safety in revision surgery. We thoroughly evaluate our algo-
rithm using k-fold cross validation and split the dataset on the specimen level. To the best knowledge of the
authors, we propose the first alternative to medical imaging based assessment methods. Our experimental
design may also allow clinical translation to a percutaneous application with reproduction of the typical
pain in the context of symptomatic screw loosening. This would help physicians as the clinical correlation
of radiological findings of screw loosening with the complained symptoms is not always evident. To address
the aforementioned problem, the proposed learning-based pedicle screw loosening detection algorithm shows
promising performance indicating great potential for the development of systems for the automated screw
loosening detection based on vibroacoustics. As the target vertebra is excited with sine sweep vibration,
the resulting measurements at the screw head are greatly influenced by the anchorage of the screw in the
surrounding bone tissue. A fan-shaped cavity around the screw shaft therefore changes the transmitted vibra-
tion characteristics which serves as the basic structure-borne sound propagation mechanism that motivates
our work.

3D-printed surgical guides were introduced as an approach for a more time efficient simulation of pedicle
screw loosening which was confirmed to be sufficiently realistic through the analysis of optical tracking data.
Extended simulation with toggling experiments would probably result in a more realistic screw loosening
model as the loosening funnel was uniformly designed for all specimens. However, the focus of the present
work is the development of a vibroacoustic-based method for screw loosening detection, the implementation
of a highly realistic loosening simulation is not in the scope of this work and should be investigated in future
research. Furthermore, as we fully loosened the screw in our experiments, the influence on the detection
performance of the proposed algorithm with different levels of screw loosening has to be investigated in
future work. In addition, the influences of patient body mass index (BMI) and bone quality on the proposed
system should be taken into consideration.

After conducting the loosening simulation process as described in section 2.1, an experienced spine surgeon
confirmed the loosening of the respective pedicle screws visually and haptically. To additionally quantify
the screw loosening, we introduced a loosening ratio which is computed using optical tracking data. Hereby,
the relative displacement of implant and target vertebra shown in 1, as well as the loosening ratio shown
in table 2 show certain variations. The reasons for these variations are subject-specific bone quality and
anatomical differences. Furthermore, it is practically unfeasible to install the specimen perfectly centered in
the biomechanical testing machine which results in a slightly asymmetric movement. However, the loosening
validation experiments show a more than doubled relative movement between implant and respective vertebra
which can be considered sufficient for simulating pedicle screw loosening in our experiments.

A limitation of the presented study is the small sample size of four human cadaveric specimens. However,
by performing a four-fold cross validation experiment and showing the consistency of the results over all four
individual test folds, we consider our experiment as a strong proof-of-concept for the usage of vibroacoustic
sensing in orthopedics. The variations in the per-fold model performance can be accounted to anatomical
variations and bone qualities. Additional in-vitro and in-vivo studies have to be performed to test the
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reliability of the system and increase the training data for better generalization and detection performance.
With a shaker device that applies the vibration on the patient’s skin over the spinous process to the

bone and using its weight as contact force, we propose an easy-to-integrate measurement method which
requires only little additional human effort. In the present work, we chose a bilateral posterior approach for
the surgical access, however, also with a central surgical access, the method is suitable for intraoperative
detection of loose pedicle screws, as the vibration device cannot only be placed on top of the spinous process
on the skin, but also directly on the bone. In future, we envision the presented approach not only to
be valuable as an intraoperative confirmation of pedicle screw loosening, but also as a clinical tool for the
preoperative diagnosis of screw loosening and, eventually, as the foundation to design smart pedicle screws to
monitor or even predict pedicle screw loosening in a reliable and non-invasive way. Nevertheless, additional
research and development is required to design custom sensorized implants, transmit the signals to the
outside of the human body and solve the energy supply.

5 Conclusions

We propose a non-destructive, radiation-free and easy-to-integrate approach to detect pedicle screw loosening
intraoperatively using active vibroacoustic sensing. The resulting system could be used for the intraopera-
tive confirmation of loose pedicle screws as an alternative for the measurement of the extractional torque.
Furthermore, we believe that the proposed work could be a strong proof-of-concept for the development of
smart implants for spinal fusion surgery.
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3.3 Spectrogram-based Spatio-temporal Learning

In spatio-temporal learning, time information in the form of sequential data is incorporated
in the modeling of the problem in addition to a frame-based processing of data points. Even
though a spectrogram captures a signal over a certain predetermined time frame, spatio-
temporal learning enables the analysis of longer data sequences. While each data point,
e.g. a spectrogram, is spatially processed during feature extraction, subsequent sequential
layers can be employed to incorporate the sequential nature of the temporal succession of
these extracted features from each individual spectrogram. The temporal modeling can be
realized using different techniques, e.g. through Recurrent Neural Networks (RNNs) such as
Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) layers, or more recently
self-attention mechanisms.

3.3.1 Contribution (Interventional): Acoustic-Based
Spatio-Temporal Learning for Press-Fit Evaluation of
Femoral Stem Implants (MICCAI 2021)

Summary: In Total Hip Arthroplasty (THA), the femoral head is resected and increasing
sizes of broaches are driven into the femur with hammer blows to prepare the femoral canal
for the final implant and ensure a good press-fit between bone and implant. One of the
most common complications during this step are periprosthetic fractures which cause severe
pain and increased trauma for patients undergoing THA, resulting in extended rehabilita-
tion. Furthermore, periprosthetic fractures can, in the worst case, remain undetected which
requires additional revision surgery. Because conventional surgical navigation systems are
not able to assess the level of press-fit and implant seating and surgeons reported to use
the changing hammer blow sounds during insertion for implicit guidance, acoustic signals
have great potential as an alternative sensing modality to assess the implant seating based on
acoustic characteristics of the hammer blow events. In this work, we propose to sensorize the
inserter tool using a high sensitive contact microphone to capture structure-borne vibration
characteristics from the broach-inserter structure during insertion. We furthermore introduce
a spatio-temporal model which is trained to classify sequences of five hammer blow events
into increasing and reached target press fit based on a preoperative plan of the procedure. The
proposed system is evaluated in a human cadaveric experimental setup using a five-fold cross
validation scheme. Our results show great potential for the design of acoustic sensing-based
system for error prevention and intraoperative decision support systems in hip surgery.

Contributions: The author of this thesis was responsible for formulating the problem and
approach with medical consultations from Armando Hoch, Daniel Suter, Mazda Farshad,
and Patrick Zingg as well as for capturing the data in the experimental setup, designing the
data processing, detection, and evaluation pipeline and writing the manuscript. All human
cadaveric experiments were conceptualized and performed by the author and Armando Hoch.
Nassir Navab and Philipp Fürnstahl contributed in the form of discussions and feedback
throughout the whole project and for proofreading of the manuscript.
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Acoustic-based Spatio-temporal Learning for
Press-fit Evaluation of Femoral Stem Implants
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Abstract. In this work, we propose a method utilizing tool-integrated
vibroacoustic measurements and a spatio-temporal learning-based frame-
work for the detection of the insertion endpoint during femoral stem im-
plantation in cementless Total Hip Arthroplasty (THA). In current prac-
tice, the optimal insertion endpoint is intraoperatively identified based
on surgical experience and dependent on a subjective decision. Leverag-
ing spectogram features and time-variant sequences of acoustic hammer
blow events, our proposed solution can give real-time feedback to the
surgeon during the insertion procedure and prevent adverse events in
clinical practice. To validate our method on real data, we built a real-
istic experimental human cadaveric setup and acquired acoustic signals
of hammer blows during broaching the femoral stem cavity with a novel
inserter tool which was enhanced by contact microphones. The opti-
mal insertion endpoint was determined by a standardized preoperative
plan following clinical guidelines and executed by a board-certified sur-
geon. We train and evaluate a Long-Term Recurrent Convolutional Neu-
ral Network (LRCN) on sequences of spectrograms to detect a reached
target press fit corresponding to a seated implant. The proposed method
achieves an overall per-class recall of 93.82±5.11% for detecting an ongo-
ing insertion and 70.88±11.83% for identifying a reached target press fit
for five independent test specimens. The obtained results open the path
for the development of automated systems for intra-operative decision
support, error prevention and robotic applications in hip surgery.

Keywords: Spatio-temporal Learning · Acoustic Sensing · Total Hip
Arthroplasty · Femoral Stem Insertion.

1 Introduction

For the preparation of the femur for implant insertion in cementless THA,
the femoral head is resected and broaches of increasing size are driven into
the femoral stem cavity with hammer blows, before the final femoral stem im-
plant is inserted. A frequent intraoperative complication during this procedure
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is periprosthetic femoral fracture which has been reported to occur with rates of
3.5% to 5.4% [2,3,19]. Hereby, the majority of periprosthetic fractures (46.5%)
happen during the preparation of the femur for stem insertion [1] and are mainly
caused by excessive broaching beyond the optimal insertion endpoint. Figure 1
shows a radiograph of a periprosthetic fracture. A relevant part of these fractures,
so-called occult periprosthetic fractures, cannot even be discovered intraopera-
tively [23]. The standard clinical procedure to assess the seating of the femoral
stem implant intraoperatively and determine the optimal insertion endpoint is
based on preoperative planning, surgical experience, simple distance measure-
ments, and radiologic verification of the implant seating in radiographs [10].
Therefore, a system which is able to assess the seating of the implant in the
femoral cavity, inform the surgeon when the target press-fit is reached, and re-
duce the risk of intraoperative periprosthetic fracture would be highly desirable.

An ideal system would detect the optimal insertion endpoint during broach-
ing and inform the surgeon to stop the insertion procedure. Conventional navi-
gation systems can provide support in finding the correct implant position [18],
but they cannot guide the surgeon in finding the insertion endpoint. As the un-
derlying problem is not geometric, we chose to focus on a different data modality.
Acoustic signals have been shown to be a rich source of information in medi-
cal scenarios, for example for the applications in bone drilling [20], arthroscopy
[21], or needle injection [9]. Also for the assessment of the insertion endpoint
in femoral stem insertion, acoustic signals which are generated by the impact
of the hammer onto the broach inserter have been analyzed in prior work. For
femoral stem insertion, hammer blow sounds have been identified to be corre-
lated to complications by Morohashi et al. [14]. A cadaveric study was performed
by Oberst et al. [15] and a nonlinear time-series analysis of the impulse response
function showed relations to the process of femoral broaching. However, no clear
insertion endpoint or stopping criterion was identified in this work.

Goossens et al. identified a number of hand-crafted features which correlate
with the implant seating in in-vitro [5] and in-vivo [6] experiments using air-
borne microphones and defined a stopping criterion based on the convergence
of these features. However, air-borne sensors have the disadvantage of capturing
environmental noise of the operating room in contrast to contact-based vibroa-
coustic measurements. Furthermore, they did not implement a system for the
automated assessment of the implant seating. Additionally, learned features have
been shown to have advantages over handcrafted features, such as better gen-
eralization and better performance with an increasing amount of training data
[11].

A sensorized instrument for the monitoring of cementless femoral stem inser-
tion has been proposed by Tijou et al. [22] employing a force sensor attached to
the impacting face of the hammer to measure the impact force. This preliminary
study using artificial bone models was later validated in a cadaveric experiment
[4]. They showed that a time-domain and peak-based feature shows correlations
to the displacement of the implant, measured using optical markers. Also in this
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work, no automated system was developed and features were handcrafted and
not learned.

In this work, we propose a method which enables smart instruments for
orthopedic surgery through tool-integrated vibroacoustic measurements and de-
veloped a deep learning framework for the automated analysis of hammer blow
sounds in THA. By not attaching the piezo element to the hammer, but to
the inserter tool itself, we capture the full vibration response of the broach-
inserter structure instead of only the impact force. We furthermore advance the
state-of-the-art in vibroacoustic analysis of surgical procedures by introducing
a spatio-temporal model for sequence-based press fit evaluation and show the
benefits of including time-domain data in our framework. We thoroughly eval-
uate the performance of our model in cadavers using 5-fold cross validation. In
the following sections we introduce our method and describe the experimental
setup and data generation process.

2 Materials and Method

2.1 Data Pre-processing and Spatio-temporal Model for Press-fit
Evaluation

To capture acoustic signals of the surgical procedure, we used a custom piezo-
based contact microphone and attached it to the inserter tool to capture structure-
borne sounds of the hammer blows and the resonance of the tool during the in-
sertion process. The piezo-sensor is electromagnetically shielded and impedance-
buffered to minimize noise and optimize the frequency transmission. We attach
the sensor to the tool using electrical tape for firm fixation. The inserter with
attached contact sensor is illustrated in Figure 1.

Fig. 1. Left: The inserter-broach structure with attached piezo-based contact micro-
phone. Right: A radiograph of a periprosthetic fracture.

From the recorded soundclips, we extract spectrogram features which are
lower-dimensional compared to raw audio and have been shown to yield promis-
ing performance for general audio signal processing [17], but also for automated
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acoustic analysis in surgical applications [16,20]. Log-mel-spectrograms, a sparse
and high resolution spectrogram variant, with dimensions 256x344x1 were com-
puted from the individual sound clips of hammer blows using the python library
librosa 0.7.2 [13]. Log-mel spectrograms are two-dimensional matrices with time
windows as columns, frequency mel-bins as rows, and amplitude as scalar matrix
values. First, Short-Time Fourier Transformation (STFT) was applied to each
sound clip of length N using:

X(m, k) =

N−1∑

n=0

x(n+mH)w(n)exp(
−2πikn

N
) (1)

In our implementation, the term w(n) corresponds to the Hann window func-
tion to avoid spectral leakage [12]. The resulting STFT spectrogram X contains
the kth Fourier coefficient for the mth time frame as matrix values. We used a
hop length of H = 16 for all spectrograms. We computed the power spectrogram
from X and mapped it to the logarithmic decibel scale using:

Xpow(m, k) = 10 log10(X(m, k)2) (2)

To finally convert this log STFT spectrogram to the mel scale, a total number
of 256 triangular filters which are spaced evenly on the Mel scale (equation 3)
were applied to Xpow. The mel scale can be computed from frequency by:

fmel = 2595 log10(1 +
f

700
) (3)

We normalized all spectrograms Xnorm,mel = (Xmel − µ)/σ, where (µ) is
overall mean and (σ) is the overall standard deviation.

The network architecture consists of a ResNet-50 backbone [7], an architec-
ture which has been shown to perform especially well for audio classification tasks
[8,20], which extracts features from each input spectrogram in the sequence. The
input of the proposed model is a sequence of five spectrograms of consecutive
hammer blows. The output of the time-distributed, randomly initialized ResNet
is a sequence of five feature vectors of size 1x2048 which is passed to an LSTM
layer and subsequently to two consecutive fully connected layers. In between
the two fully connected layers, we apply a dropout of 0.5 to reduce the model’s
tendency towards overfitting. The entire model has a total of 26,050,945 pa-
rameters and outputs the probabilities to classify the sequences into the classes
C := {insertion, press fit}, where ci denotes the respective class. An outline
of the proposed detection pipeline is illustrated in Figure 2. We trained the
model using a batch size of eight sequences and the Adam optimizer with an
empirically determined optimal learning rate of 1 ∗ 10−5, minimizing a binary
crossentropy loss. Early stopping is used for additional regularization. Data aug-
mentation was applied during training using time-stretching by a factor of [0.5,
0.7, 1.2, 1.5] and pitch-shifting by [−3, −1, +1, +3] semitones on the audio file
level. All experiments were performed using Tensorflow/Keras 2.2 on a NVIDIA
GeForce RTX 2080 SUPER GPU. The implementation is available under https:
//caspa.visualstudio.com/CARD%20public/_git/AudioFemoralStem.
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Fig. 2. The outline of the proposed spatio-temporal model. The input sizes of each layer
of the pipeline is stated at the bottom. For visualization purposes, the spectrograms are
displayed as color images, however the implementation uses features of size 256x344x1.

2.2 Experimental Setup and Data Generation

To build an experimental setup, which is as close as possible to the clinical sce-
nario, we conducted experiments with five thawed fresh-frozen human cadaveric
hip specimens including soft tissue. An ethical approval and informed consent
from all study subjects was obtained. One orthopedic surgeon prepared the fe-
mur using a standard anterior approach. To follow the clinical procedure for
femoral stem insertion, we broached the femoral stem cavity using the Medacta
QUADRA system (Medacta International SA, Castel San Pietro, Switzerland),
consisting of broaches of increasing size. The target broach size was planned
using the clinical planning software mediCAD (mediCAD Hectec GmbH, Alt-
dorf/Landshut, Germany) and the surgical plan was executed by a trained sur-
geon for each specimen. The outline of the preoperative plan and the cadav-
eric experiments is illustrated in the last column of table 1. The insertion end-
point was classified as the preoperatively planned broach size fully seated in the
anatomy and confirmed by the surgeon.

Structure-borne acoustic signals were acquired from the contact sensor at-
tached to the tool during the broaching process. We additionally captured video
footage of the whole experiment to facilitate the labelling process. For the gen-
eration of the training data set, the recorded sequences of hammer blows were
labelled into two classes, {c0, c1}. The class c0 contains audio samples of hammer
blows during insertion of the increasing sizes of broaches until the planned target
size. The operating surgeon identified the target press fit as the preoperatively
planned broach size fully seated in the anatomy. The class c1 contains samples
of hammer blows after reaching the target press fit.

We use the PreSonus Studio 68 (PreSonus Audio Electronics, Inc., Baton
Rouge, LA, USA) audio interface and the Audio Stream Input/Output (ASIO)
low-latency driver to capture loss-less audio with a sampling rate of 44.1 kHz
and a bit depth of 24 bit. All samples were cut to a length of N = 5500 samples,
which corresponds to a duration of 125 ms which has been empirically determined
as the optimal length to capture the whole duration of a hammer blow sound.
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During real surgery, these hammer blows could be detected by a simple threshold
in the recorded structure-borne audio. For 5-fold cross validation, we split the
data set on the specimen level and use the data from four specimens for training
and from one specimen for testing, respectively. The final data set contains a
total number of 1795 (nc0 = 1245, nc1 = 550) sequences of five hammer blows.

3 Results and Evaluation

In the following sections we present the evaluation of the proposed spatio-
temporal model including an in-depth inference analysis for 5-fold cross vali-
dation and show the benefits of incorporating sequence data in our framework.

3.1 Model performance

The proposed method achieves an overall per-class recall (mean and standard
deviation) of 93.82±5.11% for detecting an ongoing insertion and 70.88±11.83%
for identifying a reached target press fit for five independent test specimens.
Table 1 illustrates the per-class recall and precision for each fold. Hereby, we
consider the per-class recall (bold values) as main metric, as it corresponds to
the ratio of correctly identified sequences. Furthermore, we present and in-depth
analysis of the network performance throughout the whole insertion procedure
for each independent test specimen in Figure 3.

Table 1. Performance for 5-fold cross validation

Spatio-temporal Non-sequence Planned Specimen
model baseline broach size number

Fold 0 recall 94.67% 49.37% 62.35% 53.55% 4 1
precision 63.96% 90.70% 55.50% 60.49%

Fold 1 recall 93.50% 69.86% 95.91% 19.31% 4 2
precision 89.47% 79.69% 74.82% 65.38%

Fold 2 recall 96.72% 71.74% 42.86% 95.09% 4 3
precision 81.94% 94.29% 91.58% 57.20%

Fold 3 recall 99.71% 81.90% 92.08% 38.97% 7 4
precision 94.23% 98.96% 81.76% 62.35%

Fold 3 recall 84.51% 81.54% 76.67% 29.33% 7 5
precision 96.28% 48.18% 85.36% 18.97%

3.2 Comparison with Non-sequence Data

We compared the proposed spatio-temporal model with a single spectrogram
based detection method. Therefore, we implemented the model architecture
proposed by Seibold et al. [20], which yielded promising performance for the
application in surgical drill breakthrough detection, and evaluate it on single



Acoustic Spatio-temporal Learning for Femoral Stem Implants 7

0 50 100 150 200 250 300 350
insertion

press-fit
ground truth
predicted

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
insertion

press-fit

0 50 100 150 200 250 300 350
insertion

press-fit

0 50 100 150 200 250 300 350 400 450 500
insertion

press-fit

0 50 100 150 200 250 300 350 400 450
insertion

press-fit

Number of samples

Fig. 3. An in-depth analysis of the results of the spatio-temporal model during 5-fold
cross validation. Each plot corresponds to an independent test specimen (Specimen 1-5
in ascending order from top to bottom), the network was trained on the remaining four
folds.

spectrograms from the data set collected in the cadaveric experiments. For pre-
processing, we applied the same augmentation strategy to the non-sequence data
set and normalize every sample spectrogram. Without the temporal context of
the sequence of hammer blows the detection performance decreases dramatically.
The model reaches a per-class recall of 73.97±19.59% and 47.25±26.45% for c0
(ongoing insertion) and c1 (press fit reached), respectively. The per-class recall
and precision for each fold is given in Table 1.

4 Discussion

The proposed automated method for the assessment of the optimal insertion
endpoint of femoral stem implants could be an important step towards reducing
the risk of periprosthetic femoral fracture during cementless THA, which would
consequently improve patient safety and treatment quality. To the best knowl-
edge of the authors, this is the first work to employ a sensorized instrument for
capturing vibroacoustic signals directly from the operation area and to develop
a state-of-the-art learning based method for the automated assessment of the
seating of the femoral stem implant. We furthermore evaluated the proposed
model in cadaver experiments in which the real intervention was simulated as
closely as possible on thawed fresh-frozen cadavers.
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In comparison to previous work, we demonstrated feasibility of an automated
system for the assessment of the optimal insertion endpoint. Even though the full
potential of deep learning models and the advantages over handcrafted features
is revealed when large amounts of training data are available [11], we show that
the proposed model is able to learn useful information for the majority of the
presented test cases even though we have a small data set.

The results of 5-fold cross validation show that the proposed network yields
promising overall performance, however the model confuses the samples in the
critical region of the optimal insertion endpoint (when changing from ”insertion”
to ”press fit” in Figure 3) for the first and last fold. These outliers and the re-
sulting relatively large standard deviation in cross validation can be attributed
to the fact that the sample size is relatively small with five cadaveric specimens
also due to the relevant inter-subject variance in bone density. An increased size
of data would improve the model’s capability for generalization and improve the
performance of the algorithm. Nevertheless, we consider our sample size suffi-
cient for a technical feasiblity study, because human cadaver experiments are
associated with significant cost and ethical considerations. More extensive data
collection will be addressed in future work together with additional postprocess-
ing steps, such as majority vote or additional convergence criteria, to improve
generalization capabilities. Even though the presented dataset is not highly im-
balanced, the influence of class imbalance should be investigated in future work.

In the presented work, we showed that the spatio-temporal model clearly
outperforms non-sequence data for the application in the assessment of the
femoral stem press fit. However, in future work, other temporal modelling ap-
proaches, such as Temporal Convolutional Neural Networks (TCNs), could be
employed. Furthermore, the influence of additional mechanisms, such as Self-
attention, could be investigated. A technical limitation of the presented work is
the subjective decision of the surgeon for the definition of the optimal insertion
endpoint. However, this definition of the ground truth is in line with all prior
work and a quantitative measurement is infeasible, as e.g. a measurement of the
pull out force would require an extensive measurement setup and is out of scope
of the presented work.

5 Conclusion

To the best knowledge of the authors, we propose the first automated detection
approach for assessing the press fit of femoral stem implants in THA. Our method
consists of a sensorized smart instrument and a spatio-temporal model capable
of inferring the optimal insertion endpoint. The proposed solution shows the
general feasibility of such an automated system and is thoroughly evaluated
on human cadaveric data with an in-depth analysis of the model performance
in 5-fold cross validation using independent test specimens, achieving a per-
class sensitivity of 93.82± 5.11% and 70.88± 11.83% for identifying an ongoing
insertion or a reached target press fit, respectively.
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The presented system could not only be valuable as supplementary system
for navigation systems and robotic applications, but also for error prevention
in conventional surgery. Additionally, an automated system for the assessment
of the optimal femoral stem insertion point could be employed for surgical skill
assessment to define the level of surgical expertise.
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3.4 Approaches based on Raw Waveforms

In spectrogram computation, fixed filters, which can be spaced linearly or logarithmically on
the frequency scale or mapped to a non-linear scale like the Mel scale, are applied to raw
audio waveforms. Instead of predefining the filter bank as a fixed preprocessing step, the
filters can also be jointly learned in the training process which can yield superior results, e.g.
for large-scale environmental audio classification tasks [24]. Furthermore, it is possible to
directly operate on raw audio signals, e.g. using dilated causal convolutions which have a
large 1D receptive field and therefore can deal with long-range temporal dependencies as
present in acoustic signals [77].

While raw audio-based models have achieved impressive sound quality in synthesis tasks,
where the human-perceived quality of the generated audio is crucial and spectrogram-based
methods fall back because phase information is lost in spectrogram generation, raw waveforms
have not yet prevailed as a representation for learning based audio analysis tasks. Raw
audio imposes higher computational cost and data requirements compared to spectrogram
input. Therefore, mel spectrogram-based systems achieve state-of-the-art results in practical
applications of acoustic sensing. [87]

3.5 Data Augmentation

For the application in audio-related tasks such as speech processing, music, or environmental
audio classification, large-scale datasets have been established, e.g. the Librispeech [80],
UrbanSound-8K [95], or Youtube-8M [2] datasets. In contrast to these large datasets, which
are often collected using internet resources, data collection in a realistic clinical environment
is very expensive and even impossible in comparable scales. Therefore, the development of
clinical acoustic sensing systems introduces the individual challenge of training with sparse,
often imbalanced datasets.

A way to handle sparse data is to artificially increase the corpus of training data using
data augmentation methods. For audio signals, a variety of established data augmentation
methods have been proposed in previous work [118]. There are two main differences for
audio augmentation methods as they either work with raw waveform data, such as adding
noise, pitch shifting, time stretching, etc., or are applied to audio spectrograms directly,
such as SpecAugment [81]. First applications of using generative neural networks for the
augmentation of audio data, e.g. for speech [13] or environmental audio data [61], have
been proposed in the literature.

3.5.1 Contribution: Conditional Generative Data Augmentation
for Clinical Audio Datasets (MICCAI 2022)

Summary: In the clinical context, the creation of large-scale datasets requires access to the
realistic environment, e.g. the operating room, and medical regulations impose strict rules
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on the usage of personalized data. As deep learning-based systems require large amounts of
data for training and good generalization, data augmentation is an essential tool to artificially
enlarge the amount of training data and stabilize the training process. For the augmentation
of audio data, classical data augmentation methods are either applied to raw audio, such as
adding noise, time stretching or pitch shifting the signal, or spectrogram-based, such as time
and frequency masking applied directly to spectrograms. These methods, however, do not
necessarily generate samples that could be captured in a real environment. In this work, we
propose a method based on a conditional generative adversarial network to synthesize samples
from the learned data distribution of a dataset. We evaluate the proposed augmentation
method on a dataset captured in the operating room which contains sound samples of typical
surgical actions in Total Hip Arthroplasty. The method’s ability of generating realistic class-
conditioned samples is shown and the quality of the augmentations is evaluated in terms
of classification performance of a ResNet-18 classifier trained on the proposed dataset. We
compare the method with classical and established augmentation methods and show that
the proposed method achieves superior results. The presented augmentation method has
therefore great potential to improve the data bottleneck for the training of medical acoustic
sensing systems.
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Abstract. In this work, we propose a novel data augmentation method
for clinical audio datasets based on a conditional Wasserstein Generative
Adversarial Network with Gradient Penalty (cWGAN-GP), operating on
log-mel spectrograms. To validate our method, we created a clinical audio
dataset which was recorded in a real-world operating room during Total
Hip Arthroplasty (THA) procedures and contains typical sounds which
resemble the different phases of the intervention. We demonstrate the
capability of the proposed method to generate realistic class-conditioned
samples from the dataset distribution and show that training with the
generated augmented samples outperforms classical audio augmentation
methods in terms of classification performance. The performance was
evaluated using a ResNet-18 classifier which shows a mean Macro F1-
score improvement of 1.70% in a 5-fold cross validation experiment us-
ing the proposed augmentation method. Because clinical data is often
expensive to acquire, the development of realistic and high-quality data
augmentation methods is crucial to improve the robustness and general-
ization capabilities of learning-based algorithms which is especially im-
portant for safety-critical medical applications. Therefore, the proposed
data augmentation method is an important step towards improving the
data bottleneck for clinical audio-based machine learning systems.

Keywords: Deep Learning · Data Augmentation · Acoustic Sensing ·
Total Hip Arthroplasty · Generative Adversarial Networks

1 Introduction

Acoustic signals are easy and low-cost to acquire, can be captured using air-
borne or contact microphones and show great potentials in medical applica-
tions for interventional guidance and support systems. Successful applications
are intra-operative tissue characterization during needle insertion [9] and tissue
coagulation [16], the identification of the insertion endpoint in THA procedures
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[3,20], error prevention in surgical drilling during orthopedic procedures [21] or
guidance in orthopedic arthroscopy procedures [23].

Furthermore, acoustic signals have successfully been employed for diagnostic
medical applications. Exemplary applications include the assessment of cartilage
degeneration by measuring structure borne noise in the human knee during move-
ment [11], the development of a prototype for the detection of implant loosening
through an acoustic sensor system [2], a system for monitoring the acoustic emis-
sions of THA implants [19], or the automated analysis of lung sounds captured
with a digital stethoscope which allows non-specialists to screen for pulmonary
fibrosis [14].

Through recent advances in machine learning research, learning-based meth-
ods have replaced and outperformed classical acoustic signal processing-based
approaches, as well as classical handcrafted feature-based learning approaches
for many acoustic audio signal processing tasks [18]. However, state-of-the-art
deep learning methods require large amounts of training data to achieve supe-
rior performance and generalize well to unseen data, which are often difficult
or infeasible to acquire in a clinical setting. To tackle this issue, the usage of
augmentation techniques is a standard approach to increase the diversity and
size of training datasets. Hereby, new samples can be synthesized by applying
transformations to the existing data, e.g. rotation and cropping for images, re-
placing words with synonyms for text, and applying noise, pitch shifting, and
time stretching to audio samples [28]. Even though these data augmentation
methods improve the performance of target applications, they do not necessar-
ily generate realistic samples which is especially crucial in the medical domain
where reliability is a key factor. One solution to this problem is for example to
exploit the underlying physics for augmentation, e.g. for ultrasound image aug-
mentation [26] which is, however, not applicable for clinical audio data. In the
presented work, we will focus on realistic data augmentation of audio datasets
for medical applications.

Recently, deep generative models, a family of deep learning models, which are
able to synthesize realistic samples from a learned distribution, have been applied
for data augmentation of various data modalities outside of the medical domain.
For the augmentation of audio data, different generative approaches have been
introduced, of which related work to the proposed method is described in the
following section. Hu et al. utilized a GAN to synthesize samples of logarithmic
Mel-filter bank coefficients (FBANK) from a learned distribution of a speech
dataset and subsequently generated soft labels using a pretrained classifier [8].
Madhu et al. trained separate GANs on mel-spectrograms for each class of a
dataset to generate augmentation data [12]. Chatziagapi et al. used the Balancing
GAN (BAGAN) framework [13] to augment an imbalanced speech dataset [1]. A
conditional GAN was employed for data augmentation of speech using FBANK
features by Sheng et al. [22] and for respiratory audio signals based on raw
waveform augmentation by Jayalakshmy et al. [10].

In this work, we introduce a novel augmentation technique for audio data
based on a conditional Wasserstein GANmodel with Gradient Penalty (cWGAN-
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GP) which produces higher-quality samples and is easier to train than standard
GANs [5]. The proposed model operates on log-mel spectrograms which have
been shown to outperform other feature representations and achieves state-of-
the-art performance in audio classification tasks [18]. The proposed model is
able to generate realistic and high-quality log-mel spectrograms from the learned
dataset distribution. We show that our model can be used for two augmentation
strategies, doubling the number of samples and balancing the dataset. While
classical audio augmentation techniques might improve the performance of the
classifier, they do not generate samples that can be captured in a real environ-
ment and might therefore be inconsistent with the real variability of captured
real-world acoustic signals. In contrast, the proposed model is able to generate
realistic samples from the learned distribution of the original data.

To evaluate the proposed framework on realistic clinical data, we introduce
a novel audio dataset containing sounds of surgical actions recorded from five
real THA procedures which resemble the different phases of the intervention.
We thoroughly evaluate the proposed method on the proposed dataset in terms
of classification performance improvement of a ResNet-18 classifier with and
without data augmentation using 5-fold cross validation and compare the results
with classical audio augmentation techniques.

2 Materials and Method

2.1 Novel Surgical Audio Dataset

Coagulation

Insertion Cup Broaching and Insertion Femoral Stem

Sawing

Adjustment Cup

Reaming

Coagulation

Suction Suction

Time

Fig. 1. The classes of the novel clinical dataset resemble the phases of a THA procedure.
Occurrences with drawn through lines indicate intensive usage of the respective surgical
action, dashed lines correspond to sporadic usage.

Figure 1 illustrates the occurrence of the six classes C := {Suction, Coag-
ulation, Sawing, Reaming, Insertion, Adjustment} present in the dataset over
the course of a THA procedure. Please note that ”Insertion Cup” and ”Broach-
ing and Insertion Femoral Stem” were joined into a single class (”Insertion”)
because of the similar acoustic signature generated by hammering onto the
metal structure of the insertion tools for the acetabular cup, femoral broach
and femoral stem implant, respectively. The ”Adjustment” class also contains
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hammering signals that are, however, performed with a screwdriver-like tool
which is used to adjust the orientation of the acetabular cup and generates
a slightly different sound. During opening the access to the area of operation
in the beginning of the procedure, suction and coagulation is employed in-
tensively, whereas in the rest of the procedure both surgical actions are per-
formed sporadically and on demand (indicated through dashed outlines in Fig-
ure 1). All samples were manually cut from recordings of five THA interven-
tions conducted at our university hospital for which we captured audio with
a framerate of 44.1 kHz using a air-borne shotgun microphone (Røde NTG2)
pointed towards the area of operation and video captured from the OR light
camera (Trumpf TruVidia). The captured video was used to facilitate the la-
belling process. We labelled the dataset in a way that audio samples do not
contain overlapping classes and no staff conversations. An ethical approval has
been obtained prior to recording the data in the operating room. The resulting
dataset contains 568 recordings with a length of 1 s to 31 s and the following
distribution: nraw,Adjustment = 68, nraw,Coagulation = 117, nraw,Insertion = 76,
nraw,Reaming = 64, nraw,Sawing = 21, and nraw,Suction = 222. The dataset can
be accessed under https://rocs.balgrist.ch/en/open-access/.

2.2 Data Preprocessing and Baseline Augmentations

Log-mel spectrograms are a two-dimensional representation of an audio signal,
mapping frequency components of a signal to the ordinate and time to the ab-
scissa. They offer a dense representation of the signal, reduce the dimensionality
of the samples, and have been shown to yield superior classification performance
for a wide variety of acoustic sensing tasks [18]. We compute log-mel spectro-
grams of size 64×64 from the dataset samples by applying a sliding window tech-
nique with non-overlapping windows of length L = 16380 samples, a Short Time
Fourier Transform (STFT) hop length of H = 256 samples and nmels = 64 mel
bins using the Python library librosa 0.8.1 [15]. We compute a total number of
3597 individual spectrograms from the raw waveform dataset. The resulting num-
ber of spectrograms per-class is: nspec,Adjustment = 494, nspec,Coagulation = 608,
nspec,Insertion = 967, nspec,Reaming = 469, nspec,Sawing = 160, and nspec,Suction =
899. For the evaluation using 5-fold cross validation, we randomly split the
dataset into five folds on the raw waveform level over all recordings, as the
recording conditions are identical.

To compare the proposed augmentation method against classical signal pro-
cessing augmentation approaches, we implemented the following augmentation
strategies which are applied to the raw waveforms directly. We apply Gaus-
sian noise with µ = 0 and σ = 0.01. We apply Pitch Shifting by 3 semitones
upwards. We apply time stretching with a factor of 1.5. Furthermore, we com-
pare our method with SpecAugment, a widely used approach for audio aug-
mentation in Automatic Speech Recognition (ASR) tasks which applies random
time-warping, frequency- and time-masking to the spectrograms directly [17].
For a fair comparison of all augmentations, we add 100% generated samples for
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each augmentation strategy, respectively. We normalize the data by comput-
ing Xnorm,mel = (Xmel − µ)/σ, where (µ) is the mean and (σ) is the standard
deviation of the entire dataset.

2.3 Conditional Generative Data Augmentation Method

The architectural details of the proposed GAN are illustrated in Figure 2. To
stabilize the training process and improve the generated sample quality, we apply
the Wasserstein loss with Gradient Penalty (GP) as introduced by Gulrajani et
al. [5] which enforces a constraint such that the gradients of the discriminator’s
(critic) output w.r.t the inputs have unit norm. This approach greatly improves
the stability of the training and compensates for problems such as mode collapse.
We define the critic’s loss function as:

LC = Ex̃∼Pg [D(x̃, y)]− Ex∼Pr [D(x, y)] + λ Ex̂∼Px̂
[∥∆x̂D(x̂, y)∥2 − 1)2] (1)

where Pr is the real distribution, Pg is the generated distribution, and Px̂ is
the interpolated distribution. The interpolated samples x̂ are uniformly sampled
along a straight line between real x and generated x̃ samples by computing:

x̂ = ϵx+ (1− ϵ)x̃ (2)

We use the recommended GP weight of λ = 10, a batch size of 64 and
train the discriminator five times for each generator iteration. In order to choose
the stopping point for training, we frequently compute the Fréchet Inception
Distance (FID) [7] which is calculated from features of a pretrained classifier by:

FID = ∥µr − µg∥2 +Tr(Cr + Cg − 2 ∗
√

Cr ∗ Cg) (3)

as a measure of the quality for the generated samples and stop the training
at epoch 580. Hereby, µr and µg represent the feature-wise mean of the real and
generated spectrograms, Cr and Cg the respective covariance matrices. Because
of the structural differences of images and spectrograms, we cannot use an In-
ception v3 network pretrained on ImageNet to compute the FID. Therefore, we
employ a ResNet-18 [6] model pretrained on the proposed dataset, extract the
features from the last convolutional layer, and use these features for FID cal-
culation. The proposed model is implemented with TensorFlow/Keras 2.6 and
trained using the Adam optimizer (LR = 1e−4, β1 = 0.5, β2 = 0.9) in ∼6 hours
on a NVidia RTX 2080 SUPER GPU.

A nonlinear activation function is omitted in the last convolutional layer of
the generator because the spectrogram samples are not normalized in the range
[0, 1]. The mapping layer of the generator employs a dense layer, whereas in
the discriminator (critic) we use repeat and reshaping operations for remapping.
The generator and discriminator have a total number of 1,526,084 and 4,321,153
parameters, respectively. The implementation, pretrained models, and dataset
can be accessed under: https://rocs.balgrist.ch/en/open-access/.
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Fig. 2. The architecture of the proposed model including output sizes of each layer.
The input for the generator is a noise vector of size 1x128 and a class condition. The
generator outputs a spectrogram which is fed to the discriminator together with the
class condition. The discriminator (critic) outputs a scalar realness score.

2.4 Classification Model

To evaluate the augmentation performance of our model against classical audio
augmentation techniques, we analyze the effect of augmentation on the classifi-
cation performance in a 5-fold cross validation experiment using a ResNet-18 [6]
classifier, an architecture which has been successfully employed for clinical au-
dio classification tasks [20,21]. We train the classifier from scratch for 20 epochs
using categorical crossentropy loss, the Adam optimizer (LR = 1e− 4, β1 = 0.9,
β2 = 0.999) and a batch size of 32.

3 Results and Evaluation

In Figure 3, we show a comparison of randomly chosen ground truth and ran-
domly generated samples. The visual quality of the generated samples is com-
parable to the original data and the model seems to be able to generate samples
conditioned on the queried class. By further visual inspection it can be observed
that the synthesized samples contain the characteristics of the original dataset,
e.g. the hammer strokes are clearly visible for the classes ”Adjustment” and
”Insertion”.

The quantitative evaluation of the classification performance using a ResNet-
18 classifier is given in Table 1. We report the mean Macro F1-Score in the
format mean ± std. . We compare training without augmentations and classi-
cal audio augmentation techniques (adding noise, pitch shifting, time stretching,
and SpecAugment [17]) with the proposed method. The cWGAN-GP-based aug-
mentations outperform all classical augmentation strategies when doubling the
samples (+1.70%) and show similar performance (+1.07%) as the best perform-
ing classical augmentation strategy (Time Stretch) when balancing the dataset.
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Adjustment Coagulation Insertion Reaming Sawing Suction

Fig. 3. The top row shows log-mel spectrograms of random samples for each class
present in the acquired dataset, the bottom row shows log-mel spectrograms generated
by the proposed model for each class, respectively.

Augmentation
Technique

Mean Macro
F1-Score

Relative
Improvement

No Augmentation 93.90± 2.48%
Add Noise 92.87± 0.99% −1.03%
Pitch Shift 94.73± 1.28% +0.83%
Time Stretch 95.00± 1.49% +1.10%
SpecAugment [17] 94.23± 1.14% +0.33%
cWGAN-GP (balanced) 94.97± 1.71% +1.07%
cWGAN-GP (doubled) 95.60± 1.26% +1.70%

Table 1. Results of the proposed model in comparison to classical audio augmentation
techniques.

4 Discussion

The proposed augmentation method is an important step towards improving the
data limitations by generating synthetic in-distribution augmentation data for
clinical applications for which it is often expensive or even impossible to gather
large amounts of training data. We showed that our augmentation strategy out-
performs classical signal processing approaches and has the capability to balance
imbalanced datasets to a certain extent. To balance imbalanced datasets, any
arbitrary number of samples can easily be generated for each class with the pro-
posed approach which is not possible using classical signal processing techniques
in the same way. However, for the given dataset and configuration, doubling the
number of samples using the proposed augmentation method leads to the best
final classification results. Furthermore, we show that the proposed method out-
performs SpecAugment [17], an established audio augmentation method which
applies time-warping, as well as frequency and time masking to the spectrogram
data directly.

In future work, we want to benchmark the proposed framework with other
generative augmentation models and model architectures, investigate the perfor-
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mance of the proposed approach on more (balanced and imbalanced) datasets
and further optimize our model towards improved classification performance.
Furthermore, it should be investigated how combinations of augmentation tech-
niques influence the resulting classification performance and if it is possible
to maximize the impact of augmentations through an optimized combination
scheme.

The improved performance achieved by the proposed augmentation method
comes at the cost of increased demands on computational power and resources.
While signal processing augmentations are computed in the range of seconds to
minutes, our model requires an additional training step which takes ∼6 hours
for the presented dataset and increases with larger datasets.

Because we created the proposed clinical dataset in a way that it resembles
the phases and surgical actions executed during a real THA procedure, potential
future clinical applications are the prediction of surgical actions from captured
audio signals in the operating room which could be used for workflow recogni-
tion and surgical phase detection. Therefore, we consider the proposed dataset
as an important step towards automated audio-based clinical workflow detection
systems, a topic which has only been studied rudimentally so far [24,27]. The pro-
posed approach is designed to work with spectrogram based audio, which can be
transformed back to the signal domain, e.g. using the Griffin-Lim algorithm [4]
or more recently introduced learning-based transformation approaches, e.g. the
work by Takamichi et al. [25]. We reconstructed waveforms from a few generated
spectrograms using the Griffin-Lim algorithm and could, despite artifacts being
present, recognize acoustic similarities to the original samples for each class, re-
spectively. In future work, the proposed augmentation method could furthermore
be transferred to other medical and non-medical grid-like data domains.

5 Conclusion

In the presented work, we introduce a novel data augmentation method for
medical audio data and evaluate it on a clinical dataset which was recorded in
real-world Total Hip Arthroplasty (THA) surgeries. The proposed dataset con-
tains sound samples of six surgical actions which resemble the different phases
of a THA intervention. We show in quantitative evaluations that the proposed
method outperforms classical signal and spectrogram processing-based augmen-
tation techniques in terms of Mean Macro F1-Score, evaluated using a ResNet-18
classifier in a 5-fold cross validation experiment. By generating high-quality in-
distribution samples for data augmentation, our method has the potential to
improve the data bottleneck for acoustic learning-based medical support sys-
tems.
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3.5.2 Contribution: Improved Techniques for the Conditional
Generative Augmentation of Clinical Audio Data (MICAD
2022)

Summary: As described in the previous publication, data augmentation is an essential tool
for the design of deep learning systems to improve the stability of the training and artificially
diversify the training data. As the previously proposed method based on a conditional
generative adversarial network has been shown to be a promising approach to sample novel
synthetic data points from a learned data set distribution and improve the performance of
audio analysis downstream tasks, we continued the project and improved the architecture of
the proposed model in the work presented below. Therefore, we integrated residual Squeeze
and Excitation modules in the generator of the two-component network and showed that
the proposed modification results an in a reduced redundancy in the latent features of the
model through the analysis of feature correlation. We could improve the Macro F1-Score
of a classifier trained on the previously proposed THA data set by 1.14% in comparison to
the previous method which corresponds to a performance improvement of 2.84% in regard
to training without augmentations. The presented work is a further contribution and an
important step towards improving the problem of data limitations for the design of medical
deep learning-based acoustic sensing systems.
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Abstract. Data augmentation is a valuable tool for the design of deep
learning systems to overcome data limitations and stabilize the train-
ing process. Especially in the medical domain, where the collection of
large-scale data sets is challenging and expensive due to limited ac-
cess to patient data, relevant environments, as well as strict regulations,
community-curated large-scale public datasets, pretrained models, and
advanced data augmentation methods are the main factors for developing
reliable systems to improve patient care. However, for the development
of medical acoustic sensing systems, an emerging field of research, the
community lacks large-scale publicly available data sets and pretrained
models. To address the problem of limited data, we propose a conditional
generative adversarial neural network-based augmentation method which
is able to synthesize mel spectrograms from a learned data distribution of
a source data set. In contrast to previously proposed fully convolutional
models, the proposed model implements residual Squeeze and Excita-
tion modules in the generator architecture. We show that our method
outperforms all classical audio augmentation techniques and previously
published generative methods in terms of generated sample quality and
a performance improvement of 2.84% of Macro F1-Score for a classifier
trained on the augmented data set, an enhancement of 1.14% in relation
to previous work. By analyzing the correlation of intermediate feature
spaces, we show that the residual Squeeze and Excitation modules help
the model to reduce redundancy in the latent features. Therefore, the
proposed model advances the state-of-the-art in the augmentation of
clinical audio data and improves the data bottleneck for the design of
clinical acoustic sensing systems.

Keywords: Generative Neural Networks, Data Augmentation, Audio
Signal Processing, Acoustic Sensing, Computer Aided Medicine
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1 Introduction

Medical acoustic sensing systems utilize air- and structure-borne acoustic sig-
nals that can be captured in a medical environment, such as vibration signals
from surgical tools captured with contact microphones [1] or sounds acquired
with air-borne microphones directly from the area of operation [2], to provide
guidance and support in medical interventions and diagnostics. Because acous-
tic signals can be captured non-invasively and radiation-free, and the systems
are low-cost and easy-to-integrate, acoustic sensing has great potential for the
design of multimodal sensing paradigms for the support of human surgeons,
surgical diagnostics, robotic surgery, or to analyze surgical workflow. Hereby,
acoustic sensing can be used to obtain measurements for applications where
conventional medical computer aided support systems are limited, for example
for the assessment of implant-bone press-fit which is impossible to obtain using
imaging or navigation [1,2] or to complement the limitations of medical imaging
for the assessment of implant loosening [3] or cartilage degeneration [4].

Exemplary applications for the successful application of acoustic sensing in
medical interventions are error prevention in orthopedic surgery by analyzing
drill vibrations to detect drill breakthrough [5], the evaluation of implant seating
during insertion of the femoral stem component in Total Hip Arthroplasty (THA)
[2,1], or the guidance of the insertion process of surgical needles using structure-
borne acoustic signals acquired from the distal end of the medical device [6].
Also in medical diagnostics, acoustic signals have been successfully employed,
e.g. for cough detection [7] or the examination of heart sounds [8].

In the recent years, deep learning-based analysis methods have outperformed
classical signal processing and machine learning techniques for the processing of
acoustic signals [9] which has also been applied in the medical domain in first
use cases and showed promising performance improvements [1,5]. While these
methods are very powerful, they require large-scale high-quality training data
to achieve superior performance and generalization to unseen cases. One of the
main challenges for medical applications, however, is the limited availability of
large amounts of data due to the limited access to the real surgical environment,
expensive acquisition of realistic data, and clinical requirements and regulations.
While in the non-medical domain of audio deep learning research, large-scale
audio datasets, such as the Librispeech dataset for speech recordings [10] or the
UrbanSound-8K dataset for environmental audio [11], are publicly available, the
medical domain is lacking large-scale community data for the development of
medical acoustic sensing systems. Therefore, especially in the medical domain,
data augmentation is a valuable tool to artificially increase the size of a training
data set to increase the diversity of training examples and stabilize the training
process. To address this issue, we published a medical audio dataset in a previous
work which contains acoustic signals recorded in the real operating room during
THA procedures which resemble typical surgical actions such as hammering,
drilling, or sawing [12] and proposed a data augmentation method based on a
conditional generative adversarial network.
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However, we note that several studies report that deep networks tend to
learn redundant features due to the huge model capacity [13] [14] [15]. Channel
attention has been successfully exploited to model channel level dependencies
and facilitate learning of less redundant features [16] [17] [18] and subsequently
improved model performance. Motivated by these observations, in this paper,
we demonstrate that due to the huge number of model parameters, conditional
generative adversarial network (cWGAN-GP [12]) learns redundant features. To
combat this, we introduce a channel-wise attention mechanism in the generator
sub-network through the implementation of Squeeze & Excitation [16] block and
residual skip connections [19]. We provide visualizations that signify the reduced
redundancy and subsequently, improved quality of generated mel spectrograms
samples quantified by a custom version of the Fréchet Inception Distance [20].
As a result, the present work advances the state-of-the-art in data augmentation
for the emerging field of medical acoustic sensing and addresses the important
issue of data limitations for medical deep learning-based systems.

2 Materials and Methods

2.1 Data set, Preprocessing, and Benchmark Augmentations

We use a publicly available data set4 [12] recorded during real Total Hip Arthro-
plasty surgeries and contains sounds of the typical surgical actions that are
performed during the intervention and roughly resemble the different phases of
the procedure. The data set includes 568 recordings with a length of 1 s to 31 s
and the following distribution: nraw,Adjustment = 68, nraw,Coagulation = 117,
nraw,Insertion = 76, nraw,Reaming = 64, nraw,Sawing = 21, and nraw,Suction =
222.

We compute mel spectrograms, a feature representation for audio signals
that obtains state-of-the-art results for deep learning-based audio signal pro-
cessing systems [9], using non-overlapping sliding windows which results in the
following sample distribution for the entire data set: nspec,Adjustment = 494,
nspec,Coagulation = 608, nspec,Insertion = 967, nspec,Reaming = 469, nspec,Sawing =
160, and nspec,Suction = 899. Mel spectrograms provide a compact representa-
tion, capture time- and frequency-domain aspects about a signal and can be
computed from a raw waveform by first computing the Short-time Fourier Trans-
form (STFT) X and then filtering the resulting spectra using a triangular filter
bank spaced evenly on the mel scale [21] to compute the mel spectrogram Xmel.
All spectrograms computed within the present work have dimensions 64 × 64
and are normalized using the formula Xnorm = (Xmel − µ)/σ where µ is the
mean and σ is the standard deviation computed over the entire data set.

A number of data augmentation techniques for acoustic signals have been
proposed in prior research, among them classical raw signal based methods like
adding noise, time stretching, and pitch shifting, as well as spectrogram-based
methods, e.g. SpecAugment [22]. Furthermore, we compare the results of the

4 The data set can be obtained from: https://rocs.balgrist.ch/open-access/
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proposed data augmentation framework with the results reported in our previous
work [12] in which a standard convolutional conditional generative adversarial
network with Wasserstein Loss with Gradient Penalty regularization [23] was
employed.

2.2 Proposed Data Augmentation Method

The architecture of the proposed GAN’s generator is depicted in the Figure
1. It consists of 4 convolutional upsampling blocks followed by a squeeze-and-
excitation block with a residual connection, a technique originally proposed in
by Hu et al. [16]. The Squeeze and Excitation block consists of a global average
pooling layer, which allows to squeeze global information to channel descriptors,
a re-calibration part, which acts as a channel-wise attention mechanism and
allows to capture channel-wise relationships in a non-mutually-exclusive way.
The last operation scales the input’s channels by multiplying them with the
obtained coefficients. The Squeeze and Excitation mechanisms adds two fully
connected layers with a ReLU activation function in between and a sigmoid
function applied in the end as shown in the equation 1.

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)) (1)

Here the variables W1 and W2 have the dimensions (Cr × C) and (C × C
r ),

respectively, σ is the sigmoid function and δ refers to a ReLU activation. The
value of r is a hyperparameter and for our method it was chosen equal to 16 in
an empirical manner.

Mapping

8x8x256

16x16x128

32x32x64

Upsampling + Conv2D + Batch Normalization + Leaky ReLu Class condition Sampled Noise

4x4x256

128

6

64x64x1

(no activation)

Global Average Pooling 2D Score computation

1x1x256 1x1x256

SE-Block

Scale Residual connection SE-Residual block

SE-Residual Block

Fig. 1. The schematic illustrates the structure of the proposed SE-ResNet generator
for the generation of synthetic mel spectrograms.

The generator has an overall of 1, 537, 316 parameters. For the discrimina-
tor we use a fully convolutional network architecture with a total of 4, 321, 153
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parameters analogous to our own previous work [12]. Both the generator and
discriminator employ the LeakyReLU non-linear activation function throughout
the whole network structure. As a loss function the Wasserstein Loss with Gra-
dient Penalty (GP) was chosen with GP weight equal to λ = 10. For both the
generator and the discriminator, we utilized the Adam optimizer with a learn-
ing rate of λ = 5 × 10−4. The discriminator was trained for 5 extra steps per
epoch. The implementation and training of all reported results were done using
Tensorflow/Keras 2.6 using a Google Cloud instance running a single NVIDIA
T4 GPU.

The determination of when to stop the training process is notoriously difficult
for the training of GANs. To assess the quality of the generated samples, we
repeatedly compute a custom version of the Fréchet Inception Distance [20]
which is computed based on the features of the last convolutional layer of a
ResNet-18 [19] pre-trained on the THA data set published in [12]. The training
process is stopped when the lowest FID is observed which is computed using the
equation 2, where µr and µg is the feature-wise mean of the real and generated
spectrograms, Cr and Cg are the covariance matrices.

FID = ∥µr − µg∥2 +Tr(Cr + Cg − 2 ∗
√

Cr ∗ Cg) (2)

2.3 Classifier for Evaluation

For the evaluation of the proposed improved data augmentation method we em-
ployed a ResNet-18 classifier as previously reported in [12] which is a standard
convolutional neural network architecture for spectrogram-based audio classifi-
cation tasks and has been shown to achieve state-of-the-art results in medical
acoustic sensing applications [1,12]. To be able to compare the results presented
within this work with the previous results, we augment 100% synthetic samples
for each class present in the data set. The classifier was trained for 20 epochs
using 5-fold cross-validation technique. We used categorical cross-entropy loss
with the Adam optimizer and the following hyperparameters: learning rate =
10−5, β1 = 0.9, β2 = 0.99

3 Results

In order to visually compare the quality of the proposed model, we present
per-class randomly selected ground truth data, generated spectrograms from
the proposed model, and synthetic spectrograms generated from the previous
augmentation framework [12] in figure 2.

We stopped the training by frequently monitoring the quality of the generated
samples through the computation of the FID as described in equation 2 and
selected the best model with the lowest FID score which was subsequently used
to augment the data set by doubling the number of samples for each class, the
best performing augmentation strategy identified in previous work. We report the
mean Macro F1 score over a five-fold cross validation experiment in the format
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Fig. 2. Log-mel spectrogram of random samples for each class (top row); log-mel spec-
trogram of random generated images of our proposed model (second row); log-mel
spectrogram of the model proposed in the previous work[12] (bottom row). Respective
classes from left to right: Sawing, Adjustment, Reaming, Coagulation, Insertion, Suc-
tion

mean ± standard deviation. A comparison between the classifier performance
with no augmentations, using classical signal- and spectrogram-processing-based
methods, the method proposed in our own previous work [12], and the proposed
model is shown in the Table 1.

Augmentation
method

FID Macro F1-Score
(mean ± std)

Relative
improvement

No augmentation 93.9± 2.5%
White noise 92.87± 0.99% −1.03%
Pitch Shift 94.73± 1.28% 0.83%
Time Stretch 95.0± 1.49% 1.1%
SpecAugment[22] 94.23± 1.14% 0.33%
cWGAN-GP[12] 3.30 95.60± 2.6% 1.7%
Our method 3.01 96.74± 1.03% 2.84%

Table 1. Comparison of different augmentation methods for clinical audio data. All
reported results were obtained by applying the respective augmentation method to
double the number of samples for each class of the public THA sounds data set.

To analyze the redundancy in learned feature space of the proposed model
and compare it with the previously published method, we plot the correlation
matrices computed from intermediate layers of the network to analyze the redun-
dancy of features in figure 3. The results show that the redundancy of features
is significantly reduced by introducing residual Squeeze and Excitation modules
in the generator network.
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Fig. 3. Sample correlation matrices of features learned by the proposed model (left
column) and cWGAN-GP published in previous work [12]. The correlation matrices
are computed from different intermediate layers of the generator network. The plots
represent the correlation in the feature space after the second-last convolutional layer
with dimensions 32x32x64. The significantly lower correlation values obtained after
introducing Squeeze & Excitation block demonstrate the reduced correlation among
features and therefore reduced feature redundancy.

4 Discussion

Deep learning-based acoustic sensing has been shown to have high potential for
clinical applications in diagnostics and interventional guidance, can be used for
multimodal sensing to complement established assistance systems, and provide
data beyond the limits of computer aided diagnostic and interventional sup-
port systems. However, to achieve state-of-the-art results, learning-based sys-
tems rely on big training data sets to generalize well for unseen cases. Obtaining
these large amounts of clinical data is a common problem for the design of deep
learning-based support and guidance systems in medicine. Advanced augmenta-
tion methods have been designed for medical imaging applications [24,25] and a
first method for the augmentation of clinical audio data sets has been proposed
by the authors in previous work [12].

In the present work, the results show that the proposed method outperforms
all previously suggested augmentation methods. In comparison to the first gener-
ative modeling based method for clinical audio data, we outperform the model by
a margin of 1.14% in Macro F1-Score. While this is an incremental improvement,
we could significantly improve the results by only adding a total number of 11232
additional parameters which corresponds to a parameter growth of only 0.74%
for the generator model. Furthermore, the correlation analysis of intermediate
latent features revealed that the introduced residual Squeeze and Excitation
modules reduce the redundancy in the learned features of the generator model.
Therefore, the proposed architecture is a highly valuable extension in the gener-
ator architecture for an improved synthetic generation of mel spectrograms. An
improvement of 0.3 in the reported FID score underlines the capabilities of the
proposed architectural modifications.
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The proposed approach can generate any arbitrary number of samples for the
classes present in the learned data set distribution and could therefore be em-
ployed to address data imbalance issues. However, in the current work we focused
on improving the quality of the generated samples. Therefore, a more thorough
investigation regarding the influence of different augmentation schemes using
conditional generative data augmentation should be subject to future research.

By introducing a generative deep-learning method, the processing time for
generating the augmentations increases in comparison to simple signal processing-
based approaches. To investigate the capabilities of the proposed method, the
model should be trained and evaluated on multiple relevant clinical audio data
sets in future research.

5 Conclusion

In this work, we propose an enhanced generator architecture for conditional gen-
erative learning-based data augmentation of clinical audio data. We outperform
all previously published methods and provide an in-depth analysis of the pro-
posed modifications, residual Squeeze and Excitation modules in the generator
structure. The method is able to increase the quality of synthetically generated
samples by 0.3 in terms of FID score and improves the performance of a classifier
trained on the augmented data set by a margin of 2.84% in terms of Macro F1-
Score. All presented results are evaluated on a public data set containing sounds
of a Total Hip Arthroplasty procedure which was recorded in the real operating
room and evaluated using a 5-fold cross validation scheme. The obtained results
show that the proposed method has great potential to improve the problem of
data limitations for the design of clinical acoustic sensing systems.
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4Summary of Findings

The work presented in this dissertation underlines the potential of acoustic sensing for medical
applications and proposes novel deep learning-based solutions for unmet clinical problems
in orthopedic surgery, i.e. a system for error prevention during hand-held surgical drilling, a
method for the assessment of the optimal insertion endpoint during femoral stem insertion,
and a new approach for the detection of pedicle screw loosening using active excitation
vibration analysis. To address the issue of limited data for the proposed learning-based
methods, we introduce a novel generative model-based data augmentation method that is
able to generate realistic class-conditioned samples from a learned data set distribution and
improve the performance of a deep learning-based acoustic sensing system. The presented
work shows that acoustic signals have great potential for the development of novel multimodal
sensing solutions for medical applications and can provide solutions for problems where
conventional systems, such as surgical navigation or medical imaging reach their limits. The
following paragraphs summarize the main findings of this dissertation.

Clinical Applications | Through a thorough literature review and the evaluation of the
systems proposed within in the scope of this thesis, orthopedics has been identified as a
promising field for the deployment of acoustic sensing systems, as the interaction of physicians
with the musculoskeletal system and surgical tools often creates distinctive audible noise.
In discussions with experienced orthopedic surgeons during the course of the author’s PhD
studies, the physicians reported that they implicitly use the distinctive sounds generated e.g.
by tool-tissue interaction to infer additional information about interventions, such as the
quality of screw hold during screw insertion, the quality of bone during hammering, or the
seating of an implant during insertion. These measurements cannot be obtained only by
conventional computer aided surgery systems but the information is contained in air-borne
and structure-borne acoustic signals which can be exploited for the design of medical acoustic
sensing systems. Acoustic sensing solutions have, apart from orthopedic use cases, also been
utilized in first applications outside of the orthopedic field and show great potentials for other
applications, e.g. for soft tissue differentiation in minimally invasive surgery as presented in
the author’s own previous work [78], or needle guidance in soft tissues [38]. Furthermore,
there is still great potential to explore other applications in orthopedics where distinctive
sounds generated through tool-tissue interaction or active excitation of bony structures can be
exploited to design automated acoustic sensing solutions for improved patient care.

Data Requirements | To acquire training data for deep learning-based medical acoustic
sensing systems, it is crucial to access a realistic environment and test the system under
relevant conditions. Therefore, for the evaluation of the methods proposed within this
dissertation, the proposed systems have been evaluated in human cadaveric setups (the
works presented in sections 3.2.1, 3.3.1, and 3.2.2) or tested with real acoustic signals
captured within the operating room at Balgrist University Hospital (the work presented in
section 3.5.1). However, the capturing of data in a realistic medical environment such as the
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operating room requires special considerations to ensure the unhindered execution of the
medical procedure and imposes the need for ethical and regulatory approvals to fulfill all
regulations regarding patient consent and usage of personalized patient data. Furthermore,
human cadaver experiments are associated with extensive preparation, access to specialized
infrastructure, and high financial costs. Therefore, compromises have to be made to evaluate
novel algorithms and solutions on limited data sets. To address this issue, we propose a novel
data augmentation method to artificially increase the size of a limited data set by using a
generative adversarial network to sample new data points from a learned data distribution
and show that our method improves the results, as well as stabilizes the training. Furthermore,
signals of interest often occur scarcely in medical applications, e.g. drill breakthrough events
in relation to regular drilling events which results in the acquisition of imbalanced data sets. To
address this issue, the paper presented in section 3.2.1 employs the focal loss function during
model training to adapt the proposed method to imbalanced data. In this work, we show that
this approach can drastically improve the performance of the classifier in the presence of class
imbalance.

Signal Acquisition | The acquisition of high-quality, low-noise, and relevant acoustic signals
is essential to design acoustic sensing solutions for medical applications. To capture structure-
borne acoustic signals from the area of operation, we developed a custom and modular
contact microphone setup which can be attached to tools or directly to the patient’s or
specimens’ skin surface. Because of its modular structure consisting of a replaceable low-cost
microphone connected via rigid connectors to a pre-amplification stage, the system could
easily be integrated into clinical workflows, but currently does not have medical certification.
Furthermore, the piezo-based contact microphones used in the papers presented in sections
3.3.1, 3.2.2, and 3.2.1 have the advantage of only capturing structure-borne vibrations from
the object that they are attached to, they do not pick up any environment noise. The system is
described in detail in the publication presented in section 3.2.1. Additionally, we developed
a safe setup using a rigid stand with counterweights and a directed condenser microphone
to capture a data set from real THA procedures which is described in publication 3.5.1. The
setup enables a high-quality audio capture from the operating field and was approved for data
acquisition in the operating room by an ethics committee.

Feature Representations | All presented solutions are designed on the basis of mel spec-
trograms which have been identified in previous work as the feature of choice for deep
learning-based acoustic signal processing tasks. Especially in low-data regimes, spectrograms
provide a compact representation while capturing the relevant information and signal charac-
teristics for further analysis. Furthermore, spectrograms are well suited as input feature for
established feature extraction models like convolutional neural networks. This combination
is a solid basis for the development of customized machine learning solutions and network
architectures to address the individual challenges of specific clinical problems.

Open Source | To encourage further research in the direction of acoustic sensing for medical
applications, the availability of code and data is very helpful for other researchers to develop
novel methods based on previous work and benchmark their proposed systems in comparative
studies with previously published work. Therefore, code repositories, data sets and pretrained
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models for the works presented within this dissertation have partially been made publicly
available 1.

Summary | In summary, it can be stated that acoustic sensing has been shown to have
great potential for various medical applications in diagnostic and interventional contexts,
for surgical guidance, surgical error prevention, intraoperative decision support, and to
develop novel sensing paradigms for medical diagnostics. Acoustic signals can be used
complementary to surgical navigation and optical tracking systems, can be employed where
conventional computer aided surgery systems reach their limits, and provide additional
multimodal information about the surgical scene which can be beneficial for open, minimally
invasive, and robotic surgery. They can also be exploited to obtain additional information
in diagnostic contexts, e.g. about the condition of orthopedic implants, complementary to
established methods such as medical imaging.

1https://rocs.balgrist.ch/open-access/
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5Future Directions

Based on the foundation laid by this work, we hope that we can encourage the research
community to further investigate the usage of acoustic signals in the medical domain, extend
and advance the algorithms for audio signal processing, and identify novel and exciting
applications for sound and vibration analysis in medical diagnostic and interventional contexts.
The most promising directions for future research which have been identified within the course
of this dissertation are discussed in the following paragraphs.

Clinical Translation | Most systems proposed in the related literature were developed and
evaluated in experimental setups and controlled lab environments. Some of them, including
the methods developed within the scope of this thesis, have been evaluated in human cadaveric
experimental setups which provides a more realistic environment compared to artificial bone
models or animal specimens. Real data from the operating room or patients was used only in
few projects, e.g. the analysis of joint noise from patients for vibroarthrography as described
in section 1.3.1 or the analysis of air-borne sounds from the operating room during THA
surgery by Goossens et al. [32]. While being a simplified environment, different abstractions
of reality in an experimental setup can be utilized to show the feasibility of a system and
have the advantage of less regulatory requirements and preparation efforts. However, for
the translation of acoustic sensing solutions into clinical use, many additional considerations
have to be taken into account. A major point is the sterilization of the contact microphones
which is crucial when the devices are in contact with the patient anatomy and surgical tools
used in the operating field. To solve this challenge, the design of the contact microphones has
to be improved and adapted towards sterilizability, where the modular design of the signal
acquisition hardware would be beneficial for the integration of a sterilizable device into the
current acquisition setup. As the contact microphones used within our experiments are not
a medical product, additional tests, e.g. electromagnetic interference and risk assessment,
have to be performed to ensure patient safety in every possible situation. Finally, a medical
certification has to be obtained to use the device with real patients in the clinic. For air-borne
microphones, the regulatory considerations are less strict to capture acoustic signals in a
real environment, as they are not in contact with the patient or tools. On the other hand,
they capture additional noise from the room, e.g. noise from other medical devices and staff
conversations which imposes the need to take personalized data protection into account.

Technical Directions | Because deep learning research is advancing at an incredible pace,
future work should constantly integrate and evaluate novel techniques from basic machine
learning research for the design of novel medical acoustic sensing systems. The following
section will give an overview about the most promising short-term directions.

Convolutional neural networks have been extensively used for feature extraction from grid-like
domains like images and also spectrograms for almost a decade and various enhancements,
such as residual connections or Squeeze & Excitation modules, have been proposed in the
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literature which have been shown to improve the performance also for spectrogram-based
audio classification tasks in the works presented within the scope of this thesis. Despite the
fact that these enhanced CNN-based models are powerful feature extractors, novel attention-
based feature extraction techniques like the Vision Transformer (ViT) have recently gained
popularity and have been applied to a variety of problems. However, even though the training
of transformer-based models from scratch usually require large amounts of training data or
large-scale pretraining, first results with optimized ViT-based models have been published that
outperform similar size ResNets [15] without pretraining or extensive data augmentations.
In recently published work, first applications of transformer-based architectures have also
achieved promising results for spectrogram-based audio processing tasks [30, 124]. Also for
sequence-based models like the system proposed in 3.3.1, attention-based sequence modules
have to be investigated for potential performance improvements.

Data Requirements | A main challenge for the application of deep learning-based acoustic
sensing systems in the medical domain is the acquisition of sufficient amounts of relevant and
high-quality data. Because data capture in realistic environments such as human cadaveric
experiments or in the real operating room is associated with extensive effort, cost, and
regulatory matters, data augmentation can be an important tool to artificially enlarge the size
of a training data set to improve the results and generalization of a deep learning-based system.
Even though first promising results have been obtained within the scope of the present thesis
(as described in the publications in sections 3.5.1 and 3.5.2), the proposed data augmentation
method should be further improved and extended, and a thorough comparison with other
augmentation methods and their combination for an optimized data augmentation scheme
should be performed.

All models proposed within the works of the present thesis have been trained from scratch,
as large-scale audio data sets and pretrained feature extractors for spectrogram features are
scarce in comparison to pretrained models for computer vision applications, e.g. models
pretrained on ImageNet [92] which can be utilized for transfer learning-based downstream
tasks with frozen weights or fine-tuning. While there are a few larger audio data sets, like
YouTube-8M [2] or Urbansound-8k [95] publicly available, the medical domain lacks public
large-scale audio data sets which could be utilized by the community to develop new solutions
based on transfer learning. Within the scope of the thesis, first medical audio data sets have
been published or shared with the research community and have already been used by other
researchers for the evaluation of their proposed system [113]. Therefore, future research
should encourage the creation, publication, and curation of large-scale, multi-center data sets
to develop better algorithms and achieve improved generalization through large-scale data
and increased diversity in the data set distribution of medical audio data sets.

Even though methods for the handling of imbalanced data have been identified in the context
of the present thesis, such as using alternative loss functions to specifically address the
problem of class imbalance, future research should address these challenges and provide
novel, improved solutions for limited and imbalanced data.

Outlook | Even though there is already a body of related work for the usage of automated
acoustic sensing systems in a wide variety of medical applications, we are only at the be-
ginning of using structure- and air-borne acoustic signals for multimodal sensing in medical
diagnostics and interventions. There is great potential not only in terms of surgical error
prevention, surgical decision support in computer aided surgery, and multimodal sensing
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for diagnostics. An application where acoustic signals can play an important role in future
is workflow recognition and surgical phase detection where camera views can be blocked
by staff members in open surgery or impaired by smoke in minimally invasive surgery or
water in arthroscopy. Here, acoustic signals can provide complementary information for the
development of multimodal phase recognition systems that can be utilized for a variety of
downstream tasks such as surgical education or skill assessment. We present preliminary
results for the usage of acoustic signals in surgical workflow recognition in section 3.5.1 which
motivates further research in this direction.

Furthermore, we identified smart orthopedic implants as a promising direction for further
research, where an implant could sense a potential implant loosening itself based on the
analysis of structure-borne vibrations with a miniature sensor system integrated into the
implant structure. However, to realize this sensor enhancement, additional challenges such as
the development of a miniaturized and integrated sensor system and the problems of energy
supply and signal transmission have to be solved in future research.

As robotic surgery becomes increasingly important to support surgeons in performing highly
delicate surgical actions and robotic surgery systems will also (partly) operate autonomously
in future, multimodal sensing approaches are an essential building block for robot perception,
where air- and structure-borne acoustic signals can play an important role. The European
research project FAROS1, which is conducted within our group at Balgrist University Hospital
together with partner institutions, follows up on this idea and has the goal of improving the
functional accuracy of robotic surgery through the embedding of multimodal sensing and
physical intelligence into surgical robotic systems.

Finally, we believe that acoustic sensing should be considered as an integral part of not only
future robotic systems, but also in general for intelligent systems, e.g. in Augmented Reality
systems such as Head Mounted Devices (HMDs), to enable these systems to create a better
internal digital representation of the real world through multimodal sensing. The human
hearing is one of our most important senses and connects us to the physical world by informing
us about the situation around us and extending the information we perceive through visual
cues. Sounds communicate with the human brain much quicker than visual information,
are essential for communication, and can alert us about events that happen outside of our
field of view, even during sleep. This analogy underlines the potential of acoustic sensing to
complement established computer vision systems and other sensing modalities as an integral
part for intelligent systems of the future.

1https://h2020faros.eu/, European Union’s Horizon 2020, Grant No. 101016985
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AAbstracts of Publications not
Discussed in this Thesis

Towards a Low-Cost Monitor-Based Augmented Reality
Training Platform for At-Home Ultrasound Skill Development

Marine Y. Shao, Tamara Vagg, Matthias Seibold, Mitchell Doughty

Ultrasound education traditionally involves theoretical and practical training on patients or on
simulators; however, difficulty accessing training equipment during the COVID-19 pandemic
has highlighted the need for home-based training systems. Due to the prohibitive cost of
ultrasound probes, few medical students have access to the equipment required for at home
training. Our proof of concept study focused on the development and assessment of the
technical feasibility and training performance of an at-home training solution to teach the
basics of interpreting and generating ultrasound data. The training solution relies on monitor-
based augmented reality for displaying virtual content and requires only a marker printed
on paper and a computer with webcam. With input webcam video, we performed body pose
estimation to track the student’s limbs and used surface tracking of printed fiducials to track
the position of a simulated ultrasound probe. The novelty of our work is in its combination of
printed markers with marker-free body pose tracking. In a small user study, four ultrasound
lecturers evaluated the training quality with a questionnaire and indicated the potential of
our system. The strength of our method is that it allows students to learn the manipulation of
an ultrasound probe through the simulated probe combined with the tracking system and to
learn how to read ultrasounds in B-mode and Doppler mode.

Journal of Imaging, 8(11), 305, 2022.

HAPPY: Hip Arthroscopy Portal Placement Using Augmented
Reality

Tianyu Song, Michael Sommersperger, The Anh Baran, Matthias Seibold, and Nassir
Navab

Correct positioning of the endoscope is crucial for successful hip arthroscopy. Only with
adequate alignment can the anatomical target area be visualized and the procedure be
successfully performed. Conventionally, surgeons rely on anatomical landmarks such as bone
structure, and on intraoperative X-ray imaging, to correctly place the surgical trocar and insert
the endoscope to gain access to the surgical site. One factor complicating the placement
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is deformable soft tissue, as it can obscure important anatomical landmarks. In addition,
the commonly used endoscopes with an angled camera complicate hand–eye coordination
and, thus, navigation to the target area. Adjusting for an incorrectly positioned endoscope
prolongs surgery time, requires a further incision and increases the radiation exposure as
well as the risk of infection. In this work, we propose an augmented reality system to
support endoscope placement during arthroscopy. Our method comprises the augmentation
of a tracked endoscope with a virtual augmented frustum to indicate the reachable working
volume. This is further combined with an in situ visualization of the patient anatomy to
improve perception of the target area. For this purpose, we highlight the anatomy that
is visible in the endoscopic camera frustum and use an automatic colorization method to
improve spatial perception. Our system was implemented and visualized on a head-mounted
display. The results of our user study indicate the benefit of the proposed system compared
to baseline positioning without additional support, such as an increased alignment speed,
improved positioning error and reduced mental effort. The proposed approach might aid in
the positioning of an angled endoscope, and may result in better access to the surgical area,
reduced surgery time, less patient trauma, and less X-ray exposure during surgery.

Journal of Imaging, 8(11), 302, 2022.

Sonification as a Reliable Alternative to Conventional Visual
Surgical Navigation

Sasan Matinfar, Mehrdad Salehi, Daniel Suter, Matthias Seibold, Navid Navab, Shervin
Dehghani, Florian Wanivenhaus, Philipp Fürnstahl, Mazda Farshad, Nassir Navab

Despite the undeniable advantages of image-guided surgical assistance systems in terms of
accuracy, such systems have not yet fully met surgeons’ needs or expectations regarding
usability, time efficiency, and their integration into the surgical workflow. On the other
hand, perceptual studies have shown that presenting independent but causally correlated
information via multimodal feedback involving different sensory modalities can improve task
performance. This article investigates an alternative method for computer-assisted surgical
navigation, introduces a novel sonification methodology for navigated pedicle screw placement,
and discusses advanced solutions based on multisensory feedback. The proposed method
comprises a novel sonification solution for alignment tasks in four degrees of freedom based
on frequency modulation (FM) synthesis. We compared the resulting accuracy and execution
time of the proposed sonification method with visual navigation, which is currently considered
the state of the art. We conducted a phantom study in which 17 surgeons executed the pedicle
screw placement task in the lumbar spine, guided by either the proposed sonification-based or
the traditional visual navigation method. The results demonstrated that the proposed method
is as accurate as the state of the art while decreasing the surgeon’s need to focus on visual
navigation displays instead of the natural focus on surgical tools and targeted anatomy during
task execution.

arXiv preprint arXiv:2206.15291, 2022
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Towards markerless surgical tool and hand pose estimation

Jonas Hein*, Matthias Seibold*, Federica Bogo, Marc Pollefeys, Mazda Farshad, Philipp
Fürnstahl, Nassir Navab (* equal contribution)

Purpose: Tracking of tools and surgical activity is becoming more and more important in the
context of computer assisted surgery. In this work, we present a data generation framework,
dataset and baseline methods to facilitate further research in the direction of markerless hand
and instrument pose estimation in realistic surgical scenarios.

Methods: We developed a rendering pipeline to create inexpensive and realistic synthetic data
for model pretraining. Subsequently, we propose a pipeline to capture and label real data with
hand and object pose ground truth in an experimental setup to gather high-quality real data.
We furthermore present three state-of-the-art RGB-based pose estimation baselines.

Results: We evaluate three baseline models on the proposed datasets. The best performing
baseline achieves an average tool 3D vertex error of 16.7 mm on synthetic data as well as 13.8
mm on real data which is comparable to the state-of-the art in RGB-based hand/object pose
estimation.

Conclusion: To the best of our knowledge, we propose the first synthetic and real data
generation pipelines to generate hand and object pose labels for open surgery. We present
three baseline models for RGB based object and object/hand pose estimation based on RGB
frames. Our realistic synthetic data generation pipeline may contribute to overcome the data
bottleneck in the surgical domain and can easily be transferred to other medical applications.

International Journal of Computer Assisted Radiology and Surgery, 16, pp. 799–808, 2021

Acoustic signal analysis of instrument–tissue interaction for
minimally invasive interventions

Daniel Ostler*, Matthias Seibold*, Jonas Fuchtmann, Nicole Samm, Hubertus Feussner,
Dirk Wilhelm, Nassir Navab (* equal contribution)

Purpose: Minimally invasive surgery (MIS) has become the standard for many surgical
procedures as it minimizes trauma, reduces infection rates and shortens hospitalization.
However, the manipulation of objects in the surgical workspace can be difficult due to the
unintuitive handling of instruments and limited range of motion. Apart from the advantages
of robot-assisted systems such as augmented view or improved dexterity, both robotic and MIS
techniques introduce drawbacks such as limited haptic perception and their major reliance on
visual perception.

Methods: In order to address the above-mentioned limitations, a perception study was
conducted to investigate whether the transmission of intra-abdominal acoustic signals can
potentially improve the perception during MIS. To investigate whether these acoustic signals

101



can be used as a basis for further automated analysis, a large audio data set capturing the
application of electrosurgery on different types of porcine tissue was acquired. A sliding
window technique was applied to compute log-mel-spectrograms, which were fed to a pre-
trained convolutional neural network for feature extraction. A fully connected layer was
trained on the intermediate feature representation to classify instrument–tissue interaction.

Results: The perception study revealed that acoustic feedback has potential to improve the
perception during MIS and to serve as a basis for further automated analysis. The proposed
classification pipeline yielded excellent performance for four types of instrument–tissue
interaction (muscle, fascia, liver and fatty tissue) and achieved top-1 accuracies of up to
89.9%. Moreover, our model is able to distinguish electrosurgical operation modes with an
overall classification accuracy of 86.40

Conclusion: Our proof-of-principle indicates great application potential for guidance systems in
MIS, such as controlled tissue resection. Supported by a pilot perception study with surgeons,
we believe that utilizing audio signals as an additional information channel has great potential
to improve the surgical performance and to partly compensate the loss of haptic feedback.

International Journal of Computer Assisted Radiology and Surgery, 15, pp. 771–779, 2020

pix2xray: converting RGB images into X-rays using generative
adversarial networks

Mustafa Haiderbhai, Sergio Ledesma, Sing Chun Lee, Matthias Seibold, Phillipp
Fürnstahl, Nassir Navab, Pascal Fallavollita

Purpose: We propose a novel methodology for generating synthetic X-rays from 2D RGB
images. This method creates accurate simulations for use in non-diagnostic visualization
problems where the only input comes from a generic camera. Traditional methods are
restricted to using simulation algorithms on 3D computer models. To solve this problem,
we propose a method of synthetic X-ray generation using conditional generative adversarial
networks (CGANs).

Methods: We create a custom synthetic X-ray dataset generator to generate image triplets for
X-ray images, pose images, and RGB images of natural hand poses sampled from the NYU
hand pose dataset. This dataset is used to train two general-purpose CGAN networks, pix2pix
and CycleGAN, as well as our novel architecture called pix2xray which expands upon the
pix2pix architecture to include the hand pose into the network.

Results: Our results demonstrate that our pix2xray architecture outperforms both pix2pix and
CycleGAN in producing higher-quality X-ray images. We measure higher similarity metrics in
our approach, with pix2pix coming in second, and CycleGAN producing the worst results. Our
network performs better in the difficult cases which involve high occlusion due to occluded
poses or large rotations.
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Conclusion: Overall our work establishes a baseline that synthetic X-rays can be simulated
using 2D RGB input. We establish the need for additional data such as the hand pose to produce
clearer results and show that future research must focus on more specialized architectures to
improve overall image clarity and structure.

International Journal of Computer Assisted Radiology and Surgery, 15, pp. 973-980, 2020

Pivot calibration concept for sensor attached mobile c-arms

Sing Chun Lee*, Matthias Seibold*, Philipp Fürnstahl, Mazda Farshad, Nassir Navab (*
equal contribution)

Medical augmented reality has been actively studied for decades and many methods have
been proposed to revolutionize clinical procedures. One example is the camera augmented
mobile C-arm (CAMC), which provides a real-time video augmentation onto medical images
by rigidly mounting and calibrating a camera to the imaging device. Since then, several CAMC
variations have been suggested by calibrating 2D/3D cameras, trackers, and more recently a
Microsoft HoloLens to the C-arm. Different calibration methods have been applied to establish
the correspondence between the rigidly attached sensor and the imaging device. A crucial step
for these methods is the acquisition of X-Ray images or 3D reconstruction volumes; therefore,
requiring the emission of ionizing radiation. In this work, we analyze the mechanical motion
of the device and propose an alternative method to calibrate sensors to the C-arm without
emitting any radiation. Given a sensor is rigidly attached to the device, we introduce an
extended pivot calibration concept to compute the fixed translation from the sensor to the
C-arm rotation center. The fixed relationship between the sensor and rotation center can be
formulated as a pivot calibration problem with the pivot point moving on a locus. Our method
exploits the rigid C-arm motion describing a Torus surface to solve this calibration problem.
We explain the geometry of the C-arm motion and its relation to the attached sensor, propose a
calibration algorithm and show its robustness against noise, as well as trajectory and observed
pose density by computer simulations. We discuss this geometric-based formulation and its
potential extensions to different C-arm applications.

SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling 2020,
Houston, TX, USA, 2020

Sonification for Process Monitoring in Highly Sensitive Surgical
Tasks

Sasan Matinfar, Thomas Hermann, Matthias Seibold, Philipp Fürnstahl, Mazda Farshad,
Nassir Navab

Surgeons usually have to keep track of many variables during a surgical intervention. This
paper introduces three novel sonification approaches for fluid-related process data monitoring
in the highly sensitive surgical context. From the instantaneous fluid (creation or expenditure)
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rate, a number of feature time series has been computed, including the cumulative fluid
volume or filtered signals, which are in turn used for a set of sonification methods that
structure a composed soundscape, either natural, musical or hybrid in real-time. We present
3 variations of 3 approaches with introductory example videos, each followed by results of
a first user study in search of the preferred/most acceptable auditory representations. The
qualitative evaluation of our method shows the potentials for further research in this field.

Nordic Sound and Music Computing Conference 2019 (Nordic SMC 2019), Stockholm, Sweden, 2019
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