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Abstract

Optimizing program code is an essential process for High-Performance Computing and
in general. Due to a trend in the last years of employing graphics cards as accelerators
for systems and due to a universal gain of the importance of GPUs, optimizing GPU
code is crucial in order to achieve the best possible performance of a GPU program.
The optimization process works best with fundamental background knowledge about
the GPU(s) and their structure on which the program will be executed. However, a
lot of the relevant information especially regarding the overall memory structures is
not or only vaguely documented. For this purpose, this thesis presents the design and
implementation of a tool to capture the memory topology of GPUs. This work only
considers the GPUs of Nvidia whereas AMD or other manufacturers are not covered.
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Zusammenfassung

Das Optimieren von Programmcode ist ein wichtiger Prozess für den Bereich des
High-Performance Computing, aber auch grundsätzlich von großer Bedeutung. Gemäß
eines Trends der letzten Jahre, in denen Grafikkarten häufig als Beschleuniger für
Programme und Systeme eingesetzt werden, und aufgrund eines generellen Bedeu-
tungsgewinns von GPUs ist die Optimierung von GPU Programmcode von höchstem
Wert, um die bestmögliche Leistung erreichen zu können. Grundsätzlich funktioniert
der Optimierungsprozess am besten, wenn umfangreiches Hintergrundwissen über
die GPUs, auf denen das Programm laufen wird, bekannt ist. Jedoch sind viele der
nötigen Informationen, besonders bezüglich der Speicherstrukturen und -hierarchien,
überhaupt nicht oder nur unzureichend dokumentiert. Diese Arbeit soll zu diesem
Zweck das Design und die Implementierung eines Hilfsprogrammes darlegen, mit
dem die Speichertopologie von GPUs erfasst werden kann. Dabei beschränkt sich der
Umfang der Arbeit ausschließlich auf GPUs von Nvidia, während Grafikkarten anderer
Hersteller wie AMD von der Arbeit nicht behandelt werden.
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1. Introduction

In the past decade, the usage of Graphics Processing Units (GPUs) as coprocessors has
evolved into a crucially relevant aspect in the domain of High Performance Comput-
ing (HPC). In the TOP500 list of the most powerful HPC-machines, seven of the top
ten machines utilize GPUs as accelerators for their systems [1]. 34 out of the 50 most
well-known HPC-application packages support the usage of GPUs including all top
15 applications [2]. The underlying cause for this trend is the potential for vast and
beneficial performance improvements of HPC-applications by the use of GPUs (e.g. by
factors of 20x or even more [3][4]) which is possible because of the highly parallelized
design of a GPU as well as, consequently, a considerably more accelerated increase
of the computation capabilities (GFLOP/sec) and the memory bandwidth (GB/sec)
compared to conventional CPUs [5, p.19-20].

However, the GPU computation performance increases significantly faster than the
GPU memory system bandwidth. This makes memory access a serious potential bottle-
neck for the overall GPU performance [6]. One of the most common ways to at least
lower this often called "memory wall"-bottleneck is typically to employ a sophisticated
cache system that aims to keep the number of cost-intensive data transfers as low as
possible by adding caches closer to the computation cores in order to have mostly
inexpensive data transfers [7]. Thus, in order to fully exploit the capabilities of GPUs
plus the cache system and to soften this memory bottleneck at best, developers should
be informed about the concrete hardware characteristics - especially the various mem-
ory and cache components - in the most detailed way possible. Unfortunately, the
manufacturers of GPUs prefer to either not share all of the relevant information or to
share only rather unintuitive details about the inner workings of the corresponding
GPUs in huge technical documentation sheets instead of a comprehensible overview of
the memory topology. Some performance and analysis tools include a small fragment
of the relevant information about the memory characteristics of GPUs in its output like
LIKWID [8] although a huge part of the overall topology still remains uncovered. These
tools mainly contain surface information about the GPU in regards of the memory
topology like the main memory size or the L2 Cache size. However, the core infor-
mation about the low-level caches like the L1 Data Cache, Texture Cache, Read-Only
Cache and Constant Cache is still missing.
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1. Introduction

Therefore, the goal of this thesis is to design an approach for automatically gathering
concrete information about every memory and cache component in the GPU, especially
the size and latency. The approach employs a specific microbenchmarking technique
inspired by previous works in the field of microbenchmarking in order to generate
data about the cache-loading behavior of GPUs [9] [10] [11]. Additionally, an extrac-
tion of the relevant information from the data generated by the microbenchmarks is
necessary to receive concrete values for the cache sizes and other characteristics. This
extraction is applied via an algorithm coming from the field of mathematical change
point detection which takes a series of values and analyzes it to obtain the point with
the most significant change in the series. The focus of this work mainly relies on
GPU-devices manufactured by the Nvidia Corporation by primarily using CUDA code
for the implementation of the proposed approach. The tool utilizes a combination of
various CUDA functions together with the microbenchmarking technique followed
by change point detection to create an extended overview of the complete memory
topology.

The second chapter mostly explains theoretical background concerning memory
caches and GPU-related background, then it further depicts in the third chapter the
general microbenchmarking technique as well as the change point detection algorithm
and other topics relevant to the overall proposed design. The fourth chapter gives a
detailed insight into the actual implementation of the tool. In the fifth chapter, the
results for all tested GPUs are presented and the remarkable details of the results are
highlighted. The sixth chapter contains an outlook on how the tool can be further
extended by bandwidth data, instruction cache information or other matters. Previous
research that is partially related to this work or the goal of this work - to gain more
insight into the GPU-system in general - is illustrated in chapter seven. The final
chapter concludes the thesis and reviews the overall outcome of the executed work.
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2. Background

The tool combines techniques of microbenchmarking with change point detection on
multiple caches of the GPU. Consequently, this chapter outlines briefly the theoretical
background of cache functionality followed by a clear explanation of the hard- and
software perspective on Nvidia GPUs.

2.1. Cache

2.1.1. General

A significant part of the memory system of a GPU consists of multiple caches, hence
this section describes the basic functionality of a cache and some of its essential
characteristics. Fundamentally, a cache functions as an additional buffer between a
processing unit and a main memory component. The most important feature of a cache
is the considerably faster loading time of data that is stored in the cache compared to
data that is only stored in the main memory. Whenever the processing unit calls a load
instruction, first the cache is asked to return the requested data. If the data is cached,
the data is loaded from the cache (cache hit). If the data is not cached the request is
forwarded further to the main memory (or higher-level caches). Then the data will be
loaded from the main memory and stored in the cache for future demands (cache miss).
One major drawback - but at the same time requirement for caches - is the significantly
smaller size in comparison to the main memory. This is necessary because the lower
loading time of data originates from the reduced size of the cache, which makes it
much easier and faster for the cache controller to find data in the cache and to send it
back to the processing unit. In order to increase the number of cache hits and thus, the
efficiency, most caches use principles of locality, especially two types. Temporal locality
operates on the observation or assumption that previously required data is often reused
at some point of the program and is therefore kept in the cache as long as possible.
Spatial Locality assumes the prospective usage of data that is close to already referenced
data and tries to cache it before the first actual usage [12] [13] [14] [15] [16].

3



2. Background

2.1.2. Cache Associativity

The structure of a cache highly depends on its desired associativity but in general a
cache with size C is structured into m cache sets, which contain n cache lines. The
higher the associativity of a cache gets, the more complex will be the hardware to
support it. Maximum associativity of a cache or a fully associative cache means, every
location of the main memory can be mapped to and the corresponding data can be
cached into every cache line of the cache. Consequently, a fully associative cache
consists of one cache set with lots of cache lines. A slightly more restricted version is
the k-way set-associative cache. Here each cache set contains exactly k cache lines. A
location of the main memory can only be mapped to one specific cache set. The most
restricted but concerning hardware simplest version is the direct mapped cache with only
one cache line per cache set. Thus, each location of the main memory directly maps to
one specific line of the cache [12] [13] [14] [16].

2.1.3. Cache Replacement Policy

Assuming a cache is completely empty at the beginning of a program (or during the
startup of the system), once a program starts to request data from the memory, the
request first tries to load the required values from the cache. Subsequently, due to
an unoccupied cache cache misses are produced, also known as cold cache misses or
compulsory cache misses. Those cannot be prevented. Eventually, as soon as the cache
and its cache sets are filled after lots of memory requests the cache starts to have cache
misses as a result of an "overflowed" cache (or cache set). These cache misses are
called conflict cache misses, if a cache miss would have not occurred with a different
cache structure (e.g larger cache sets) or capacity cache misses, if a cache miss would
have occurred despite the internal cache structure (e.g a program loads 600 KiB data
and the cache size is 300 KiB). Regardless of the exact type of miss, each cache uses a
definitive cache replacement policy, which regulates how these cache misses are resolved
by removing data from the cache and moving the requested data into the cache. The
overall goal of the cache replacement policy is ideally to remove data that is not going
to be used anymore in order to keep the number of cache hits as high and the number
of cache misses as low as possible and thus, guaranteeing the best efficiency for the
cache. Popular replacement strategies among many others are:

• Round-Robin: Uses an index pointer to select the cache line to be removed. After
the cache replacement, the pointer is set to point to the next cache line or it is
reset to the first cache line if the pointer reached the end of the cache set.

• Least Frequently Used LFU: Replaces the cache line that was referenced the fewest
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2. Background

number of times.

• Least Recently Used LRU: Replaces the cache line that was not referenced for the
longest time compared to all other lines in the cache set.

It is worth mentioning that in real examples the applied replacement strategy is
often a variation or modification of the above policies (Time aware LRU, LFU-aging,
etc.) with the same principle. Since the area of cache replacement policies is highly
researched, more information about it can be found at [13] [14] [16].

2.2. Graphics Processing Unit

Principally, the structure and workflow of modern GPUs are very similar regardless
of the manufacturer. Nonetheless, this thesis uses terminology that is used for Nvidia
GPU-devices, since its focus is exclusively on GPUs of Nvidia. The corresponding terms
for the other manufacturers can be found in 2.2.1 Terminology (other manufacturers).

2.2.1. Terminology (other manufacturers)

Table 2.1.: Terminology - Computation Resources

Nvidia Streaming Multiprocessor CUDA Core

AMD Compute Unit Stream Processors
Intel Execution Unit or Xe Vector Engine Hardware Threads

2.2.2. Structure

The structure of a GPU is fundamentally different from a CPU. In order to fulfill
its needs of heavily parallelized computations, a GPU consists of considerably more
computation cores, which are able to run instructions in parallel. The basic architecture
is to be described by reference to the following simplified example of a Nvidia GPU
microarchitecture (See Figure 2.1 Exemplary GPU architecture). The typical Nvidia
GPU consists of a huge number of Streaming Multiprocessors (SMs) that are able to
work independently from each other. The SM can be considered a single SIMT-unit
(Single Instruction Multiple Threads). So it can execute one instruction in parallel on
lots of threads [17]. The SMs load data from the main memory of the GPU, which is
also called Video RAM or VRAM, and are able to make use of an intermediate second

5



2. Background
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Figure 2.1.: Exemplary GPU architecture
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2. Background

level L2 Cache. The L2 Cache is usually the largest cache in a GPU. The SM (See
Figure 2.2 Exemplary SM-internal architecture (Kepler)) comprises a huge amount of
so-called CUDA Cores, which normally contain an Integer Arithmetic Logical Unit and a
Floating Point Unit [18] [19] [20, p.6-9]. These cores have access to additional caches and
shared memory inside the SM. In terms of memory each SM contains:

• Register File

• L1 Data Cache

• Texture Cache

• Read-Only Cache

• Constant Cache

• Instruction Cache

• Shared Memory

The Register File is a collection of lots of 32-bit registers. It contains general purpose
registers that can be arbitrarily used by the cores, special purpose registers that hold
individual values such as the thread id (threadIdx.x) of a thread or the current clock
cycles (clock-register) and predicate registers that can control if specific instructions
will be executed or not [22].

The L1 Data Cache is an additional data load and store layer between the cores and
the L2 Cache. Note that the physical L1 Data Cache is often the same cache that is
used for texture caching and read-only data caching. In addition, some GPUs do not
support the caching of global loads into the L1 Data Cache (e.g. some Kepler-GPUs [23,
Ch.1.4.4.2]).

The Texture Cache is the cache that is operated on while using the two available
texture interfaces (Texture Reference and Texture Object) for loading data. The texture
cache is read-only during a kernel call. This indicates the cache is not kept coherent
during the execution of a kernel. If the index of a texture is modified and afterwards
loaded within the same kernel call, the behavior and the loaded data are undefined [24,
Ch. 2.3] [25] [26].

The Read-Only (Data) Cache is a cache, that is kept in read-only mode during a kernel
call just the same way as the texture cache is operated. Therefore, the Read-Only Cache

7



2. Background

Figure 2.2.: Exemplary SM internal architecture (Kepler) [21]
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2. Background

is mostly the same physical cache as the Texture Cache [23, Ch. 1.4.4.3].

The Constant Cache is a cache for values that are constant during the kernel execution.
The difference between constant cache and read-only cache is, that it is possible to
write back to the read-only cache even if the changes are propagated only after the
current kernel has finished. It is not possible to write back to the constant cache during
the kernel execution. One important difference between the Constant Cache and the
other caches is, how cache accesses are handled. If threads access different addresses of
the Constant Cache these accesses are serialized. As a result, the more often unique
addresses are accessed by the threads the slower is the overall loading process. Thus,
the Constant Cache is most efficient when all threads access the same address at the
same time [27, Ch. 9.2.6].

The Instruction Cache stores instructions that will be executed in the future. Hence, it
ensures a speed-up for the instruction fetch of the execution cycle (Instruction Fetch
-> Instruction Decode -> Execute -> Write Back). This cache is barely covered by this
work, only theoretically in 6.2 Instruction Cache.

The Shared Memory is a small memory piece that can be accessed by all cores within
a SM [24, Ch. 3.3]. With this memory, the cores can collaborate with each other and
cooperatively calculate results in a more optimized and faster way.

Overall it is noteworthy, that some microarchitectures or their corresponding SM-
internal architectures contain caches that are split up into two or more parts. As an
example, the Maxwell microarchitecture has officially a 24 KiB cache that is used as
L1 Data, Texture and Read-Only Cache. This cache is split up into two 12 KiB caches
physically (See Figure 4.18 SM-internal architecture for Maxwell).

2.2.3. CUDA Model

While the last chapter covered the GPU mainly from the hardware perspective, this
chapter describes the software perspective on the GPU. Nvidia GPUs can be used
by developers for general purposes via the CUDA-interface (Compute Unit Device
Architecture) or the corresponding CUDA SDK, respectively. CUDA code is very close
to C/C++ code, with only a few additional modifiers. In order to utilize the GPU as a
developer, a function must be declared as a kernel function, which can be done via the
declaration specifier __global__ in front of the function name as in:

__global__ void kernel_func (int* data);

9



2. Background

Figure 2.3.: The CUDA grid concept [28, Ch.2.2]

The kernel function is then executed by calling it with a grid specifier that defines
how many threads and thread blocks will run on the GPU. Conceptually, the grid (See
Figure 2.3 The CUDA grid concept) consists of a fixed number of blocks, which are
mapped to a specific SM after calling the kernel function. Each block is created with an
equal number of threads inside that are then executed on the cores of the SM [28, Ch.2].
The CUDA grid specifier is a two-dimensional value that is specified for a kernel call
with <<<numBlocks, numThreads>>>. The first value defines the number of blocks of
the grid, whereas the second value determines the number of threads in each block.
Both values can also be two- or three-dimensional. As an example, the following two
lines execute (10 ∗ 5) blocks and overall (10 ∗ 5) ∗ 8 threads:

dim3 blocks(10, 5, 1);
kernel_func<<<blocks, 8>>>();

On the GPU a group of 32 threads (warp) is put together and then executed in parallel.
More warps are created, if the number of threads in the thread block is larger than
32. The execution of a warp is managed by a warp scheduler. Each warp is assigned
statically to one warp scheduler [28, Ch.K]. When the warp executes an instruction, all

10



2. Background

threads execute the instruction unless the instruction is inside of a conditional branch.
Then the warp disables threads that are not in the current branch and only executes the
threads that take the execution path through the branch (this is called Branch divergence
[28, Ch. 4.1]).

The CUDA software perspective fundamentally distinguishes between different types
of possible memory. There is [28, Ch. 5.3.2] [29]:

• Local Memory

• Global Memory

• Texture Memory

• Constant Memory

• Shared Memory

The Local Memory is only accessed for some variables that the compiler automatically
decided to have locally; for example, if the kernel function tries to use more registers
than available (Register Spilling).

Global Memory can be allocated via cudaMalloc() and is a read- and write-memory.
It corresponds to the device DRAM and can be accessed and modified from the device
(GPU) during a kernel execution and from the host (CPU) before the kernel is launched
or after the kernel has finished.

The Texture Memory is read-only memory during a kernel call. Texture data can be
loaded from texture memory via texture fetches. A texture fetch call in CUDA looks as
follows: tex1Dfetch<type>(texture, index);

The Constant Memory is stored in the main memory and constant data can be cached
in the Constant Cache. The values of the constant memory are read-only during a
kernel call. The difference between constant memory and read-only memory is, that it
is indeed possible to write back to read-only memory but the change is propagated
only after the current kernel has finished.

The Shared Memory corresponds to the physical on-chip SM-internal shared memory.

While the local memory is mainly used by the compiler, all other memories will be
used by the tool to determine the size of the corresponding caches or some of their
other properties.

11



2. Background

2.2.4. PTX

Moreover, CUDA provides a lower-level virtual-GPU instruction set architecture, called
parallel-thread-execution (PTX-ISA), which can be used to execute low-level assembler-
like code instructions. It is, however, not the real assembler code that is executed on
the cores but an intermediate layer between the CUDA C code and the real low-level
assembler code, called SASS [30] that is further compiled into a CUDA binary (cubin)
[31]. While it is currently not possible to write and compile SASS-code manually, it is
possible to do that with PTX-code. This can be done either in a separate .ptx-file or via
inlining PTX code within CUDA C/C++ code. Inlining PTX code is realized with the
asm()-statement, which takes the PTX code in a special format as input. The format of
the asm()-statement looks like this [32]:

asm("template-string":"constraint"(output):"constraint"(input));

The first string contains the sequence of instructions that will be inlined, the second
part defines all output variables and the last part specifies the input variables. It is
also possible to add the string "memory" as an additional fourth option to declare that
the sequence of instructions contains (desired) side effects to memory. This tells the
compiler, that no memory optimizations should be applied for these instructions during
the PTX code generation of the whole CUDA code. To stop reordering or optimizations
on the inline PTX code, developers can further use the keyword "volatile". Here is an
example of the usage of inline PTX assembly:

asm volatile("st.u32 [%0], %1;" : "r"(p), "r"(x) :: "memory");

The "%0" placeholder references the first variable or register, respectively, that is
stated after the first colon as output, namely the register that is used for the variable p.
The "%1" placeholder is a reference to the input variable x. The keyword "volatile" is
used to prevent the compiler from optimizing parts of the inline PTX assembly away.
The following PTX instructions will be relevant for the scope of the work:

• mov.u32

• ld.global.u32

• st.shared.u32

• add.u32

12



2. Background

• cvta.to.shared.u64

It can be observed, that the structure of the instructions consists of the type of in-
struction (mov, load, store, etc.) and the type of operands (u32, u64). Some instructions
allow further options like specifying the type of memory, that is used for the load and
store instructions.
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3. Design

This chapter mainly covers the proposed design of the approach for obtaining the
cache sizes. First, a specific benchmark technique is applied for each cache, which
generates lots of loading time data. This data can be used by the change point detection
to deduce/extract the size of a cache. Moreover, this benchmark technique can be
modified to get additional information like the cache line size, the latency, if specific
caches use the same physical cache or how many specific caches are inside of an SM.

3.1. Benchmark Technique

One of the most important essentials of the approach is the application of a specific
microbenchmarking technique that has already been used quite often in the past
to reveal memory characteristics of a system, the so-called Pointer-Chase (P-Chase)
microbenchmark method [9] [10] [11] [33] [34] [35] [36]. In particular, the approach
applies the more advanced Fine-Grained Pointer-Chase (Fine-Grained P-Chase) method
that was proposed and demonstrated for GPUs in [9] and [10].

3.1.1. General P-Chase Method

Fundamentally, the goal of the P-Chase method is to execute an arbitrarily long se-
ries of reads from a specific cache with each read being dependent on the preceding
read, while measuring the elapsed time. It provides such a way by creating an array
whose values are always used as indices of the next read. As an example, in order
to sequentially pass the array, it needs to be filled with incrementing values starting
with the value "1" at the first index (See Array at 3.1 P-Chase Array). Before the
pointer chase starts, the index variable is initialized with zero and is then consecutively
used as the index and target for the reads (See Figure 3.1 Conceptual Code for P-Chase).

1 2 ... n− 1 0

Table 3.1.: P-Chase Array
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1 int j = 0;
2 // Round 1: Fill values in cache
3 for (int i = 0; i < arrSize; ++i) {j = array[j];}
4 // Round 2: Load values and measure time
5 // Measure time before loop
6 for (int i = 0; i < NUMREADS; ++i) {j = array[j];}
7 // Measure time after loop

Figure 3.1.: Conceptual Code for P-Chase

The dependence of each read on the preceding read is necessary in order to avoid
optimizations and reordering of the code by the GPU, which would distort the bench-
mark or even prevent it completely. The P-Chase method consists of two rounds: The
first round is a loop, which loads all values of the array exactly once to avoid cold
cache misses and to have all values in the specific cache. The second round executes a
fixed number of reads from the cache and measures the overall required time to do so.
It starts the benchmark with a rather small array and applies the above steps. Then
the array size is continuously increased until the measured time suddenly rises due to
more and more cache misses for each iteration (See 3.1.3 P-Chase Cache Perspective).
Afterwards, it is possible to conclude the cache size from the array size that was used
in the iteration in which the increase of the measured time started.

3.1.2. Fine-Grained P-Chase Method

The Fine-Grained P-Chase method is an advanced modification of the previous P-
Chase method, since it applies the measurement for each load individually to obtain
more detailed information about the whole benchmark procedure. Specifically, it
modifies the second step to put the time measurement inside of the loop around
the data access (See code at Figure 3.2 Code for concept of Fine-Grained P-Chase).
Unfortunately, it is possible, that the CUDA compiler nvcc decides to reorder the
time measurement instructions and the data access due to the independence of these
instructions. Moreover, it is possible, that the data access and the time measurement
are started concurrently due to the support of "dual-issue"-handling of independent
instructions. This means, two independent instructions can be executed concurrently
on the GPU. As a consequence, it is possible, that the time measurement after the
loading instruction finishes before the load is completed. Hence, it is necessary to
include dependent code between the data access and the second time measurement
to prevent reordering and "dual issue"-handling. Since it records the data accesses for
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3. Design

each index, the resulting data consists of lots of more loading times (for each array size
and each index). Details about the concrete implementation of that can be found at 4.2
Cache Size.

1 for (int i = 0; i < NUMREADS; ++i) {
2 // Measure time before access
3 j = array[j];
4 // Code to prevent reordering
5 // Measure time after access
6 }

Figure 3.2.: Code for concept of Fine-Grained P-Chase

3.1.3. P-Chase Cache Perspective

Figure 3.3 illustrates how the cache is filled during the benchmark if the array size is
smaller than the size of the cache. The left side describes the moment of the benchmark
while the right side shows the cache(lines). The empty cache lines are filled with values
that are not relevant to the benchmark, as they are loaded into the cache by other
programs prior to the benchmark execution. At the beginning (third row), no values
are loaded to the cache. After the first round the cache is filled with the values of the
benchmark (fourth row). Since the array size is smaller than the cache size, there is still
a location in the cache that is unused by the benchmark. The second round will reload
the values from the cache and will not have any cache misses (last row).

Figure 3.4 shows how the cache progresses if the array size is larger than the size
of the cache. The first round loads all the values into the cache (fourth row, fifth row)
until the first conflict/capacity cache miss occurs after which the cache replaces one
cache line according to the replacement policy (marked in red, first cache line without
loss of generality). In the second round the cache tries to reload all values and is
confronted with cache misses for the values that were replaced in the first round (last
row). Consequently, there is at least one cache miss in the second round and the cache
needs to replace another cache line again (marked in red, second cache line w.l.o.g.).
Depending on the cache replacement policy and cache associativity, the second round
will have at least one but more likely a few more cache misses. This increases the
measured time of the benchmark compared to a run with an array size smaller than
the cache size with no cache misses.
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Line 1 Line 2 Line 3 Line 4 ... Line n

Before Benchmark

1 2 3 4 ...After Round 1

After Round 2 1 2 3 4 ...

Cache

Steps
Cacheline

Figure 3.3.: Cache during P-Chase (Array size < Cache Size)
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Line 1 Line 2 Line 3 Line 4 ... Line n

Before Benchmark

1 2 3 4 ... nRound 1 - Before First Miss

Round 1 - After First Miss n + 1 2 3 4 ...

Cache

n + 1 1 3 4 ...Round 2 - After First Miss

Steps
Cacheline

Figure 3.4.: Cache during P-Chase (Array size > Cache Size)
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3.2. Efficient Search for Cache Size

As it can take quite a lot of time to execute the P-Chase benchmark on lots of arrays,
it would be rather inefficient to run it sequentially with a very small array as starting
point and a very huge array as endpoint even if the first or last hundreds of array sizes
do not contain the point of significance. Due to this circumstance it is proposed to
apply a special search to narrow down the region in which the cache size resides. The
search consists of two steps (also illustrated in Figure 3.5 Searching for Cache Size):

1. Search by doubling the array size: It starts with an array size of 1 KiB. Then
it always doubles the array size until a significant change in the loading time
is detected. Thus, it uses the array size 2 KiB, 4 KiB, 8 KiB, etc. It passes to the
second step with the lower boundary, which did not have an increased loading
time and the upper boundary in which the increase was detected.

2. Search binary-wise: In the region that was given by the first step, first check if
the change occurs in the first or second half of the region. It recursively narrows
down the region until the lower and upper boundaries are close enough.

3.3. Change Point Detection

3.3.1. General

Change Point Detection (CPD) is the process of detecting and verifying change points in
a series of input values, often a signal or a time-based series. More formally, a series of
values can be defined S = {x1, x2, ..., xn} with xi being either one- or multidimensional.
The values xi can be seen as the results of their corresponding random variables Xi,
which follow the distribution Fi(X) [37] [38]. The change point is the index i with

F0(X) = F1(X) = ... = Fi−1(X) ̸= Fi(X) = Fi+1(X) = ... = Fn(X)

In other words, the first i− 1 values all follow the same distribution until a sudden
change in a characteristic of the distribution occurs whereby the rest of the values
follow a different distribution. This could mean a shift in the mean, the variance or a
completely other distribution function. The problem formulation of finding one change
point can be generalized into finding an arbitrary number of change points in the series
if this is required. Furthermore, there are other interesting approaches for solving the
problem of CPD including machine learning algorithms or autoregression models [38].
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Cache (25 KiB)

Search Method:

Step 1: Doubling Size

P-Chase 1 KiBno cache miss

P-Chase 2 KiBno cache miss

P-Chase 4 KiBno cache miss

P-Chase 8 KiBno cache miss

P-Chase 16 KiBno cache miss

P-Chase 32 KiBcache miss!

Step 2: Binary Search

32 KiB16 KiB 24 KiB

24 KiB 32 KiB28 KiB

24 KiB 28 KiB26 KiB

26 KiB24 KiB

Output: Region with cache size

Figure 3.5.: Searching for Cache Size
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The two main tasks for CPD are in particular to estimate the most likely change point
i in a series of values (estimation) and to calculate a statistical measure, which is able
to confirm or negate if the estimated change point is a real change point (testing). If
the series consists of multidimensional values, an additional step can be applied at first,
the reduction of the complexity of the problem.

3.3.2. Reduction

There are two possible options in case of multidimensional data. While the first one
stays in the multi-dimensional sphere, which increases the computation complexity,
another way is to reduce the problem of multiple dimensions into a one-dimensional
problem. Simple examples to transform a multidimensional xk

i would be the calculation
of the average or the vector length for each multidimensional value. Another possibility
to reduce the overall complexity of the problem is stated in [39], which first applies
a filtering of the collected values followed by the creation of censored series of values.
By this means, the problem stays multi-dimensional but only considers the values that
are relevant for the CPD. A well-described method to reduce the complexity into one
dimension can be found in [40]. Here the reduction utilizes geometric structures to map
an n-dimensional to a single-dimensional value. It uses a reference vector - for example
the vector 1 = (1, ..., 1)T - to calculate for each n-dimensional value the distance to the
reference vector and the angle between both vectors. Testing of these methods revealed
the geometric mapping works best for the desired purpose since the other ones were
either less accurate (average) or had a considerably higher computation time (censored
time series).

3.3.3. Estimation

Assuming that the problem is a one-dimensional one, the estimation of the most likely
change point can be accomplished in various ways. Since the size of a cache can be
analyzed by exactly one point in the series of values that are obtained by the benchmark,
the estimation can be limited at this point to the finding of exactly one change point.
The optimal change point value can be retrieved via a dynamic programming approach
Opt as described in [41]. Because the proposed estimation algorithm works with a
varying number of change points, it can be simplified due to the limitation of only
one change point. The simplified algorithm can be found at the outlined code section
Algorithm 1: Simplified Opt. Intuitively, it creates for each subvector of the series of
values Su...v a measure of "equivalence" (homogeneity in [41]), the cost-value c(u, v). The
cost function is built in a way such that the cost value gets lower, the more all values in
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a vector are similar. Consequently, it is necessary, to find the index i with

i = argmini [cost(0, i) + cost(i + 1, n)] (3.1)

Algorithm 1: Simplified Opt with only one change point O(T2)

Input: Series of values S with size T
Output: Change Point Index t∗

1 forall (u, v), 1 ≤ u < v ≤ T do
C1(u, v)← cost(u, v, S) ; // cost of each subvector Su...v

end
s← T − 1;
t∗ ← argmin1≤t<s[C1(1, t) + C1(t + 1, s)];
return t∗;

The previously mentioned cost()-function can be built in many possible ways, e.g
the empiricial mean of a subvector [41], maximum log-likelihood-based cost values [42],
rank statistic values [37] or many others.

3.3.4. Testing

After obtaining an estimation for the most significant change point, it is necessary to
verify whether the estimated value is a real change point. Potentially, the change at the
estimated change point could be small enough not to count as a real change point. As
an example, the series of values (1,1,1,1,1.3,1.3,1.3,1.3) has a rather small shift compared
to the series (1,1,1,1,4,5,6,7). With the definition of a change point, this verification step
can be redefined as a hypothesis test with a given sample S, the null hypothesis H0:
"All distributions are equal" and the alternative H1: "There is a change in the distribution" or
more formally:

1. H0 : F0(X) = F1(X) = ... = Fn(X)

2. H1 : There exists an index 0 < i < n with F0(X) = F1(X) = ... = Fi−1(X) ̸=
Fi(X) = Fi+1(X) = ... = Fn(X)

The confidence level α can control how strong the change needs to be to count as a
real change point. One hypothesis test that can be used for the given hypothesis, is the
Kolmogorov-Smirnov hypothesis test, in particular the Two-Sample Kolmogorov-Smirnov
test [41] [43]. This tests if two given samples follow the same distribution, in this case
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the first (sub-)sample from index 0 to the estimated change point i and the second
sample from (i+1) to the end. In summary, this test can be applied with a given
confidence level α and the following procedure [44, Ch.5.4 p.191] [45, Ch.7 p.318-322]:

Let F(x) and G(x) be the empirical cumulative distribution functions (ECDF) of the
first and the second sample. Then the test statistic D can be calculated via

D = maxx |(F(x)− G(x))| (3.2)

Now the critical value dα, corresponding to the given α-value, can be approximated
(on the condition that the samples are sufficiently large) via [46, Ch.5 p.152]:

dα =

√
1
2
· n + m

n ·m · log(α/2) (3.3)

If D > dα holds then the change point can be considered a real change point, as the
change is large enough between the two samples. If D ≤ dα then the change point will
be discarded, as the change is too low.

3.4. Overview

The proposed design of the approach can be described as follows: For a cache that is to
be benchmarked, first the Fine-Grained P-Chase method needs to be applied. Ideally,
the method starts at an array size that is already relatively close to the cache size and
then stops shortly after the cache size is reached. For that reason, the more efficient
search algorithm for the cache size is executed. After the search gives the region in
which the cache size resides, the Fine-Grained P-Chase method is applied sequentially.
This returns the required data that consists of the loading times of each index for every
array size in the region, thus, it is multidimensional. At this point, the CPD is started.
Initially, it reduces the multiple dimensions into a single dimension by applying the
previously described geometric mapping. The resulting one-dimensional series of
values is searched for the most likely change point by executing the Opt-algorithm. The
obtained change point is verified by the two-sample Kolmogorov-Smirnov hypothesis
test, which either verifies the validity of the change point or rejects it. If the change
point is rejected then the region did not contain a valid change point. In such a case the
next step is - depending on the cache - either to widen the region for a larger search or
to use the information of having no existing change point by stating that the cache is
definitely larger than the last size in the region. Moreover, the P-Chase method is also
used to deduce the cache line size, the approximate latency of each memory and cache
and for other benchmarks described in the next chapter.

23



4. Implementation

This chapter explains the details of the concrete implementation of the proposed design.
The first section briefly explains what is receivable by CUDA-interfaces before it goes
into detail about the sizes of each lower-level cache. Afterwards, the implementation
for the latency values is highlighted. Additionally, this chapter contains a section about
how to check which caches share/use the same physical cache and how to obtain the
number of specific caches per SM. The last section explains the possibility of further
optimizations, which should boost the overall execution time of the tool.

4.1. Nvidia/CUDA interface

Before the implementation of the design is described, this section serves as a listing
of which information can already be retrieved via CUDA or Nvidia interfaces directly.
This is what the cudaGetDeviceProperties()-interface makes available:

• Name: the name of the GPU, e.g. Nvidia RTX 2080 Ti

• Compute Capability: the compute capability of the GPU

• Shared Memory per Thread-Block and per SM

• Number of registers per Thread-Block and per SM

• The maximum available constant memory

• The Main Memory size: not provided by cudaGetDeviceProperties() but cudaMemGetInfo()

• The L2 Cache Size

• the number of SMs

• the maximum number of threads per block

• the maximum number of thread-blocks

• the memory clock rate
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• the GPU clock rate

• the memory bus width

In addition, the number of cores in the GPU or per SM can be added with a header
(cuda_helper.h) that is not provided in the CUDA SDK but in a separate Nvidia-
controlled Github repository [47] that was added into the final implementation as a git
submodule. For future releases of new GPUs, it is necessary to get the latest version
via git submodule update --init --recursive. Since the Nvidia NVML library also
contains the querying of the total number of cores in a GPU, it would be possible
to migrate to NVML as well. However, the current implementation still uses the
mentioned header file, since the respective query NVML function is not included in
CUDA 11.4, which is the CUDA version of one of the testing systems. More about the
NVML library can be found at 7.5 NVML (Related tool).

4.2. Cache Size

This section covers capturing the sizes of each cache in the GPU apart from the L2 Cache
size, which is already obtained directly from CUDA. As described in the previous
chapter, the implemented tool first uses a search algorithm to narrow down a region in
which the cache size will be searched for. Afterwards, every array size in the region is
benchmarked sequentially. Both the search algorithms and the sequential benchmarking
make use of the Fine-Grained P-Chase method. All concrete results can be viewed in
chapter 5 Results.

4.2.1. L1 Data Cache

Since some GPUs do not support caching of global loads in the L1 Data Cache, the
tool first evaluates if caching of global loads is supported for that. The evaluation is
done with two runs of the P-Chase benchmark method on a very small array. The first
run applies the P-Chase benchmark and tries to use the L1 Cache for all loads. The
second run does the same with the restriction of only using the L2 Cache for all loads.
Fortunately, this can be controlled since CUDA Version 2.0 by explicitly stating with
two cache operators how global loads are handled [24]:

• ld.global.ca.u32 - .ca: Try to cache global loads at all cache levels (L1, L2)

• ld.global.cg.u32 - .cg: Only cache global loads at L2 Cache
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Essentially, the first run measures the loading time while using ld.global.ca.u32,
whereas the second run measures the time using ld.global.cg.u32. If the L1 Data
Cache supports the caching of global loads, then the loading times of the two runs
are fairly different. But if the L1 Data Cache does not support the caching of global
loads, then ld.global.ca.u32 is only able to utilize the L2 Cache and, consequently,
the loading time of both runs is very much the same. In that case it is not possible
to apply benchmarks on the L1 Data Cache, therefore, it is left out or ignored by the tool.

If caching of global loads into the L1 Data Cache is supported, then the search,
described in 3.2 Efficient Search for Cache Size is executed. Afterwards, the Fine-
Grained P-Chase benchmark is applied sequentially. The creation of the array that is
used by the GPU in each benchmark iteration is executed as illustrated in Figure 4.1
Array Initialization:

1 unsigned int* h_a = (unsigned int*) malloc(sizeof(unsigned int) * N);
2 unsigned int* d_a;
3 cudaMalloc((void **)&d_a, sizeof(unsigned int) * N);
4 for (int i = 0; i < N; i++) {h_a[i] = (i+1) % N;}
5 cudaMemcpy(d_a, h_a, sizeof(unsigned int) * N, cudaMemcpyHostToDevice);

Figure 4.1.: Array Initialization with CUDA

It is worth mentioning, that allocation of memory and copying have extra functions
for CUDA that are required for utilizing the memory of the GPU. The array is then
created just like it was described in 3.1.1 General P-Chase Method with incrementing
values. After that, the kernel function is called, which is implementing the Fine-Grained
P-Chase benchmark. This is essentially structured into two rounds, as it was described
in the design proposal. The first round loads the whole array such that it is stored in
the cache (See Figure 4.2 Round 1: Loading array into L1).

1 unsigned int* ptr; unsigned int j = 0;
2 for (int k = 0; k < array_length; k++) {
3 ptr = my_array + j;
4 asm volatile("ld.global.ca.u32 %0, [%1];"
5 : "=r"(j) : "l"(ptr) : "memory");
6 }

Figure 4.2.: Round 1: Loading array into L1 Data Cache
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Here inline PTX assembly is applied to ensure, that the L1 Data Cache is used for the
caching of those loads, as for some GPUs C-like loads are only cached on the L2 Cache.
For example, it is described in [23], that the caching of global loads can be switched
on for some Kepler devices via compile flag -Xptxas -dlcm=ca, which then results in
all load instructions having the .ca modifier. Consequently, it is possible to drop the
compile flag and to add the .ca modifier for load instructions where it is necessary. The
second round is then executed (See code in Figure 4.3 Round 2: Measuring loading
time). The first line of the inline assembler stores the current clock time before the load

1 for (int k = 0; k < measureSize; k++) {
2 ptr = my_array + j;
3 asm volatile ("mov.u32 %0, %%clock;\n\t"
4 "ld.global.ca.u32 %1, [%3];\n\t"
5 "st.shared.u32 [smem_ptr64], %1;"
6 "mov.u32 %2, %%clock;\n\t"
7 "add.u64 smem_ptr64, smem_ptr64, 4;"
8 : "=r"(start_time), "=r"(j), "=r"(end_time)
9 : "l"(ptr) : "memory");

10 s_tvalue[k] = end_time-start_time;
11 }

Figure 4.3.: Round 2: Measuring loading time

instruction is executed. Due to instruction level parallelism and "dual issue"-handling,
it is necessary to have an instruction after the load that is dependent on the loaded
data. Otherwise, the second mov of the clock register could and most likely will finish
before the load was completed. For this reason, an additional store instruction of the
loaded value to the shared memory is inserted. This workaround of using shared
memory was first used by [10]. The shared memory pointer needs to be set with the
PTX instruction cvta.to, which forms in connection with the modifier shared a generic
address into an address to shared memory (See code in Figure 4.4 Shared Memory
Pointer Conversion).

After the second round, the measured loading time and the loaded indices are copied
back to the host memory with cudaMemcpy and the modifier cudaMemcpyDeviceToHost.
Those values are then further used by the change point detection to extract the cache
size of the cache. For demonstration and debugging purposes, those values are also
used to calculate the average loading time for each array size. The plot of these average
values can be found at Figure 4.5 Average Loading time for L1 Data Cache. In the
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1 __shared__ long long s_tvalue[measureSize];
2 __shared__ unsigned int s_index[measureSize];
3 asm volatile(" .reg .u64 smem_ptr64;\n\t"
4 " cvta.to.shared.u64 smem_ptr64, %0;\n\t"
5 :: "l"(s_index));

Figure 4.4.: Shared Memory Pointer Conversion

plot the average loading time stays equal until the array size goes beyond the size
of 25.5 KiB, which marks approximately the cache size. The plot of the calculated
geometric distances can be seen in Figure 4.6 Geometric Distance. This shows one
of the advantages of using the geometric reductions, as the increase in the distance is
by far the highest at the location of the cache size, whereas the average loading time
increase at the cache size is roughly the same as the other shifts in the average loading
time plot. This helps the CPD quite a lot to correctly identify the cache size.

4.2.2. Texture Cache

The workflow of obtaining the Texture Cache size stays fundamentally the same as
it was described for the L1 Data Cache size. However, there are some important
differences to the L1 Data Cache, which are explained in this section. The creation of
the array stays equivalent to the benchmark for the L1 Data Cache but it is necessary to
bind the array into a texture. This can be done in two ways:

• Texture Reference

• Texture Object

Since the usage of texture references is already marked as deprecated in the latest
CUDA version, it was decided to use texture objects for that purpose. A code fragment
that binds an array to a texture object can be observed at the code in Figure 4.7 Creation
of Texture Object, which utilizes and modifies the example from [48]. This code frag-
ment is executed by the host prior to the kernel invocation. The cudaTextureObject_t
will be given to the kernel as a parameter. In line 4 the resource pointer will be set to
the pointer of the array. In the subsequent lines the type, the size of the type and the
size in bytes are specified. In the last line the texture object is finally created.

During the kernel execution the first and the second round also have important
differences compared to the L1 Cache size implementation (See Figure 4.8 Round 1:
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Figure 4.5.: Average Loading time for L1 Data Cache

29



4. Implementation

25.0 25.5 26.0 26.5 27.0 27.5 28.0
Array Size in KiB

0

250

500

750

1000

1250

1500

1750

Ge
om

et
ric

 D
ist

an
ce

Figure 4.6.: Geometric Distance

1 cudaTextureObject_t tex = 0;
2 cudaResourceDesc resDesc = {}; memset(&resDesc, 0, sizeof(resDesc));
3 resDesc.resType = cudaResourceTypeLinear;
4 resDesc.res.linear.devPtr = d_a; //created with cudaMalloc, cudaMemcpy
5 resDesc.res.linear.desc.f = cudaChannelFormatKindSigned;
6 resDesc.res.linear.desc.x = 32; // bits per channel
7 resDesc.res.linear.sizeInBytes = N*sizeof(int);
8 cudaTextureDesc texDesc = {}; memset(&texDesc, 0, sizeof(texDesc));
9 texDesc.readMode = cudaReadModeElementType;

10 cudaCreateTextureObject(&tex, &resDesc, &texDesc, nullptr);

Figure 4.7.: Creation of Texture Object
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Texture Cache Size and Figure 4.9 Round 2: Texture Cache Size). The most significant
change is the loading of the values, which is done for textures via tex1Dfetch<int>().

1 __global__ void texture_size (cudaTextureObject_t tex,...) {
2 [...]
3 int j = 0;
4 for (int k = 0; k < size; k++) {j=tex1Dfetch<int>(tex, j);}

Figure 4.8.: Round 1: Texture Cache Size

1 for (int k=0; k < measureSize; k++) {
2 start=clock();
3 j=tex1Dfetch<int>(tex, j); s_index[k] = j;
4 end=clock();
5 s_tvalue[k] = (end -start);
6 }

Figure 4.9.: Round 2: Texture Cache Size

The plot of the average loading time can be found at Figure 4.10 Average Loading
time for Texture Cache. It can be observed, that the proposed change point detection is
robust against outliers since it correctly returns the cache size of approximately 25 KiB
for this plot. It does not return the size of 24.25 or 24.6 KiB at which cache misses
occurred randomly a bit before the actual cache size is reached.

4.2.3. Read-Only Cache

For the Read-Only Cache benchmark the code of the preparation prior to the kernel
invocation stays exactly the same as the L1 Data Cache benchmark code. However,
the kernel code has some slight modifications that are mentioned now. First, the array
parameter must be declared as const and restricted in order to use the Read-Only Cache:

__global__ void RO_size (const unsigned int* __restrict__ my_array, ...)

Furthermore, loading the values is adjusted to:

j = __ldg(&my_array[j]);
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Figure 4.10.: Average Loading time for Texture Cache

Please note that the __ldg()-instruction was introduced with CUDA version 3.5,
therefore, the tool is restricted to GPUs with CUDA 3.5 or above. As a consequence,
all microarchitectures since Nvidia Kepler are supported. The plot of the Read-Only
Cache is illustrated at Figure 4.11 Average Loading time for Read-Only Cache

4.2.4. Constant Cache

The Constant Cache can be handled differently than before regarding the Fine-Grained
P-Chase method since the constant memory usage is limited to 64 KiB per CUDA
module for developers [27, Ch.9.2.6]. Therefore, it is possible to copy the corresponding
array to the constant memory pointer in every iteration - similar to the handling for
the other caches. However, an even better option is to assign one 64 KiB array to the
constant memory and then modify the P-Chase to do the jumps to the start of the array
accordingly. The second option also saves many array allocations and array copies. The
array is then directly created at its definition with the additional modifier __constant__:

static __device__ __constant__ unsigned int arr[constArrSize] =
{1, ..., 16047, 0};

The two benchmark rounds have both one additional instruction to jump back to the
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Figure 4.11.: Average Loading time for Read-Only Cache

beginning after the size is reached that is currently measured: j = j % N;
Additionally, it was discovered during testing and confirmed by other papers too, that
there are actually two caches - the Constant L1 Cache and the Constant L1.5 Cache
[33] [34] [49]. It was named Constant L1.5 Cache by these research papers because
the loading time of this cache lies between the L1 Caches and the L2 Cache. This
phrasing (Constant L1.5 Cache) is adopted by this thesis and the corresponding tool.
The benchmark run for the Constant L1 Cache is sequential from the region of a few
bytes until the array size goes beyond 5 KiB because the Constant L1 Cache size is never
above 2 and 4 KiB. The benchmark run for the Constant L1.5 Cache starts afterwards
and runs sequentially until the limit of 64 KiB of constant memory is reached. For the
L1.5 Cache it is possible, that the cache is larger than the limit that Nvidia allows the
developers to use for a CUDA module (64 KiB). Then the change point detection will
reject the most likely change point and the information that the tool returns, is, that the
size of the Constant L1.5 Cache is larger than 64 KiB. A plot of both runs can be found
at Figure 4.12 Average loading time for Constant L1 Cache and Figure 4.13 Average
loading time for Constant L1.5 Cache, respectively.
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Figure 4.12.: Average loading time for Constant L1 Cache
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Figure 4.13.: Average loading time for Constant L1.5 Cache
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4.3. Cache Line Size

The cache line size is obtained by applying the Fine Grained P-Chase benchmark
and subsequently analyzing the distances between the cache misses. Since the Fine
Grained P-Chase method returns the loading time for each index, the cache misses
and their indices in the array can be detected, as the loading times at these indices
are much higher compared to cache hits (See also Figure 4.27 Excerpt of fine-grained
measurement). So the benchmark is started for an array with a size significantly larger
than the measured cache size. Thus, the second round of the benchmark produces
many cache misses consecutively. If a specific index produces a cache miss, then the
next values that can be contained in one cache line are also cached. So the distance
from one cache miss to the next cache miss is the cache line size (multiplied by four
due to the size of an integer). In theory, the line size could also be deduced in a similar
way with cold cache misses (no first round) but testing showed, it is considerably more
stable with the Fine-Grained P-Chase benchmark with both rounds and a larger array.

4.4. Latency

The latency benchmarks follow the same principle but the more general P-Chase method
instead of the Fine-Grained P-Chase benchmark is applied in order not to interfere with
the concrete loading time values. For the L1 Data Cache, the Texture Cache, the Read-
Only Cache, the Constant L1 Cache and the L2 Cache, this means, that a small array is
loaded into the cache in the first round and is then repeatedly loaded in the second
round several times while measuring the whole loop instead of each iteration (See
code at Figure 4.14 Latency of the L1 Data Cache). As a consequence, the additional

1 start_time = clock();
2 for (int k = 0; k < iter; k++) {
3 ptr = my_array + j;
4 asm volatile ("ld.global.ca.u32 %0, [%1];"
5 : "=r"(j) : "l"(ptr) : "memory");
6 }
7 s_index[0] = j;
8 end_time = clock();
9 time[0] = (end_time-start_time) / iter;

Figure 4.14.: Latency of the L1 Data Cache

overhead produced by the shared memory access is removed. The loop overhead is
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also reduced due to optimizations done by the compiler, as it partially unrolls the loop.
Nevertheless, there is additional overhead because of address computation, which can
be revealed by keeping the generated PTX assembly file during compilation. This can
be done via the nvcc compile flag -keep. A small fragment of the generated file can be
found at Figure 4.15 Generated PTX code for latency. In the mul-line the register %r38
holds the value of j. The mul instruction computes the shift amount from the start of
the array to the correct index. The add instruction adds this shift to the array pointer,
which relies in register %rd1. The ld-line loads the value from the computed address.
These three instructions are repeatedly linked together in the PTX file. So overall
the measured latency has an additional overhead of one mul and one add instruction.
During the evaluation of the results, this overhead was exactly eight clock cycles, which
complies with the findings of [34] in which the required cycles of a multiplication
instruction and an addition instruction were benchmarked to be both four cycles. This
creates an overhead of eight cycles since both need four cycles while they are dependent
on the result of the predecessor. Thus, no instruction-level parallelism or "Dual issue"-
handling could be applied. For the other memories and caches (Shared Memory, Main

1 mov.u32 %r28, %clock;
2 [...]
3 mul.wide.u32 %rd33, %r38, 4;
4 add.s64 %rd34, %rd1, %rd33;
5 ld.global.u32 %r39, [%rd34];
6 [...]
7 st.shared.u32 [s_index], %r64;
8 mov.u32 %r45, %clock;

Figure 4.15.: Generated PTX code for latency

Memory, Constant L1.5 Cache), the latency can be measured in the same way with
noteworthy adjustments. First, the shared memory latency is measured likewise but the
array initialization needs to be put to the kernel side, as shared memory arrays cannot
be set by the host side. The adjustments for the main memory and the Constant L1.5
Cache are mainly necessary in order to ensure, that no other caches are used during the
measurement. The main memory latency is measured by using the .cg load modifier
and by removing the first round of the benchmark. Thus, only the main memory is
used if the loads jump over a L2 cache line after each load. Otherwise, the L2 Cache
would be used after one cache miss because the consecutive values would be also
cached in the L2 Cache. Therefore, the array is initialized with an adjusted shift/stride
for the values in the array with the amount of one cache line size (s) (See array at Table
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s s + 1 ... 0 1 ... s− 1

Table 4.1.: P-Chase array for Main Memory latency (s=L2 Cache Line Size)

4.1 P-Chase array for Main Memory latency). As a consequence, a cache line is cached
into the L2 Cache after each load but since the next index is beyond the loaded cache
line, the L2 Cache is never used for the loading process. The Constant L1.5 Latency
requires further adjustments since the values need to be cached, but the Constant L1
Cache needs to be ignored. Hence, the first round of loading the values is necessary.
However, the size of the array that is completely loaded in the first round, needs to
have a size that is double or better a higher multiple of the Constant L1 Cache but still
below the L1.5 Cache Size. During the first round, the second half of the array will then
evict pretty much the whole first part of the array in the Constant L1 Cache. Once the
second round of the measurement starts from the beginning of the array, the first part
of the array is no longer cached in the Constant L1 Cache but still in the L1.5 Cache.
It is again required to add a stride in the array for the Constant L1 Cache line size.
The array size of 4000 integers, 16 kB, was used because there is no Constant L1 Cache,
whose size is larger than 8 kB or even 4 kB. Indeed, the largest measured Constant L1
Cache, according to a benchmark reference [49], is 4 kB large for an architecture (Fermi)
that is not supported by the implemented tool due to its advanced age, as it is also
not supported by the latest CUDA versions. It is worth mentioning, that overall the L2
latency and main memory latency suffer from a small variance, as both latency values
are also dependent on the performance of structures that were not taken into account
by the implementation such as the Translation Lookaside Buffer and Page Table(s).

4.5. Cache Sharing

The next issue that is tackled by the tool, is the question if specific caches are located in
the same physical cache. This is possible for the L1 Data Cache, the Texture Cache and
the Read-Only Cache. For some microarchitectures, these caches are joint together into
one physical cache, which can simply be used in different ways (texture, read-only, read-
write) for various purposes. An example of a microarchitecture in which the L1 Data
Cache and Texture/Read-Only Cache are separated, is the Kepler microarchitecture.
So far, all benchmarks managed to achieve their goal of measuring size and latency
with only one thread and one thread block. This next benchmark will use two threads
and one thread block, as it combines two Fine-Grained P-Chase benchmarks into one
with each thread executing one benchmark. The fundamental idea is to merge the
two benchmark runs in such a way, that there will be cache misses if the two caches
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are located on the same physical cache. If the caches are separated, then there should
not be any cache misses. This can be achieved by sequentially controlling, which
thread runs its rounds within one kernel function. At this point the CUDA branch
divergence handling comes in handy: If a conditional branch is only taken by one
thread, the other thread is deactivated during this program path execution. This is
stated in [28]: "If threads of a warp diverge via a data-dependent conditional branch, the
warp executes each branch path taken, disabling threads that are not on that path". Thus, it

1 if (threadIdx.x == 0) {
2 for (int k = 0; k < L1_N; k++) {
3 ptr = myArray + j;
4 asm volatile("ld.global.ca.u32 %0, [%1];"
5 : "=r"(j) : "l"(ptr) : "memory");
6 }
7 }
8 __syncthreads();
9 if (threadIdx.x == 1) {

10 for (int k = 0; k < TextureN; k++) {
11 j2 = tex1Dfetch<int>(tex, j2);
12 }
13 }

Figure 4.16.: First rounds of both threads

is possible to control the execution order of the rounds of each thread by having each
round in a conditional branch that is only taken by the corresponding thread. This
is realized with a condition on the special register/variable value threadIdx.x, that
identifies each thread in a thread block. Since the thread id values are assigned starting
from zero until the number of specified threads is reached, the conditions can simply
check for equality with zero or one. The execution order can be further controlled by
__syncthreads(), because all threads stop at this function and proceed only, once all
threads have reached this point. The code section shown at Figure 4.16 First rounds of
both threads contains the controlled execution of the first rounds for both threads. First,
thread zero executes the first round of the benchmark on the L1 Data Cache followed
by the other thread, which executes the first round for the Texture Cache. The arrays,
on which these benchmarks are executed, myArray and tex, respectively, are a little bit
smaller than their corresponding cache sizes such that there are no cache misses if the
two caches are separated. If the two caches share the same location, then the second
conditional branch will evict most of the values of the first conditional branch. The
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1 if (threadIdx.x == 0) {
2 // Fine grained second round l1 data
3 }
4 __syncthreads();
5 if (threadIdx.x == 1) {
6 // Fine grained second round texture
7 }

Figure 4.17.: Second rounds of both threads

second rounds are executed directly afterwards with their corresponding fine-grained
measurement similar to their size benchmarks (See code at 4.17 Second rounds of both
threads). Before this kernel function is executed, first the corresponding single-thread
benchmarks for the two caches are applied in order to get reference values. For the
check, if there are cache misses in the two-thread benchmark, it is sufficient to compare
the average loading time values and check for enough deviation from the reference
values and by doing so, the tool can automatically analyze if L1 Data Cache and Texture
Cache and Read-Only Cache use the same physical cache or not.

4.6. Number of Caches Per SM

The subsequent issue was discovered during testing on a GPU with the microarchi-
tecture Maxwell. The size of the Read-Only/Texture Cache was benchmarked to be
approximately 12 KiB. However, according to [28, K.4. Compute Capability 5.x] the
SM of this microarchitecture has a total of 24 KiB. Moreover the SM-architecture for
Maxwell shows an L1 Data/Texture Cache that is split up into two fragments (See
Figure 4.18 SM-internal architecture for Maxwell). Hence, it can be concluded, that
the benchmark only measures/gets the size of exactly one of those fragments. To
overcome this issue, an additional benchmark was created. The idea of this benchmark
is to count the number of cores, which share the same cache within one SM. This can
be accomplished with a technique similar to the benchmark of the previous chapter
which checks if L1 Data, Texture and Read-Only Cache are the same physical cache.
However, now it is necessary to use the same cache and to iteratively check for the
first and second core if they share the same cache, then for the first and third core, etc.
Therefore, it is necessary to use two P-Chase arrays again - one array for each thread.
The first important remark is, that a specific thread block is distributed to exactly one
SM and will stay on it until all threads are finished [28, Ch.4]. Besides, thread ids are
assigned to all threads in a thread block increasingly, starting from thread id 0, which
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Figure 4.18.: SM-internal architecture for Maxwell [50]
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is definitely assigned to the first warp. Moreover, each warp is assigned statically to
one warp scheduler [28, Ch.K]. Thus, it is necessary to execute a kernel with at least
as many threads as there are cores in one SM, as the threads are distributed to warps
and the warps are executed on the cores. It is reasonable to assume, that the threads
are distributed equally over all the cores, as the alternative of a mapping of lots of
threads to one or only few cores would be highly inefficient. However, it could also be
possible, that the warp scheduler assigns the active thread always to the first (available)
core of the warp. Even if this is the case, it does not change/falsify the result, since all
warps that do not share the same cache are detected by this. The resulting number of
threads/cores that share the same cache would then be equivalent to the result if the
threads are equally distributed over the cores.

The implementation consists of two rounds again with the first round loading the
values into the cache. This is shown in the code at Figure 4.19 First rounds (# of
Caches). Here the baseCore variable will always be zero, and the testCore variable

1 if (threadIdx.x == baseCore) {
2 //Load N times from first array with p-chase into L1 Data
3 }
4 __syncthreads();
5 if (threadIdx.x == testCore) {
6 // Load N times from second array with p-chase into L1 Data
7 }
8 __syncthreads();

Figure 4.19.: First rounds (# of Caches)

will iterate from one to a specific limit that is described later. For this benchmark
the __syncthreads()-calls are very important because the threads can be distributed
among different warps, however, branch divergence does not deactivate threads of
different warps. This means, threads of other warps would jump over the condition and
proceed further, which is not intended. So it is necessary to actively block the threads
between each conditional branch. This can be accomplished with the __syncthreads()
function, as it synchronizes all the threads of one thread block, even threads of different
warps. The first rounds are followed by the second rounds with the fine-grained
measurements, which is shown at Figure 4.20 Second rounds (# of Caches). If the
threads - assigned to two cores - share the same cache (either L1 Data, Texture, Read-
Only), the measurements would contain some cache misses again even if the array
sizes are lower than the cache size. If the two threads do not access the same cache
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1 if (threadIdx.x == baseCore) {
2 // Fine grained measurement with first array
3 }
4 __syncthreads();
5 if (threadIdx.x == testCore) {
6 // Fine grained measurement with second array
7 }
8 __syncthreads();

Figure 4.20.: Second rounds (# of Caches)

because the specific cache is split up like in Maxwell, there should not be any cache
misses in the measurements. The code is applied with variable testCore and static
baseCore 0. The deviation of the resulting fine-grained benchmarks from the reference
with only one thread is calculated - again with the average loading time. A plot of
these deviation values is shown for the Texture Caches of Maxwell and Turing (See
Figure 4.21 Texture Cache Maxwell: Disturbance Flow and Figure 4.22 Texture Cache
Turing: Disturbance Flow). It is necessary, to outline the architectures of Maxwell
and Turing, in order to explain both plots. The GPU of the Maxwell plot has 128 cores
per SM and a texture cache that is split up into two caches. The Turing GPU has 64
cores per SM and only one texture cache structure. Therefore, the Turing plot does
not show any change over the thread ids, whereas the Maxwell plot has exactly a
half of the threads with disturbances clearly above another half of the threads, which
consequently means, one half of the cores share the cache, whereas another half of the
cores access a separate cache. Both plots hint another important property, the limit of
the thread id that is tested against thread id 0. It does not use the number of cores
per SM but the maximum number of threads per thread block obtained via CUDA.
Interestingly, it was observed if, as an example, 256 threads are used for the kernel on a
GPU with 128 cores, then the pattern of deviation values repeats after 128, meaning
the sequence of deviation values from 1 to 128 is more or less equal to the deviation
values from 129 to 256. Most likely, this happens because the warps are distributed
equally among the warp schedulers. Using the maximum number of threads per block
was actually a workaround for an issue on the Kepler microarchitecture, which can
be avoided by this. Initially, the implementation used as many threads as there are
cores. Kepler has 192 cores, but its deviation sequence pattern starts to repeat after 128
threads or 256 threads, similar to the Maxwell plot. This indicates, 64 of the cores are
apparently not used for the threads or 64 more threads were used. This could be due
to various reasons: First, it is possible but very unlikely, that the kernel is also able
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Figure 4.21.: Texture Cache Maxwell: Disturbance Flow
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Figure 4.22.: Texture Cache Turing: Disturbance Flow
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to use double-precision units for the threads, which would explain that the deviation
sequence repeats its pattern also after 256 threads since there are 64 additional separate
double-precision units in the SM. Another reason could be, that it is not possible to use
the full 192 cores for a specific cache like the Texture Cache. But most likely, the GPU
is only able to use 128 cores for the threads, since the architecture has only four warp
schedulers. Four warp schedulers result in four parallel warps and as a consequence
128 threads. Now it can be questioned, why the GPU has 192 cores if only 128 can be
used. However, all of the 192 cores could be utilized on two independent instructions,
since the Kepler GPU supports "Dual issue" [51]. That means, the GPU is able to
execute two consecutive independent instructions concurrently. By implication, only
three warps with dual-issue instructions are necessary to use all of the 192 cores. For
the sake of completeness, the plots for the other microarchitectures are subsequently
shown as well.
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Figure 4.23.: Texture Cache Kepler: Disturbance Flow
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Figure 4.24.: Texture Cache Pascal: Disturbance Flow
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Figure 4.25.: Texture Cache Volta: Disturbance Flow

0 50 100 150 200 250
Thread ID (with baseID 0)

18

20

22

M
ea

su
re

 o
f D

ist
ur

ba
nc

e

Figure 4.26.: Texture Cache Ampere: Disturbance Flow
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1 233 274.000000
2 234 66.000000
3 235 66.000000
4 236 66.000000
5 237 66.000000
6 238 66.000000
7 239 66.000000
8 240 66.000000
9 241 273.000000

10 242 66.000000
11 243 66.000000
12 244 66.000000
13 245 66.000000
14 246 66.000000
15 247 66.000000
16 248 66.000000
17 249 273.000000

Figure 4.27.: Excerpt of fine-grained benchmark measurement.

4.7. Possible Performance Optimizations

This section briefly discusses possible optimizations regarding improved efficiency,
that were omitted because of other priorities, more important issues and time conflicts.
Nevertheless, it is described how the efficiency of the benchmarks could be further
improved.

4.7.1. Jumping with Cache Line Size

One Fine-Grained P-Chase benchmark on one array size executes lots of load instruc-
tions, whereas some of the load instructions would be quite unnecessary if the cache
line size of the corresponding cache is obtained before (See Figure 4.27 Excerpt of
fine-grained measurement). Thus, the cache size benchmarks could be improved by
using a stride for the array values to always jump to the next cache line because those
values are the relevant ones, as they determine in the result if the array still fits into
the cache. After modifying it accordingly, this adjustment would save lots of load
instructions for each iteration. How many loads would be saved concretely, depends
on the cache line size of the cache. As an example, for a cache line size of 32 B only
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one of the eight integer values of one cache line needs to be loaded, hence the overall
number of required load instructions per array size is reduced by a factor of 1/8. This
applies to both the first round to fill the cache and the second round to measure the
loading time.

4.7.2. Utilize all SMs

Since most of the benchmarks focus on SM-internal caches, it is possible to further
improve and speed up the benchmarks by encapsulating a number of n iterations/array
sizes, where n is the number of SMs in the GPU. Currently, the cache sizes are obtained
by sequentially applying the benchmark on one thread block with only one thread. For
the improved version one iteration could apply the benchmark for the array size i on
the first SM, the array size i + 1 on the second SM, etc. until the last SM handles the
benchmark for the array size i + n. So instead of using one thread inside of one thread
block and by that one SM for benchmarking the cache sizes, it should be possible
to apply n thread blocks, which should be distributed amongst the SMs in order to
fully utilize the GPU. Consequently, the number of iterations would decrease due to
parallelism by a factor of n. As an example, if the current implementation applies
800 iterations, so the Fine-Grained P-Chase benchmark is currently executed on 800
array sizes, the improved version puts n array sizes in one iteration and executes them
in parallel. This means, for instance with eight SMs, only 100 iterations are required.
Therefore, it would be very beneficial for the tool in terms of performance.
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This chapter outlines the results obtained by the implemented tool.

5.1. Comparison with LIKWID

This section compares the amount of information returned by the implemented tool
with an exemplary performance/analysis tool, LIKWID, that provides only a part of
the relevant information of the memory topology of a GPU. There may be additional
tools, however, they mostly do not offer much more information than LIKWID. The
exemplary output of the LIKWID tool for the GPU topology can be viewed at the
Figure 5.1 The LIKWID GPU-specific output.

In total, LIKWID provides concrete numbers for the size of the main memory and the
L2 Cache size. Moreover, it delivers GPU and memory clock rate as well as the number
of SMs in the GPU in the line with "Number of SPs". At last, it gives the memory bus
width in bits and the shared memory in bytes. Consequently, there are many details
and lots of information that is not covered by LIKWID. In comparison to that, the
implemented tool returns approximate values for:

• On SM-level

– L1 Data Cache: size, cache line size, latency and more

– Texture Cache: size, cache line size, latency and more

– Read-Only Cache: size, cache line size, latency and more

– Constant L1 Cache: size, cache line size, latency and more

– Constant L1.5 Cache: size, cache line size, latency

– Shared Memory: size, latency

• On GPU-level

– L2 Cache: size, cache line size, latency

– Main Memory: size, latency
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1 *********************************************************
2 GPU Topology
3 *********************************************************
4 GPU count: 1
5 ---------------------------------------------------------
6 ID: 0
7 Name: Quadro RTX 6000
8 Compute capability: 7.5
9 L2 size: 6.00 MB

10 Memory: 24.00 GB
11 Clock rate: 1770000 kHz
12 Memory clock rate: 7001000 kHz
13 Number of SPs: 72
14 Max. threads per SP: 1024
15 Max. threads per block: 1024
16 [...]
17 Shared mem per block: 49152
18 Memory bus width: 384
19 [...]
20 --------------------------------------------------------

Figure 5.1.: The LIKWID GPU-specific output
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5.2. Tested GPU devices

For each supported microarchitecture, the tool is tested on one concrete GPU. Listed
below are the existing Nvidia microarchitectures of the past (and future) years.

Architecture Compute Capability Release year Supported1

Tesla 1.x 2006/2007 no
Fermi 2.x 2010 no
Kepler 3.x 2012 yes

Maxwell 5.x 2014 yes
Pascal 6.x 2016 yes
Volta 7.0, 7.2 2017 yes

Turing 7.5 2018 yes
Ampere 8.0, 8.6, 8.7 2020 yes

Ada Lovelace 8.9 End of 20222 not yet
Hopper 9.0 20232 not yet

1 Supported by latest CUDA SDK
2 Unreleased

Table 5.1.: Nvidia microarchitectures

All architectures currently supported by the CUDA SDK are also supported by
the implemented tool. The next table contains information about the GPUs and the
corresponding systems (Processor & OS) on which the tool was tested.
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GPU Architecture Processor OS
Nvidia Tesla1K20c Kepler AMD Ryzen Thread-

ripper PRO 3955WX
Ubuntu 20.04.4 LTS

Nvidia GeForce
840M

Maxwell Intel i7-4710MQ Ubuntu 22.04.01
LTS

Nvidia Quadro
P6000

Pascal AMD Ryzen Thread-
ripper PRO 3955WX

Ubuntu 20.04.4 LTS

Nvidia Tesla1V100 Volta Intel(R) Xeon(R) Plat-
inum 8360Y

SUSE Linux Enter-
prise Server 15 SP3

Nvidia RTX 2080Ti Turing Intel i9-9900K Windows 11 22H2
Nvidia A100 Ampere AMD Ryzen Thread-

ripper 2990WX
Ubuntu 20.04.4 LTS

1 not to be mixed up with the Tesla microarchitecture, as this is also the name of a
series of General-Purpose GPUs

Table 5.2.: Tested GPUs & Systems

The subsequent table shows the specifications for each tested GPU collected from
various Nvidia datasheets and CUDA programming or tuning guides provided officially
by Nvidia [28, Ch. K] [20] [50] [52] [53] [54] [55] [56] [57].

52



5. Results

K20c GF840M P6000 V100 2080Ti A100

Compute
Capability

3.5 5.0 6.1 7.0 7.5 8.0

L1 Data
Cache Size

16 KiB 24 KiB 48 KiB 32 KiB 32 KiB 28 KiB

Shared With1 - TXT, RO TXT, RO TXT, RO TXT, RO TXT, RO

Texture
Cache Size

48 KiB 24 KiB 48 KiB 32 KiB 32 KiB 28 KiB

Shared With1 RO L1D, RO L1D, RO L1D, RO L1D, RO L1D, RO

Read-Only
Cache Size

48 KiB 24 KiB 48 KiB 32 KiB 32 KiB 28 KiB

Shared With1 TXT L1D,
TXT

L1D,
TXT

L1D,
TXT

L1D,
TXT

L1D,
TXT

Constant
Cache Size

? ? ? ? ? ?

Shared
Memory Size

48 KiB 64 KiB 96 KiB 96 KiB 64 KiB 164 KiB

L2 Cache
Size

1.5 MiB ? ? 6 MiB 5.5 MiB 40 MiB

Main
Memory Size

5 GiB 2 GiB 24 GiB 32 GiB 11 GiB 40 GiB

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.3.: Official Specifications for the Tested GPUs

5.3. Results

The results obtained by the tool are shown subsequently for each GPU in a separate
table. Please note that not every piece of information is obtained via benchmarks. Some
of the information is also fetched directly from the CUDA interface. Moreover, Nvidia
has never officially shared the cache line sizes of the caches, however, the obtained
results from the tool comply with the results from here [33] [34].

53



5. Results

5.3.1. Nvidia Tesla K20c - Kepler

The Kepler SM-architecture can be viewed at Figure 2.2 Exemplary SM-internal archi-
tecture (Kepler). In summary, one SM of the Nvidia Tesla K20c GPU consists of 192
cores, 48 KiB for the Texture/Read-Only Cache, which is strictly separated from the
16 KiB L1 Data Cache. It also employs 48 KiB of shared memory, an L2 Cache of 1.5 MiB
and overall 5 GiB of main memory. The 48 KiB of shared memory and the 16 KiB L1
Data Cache can also be configured to vice versa in terms of the memory since the
shared memory and the L1 Data Cache share the same physical memory, yet strictly
separated. The figure of the architecture also shows a Uniform Cache, which could be
the Constant Cache, however, no information regarding this cache is available. The tool
captured the following results:

Size Line Size
(Bytes)

Lat.
(cycles)

Shared By1 #/SM

L1 Data
Cache

16.137 KiB 128 64 - 1

Texture
Cache

12.012 KiB 32 111 RO 4

Read-Only
Cache

12.129 KiB 32 130 TXT 4

Constant
L1 Cache

1.828 KiB 64 50 - 4

Constant
L1.5 Cache

32.813 KiB 256 120 - -

Shared
Memory

48 KiB - 47 - -

L2 Cache 1.25 MiB 32 223 - -

Main Mem-
ory

4.633 GiB - 339 - -

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.4.: Tool Results for Nvidia Tesla K20c

As expected, the tool obtains approximately the correct size for the L1 Data Cache
with about 16 KiB, a measured cache line size of 128 B and a latency of 64 cycles.
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There exists only one L1 Data Cache in the SM. Interestingly, the Texture/Read-Only
Cache seems to be split up into four fragments, as the measured size is 12 KiBand the
measured number of caches per SM is four. This matches the expected total size of
48 KiB. The Texture/Read-Only Cache was measured to have a cache line size of 32 B
and a latency of 111 or respectively 130 cycles. It is also worth mentioning, that this
GPU works as proof, that the benchmarks, that check if L1 Data Cache, Texture Cache
and/or Read-Only Cache are on the same physical cache, function as desired since the
Kepler microarchitecture has a separate L1 Data Cache. This is detected correctly by
the tool. The Constant Caches seem to be approximately 2 KiB or 32 KiB, respectively
and have cache line sizes of 64 B or 256 B. Both were measured to have a latency of 50
and 120 cycles. In general, all obtained Constant Cache results coincide with the results
from [34]. The rather high latency of the Texture Cache and Read-Only Cache is also
remarkable since the size of the cache is relatively small. However, it can be observed
later, that the Texture Cache often has an increased latency compared to the L1 Data
Cache (See 5.3.7 Summary). Furthermore, the shared memory with a size of 48 KiB
seems to be the fastest memory component in terms of latency (47 cycles). Besides, the
L2 Cache was measured to have a line size of 32 B and a latency of approximately 223.
At last, the main memory showed a latency of 339 cycles. Interestingly, the size of the
main memory, which is directly fetched from the CUDA interface, differs a bit from the
officially shared size of 5 GiB. Since the Nvidia tool deviceQuery that is deployed with
the CUDA SDK, also returns the size of 4.633 GiB, this seems to be a documentation
error on the side of Nvidia.

5.3.2. Nvidia GeForce 840M - Maxwell

The Maxwell SM-architecture can be found at Figure 4.18 SM-internal architecture
for Maxwell. Overall, the SM of the Nvidia GeForce 840M has 128 cores and 64 KiB
of shared memory. It further has two subdivided Texture Caches, which can also be
used as L1 Data Caches. Unfortunately, there is no precise L2 Cache specification
regarding the size of this GPU because Nvidia has already removed the corresponding
whitepaper information from their resources. However, this information is fetched
directly from the CUDA interface anyway. The tool captured these results:
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Size Line Size
(Bytes)

Lat.
(cycles)

Shared By1 #/SM

L1 Data
Cache

- - - - -

Texture
Cache

12.129 KiB 32 92 RO 2

Read-Only
Cache

12.129 KiB 32 92 TXT 2

Constant
L1 Cache

2.109 KiB 64 33 - 1

Constant
L1.5 Cache

30.469 KiB 256 86 - -

Shared
Memory

64 KiB - 31 - -

L2 Cache 1 MiB 32 173 - -

Main Mem-
ory

1.958 GiB - 448 - -

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.5.: Tool Results for Nvidia GeForce 840M

As mentioned before, some older GPUs do not support the caching of global loads.
The Nvidia GeForce 840M is an example of such a GPU. Thus, before the L1 Data Cache
benchmarks start, the support of caching of global loads is evaluated and according
to the result, the tool will ignore the benchmarks for this cache. The result for the
Texture and Read-Only Cache is noteworthy: As described in the section 4.6 Number
of Caches Per SM the expected size of 24 KiB is split up into two caches of size 12 KiB.
Consequently, the official shared size is consistent with the result. The Texture/Read-
Only Cache shows a cache line size of 32 B again as well as a latency of 92 cycles. The
Constant Caches did not really change much compared to the previous GPU apart
from a lower latency of 33 (Constant L1) and 86 cycles (Constant L1.5). The shared
memory is with a latency of 31 cycles the fastest memory segment again. The L2 Cache
shows a latency of roughly 173 cycles. However, the main memory seems to have an
increased latency of 448 compared to the last GPU, most likely due to the fact that the
Nvidia Tesla K20c is a GPU for HPC, whereas the Nvidia GeForce 840M is not made
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for that purpose.

5.3.3. Nvidia Quadro P6000 - Pascal

The architecture of the Pascal SM is shown in the Appendix (See Figure A.1 SM-
architecture for Pascal). The Nvidia Quadro P6000 features 64 or 128 cores per SM
depending on the GPU. It also has a shared memory of 96 KiB and a total of 48 KiB for
the L1 Data/Texture/Read-Only Cache. It is further able to use 24 GiB of main memory.
This is the obtained result of the tool:

Size Line Size
(Bytes)

Lat.
(cycles)

Shared By1 #/SM

L1 Data
Cache

24.012 KiB 32 92 TXT, RO 2

Texture
Cache

24.012 KiB 32 85 L1D, RO 2

Read-Only
Cache

24.012 KiB 32 94 L1D, TXT 2

Constant
L1 Cache

2.141 KiB 64 33 - 1

Constant
L1.5 Cache

31.25 KiB 256 94 - -

Shared
Memory

96 KiB - 31 - -

L2 Cache 3 MiB 32 243 - -

Main Mem-
ory

23.877 GiB - 412 - -

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.6.: Tool Results for Nvidia Quadro P6000

The expected size of the L1 Data, Texture and Read-Only Cache (48 KiB) is again
split up into two cache structures of the size of 24 KiB. This was not documented by
Nvidia before. The line sizes and latency stay almost the same as well as the measured
values for the Constant Caches. As before the shared memory has the lowest latency in
comparison with the other memory components.
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5.3.4. Nvidia Tesla V100 - Volta

The Volta architecture is illustrated in the Appendix (See Figure A.2 SM-architecture
for Volta). The Nvidia Tesla V100 GPU has 64 cores, 96 KiB of shared memory and
32 KiB for the L1 Data/Texture/Read-Only Cache, though the shared memory and
L1 Data/Texture/Read-Only Cache can be configured to be partitioned differently for
a total of 128 KiB, e.g. 64 KiB of shared memory and 64 KiB for the L1 Data Cache.
However, the tests were executed on default settings. Moreover, it can use a 6 MiB L2
Cache and a total of 32 GiB of main memory. The tool captures:

Size Line Size
(Bytes)

Lat.
(cycles)

Shared By1 #/SM

L1 Data
Cache

25.629 KiB 32 36 TXT, RO 1

Texture
Cache

24.023 KiB 32 80 L1D, RO 1

Read-Only
Cache

25.629 KiB 32 36 L1D, TXT 1

Constant
L1 Cache

2.078 KiB 64 32 - 1

Constant
L1.5 Cache

> 62.5 KiB 256 105 - -

Shared
Memory

96 KiB - 27 - -

L2 Cache 6 MiB 64 215 - -

Main Mem-
ory

31.748 GiB - 430 - -

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.7.: Tool Results for Nvidia Tesla V100

One issue of the benchmark can be observed in the results of Volta. The expected
size of 32 KiB is not fully detected as there is a 6–8 KiB discrepancy. This behavior
was first mentioned in [33]. The deviation was explained to be caused by a new cache
replacement policy that was first applied for Volta, which is responsible for the cache
misses starting too early. A decreased latency for L1 Data and Read-Only Cache can be
observed, too. One other remarkable aspect is the obtained size of the Constant L1.5
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Cache. Since CUDA only allows developers to use a maximum of 64 KiB of constant
memory within one CUDA .cu module, the benchmark cannot exceed the size of
64 KiB. However, it can be concluded from the fine-grained result of each array access,
that there is nevertheless an intermediate cache due to a loading time in between the
Constant L1 loading time and an even larger L2 loading time. Since the CUDA module
needs another 1.5 KiB of constant memory for something else in the program, the limit
is decreased to 62.5 KiB. One other remarkable change can be seen for the L2 Cache.
The cache line size changed from 32 B to 64 B for this generation.

5.3.5. Nvidia RTX 2080 Ti - Turing

The Turing architecture is depicted in the Appendix (See Figure A.3 SM-architecture
for Turing). The Nvidia RTX 2080Ti utilizes 64 cores per SM, 64 KiB of shared memory
and 32 KiB for the L1 Data/Texture/Read-Only Cache but they can be partitioned
differently again for a total of 96 KiB. It further has access to a 5.5 MiB L2 Cache and
altogether 11 GiB of main memory. This is what the tool measured:
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Size Line Size
(Bytes)

Lat.
(cycles)

Shared By1 #/SM

L1 Data
Cache

26.137 KiB 32 40 TXT, RO 1

Texture
Cache

25.012 KiB 32 86 L1D, RO 1

Read-Only
Cache

26.137 KiB 32 40 L1D, TXT 1

Constant
L1 Cache

2.078 KiB 64 32 - 1

Constant
L1.5 Cache

38–46 KiB 256 105 - -

Shared
Memory

64 KiB - 30 - -

L2 Cache 5.5 MiB 64 230 - -

Main Mem-
ory

11 GiB - 425 - -

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.8.: Tool Results for Nvidia RTX 2080Ti

The Turing results still show the 6–8 KiB deviation. This was also measured by [34].
Moreover, the Constant L1.5 size result showed a slight variance on this device, as the
size ranges between 38 and 46 KiB. It is unclear if the usage of the Windows OS and
this deviation are only by coincidence on the same test environment or if there might
be a causality since this is the only GPU of the tested GPUs, which showed this kind
of variance for the Constant L1.5 Cache size. The shared memory showed the fastest
latency again followed by the Constant L1 Cache and the L1 Data/Read-Only Cache.

5.3.6. Nvidia A-100 - Ampere

The Ampere SM-architecture is shown in the Appendix (See Figure A.4 SM-architecture
for Ampere). The Nvidia A-100 features 64 cores as well as 164 KiB of shared memory
and 28 KiB of L1 Data/Texture/Read-Only Cache; those can be partitioned differently
as well for a total amount of 192 KiB. Furthermore, the GPU is able to use 40 MiB for
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the L2 Cache and 40 GiB of main memory. There even exists an Nvidia A-100 version
with 80 GiB of main memory. The tool was able to capture the following information:

Size Line Size
(Bytes)

Lat.
(cycles)

Shared By1 #/SM

L1 Data
Cache

22.254 KiB 32 39 TXT, RO 1

Texture
Cache

21.191 KiB 32 89 L1D, RO 1

Read-Only
Cache

22.254 KiB 32 38 L1D, TXT 1

Constant
L1 Cache

2.141 KiB 64 34 - 1

Constant
L1.5 Cache

> 62.5 KiB 256 114 - -

Shared
Memory

164 KiB - 28 - -

L2 Cache 40 MiB 64 223 - -

Main Mem-
ory

39.409 KiB - 567 - -

1 L1D: L1 Data Cache - TXT: Texture Cache - RO: Read-Only Cache

Table 5.9.: Tool Results for Nvidia A-100

Again the Ampere result has the same 6–8 KiB deviation for the L1 Data, Texture
and Read-Only Cache. Furthermore, the Constant L1.5 Cache seems to be larger than
the developer limit of 64 KiB once more. The latency of the main memory is also
noteworthy since it is fairly increased due to the really huge memory size of 40 GiB.
The shared memory seems to be permanently the fastest memory component in terms
of the loading time/latency.

5.3.7. Summary

The higher latency of the Texture Cache for many GPUs is rather conspicuous. There are
some potential reasons for that: First function call overhead produced by tex1Dfetch<int>()
can be excluded since the same latency result is obtained by using the inline PTX
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assembler texture load instruction. However, the PTX assembler equivalent to the
tex1Dfetch<int>()-function can still be a reason for that (See code at Figure 5.2 PTX
Texture Load Instruction): The texture load instruction is able to effectively load a

1 asm volatile(
2 "tex.1d.v4.u32.s32 {%0, %1, %2, %3}, [tex_ref, {%4}];"
3 : "=r"(values.x), "=r"(values.y), "=r"(values.z),
4 "=r"(values.w) : "r"(j)
5 );

Figure 5.2.: Texture Load Instruction in PTX

value while specifying four coordinate values in one loading process. This might be
at cost of the latency due to the address calculation. Another potential reason for the
increased latency is the Texture Unit, which every texture load needs to pass. The
Texture Unit inherently executes specific filtering techniques and is also able to apply
low-precision interpolation [28, Ch. J].

Overall the results look very promising in terms of correctness. Other than the
constant 6–8 KiB deviation for some GPUs no other issues were encountered. Moreover,
in addition to Maxwell, information about the split/separated caches on Kepler and
Pascal was revealed as well. The tool is able to automatically obtain information about
the sizes, line sizes and latency of the caches as well as the number of partitions
for some of the caches. It is able to return if the L1 Data Cache, the Texture Cache,
and The Read-Only Cache are located at the same physical cache structure. It can
also be observed by the results, that the structure of the SMs seems to be unified or
standardized in the past years, probably in order to keep compatibility and simplicity
over more generations. This can be inspected by checking the results of the rather
older architectures compared to the more recent generations. The number of partitions
for the L1 Data, Texture and Read-Only Cache varied on the older generations and is
always one by now. Kepler has separated L1 Data from Texture and Read-Only Cache.
These are combined into one cache since Maxwell. The older generations sometimes
were not able to cache global loads like the tested Maxwell GPU, all newer generations
are always able to cache global loads.
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This chapter hints possible extensions or new benchmarks that could be added as new
features to the implementation, respectively.

6.1. Bandwidth

Since latency is only one of the two core information aspects for memory/data move-
ments, the other information, namely the bandwidth, could be introduced into the tool
as a new feature in form of an additional benchmark. A few years ago, the bandwidth
of Turing and Volta was measured with a microbenchmark similar to the implemented
benchmarks [33] [34]. Again, it is therefore necessary to load the values of an array
into the appropriate cache in a first round. Then similar to the latency benchmark of
the tool implementation, the array is completely loaded and the required time for this
process is measured. Afterwards, the throughput rate of the process in bytes per cycle
can be calculated by dividing the array size with the required overall loading time.
To get as close to the theoretical bandwidth of the corresponding cache or memory,
two additional aspects are important. First, the loading process must be repeated with
all available data type sizes for the load instructions (8-bit, 16-bit, 32-bit, 64-bit). The
second important aspect is a varying number of threads and thread blocks, as the
peak of bandwidth is most likely reached at a specific constellation of threads and
thread blocks, which all need to be tested. Thus, every or many combinations of load
instruction size and number of threads and thread blocks need to be passed, to get
as close to the real bandwidth of each cache and memory as possible. A very similar
benchmark was also applied here [10] for the throughput of global and shared memory.

6.2. Instruction Cache

One of the caches that were completely left out by the implementation, is the instruction
cache or the layers of instruction caches, respectively. The implementation would benefit
from additional benchmarks for this purpose. However, there is only few literature
about measuring the instruction cache sizes of GPUs. These research papers [33] [34]
contain a pretty well-explained approach for microbenchmarking the instruction cache.
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The fundamental idea is similar to the P-Chase benchmark, though, it is unnecessary to
execute load instructions on arrays for the instruction cache but to execute instruction
sequences of varying size. As with our implementation, it starts with an instruction
sequence of small size and executes it in a first round to fill it in the instruction caches
and to avoid cold cache misses. Then it executes the sequence in a second round while
measuring the required time to do so. Most likely, the fine-grained approach would
not work for this case, since it would use the instruction caches, which would tamper
with the results. It might be necessary to utilize preprocessor techniques in order to
generate instructions of varying sizes, since it may be not possible to get instruction
sequences of arbitrary size during runtime, although PTX is JIT-compiled according to
the documentation of the Nvidia compiler nvcc [58]. It is required to evaluate further
on that to get a more detailed understanding of the possibilities.

6.3. New Nvidia microarchitectures & Additional features

At the present time of this thesis, the new microarchitecture generations were an-
nounced by Nvidia, Ada Lovelace and Hopper. Nvidia has already shared the overview
graphical sheets, hence it can already be estimated whether the implementation will
still work with the new architectures.

6.3.1. Ada

The Ada Lovelace microarchitecture shows huge similarity with its predecessor Ampere
(See Figure A.5 SM-architecture for Ada Lovelace in Appendix). Therefore, it is
justifiable to assume, most of the benchmarks will still work on this microarchitecture.
Nonetheless, it is remarkable, that this new microarchitecture is the first (with Hopper)
whose main CUDA cores are partially only able to do 32-bit floating point operations
and no integer arithmetic. While still specifying 128 CUDA cores per SM officially,
it is relatively unclear how this works internally. According to the Ada architecture
whitepaper [59], 16 CUDA cores of one warp are explicitly dedicated for processing
FP32 operations in one warp while 16 are able to do both FP32 and INT32 operations.
However, the benchmarks should not be influenced by this change in a way, which
interferes with correct functionality.

6.3.2. Hopper

The Hopper microarchitecture shows the same change concerning CUDA cores as
the Ada Lovelace architecture. Moreover, while the microarchitecture still has many
similarities with the current architectures like Ampere or Turing, this new Hopper
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architecture seems to have a so-called Tensor Memory Accelerator, which is able to
"efficiently transfer large blocks of data between global memory and shared memory"
[60]. Since this new feature is mainly related to the usage of tensor cores and tensor
computation, plus Nvidia describes it as a feature "to help feed the powerful new H100
Tensor Cores", there should not be any interference with the current implementation.
However, it could be worth checking with additional benchmarks how the latency and
bandwidth change with and without using the Tensor Memory Accelerator, which
can be utilized by special TMA copy operations. In addition, this microarchitecture is
the first to extend the current CUDA model of threads and thread blocks, as it adds
another layer of thread block clusters. A thread block cluster is a group of thread blocks
that are definitely "scheduled concurrently onto a group of SMs" [60]. The idea is to
be able to cooperatively compute results over more than one SM. For that purpose
dedicated lanes between all SMs are implemented into the microarchitecture, which
allows an SM to access the shared memory of other SMs within the thread block cluster.
While this new feature will not influence the current implementation, it could be worth
adding an additional benchmark to measure the latency of loading shared memory
data from/between other SMs.

6.4. Potential Port to AMD devices

As AMD GPUs are incompatible with Nvidia CUDA code, the tool works only for
Nvidia devices. Thus, it is required to evaluate if the same microbenchmarking
approach could be used for AMD devices as well. This looks promising since there
exists already research for microbenchmarking other features by using OpenCL [61],
although they did not use it for the cache or memory sizes. Furthermore, there
is already some research for microbenchmarking a specific AMD microarchitecture
(GCN) by using the P-Chase method for the caches of the AMD GPU [36]. This looks
very encouraging, as they used roughly the same approach without the automatic
extraction of the information. It is noteworthy, that they used the corresponding
AMD programming interface to CUDA, which is called Heterogeneous Interface for
Portability (HIP), which has the advantage to be able to run both on Nvidia and AMD
GPUs. Interestingly, there are tools to support the porting process from CUDA to
HIP [62] by automatically translating CUDA code to HIP. However, this will most
likely not work completely for the tool implementation, since it relies also on inline
PTX assembly code. Nevertheless, it can be useful for porting the tool to HIP. AMD
and its open-source contributors also provide a helpful table for the CUDA syntax
and the corresponding HIP syntax1. It can be questioned if a direct one-to-one port

1https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_terms.md

65



6. Potential Extensions

Figure 6.1.: AMD GCN Compute Unit Architecture (Simplified) [63]

can be conducted, since the microarchitecture of AMD GPUs is a bit different from
Nvidia microarchitectures. For the illustration of the AMD GCN architecture (See
Figure 6.1 AMD GCN Compute Unit Architecture) of the SM-equivalent for AMD
(Compute Unit) it can be observed, there is also an L1 Data Cache/Texture Cache on the
"Compute Unit"-level as well as most likely a "Shared Memory"-equivalent, the "Load
Data Share"-memory (LDS). Moreover, it has an additional "Global Data Share"-memory
shared by all Compute Units. It is unclear if this architecture also contains a Constant
Cache. Overall it is likely, that the same approaches for Nvidia can be used likewise for
AMD and the corresponding caches, though the implementation will probably differ
plus there may be additional - or less - caches or memories in one Compute Unit.
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7.1. Microbenchmarking

Microbenchmarking has been used quite often in the past to benchmark specific GPUs
for various microarchitectural features. In [11] microbenchmarking was used on the
Nvidia GT200 GPU to measure the latency of specific instructions like add, mul, div
or more expensive mathematical operations like sinf(), logf() and expf(). They
also applied benchmarks to evaluate which execution unit types these instructions
require. As an example, their benchmark revealed, the add instruction only uses a single
precision execution unit (either FP32 or INT32 core), whereas the mul floating point
instruction uses a single precision unit plus a special function unit. The same paper
also gives insights into benchmarks for the branch divergence behavior, the memory
translation via Translation Lookaside Buffer (TLB) for which the presence of two levels
of TLBs was presented. Their research also covered approaches for the instruction
cache. More about instruction caches can be found in chapter 6.2 Instruction Cache.
The research paper further described a benchmark and the result for checking if the
Constant and Instructions Caches share the same space. Benchmarks for the TLB and
instruction cache(s) are also covered by [33] and [34]. Both of those references share
additional insights into how Nvidia controls the execution of warps as well as how
instructions are encoded. Furthermore, they benchmarked characteristics of the tensor
cores that were added to the SM since Volta. Eventually, the Fine-Grained P-Chase
benchmark was first used and applied for the GPU by [10] to benchmark the sizes of
the caches as well as the latency and the throughput of some memories. In addition,
the research describes benchmarks to check how the shared memory is structured as it
is divided into memory banks which can produce bank conflicts with loads.

7.2. Performance Analysis Model for GPU Architectures

This paper [64] describes another type of microbenchmarking, which takes also a given
program into account. It first applies microbenchmarks to model the GPU behavior in
terms of metrics like the instruction pipeline, shared memory access and global memory
access. Then with a given program, the performance bottleneck(s) of the program are

67



7. Related Work

investigated to give the developer of a program hints for possible optimizations. This
is done via a simulator program Barra that is able to simulate/emulate the execution
of CUDA applications. More information about this simulator can be found at [65].
The identified issues/bottlenecks are then propagated to the developers, e.g. low
computational density, insufficient parallel warps, insufficient parallelism, etc. It is
further described how the gained information can be used to optimize a program by
reference to the optimization process of a typical GPU function, a specific type of matrix
multiplication called Dense Matrix Multiply.

7.3. OpenCL Microbenchmark Suite

Interestingly, one previous work [61] created a benchmark suite in OpenCL to measure
device characteristics. OpenCL is an open-source framework to write and execute
code on various types of devices (CPU, GPU, FPGA, etc.). As an example, this work
applies benchmarks for the performance of specific mathematical instructions, the bus
bandwidth between the host device and compute device or memory bandwidth. Since
the benchmark suite is written for OpenCL, it could be compatible with both Nvidia
and AMD GPUs. Moreover, the properties of a CPU can be benchmarked with OpenCL
as well.

7.4. Discovering Microarchitectural Features Via GPU ISA
Encoding Solver

A complex approach to the exposure of microarchitectural characteristics is described in
[66]. The authors of this work developed their own Nvidia GPU ISA encoding solver by
using the encoded binary and the cuobjdump-generated disassembly sass file as input.
Afterwards, they implemented their own version of an assembler for the Kepler GPUs.
The assembler translates every instruction and adds an ELF header at the beginning
in order to obtain an executable CUDA binary file (cubin). The microbenchmarks are
then implemented in sass code. The microbenchmarks cover the exploration of register
banks and bank conflicts, the meaning of control codes in terms of "single-issue"- or
"dual-issue"-handling instructions. Further, they microbenchmarked the maximum
arithmetic throughput of the GPU and the throughput of shared and global memory.
Later they applied the obtained knowledge to optimize an important method for GPU
computation, the single precision general matrix multiply (SGEMM). They managed
to create an optimized SGEMM version, which is overall 15% faster than the official
Nvidia implementation provided by the cuBLAS API.
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7.5. NVML (Related tool)

Nvidia provides an additional interface to query and monitor various other information
about the GPU that does not correspond to the memory topology but could be helpful
nevertheless. This is called Nvidia Management Library (NVML). With the latest CUDA
version (CUDA 11.8) one of the following NVML query functions may be interesting
for the tool in the future:

• nvmlDeviceGetArchitecture: Returns integer identifying the microarchitecture
of the GPU

• nvmlDeviceGetCurrPcieLinkWidth: Returns the link width of the PCIe in usage

• nvmlDeviceGetFanSpeed: Returns the current fan speed in percentage

• nvmlDeviceGetGpuOperationMode: Returns the operating mode (computing mode,
graphics application mode)

• nvmlDeviceGetMaxClockInfo: Gives back the maximum possible clock speed

• nvmlDeviceGetMemoryBusWidth: Gets memory bus width

• nvmlDeviceGetNumGpuCores: Gets the total number of CUDA cores in the GPU,
at some point this could be used for the number of cores

• nvmlDeviceGetPcieThroughput: Can be used to measure the PCIe throughput
within a 20ms interval
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This thesis presented the design and implementation of a tool to capture the memory
topology of an Nvidia GPU. This tool was designed to provide great support for
GPU programmers and developers, especially but not solely in the region of High-
Performance Computing in order to further modify and optimize their GPU programs
according to the memory topology of the GPUs. The proposed design and workflow
start with an efficient binary-wise search followed by a sequential search for the cache
size while consistently employing the Fine-Grained P-Chase benchmark. The obtained
data is then used by the described Change Point Detection to automatically extract
the sizes of each cache. In addition, other implemented benchmarks are able to
return the latency and cache line size of all caches and memory components. Further
benchmarks retrieve additional information like the number of L1 Data, Texture and
Read-Only Caches per Streaming Multiprocessor or whether these caches share the
same physical space. The implementation was severely tested on numerous GPUs;
every microarchitecture currently supported by the CUDA SDK was examined. The
obtained results were overall consistent with the officially shared specifications of
the GPUs, although the last few GPUs showed a constant 6–8 KiB discrepancy to the
published L1 Data, Texture and Read-Only Cache sizes. The results for Kepler and
Pascal also revealed a couple of subdivided caches within the SM, which were not
clearly documented by Nvidia. Further improvements in terms of performance were
proposed and highlighted. Additional benchmarks for even more information like
bandwidth and instruction cache data were suggested and described, too. First input
towards a possible port to AMD devices was provided at the end of the thesis. While
new information and additional properties could be added as new benchmarks to the
implementation as well, the created tool and the obtained results look quite promising.
The tool might already be used for a better understanding of the GPU memory topology
and for further optimizing CUDA code in favor of a more efficient cache and memory
usage.
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Figure A.1.: SM-architecture for Pascal [67]
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Figure A.2.: SM-architecture for Volta [53]
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Figure A.3.: SM-architecture for Turing [55]
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Figure A.4.: SM-architecture for Ampere [56]
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Figure A.5.: SM-architecture for Ada Lovelace [59]
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Figure A.6.: SM-architecture for Hopper [60]
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