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Summary 

Nitrogen (N) is an essential plant nutrient with significant functions concerning plant metabolism. 

Among all essential macronutrients, N is quantitatively the most important. Although nitrogen is 

abundant in the atmosphere (N2), the availability of this source of nitrogen for many crops is not given. 

The uptake of N from agricultural soils is also limited for plants because only a small portion of nitrogen 

is present in the soil in a form available for plant uptake. These conditions justify the frequent use of 

N-fertilizers in agriculture, which also usually increase the yield and quality of crop products. However, 

crops in general, as well as globally important crops such as wheat (Triticum aestivum L.) and maize 

(Zea mays L.) in particular, only partially use the N of the applied fertilizer. Thus, nitrogen from N-

fertilizers not only accumulates in the harvest products but also enters the environment. Nitrogen 

affecting the environment can cause considerable damage, e.g., in the form of nitrate (NO3), ammonia 

(NH3) and nitrous oxide (N2O). Therefore, all stakeholders in agriculture strive to avoid nitrogen losses 

or increase N use efficiency, which can be done through multiple measures. 

To estimate the nitrogen requirement of crops at the beginning of vegetation, the examination of the 

mineral nitrogen content of the soil through the Nmin method (nitrate-N + ammonium-N, "Nmin") is 

widely used. However, sampling and analysis are time-consuming, labor-intensive, and costly. During 

the growing season, optical detection of the canopy reflectance signature is a long-established method 

to estimate the nitrogen nutritional status of the crop. The reflectance signature is typical for plants 

and differs depending on the N-supply. Several different spectral sensors and carrier vehicles are 

available for reflectance measurements. The advantage of this method is the fast, non-destructive and 

cost-efficient application. However, methodological error limits that take agronomic aspects into 

account are still lacking.  

Therefore, this work, including three chapters, aims, (i) to optimize sampling per field for Nmin analysis 

and therefore make it more practicable (chapter I) and, (ii) to develop agronomically-based error limits 

for the spectral detection of N uptake in wheat (chapter II) and nitrogen-related traits and grain yield 

in maize (chapter III). 

Chapter I includes the sampling of twelve fields for Nmin at the beginning of vegetation at different 

locations within two years. Field sampling were usually done in a grid pattern and at each sampling 

point in 30 cm increments down to 60 or 90 cm. Sampling was carried out both with a set of two gauge 

augers (Pürckhauer) and with a soil sampling device mounted on a tractor. The further sample 

processing as well as the analysis complied with the common regulations for Nmin samples. In a further 

step, the results of the Nmin sampling were compared with reflectance data from satellite 

measurements (Sentinel-2). Nitrogen fertilization field experiments included three one-year trials in 
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wheat (chapter II) and one two-year trial in maize (chapter III). The field trials include the harvest of 

plant samples during the growing season with further analysis of the nitrogen content and the dry 

matter as well as the grain yield at harvest (exclusively chapter III). Further N-related traits were 

calculated. Destructive sampling and spectral measurements with different sensors were carried out 

simultaneously. Afterward, the reflectance data were calculated as spectral indices. In a further step, 

the spectral assessment of the N uptake of wheat and N-related traits and grain yield of maize were 

analyzed. 

Chapter I reports the possibility to sample wheat and maize fields for mineral nitrogen in the soil 

(nitrate-N + ammonium-N, "Nmin") with only two samplings per field. This result is valid with a 

maximum error of ± 10 kg nitrate-N ha-1, which, however, can be regarded as acceptable and 

practicable in comparison with other sources of error affecting the Nmin-method. Furthermore, the 

reduced Nmin sampling strategy is more precise for the individual field, especially for wheat, than the 

use of crop-specific, regionally representative Nmin values offered by the official advisory authorities. 

These results were obtained for field sizes in the range of 1.0–12.7 ha and have yet to be verified for 

larger fields. In addition, heterogeneous fields should be sampled site-specific. Moreover, the results 

suggest that annual Nmin soil sampling is necessary because it is influenced by yearly differing weather 

conditions. However, the soil sampling can further be simplified by combining the individual soil layer 

samples into one composite sample, which accordingly reduces the cost of analysis. The aggregation 

of single soil layers is more recommended for the determination of the absolute N-fertilization 

requirement. In the case of no-till managed fields, the individual soil layers should be analyzed 

separately. During vegetation, spatial variations of crops within a field due to different Nmin levels could 

not be detected by multispectral satellite imagery (Sentinel-2), again highlighting the need for soil 

sampling. 

Chapter II elaborates on agronomically-based error limits for the spectral detection of N uptake in 

wheat. Conventional statistics such as the coefficient of determination (R²) are strongly dependent on 

the differentiation of the N uptake, which often occurs only at later stages of development (e.g., the 

influence of N-fertilization on N uptake). RMSE and MAE values have the advantage that the error is 

given in the unit of the respective target trait. However, since it is only an average value, this indicates 

that many observations are overestimated or underestimated. The study could determine an 

agronomic error of ± 15 kg N uptake ha-1 with a probability of at least 80 %. This interval is valid until 

BBCH 50. At earlier stages of development, ± 10 kg N uptake ha-1 may also be sufficient. Aerial- (UAV) 

and ground-based (Phenotrac IV) systems provided roughly comparable results in spectral detection 

of N uptake, with spectral indices combining REDEDGE and NIR bands proving advantageous. For 
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detection of the N uptake in wheat, the differentiation of biomass is more crucial than the 

differentiation of the N content. 

Chapter III analyzes agronomically-based error limits of the spectral detection of N-related traits 

(aboveground and grain N uptake, and NNI) and grain yield in maize. Commonly used statistics such as 

the coefficient of determination (R²) are highly dependent on the differentiation of the respective 

target trait, which often occurs at later stages of development (e.g., the influence of the N-fertilization 

on target traits). Although RMSE and MAE indicate the error in the same unit of the respective target 

trait, it remains only an average value, which therefore leads to an over- or underestimation for many 

observations. This work was able to determine an agronomic error of ± 25, ± 40 kg N ha-1, ± 0.2, and 

± 1.4 t ha-1 for grain and aboveground N uptake, NNI, and grain yield, with a probability of at least 80 %. 

The error limits are consistent across experimental years and growth stages, as spectral indices were 

largely dominated by biomass. Across all traits, best-performing indices combine GREEN, REDEDGE, 

and NIR bands. 

The general discussion compares and classifies the results of the individual chapters with existing 

studies. Furthermore, the usefulness of field experiments in agricultural research is discussed. This is 

based on the fact that findings from controlled (laboratory) experiments can only be transferred to 

agricultural agroecosystems to a limited extent because a large number of uncontrollable variables 

influences the treatment effects. Furthermore, future investments in the education of research staff 

are discussed as equally necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 



         Zusammenfassung 

VIII 
  

Zusammenfassung 

Stickstoff (N) ist ein essentielles Nährelement für die Pflanze mit bedeutenden Funktionen im 

pflanzlichen Stoffwechsel. Unter allen essentiellen Makronährstoffen hat N quantitativ die größte 

Bedeutung. Obwohl Stickstoff in der Atmosphäre (N2) reichlich vorhanden ist, ist für viele 

Kulturpflanzen die Verfügbarkeit dieser Stickstoffquelle nicht gegeben. Auch die Aufnahme von 

Stickstoff aus landwirtschaftlich genutzten Böden ist für Pflanzen eingeschränkt, da der Stickstoff nicht 

in ausreichender Menge in einer für die Pflanzen verfügbaren N-Form vorhanden ist. Diese 

Gegebenheiten begründen den häufigen Einsatz von N-Düngemitteln in der Landwirtschaft, deren 

Verwendung in der Regel auch eine Ertrags- und Qualitätssteigernde Wirkung bei den Ernteprodukten 

bewirkt. Kulturpflanzen im Allgemeinen als auch global bedeutende Kulturen wie z.B. Weizen (Triticum 

aestivum L.) und Mais (Zea mays L.) im Speziellen nutzen den eingesetzten N-Dünger allerdings nur 

teilweise, sodass Stickstoff aus N-Düngemitteln sich nicht nur im Erntegut anreichert, sondern auch in 

die Umwelt gelangt. Der die Umwelt betreffende Stickstoff kann dort z.B. in Form von Nitrat (NO3), 

Ammoniak (NH3) und Lachgas (N2O) erhebliche Schäden verursachen. Daher sind alle Akteure in der 

Landwirtschaft bestrebt, Stickstoffverluste zu vermeiden bzw. die N-Nutzungseffizienz zu erhöhen, 

was durch eine Fülle an Maßnahmen erfolgen kann. 

Um den Stickstoffbedarf der Kulturen zu Vegetationsbeginn abschätzen zu können, ist die 

Untersuchung des mineralischen Stickstoffgehaltes des Bodens mit der Nmin-Methode (Nitrat-

N + Ammonium-N, “Nmin”) weit verbreitet. Die Probennahme und die Analytik ist jedoch zeit-, arbeits- 

und kostenaufwendig. Während der Vegetationsperiode ist die optische Erfassung der 

Reflexionssignatur des Pflanzenbestandes eine bereits seit Jahren etablierte Möglichkeit den 

Stickstoffernährungszustand der Kultur abzuschätzen. Die Reflexionssignatur bei Pflanzen zeigt einen 

typischen Verlauf und differenziert je nach N-Versorgung. Für Reflexionsmessungen stehen eine Reihe 

an unterschiedlichen Spektralsensoren sowie Trägerfahrzeuge zur Verfügung. Der Vorteil dieser 

Methode ist die schnelle, zerstörungsfreie und kosteneffiziente Anwendung. Allerdings fehlt es bei der 

Bewertung dieser Methode bisher an Fehlergrenzen, die agronomische Gesichtspunkte 

miteinbeziehen.  

Daher verfolgt diese aus drei Kapiteln bestehende Arbeit einerseits den Zweck, (i) die Nmin-Probenahme 

je Feld zu optimieren und daher anwenderfreundlicher zu gestalten (Kapitel I), und andererseits (ii) 

agronomisch begründete Fehlergrenzen bei der spektralen Erfassung der N-Aufnahme bei Weizen 

(Kapitel II), sowie stickstoffbezogener Merkmale und des Kornertrages bei Mais (Kapitel III) zu 

erarbeiten.  
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In Kapitel I wurden innerhalb von zwei Jahren an unterschiedlichen Standorten zwölf Felder auf Nmin 

zu Vegetationsbeginn rasterförmig beprobt. Die Probenahme erfolgte sowohl mit dem Pürckhauer-

Bohrstock, als auch mit einem am Traktor montierten Bodenprobenentnahmegerät jeweils in 30 cm 

Bodenschichten bis maximal 90 cm Bodentiefe. Die weitere Probenverarbeitung sowie die Analyse 

entsprachen den gängigen Vorschriften für Nmin-Proben. Die Ergebnisse der Nmin-Beprobung wurden in 

einem weiteren Schritt mit Reflexionsdaten aus Satellitenmessungen (Sentinel-2) verglichen. In Kapitel 

II wurden im Feld drei einjährige Stickstoffsteigerungsversuche bei Winterweizen, sowie in Kapitel III 

ein zweijähriger Stickstoffsteigerungsversuch bei Mais durchgeführt. In den Feldversuchen wurden 

während der Vegetationsperiode Pflanzenproben entnommen und der Stickstoffgehalt und die 

Trockenmasse analysiert sowie der Kornertrag (ausschließlich Kapitel III) erfasst. Weitere Merkmale 

wurden berechnet. Zeitlich abgestimmt mit den destruktiven Beprobungen wurden 

Spektralmessungen mit unterschiedlichen Sensoren durchgeführt und anschließend die 

Reflexionsdaten zu Spektralindizes verrechnet. Die spektrale Erfassung der N-Aufnahme bei Weizen 

sowie der stickstoffbezogenen Merkmale und des Kornertrages bei Mais wurde analysiert. 

Kapitel I zeigt auf, dass landwirtschaftlich genutzte Felder mit nur zwei Probenahmestellen (Einstichen) 

je Feld auf mineralischen Stickstoff im Boden (Nitrat-N + Ammonium-N, “Nmin”) beprobt werden 

können. Die Reduzierung der Probenahmestellen beinhaltet einen maximalen Fehler von ± 10 kg 

Nitrat-N ha−1, der im Vergleich zu anderen die Methode betreffenden Fehlerquellen jedoch als 

akzeptabel und praxistauglich angesehen werden kann. Die reduzierte Nmin-Beprobungsstrategie ist 

darüber hinaus für das einzelne Feld, insbesondere bei Weizen, repräsentativer als die Verwendung 

von überregionalen Nmin-Werten aus der Offizialberatung. Diese Ergebnisse wurden für Feldgrößen im 

Bereich von 1.0–12.7 ha ermittelt und sind für größere Felder noch zu prüfen. Außerdem sollten 

heterogene Felder teilflächenspezifisch beprobt werden. Weiterhin konnte festgestellt werden, dass 

eine jährliche Nmin-Bodenuntersuchung nötig ist, da Wetterbedingungen den Gehalt an mineralischem 

Bodenstickstoff beeinflussen. Diese kann jedoch vereinfacht werden, indem die Proben der 

verschiedenen Bodenschichten zu einer Mischprobe vereint werden, was dementsprechend die 

Analysekosten reduziert. Die Zusammenlegung der Bodenschichten wird im Besonderen für die 

Düngebedarfsermittlung empfohlen. Für Felder, die in Direktsaat bewirtschaftet werden, sollten die 

einzelnen Bodenschichten getrennt analysiert werden. Während der Vegetation konnten Variationen 

im Pflanzenbestand aufgrund unterschiedlicher Nmin-Gehalte nicht durch multispektrale 

Satellitenbilder (Sentinel-2) nachgewiesen werden, was wiederum die Notwendigkeit von 

Bodenuntersuchungen verdeutlicht. 

Kapitel II erarbeitet agronomisch begründete Fehlergrenzen für die spektrale Erfassung der N-

Aufnahme bei Weizen. Herkömmliche statistische Gütemaße wie das Bestimmtheitsmaß (R²) sind stark 
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von der Differenzierung der N-Aufnahme abhängig, was häufig erst in späteren Entwicklungsstadien 

auftritt (z.B. Einfluss der N-Düngung auf die N-Aufnahme). RMSE und MAE haben zwar den Vorteil, 

dass der Fehler in der Einheit des jeweiligen Zielmerkmales angegeben wird, allerdings ist dies nur ein 

Mittelwert. Viele Beobachtungen werden dadurch über- oder unterschätzt. Die Arbeit konnte einen 

agronomischen Fehler von ± 15 kg N-Aufnahme ha-1 bei einer Wahrscheinlichkeit von mindestens 80 % 

ermitteln. Dieses Intervall ist gültig bis BBCH 50. In früheren Entwicklungsstadien können auch ± 10 kg 

N-Aufnahme ha-1 ausreichend sein. Das luftgestützte (UAV) und das bodenbasierte (Phenotrac IV) 

System lieferten in etwa vergleichbare Ergebnisse bei der spektralen Erfassung der N-Aufnahme, 

wobei spektrale Indizes, die die Banden REDEDGE und NIR kombinierten am besten geeignet waren. 

Für die Erfassung der N-Aufnahme bei Weizen ist die Differenzierung der Biomasse entscheidender als 

die des N-Gehaltes. 

Kapitel III analysiert agronomisch begründeten Fehlergrenzen der spektralen Erfassung von 

stickstoffbezogenen Merkmalen (N-Aufnahme der Biomasse und des Korns, NNI) und des Kornertrages 

bei Mais. Häufig verwendete statistische Gütemaße wie das Bestimmtheitsmaß (R²) sind stark von der 

Differenzierung des jeweiligen Zielmerkmals abhängig, was häufig erst in späteren 

Entwicklungsstadien auftritt (z.B. Einfluss der N-Düngung auf die Zielmerkmale). RMSE und MAE geben 

den Fehler zwar in der Einheit des jeweiligen Zielmerkmales an, jedoch nur als gemittelten Fehler, was 

für viele Beobachtungen deshalb zu einer Über- oder Unterschätzung führt. Die Arbeit konnte einen 

agronomischen Fehler von ± 25, ± 40 kg N ha-1, ± 0.2, und ± 1.4 t ha-1 für die Korn und oberirdische N-

Aufnahme, den NNI und den Kornertrag bei einer Wahrscheinlichkeit von mindestens 80 % ermitteln. 

Die Intervallgrenzen waren über die Versuchsjahre und Wachstumsstadien hinweg konsistent, da die 

spektralen Indizes weitestgehend von der Biomasse dominiert werden. Alle Zielmerkmale konnten am 

besten erfasst werden, wenn die spektralen Indizes die Banden GREEN, REDEDGE und NIR 

kombinierten. 

In der übergeordneten Diskussion werden die Ergebnisse der einzelnen Kapitel mit bereits 

existierenden Studien verglichen und eingeordnet. Darüber hinaus wird die Nützlichkeit von 

Feldexperimenten in der Agrarforschung diskutiert. Dies beruht auf der Gegebenheit, dass 

Erkenntnisse aus kontrollierten (Labor-) Versuchen nur eingeschränkt auf landwirtschaftliche 

Agrarökosysteme übertragen werden können da die Behandlungseffekte durch eine Vielzahl von 

unkontrollierbaren Variablen beeinflusst werden. Darüber hinaus werden zukünftige Investitionen in 

die Ausbildung des Forschungspersonals als ebenso notwendig diskutiert. 
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1 General introduction 

1.1 Nitrogen: current and future agricultural challenges 

In the 21st century, agriculture and food systems are facing the challenge of meeting the needs of a 

growing world population (VOS AND BELLÙ, 2019). GERLAND ET AL. (2014) expect a world population of 9.6 

billion in 2050 and 10.9 billion in 2100. In addition, it is estimated that global crop demand will have 

increased by 100 % in 2050 compared to 2005 (TILMANN ET AL., 2011). Although agricultural production 

tripled between 1960 and 2012, conditions have changed and future challenges are becoming more 

prevalent such as the limited expansion of arable land and water resources as well as climate change 

and loss of biodiversity (NORRIS 2008; LOBELL ET AL., 2011; ASSENG ET AL., 2015; DUDLEY AND ALEXANDER, 

2017; PEREIRA 2017; VOS AND BELLÙ, 2019). Additionally, sustainable agriculture is targeted (REGANOLD ET 

AL., 1990; VELTEN ET AL., 2015). Figure 1 illustrates the relationships. 

 

Figure 1: Sustainable agriculture presented as a conceptual 3-P framework: People-Planet-Profit 

(SPIERTZ, 2009). 

ROCKSTRÖM ET AL. (2009) identified boundaries for nine earth-system processes, which, if crossed, could 

generate unacceptable environmental changes. Besides climate change and the loss of biodiversity, 

the nitrogen cycle has already transgressed its boundary, which could potentially harm human 

development. The worldwide nitrogen (N) cycle is mainly influenced by the Haber-Bosch process 

(Figure 2), where ammonia, a chemically reactive highly usable form of N can be synthesized by 

reacting hydrogen with atmospheric dinitrogen in the presence of iron at high temperatures and 
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pressures. According to estimates, the lives of around half of humanity in 2008 are made possible due 

to the Haber-Bosch nitrogen (ERISMAN ET AL., 2008).  

 

Figure 2: Components of global reactive nitrogen (including NH3, NH4, NO, NO2, HNO3, N2O, HONO, 

PAN, and other organic N compounds) production for 2010. The arrows indicate a transfer from the 

atmospheric N2 reservoir to marine and terrestrial ecosystems, where purple and green arrows 

represent anthropogenic and natural sources. BNF = biological nitrogen fixation (FOWLER ET AL., 2013). 

Overall, the natural terrestrial sources of reactive N (63 Tg N year-1) are only half of the fixed N through 

the Haber-Bosch process in 2010 (120 Tg N year-1) (FOWLER ET AL., 2013). However, a drastic increase in 

ammonia production leads to a cascade of environmental changes, including water and air pollution, 

the perturbation of greenhouse-gas levels, and the loss of biodiversity (ERISMAN ET AL., 2007). 

Nevertheless, access to commercial fertilizers varies widely around the world. In industrialized nations, 

this has been happening since at least the middle 1900s, whereas large areas of Africa and smaller 

regions of Latin America and Asia continue to lack access to affordable nitrogen fertilizers (HOULTON ET 

AL., 2019). To date, recent reports indicate that the consumption of inorganic N-fertilizer in the 

European Union (EU, 28 countries) increased in recent years and reached 11.6 million tons in 2017 

(EUROSTAT, 2022), whereas in Germany, domestic sales of inorganic N-fertilizer have been declining in 

the last years, reaching 1.265 million tons in the 2020/21 marketing year (STATISTISCHES BUNDESAMT, 

2021). Besides the influence of the Haber-Bosch process on the global nitrogen cycle, the worldwide 

trade of food and feed products plays an important role in the transfer of N (LASSALETTA ET AL., 2014). 

Grain cereals contribute strongly to a healthy human diet (BORNEO AND LEÓN, 2011), including the main 

cereals wheat (Triticum aestivum L.), maize (Zea mays L.), and rice (Oryza sativa L.) (NEUMANN ET AL., 



         General introduction 

3 
  

2010; AWIKA 2011; SARWAR ET AL., 2013; RANUM ET AL., 2014), which supply more than half of the calories 

consumed by humans along with sugarcane and barley (ROSS-IBARRA ET AL., 2007). Global wheat 

production was 761 million tons in 2020, produced mainly in Asia (45.7 %), and Europe (33.5 %) 

(FAOSTAT, 2022). In 2020, Germany harvested 22.2 million tons of wheat in an area of 2.84 million 

hectares, resulting in an average yield of 7.8 tons per hectare (STATISTISCHES BUNDESAMT, 2022). 

Global maize production was 1162 million tons in 2020, produced mainly in America (50.1 %), Asia 

(31.4 %), and Europe (10.7 %) (FAOSTAT, 2022). In 2020, Germany harvested 4.0 million tons of grain 

maize (including corn-cob-mix) in an area of 0.42 million hectares, resulting in an average yield of 9.6 

tons per hectare (STATISTISCHES BUNDESAMT, 2022). For maize, a recent study show possible global 

changes. Thus, ERENSTEIN ET AL. (2021) pointed out that one-third of the farms cultivated maize in 2020 

with a future 5 % increase by 2030, resulting in maize overtaking wheat in terms of the growing area. 

 

1.2 Nitrogen use efficiency as a key to mitigating nitrogen losses 

The avoidance of an excessive or deficient supply of N to crops is the key to optimizing trade-offs 

between yield, profit, and environmental protection. To meet this challenge, an understanding of 

nitrogen use efficiency (NUE) is needed (CASSMAN ET AL., 2002). Many agronomic indices of NUE exist, 

but in simple terms, NUE is defined as grain production per unit of available N in the soil (MOLL ET AL., 

1982; DOBERMANN, 2005; UDVARDI ET AL., 2021). Globally, the NUE of wheat and maize levels are only at 

42 % and 46 %, respectively (ZHANG ET AL., 2015a). Many tools are available to improve the NUE of crops 

and to avoid nitrogen losses, including the adaption of source, method, rate, and timing of N-

application, the use of nitrogen efficient species and genotypes as well as the control of biotic pests, 

cover crops, crop rotation, crop residue management, remediation of soil acidity, tillage system, water 

management, use of animal and green manure, and controlled release of nitrogen through urease- 

and nitrification inhibitors (FAGERIA AND BALIGAR, 2005; NOOR, 2017). Especially in terms of plant 

nutrition, further nutrient demand, e.g., potassium and phosphorus, should also be considered (DUAN 

ET AL., 2014; SALIM AND RAZA, 2020). Additionally, enhancing NUE is only one of four major tools to 

reduce N losses to the environment. A dietary shift toward more plant-based foods in high-income 

countries, reduced biofuel production from human-edible foods, and a decrease in food loss and waste 

should be further considered (BODIRSKY ET AL., 2014; CASSMAN AND GRASSINI, 2020; UDVARDI ET AL., 2021).  
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1.3 N-fertilization in cropping systems 

The growth of higher plants requires the presence of essential elements. The term essential is defined 

through three criteria: (i) a plant is unable to complete its lifecycle in the absence of the element, (ii) 

the function of the element is not replaceable by another element, and (iii) the element is directly 

involved in plant metabolism. Essential elements, which are present in relatively high concentrations 

in plants, are called macronutrients and the element nitrogen has on average the highest 

concentration in the plant shoot dry matter (WHITE AND BROWN, 2010; KIRKBY, 2012). N is most abundant 

in the atmosphere and yet it is most often deficient in agricultural soils. This paradox exists because 

the plants require this nutrient element in the largest quantity but only a small proportion of N is 

present in the soil in a form available to plant uptake (GODWIN AND SINGH, 1998). Therefore, crop 

production is often limited by N and additional N-fertilization will have to be mostly applied (LADHA ET 

AL., 2005) because important crop traits such as yield and grain quality are primarily influenced by 

nitrogen (MASON AND D`CROZ-MASON, 2002; ROBERTSON AND VITOUSEK, 2009; CHEN ET AL., 2015; BARMEIER ET 

AL., 2017a; PREY ET AL., 2019b). The study of ZHANG ET AL. (2021) indicates that long-term optimal N 

management (neither over- nor undersupply) in wheat production reduces harm to the ecosystem and 

human health and increases ecosystem economic benefits.  

In agroecosystems, N is available in different forms and rates to different organisms, and specific forms 

are lost by hydrologic and gaseous pathways (Figure 3) (ROBERTSON AND VITOUSEK, 2009). Gaseous losses 

include N2O which causes greenhouse warming, and NH3 which leads to a shift in the ecological 

balances of natural ecosystems. Hydrologic losses include the displacement of N through eroding 

sediments in surface water influencing aquatic ecosystems and soluble N in runoff or leachate water, 

e.g., the negative influence on human health through high-nitrate drinking water (FOLLET AND HATFIELD, 

2001). Considering mineral N-fertilization, the latest research by HU AND SCHMIDHALTER (2021) pointed 

out that the addition of urease inhibitors to urea has great potential to mitigate NH3 losses in the 

European Union (EU) as well as in the USA, China, and India. Moreover, the use of urea amended with 

urease inhibitors is well suited to mitigate N2O losses compared to ammonium nitrate. 

Farmers cannot manage all transformations of the N cycle because important biological processes are 

affected by given soil properties and also driven by field-specific weather events (MORRIS ET AL., 2018). 

Additionally, the estimation of soil N budgets in cropping systems is complex. Although the inputs of 

fertilizer N and irrigation water N are mostly well-known, manure N is often roughly known and the 

symbiotically fixed N can only be crudely estimated. In the case of the outputs, N removed in harvested 

crops can be easily estimated whereas gaseous losses are not sufficiently known. Furthermore, long-

term research is needed to estimate the change in N storage within the system (MEISINGER AND RANDALL, 

1991).                                                                                                               
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Figure 3: Simplified depiction of pathways of nitrogen (N) in agricultural ecosystems. Transformations 

of N are shown in solid (occur in all ecosystems) or dashed lines (specific to agricultural systems). A: 

additions of industrial fertilizer; B: additions of organic N; C: biological N2 fixation; D: atmospheric 

deposition of reactive N in oxidized forms; E: atmospheric deposition of ammonia (NH3) and 

ammonium (NH4); F: mineralization of organic N via mobilization of amino acids through the action of 

extracellular enzymes; G: mineralization of organic N via release of ammonium by microbes; H: 

nitrification of ammonium; I: plant uptake; J: microbial immobilization; K: losses of N in harvested 

products; L: losses of N in solution to stream water and groundwater; M: denitrification to dinitrogen; 

N: NH3 volatilization from field and animal production; O: losses of nitrous oxide (N2O); P: losses of 

reactive oxidized N; Q: uptake of organic N by microbes during decomposition; R: dissimilatory 

reduction of nitrate to ammonium; S: consumption of plant N by animals; T: flux of N to soil in plant 

litter; U: flux on N to soil from excretion or animal depth (ROBERTSON AND VITOUSEK, 2009).  
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1.3.1 N-fertilization of wheat (Triticum aestivum L.) 

The main aspect to determine the required amount of N-fertilizer is the expected grain yield 

(BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2018b), which can vary greatly between years 

(LÓPEZ-BELLIDO ET AL., 2005). In Germany, typical winter wheat grain yield expectations (quality level A) 

of 7–10 to ha-1 (14 % water content) need an N supply of 215–250 kg N ha-1 (BAYERISCHE LANDESANSTALT 

FÜR LANDWIRTSCHAFT (LFL), 2018b). Because many factors contribute to the N supply of wheat such as 

soil properties as well as the past and current management (PETERSEN ET AL., 2012), further factors must 

be considered such as the soil mineral N (Nmin), previous organic N-fertilization, consideration of 

different soils, and pre-crops (BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2018b). Nitrogen 

dressing should follow the nitrogen demand of wheat during growth and development and can 

therefore vary in terms of the absolute rate, splitting and application time. N-fertilization of wheat 

aims to enhance (i) tiller formation and spikelet initiation, (ii) ear number, (iii) numbers of fertile 

spikelets, grains per fertile spikelet and grains per ear, (iv) single grain weight, and (v) protein content 

(DARWINKEL, 1983; ZÖRB ET AL., 2018). Especially in Western Europe, the absolute amount of N is typically 

split into three dressings, which are applied approximately at tillering, at the beginning and the end of 

stem elongation (SWARBRECK ET AL., 2019). The N sources nitrate, ammonium, and urea are equally well 

suited for the N-fertilization of wheat (BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2021A) 

although yield losses of urea may occur especially on alkaline soils due to ammonia losses if no 

precipitation follows application (KATYAL ET AL., 1987). Organic fertilizers are also applied to wheat. 

However, the effect of nitrogen from organic fertilizers in the year of application is low and totals about 

35–40 % of mineral-fertilizer equivalents for cattle slurry (GUTSER ET AL., 2005; BAYERISCHE LANDESANSTALT 

FÜR LANDWIRTSCHAFT (LFL), 2021B). Although nitrogen promotes the growth of wheat, an excessive 

supply should be avoided. High N supply increases the length of the lowest internodes and is conducive 

to lodging, possibly causing grain yield and quality losses (PINTHUS, 1974). 

 

1.3.2 N-fertilization of maize (Zea mays L.) 

The determination of the absolute amount of the N-fertilization of maize is done similar to wheat 

taking into account the expected grain yield. Challenges also arise from highly variable yields over the 

years (BERENGUER ET AL., 2009). In Germany, typical maize grain yield expectations of 8–12 to ha-1 (14 % 

water content) need a N supply of 190–230 kg N ha-1 (BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT 

(LFL), 2018b). Maize needs a high supply of nutrients, especially in the topsoil, to promote the growth 

early in the season. This results from very slow plant development and low rooting depth. Due to the 

good stability of the stem, maize reacts in a not visibly detrimental way to excessive N-fertilization 

(STURM ET AL., 1994). 
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In Europe, mineral N-fertilization is often made through band application at planting or broadcast 

application during early leaf development (up to the seven-leave stage). A combination of both 

application techniques is also common. Unlike wheat, fertilizer can only be applied at the beginning of 

maize growth due to the low clearance of tractors and possible etching damage to maize plants. The 

recovery of different N sources is comparable to wheat. If urea is used before planting, incorporation 

is favorable although the risk of erosion is to be noted. If urea is used later in the season, precipitation 

is needed to achieve comparable results as for ammonium nitrate (STURM ET AL., 1994).  Similarly to 

mineral N-fertilizers, organic N-fertilizers are also applied because maize is very effective in using 

organic fertilizers (DORDAS ET AL., 2008). QUAN ET AL. (2021) emphasized the importance of soil organic C 

in increasing N use efficiency. However, sufficient N replenishment is not addressed by a high 

proportion of organic matter in the soil. Although maize shows a considerable N uptake in later stages 

of development (CIAMPITTI AND VYN, 2011), this can no longer be addressed with the N-fertilization 

strategy just mentioned. 

 

1.4 N-fertilizer recommendations based on soil- and plant-analysis 

The estimate of the absolute amount of N-fertilization based on yield expectation is uncertain because 

yields can vary greatly between years at one site. Therefore, improved N-fertilizer recommendations 

are needed, including further methods such as soil- and plant-analysis. Soil analysis refers mainly to 

assessing soil N mineralization and, regarding this work, the soil mineral N (“Nmin”, nitrate-N + 

ammonium-N). Plant analysis encompasses a visual judgment of the crops by growers, destructive 

plant sampling with a further determination of the total N content, plant-sap/petiole nitrate tests, 

chlorophyll-meter measurements and, investigated in this work, the use of optical measurements of 

the crop canopy (remote sensing) to determine N-related traits (DAHNKE AND JOHNSON, 1990; OLFS ET AL., 

2005). Although many methods have been developed, SHARMA AND BALI (2017) advocate the 

combination of two or more methods to optimize nitrogen management. 

On-farm methods become increasingly available to help producers to optimize N management 

decisions because lab-based approaches are often limited under field conditions (FOLLET AND HATFIELD, 

2001; OLFS ET AL., 2005). In recent years, a sensor-based approach to detect site-specific yield potential 

and crop nutrient status is commonly used in agriculture (SCHMIDHALTER ET AL., 2008; MAYFIELD AND 

TRENGOVE, 2009). Furthermore, approaches with low technical equipment are pursued. RIMPAU (1984) 

recommended the use of a nitrogen window in grain cereals. This nitrogen window receives 20 to 25 % 

less nitrogen compared to the common N application rate. During vegetation, this plot indicates a 

possible nitrogen deficiency earlier than in the rest of the field. The strength and timing of the 

occurrence of visual differences in the canopy can be used by farmers to decide on further N-
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applications. A similar approach was successfully carried out by YUE ET AL. (2015) in small-scale wheat 

fields in China. A precondition for farmers to adopt new techniques is reliability, a minimal additional 

expense (equipment and time), and easy integration into current operations (FOLLET AND HATFIELD, 

2001). 

 

1.4.1 Determination of residual soil nitrogen (Nmin) 

Research on the use of Nmin values to improve N-fertilizer recommendations began several decades 

ago in several countries. In principle, the soils of fields with higher Nmin values at the beginning of the 

vegetation (depending on pre-crop, N leaching over winter, etc.) lead to lower crop response to 

additional N application and vice versa (OLFS ET AL., 2005). Many sophisticated experiments regarding 

the framework for soil sampling procedure (DAHIYA ET AL., 1985; BAKER ET AL., 1989; SCHMIDHALTER ET AL. 

1991a, 1991b), soil handling and storage (LICKFETT ET AL., 1999) as well as analytical methods (VILSMEIER, 

1984) were conducted before Nmin analysis found its way into agronomic practice. In general, the Nmin 

analysis is done by the following procedure: (i) representative soil sampling of the investigated field 

(15–20 soil cores per ha), (ii) samples taken with an auger from different soil layers (2–3 layers; each 

20–30 cm), (iii) homogenizing of the collected soil samples of each soil layer of the field and subsequent 

use of a subsample, (iv) cooled transport and storage of the soil sample to avoid N mineralization, (v) 

extraction of the field-moist soil samples with a mild extraction solution (e.g., 1 M KCl, 0.0125 M CaCl2) 

and further analyzing for nitrate (and ammonium) (HOFFMANN 1991; OLFS ET AL., 2005). 

In Germany, Nmin-based N recommendations were developed by WEHRMANN AND SCHARPF (1979). They 

found that, on average, Nmin values in 0–90 cm for loess soils at the beginning of vegetation are 100 % 

plant-available for wheat and thus can be completely included in the calculation of the absolute 

amount of N-fertilization (approximately 180–200 kg N ha-1). Especially for the first N application early 

in the season, an “N target value” of 120 kg N ha-1 was defined from which the Nmin value needs to be 

subtracted to calculate the N-fertilizer rate (OLFS ET AL., 2005).   

Nowadays, Nmin values are used for many crops and different sites and are an integral part of the N-

fertilizer recommendations (BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2018b). In addition, the 

individual federal states in Germany can prescribe a mandatory Nmin soil analysis before the application 

of significant amounts of nitrogen in areas with high nitrate levels in the groundwater (BLE, 2018). 

However, there is still a need for optimization, because soil sampling and laboratory analysis are time-

consuming and cost-intensive procedure (OLFS ET AL., 2005).  
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1.4.2 Spectral sensing in agriculture as a tool for plant-analysis 

Since the Industrial Revolution, agricultural practices in developed countries have intensified, followed 

by negative societal and environmental implications. However, the increasing need for food and fiber 

of a rapidly growing population could be provided. Therefore, Precision Agriculture was developed to 

ensure safe and sustainable agriculture. Precision Agriculture combines fundamental technologies 

such as Global Positioning System (GPS), Geographic Information System (GIS), computer modeling, 

ground-based/airborne/satellite remote sensing, variable rate technology, and advanced information 

processing for timely in-season and between-season crop management. Therefore, this offers 

potential benefits in productivity, sustainability, profitability, crop quality, environmental protection, 

on-farm quality of life, food safety and rural economic development (LIAGHAT AND BALASUNDRAM, 2010). 

Remote sensing is defined as the measurement and acquisition of information about certain properties 

of objects, phenomena, or materials by a recording device without physical contact with the features 

under surveillance (KHORRAM ET AL., 2012). Remote sensing uses methods that measure and detect 

electromagnetic energy including visible and non-visible radiation that interact with surface materials 

and the atmosphere (LIAGHAT AND BALASUNDRAM, 2010). In agriculture, the research across a wide range 

of applications of spectral sensing is under investigation such as weeds (LAMB AND BROWN, 2001; THORP 

AND TIAN, 2004), plant diseases (ZHANG ET AL., 2019; OERKE, 2020), nutrient monitoring (MAHAJAN ET AL., 

2014), crop water stress (ELSAYED ET AL., 2011; BECKER AND SCHMIDHALTER, 2017; GERHARDS ET AL., 2019), 

and phenotyping (BARMEIER AND SCHMIDHALTER, 2017b; PREY ET AL., 2020). During vegetation, the plant 

itself is often used as an indicator of N-supply and spectral sensing is a widely used method to detect 

the N-status of crops, as it is non-destructive and rapid (SCHMIDHALTER ET AL., 2001; OLFS ET AL., 2005; 

MISTELE AND SCHMIDHALTER, 2008a, 2008b; BARKER AND SAWYER, 2010; WINTERHALTER ET AL., 2011; DIACONO 

ET AL., 2012; LI ET AL., 2014; CAO ET AL., 2015; ALI ET AL. 2017). 

Spectral sensors measure mainly in the wavelength range between 400 and 1000 nm. Vegetation, in 

particular, shows a typical reflection signature in this spectral range, guided in the visible wavelength 

range (400–700 nm) by the absorption of pigments (mainly chlorophyll a at 430/660 nm and 

chlorophyll b at 450/640 nm as well as other pigments such as xanthophylls and carotenoids at 450 

nm) and in the near-infrared (700–1100 nm) by reflection processes in the foliar layers (LILIENTHAL, 

2014) (Figure 4). Spectral indices can be calculated by using specific wavelengths associated with the 

N-related traits of maize (MISTELE AND SCHMIDHALTER, 2008a; ZHAO ET AL., 2018; GARCÍA-MARTÍNEZ ET AL., 

2020; RAMOS ET AL., 2020) and wheat (MISTELE AND SCHMIDHALTER, 2008b; MISTELE AND SCHMIDHALTER 2010; 

ERDLE ET AL., 2011; PREY AND SCHMIDHALTER 2019c; DE SOUZA ET AL. 2021). 

Spectral measurements can be performed with sensors mounted on carrier vehicles (MISTELE AND 

SCHMIDHALTER, 2008a; WINTERHALTER ET AL., 2013), handheld sensors (TEAL ET AL., 2006; THOMPSON ET AL., 
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2015), satellites (KAYAD ET AL., 2019; SKAKUN ET AL., 2021) and unmanned aerial vehicles (UAV) (ZAMAN-

ALLAH ET AL. 2015, GNÄDINGER AND SCHMIDHALTER, 2017). 

 

 

Figure 4: Example of reflectance spectra of winter wheat affected by different N-fertilization. IR refers 

to the wavelength range of the near-infrared spectrum (OLFS ET AL., 2005). 

UAVs have the advantage over ground-based systems that they can capture spatial information 

simultaneously, enabling measuring without disrupting the surface, and they can generate high-

resolution images (AASEN AND BOLTEN, 2018). Especially satellites (i.e., Sentinel-2) promote remote 

sensing for agricultural applications due to the freely available multispectral data with improved 

spectral, spatial, and temporal resolution (CLEVERS AND GITELSON, 2013; VIZZARI ET AL., 2019).  However, 

compared to UAVs, one major disadvantage of satellites is the greater ground sample distance (HUNT 

AND DAUGHTRY, 2018). 

Although a wide range of research has been conducted in the field of spectral measurements, to date 

there is a lack of an agronomically-based evaluation of spectral detection limits of N-related traits of 

maize and wheat. 
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2 Thesis objectives and outline 

This thesis pursues to optimize the nitrogen fertilization of wheat (Triticum aestivum L.) and maize (Zea 

mays L.). 

N-fertilizer decisions are based on many assumptions (e.g., grain yield, N-mineralization during the 

vegetation period) and are further supported by soil- and plant-based measurements. Soil-based 

measurements include the determination of the residual mineral nitrogen in the soil (nitrate-N + 

ammonium-N, "Nmin"). The Nmin-method is widely used at the beginning of the vegetation in a variety 

of crops. However, sampling and analysis are time-consuming, labor-intensive and costly, and they 

need to be further optimized (Section I). During vegetation, spectral measurements are commonly 

used to determine the N uptake and N-related traits of wheat and maize. Many spectral sensors are 

available to measure the canopy`s reflectance, mounted on various carrier vehicles including aerial- 

and ground-based systems. However, for in-season N-management decisions, spectral detection limits 

should be considered. To date, commonly used statistics such as R², RMSE, and MAE do not fully attend 

the agronomic relevance and should therefore be extended including agronomically-based error limits 

(Sections II–III). 

This thesis is structured cumulatively in three sections. 

Section I conducted residual mineral soil nitrogen sampling at twelve fields covering many sites in 

wheat and maize. The aim was to ascertain the necessary sampling intensity (number of samplings per 

field) to achieve reliable results. Additionally, nitrogen increase experiments in wheat were established 

to evaluate the usefulness of reduced soil sampling. In a further step, in-season multispectral satellite 

images (Sentinel-2) were examined to replace the physical soil sampling. 

Section II defines agronomically-based error limits for the spectral detection of the N uptake in wheat 

based on data sets including several sites, years, varieties, and growth stages. Additionally, a 

comparison of aerial- (UAV) and ground-based (Phenotrac IV) systems were studied and the 

performance of spectral indices was studied, taking into account the importance of N content and 

biomass for detecting the N uptake in wheat. 

Section III defines agronomically-based error limits for the spectral detection of N-related traits 

(aboveground and grain N uptake, and NNI) as well as grain yield in maize. Therefore, a two-year 

nitrogen increase experiment was conducted at one site. In addition, the suitability of UAV-derived 

spectral indices to capture the N-related traits and grain yield was evaluated. 
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3 Materials and Methods 

The following paragraphs provide important information on the methods used in Sections I–III. For 

details, the reader is referred to the individual articles indicated in paragraph 4. 

 

3.1 Field trials 

Field trials were conducted for Section I in 2018 and 2019, for Section II in 2020, and for Section III in 

2018 and 2019. 

 

Figure 5: N-fertilization experiments (Section I) in winter wheat in 2018 at the Dürnast research station 

of the Technical University of Munich (Background: Weihenstephan campus). 

In Section I, soil sampling for Nmin analysis was performed on twelve fields, located in different typical 

agricultural arable farming regions in Southern Germany (Table 1). Additionally, nitrogen fertilization 

experiments were carried out at two different sites (F1, H). Site F1 was located at the Dürnast research 

station of the Technical University of Munich in Germany (48°23ʹ60ʺ N, 11°41ʹ60ʺ E) (Figure 5). The 

average precipitation is approximately 800 mm, the yearly temperature 8 °C, and the soil consists of a 

mostly homogeneous Cambisol with a silty-clay loam texture. At site H, the average precipitation is 

approximately 1000 mm, the yearly temperature 8.4 °C, and the soil consists of a Colluvisol with a silty 

loam texture. All fields were managed conventionally in compliance with local standards and a 

sufficient supply of all nutrients, except nitrogen, was ensured. One field experiment in Section II and 
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all field experiments in Section III were conducted at the same site as F1. A further technical description 

of the nitrogen fertilization experiments is given in Table 2. 

Table 1: Characterization of the sampling sites. Letters display locations, numbers show different fields 

at the same location, (1) sL = sandy loam, lS = loamy sand, L = loam, Mo = peat, Lö = loess, Al = alluvium, 

D = diluvium, (BAYERISCHES LANDESAMT FÜR UMWELT (LFU), 2019) (2) WRB =  IUSS WORKING GROUP W.R.B. 

(2007). 

Field Year of sampling 
Coordinates 

(GPS) 
Field size 

(ha) 

German 
soil 

assessment 
data(1) and soil 

taxonomy 
according to 

WRB(2) 

Topography 

 A 2018 
48°47'40.0"N 
12°47'10.6"E 

 2.5 
L, Lö; 

Cambisol, 
stagnic 

Plane 

      

B1 2018 
48°46'24.6"N 
12°41'04.8"E 

12.7 
L, Lö; 

Cambisol stagnic 
Hilly 

      

B2 2018 
48°46'22.4"N 
12°40'11.9"E 

 4.0 
L, Lö; 

Cambisol stagnic 
Plane 

      

C1 2018 
48°44'46.1"N 
11°08'36.2"E 

 2.7 
L, Lö; 

Cambisol stagnic 
Hilly 

      

C2 2018 
48°45'07.8"N 
11°09'09.2"E 

 2.4 

sL, Lö 
to L, Lö; 

Cambisol stagnic 
 

Hilly 

      

D1 2018 
48°11'15.8"N 
10°59'35.6"E 

 2.8 
L, Lö, D; 

Cambisol stagnic 
Plane 

      

D2 2018 
48°11'01.2"N 
11°00'13.2"E 

 2.5 
L, Lö, D; 

Cambisol stagnic 
Plane 

      

E 2018 
48°10'51.7"N 
11°44'07.3"E 

 3.7 
sL, D; 

Leptosol, 
skeletic, humic 

Plane 

      

F1 2018 
48°24'11.9"N 
11°42'11.7"E 

12.2 
L, D; 

Cambisol stagnic 
Hilly 

      

F2 2018 
48°24'06.9"N 
11°42'26.5"E 

 4.7 
L, D; 

Cambisol stagnic 
Hilly 

      

G 2018 
48°14'22.4"N 
11°27'46.1"E 

 5.4 
Mo, lS, Al; 

Fluvisol, gleyic, 
calcaric, humic 

Plane 

      

H 2019 
48°10'19.8"N 
10°59'25.7"E 

1.0 
L, D; 

Cambisol stagnic 
Plane 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/loam
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/loess
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alluvium
https://www.sciencedirect.com/science/article/pii/S1161030121001404#bib0110
https://www.sciencedirect.com/science/article/pii/S1161030121001404#bib0110
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Table 2: Technical description of the N-fertilizer experiments. N-fert. I, II, and III refer to the individual nitrogen split applications. VB indicates the beginning of 
vegetation. 

 2018 2019 2020 
    

Section I III I III II 
      

Investigated crop 
Winter wheat 

(Triticum aestivum L.) 
Maize 

(Zea mays L.) 
Winter wheat 

(Triticum aestivum L.) 
Maize 

(Zea mays L.) 
Wheat 

(Triticum aestivum L.) 
      

Variety Reform Amagrano Spontan Amagrano Apostel 
      

Pre-crop Rapeseed Winter wheat Maize Winter wheat Spring barley 
      

Sowing density (kernels m-2) 330 11 340 9 350 
      

Experimental design 
completely 
randomized 

completely 
randomized 

completely 
randomized 

double-created 
Latin square 

randomized complete block 
design 

      

Replicates (n) 4 6 4 for each 4 4 
      

Plot length and width (m) 20 x 12 20 x 12 10 x 2 15 x 12 10.5 x 1.5 
      

N-fertilization: 
growth stages 

N-fert. I  
                                                                                 

iN-fert. II 
 

  N-fert. III 

VB 
 

Begin stem elongation 
 

Flowering 

Leaf development 
 
 
 
 

VB 
 

Stem elongation 
 

Heading 

Leaf 
development 

 
 
 

VB 
 

Stem elongation 
 

Booting 
       

N-fertilization: 
amount 

(kg N ha-1) 

N-fert. I  
                                                                                  

iN-fert. II 
 

  N-fert. III 

0/40/60/40/90/60 
 

0/60/60/90/40/90 
 

0/50/60/80/80/80 

0/80/120/160 
 
 

0/80/120/160 
0/80/120/160 

0/45/60/75 
 

0/45/60/75 
 

0/45/60/75 

0/80/120/160 
 
 

0/80/120/160 
0/80/120/160 

0/35/40/45/50/55/60/65/70/75 
 

0/35/40/45/50/55/60/65/70/75 
 

0/35/40/45/50/55/60/65/70/75 
       

N-fertilization: 
N-form 

Ammonium nitrate 
Ammonium sulfate 

urea 
Ammonium nitrate 

Ammonium 
sulfate nitrate 

Calcium ammonium nitrate 
      

Fertilizer spreader 
Pneumatic spreader, 

Rauch® AERO, 
Germany (Figure 6) 

Pneumatic spreader, 
Rauch® AERO, 

Germany 

Disc spreader, 
Bogballe® M35W, 

Denmark 

Box spreader, 
Fiona® G-85, 

Denmark 

Box spreader, Fiona® G-85, 
Denmark 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/spreaders
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/spreaders
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Figure 6: N-fertilizer application with the Rauch® AERO pneumatic spreader in winter wheat. 

 

3.2 Weather conditions 

The weather data given in Figure 7 refer to the field experiments in maize in 2018 and 2019 (Section 

III) and the wheat experiment in 2020 of Section II. 

 

Figure 7: Crop growth relevant monthly weather conditions (January to October) at the experimental 

site (Dürnast research station, Southern Germany) in 2018, and 2019 in maize and 2020 in wheat. The 

temperature (a) and precipitation (b) are shown as bars and the long-term average (mean 1981–2010) 

as lines (CDC, 2020). 

The weather conditions in 2018 and 2019 deviated significantly in some of the maize growth relevant 

months from the long-term average (mean 1981–2010). Both years showed temperatures above the 

a) 

 

b) 
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long-term average in all months, except for May 2019. Comparing both years, 2018 deviated stronger 

from the long-term average than 2019. Less precipitation was observed in 2018 and 2019 in April, July, 

August, and September, and in 2018 also in October, and more precipitation was observed in 2018 and 

2019 in May and June, and in 2019 also in August compared to the long-term average. Averaged across 

all months, the total precipitation in 2018 and 2019 was 480 and 498 mm, which was very similar, but 

indicated a precipitation deficit for both years compared to the long-term average (550 mm). 

Also in 2020, significant deviations from the long-term average (mean 1981–2010), which impacted 

the growth of wheat, could be observed. Temperatures above the long-term average were observed 

between January and April inclusive and also in August, with the largest differences in February and 

April. Less precipitation was observed in January, March to May inclusive, and July, and more 

precipitation in February, June, and August. The strongest deviations are related to February, May, and 

June. 

 

3.3 Soil and plant sampling, sample analysis, and calculation of soil and plant 
traits 

In Section I, a sampling grid for soil sampling was designed for each field to consider the field size and 

shape using ArcGIS (ESRI®, Germany, Version 10.5.0.6491). Peripheral areas and headlands were not 

considered. A minimum distance of at least 20 m between sampling points was chosen to avoid the 

spatial dependence of nitrate-N or Nmin values (DAHIYA ET AL., 1985; VAN MEIRVENNE AND HOFMAN, 1989; 

SCHMIDHALTER ET AL., 1991a; ILSEMANN ET AL., 2001). For larger fields, the distance was extended and 

reduced on smaller fields to achieve an exact representation of the fields and avoid unnecessary soil 

samplings. Sampling was performed shortly before the beginning of the vegetation for wheat in 

February and for maize in April. The total soil sampling depths ranged from 60 to 90 cm in agreement 

with a recently suggested recommendation by the federal advisory institutions (BAYERISCHE 

LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2018b). One field (E, Table 1) could only be sampled down to 

30 cm due to the high skeleton content. At all fields except site F, soil samples were taken with a set 

of two gauge augers (Pürckhauer, inner diameters of 2.5 cm for 0–30 cm and 2.0 cm for 30–60 cm 

depth), and, corresponding to site F, a tractor-mounted soil sampling device (inner diameter of 3.5 cm 

for all soil depths) was used. Each sampling point consisted of 2–5 soil samples because the generated 

soil quantity per sample depends on the soil. The collected soil samples were stored cooled in ice boxes 

during transport and afterward, if necessary, homogenized and finally frozen for storage until analysis. 

To determine the nitrate-N content of each soil sample, 80 g of soil were weighed in performed as 

duplicate in polyethylene bottles, and 160 mL of calcium chloride solution (CaCl2; 0.01 M) was added 

to each soil sample and shaken overhead for 60 minutes. Subsequently, the solution was filtered (150 

mm, 80 g/m², AHLSTROM MUNKSJÖ®, Helsinki, Finland), and the first part of the filtrate was discarded. 
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According to VILSMEIER (1984), chemical analysis was carried out using high-performance liquid 

chromatography (HPLC) and for further calculation of the soil nitrate-N content, a dry bulk density of 

1.5 g cm3 was assumed. 

Plant samples of wheat (Sections I and II) and maize (Section III) were manually sampled in an indicative 

area from each plot at indicative growth stages (BBCH codes, “Biologische Bundesanstalt, 

Bundessortenamt und CHemische Industrie”; MEIER, 2018) to assess the nitrogen status. Plant samples 

of maize were post-harvest separated into leaves, stems, and if necessary, cobs and afterward 

chopped. The dry weight, expressed as t ha-1, was determined based on oven-dried subsamples. 

Afterward, the dried samples were then milled to a fine powder (Brabender®, Duisburg, Germany; 

Retsch®, Haan, Germany) and subsequently analyzed by a mass spectrometer with an ANCA SL 20–20 

preparation unit (Europe Scientific®, Crewe, UK) to ascertain the N content (% of dry weight). The N 

uptake (kg N ha-1) was calculated as dry weight x N content. In Sections I and III interior plant rows 

were threshed (Deutz-Fahr®, Germany) to determine the grain yield (14 % moisture). The grain sample 

preparation was carried out comparable to the biomass samples and for wheat, the crude protein 

content was calculated as N content grain * 5.7 (ISO 16634–2, 2016). 

For a better understanding of the nitrogen supply of the crops, the nitrogen nutrition index (NNI) 

(LEMAIRE AND GASTAL, 1997) was calculated in Section II for wheat (JUSTES ET AL. 1997) and Section III for 

maize (PLÉNET AND LEMAIRE, 1999) as follows: 

Eq. 1: NNI = 
Nact

Nc
 

where Nc (%) is the critical nitrogen content and Nact (%) is the actual measured nitrogen content of 

the shoot dry matter. 

 

3.4 Spectral measurements 

To investigate the relationship between residual soil mineral N values and in-season multispectral 

satellite images, bottom of atmosphere images from Sentinel-2 were used (Section I). These 

orthorectified and atmospherically corrected surface reflectance data were downloaded from the 

Google Earth Engine. A detailed technical description of the Sentinel-2 satellite is given by SEGARRA ET 

AL. (2020). The boundaries of the investigated fields (Table 1) were selected as the image section and 

pixels at the edge of the fields that were not 100 % within the field boundaries were removed. 

Subsequently, these pixels were interpolated using the nearest neighbor pixels (equal weighting) by 

regression based on k-nearest neighbors. Only cloudless images were used. In these images, the 

previously georeferenced nitrate-N sampling points were located, and a buffer, formed as a circle 
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(radius 10 m), was created around each sampling point. The circle reflectance value for each band 

collected in this way arises from the weighted average (area fraction) of all neighboring pixels. The 

observation period was April to June for wheat and April to July for maize. Due to the close distance of 

sampling points in some fields, only high-resolution bands (4–7 and 9) of the Sentinel-2 were used. 

In Section III, only aerial-based measurements (UAV) were conducted under cloudless conditions to 

capture N-related traits and grain yield of maize. All observations were done directly after destructive 

data collection except for the measurement date at BBCH 86 in 2019, where plant sampling was made 

seven days after the spectral sensing. The flights were performed with the fixed-wing aircrafts eBee 

and eBee RTK (SenseFly®, Lausanne, Switzerland). Both UAVs were equipped with the same 

multispectral camera (Sequoia+ camera, Parrot, Paris, France). Four spectral bands of the 

electromagnetic spectrum were recorded: GREEN (550 nm, ~40 nm bandwidth), RED (660 nm, ~40 nm 

bandwidth), REDEDGE (735 nm, ~10 nm bandwidth), and NIR (790 nm, ~40 nm bandwidth). For 

calibration, a white balance card was used. The flights were carried out in 2018 and 2019 at heights of 

80 and 55–60 m above the ground, resulting in ground resolutions of about 8 and 5 cm/pixel. Pix4D 

software (Pix4D S.A., Prilly, Switzerland) was used to merge the individual images. Further details of 

the UAV equipment are given in HU ET AL. (2020b). Based on the complete image, a polygon for each 

plot and the individual band was created using ArcGIS (ESRI®, Germany, Version 10.5.0.6491). Care 

was taken to exclude peripheral and biomass harvesting areas and polygons affected by artifacts. 

The aerial-based measurements and the further processing of the spectral data in Section III were the 

same as in Section II, except for the use of the fixed-wing aircrafts eBee X (BBCH 37) and eBee Plus 

(BBCH 61) (SenseFly®, Lausanne, Switzerland). For ground-based measurements, the vehicle sensor 

platform Phenotrac IV (BARMEIER AND SCHMIDHALTER, 2017b) equipped with a hyperspectral bidirectional 

passive sensor spectrometer (tec5®, Oberursel, Germany) mounted at the front center was used. The 

measuring range of the sensor is 300 to 1000 nm with a nominal resolution of approximately 3.3 nm, 

and a field of view (FOV) of 24°. Field measurements were conducted with a distance to the canopy 

surface of approximately 0.8 m and a driving speed of approximately 5 km h-1. Other ground-based 

measurements were performed with the handheld sensors Handy-Spec® field spectrometer (LI ET AL., 

2012) and a two-channel spectrometer (WESTERMEIER AND MAIDL, 2019). A more detailed description of 

these handheld sensors can be found in the publications indicated. All reflectance data were used to 

calculate commonly used indices (Table 3), including wavelengths related to maize traits (MISTELE AND 

SCHMIDHALTER, 2008a; ZHAO ET AL., 2018; RAMOS ET AL., 2020; GARCÍA-MARTÍNEZ ET AL., 2020), and wheat 

traits (MISTELE AND SCHMIDHALTER, 2008b; MISTELE AND SCHMIDHALTER 2010; ERDLE ET AL., 2011; PREY AND 

SCHMIDHALTER 2019c; DE SOUZA ET AL. 2021). 
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Table 3: List of spectral indices. Depending on the technique used, the original published spectral wavelengths were approximated.  

Section Index Equation Sensor platform Reference 

     

I, II, III NDVI 
𝑅790 − 𝑅660

𝑅790 + 𝑅660
 UAV, Phenotrac IV, Sentinel-2 ROUSE ET AL. (1974) 

     

II, III NIR/GREEN R780/R550 UAV 
MISTELE AND SCHMIDHALTER (2008a, 

2008b) 
     

II, III NIR/RED R780/R670 UAV GITELSON ET AL. (2003) 
     

II, III NIR/REDEDGE R780/R735 UAV DE SOUZA ET AL. (2021) 
     

II, III NDRE 
𝑅790 − 𝑅720

𝑅790 + 𝑅720
 UAV BARNES ET AL. (2000) 

     

I, II REIP 700+40 (
(

𝑅670+𝑅780

2
)−𝑅700

𝑅740−𝑅700
) Phenotrac IV, Sentinel-2 GUYOT ET AL. (1988) 

     

II R760/R730 R760/R730 Phenotrac IV ERDLE ET AL. (2011) 
     

II R780/R740 R780/R740 Phenotrac IV MISTELE AND SCHMIDHALTER (2010) 
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3.5 Data analysis and further calculations 

Data analysis across all sections was performed with Microsoft® Excel® 2019 MSO (16.0.12527.20260), 

IBM® SPSS® Statistics 26 software, and R (2018, 2021). 

In Section I, the following statistics were calculated for soil data: mean value, standard deviation, 

minimum and maximum value, coefficient of variation (CV [%] = standard deviation/mean value*100), 

linear regressions, and Pearson correlations (KÖHLER ET AL., 2012). The Shapiro-Wilk test was used to 

check the normal distribution of the data. Equation 1 calculates the number of soil samples (𝑛) that 

must be taken to be within d units of the mean value: 

Eq. 1: 𝑛 = 𝑋𝛼
2 * σ² / d²  

where Xα is the standard normal distribution, σ is the standard deviation and d indicates the acceptable 

error (absolute value in kg nitrate-N ha-1) of the mean value. A further analysis concerned the 

comparison of the regionally aggregated Nmin values from the official advisory system (BAYERISCHE 

LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2018a and BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 

2019) with a reduced sampling intensity (restricted to two samplings per area for a soil depth of 0–60 

cm). For the field nitrogen fertilization experiments, nitrogen use efficiency, nitrogen uptake efficiency, 

nitrogen utilization efficiency (LÓPEZ-BELLIDO ET AL., 2005), N-balance (simplified according to OECD AND 

EUROSTAT, 2007), and nitrogen harvest index (DELOGU ET AL., 1998) were calculated as efficiency 

parameters. A further economic evaluation includes the N-free output (KARATAY ET AL., 2018) using 

wheat prices according to BUNDESMINISTERIUM FÜR ERNÄHRUNG UND LANDWIRTSCHAFT (2019) and an 

assumed price for fertilizer nitrogen of 1 € per kg nitrogen. For details, the reader is referred to the 

original publication (Section I). 

In Sections II and III, based on the Akaike Information Criterion (AIC) (WEBSTER AND MCBRATNEY, 1989), 

either linear or polynomial (second-order) regressions were calculated and the coefficient of 

determination (R²) was used as a measure of the goodness of fit. R² indicates the portion of the 

explained variance in the model regarding the total variance (Eq. 2): 

Eq. 2: R² = 
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑
 = 

∑ (ŷ𝑖−ӯ)2𝑛
𝑖=1

∑ (𝑦𝑖−ӯ)2𝑛
𝑖=1

 

where ŷi is the estimator (regression function) of each observed yi and ӯ is the arithmetic mean of all 

observed yi. For a better understanding, Figure 8 illustrates these relationships graphically. 
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Figure 8: Diagram showing the decomposition of the deviation sum of squares, where x and y represent 

the independent and dependent variables with P as an example of a single measured value, ŷi is the 

estimator (regression function) of each observed yi and ӯ is the arithmetic mean of all observed yi 

(BLEYMÜLLER ET AL., 2008). 

 

As a further measure of the predictive quality of the regression, confidence and prediction intervals 

(95 % level) were calculated (BLEYMÜLLER ET AL., 2008; KÖHLER ET AL., 2012). Additionally, the root mean 

square error (RMSE) was calculated as follows: 

Eq. 3: RMSE [kg N ha-1] = √
∑  (𝑃𝑖−𝑂𝑖 )²𝑛

𝑖=1

𝑛
 

where 𝑂𝑖 are the measured and  𝑃𝑖  the predicted values for the N uptake and 𝑛 the number of samples. 

For a better understanding it should be mentioned that 𝑃𝑖  is equal to ŷ𝑖  and 𝑂𝑖 is equal to 𝑦𝑖  (Figure 

8). 

To enable better comparability of RMSE with other data sets, the standardized RMSE [%] (modified 

according to LOAGUE AND GREEN, 1991) was calculated as follows: 
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Eq. 4: RMSE [%] = √
∑  (𝑃𝑖−𝑂𝑖 )²𝑛

𝑖=1

𝑛
 ˣ 

100

Ō
  

where 𝑂𝑖 and 𝑃𝑖 are observed and predicted values and 𝑛 the number of samples, whereas Ō 

represents the mean of the observed data. Afterward, the RMSE values were classified and evaluated 

according to WESTERMEIER AND MAIDL (2019). RMSE values < 10 % were rated as excellent, 10–20 % good, 

and > 30 % sufficient. 

Another widely used and generally accepted error in the entire model is the mean absolute error 

(MAE), which was calculated as follows: 

Eq. 5: MAE [kg N ha-1] = 
∑  |𝑃𝑖−𝑂𝑖 |

𝑛
𝑖=1

𝑛
 

where 𝑂𝑖 and 𝑃𝑖 are observed and predicted values, and 𝑛 is the number of samples (WILLMOTT 1984). 

Additionally in Section II, Pearson correlations (r) as well as the partial correlation coefficient were 

calculated (BACKHAUS ET AL., 2006; KÖHLER ET AL., 2012). The partial correlation coefficient eliminates the 

influence from one additional variable (covariate) and is given as: 

Eq. 6: 𝑟𝑥1,𝑥2|𝜉 = 
𝑟𝑥1,𝑥2 − 𝑟𝑥1,ξ · 𝑟x2,ξ

√(1− 𝑟𝑥1,ξ²)·(1− 𝑟𝑥2,ξ²)
 

where 𝑟𝑥1,𝑥2 are the correlation coefficients between 𝑥1 and 𝑥2, 𝑟𝑥1,ξ are those between 𝑥1 and ξ and 

𝑟𝑥2,ξ are the ones between 𝑥2 and ξ. If the additional variable does not influence the correlation of the 

other two variables, the partial correlation coefficient is at the same level as the Pearson correlation 

coefficient (without the covariate). Increasing influence is indicated through a lower partial correlation 

coefficient and the difference between the Pearson and the partial correlation coefficient is equal to 

the influence of the covariate. 

Sections II and III included, in addition to the commonly accepted statistical error measures for 

regressions, confidence intervals that tolerate a model error that is acceptable from an agronomic 

point of view. This error was calculated as follows: 

Eq. 7: agronomic error [unit of the trait of maize and wheat] = ŷi ± error of yi 

where yi is the agronomic error and ŷi is the estimator of the regression function. As a measure of 

goodness, the proportion of data points that fell inside the interval was chosen, and, we imply that a 

reasonable value is at least 80 %. 
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4 Manuscript overview 

4.1 Section I: Simplifying residual nitrogen (Nmin) sampling strategies and crop 
response 

 

Heinemann P., Schmidhalter U., 2021. Simplifying residual nitrogen (Nmin) sampling strategies and crop 

response. European Journal of Agronomy, 130. 126369. doi.org/10.1016/j.eja.2021.126369.      

URL: https://www.sciencedirect.com/science/article/pii/S1161030121001404. 

Author contributions 

Paul Heinemann: Investigation, Methodology, Data curation, Formal analysis, Writing - original draft. 

Urs Schmidhalter: Conceptualization, Supervision, Writing - review & editing, Project administration, 

Funding acquisition. 

Summary 

World-wide, decisions concerning the N-fertilization of crops occur at early growth stages when plant 

development is less and not indicative of their demands. Therefore, optimizing nitrogen fertilization 

requires the evaluation of the available soil mineral nitrogen content (Nmin) early in the season. In 

Germany, areas characterized by increased nitrate concentrations in the groundwater (approximately 

28 % of the arable land) require since 2020 a mandatory soil Nmin analysis for each crop on a 

representative field. In this context, optimization of soil analysis is needed because it is costly, time-

consuming, and labor-intensive. 

This work investigated maize fields in 2018 and wheat fields in 2018 and 2019, where soil sampling 

was carried out in a grid pattern in spring. The soil nitrate-N content was determined for each 30 cm 

layer, and in total down to a soil depth of 60 cm in 11 fields and further down to 90 cm soil depth in 

two of the fields. Given a deviation of less than 10 kg nitrate-N ha-1, each single and the combined soil 

depths of all fields could be sampled only with two soil samples. Generally, the reduced field-specific 

soil sampling strategy even performs more precise Nmin values by 11.2 kg nitrate-N ha-1 for wheat fields 

and, slightly less precise values by 4.8 kg nitrate-N ha-1 for maize fields, however. This proved to be 

beneficial compared to crop-specific, regionally representative Nmin values offered by the official 

advisory authorities. Further investigations of nitrogen fertilization experiments supported the 

applicability of the new simplified Nmin strategy. The findings are valid for conventional tillage 

managements and relative homogeneous fields with field sizes in the range of 1.0–12.7 ha.  A 

replacement of soil analysis through multispectral in-season satellite imagery from Sentinel-2 was not 

feasible. In combination with available simplified on-farm analysis of the soil nitrate content, a more 

intensive field-specific soil Nmin analysis contributes to improved nitrogen management, decreases 

adverse environmental effects, and saves analysis and sampling costs. 

https://doi.org/10.1016/j.eja.2021.126369
https://www.sciencedirect.com/science/article/pii/S1161030121001404
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4.2 Section II: Evaluating and defining agronomically relevant detection limits 
for spectral reflectance-based assessment of N uptake in wheat 

 

Heinemann P., Haug S., Schmidhalter U., 2022. Evaluating and defining agronomically relevant 

detection limits for spectral reflectance-based assessment of N uptake in wheat. European Journal of 

Agronomy, 140. 126609. doi.org/10.1016/j.eja.2022.126609.      

URL: https://authors.elsevier.com/sd/article/S1161-0301(22)00157-5. 

Author contributions 

Paul Heinemann: Conceive & design & implementation of the experiment, Data analysis, Writing – 

original draft & review & editing 

Stephan Haug: Statistical supervision, Writing - review & editing 

Urs Schmidhalter: Conceive & design of the experiment, Writing - review & editing, Project 

administration, Funding acquisition. 

Summary 

The spectral determination of the N uptake of wheat is a commonly used method as it is cost-efficient, 

rapid, and non-destructive. Nevertheless, there exists a lack of agronomical-based spectral detection 

limits. Currently used statistical measures such as R², RMSE, or MAE do not fully satisfactorily address 

the agronomical relevance, especially when sensing is frequently carried out under extreme N supply 

conditions which may not reflect current farming practice. The present study, therefore, used different 

data sets covering several years, sites, varieties, and developmental stages of wheat (Triticum aestivum 

L.), to evaluate regression models between the N uptake and commonly used spectral indices, sensed 

from hyperspectral ground-based and multispectral unmanned aerial vehicles (UAV). The results 

suggest that an evaluation through commonly used statistical measures is not sufficient from an 

agronomic point of view. The R² is essentially influenced by differentiating N uptake which is frequently 

linked to later growth stages. Further statistics such as RMSE and MAE only average the error, which 

leads to an under- as well as overestimation for most observations, and should therefore be extended 

by agronomic-based error intervals. In this investigation, we defined, based on a probability of at least 

80 %, a suitable error interval of ± 15 kg N uptake ha-1 up to BBCH 50. The interval limits can be closer 

in earlier developmental stages and wider at later growth stages. In addition, this research pointed out 

that extreme N levels can bias the models and should be limited to N-fertilization ranges that are 

indicative of the current site-specific farming practice. For detecting N uptake, differentiation of 

biomass is more important than that of N content. Terrestrial- as well as UAV-based sensing were 

equally suitable for detecting the N uptake of wheat when spectral bands of the REDEDGE and NIR 

regions were combined. In general, agronomically-based detection limits facilitate the evaluation and 

should be included besides common statistical measures in the spectral valuation of wheat N uptake. 

https://doi.org/10.1016/j.eja.2022.126609
https://authors.elsevier.com/sd/article/S1161-0301(22)00157-5
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4.3 Section III: Spectral assessments of N-related maize traits: Evaluating and 
defining agronomic relevant detection limits 

 

Heinemann P., Schmidhalter U., 2022. Spectral assessments of N-related maize traits: Evaluating and 

defining agronomic relevant detection limits. Field Crops Research, 289. 108710. 

doi.org/10.1016/j.fcr.2022.108710.      

URL: https://www.sciencedirect.com/science/article/pii/S0378429022002817?dgcid=author. 

Author contributions 

Paul Heinemann: Investigation, Methodology, Data curation, Formal analysis, Writing - original draft. 

Urs Schmidhalter: Conceptualization, Supervision, Writing - review & editing, Project administration, 

Funding acquisition. 

Summary 

Spectral sensing is a widely used method in agriculture to detect N-related traits and the grain yield of 

maize (Zea mays L.) because it is non-destructive, rapid, and cost-efficient. However, to date, a lack of 

knowledge of agronomically supported spectral detection limits exists. Commonly used statistical 

measures such as R², RMSE, and MAE do not fully satisfactorily consider the agronomic relevance and 

should therefore be extended. The present study evaluated regression models of spectral indices 

derived from an unmanned aerial vehicle (UAV) by capturing grain and aboveground N uptake, NNI, 

and grain yield covering data sets of two sites, years, and four developmental stages of maize. The 

results suggest that an agronomic evaluation exclusively based on widely used statistical measures is 

not fully adequate. The R² is essentially affected by the differentiation of the trait, which in turn 

depends on growth stages and year effects. Further commonly used statistics such as MAE and RMSE 

only average the error and therefore lead to an over- as well as underestimation for most observations. 

In this study, we defined a suitable agronomical error interval for grain and aboveground N uptake, 

nitrogen nutrition index, and grain yield of ± 25 and ± 40 kg N ha-1, ± 0.2, and ± 1.4 t ha-1, in compliance 

with a probability of at least 80 %. These error intervals are consistent across growth stages and years 

because most spectral indices are mainly dominated by the biomass of maize. Across all of them, 

spectral indices perform best when combinations of GREEN, REDEDGE, and NIR bands are used. For 

spectral indices using the RED band, the range of the agronomic error interval performed equally, but 

with a slightly higher probability of data points outside the error limits. Common statistical measures 

should be extended by agronomically-based error limits in the spectral assessment of N-related traits 

of maize and grain yield to optimize the ex-ante and/or ex-post analysis of N-fertilization. 

 

 

https://doi.org/10.1016/j.fcr.2022.108710
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5 General discussion 

Chapters 5.1–5.3 discuss the results reported in Section I. Chapters 5.4–5.6 and 5.8 address the findings 

of Sections II and III. Chapter 5.7 discusses further results only observed in Section II whereas chapter 

5.9 encompasses future aspects. 

 

5.1 Simplified residual soil nitrogen sampling strategy 

An exact determination of the soil mineral N content depends on diverse factors such as, e.g., an 

incorrect estimation of the stone content (SCHARPF, 1977), assumption of an incorrect bulk density, 

insufficient representativeness of soil sampling and sample treatment (MOLITOR, 1982), and also the 

influence of the sampling device (BAKER ET AL., 1989). When calculating the Nmin value, the possible error 

of an incorrect estimation of the bulk density and the soil’s stone content may be higher than the 

analytical error (SCHMIDHALTER ET AL., 1991a, 1991b), which was quantified in total (storage, 

transport, and soil sample preparation) by RICHTER ET AL. (1984) in the range of 10–15 kg NO3
- N ha-1. 

Additionally, they evaluated an analytical error of UV spectrometry up to 5.5 kg nitrate-N ha-1. BAKER 

ET AL. (1989) pointed out that smaller diameters of the sampling devices led to lower NO3
- N ha-1 values 

and the earth auger with 5.1 cm was most suitable. Because several soil samples have been collected 

to produce the required amount of soil at one sampling point in this study, the error of small-scale 

variability is important too. This error was determined by GIEBEL ET AL. (2006) with 10.2 to 26.5 kg ha-1 

for Nmin-N and a soil depth of 0–60 cm at sampling distances smaller than 6 m and could be caused by 

inhomogeneous distribution of aboveground plant residues and straw, differing mineralization rates, 

and spatially differing nitrogen uptake as well as incorporation of plant residues. However, the most 

important error source is non-representative field sampling. In this study, this error was chosen with 

10 kg nitrate-N ha-1 and seems to be quite practical compared to the error sources just mentioned. 

The number of samples per field depends on the confidence interval level (KANWAR ET AL., 1998). 

Therefore, this study achieved a low risk of incorrect values with the use of a 93 % confidence interval. 

The result to obtain a representative mean value of mineral nitrogen with only two soil samples per 

field found in this work largely agrees with other studies. SCHMIDHALTER ET AL. (1991a, 1991b) could 

determine the field-specific Nmin mean value for the total depth of 100 cm with five soil samples and 

an accuracy of ± 23 kg ha−1. At two locations, SCHMIDHALTER ET AL. (1992) reported a number of soil 

samples of 5–13 and 2–6 to achieve sufficient accuracy of the mean value of ± 10 and ± 15 kg N, 

respectively. ILSEMANN ET AL. (2001) found required sampling intensities of 9, 16, and 76 soil samples 

for three different sites with a given deviation of the mean value of less than 10 kg NO3-N (probability 

level of 95 %). The increase in the latter value was due to an uneven distribution of liquid manure and 
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therefore indicates a limitation for reduced soil sampling although a homogeneous distribution of 

organic fertilizers should generally be aimed at and especially before Nmin soil sampling. 

Geostatistical analysis of nitrate-N data provides little additional information than classical statistical 

methods (STENGER ET AL., 2002). The coefficient of variation (CV) is commonly used to juxtapose the 

scatter of different samples with dissimilar mean values. However, the study pointed out that a trend 

between the CVs and mean nitrate-N values exist. This finding is in line with SCHMIDHALTER ET AL. (1991a, 

1991b), SCHMIDHALTER ET AL. (1992), and HABERLE ET AL. (2004). Additionally, the study pointed out that 

the use of the Nmin mean level is more decisive for the sampling intensity than the CV. SCHMIDHALTER ET 

AL. (1991a, 1991b) previously reported that even increased variations at somewhat strongly increased 

nitrate contents are of little relevance because at these high levels, no additional nitrogen fertilization 

is advised. The relevance is also less if low Nmin values occur. 

For the correct calculation of the number of soil samples per field, the distribution of the data is 

important because it can influence the correct estimation of the sampling intensity (PARKIN AND 

ROBINSON, 1992). In this work, frequency distributions of nitrate-N values varied across the soil depths 

as well as from field to field. SCHMIDHALTER ET AL. (1991a) observed for Nmin values a log-normal 

distribution for the subsoil and a normal distribution for the topsoil. VAN MEIRVENNE AND HOFMAN (1989) 

observed for nitrate-N values log-normal distributions in October and February and normal 

distributions for April for the soil layer 0–100 cm. STENGER ET AL. (1998) observed constant as well as 

changing Nmin distributions in 0–90 cm across individual fields and several years. Thus, it is difficult to 

identify the distribution of the mineral nitrogen content of the soil in a field because it can be subject 

to both temporal and spatial variation. Non-normally distributed values might be due to large 

differences in soil texture, unevenly distributed crop residues, and fertilizers. In addition, the 

distribution is influenced by the number of soil samples per field. However, each field could be reliably 

recorded with only two soil samples despite the incorrect assumption of a normal distribution. 

In this study, soil sampling occurred on relatively equal-sized fields. The study of VAN MEIRVENNE ET AL. 

(1990) illustrated the inherent variability of inorganic nitrogen, with results indicating that nitrogen 

varies considerably and more or less comparably from small (1 m²; RAUN ET AL., 2002) to larger scales 

(1 ha to tens of hectares; REUSS ET AL., 1977; SCHMIDHALTER ET AL., 1992; GIEBEL ET AL., 2006), with few 

differences observed irrespective of the availability and the form of nitrogen. Coefficients of variation 

between 30 and 60 % irrespective of the scale have been described by REUSS ET AL. (1977), and 

SCHMIDHALTER ET AL. (1992). HABERLE ET AL. (2004) reported that in a 19 ha experimental field, the 

coefficient of variation of nitrate in the topsoil and subsoil (0–30 and 30–60 cm) ranged from 18 to 39 

and 20 to 37 %. Therefore, it seems possible to extrapolate the findings from this study to larger-sized 

fields, but this needs to be further investigated. The field sizes under investigation varied from 1.0 to 
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12.7 ha and reflect well the typical situation in the German federal state of Bavaria. Only 5 % of the 

fields in this region are greater than 5 ha (BAYERISCHE LANDESANSTALT FÜR LANDWIRTSCHAFT (LFL), 2018c). 

However, the field sizes in other federal states in Germany, e.g. East Germany, are significantly larger 

(LANDESAMT FÜR LÄNDLICHE ENTWICKLUNG, LANDWIRTSCHAFT UND FLURNEUORDNUNG (LELF), 2021). Thus, the 

extrapolation of the findings of this study is not recommended without further investigations. Even 

smaller fields can spatially differ significantly in soil and plant properties (MITTERMAYER ET AL., 2021; 

SCHUSTER ET AL., 2022; STETTMER ET AL., 2022). Therefore, soil sampling and N management within these 

heterogeneous fields should be site-specific. 

KNITTEL AND FISCHBECK (1979) observed an influence of topography on nitrate-N contents and suspected 

that this result might be due to the thicker loess layer and the direction of water and nutrient flows. 

Likewise, FRANZEN ET AL. (1998) reported better results for soil sampling for nitrate-N by topography. In 

contrast and as in this study, GIEBEL ET AL. (2006) found no influence of topography on the spatial 

distribution of Nmin values. For relatively small fields as investigated in this study, topography`s 

influence on nitrate-N sampling seems to be rather negligible. Otherwise, in the case of two soil 

samples per field, one can be taken at higher and one at lower elevations. 

The correlation between the nitrate-N content of individual soil layers varied site-specifically and 

nitrate-N contents of lower soil depths could not be estimated from upper soil layers. Although 

changes in the Nmin content concerning soil-borne-N during vegetation predominate at 0–30 cm 

(PESCHKE AND MOLLENHAUER, 1998), WEHRMANN AND SCHARPF (1979) observed at different locations at the 

beginning of the vegetation only small differences in the topsoil between the sites compared to the 

subsoil (40–100 cm soil depth) with more marked differences. These different results of the vertical 

distribution of mineral nitrogen in the soil at the beginning of vegetation, which can markedly vary 

temporarily and spatially, indicate the necessity to sample the entire soil depth yearly. 

The study could clearly show that the soil’s field-specific mineral N content could be recorded 

significantly better by reduced soil sampling (especially for wheat) compared to the Nmin value of the 

official advice. The latter is an average value based on large sample size and tended to be much higher 

and therefore leads to an overestimation of the nitrate-N values. Published regionalized values should 

be seen only as a rough guide. Due to the limited data basis of maize fields, the comparison should be 

extended to additional cases. Furthermore, the reduced field-specific soil sampling approach reduces 

the soil sampling by number and the analysis by combining the soil depths and has great potential for 

cost reduction. 
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5.2 Simplified residual soil nitrogen sampling strategy: Applicability in N-
fertilization decisions 

Two nitrogen fertilizer experiments, conducted on two sides, were used to evaluate the applicability 

of the simplified residual soil nitrogen strategy. For both sides (fields F1 and H, Table 1 and 2), the 

published official advisory regional-based Nmin values were well above the soil nitrate-N content values 

determined by reduced soil sampling. Therefore, a significantly higher N-fertilization would have been 

possible especially at the first nitrogen top-dressing. The first nitrogen application is influenced by 

weather and soil, plant development, and the Nmin value. For example, in the case of a target value of 

120 kg Nmin ha-1 is assumed for wheat at the beginning of vegetation (WEHRMANN AND SCHARPF, 1979), 

the first nitrogen application should be higher if the Nmin content is low. At site F1, it could be shown 

that an increased and earlier applied fertilizer nitrogen was mostly absorbed, with levels approximately 

the same for N uptake efficiency and the important parameters from an environmental point of view 

(straw N uptake and postharvest nitrate-N content of the soil), increased decisive parameters for the 

farmer (grain yield, grain protein content, grain N uptake, and monetary income), and levels only 

slightly worse for all other efficiency parameters and the N balance compared to the nitrogen fertilizer 

strategy based on official advisory regionally crop-specific aggregated Nmin values. The field experiment 

at site F1 was only conducted in 2018 and thus, should not be generalized. 

At site H, only the absolute amount of N-fertilization could be considered. Due to favorable weather 

conditions in 2019 and long-term organic fertilization, both the N-mineralization determined from the 

official advisory values and the grain yield were underestimated when determining the fertilizer 

requirement. 

Although the use of the Nmin value at the beginning of vegetation in N-fertilizer requirement 

determination is only one component, it represents nonetheless an important piece of information for 

N-fertilizer decisions. For example, PUNTEL ET AL. (2019) highlighted the importance of nitrate in the soil 

(0–60 cm) as a dynamic variable for modeling the economic optimum N rate and the grain yield in the 

unfertilized plot for maize. Accurate assumptions in the requirement determination optimize N-

fertilization. However, other incorrect assumptions, such as yield expectations or N-mineralization 

during vegetation, cannot be compensated by more precise field-specific Nmin sampling. 

This study investigated only fields where soil tillage occurred conventionally with basic tillage 

implements as plow and cultivator. However, especially in the case of no-till practices, many biological, 

chemical and physical soil parameters differ across soil depths compared to conventional tillage 

systems (AZIZ ET AL., 2013). Tillage influences the amount as well as the distribution of the different soil 

N pools (MC CARTY, 1995), and the availability of O2 to microorganisms is increased in the zone of 

disturbance (DINNES ET AL., 2002). As a result, nitrate-N values can decrease in the upper soil layers at 
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no-till practices (AL-KAISI AND LICHT, 2004). Therefore, the different vertical distribution of nitrate-N 

values should be implemented in N management decisions. The suggestion of this study to merge the 

nitrate-N values of the single soil depths to one single nitrate-N value is more recommended for the 

determination of the absolute N-fertilization requirement. 

 

5.3 Opportunities to substitute simplified residual soil nitrogen sampling 
through spectral sensing 

Spectral measurements are widely used to detect differences in N-related traits of crops during the 

vegetation (MISTELE AND SCHMIDHALTER, 2008a; MISTELE AND SCHMIDHALTER, 2008b; SCHMIDHALTER ET AL., 

2008; MAYFIELD AND TRENGOVE, 2009; ERDLE ET AL., 2011; RAMOS ET AL., 2020). Likewise, ELSAYED ET AL. (2018) 

and PREY ET AL. (2018) showed that differences in nitrogen status and biomass can also be spectrally 

inferred at relatively early growth stages. If small differences in soil Nmin are reflected in the biomass 

or nitrogen status of plants, spectral sensing could be used as an alternative to soil sampling. 

The results observed in Section I showed in general only weak correlations between the spectral 

indices and the field-wise Nmin values. Neither the use of the NDVI nor the REIP improved the 

correlations at the available dates or soil depths across all fields. These results indicate the difficulties 

of evaluating Nmin by crop response using spectral information. Crop N uptake is relatively low in the 

early growth stages when Nmin assessments are made. Consequently, high soil mineral N contents will 

not be absorbed by plants and become visible, and low mineral N contents already cover the N-

demand of the crops. These circumstances restrict plants as an indicator of the Nmin status at early 

developmental stages. Although moderate variation in the soil Nmin status could be observed in some 

fields, this will not be reflected in the pursuing biomass growth as evidenced by in-season satellite 

imagery. Substantial effects on biomass at this time might be due to overlapping seeding areas or 

differences in field emergence caused by varying soil texture combined also with climatic winter 

conditions or sowing techniques. During vegetation, plant N uptake might reveal different Nmin 

contents but will be masked and influenced by nitrogen fertilization. It is more likely to be detected at 

very low or omitted nitrogen fertilization and needs further investigation. 

 

5.4 Field experiments: year and site-specific growth of wheat and maize 

Due to the relatively dry weather conditions early in the season, a sufficient N-fertilization effect in 

wheat could not be observed for the N-fertilization Experiment 1 (Section II) (Figure 7). If top-dressed 

nitrogen is not moved into deeper soil layers and the topsoil also dries out, the plant will not be able 

to use any potentially available nitrogen, which possibly results in subsequent N deficiency (HARMSEN, 
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1984). N deficiency occurs firstly because N concentration in the biomass decreases while the growth 

rate remains the same, and secondly because the growth rate decreases, thereby reducing the 

accumulation of dry matter (JUSTES ET AL., 1997). The study observed a reduction of secondary tillers. 

However, promoted due to sufficient rainfall in June, a subsequent N uptake was favorable for the 

grain filling phase. Other authors also observed that the effect of N-fertilization on N uptake varies 

from year to year (DELOGU ET AL., 1998; LÓPEZ-BELLIDO AND LÓPEZ-BELLIDO, 2001). Especially the effects of 

the first two N-dressings were reported by MAIDL ET AL (1998). N-fertilization at the beginning of 

vegetation promoted the number of fertile tillers per m², while N-fertilization during stem elongation 

supported the number of grains per ear. Compared to the average of the previous years, the biomass 

at this site was significantly lower in 2020. Soil variability can cause an additional variability of biomass 

because it influences the water holding capacity and plant nutrient supply, as well as other variables 

affecting plant growth (CRAIN ET AL., 2013). Especially small variations in soil texture and soil cause 

increasingly large effects on plot-to-plot variability under limiting soil moisture conditions (CECCARELLI 

AND GRANDO, 1996). 

The growth of maize (Section III) was favorably supported by the prevailing temperatures. Extremely 

high temperatures above 30 °C, which might negatively influence maize growth (STEWART ET AL., 1998), 

were not observed. In addition, the lower precipitation level was considered to have had little effect 

on maize growth because the soil (Cambisol) at this site has a high available field water capacity (down 

to 100 cm soil depth of around 241 mm), which is attained at the beginning of vegetation and buffers 

a possible lack of precipitation (HEIL ET AL., 2020). The high influence of year effects and soil factors on 

maize growth were also reported in other studies (DI PAOLO AND RINALDI, 2008; BERENGUER ET AL., 2009; 

CORRENDO ET AL., 2021). The study observed an astonishing high N supply of the soil in both years. 

However, this is in line with CASSMAN ET AL. (2002), who reported an indigenous N supply of 80–240 kg 

N ha-1 for maize. OSTERHOLZ ET AL. (2017) observed that the daily N uptake of maize was exceeded by 

the daily gross ammonification rate of the soil. It is further suggested that maize can cover its N uptake 

through the efficient utilization of this N source in competition with soil microbes. Although no organic 

fertilization was carried out in the experimental fields, the necessary organic matter would have been 

present. QUAN ET AL. (2021) emphasized the importance of soil organic C in increasing N use efficiency 

although not a sufficient N replenishment exists through a high proportion of organic matter in the 

soil. In Europe, upwards of 40 % of the N uptake of maize is derived from N-fertilizers. Also, an effect 

of N-fertilization existed in this study and was evident from the increased N uptake in the fertilized 

variants. 
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5.5 Use of conventional statistical measures of goodness in the evaluation of 
the spectral detection of N-related traits of wheat and maize 

A commonly statistical method to model the spectral detectability of N-related traits of wheat and 

maize is regression analysis. Subsequently, the performance of the models was evaluated based on 

the coefficient of determination (R²) (MISTELE AND SCHMIDHALTER, 2008a; MISTELE AND SCHMIDHALTER 2010; 

ERDLE ET AL., 2011; WINTERHALTER ET AL., 2011; LI ET AL., 2012; MARESMA ET AL., 2016; CORTI ET AL., 2019). The 

expression of the R² depends mostly on the differentiation of the respective trait. A differentiation 

occurs through the treatment effect (e.g., N-fertilization), which in turn depends on the location (e.g., 

soil), year (weather), and mainly on the growth stage of the crop on the date of measurement. The 

influence on the R² is probably given because the proportion of the explained deviation sum of squares 

increases more than the total deviation sum of squares to be explained. Only slight treatment effects 

through different nitrogen applications, which increased during the vegetation, and thus resulted in 

higher R² values, were observed for maize (Section III) which is in line with CORTI ET AL. (2019). Similar 

observations could be made in the field experiment in wheat in Section II. However, high R² values 

alone do not generally imply a sufficient spectral detection of N-related traits from an agronomical 

point of view.  

In a further step, additional statistical measures such as the root-mean-square error (RMSE), 

standardized RMSE, and the mean absolute error (MAE) are often also used to evaluate the model’s 

performance. A well-performing regression model to estimate the dependent parameters (e.g., N-

related traits) is assumed when high R² and low RMSE and MAE values occur (LEE ET AL., 2020; ZHANG ET 

AL., 2020). RMSE and MAE have the advantage that the given model error has the same unit as the 

target trait. The RMSE averages the squared deviations, whereas the MAE averages the absolute 

deviations. RMSE values are larger than the MAE values because squaring the errors weights the 

measured values further away from the regression equation more heavily. This could also be observed 

in Sections II and III and is in line with KAYAD ET AL. (2019). Nevertheless, RMSE and MAE average the 

model error, which leads to both over- and underestimations of the measured values. In general, high 

R² values are mostly associated with lower RMSE and standardized RMSE values (NGUY-ROBERTSON ET 

AL., 2012; XIA ET AL., 2016; LEE ET AL., 2020; LI ET AL., 2020; SKAKUN ET AL., 2021). 

Therefore, an extension of commonly used measures of goodness should be considered to evaluate 

regression models from an agronomical perspective. 
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5.6 Consideration of agronomical aspects in the spectral assessment of N-
related traits of maize and wheat 

The advantage of agronomical intervals is that they are self-defined because the interval limits may 

vary depending on the trait, year, site conditions (e.g., N-fertilization levels or yield expectations), and 

also from the interest of application (ex-ante and/or ex-post analysis). For example, a window for in-

season management decisions (ex-ante) is defined by THOMASON ET AL. (2007) in the range between the 

five to nine and by MORRIS ET AL. (2018) in the range between the six to twelve leaf developmental stage 

for maize. Additionally, ex-post evaluations (e.g., grain yield and/or aboveground N uptake 

differentiation through diversification of N-fertilization levels) can also provide useful information. 

According to these approaches, the range of the agronomic interval can therefore be adjusted and the 

evaluation of the model performance can occur based on the level of probability that the measured 

values are within or outside the interval. In all cases, the evaluation of the applicability of the spectral 

detection of maize traits was supported. 

If N-fertilization applications in wheat are based on spectral information, the detection error should 

be as small as possible. Depending on the growth stage of wheat, two error intervals (ŷi ± 10 and ± 15 

kg N uptake ha-1) were chosen. These interval limits depend on the site-specific N uptake at the 

respective developmental stage in conjunction with subsequent N-fertilization. Thus, at late 

developmental stages and high-yielding sites with N-fertilization adjusted for high N uptake allow 

wider interval limits. The study concluded that at the early stages of stem elongation a ± 10 kg N uptake 

ha-1 interval can be a reasonable choice. Generally, this study observed that a ± 15 kg N uptake ha-1 

interval is the smallest one feasible for N-fertilization relevant growth stages up to BBCH 50 if a 

probability of at least 80 % of the data points should be within the interval. These selected error limits 

(ŷi ± 10 and ± 15 kg N uptake ha-1) are within an acceptable range, if other potential sources of error in 

N-fertilization, such as distribution accuracy, amount applied, and small-scale crop variability was 

considered. N-fertilization recommendations based on spectral detecting should not be solely 

evaluated on the R². 

For the spectral detection of N uptake in wheat, an unexplained scatter was determined in the models. 

On the one hand, the destructively obtained N content values were determined as the mean of the 

entire plant, which cannot be fully spectrally detected due to the vertical gradients in the nitrogen 

content of the plants (LI ET AL., 2013). Additionally, the spectral value of the plot represents an average 

value of strongly scattered individual values, and the reference area of the destructively collected data 

represents a further potential significant source of error. 
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5.7 Comparison of sensor platforms assessing N uptake of wheat  

In Section II, a ground-based vehicle (Phenotrac IV), and a UAV equipped with a multispectral sensor 

were deployed. The UAV could capture the N uptake of wheat comparatively slightly better at BBCH 

37 whereas the Phenotrac IV performed slightly better at BBCH 61 but the differences were small. 

A main difference between the sensors concerns the bandwidths. Therefore, the NDVI of the 

Phenotrac IV was calculated with the same bandwidths as used for the UAV NDVI, resulting in no 

differences in sensitivity. A possible influence of the soil could also be ruled out because the index SAVI 

(HUETE, 1988) showed no improvement in sensitivity. Another difference between the sensors is the 

measuring distance to the canopy. The Phenotrac IV has a field of view (FOV) of 24° and a distance to 

the target surface of 0.8 m. Therefore, both nadir and off-nadir recordings of the canopy take place. 

APARICIO ET AL. (2004) observed an influence of off-nadir measurements on spectral indices due to the 

relatively higher reflectance in the visible range compared to the near-infrared wavelength range, 

which in turn is based on the higher influence of the stems. This observation depends further on the 

leaf area index (LAI). At low LAI values, the reflection in the near-infrared wavelength range is more 

pronounced and leads to higher NDVI values for off-nadir measurements which could also be observed 

in this study at BBCH 37.  Further, the data indicate higher index values at the same N uptake. This is 

in line with MISTELE AND SCHMIDHALTER (2010) who observed an increase in the signal intensity for off-

nadir measurements due to more biomass in the sensor`s FOV. GNYP ET AL. (2015) reported advantages 

of off-nadir compared to nadir measurements in detecting N uptake at early and late growth stages of 

wheat and, also saturation effects for both measurement geometries. In contrast, this study observed 

no saturation effects for any index probably due to the observed strong reduction in biomass 

production in the experimental year. However, at the same site, MISTELE ET AL. (2004) observed 

saturation effects for all indices in assessing N uptake of wheat. ZHENG ET AL. (2018) also determined 

the advantages of UAV over ground-based spectral measurements for pre-heading stages in detecting 

the N content of rice whereas GNYP ET AL. (2016) found no difference between ground-based and aerial 

sensor platforms in detecting N uptake of wheat. 

 

5.8 Sensitivity of spectral indices detecting N uptake of wheat and N-related 
traits of maize 

Regardless of the sensor platform, indices combining the REDEDGE and NIR bands performed best at 

BBCH 37 and 61 in detecting the N uptake of wheat (Section II). This observation is in line with other 

studies (MISTELE AND SCHMIDHALTER, 2010; ERDLE ET AL., 2011; GNYP ET AL., 2016; PREY AND SCHMIDHALTER, 

2019c). 
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All maize traits could be spectrally detected equally well with the best-performing indices using the 

GREEN, REDEDGE, and NIR bands. Other studies observed for grain yield the best-performing indices 

across the growing season as those using band combinations of GREEN, RED, NIR, and MIDINFRARED 

(OSBORNE ET AL., 2002; MARESMA ET AL., 2016). For grain and aboveground N uptake, indices using the 

REDEDGE and NIR region have been shown to be more appropriate (MISTELE AND SCHMIDHALTER, 2008a; 

LI ET AL., 2014; LI ET AL., 2020; BECKER ET AL., 2020). ZHAO ET AL. (2018) reported for the NNI that the best 

performing indices were using GREEN and REDEDGE bands. Summarized, the GREEN spectral band was 

important, but especially the REDEDGE, and the NIR bands in detecting the N-related traits of maize. 

Due to low variation in chlorophyll absorption in a dense canopy, the red region was insensitive 

(GITELSON, 2004; HATFIELD ET AL., 2008; NGUY-ROBERTSON ET AL., 2012). Spectral indices are influenced by 

shadow (ZHANG ET AL., 2015b) and soil (HUETE, 1988). Thus, especially concerning the spectral imagery 

of maize and particularly at early growth stages, THOMPSON AND PUNTEL (2020) reported the benefits of 

classifying pixels into classes of plant, soil, and shadow. In this study, unsupervised and supervised 

classification tools of the ArcGIS program (ESRI®, Germany, Version 10.5.0.6491) were used. The 

results indicated many pixels were assigned to incorrect classes. Also, the SAVI (HUETE, 1988) and OSAVI 

index (LI ET AL., 2010) were additionally calculated, but they showed no improvement in sensitivity. 

Therefore, it was assumed that the error due to shadowing and soil is negligible because very low 

differences in aboveground biomass were observed between the N levels. Further, performing spectral 

measurements during midday will reduce possible shadow effects across all developmental stages. 

 

5.9 Future aspects concerning agronomic research 

Agriculture is facing multiple challenges. The main challenge for the future decades will be to produce 

sufficient fiber and food for a growing global population at acceptable environmental cost (ROBERTSON 

AND SWINTON, 2005). Nowadays, the evolution of agriculture steps into Agriculture 4.0 as the fourth 

evolution in farming technology puts forward four essential requirements: increasing productivity, 

allocating resources reasonably, avoiding food waste, and adapting to climate change. For this 

purpose, the employment of current technologies like the Internet of Things, Artificial Intelligence, Big 

Data, Cloud Computing, Remote Sensing, etc. is used (ZHAI ET AL., 2020). Nevertheless, in terms of future 

research, these new technologies need especially field data to develop and validate new approaches. 

Some lab-based approaches exclusively can reach their limits under field conditions (OLFS ET AL., 2005).  

Given the complexity of the nitrogen pathways in agricultural ecosystems (Figure 3), these domains of 

research already need a lot of labor-intensive (field) experiments. In this context, many studies can be 

mentioned (without claiming to be complete) which have dealt with topics such as ammonia 

volatilization (PACHOLSKI ET AL., 2006; SMITH ET AL., 2007; KHALIL ET AL., 2009; PELSTER ET AL., 2019), nitrous 
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oxide emissions (KAISER AND RUSER, 2000; KHALIL ET AL., 2009; DENG ET AL., 2015; HU ET AL., 2020a), nitrate 

leaching (HANSEN AND DJURHUUS, 1996; KORSAETH, 2008; ASKEGAARD ET AL., 2011), application of mineral 

nitrogen fertilizer (BÜCHI ET AL., 2016; MARTÍNEZ ET AL., 2017; HEIL ET AL., 2018: PREY ET AL., 2019a) and 

organic fertilizer (BOCCHI AND TANO, 1994; SCHRÖDER ET AL., 2006; DE FRANÇA ET AL., 2021;), effect of crop 

residues (HART ET AL., 1993; MALHI ET AL., 2006; BAKHT ET AL., 2009), tillage systems (MELAJ ET AL., 2003; 

VETSCH AND RANDALL, 2004; HALVORSON ET AL., 2006), plant N uptake (LUKINA ET AL., 2001; PRESTERL ET AL., 

2002; LIAO ET AL., 2004; CIAMPITTI AND VYN, 2011), biological N2 fixation (CARRANCA ET AL., 1999; COLLINO ET 

AL., 2015; GOLLNER ET AL., 2019), atmospheric deposition of nitrogen (ANDERSON AND DOWNING, 2006; SUN 

ET AL., 2018), mineralization of organic nitrogen (APPEL AND MENGEL, 1990; MILLER AND GEISSELER, 2018; 

CANISARES ET AL., 2021), denitrification (CASTALDELLI ET AL., 2019; FORTE AND FIERRO, 2019; ROHE ET AL., 2021). 

Also, in terms of spectral sensing, for example, a lot of application-oriented research was necessary, 

on which this work is also based (ERDLE ET AL., 2013; KIPP ET AL., 2014a; KIPP ET AL., 2014b; BARMEIER AND 

SCHMIDHALTER, 2016; PREY AND SCHMIDHALTER, 2019d). 

As indicated in this work, field experiments face many not controllable environmental conditions (e.g., 

weather), which in turn makes the outcome uncertain. Further, a lot of site conditions (e.g., different 

soils) have to be studied, which increases the number of experiments. To meet these requirements, a 

pool of sufficiently trained and educated researchers and research facilities must be available to run 

as many (field) experiments as possible. Existing structures at universities, but also vocational schools 

and further educational institutions should be maintained or expanded which include necessary 

investments. EVENSON ET AL. (1979) pointed out that science-orientated agricultural research is 

profitable when associated with technological research and annual rates of return on research 

expenditure are in the order of 50 percent. Nowadays, one crucial precondition to achieve the big 

targets of climate neutrality and biodiversity protection is to have sufficient public funding reserved 

for agricultural research, and models show that every euro spent on research & innovation will return 

10 to 11 euros to the economy (HULOT AND HILLER, 2020). Unlike physical capital, knowledge capital has 

the potential to generate spill-overs, which means applications beyond the locality or application for 

which it was originally intended (FUGLIE, 2017). However, the supposedly most important point is the 

social dimension of the issues affecting agriculture, which is indispensable for viable responses to 

societal challenges related to agriculture (PIRSCHER ET AL., 2021). 
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Conclusions 

The results of Section I (Heinemann and Schmidhalter, 2021) confirm the usefulness of a simplified 

reduced soil sampling strategy per field for soil mineral N (nitrate-N + ammonium-N, “Nmin”) compared 

to crop-specific, regionally representative Nmin values offered by the official advisory authorities in 

wheat and maize. The results were observed for field sizes in the range of 1.0–12.7 ha. An extrapolation 

to larger-sized fields seems possible but needs to be further investigated. Heterogeneous fields should 

be sampled site-specific. Furthermore, it is recommended to aggregate single soil layer samples to one 

total soil sample depth for further analysis. This approach reduces the workload and costs and provides 

site-specific Nmin values for further N-fertilizer decisions. The latter could be demonstrated at two 

locations in wheat. However, the individual soil layers of no-till managed fields should be analyzed 

separately. The combining of single soil layers is more recommended for the determination of the 

absolute N-fertilization requirement. Additionally, the findings pointed out that soil mineral N varies 

yearly and therefore requires therefore annual sampling. The annual soil sampling could not be derived 

by crop response to simplified soil Nmin through multispectral satellite imagery (Sentinel-2) and 

therefore emphasizes the need for soil sampling. 

Section II (Heinemann et al., 2022) highlights the additional use of agronomic error intervals besides 

conventional statistics in spectral detection of the N uptake in wheat. The requirement exists because 

commonly used statistics such as R² depend mostly on the growth stage and year effects and further 

statistics such as RMSE and MAE only average the error which leads to the under- and overestimation 

of many observations. Generally, models including data of extreme N levels could be biased and these 

observations should be excluded from further analysis. Furthermore, the results suggest that spectral 

detection of the N uptake is more influenced by differentiation of the biomass than the N content. As 

carrier vehicles, UAVs and ground-based systems are equally well suited, and spectral indices 

combining REDEDGE and NIR bands are the most suitable to detect N uptake in wheat 

Section III (Heinemann and Schmidhalter, 2022) provides the usefulness of the additional use of 

agronomic error intervals besides conventional statistics in spectral detection of N-related traits 

(aboveground and grain N uptake as well as NNI) and grain yield of maize. The requirement is 

recommended because widely used statistics such as R² depend mostly on year effects and the growth 

stage, and further statistics such as RMSE and MAE only average the error which leads to under- and 

overestimation of many observations. The defined interval limits are consistent across years and 

growth stages because most spectral indices are dominated by biomass. The agronomic evaluation 

should also support ex-ante and/or ex-post analysis of N-fertilization in maize. Across all, UAV-derived 

spectral indices performed best when GREEN, REDEDGE, and NIR bands were combined. 
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