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Abstract

In recent years, the analysis of large data sets has become increasingly
important and a lot of tooling has been developed to support data scientists.
While modern database management systems (DBMSs) have become in-
creasingly efficient, they lack integration. The Python library pandas is one
of the most popular software projects for working with data and provides
excellent interoperability and convenience.

However, performance is a significant shortcoming of pandas. pandas does
not perform well for large data sets and complex queries because of being
implemented in Python and heavily relying on intermediate copies of the
data.

We propose mlir_pandas, an approach for a transparent drop-in replacement
for pandas, which translates the pandas operations to MLIR, an Intermediate
Representation, which is then passed to LingoDB, a compiling DBMS based
on MLIR.

In the performance evaluation of our implemented prototype for mlir_pandas,
we can show an average speedup by a factor of 10 compared to pandas and
a considerably reduced peak memory usage.
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1 Introduction

In recent years, the amount of data to be processed and analyzed has dramatically
increased. Modern business processes heavily rely on big data and evaluating numerous
and sometimes very large data sets. An example use case is the medical and health care
sector, where relevant data can help analyze complex bio-medical mechanisms or assist
doctors in decision-making. The increasing size of the data and the ever more widespread
use required the development of appropriate tooling.

pandas [38] is a Python library that is very common among data scientists. It provides
an easy-to-use API for working with table-like structures called data frames and makes it
possible to transform, query, or combine them in various ways. One of the major strengths
of the pandas API is the interoperability: there is a rich set of conversion methods from
and to data representations such as CSV or JSON. Additionally, pandas provides a built-in
way to conveniently plot data using the library matplotlib. One crucial limitation of
pandas is its performance. pandas works on data in-memory, and operations usually
return a modified copy of the input data or work with intermediate copies. This limits
the use of pandas, in particular for very large data sets.

With the rise of big data, efficient database management systems (DBMSs) have been
considerably further developed and optimized for the increasing workload. A prevalent
theory behind many DBMSs is the relational algebra model. It defines operators working
on tuples organized in multi-sets. The mathematical abstraction from the data structures
allows for concise optimizations within one operator and, even more importantly, for
the data flow between multiple operators, which is optimized by selection pushdown
or join re-ordering, for example. There are mainly two approaches for advancing the
development of DBMSs: vectorizing and data-centric code generation. [18] An example for
a vectorizing DBMS is DB2 Blu [34]. Compiling DBMSs with data-centric code generation
are represented by systems such as Hyper [22, 24], Umbra [23] or LegoBase [19]. Finally,
the efficient use of hardware parallelism has become increasingly important, for example,
through multithreading.

LingoDB [17] is a modern compiling relational database management system (RDBMS).
One major characteristic of LingoDB is that its engine is based on Multi-Level Intermediate
Representation (MLIR) [20], a new Intermediate Representation (IR) by the LLVM project.
MLIR is a compiler framework designed to provide a common IR for multiple abstraction
levels to allow optimizations across the boundaries of software projects. LingoDB does
not only provide an Structured Query Language (SQL) interface, but also accepts queries
written in MLIR [20]. This has the advantage that queries can be built using optimizations
across multiple domains.

We propose mlir_pandas, an approach for a transparent drop-in replacement for the
pandas data frame API. We also implemented this in a Python library of the same name.
mlir_pandas aims to leverage the similarity of the data frame API and the relational
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algebra model to run relevant pandas operations in LingoDB instead of Python. To achieve
this, mlir_pandas provides custom classes to replace the corresponding pandas classes.
The mlir_pandas classes are completely transparent. They provide the same API as their
original counterparts but internally transpile supported pandas operations to MLIR code
which can then be passed to LingoDB to be compiled, optimized, and executed. The
execution of the MLIR code happens lazily and is deferred until the materialized results
are needed. Operations of the pandas API that are not (yet) supported transparently fall
back to the original pandas implementation.

The results of our performance benchmarks on some TPC-H queries show that our
implemented prototype for mlir_pandas provides a speedup by a factor of 10 on average
compared to pandas. Also, the maximum memory consumption of pandas is more than
halved on average. The overhead of mlir_pandas for management tasks is constant.
Translating the original SQL query to MLIR and executing it directly in LingoDB still
may provide better performance since it is able to build an easier-to-optimize MLIR
module.

1.1 Contributions

Our contribution is mlir_pandas, a mapping of the pandas API to the MLIR interface of
LingoDB and a transparent drop-in replacement for pandas.

1.2 Outline

The remainder of this thesis is structured as follows. Chapter 2 gives an introduction to
the relevant software projects and technologies. In Chapter 3, we describe and discuss
the design of mlir_pandas. The results of the performance evaluation and comparison are
elaborated in Chapter 4. Chapter 5 shows the related work. Finally, Chapter 6 provides a
summary and an outlook.




2 Background

In order to discuss the realization of the aforementioned goals of this thesis, we need to
give a brief overview of some relevant topics. First, we introduce the essential aspects
of pandas. Then, we will shortly describe modern DBMSs. This will be the basis for
the section about LingoDB, which will be preceded by the description of MLIR. Finally,
we will describe some characteristics of Python that will be useful for understanding the
Python-related aspects of pandas and our approach.

2.1 Pandas

pandas [40, 21] is a Python [11] library which is widely used by data scientists. NVIDIA,
for example, describes pandas as “the most popular software library for data manipulation
and data analysis for the Python programming language.” [2] Reasons for this are that
pandas is easy to use and integrates with many other well-known libraries. For example,
pandas can parse and export to data storage formats such as JSON, CSV, or XML.
Additionally, it offers the possibility to plot data using matplotlib [41].

Data Types

For the internal data storage, pandas uses NumPy [33], short for “Numerical Python”,
which is a library providing elaborate data structures such as multidimensional arrays and
matrices, as well as optimized mathematical functions. Additionally, NumPy maintains
its own type system. [9] This is also where the integration of pandas and NumPy becomes
immediately apparent. The supported data types of pandas are based on the type
system of NumPy. [39] In addition to the standard NumPy types such as float, int,
bool, timedelta64[ns] and datetime64 [ns], pandas enhances the datetime types with
timezone awareness and adds an own string type, for example. Furthermore, pandas
defines nullable types such as Int64Dtype. Finally, there is the special data type object,
which can represent any Python object. For supported types, the object type should be
avoided as it hinders special type-dependent operations not defined on the general object
type.

The most common representations of data within pandas are the Series and DataFrame
classes. They are typically sufficient for the “use cases in finance, statistics, social science,
and many areas of engineering”, as described by the pandas developers. [39] In the following
sections, we will describe the Series class, the DataFrame class and typical operations on
the DataFrame class.
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>>> pandas.Series([1, 2, 3], name="my_series")

0 1
Aol 2
3} o
22 38
Name : , dtype: int64

name

Figure 2.1: The output format of a Series explained. The name attribute of a Series is optional.

>>> pandas.DataFrame({"coll": [1, 2, 3], "col2": ["a", "b", "c"I})

coll col2

0 1 a
5 1 2 b _
22 S c g

Figure 2.2: The output format of a DataFrame explained

The Series class

A Series is an array-like one-dimensional data structure. Its representation is demon-
strated in Figure 2.1. However, unlike a basic array or similar rather simple structures
such as lists in Python, the elements of a Series may also be labeled and accessed similar
to a dictionary. This is implemented using an index structure. The index is stored in
an array-like data structure of type Index. Additionally, a Series is not only capable
of storing and accessing a certain number of elements but also supports a rich set of
high-level operations. See Listing 2.1 for a simple example.

The DataFrame class

A DataFrame is a tabular representation of data and can handle columns holding different
data types, as known from database tables where each column has its own data type,
independent of the types of the other columns. A DataFrame thus resembles a relation in
a relational database system. Figure 2.2 shows how a DataFrame is presented py pandas.

However, a DataFrame is not limited to a simple tabular form. For example, every
DataFrame has an index holding the row labels. By default, the row labels are an ascending
numeric index value, but they do not necessarily need to be unique (except for specific
operations), and they can be changed to some other representation such as string labels.
The latter are a usual choice for the column labels of a DataFrame, which are organized in
a separate object of type Index. The index objects can also be named, which is relevant for
some DataFrame methods. The example in Listing 2.2 shows a DataFrame with numerical
row labels from zero to two and strings as column labels.

The Series class is used to represent a column of a DataFrame to the user and let
the user interact with it. One example is the access to a column of a DataFrame. This
operation returns a Series object containing the data of the specified column. But
representing the contents of a column is not the only aspect where the Series class works
in combination with a DataFrame. A Series object can also be used to select rows of
a DataFrame. This so-called “boolean indexing” is a pandas way of implementing the
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Listing 2.1: The overloaded comparison of Series objects results in a Series of boolean values.
A transformation of a Series can be achieved by a map operation, which applies a function on
each value of the Series.

>>> pandas.Series([1, 2, 3]) >= pandas.Series([2, 2, 2])

0 False

1 True

2 True

dtype: bool

>>> pandas.Series([5, 7, 9]).map(lambda x: x**2)
0 25

1 49

2 81

dtype: int64

Listing 2.2: A DataFrame and the types of its elements (per column). The objects containing the
row and column labels are unnamed in this case. The last line of the output means that the column
labels are of type object.

>>> pandas.DataFrame({"coll": [1, 2, 3], "col2": ["one", "two", "three"]l})
coll col2

0 1 one
1 2 two
2 3 three

>>> pandas.DataFrame({"coll": [1,2,3], "col2": ["one", "two", "three"]}).dtypes
coll int64

col2 object

dtype: object
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Listing 2.3: Selecting rows from a DataFrame using a Series of boolean values.

>>> df = pandas.DataFrame({"coll": [1, 2, 3], "col2": [4, 5, 6]})
>>> df [pandas.Series([True, False, Truel)]

coll col2
0 1 4
2 3 6

selection of the relational algebra and is shown in Listing 2.3.

Common operations on the DataFrame class

Internally, pandas uses NumPy arrays to store the data of a DataFrame. The operations
on a DataFrame are not lazily computed, and even in-place operations may produce
intermediate copies. The order of the rows of a DataFrame is mostly specified since pandas
uses arrays as the internal storage format and the users of the pandas API expect array-like
behavior and not set semantics. A DataFrame can be seen as similar to a dictionary where
the keys are the column labels and the values Series objects.

Indexing. One of the most basic operations on a DataFrame is accessing columns using
indexing. Indexing behaves just as one would expect from an array- or dictionary-like
structure. A DataFrame can be indexed using one of its column labels, which results
in a Series representing the corresponding column. This Series can then again be
subscripted using the row labels to access the scalars contained in the column. Additionally,
a DataFrame can be indexed by a list of column names. This produces a DataFrame
instead of a single Series. A special type of indexing is the so-called boolean indexing,
where we use a Series of boolean values to select rows from a given DataFrame.

Arithmetic Operations. Regarding other usual operations on array-like data structures,
a DataFrame also allows arithmetic operations such as the addition of a constant, where
the constant is added to every element of the DataFrame, or the (element-wise) addition
of two DataFrame objects. Furthermore, simple algorithms on linear data structures are
supported, such as the min/max operations, which operate per column. It is also possible
to sort a DataFrame, e.g. according to one or multiple columns, using the sort_values
method.

Join. Listing 2.4 shows an inner join of two DataFrame objects using the merge method.
The explicitly-called join method is more specialized and does not support joining
DataFrame objects on arbitrary columns. Left and right joins preserve the order of the
rows from the corresponding DataFrame objects. The inner join and the cross-product
preserve the order of the keys from the left DataFrame. An outer join sorts the keys
lexicographically.
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Listing 2.4: Join two DataFrame objects using inner join on “coll”.

>>> pandas.DataFrame({"coll": [1,2,3], "col2": [4,5,6]}) .merge(
pandas.DataFrame({"col1": [1,0,3], "col2": [7,8,91}),
on="coll", how="inner"

)

coll col2_x col2_y
0 1 4 7
1 3 6 9

Listing 2.5: Apply different aggregation functions on the columns of a DataFrame.

>>> pandas.DataFrame({"coll1": [1,2,3], "col2": [4,5,6]1}).agg(

. {"coll": 'sum', "col2": 'mean'})
coll 6.0
col?2 5.0

dtype: float64

Aggregation. Listing 2.5 shows an example for the aggregation method of a DataFrame.
Although the result of the sum function is an integer, it gets converted to a floating point
value so that the Series holding the aggregation results can be of homogeneous type.
If we had used min, for example, instead of mean, the resulting data type would be an
integer type.

GroupBy. The groupby method shown in Listing 2.6 is able to group the entries of a
DataFrame according to one or multiple columns. By default, it uses the group labels,
so the values of coll in this example, as the index of the resulting DataFrame. In order
to have a more SQL-like experience, this has to be disabled explicitly. The groupby
operation returns an object of type DataFrameGroupBy. This object holds the information
on the collected groups and can perform operations such as aggregation on them (sum,
min, maz, etc.). The results of such operations may then again be of type DataFrame or
Series. The order of the rows within the groups is preserved. [39]

Listing 2.6: Group by “coll” and sum the values of each group.

>>> pandas.DataFrame({"coll": [1,2,1], "col2": [4,5,6]13}).groupby(
["coll"], as_index=False).sum()

coll <col2
0 1 10
1 2 5




2 Background

In-place Operations. Some methods of a DataFrame can be executed in-place by spec-
ifying the boolean parameter inplace of those methods to be true instead of false (the
default). It is, however, discouraged to use this feature. First, it prevents method chaining
as the methods no longer have a return value. Second, the result of those operations
may still be calculated as a copy internally and then just copied back to the original
DataFrame.

2.2 Modern Data Base Systems

In contrast to pandas, a modern DBMS provides a more optimized system for handling
big data. In this work, the term database system specifically refers to the relational model,
so to RDBMSs. The programming language commonly used to interact with an RDBMS
is SQL. The relational model builds on the theory of first-order logic / predicate logic.
This means that every SQL statement has an equivalent expression in first-order logic.
This equivalence facilitates optimizations by exploiting the mathematical theory behind it.

Starting from a query given by the user of an RDBMS, the query optimizer, which is
part of most modern DBMSs, builds a query plan. Since SQL is a declarative language,
the user does not specify how the query should be executed, but only what should be done.
This allows the query optimizer to construct a query plan which performs the specified
query but does not necessarily follow the user-provided sequence of operations. Among
the most common optimizations applied by the query optimizer are Selection Pushdown
and Join-Order Optimization, which both aim to minimize the size of intermediate results.

Another important characteristic of DBMSs is the memory or disk buffer handling. In
contrast to pandas, DBMSs do not necessarily hold all the data in memory. Although it is
advantageous to have as much data as possible in the main memory, current approaches
are able to achieve high performance even when it becomes necessary to spill data to the
disk. [23]

A seemingly uninteresting property of DBMSs is that there is no guaranteed row
ordering after certain operations such as selection or join. The developers of PostgreSQL
explicitly state in their documentation that the order of the rows is unspecified after a
query without a final sorting. [15] This is different from pandas, where the row order
may be specified, as mentioned before. The relational model and its multi-set semantics
are the reason for the unspecified row order in DBMSs. Relational algebra is defined on
multi-sets; this means that the entries of a relation (the rows of a table) are contained in
a set that can manage duplicates.

2.3 MLIR

MLIR [20] is a new IR and part of the LLVM project [31]. Intermediate Representation is
a term used in compiler building to describe intermediate results during the compilation
process. IR code is generated by the compiler from the source program written in a high-
level language such as C or C++. The generated IR is then optimized and transformed
into the machine code of the target architecture. The problem with the traditional IRs
is that they are tailored for one specific purpose, also called domain. Those IRs are
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typically restricted to one abstraction level. There is a lack of generality for a common
representation that allows for multiple abstraction levels and is domain-independent.
MLIR aims to fill this gap. It provides a common syntax and establishes an extensible
basis.

Data Types

MLIR is statically typed. It defines built-in types and can additionally be extended with
custom ones. The built-in types range from low-level types such as integers or floating-
point types of different bit widths to more abstract types such as tuple. For integers,
there exists a special notation to designate signless integers, i.e. integers whose signedness
depends on the operation using them. [6] Table 2.1 shows a collection of important built-in

types.

Table 2.1: Important built-in types defined by MLIR.

Type Description

i1 1-bit signless integer type to represent a boolean
value.

i64 64-bit signless integer type.

64 64-bit floating-point type.

(KTYPES_LIST>) -> <RESULT_TYPE> Type for a function. It consists of the list of
operand types and the function’s return type.

The structure of an MLIR module

The basic unit of MLIR code is an operation. An operation can take an arbitrary number
of operands and returns an arbitrary number of results. Additionally, attributes can
be attached to an operation. Operations themselves are organized in blocks, which are
contained in regions. The blocks have to be labeled if there is more than one block in
a region. Furthermore, each block can optionally take parameters. The parameters of
the first block in a region, the entry block, are also the parameters of the region. Since a
region can be passed to an operation similarly to an operand, it is possible to arbitrary
nest operations, regions and blocks. The top-level operation of a piece of MLIR code is
called a module. A module contains exactly one region with exactly one block. This block
often holds function definitions, among other operations. Functions are operations with
exactly one region (and at least one block). [20, 5] Figure 2.3a shows an example MLIR
module, Figure 2.3b displays the corresponding simplified syntax tree.

Generic vs “pretty” format The syntax shown in Figure 2.3c is the generic format. It
is uniform and meant for interoperability between different code generators and parsers.
However, MLIR allows the definition and use of custom formats for easier reading.
Typically, this would look like in Figure 2.3a.
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Operation
"builtin.module"
Region
Block . attributes:
module { Operatlon function_type,
“func.func”
func.func Gmain() -> i32 { " R >moname
%0 = arith.constant 42 : i32 Region
return %0 : i32 Block
} - attributes: value
. Operation et ype. 152
“arith.constant"
. argument_type:
(a) A small MLIR module in “pretty” format. Operation ;3

"func.return”

(b) A simplified syntaz tree for the code in
Figure 2.3a.
"builtin.module" () ({
"func.func"() ({
%0 = "arith.constant"() {value = 42 : i32} : () -> i32
"func.return" (%0) : (i32) -> ()
}) {function_type = () -> i32, sym_name = "main"} : OO -> O
H 0 ->0

(c) The code from Figure 2.8a in generic format.

Figure 2.3: A small MLIR module in different representations.

10



2 Background

MLIR Dialects

MLIR allows the definition of custom abstraction levels, called dialects. A dialect may
consist of attributes, operations, and types. It defines a new namespace, which is always
separated from the actual symbols by a single dot. Thus, defining a custom tuple type
within a dialect called relalg would result in the symbol !'relalg.tuple. The ! prefix
indicates a custom dialect type. The definitions of a dialect represent the functionality of
the domain for which the dialect has been implemented.

There are several builtin dialects; among others, these are the explicitly-called builtin
dialect, the func dialect and the 11vm dialect. Important parts of the builtin dialect
are core types such as the ones presented in Table 2.1 and the builtin.module operation
which is to be used as top-level operation for an MLIR module. The func dialect provides
high-level operations for defining, calling or returning from a function. Finally, the 11vm
dialect represents the LLVM IR within MLIR. The semantics of the dialect operations are
expected to match the corresponding operations of the LLVM IR exactly. [4]

2.4 LingoDB

LingoDB [17] offers a relational database system capable of building and optimizing
queries and executing them on data managed in memory. LingoDB is characterized by
the fact that it provides an interface to MLIR and uses MLIR internally for optimizing
and lowering. It implements the domain-specific custom MLIR dialects db, dsa, relalg
and util. These dialects cover different abstraction levels and thus allow a layered
query compilation, where the query is lowered and optimized step-by-step over multiple
abstraction levels.

The relalg dialect. relalg is the most high-level dialect defined by LingoDB. It repre-
sents relational algebra operations such as selection, join or projection in a declarative man-
ner, similar to SQL. They operate on the abstract data type relalg.tuplestream, which
is built on the production and consumption of elements of type relalg.tuple. The relalg
dialect also defines custom attributes. The most important ones are relalg.columndef
and relalg.columnref. The first one is used to define a new column; the latter is needed
to reference an existing column. Especially noteworthy is the fact that every column is
not only defined by its name but also by a separate namespace, called scope. Therefore,
the same column name may exist multiple times in a tuplestream as long as the scope of
each occurrence is different.

The db dialect. The db dialect is an imperative abstraction of types and operations
related to a database. This includes the data types db.string or db.timestamp and
arithmetic or binary operations on them, for example. The data types do not allow null
as a value, but there is also the special type wrapper db.nullable which enables null as
a value for the wrapped type.

11
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Supported Operations

Table 2.2 shows some important operations of the relalg dialect defined by LingoDB.
The relalg operations represent the corresponding operations of the relational algebra.
In order to pass predicates to an operation, a region can be attached to some of the
operations. In the case of relalg.selection, for example, the specified region operates
on a !relalg.tuple. It determines whether this tuple should be part of the resulting
tuplestream or not. Finally, there are operations such as relalg.map which add columns
to the tuples of a tuplestream. In this context, the scope of a column is important to
avoid name collisions.

Table 2.2: Important dialect operations defined by LingoDB.

Operation Description

relalg.aggregation Group a tuplestream and apply functions on each group.

relalg.basetable Load the given table and produce a tuplestream.
relalg. join Perform an inner join on two tuplestreams.
relalg.limit Limit the size of a tuplestream.

relalg.map Compute new columns and add them to a tuplestream.

relalg.materialize Materialize a tuplestream.

relalg.projection  Remove columns from a tuplestream.
relalg.selection Select rows from a tuplestream.

relalg.sort Sort a tuplestream according to the specified attributes.

Ordering Guarantees. As already described, pandas operates on arrays with a fixed
order of elements maintained implicitly by every operation. A RDBMS has no such
implicit row order because of the set semantics of relational algebra. LingoDB does not
differ in that from the general RDBMS mentioned above. The row order is unspecified
after relalg. join, relalg.map, relalg.projection and relalg.selection.

Compiling an MLIR module

In order to compile an MLIR module, LingoDB starts with the optimization. The
optimization phase covers Simplification, Query Unnesting, Selection Pushdown, Join-
Order Optimization, and physical optimization [17]. Those are the usual optimizations
already found in modern database systems. After the optimization pass, the declarative
relalg dialect entities used in the MLIR module get lowered to the imperative db dialect.
The db dialect can then step-by-step be lowered to the low-level 11vm dialect. By using
stepwise lowering, each dialect can be created having reusability in mind. Furthermore,
optimizations such as eliminating null-checks or Common Subexpression Elimination
(CSE) can be applied at the most suitable abstraction level.

The resulting LLVM module will finally be optimized by the LLVM toolchain using
standard compiler procedures such as Inlining, Control-Flow based optimizations, or Dead

12
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Listing 2.7: Python code with type hints. None means that f returns nothing.

def f(name: str, number: int) -> None:
foo: float = math.pi * number**2
# ...

Code Elimination. In the end, the LLVM module gets compiled to machine code and can
be executed by the LingoDB runtime.

2.5 Notes on Python

Since Python is easy to learn and fast to prototype, it is one of the most used programming
languages nowadays. However, more complexity is available, which can enhance code
quality or accomplish more complicated tasks. We will briefly describe some of those
features in the following subsections.

Static Typing

Although being a dynamically typed language, Python provides regular support for static
typing since version 3.5. [36, 37] Officially, the static typing additions for Python are
called “type hints” or “type annotations” as types are not enforced during runtime. They
only support static analysis tools such as mypy [32]. Listing 2.7 shows an example of a
statically typed Python function. The built-in support for type hints can be extended by
importing the module typing from the Python standard library. It provides additional
types such as subscriptable types, e.g. List[int] or Tuplel[str, str], or special types
such as Any, which does not impose any type restrictions.

Using static typing, we have to pay attention to the covariance of types. This is
important for container types such as List. Roughly speaking, “covariance” allows using
an instance of a subclass of the specified type. List is an “invariant” type. Therefore, a
function taking a parameter of type List [Class] will be incompatible with an argument
of type List[SubClass]. If the function uses covariance, its parameter type may be
declared as Sequence[Class]. This would allow an argument of type List[Class] as
well as one of type List [SubClass].

Metaclasses

In Python, everything is an object. This implies that classes are objects, too. Therefore,
the class objects need to be instantiated. Per default, this is done by the type class, which
is the default metaclass for every Python class. However, the creation of a class object
can be customized by specifying another metaclass. Listing 2.8 shows a simple example of
using a metaclass.

13
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Listing 2.8: Add the class attribute “id” using a custom metaclass.

class MetaA(type):
def __new__(cls, name: str, bases: Tuple[TypelAnyl, ...], classdict:
— Dict[str, Any], **kwargs: Any) -> Typel[Any]:
obj: TypelAny] = type.__new__(cls, name, bases, classdict, *xkwargs)
setattr(obj, "id", 42)
return obj

class A(metaclass=Metal):
pass

print(A.id) # prints "42"

Double Underscore Attributes/Methods

Probably, the most common double underscore method is __init__, the constructor of a
class in Python. There are, however, far more default double underscore methods that
can be added or overwritten in order to add or customize the functionality of a class.
In Listing 2.9, the 4+ operator has been overwritten using the __add__ method and the
conversion of an object of class A to a string is controlled by the __str__ method.

The __getattr__ and __setattr__ methods are a central part of the pythonic attribute
mechanism. The getattr method is called when the programmer is trying to get the value
of a non-existent attribute of an object. This case may be handled by throwing a suitable
exception (the default) or using a custom procedure and forwarding the attribute access
to another object, for example. Similarly, the setattr mechanism is accessed when the
programmer wants to assign a value to a non-existent attribute of an object. Per default,
the attribute will be added to the object and assigned the given value.

Comparable to the operator overloading and the attribute handling mechanism, index-
ing can be customized using the __getitem _ and the __setitem__ methods. Taking a
dictionary as an example, the getitem method is called when the programmer retrieves
a value from the dictionary using a key. The setitem method will be used when the
programmer wants to set a key to a specified value in the dictionary.

Finally, it should be explicitly mentioned that methods are also objects and can have
double underscore attributes. One ubiquitous example is __doc__, which may contain a
method’s docstring.
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2 Background

Listing 2.9: Customize addition and printing of objects of class A.

class AQ):
def __init__(self, value: int = 42) -> None:
self.value: int = value

def __add__(self, other: "A") -> "A":
return A(self.value + other.value)

def __str__(self) -> str:
return f"value: {self.valuel}"

print(AQ) + AQ) # prints "value: 84"
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In this chapter, we will describe an approach for a mapping of pandas operations to
MLIR operations and a transparent drop-in replacement for pandas that provides its own
DataFrame class, as well as implementations for other classes of the pandas API where a
DataFrame operation requires it.

3.1 Motivation

pandas is a very interoperable and flexible Python library. It can read data from various
representations, perform a great variety of operations on it, and export it again to standard
data formats such as CSV or JSON. However, pandas is implemented in Python and may
not be an appropriate choice when a more decent performance is required. Especially the
storage management and the data transfer between several operations is not optimized.
First, pandas operates on data in memory. Therefore, it is not possible to work with
intermediate data sets larger than the memory capacity of the executing machine. This is
made more problematic by the fact that most operations on DataFrame objects return a
modified copy. Even in-place operations may work with intermediate copies [39]. As a
result, the performance of pandas is not optimal when there is the need to handle large
data sets. The pandas developers themselves note that it might be “worth considering not
using pandas. pandas isn’t the right tool for all situations. If you're working with very
large data sets and a tool like PostgreSQL fits your needs, then you should probably be
using that.” [39]

In contrast, modern RDBMSs provide a very optimized data flow and are crafted to
handle very large data sets. However, they do not necessarily have an easy-to-use and
flexible interface with a wide range of options to interoperate with standard data formats
or powerful python libraries such as NumPy or matplotlib.

Thus, this approach aims to provide the pandas API and let a RDBMS do the heavy
lifting in the background.

Comparison with SQL

The resemblance of the DataFrame class and usual database systems clearly emerges
from the comparison of DataFrame operations and common SQL operations, as done in
Figure 3.1. [39]

Selection. As shown in Figure 3.1a, the selection is made in pandas using indexing.
Depending on whether there is only a single column label specified or a list of column
labels, the result will either be of type Series or DataFrame. A conditional selection,
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which can be implemented in SQL using the where clause, corresponds to the boolean
indexing of a DataFrame, as demonstrated in Figure 3.1b.

Join. The most general method to join two DataFrame objects in pandas is the merge
method. Although there is an explicitly-called join method, the merge method is used
internally there, too. Figure 3.1c illustrates the usage of the merge method. Note that
the results are not exactly equivalent. In contrast to SQL, pandas specifies the order of
the rows after the join operation. Left outer joins, for example, preserve the key order.
Full outer joins sort the keys lexicographically. [39] The parameter how can be used to
describe the type of the join (left, right, outer, inner, and cross for the cross product).
The parameters left_on and right_on can be used to specify the columns to join on. Note
that the merge method only supports equi-joins. Theta-joins may be implemented using
a combination of merge and other operations, for example. Figure 3.1d illustrates this.
Semi- and Anti-joins can be done in pandas using the isin method or an appropriate
merge with a subsequent selection, for example.

Aggregation. A pandas DataFrame supports aggregation as shown by the example in
Figure 3.1e. The aggregate method (or its alias agg) can accept keyworded arguments
denoting a mapping of column labels to the names of aggregation functions such as sum,
min or count. The compatibility of pandas and SQL is not completely given with this
operation since pandas does not use the new column names as column names of the
resulting DataFrame but as row labels. The operation in Figure 3.1e would thus yield a
2x2 DataFrame where the columns stay the same and the missing values are padded with
NaN, which additionally converts the data type of the columns from integer to float.

GroupBy. The groupby method of a pandas DataFrame supports grouping by one or
multiple column labels and returns a DataFrameGroupBy object. In contrast to SQL,
the order of the rows within the groups is always preserved. By default, the group keys
themselves are sorted. In order to prevent the group keys from becoming indices instead
of columns and thus lose the SQL-like behavior, we need to set as_index to false. [39] We
can then call, for example, the aggregation method on the returned DataFrameGroupBy
object. Figure 3.1f shows a simple example. This works similarly to the aggregation
method of a DataFrame described above. However, the result format of the aggregation
method of the DataFrameGroupBy class matches the output format of the SQL query.

3.2 Approach: a LingoDB-based Drop-in Replacement for
Pandas

In this chapter, we present our approach for mlir_pandas, a transparent drop-in replacement
for pandas. We also implemented a prototype as a Python library which can be imported
instead of pandas.

mlir_pandas provides its own DataFrame class and the auxiliary classes Series and
DataFrameGroupBy. Instead of directly executing the methods called on those objects,
the mlir_pandas objects incrementally build an MLIR module, which will be compiled
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select coll, col2 from df df [["coll", "col2"]1]
(a) Select coll from the data frame.

select * from df df [(df ["coll"] < B) &
where coll < 5 and col2 + coll > 6 ((df["col2"] + df["coll"]) > 6)]

(b) Select all records from df where the value of coll is greater than 5 and the value of col2 is smaller
than 3.

df .merge(df2, how="inner",
left_on=["coll"],
right_on=["col3"])

select *
from df join df2 where coll = col3

(c) Inner join of df and df2. Assume df2 to have the two columns col3 and cold of type integer.

select * tmp = df .merge(df2, how="cross")
from df join df2 where coll > col3 tmp [tmp["coll"] > tmp["col3"]]

(d) Theta-Join of df (coll, col2) and df2 (col3, cold) on the condition that the value in coll is greater

than the value in col3.

select sum(coll) as colX, df .aggregate(colX=("coll", "sum"),
max(col2) as colY from df colY=("col2", "max"))

(e) Calculate the sum of coll and get the mazimum element of col2.

select coll, count(col2) as colX df .groupby("coll", as_index=False)\
from df group by coll .aggregate(colX=("col2", "count"))

(f) Group by coll and get the group keys along with the corresponding group size. (The sort order is
ignored here.)

Figure 3.1: Operations in SQL (left) and their counterparts in Python using pandas (right).
Assume the table / data frame to contain the two columns coll and col2 of type integer.
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and executed by LingoDB. The materialization will be done lazily. Thus, every supported
operation is added to the MLIR module until the data finally needs to be materialized.

We choose MLIR instead of SQL because MLIR, is a compiler framework that many
other libraries can use. Therefore, it allows for optimization across project boundaries, for
example, when working with tensor types. LingoDB provides an implementation of MLIR
dialects needed to transpile data frame operations to relational algebra, a well-known and
suitable theory of handling manipulations of data frames.

Implementing the pandas DataFrame API

The implementation of the pandas DataFrame API should be a drop-in replacement for
the original API. This means that the API from the point of view of the API user stays the
same. API stability is a fundamental property for software acceptance and adoption. [1]

In order to be a drop-in replacement for the pandas DataFrame class, the mlir_pandas
DataFrame class needs to provide the same attributes (methods are callable attributes).
Additionally, the methods need to handle all the arguments of the original methods, and
the return values need to be represented correctly. Since we do not override all methods or
attributes, we need to be able to transparently forward attribute accesses to the original
pandas implementation. This implies that we have to be able to provide and access an
instance of the original DataFrame class when needed.

Our primary focus in this work is the DataFrame class. We additionally need to
implement a wrapper for the Series class to be able to handle boolean indexing, for
example. Furthermore, we provide our own DataFrameGroupBy class so that the result of
the groupby operation of a DataFrame does not need to be materialized but can still be
used to execute operations on it lazily.

All those wrapper classes include at least one reference to an object holding the actual
data, which needs to be loaded to LingoDB when executing the constructed MLIR module.
The data object usually is an instance of the corresponding original pandas class but may
also be a pyarrow table. Using a pyarrow table as internal storage has the advantage that
the data does not need to be converted when it is loaded or received from LingoDB, which
uses pyarrow tables as exchange format. On the other hand, an instance of the original
pandas class is needed for the transparent fallback mechanism.

The mlir_pandas classes themselves can be regarded as views on a data frame. The
views are restricted to specific columns of the data frame. Thus, for each object, we store
the identifiers of the columns this object is responsible for. This management of partial
data frames is also supported by the relalg.materialize MLIR operation, which does
not need to materialize all columns of a tuple stream and can materialize the specified
columns only. This enables our approach of constructing multiple different mlir_pandas
objects based on the same initial tuple stream.

Building an MLIR module

For every new mlir_pandas object (e.g. DataFrame or Series), we create an MLIR
function. This function accumulates the supported operations so they can be executed

19



3 Design

when the materialized result is needed. In that case, the function is inserted as main
function into a new MLIR module.

Many operations on a DataFrame return a modified copy. However, in this approach,
we do not materialize on those occasions. Instead, we create a new instance of the
corresponding mlir_pandas class which points to the same original data object(s) as the
previous instance and continues to build the same MLIR module. However, sharing a
reference to a common MLIR module does not imply that the participating mlir_pandas
objects need to operate on the same MLIR values. They can still follow a different
execution path through the MLIR module.

When we need to work with multiple mlir_pandas objects, we combine their MLIR
modules into a single module again. This new single module receives a new main function.
The main functions of the previous individual modules are copied and inserted as auxiliary
functions in the new module. They are called at the beginning of the new main function
to receive their last state, which is set as their return value. The function calls are later
inlined during the optimization phase of the compilation of the MLIR module. This allows
the return values of the function calls to have types such as relalg.tuplestream, which
is an internal concept of LingoDB’s relalg dialect and would not support materialization.
Figure 3.2 shows the layout of two combined DataFrame objects. Note that it is crucial to
set the symbol visibility [7] of the auxiliary functions to private. Otherwise, it would not
be possible to lower them since their return types are only internal concepts of LingoDB
that are not defined in a general context.

In order to be able to work with multiple mlir_pandas objects, we always provide an
internal index column when the data is loaded to LingoDB. Depending on the types of
the original data objects, this either is the original index if a data object is a pandas
object or a newly generated increasing integer sequence if a data object is a pyarrow table.
The internal index column allows joining independent tuplestreams, which would not be
possible otherwise since RDBMSs do not guarantee a particular row ordering.

3.3 Mapping Pandas Operations to MLIR

The pandas operations get mapped to MLIR operations lazily and across multiple
mlir_pandas objects. The mlir_pandas classes override supported pandas operations.
The MLIR module will only be materialized when needed or when a currently unsupported
operation needs to be executed. In this work, we will focus on supporting the most
intuitive and convenient methods of a pandas DataFrame.

Join

Being able to join two tuple streams on MLIR level is the base requirement for many
other operations. We implement the merge operation of the DataFrame class such that
it is possible to join a DataFrame and another DataFrame or a Series on arbitrary
columns. For this, we make use of the join operations such as relalg.join defined by
LingoDB’s relalg dialect. Since the pandas merge method only supports equi-joins, the
comparison of the specified columns will always be a comparison for equality, performed
by db.compare. The column values are received using relalg.getcol. A simple example
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mlir_pandas DataFrame

MLIR function

original data
references

MLIR MLIR

functions operations
original data q original data ;
object MLIR function object MLIR function
mlir_pandas DataFrame mlir_pandas DataFrame

Figure 3.2: A schema of an mlir_pandas DataFrame which emerged from the combination of two
other mlir_pandas DataFrame objects. The new DataFrame references the original data objects of
the previous DataFrame objects and also copied their MLIR functions.

is shown in Figure 3.3. Our implementation currently does not handle naming collisions,
but they can be trivially circumvented with a rename operation.

If an outer join needs to be accomplished, we add a sort operation to comply with the
pandas API, which requires the keys to be sorted after the operation.

Indexing / Selection

Indexing is implemented in pandas by the __getitem__ method, which is a special method
of Python classes and will be called when the corresponding object is subscripted. Indexing
a DataFrame is similar to a selection in SQL, as shown in Figure 3.1. Our approach
currently handles two cases. The simple case is that the __getitem__ method is called
with a column label or a list of column labels. Supporting this operation does not require
any MLIR operations. We need to copy the existing mlir_pandas object to a new one
which is a view on the same tuple stream but restricted to the specified columns. With
this, we implement a Series which is a (restricted) view on the given DataFrame. In
the second case, the __getitem__ method is called with a boolean Series as argument.
Consequently, boolean indexing needs to be performed. This is a selection where the
boolean values in the provided Series form the condition of the selection. In order to
be able to select the corresponding rows of the original data frame, we may first need to
join the data frame and the Series in case that the Series did not originate from this
DataFrame and is a completely independent object. The join happens using an inner join
on the internal index column. Afterwards, we use relalg.selection with a predicate
computing the truth value of the Series for every row in the tuple stream. Figure 3.4
shows an example of boolean indexing.
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%0 = relalg.basetable @dfl1 {columns = [index, coll, col2, col3]}
%1 = relalg.basetable @df2 {columns = [index, col4, colb5, col6]}
%2 = relalg.join %0, %1 {
“bb0 (%arg_row: !relalg.tuple):

%3 = relalg.getcol %arg_row @dfl::coll

%4 = relalg.getcol Y%arg_row @df1l::col2

%5 = relalg.getcol %arg_row @df2::col4d

%6 = relalg.getcol Y%arg_row ©df2::colb

%7 = db.compare eq %3, %5

%8 = db.compare eq %4, %6

%9 = db.and %8, %9

relalg.return %9

}

(a) Pseudo-MLIR code.
df1 = pandas.DataFrame({'coll': ..., 'col2': ..., 'col3': ...})
df2 = pandas.DataFrame({'cold': ..., 'col5': ..., 'col6': ...})

df1.merge(df2, how='inner', left_on=['coll', 'col2'], right_on=['col4', 'col5'])

(b) Corresponding pandas pseudo-code.

Figure 3.3: Comparison of pseudo-MLIR code and pandas pseudo-code for joining two DataFrame
objects on the predicate coll == col and col2 == colb.

%0 = relalg.basetable @df {columns = [index, coll, col2]}
%1 = relalg.basetable @series {columns = [index, value]}
%2 = relalg.join %0, %1 on @df::index = @series::index
%3 = relalg.selection %2 where @series::value = true

(a) Pseudo-MLIR code.

df = pandas.DataFrame({'coll': ..., 'col2': ...})
series = pandas.Series([True, False, ...], name='value')
df [series]

(b) Corresponding pandas pseudo-code.

Figure 3.4: Comparison of pseudo-MLIR code and pandas pseudo-code for boolean indexing
using a Series object which does not originate from the same DataFrame, so which is not already
included in the same tuple stream.
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%0
%1

relalg.basetable @series {columns = [index, valuel}
relalg.map %0 {
%2 = db.constant 5

%3 = relalg.getcol @series::value
%4 = db.compare gte %3, %2
relalg.return %4
}
(a) Pseudo-MLIR code.
series = pandas.Series([True, False, ...], name='value')

series >= 5

(b) Corresponding pandas pseudo-code.

Figure 3.5: Comparison of pseudo-MLIR code and pandas pseudo-code for comparing a Series
to the constant 5.

Arithmetic Operations

All arithmetic operations will result in a relalg.map operation which adds a new column
to an existing DataFrame. The return value of the arithmetic operations described here
will thus always be a new Series object, which is a view restricted to this new column in
the original DataFrame.

In order to create boolean Series objects, we need to be able to compare a Series with
another Series or a constant. We implement the corresponding special Python methods
such as __ge__ for the greater-equal comparison. In case a Series should be compared
to another Series, the two tuple streams will be joined if the two Series objects do
not originate from the same DataFrame and are not already contained in the same tuple
stream. Afterwards, a relalg.map operation will be performed to execute the specified
comparison on the two columns belonging to the two participating Series instances. In
case a Series should be compared to a constant, such as illustrated by Figure 3.5, it is
possible to directly apply the relalg.map operation. In both cases, the region attached
to relalg.map will use the db.compare operation in order to compare the Series values
per row, or the Series values with the given constant respectively. In both cases, a new
column holding the comparison result gets added to the tuple stream. Thus, as a final
step, we create a new Series object that is a view of the new column and can be returned
as the result of the comparison.

Furthermore, we can operate on boolean Series using other boolean operators. The
bit-wise and, the bit-wise or and the bit-wise negation are implemented by overriding
the corresponding special Python methods __and__, _or__ and __invert__. They are
implemented in the same way as already described. The only difference is that we use the
corresponding MLIR operation, so db.and, db.or and db.not instead of db.compare.

For non-boolean arithmetic operations such as addition of a Series and another Series
or a constant, we use the same approach with appropriate arithmetic operation such as
relalg.add for addition or relalg.mul for multiplication.
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%0 = relalg.basetable @df {columns = [index, coll, col2]}

%1 = relalg.aggregation %0 {group_by_cols =[], computed_cols = [colX, colY]} {
%2 = relalg.aggrfn sum @df::coll
%3 = relalg.aggrfn min @df::col2
relalg.return %2, %3

(a) Pseudo-MLIR code. The group_by_cols attribute is empty since there is no grouping in this example.

df = pandas.DataFrame({'coll': ..., 'col2': ...})
df .aggregate(colX=('coll', 'sum'), colY=('col2', 'min'))

(b) Corresponding pandas pseudo-code.

Figure 3.6: Comparison of pseudo-MLIR code and pandas pseudo-code for an aggregation of a
DataFrame. The operation computes the sum for coll and the minimum for col2.

Aggregation

The aggregation on a pandas DataFrame can be done using the aggregate method, or
its alias agg. They can take keyworded arguments which map new column labels to old
column labels and aggregation functions such as sum, min or count. For the mlir_pandas
classes, the aggregation directly translates to the relalg.aggregation MLIR operation.
This operation takes a region where we can execute the relalg.aggrfn MLIR operation
on the specified columns with the corresponding aggregation function, as implemented in
Figure 3.6. The results returned by the region are stored as the attributes of the resulting
tuple stream.

After the aggregation, we have to materialize, no matter if the aggregation has been
called on a Series, DataFrame or DataFrameGroupBy object. In order to comply with the
particular output format of the corresponding original pandas implementations, it is always
necessary to post-process the result computed by LingoDB and convert it to the correct
shape using the original pandas methods. In the case of a DataFrameGroupBy object,
the shape of the result returned by LingoDB would match the pandas implementation.
However, we still need to materialize because the internal index column got lost during
the aggregation.

GroupBy

pandas provides the groupby method for DataFrame objects. This operation returns a
DataFrameGroupBy object. mlir_pandas provides an own DataFrameGroupBy class, which
is, as the other mlir_pandas classes, just a view of a tuple stream. Additionally, an instance
of the DataFrameGroupBy class stores the columns which should be used for grouping in
the user-specified order. Thus, when the groupby method is called on an mlir_pandas
DataFrame object, no MLIR operation is performed. It just returns a properly configured
mlir_pandas DataFrameGroupBy instance. On this instance, the API user can perform
aggregation methods, for example. They are implemented as shown in Figure 3.6, the
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only difference is that the attribute group_by_cols of the relalg.aggregation operation
additionally receives the list of group keys in the correct order.

Since the group keys get sorted after the aggregation in pandas, we also save whether a
sort operation should be executed on the group keys after the aggregation.

3.4 Handling Pandas Peculiarities

The approach proposed in this work aims to strictly follow the pandas API so that the
created mlir_pandas module can be used as a proper transparent drop-in replacement for
pandas without requiring the user to change their code or their understanding of the API
usage. This design decision leads to challenges, which we will outline in the following
subsections.

Row ordering

As already discussed, pandas has a row ordering which is specified after most operations.
This leads to the necessity of adding an internal index column in our implementation of
mlir_pandas every time data is loaded to LingoDB. If the data is a pandas DataFrame, we
use its index as the index column. The index of a DataFrame object can hold objects of
any type, and they do not need to be unique, which we currently ignore in our prototype.
If we work on a pyarrow table as a data object, we add a new index column by creating a
sequence of unique integer ids of increasing value. The internal index column becomes
necessary when the columns of two mlir_pandas objects need to be merged into one
tuple stream, for example. This would not be possible otherwise, even if LingoDB had a
guaranteed row ordering.

Additionally, the original indices of the DataFrame objects need to be kept so that they
can be restored after the materialized result of the MLIR module has been received from
LingoDB. Adding a new index would violate the compatibility with the pandas API since
the index values are bound to the rows. Thus, the index is changed by a selection, for
example, as shown in Listing 3.1.

Finally, to guarantee row ordering, we need to sort the data according to the index
column before each materialization. Currently, our prototype for mlir_pandas does not
implement this and still relies on the fact that the current LingoDB implementation has
guaranteed row ordering since it does not yet implement multithreading.

In-place methods

Some pandas DataFrame API methods can optionally be executed with in-place semantics.
This can be achieved in mlir_pandas by adding the necessary operations to the MLIR
module of the current mlir_pandas object instead of a copy.

However, there are cases where the pandas API does not define whether an operation is
performed in-place or not. A prominent example is indexing. [39] Even for a simple case
such as selecting a single column from a DataFrame df, it is not specified whether a view
or a copy of the corresponding part of the DataFrame is returned. For the implementation
of mlir_pandas, we always worked with copy semantics.
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Listing 3.1: The index of a pandas DataFrame is updated by a selection. The selection removed
the second row, and as a result, the corresponding index value 1 is removed, too.

>>> df = pd.DataFrame({"coll": [1,2,3], "col2": [1,1,3]1})

>>> df
coll <col2

0 1 1

1 2 1

2 3 3

>>> df [df ["coll"] <= df["col2"]]
coll <col2

0 1 1

2 3 3

Boolean Indexing

Conditional selection is implemented in the pandas API using boolean selection, as already
described. For our approach, it is a difference whether the boolean Series used to index
the current DataFrame originated from the same DataFrame or is completely independent.
In the latter case, we first need to merge the columns of the current DataFrame and
the Series by performing a join operation on the index columns. If the Series is not
independent, it originated from an arithmetic operation on the DataFrame and thus is just
a column in its tuple stream. In that case, it is possible to directly perform the selection
based on the value in the corresponding column.

3.5 Implementation Details

We use the composite pattern to implement the classes of the pandas library which we
override in our mlir_pandas library. Every class works as a wrapper around the original
pandas class. This allows us to incrementally override methods without losing the full
functionality of the original class. Additionally, we leverage the getattr/setattr mechanism
of Python. As soon as the user of our class tries to access a method or an attribute that
we do not yet directly support, we catch the failed attribute access in the __getattr__
method, materialize the instance of the original class, update it by executing the lazily
accumulated MLIR operations, and then forward the attribute access to the resulting
object.

The results of attribute accesses or operations are handled by a separate mechanism
in mlir_pandas, which wraps objects of classes that have a counterpart in mlir_pandas in
an instance of the corresponding mlir_pandas class. This way, we ensure that we do not
accidentally leave our class hierarchy and unintentionally fall back to the classes of the
pandas APIL.

Finally, we need to provide a reasonable integration of our custom classes with standard
development tools such as autocompletion functionality in Integrated Development Envi-
ronments (IDEs) or static analysis frameworks. Since we do not override all attributes
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of the original classes and may not provide the same docstrings or method signatures,
those tools would not be able to assist the API user correctly. In order to solve this,
we leverage the constant TYPE_CHECKING which is defined by the typing module of the
Python standard library. This constant indicates whether the code is currently analyzed
by static analysis tools. If this is the case, mlir_pandas dynamically chooses not to export
its custom classes but their original counterparts of the pandas library. Functionality-wise,
this does not make any difference since it does not affect the execution during runtime.
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We evaluate the performance of mlir_pandas against pandas and the direct execution of
an already completed MLIR module in LingoDB. We use some of the well-known TPC-H
queries for the benchmarks. As an intermediate storage format for the tables which need
to be used in the queries, we use pyarrow tables [10]. They provide easy-to-use support
for converting from and to pandas, and they are the data exchange format currently used
by LingoDB’s Python interface.

4.1 Targets

The benchmarks are implemented in Python. Every benchmark is executed as a function
in a separate process. The benchmark for the pre-built MLIR module passes this module
directly to LingoDB. The benchmarks for pandas and mlir_pandas execute the same
function containing the query implemented with the pandas API. The pandas operations
used to implement the SQL queries for pandas are selected so that they are completely
supported by the current implementation of mlir_pandas and do not require the fallback
to the original pandas implementation. The initial data is a pyarrow table which is
completely read into memory. For the pandas and mlir_pandas targets, the columns of
the table are casted so that their types can be represented as explicit pandas types and
not just as the generic object type. This implies, for example, that decimals need to be
converted to a 64-bit floating point type since pandas currently has no built-in decimal

type.

MLIR The MLIR module for this benchmark is created by translating the corresponding
SQL query using LingoDB’s sql-to-mlir tool and inserting it into the Python code as
string literal which can then directly be loaded to LingoDB. The result is converted into a
pandas DataFrame. If necessary, additional computations are executed on this DataFrame,
for example, when the result is a table / data frame with a single value and we need to
extract this single value in order to return it as a plain scalar. All additional steps are
included in the performance measurement.

pandas Before the benchmark for pandas is executed, the given pyarrow table is casted
to ensure that all types are directly supported by pandas. Then, the table is converted to
a pandas DataFrame. This DataFrame is passed to the function that will be measured.

mlir_pandas We benchmark mlir_pandas with the exact same query code as pandas.
However, mlir_pandas can operate directly on the casted pyarrow table. mlir_pandas
can use the pyarrow table internally as data instead of a pandas object. The internal

28



4 FEvaluation

data representation is only changed to a pandas DataFrame if this is required for the
transparent fallback mechanism.

4.2 Setup

Our performance benchmarks are executed on a cloud server with eight dedicated vCPUs
(4 Intel Xeon at 2 threads per core) on a KVM-based, fully virtualized x86-64 platform
running Fedora 36 with Linux Kernel 5.18.11, GCC 12.1.1, and Python 3.10.6. LingoDB
is used with commit 91¢529d' and LLVM commit 471cc822. pandas is used in version
1.4.2.

4.3 Results

Table 4.1 shows the results of our benchmarks. Figure 4.1a and Figure 4.1b additionally
display the results for scale factor 2 in chart form. miir_pandas manages to provide a
speedup compared to pandas by a factor of up to around 14 and over 10 on average. The
additional management and conversion overhead of mlir_pandas over the pure runtime of
LingoDB is up to 0.29 seconds or up to 47 percent, with around 0.13 seconds or 9 percent
on average. The pure runtime of LingoDB for the queries submitted by mlir_pandas is
on average approximately twice as slow as the pure runtime of LingoDB for the original
MLIR queries.

The difference regarding the pure runtime of LingoDB between mlir_pandas and the
pre-computed original MLIR, are most probably a result of the incremental building process
of the MLIR module within mlir_pandas. When the original SQL query is translated
to MLIR by the sql-to-mlir tool, the whole query is known. For query 5, where the
difference is most noticeable, the original MLIR module uses, among other operations,
a single selection after a series of cross products, which get optimized away, followed
by one map operation. The MLIR module produced by mlir_pandas contains five joins,
three selections and eight map operations. This is due to the fact that miir_pandas
cannot know the whole query in advance and is currently naively building the MLIR
module incrementally while encountering the pandas operations. Another factor for the
significant difference between the LingoDB runtime values of mlir_pandas and the original
MLIR module for query 5 is that mlir_pandas currently needs to perform an intermediate
materialization after the aggregation and before the final sorting.

The management overhead of mlir_pandas, so the difference between the total runtime
and the runtime of LingoDB added with the time for the conversions, takes on average
around 7 percent of the total runtime. In absolute values, it is up to 0.07 seconds or about
0.05 seconds on average. Most importantly, the management overhead of mlir_pandas
seems to be constant and does not depend on the scale factor of the input tables.

Finally, the memory overhead of pandas, resulting from the generation of intermediate
data copies, could be drastically reduced by mlir_pandas. The maximum memory consumed
by mlir_pandas is on average approximately 44 percent of the peak memory consumption

"https://github.com/ro-i/lingo-db/tree/91c529d13bc46a5b8cc60c42618d14£328db1fbl
*https://github.com/jungmair/llvm-project/tree/471cc823031b8b0950bedbbe2245e63eaf cfcaf3
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of pandas. Executing the original MLIR module still requires less memory, which seems
reasonable, considering that the MLIR module built by mlir_pandas still does not achieve
the same level of optimization as the original MLIR module.
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(a) Total runtime of pandas, mlir_pandas and a pre-built MLIR module on the TPC-H queries 1, 5 and 6
for scale factor 2.
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(b) Peak memory consumption of pandas, mlir_pandas and a pre-built MLIR module running the TPC-H
queries 1, 5 and 6 for scale factor 2.
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Table 4.1: Results of TPC-H Queries 1, 5 and 6 with scale factor 1, 2 and 5, executed by pandas,
mlir_pandas and an MLIR module pre-built by translating the original SQL query using LingoDB’s
sql-to-mlir tool. total duration denotes the total runtime of the respective function; rundb shows
the runtime of LingoDB; conversions report the accumulated duration of all necessary conversion
between pyarrow tables and data frames, as well as the time taken by loading the given tables to
LingoDB; maxmem shows the mazimum amount of memory used by the subprocess which executed
the corresponding benchmark function. If mlir_pandas needed to materialize more than once, rundb
and conversions are the summed up values of all materializations.

(a) Results for scale factor 1.

Benchmark Target Measurement
total rundb (s)  conversions maxmem
duration (s) (s) (GB)
pandas 5.19 — — 3.66
TPC-H1  mlir_pandas 0.49 0.41 0.05 1.61
MLIR 0.24 0.22 0.02 0.97
pandas 10.14 — — 3.63
TPC-H5  mlir_pandas 1.05 0.96 0.04 2.16
MLIR 1.34 1.33 0.01 1.63
pandas 1.02 — — 2.49
TPC-H 6  mlir_pandas 0.17 0.11 0.03 1.63
MLIR 0.09 0.09 0.01 1.01

(b) Results for scale factor 2.

Benchmark Target Measurement
total rundb (s)  conversions maxmem
duration (s) (s) (GB)
pandas 9.71 — — 7.24
TPC-H1 mlir_pandas 0.76 0.66 0.06 3.10
MLIR 0.41 0.39 0.02 1.86
pandas 23.27 — — 7.01
TPC-H5  mlir_pandas 2.09 1.98 0.06 4.36
MLIR 0.91 0.90 0.01 2.50
pandas 2.05 — — 5.18
TPC-H 6  mlir_pandas 0.34 0.18 0.11 3.28
MLIR 0.16 0.15 0.01 2.13
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(¢) Results for scale factor 5.

Benchmark Target Measurement
total rundb (s)  conversions maxmem
duration (s) (s) (GB)
pandas 23.65 — — 17.97
TPC-H1 mlir_pandas 1.62 1.48 0.10 7.56
MLIR 0.78 0.76 0.01 4.47
pandas 69.36 — — 17.40
TPC-H 5  mlir_pandas 6.48 6.30 0.11 11.11
MLIR 1.34 1.33 0.01 5.65
pandas 4.71 — — 12.67
TPC-H 6  mlir_pandas 0.70 0.41 0.25 7.62
MLIR 0.33 0.33 0.01 4.76

4.4 Discussion

The measurements show that our approach can accelerate pandas code considerably while
not sacrificing the extensive and easy-to-use pandas API. Even for queries such as query
5, where currently an intermediate materialization is necessary, we can record a speedup
by the factor of 10. In absolute values, this becomes increasingly valuable for larger data
sets, as shown in Table 4.2c, where up to around 63 seconds could be saved for query 5.

However, the benchmarks also show that there is still more potential for optimization
since we do not yet achieve comparable performance to the original MLIR module derived

from the SQL query.
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5 Related Work

There are many approaches which try to enhance the performance of pandas by transpiling
the pandas operation to other representations. Some leverage MLIR as intermediate
representation not exclusively for pandas, but also for other libraries with the goal to
enable cross-library optimizations.

Among the general differences of the various approaches, one of the most important is
to which language or representation the original operations are transpiled, so for example
to MLIR or to SQL. Furthermore, from the performance point of view, we need to consider
whether the queries are evaluated (mostly) lazily, or in a direct way. Finally, it should be
distinguished between approaches with the possibility of remote execution and approaches
which require the data on the machine which executes the program. Especially for the
second case, it is convenient if the approach supports data larger than the memory capacity
of the executing machine.

Weld Weld [25, 27, 26] aims for cross-library optimization by collecting operations
from various libraries written in different languages and transpiling them to a common
intermediate representation, the Weld IR. The IR module is then compiled, optimized
and executed when a materialization becomes necessary. It is important to note that
Weld is also a runtime environment. In contrast to our approach, Weld does not make
use of an existing runtime, such LingoDB in our case, but directly defines and implements
the necessary IR operations and data types and the optimizations on them itself. As a
result, the system is not limited to the interface of a particular runtime implementation
and can flexibly adapt to different scenarios on different abstraction levels. On the other
hand, this implies the effort to support new libraries since Weld may have to adapt their
runtime implementation, too: “Porting whole libraries to use Weld is time-consuming, so
we evaluate the impact of porting just a few widely used operators.” [26]

Grizzly Grizzly [16] transpiles pandas operations to SQL statements which are then
executed in an external DBMS. The pandas operations are collected lazily, they are only
materialized when needed. Grizzly can also handle User-Defined Functions (UDF) by
applying Python reflection techniques and leveraging Python type hints to deduce the
data types of the actually dynamically typed language. Additionally, Grizzly distinguishes
“Data Shipping” and “Query Shipping”. While pandas has a very powerful API, it requires
the data to reside on the machine where the pandas code is executed. In contrast, DBMS
are known for being hosted on servers which are independent of the machine where the
SQL statements are run. Grizzly enables the combination of both paradigms and allows
the programmer to write pandas and execute pandas code on their machines while the
generated SQL statements are run in potentially remote DBMS.

33



5 Related Work

mlinspect mlinspect [14, 13, 12] is a library which analyzes existing data preprocessing
code for Machine Learning (ML) pipelines. This code is often written using pandas.
mlinspect transforms the Python operations to an IR which is then used to build a
Directed Acyclic Graph (DAG) in which the operations are mapped to relational algebra
operators. mlinspect acts similar to a debugger. It instruments the original Python
code with the collected information and metadata and thus allows to find so-called “data
distribution bugs”, so issues related to the flow and the handling of the data in the
preprocessing pipeline. Thus, mlinspect needs the similar translation techniques as our
approach, but does not aim to be a more performant drop-in replacement for the Python
implementation of the pandas API.

Modin Modin [29, 28, 30] aims to be a drop-in replacement for pandas. It is designed
especially for large data sets, but claims to also improve performance up to a factor of 4
on a laptop with 4 cores. [8] Modin currently makes use of Ray [35] or Dask [3] in order to
parallelize the workload and be able to distribute it over a multiple machines / a cluster.
Therefore, an important characteristic of Modin is the decomposition of data frames such
that their computation can be distributed. The developers solve this by defining the data
frame operations with a set of core operators, which are designed and implemented to be
parallelized. [28] In contrast to our work, Modin does not make use of existing RDBMS
and also does not aim to be a RDBMS itself. The creators of Modin do not consider the
relational algebra model to be suitable to handle the pandas API. They think that the
relational algebra is too restricted to particular operators and lacks the required flexibility.
Additionally, they identify the unspecified row ordering as an important deviation of the
relational algebra model from the data frame model. [30]
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6 Summary & Outlook

As the applications of big data have been considerably growing for many years, efficient
DBMSs have been developed and improved. For many use cases, however, data scientists
choose the Python library pandas as an easy-to-use way of working with their data. It
provides a rich set of interoperability and convenience methods. However, while pandas
has found widespread use, it suffers from the performance of the Python implementation,
especially regarding large data sets. On the side of the modern compiling DBMSs, LingoDB
emerged. LingoDB provides not only an interface for SQL, but also for queries written in
MLIR. MLIR is a new IR under the umbrella of the LLVM project and designed to span
multiple abstraction levels, providing support for cross-domain compiling and optimizing.

We presented mlir_pandas, an approach aiming to combine the advantages of pandas
and modern DBMSs. mlir_pandas is designed to be a transparent drop-in replacement for
pandas, translating the pandas operations to MLIR operations and lazily materializing
the results when necessary.

Our implemented prototype showed a performance gain by a factor of 10 on average
compared to pandas when executing some of the standard TPC-H queries. We could also
show how the maximum memory consumption could be considerably decreased by not
working with intermediate copies of the data—in contrast to pandas.

6.1 Outlook

While the performance of mlir_pandas showed the potential of our approach, we could
also identify possibilities for further improvement.

On the one hand, this may include optimizing the incremental building process of the
internal MLIR module.

Furthermore, the pandas types system needs to be enhanced such that decimals, for
example, are natively supported and not just represented as generic objects. This would
allow mlir_pandas to handle those types, which in principle would already be supportable.

Finally, an approach for supporting UDF and the analysis of given expressions for
DataFrame methods such as query or filter would help to further improve the perfor-
mance. Once able to build an expression tree for given string arguments, for example, the
query method would allow to easily perform a selection according to multiple predicates
at once.
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Acronyms

CSE Common Subexpression Elimination.

DAG Directed Acyclic Graph.

DBMS database management system.

IDE Integrated Development Environment.

IR Intermediate Representation.

ML Machine Learning.

MLIR Multi-Level Intermediate Representation.
RDBMS relational database management system.
SQL Structured Query Language.

UDF User-Defined Functions.
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