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Abstract— Safety-critical technical systems operating in un-
known environments require the ability to quickly adapt their
behavior, which can be achieved in control by inferring a
model online from the data stream generated during operation.
Gaussian process-based learning is particularly well suited for
safety-critical applications as it ensures bounded prediction
errors. While there exist computationally efficient approxima-
tions for online inference, these approaches lack guarantees
for the prediction error and have high memory requirements,
and are therefore not applicable to safety-critical systems with
tight memory constraints. In this work, we propose a novel
networked online learning approach based on Gaussian process
regression, which addresses the issue of limited local resources
by employing remote data management in the cloud. Our ap-
proach formally guarantees a bounded tracking error with high
probability, which is exploited to identify the most relevant data
to achieve a certain control performance. We further propose
an effective data transmission scheme between the local system
and the cloud taking bandwidth limitations and time delay of
the transmission channel into account. The effectiveness of the
proposed method is successfully demonstrated in a simulation.

I. INTRODUCTION

Technical systems are required to operate increasingly
autonomously in uncertain environments. For ensuring safety
and high performance, these systems need to be able to
infer models from observed data online, such that they can
quickly adapt to new situations. This is particularly important
in applications such as the safe control of autonomous
underwater vehicles [1], unmanned aerial vehicles [2] and
wearable robots [3], where uncertainty arising from humans
in the control loop and changing environments can prevent
the derivation of accurate models prior to system operation.

Gaussian process (GP) regression is a supervised machine
learning method, which is commonly employed in highly
nonlinear, safety-critical applications due to its high
expressiveness and probabilistically bounded prediction
errors [4]. Even though it admits closed-form updates
allowing online learning and thereby an iterative adaptation
of inferred models, it exhibits a quadratic update complexity
in the number of training samples. Therefore, it becomes too
slow for processing streaming data generated during system
operation in real-time, since controllers often run at sampling
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Fig. 1. Overview of the proposed networked online learning architecture:
The LoG-GP predicts the unknown dynamics, e.g., of a wearable robot, for
a measured state. For computing these predictions, it can only access GP
model data in the local memory. Measurements of the system are contin-
uously stored in the local memory and regularly sent to the cloud, where
necessary models for a future reference trajectory are determined using a
sampling based approach and corresponding data is sent to the local memory.

rates in the magnitude of 102 Hz to 103 Hz and consequently
measurements quickly accumulate to large data sets, which
render exact inference computationally intractable [5]. In
order to reduce the complexity of GPs, several approxi-
mations for online learning have been developed, which
include inducing point methods [6], variational inference
approaches [7] and finite feature approximations [8]. While
these approaches can yield computation times low enough
for online learning in control, beneficial safety-relevant
theoretical properties of exact GPs such as uniform error
bounds [9] do not directly extend to them, and thus, they
cannot be used in safety-critical applications. In addition,
those approaches exhibit a linear or even higher order
polynomial memory complexity, which prohibits their
application in resource-constrained technical systems such
as drones, autonomous underwater vehicles or wearable
robots with limited memory for storing data. In summary,
there is a significant gap between the principle potential of
GPs and their realistic application in safety-critical systems.

This paper addresses the problem of online learning con-
trol for safety-critical systems with limited computational
and memory resources. We exploit the fact that our envi-
sioned applications are able to communicate with external in-
frastructure including clouds with potentially unlimited data
storage. Since realistic communication network restrictions
such as time delays and limited bandwidth prevent the full
externalization of the online model inference, we propose
to exploit networked cloud computing only partially for



determining and storing GP models. Our approach, which
is illustrated in Fig. 1, transmits data to the remote compute
system, where a tree structure with localized GP models at its
leaf nodes is iteratively build up using a method developed by
the authors, which is called locally growing random tree of
GPs (LoG-GP)1 [10]. A sampling-based reachability analysis
is executed in the cloud to determine the localized GP
models which need to be communicated back to the resource-
constrained system. Thereby, predictions and model updates
can be computed locally without any delays. We ensure the
timely availability of required data on the local system using
an effective transmission scheme. This scheme provides
insight on fundamental trade-offs between the bandwidth,
time delays, local memory and achievable tracking error. By
employing a smart aggregation method for the predictions
of the local GP models, prediction error bounds of GPs are
inherited. Therefore, the safety guarantees derived for control
with exact GP models are maintained despite computational
and memory limitations. The effectiveness of the developed
networked online learning method is demonstrated in close-
to-real simulations of a robotic exoskeleton.

The remainder of this paper is structured as follows:
Section II formally describes the considered problem,
followed by the proposed networked online learning method
based on GPs in Section III. In Section IV, a tracking error
bound for an online learning feedback linearizing control
law is exemplarily derived, such that the effectiveness of the
networked online learning approach can be demonstrated in
Section V, before the paper is concluded in Section VI.

II. PROBLEM DESCRIPTION

Since accurate models for many systems such as
autonomous underwater vehicles and wearable robots are
often not available in practice, we consider the problem of
inferring a dynamics model online from measurements gen-
erated during operation, such that the tracking performance
of model-based control can be improved. Formally, we
model these systems with differential equations of the form2

ẋ = f(x,u), (1)

where x ∈ X ⊂ Rdx denotes the state, u ∈ U ⊂ Rdu
is the control input, and f : X × U → Rdx is the
unknown dynamics function. We consider the task of
tracking a bounded, continuously differentiable reference
trajectory xref : R0,+ → X with the system state x(t).
For this purpose, we employ a model-based control law
πf̂ : X → U, where f̂ : X × U → Rd is a model of the
unknown function f(·). The tracking performance of such a
control law typically depends strongly on the accuracy of the
model f̂(·), such that we employ the following assumption
on the model-based control law πf̂ (·), which is satisfied by

1Open-source software packages for several programming languages are
available at https://gitlab.lrz.de/online-GPs/LoG-GPs.

2Notation: Lower/upper case bold symbols denote vectors/matrices,
R+/R0,+ all real positive/non-negative numbers, In the n×n identity
matrix, ‖ · ‖ the Euclidean norm, |D| the cardinality of a set D, and d·e/b·c
the ceil/floor operator.

many control techniques such as feedback linearization [11],
backstepping [12] and adaptive control [13].

Assumption 1: The tracking error e(t) = x − xref(t) is
ultimately bounded with monotonously increasing ultimate
bound ϑ : R0,+ → R0,+, i.e., for every c ∈ R+, there exists
a time T = T (c, ϑ), such that it holds that

‖e(0)‖ ≤ c ⇒ ‖e(t)‖ ≤ ϑ(κt), ∀t ≥ T, (2)

where κt = maxt′∈[0,t] ‖f(x(t′))− f̂(x(t′))‖.
For notational simplicity, we assume no knowledge of f(·)

before system operation, but considering a prior model
f̂0(·) is straightforward [11]. In order to infer a model f̂(·)
online, we require periodical measurements of the system.

Assumption 2: Data pairs (xn,yn=f(xn,πf̂ (x)))+εn),
where εn∼N (0, σ2

yIdx) are i.i.d. Gaussian random variables
with variance σ2

y∈R+, are sampled at time instances t(n) =
nτ with sampling time τ ∈R+. The data is aggregated in a
time-varying training set Dt={(xn,yn)}N(t)=b tτ c

n=1 .
Assumption 2 admits training targets y perturbed by

Gaussian noise, which is a frequently found assumption in
literature, see, e.g., [11], [12], [13]. It also requires noise-
free state measurements for training, which however, is
commonly assumed in many employed control schemes such
as feedback linearization and sliding mode control [14].

Since Assumption 2 ensures a continuous data stream,
model updates of f̂(·) must be computed fast enough to
avoid that data is generated at higher rates than it can be
processed. Hence, the average update time Tup of f̂(·) must
satisfy the computational constraint

Tup ≤ τ. (3)

Additionally, the continuous stream of data leads to a
steadily growing size of the data set Dt. Therefore, the
amount of generated data will eventually reach the memory
limitations, which are unavoidable on all real-world systems.
Formally, this can be modelled via the memory constraint

|Dloc
t | ≤ M̄, (4)

where Dloc
t denotes the data set stored in the memory of

the technical system and M̄ ∈ N represents the memory
limitations. Since this restriction can crucially limit the
achievable control performance [15], we consider that data
can be transferred to a cloud via a network connection,
effectively extending the overall memory capacity. The
available memory in the cloud is usually significantly larger
than on the local system, such that we assume it to be
infinite for simplicity. However, the data transfer between
the cloud and the local system takes non-negligible time in
practice due to effects such as network delays Td∈R+ and
finite bandwidth B ∈R+. Therefore, data sent to the cloud
cannot be immediately accessed by the local system, but
the time Taccess between requesting data D and using it has
to satisfy the network constraint

Taccess ≥
|D|
B

+ Td. (5)

Despite these restrictions, the model-based control law πf̂ (·)
using the model f̂(·) learned from the streaming data Dt



should achieve a high tracking control performance.
Therefore, we consider the problem of developing a
networked online learning method for inferring a highly
accurate model f̂(·) of the unknown dynamics f(·) under
computational, memory and network constraints.

III. NETWORKED ONLINE LEARNING BASED ON
GAUSSIAN PROCESSES

Since the time delay Td prevents externalizing the online
learning, we propose the networked online learning approach
outlined in Fig. 1, which performs inference locally, but
transfers unnecessary data to the cloud. The approach is
based on GP regression [4] due to its strong theoretical foun-
dation as introduced in Section III-A. For enabling online
learning with GPs, we employ LoG-GPs firstly proposed
in our earlier work [10], which inherit the probabilistic
prediction error guarantees of exact GPs while having merely
logarithmically increasing update and prediction complexi-
ties as outlined in Section III-B. In order to transmit data to
the cloud without performance loss, we exploit the modular
structure of LoG-GPs and determine the region, in which
system states can potentially be in a given time interval, using
a sampling-based approach in Section III-C. By developing
a data transmission scheme in Section III-D, we ensure that
necessary data is always locally available despite transmis-
sion bandwidth limitations and network delays. For nota-
tional simplicity, the proposed method is presented for scalar
functions f(·), but can be employed for the vector-valued dy-
namics in (1) by applying it to each dimension individually.

A. Gaussian Process Regression
A Gaussian process is an infinite collection of ran-

dom variables, any finite subset of which follows a joint
Gaussian distribution [4]. The GP is usually denoted as
GP(m(·), k(·, ·)), where m : Rd → R is a prior mean
incorporating a priori knowledge such as approximate mod-
els, and k : Rd × Rd → R0,+ is a covariance function
reflecting information such as periodicity. Since we assume
no prior knowledge, the prior mean m(·) is set to 0 in the
sequel. Analogously, we employ the probably most common
choice for the covariance function: the squared exponential
kernel k(x,x′) = σ2

f exp(−∑d
i=1(xi − x′i)2/(2l2i )), where

σf ∈ R+ denotes the signal standard deviation, and li ∈ R+,
i = 1, . . . , d are length scales [4].

Given a prior GP GP(0, k(·, ·)), regression is performed
by conditioning on the training data Dt as introduced in
Assumption 2. The resulting posterior distribution is again
Gaussian with mean and variance given by

µ (x) = kT (x)
(
K + σ2

yI
)−1

y (6)

σ2 (x) = k (x,x)− kT (x)
(
K + σ2

yI
)−1

k (x) , (7)

where the elements ofK∈RN×N and k(x)∈RN are defined
through Ki,j =k(xi,xj) and ki(x) =k(x,xi), respectively,
and we concatenate training targets y=[y1 · · · yN ]T.

B. Locally Growing Random Tree of Gaussian Processes

Since the update complexity of Gaussian process regres-
sion scales quadratically with the number of training sam-

ples, we employ the recently proposed approach of locally
growing random trees of GPs [10], which preserves benefi-
cial properties of exact GP inference such as the existence of
uniform prediction error bounds. LoG-GPs rely on the idea
of iteratively constructing a tree, whose leaf nodes contain lo-
cally active GP models. In detail, the construction starts with
a single GP model, which is updated with incoming stream-
ing data until a prescribed threshold of training samples N̄ is
reached. When the GP model contains N̄ training samples in
its data set D0, the data set is split into 2 subsets Di, i = 1, 2,
by assigning data in D0 to a subset Di via sampling from a
Lipschitz continuous probability function p0 : Rd → [0, 1].
Thereby, a tree with 2 leaf nodes is generated, which contain
all the data, such that individual GP models can be efficiently
computed using (6) and (7). New streaming data obtained af-
ter the splitting can be assigned to the subsets Di by sampling
from p0(·) again until either of the subsets Di reaches the
capacity limit N̄ . Then, a new probability function pi : Rd →
[0, 1] is defined to distribute the data to new subsets, thereby
extending the tree of GPs by a new layer. By repeating
this procedure every time a subset Di reaches N̄ training
samples, a tree of GP models is iteratively constructed with
a computational complexity of Op(log(N)) allowing updates
with rates up to 1kHz [10], which is fast enough to satisfy
the computational constraint (3) in many systems.

For computing predictions with LoG-GPs, we simply
multiply the probabilities pi(x) along a path to a leaf node l
to obtain the weight ωl(x). Then, a generalized product of
experts aggregation scheme [5] can be employed to obtain
the approximate GP prediction

µ̃(x)=
∑
l∈L

ωl(x)σ̃2(x)

σ2
l (x)

µl(x), σ̃−2(x)=
∑
l∈L

ωl(x)

σ2
l (x)

, (8)

where L denotes the set of leaf nodes of the tree of GP
models. By defining the probability functions such that only
a single child node has a positive probability in most of
the input domain Rd, most of the weights ωl(x) become 0.
Since the definition of the aggregated mean µ̃(·) implies
that the local GP predictions µl(x) and σ2

l (x) must only
be computed if ωl(x) > 0, models with ωl(x) = 0 can be
considered locally inactive at x and therefore, aggregated
predictions can be efficiently computed in Op(log2(N))
complexity. Moreover, this construction of the aggregated
prediction µ̃(·) ensures that uniform error bounds are directly
inherited from exact GP regression.

Lemma 1 ([10]): Assume the function f : Rd → R
is a sample from a Gaussian process GP(0, k(·, ·)) with
a Lk-Lipschitz kernel k : Rd × Rd → R. Then, the
aggregated mean function (8) of a LoG-GP trained with
data satisfying Assumption 2 guarantees a probabilistically,
uniformly bounded prediction error on a compact domain
Ω ⊂ Rd, i.e., for δ ∈ (0, 1) and ρ ∈ R+, we have

P (|f(x)− µ̃(x)| ≤ η(x),∀x ∈ Ω) ≥ 1− δ, (9)

where

η(x) =
√
β(δ, ρ)

∑
l∈L

ωl(x)σ̃2(x)

σl(x)
+ γ(ρ) (10)
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Fig. 2. A local model l ∈ L is inactive if its active region Xl does not
intersect with the tube Tt2t1 induced by the tracking error bound ϑ(κt) as
illustrated for the region in the top right. The set of active models Â is found
by over-approximating the tube Tt2t1 with balls Bξ , from which random
samples x(i) are drawn to determine the active models Ax(i) at these states.

β(δ, ρ) =2 log
(
d
d
2 |L| max

x,x′∈Rd
‖x−x′‖d∞

)
−2 log

(
δ2dρd

)
(11)

γ(ρ) =
∑
l∈L

ωlσ̃
2(x)

σ2
l (x)

(
Lµlρ+

√
β(ρ)Lσlτ

)
+ Lfρ, (12)

and Lf , Lµl , Lσl are Lipschitz constants of f(·), µl(·), σl(·).
This result relies on a well-calibrated prior GP, which is a

rather unrestrictive assumption in practice since the sample
spaces of GPs are very expressive for many frequently used
kernels, e.g., the space of continuous functions for GPs
with a squared exponential kernel [9]. Since the posterior
variances σ2

l (x) are guaranteed to converge to 0 for dense
data [16], this result ensures that arbitrarily accurate models
can be obtained. Therefore, LoG-GPs are accompanied by
strong theoretical guarantees for their prediction accuracy as
required in safety-critical applications.

C. Sampling-Based Identification of Active Models
Since Lemma 1 ensures bounded prediction errors when

using (8) to learn a model f̂(·) of the unknown dynam-
ics f(·), we can determine the system states x which can
be potentially reached within a fixed time interval using
the tracking error bound ϑ(κt) introduced in Assumption 1.
Therefore, we can obtain the models, which need to be avail-
able in the local memory, by finding all individual GP models
which are active for states x in the potentially reachable set.

In detail, this set A of potentially active models during
a time window W = [t1, t2], t1, t2 ∈ R, t2 > t1, is
defined through the intersections between active regions
Xl = {x : ωl(x) > 0} of local models l ∈ L and the
tube Tt2t1 = {x ∈ Rd : ∃t ∈W,x ∈ Bϑ(κt)} based on balls
Bϑ(κt) = {x∈Rd : ‖x−xref(t)‖≤ϑ(κt)} with radius given
by Assumption 1, i.e., A={l∈L : Xl∩Tt2t1 6=∅} as illustrated
in Fig. 2. Since the computation of the intersections Xl∩Tt2t1
requires an explicit representation of the active regions
Xl of local models l ∈ L, which is not provided by
LoG-GPs, the definition of A cannot be directly used in
practice. We follow a different idea exploiting the implicit
representation of the active regions Xl via the weights ωl(·),
which allows to directly compute the set of active models
Ax = {l∈L : ωl(x)>0} for a given state x. Therefore, we
can alternatively represent the set of potentially active models
during the time window W via A =

⋃
t∈W

⋃
x∈Bϑ(κt)

Ax.
By approximating the unions over uncountable sets via dis-
cretization and random sampling as outlined in Algorithm 1,
we can over-approximate the set A via Â and obtain

Algorithm 1: Determining Active Models
1 Function ActiveModels(Ns, t1, t2, ∆t):
2 Â← ∅
3 compute ξ using (14)
4 for j = 0 : d t2−t1

∆t
e do

5 for i = 1 : Ns do
6 Determine active models Ax(i) for input x(i)∼U(Bξ)
7 Â← Â ∪ Ax(i)

8 return Â

µ̂(x)=
∑
l∈Â

ωl(x)σ̂2(x)

σ2
l (x)

µl(x), σ̂−2(x)=
∑
l∈Â

ωl(x)

σ2
l (x)

. (13)

If sufficiently many samples are used, this approximation
yields identical predictions as shown in the following result.

Theorem 1: Consider a dynamical system (1) and assume
Assumptions 1 and 2 hold. Choose ‖e(t1)‖ ≤ ϑ(κt1) and

ξ = 2ζ + Lxref

∆t

2
+ ϑ(κt1+j∆t) (14)

for constants ζ,∆t ∈ R+. Then, with probability of at least

1−‖L‖
⌈
t2−t1

∆t

⌉(
1−min{rdxmin, ζ

dx}
ξdx

)Ns
, (15)

where rmin denotes the radius of the largest ball contained
in the smallest active region of a leaf node l ∈ L, the
predictions µ̂(x(t)) and µ̃(x(t)) are identical for all t ∈W.

Proof: See Appendix A.
Since this theorem ensures that (8) and (13) are identical

with probability greater than (15), it ensures that using µ̂(·)
as model in a control law πf̂ (·) yields no reduction in control
performance with high probability. Therefore, it allows us to
determine irrelevant data for a time interval W, which we
exploit in the following section for transmitting data to the
cloud, thereby reducing the local memory occupation.

D. Transmission Scheme

Due to the non-negligible time required for a data transfer,
the transmission to and from the cloud must be carefully
scheduled in order to ensure that the necessary data is
always available locally. For simplicity, we consider that
data is transmitted at regularly spaced time instances j∆T ,
j = N, such that each time interval Wj = [(j−1)∆T, j∆T ]
has a length of ∆T ∈ R+. During each time interval Wj , we
propose the transmission scheme illustrated in Fig. 3, where
the idea is that the memory is divided into two parts. During
each interval Wj , half of the memory is used for updating
the local data set with data from the cloud, while the other
half contains the data set Dj necessary for computing the
mean predictions µ̂(·) during time interval Wj according
to the potentially active models Âj . For updating the local
memory, the data set Dj−1 from the previous interval
Wj−1, which contains newly measured training samples as
well as data from the cloud, is sent to the cloud. Once this
transmission has been completed, the cloud contains the
complete data set D(j−1)∆T obtained until time (j − 1)∆T ,
such that Algorithm 1 can be employed to determine the
possibly active models Âj+1 for the next time interval Wj+1



j∆T (j+1)∆T (j+2)∆T

local

network

cloud

Dj
Dj+1

Dj−1
Dj+1 Dj
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D(j−1)∆T Dj∆T

Fig. 3. During each interval Wj = [j∆T, (j + 1)∆T ], the previously
necessary data Dj−1 is sent to the cloud and the data Dj+1 for the next
interval Wj+1 is fetched. While these data sets occupy memory during
the interval Wj , parts of Dj−1 and Dj+1 are in transmission and not
available on the local system. Therefore, these data sets cannot be used
for prediction, which is highlighted through the dotted pattern. The data in
the cloud is updated with incoming transmissions, such that it contains the
complete data set D(j−1)∆T up to the end of previous interval j − 1.

in the cloud. The corresponding data set Dj+1 is sent to the
local memory, such that it is available for t ≥ (j + 1)∆T .

It is straightforward to see that this transmission scheme
can ensure the satisfaction of the network constraint (5)
for a fixed data set Dj , if Taccess = ∆T/2 is sufficiently
large. However, due to the online generation of data during
system operation, it generally cannot be ensured that the data
sets Dj have a bounded size, such that the fixed time ∆T
might eventually not be sufficient to finish the transmission
within the time interval Wj . Therefore, the real-time learning
with data generated online during system operation has
to be stopped eventually at some interval Wι, ι ∈ N in
order to upper bound the size of all sets Dj . This leads
to the data transfer scheme outlined in Algorithm 2 for the
cloud and in Algorithm 3 for the local system, for which
it is straightforward to prove the satisfaction of the network
constraint (5) as shown in the following result.

Lemma 2: Choose ∆T ≥ M̄
B + 2Td and ι ∈ N such that

the memory constraint (4) is satisfied. Then, Algorithms 2
and 3 ensure the satisfaction of the network constraint (5).

Proof: See Appendix B.
In order to apply this lemma in a real-world system, it

remains to develop an approach for enforcing the memory
constraint (4) by choosing a suitable value of ι. In practice,
this value can be selected online using heuristics such that
learning can be stopped, e.g., when the number of active
models exceeds a threshold. Moreover, when the reference
xref is periodic, we can determine ι based on the data sets
from previous periods, as shown in the following theorem.

Theorem 2: Assume the reference trajectory is periodic
with period Tp = q∆T for ∆T ≥ M̄

B + 2Td and q ∈ N. Let

ι=q+ min
|Dj |> M̄−2m̄

2

j, m̄=max
j∈N
|D(j+q)|−|D̂j |≤

⌈
Tp
τ

⌉
. (16)

Then, Algorithms 2 and 3 ensure the satisfaction of the
memory constraint (4) and network constraint (5).

Proof: See Appendix C.
This theorem allows to determine online when to stop

adding new training samples to the LoG-GP by checking if
|Dj | > M̄

2 −m̄, which can be performed with low complexity
and can be directly implemented. Moreover, it provides
valuable insight into the interrelations between achievable
tracking accuracy, memory constraint M̄ , time delay Td and
limited bandwidth B. In order to see this, note that the data
set size |Dj | usually grows almost linearly with the interval

Algorithm 2: Data Transfer Scheme: Cloud
1 Function UpdateLoop(∆T , τ , ∆t):
2 for n = 1, . . . ,∞ do
3 if nτ ≥ j∆T then
4 j ← j + 1
5 Dj−1 ←Receive ()
6 Âj+1←ActiveModels(Ns, j∆T, (j+1)∆T,∆t)
7 Transmit (Dj+1)

Algorithm 3: Data Transfer Scheme: Local System
1 Function UpdateLoop(∆T , ι, τ):
2 for n = 1, . . . ,∞ do
3 if nτ ≤ ι∆T then
4 Dloc

t ← Dloc
t ∪ (x(n), y(n))

5 if nτ ≥ j∆T then
6 j ← j + 1
7 Transmit (Dj−1)
8 Delete (Dj−1)
9 Dj+1 ←Receive ()

length ∆T . Since an increase in bandwidth B admits smaller
∆T , learning can continue up to higher values of ι in general.
Therefore, a higher data density can be achieved, which in
turn yields a lower GP variance [16] guaranteeing a smaller
tracking error. In contrast, an increase in local memory
M̄ admits larger data set sizes |Dj |, but in turn requires
longer intervals ∆T , such that the achievable data density
and consequently the tracking accuracy are barely affected.
Finally, a reduction of the delay Td allows smaller values of
∆T and thereby also leads to an improvement in achievable
control performance. Therefore, available bandwidth B for
data transmission and time delay Td are crucial for the
achievable tracking accuracy when using the networked
online learning control law, while finite local memory M̄
only has secondary relevance to enable implementation of the
transmission scheme using Algorithm 2 and 3. This insight
can be beneficially used for the design of autonomous sys-
tems in practice, since it allows a reduction of local memory
when sufficient bandwidth for data transmission is available.

IV. EFFICIENT TRACKING ERROR BOUNDS

In order to demonstrate the applicability of the proposed
networked online learning approach, we exemplarily derive a
tracking error bound ϑ(κt) for a feedback linearizing control
law, which can be applied to a wide range of practically rel-
evant systems such as robotic manipulators, unmanned aerial
and autonomous underwater vehicles. For the derivation of
ϑ(κt) we employ Lyapunov stability theory, such that com-
puting ϑ(κt) effectively reduces to determining the regions
of the state space with decreasing Lyapunov function along
system trajectories. Due to the prediction error bound η(·),
this decrease condition can be efficiently decoupled for feed-
back linearizing control laws as illustrated in Fig. 4. Thereby,
we obtain a straightforwardly implementable tracking error
bound, which can be directly used in Algorithms 2 and 3.

In more detail, we consider feedback linearizable systems

ẋ1 = x2, ẋ2 = x3, . . . ẋdx = f(x) + g(x)u, (17)

where a scalar control input u as well as scalar functions
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ė=Ae0...
1

(Lf+Lµ̃)‖e‖

0...
1

η(xref)

unknown
dynamics

Fig. 4. Ultimate boundedness is analyzed using Lyapunov theory with
Lyapunov function V (e) = eTPe. For exact feedback linearization, the
closed-loop dynamics are linear with ė = Ae and ensure a decreasing
Lyapunov function along system trajectories. Due to model errors, which
can be expressed through the model error bound η(xref) at the reference
xref and the error (Lf +Lµ̃)‖e‖ of linearization around the reference,
the uncertainty in the dynamics can be bounded. Thereby, the region with
decreasing Lyapunov function can be efficiently determined.

f : X → R and g : X → R are assumed only for simplicity
of exposition, while all derived results straightforwardly
extend to multi-input systems in the canonical form. Similar
to previous work [11], we assume that f(·) is an unknown
function, while g(·) is known. The knowledge of g(·) is
merely used to streamline the presentation, but all results
can be extended to unknown functions g(·) following the
approach in [15]. In order to ensure global controllability
of (1), the following assumption is needed.

Assumption 3: The function g(·) is positive, i.e., g(x)>0.
This assumption is a standard condition when designing

control laws for systems in the canonical form [14, Definition
13.1], and ensures the non-singularity of g(·). It is naturally
satisfied by many systems such as Euler-Lagrange systems,
where g(·) corresponds to the positive inertia. Therefore, this
assumption is not restrictive in practice.

Additionally, we assume that the unknown function is
well-behaved, which is formalized in the following.

Assumption 4: The function f(·) is Lf -Lipschitz.
This assumption globally ensures a unique solution for

the system (1) [14], such that it can be commonly found in
control. Since it is satisfied by many systems such as Euler-
Lagrange dynamics in practice, it is not restrictive.

In order to allow the accurate tracking of the reference tra-
jectory with system (17), we consider reference trajectories

xref (t) =
[
xref(t) ẋref(t) · · · ddx−1

dtdx−1xref(t)
]T
, (18)

where xref : R→ R is dx times continuously differentiable.
For tracking this trajectory, we employ the control law

u = πFL(x) = g−1(x)
(
− µ̃(x) + ν +

ddx

dtdx
xref(t)

)
, (19)

where the mean µ̃(x) defined in (8) is used as model. The
input ν to the approximately linearized system is given by
the linear feedback law ν = −kc

[
λ1 · · · λdx−1 1

]
e,

where kc ∈ R+ is the control gain and λ1, . . . , λdx−1 ∈ R
are coefficients such that for s ∈ C, the polynomial
sdx−1 + λdx−1s

dx−2 + . . . + λ1 is Hurwitz. Due to these
choices, the error dynamics can be compactly expressed by

ė=

[
0 I

−λ1kc −
[
λ2kc · · · kc

]]︸ ︷︷ ︸
A

e+(f(x)−µ̃(x))

0
...
1

. (20)

The matrix A defines a stable dynamical system because
of the Hurwitz coefficients λi, which is independent of the

online learning. Therefore, the second summand in (20)
can be considered a disturbance depending on the online
learning, which allows us to straightforwardly analyze the
ultimate boundedness of this system using Lyapunov theory.

Theorem 3: Consider a dynamical system (1), where f(·)
is a sample from a Gaussian process with Lk-Lipschitz kernel
k(·, ·). Moreover, assume Assumptions 2, 3 and 4 hold, and
choose a positive definite, symmetric matrix Q ∈ Rd×d and
a control gain kc such that

‖pd(kc)‖ <
λmin(Q)

2(Lf + Lµ̃)
, (21)

where P = [p1(kc) · · · pd(kc)] is the solution to the
Lyapunov equation ATP +PA = −Q and Lµ̃ denotes
the Lipschitz constant of the LoG-GP mean µ̃(·). Then,
the online learning feedback linearizing control law (19)
guarantees an ultimately bounded tracking error

ϑ(κt)=
2 ‖pd(kc)‖

√
λmax(P ) maxt′∈[0,t] η (xref(t

′))

(λmin(Q)−2 ‖pd(kc)‖ (Lf+Lµ̃))
√
λmin(P )

. (22)

Proof: See Appendix D.
This theorem has the advantage over previously derived re-

sults in similar settings [9], [11] that the ultimate bound ϑ(κt)
in Theorem 3 depends only on the standard deviation along
the reference xref . Thereby, the ultimate bound (22) can be
efficiently computed, whereas the results in previous works
provide only an implicit representation of the ultimate bound
due to the dependency of the GP error bound on the state x.
This advantage resulting from the linearization around the
reference xref in (26) comes at the cost of the additional
constraint (21) for the control gain kc compared to existing
approaches [9], [11]. Even though this constraint makes the
application of Theorem 3 more restrictive, this weakness is
strongly outweighed by the benefit of the explicit tracking
error bound for determining the active models online.

Remark 1: Due to the definition of A in (20), it can be
straightforwardly checked that it is always possible to ensure
the satisfaction of (21) for a fixed matrix Q by choosing
a sufficiently large gain kc. Therefore, condition (21) ef-
fectively imposes a lower bound for the control gains kc
admitting ultimate tracking error bounds (22).

V. EVALUATION IN EXOSKELETON CONTROL

In order to evaluate the applicability of the proposed
networked online learning approach for resource constrained
systems3, we employ it for the control of an upper-limb
human-exoskeleton assisting a user in tracking a reference
trajectory, which is simulated in Julia [17], a modern pro-
gramming language for accelerating physics simulations.
Since the exoskeleton is intended to be used in a portable
manner, this scenario resembles an example for a wearable
robotic system with memory and computational constraints.
These constraints are particularly challenging for the control
of the exoskeleton as human user data is required in practice
to infer models allowing for personalized assistance.

3Open-source code conceptually demonstrating the proposed method is
available at https://gitlab.lrz.de/online-GPs/cloud-GPs.



Fig. 5. Visualization of the upper-limb human-exoskeleton simulation and
trajectory tracking task. The green circles depict discrete points along the
elliptic reference trajectory, which must be followed with the hand.

TABLE I
BANDWIDTH B, TIME DELAY Td , STATE MEASUREMENT STANDARD

DEVIATION σx AND RESULTING TIME WHEN LEARNING IS STOPPED Ts

low medium high large state
bandwidth bandwidth bandwidth delay noise

B [samples/s] 1500 3000 10000 10000 1500
Td [s] 0.1 0.1 0.1 1.0 0.1
σx [rad] — — — — 0.0001
Ts [s] 44.67 60.04 — 30.81 43.13

For the simulation, we assume a rigid kinematic coupling
between the human and exoskeleton arm, which allows the
modelling of both as one kinematic chain consisting of
four DoFs. The exoskeleton model is based on the design
described in [18], whilst the model parameter for the human
are chosen according to anthropometric tables [19]. Here, the
reference is set to 70 kg and 1.75 m. As illustrated in Fig. 5,
the goal is to track an elliptic trajectory with the hand of the
human by employing the learning-based feedback linearizing
control law (19). Each period of the ellipse takes Tp = 6s,
the simulation runs at 1kHz, and we consider a memory
constraint of M̄ = 4000 data pairs for the local memory.
Streaming data for online learning is generated with noise
standard deviation σy = 0.05 at a sampling rate of 100Hz,
i.e., τ = 10ms. Each local GP model can contain a maximum
of N̄ = 100 training points and the hyperparameters are set
to σf = 1, li = 1/li = 3 for inputs corresponding to joint
angles/angular velocities. Algorithm 1 is run with temporal
discretization ∆t = 10ms and Ns = 1000 random samples.
Finally, the control gains are set to kc = 400 and λ = 1.

In order to investigate the dependency of the tracking
accuracy and memory occupation on the network bandwidth
B and time delay Td, we compare networked LoG-GP
controllers under different simulation conditions as outlined
in Table I. In this comparison, we also consider the case
of noisy state measurements to demonstrate the robustness
of the proposed method against sufficiently small noise on
training inputs xn. Moreover, we employ a LoG-GP without
memory constraints, i.e., M̄ = ∞, as baseline to illustrate
the absence of a performance loss of the networked LoG-GP
when a sufficiently high bandwidth is available. The average
update time for the LoG-GP is 0.3ms<τ in all simulations,
and the resulting curves for the evolution of the local memory
occupation are depicted in Fig. 6. Since the LoG-GP has
low accuracy during the first period, the tracking error bound
ϑ(κ) is large during the first 6s, such that all data is required
on the local system. After this period, the different curves
exhibit the behavior discussed in Section III-D: The lower
the bandwidth B, the faster the local memory consumption
grows. Moreover, an increase in time delay Td causes a
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Fig. 6. The higher the bandwidth B, the longer the LoG-GP can learn
before the number of training pairs in the local memory reaches the
limitations. Large time delay Td causes a significantly earlier stopping of
learning, as indicated by the arrows.
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Fig. 7. When the memory limitation is reached and the learning process
stops, the tracking error stagnates. Since higher bandwidthsB allow learning
for a longer time, larger values of B yield lower tracking errors eventually.
While learning is not stopped, networked LoG-GPs ensure the same tracking
accuracy as LoG-GPs without any constraints. Overall, online learning
significantly improves the tracking accuracy over the baseline case without
model learning, which is not depicted since it permanently exceeds 2·10−2.

significantly faster growing memory occupation. Due to the
limited local memory, this leads to an early stop in learning
at the times depicted in Table I, after which the memory
occupation stagnates. Note that the state measurement noise
has effectively no impact on the local memory consumption.

The stagnation has an immediate effect on the evolution of
the tracking error, as illustrated in Fig. 7. While the feedback
linearizing control law (19) with networked LoG-GP model
achieves the same improvement in tracking accuracy as
with the unconstrained LoG-GP when model updates are
performed, the tracking performance ceases to improve and
effectively remains constant after the learning has stopped.
The same behavior can be observed with noisy state measure-
ments, but the tracking error exhibits an offset since the noise
also affects the linear feedback control ν. Due to the contin-
ual learning of the networked LoG-GP with a high bandwidth
connection, the corresponding evolution of the tracking error
is visually identical to the curve resulting from usage of the
LoG-GP without memory constraint. This clearly demon-
strates that the proposed approach allows a transfer of data
to the cloud without any loss in performance when sufficient
transmission bandwidth is available. Moreover, even when
online learning has to be stopped early, it still yields a
significant improvement in tracking accuracy compared to
the baseline case without model learning, where a stationary
error of ≈ 2 · 10−2 rad has been observed. This strongly
underlines the practical advantages of online model inference
for model-based control despite resource constraints.

VI. CONCLUSION
This paper presents a novel networked online learning

approach for control of safety-critical systems with local re-
source constraints based on Gaussian process regression. By
employing a tree-structured local GP approximation, relevant



local models for control can be efficiently determined in a
sampling-based fashion. This is exploited in the design of an
effective data transmission scheme, which ensures the timely
availability of data in the local computing unit. The effec-
tiveness of the proposed networked online learning approach
is demonstrated in a simulation of a robotic exoskeleton.

APPENDIX

A. Proof of Theorem 1

Proof: Due to Assumption 1, at each time t, the
tracking error e is bounded by ϑ(κt). It is straightforward
to see that xref(·) is Lipschitz continuous, such that

‖e(t)‖ ≤ ξ−2ζ ∀t∈
[
t1+

2j−1

2
∆t, t1+

2j+1

2
∆t
]

(23)

and consequently Tt2t1 ⊂ ⋃d t2−t1∆t e
j=1 Bξ−2ζ . Therefore,

it remains to show that the set of active models for
time t1 + j∆t defined as At1+j∆t =

⋃
x∈Bξ−2ζ

Ax is
overapproximated by Algorithm 1. For this purpose, choose
any model l ∈ At+j∆t. Then, the intersection between
the active region Xl of this model and the ball Bξ has a
volume of at least πdx/2(min{rmin, ζ})dx/Γ(dx2 +1), where
Γ : R+ → R+ denotes Euler’s gamma function. Therefore,
the probability of a sample x(i) ∼ U(Bξ) being in the active
region of model l can be bounded by

P (ωl(x
(i)) > 0|l ∈ At1+j∆t) ≥ min{rdxmin, ζ

dx}/ξdx . (24)

The probability of none of the Ns samples falling into the
active region Xl is consequently upper bounded by (1−
P (ωl(x

(i))>0|l∈At1+j∆t))
Ns , such that (15) follows from

the union bound over all time steps and all models l ∈ L.

B. Proof of Lemma 2

Proof: Satisfaction of the memory constraint (4) implies
that the transmission of Dj , j ∈ N, can be achieved with
time Ttrans≤ M̄

2B+Td. Hence, we have Taccess = ∆T
2 ≥Ttrans,

guaranteeing satisfaction of the network constraint (5).

C. Proof of Theorem 2

Proof: Since the cardinality of Dj+q can be bounded by
|Dj+q| ≤ |Dj |+ m̄, memory constraints are satisfied as long
as |Dj | ≤ M̄/2− m̄. Therefore, ι as defined in (16) ensures
that the memory constraint (4) is satisfied, which implies the
satisfaction of the network constraint (5) due to Lemma 2.

D. Proof of Theorem 3

Proof: In order to prove the ultimate bound, we
employ the Lyapunov function V (e) = eTPe, where P
is a positive definite matrix as λ is a Hurwitz vector. The
derivative of the Lyapunov function is guaranteed to satisfy

V̇ (e) = −eTQe+ 2eTpd(kc) (f(x)− µ̃(x)) . (25)

Due to Lipschitz continuity, we obtain

V̇ (e)≤−λmin(Q)‖e‖2+2‖e‖‖pd(kc)‖(Lf+Lµ̃)‖x−xref‖
+2‖e‖ ‖pd(kc)‖ |(f(xref)−µ̃ (xref))| , (26)

where the Lipschitz constant Lµ̃ in (21) follows directly
from Lipschitz continuity of the individual mean functions

resulting from the Lk-Lipschitz kernel k(·, ·) [9]. Due to
Lemma 1, the error between the unknown function f(·) and
the LoG-GP mean µ̃(·) can be bounded, such that we obtain

V̇ (e) ≤ − (λmin(Q)− 2 ‖pd(kc)‖ (Lf + Lµ̃)) ‖e‖2
+ 2‖e‖ ‖pd(kc)‖ η (xref) . (27)

Due to (21), the Lyapunov derivative is negative for

‖e‖ > 2 ‖pd(kc)‖ η (xref)

λmin(Q)− 2 ‖pd(kc)‖ (Lf + Lµ̃)
. (28)

Since the ultimately bounded set is given by the small-
est sub-level set of V (·) which contains the ball defined
through (28), we can directly determine it as {e : V (e) ≤
ϑ(κt)

2λmin(P )} due to the quadratic structure of V (·).
Over-approximating this set by a ball concludes the proof.
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