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Abstract— For single agent systems, probabilistic machine
learning techniques such as Gaussian process regression have
been shown to be suitable methods for inferring models of un-
known nonlinearities, which can be employed to improve the per-
formance of control laws. While this approach can be extended
to the cooperative control of multi-agent systems, it leads to a
decentralized learning of the unknown nonlinearity, i.e., each agent
independently infers a model. However, a decentralized learning
approach can potentially lead to poor control performance, since
the models of individual agents are often accurate in merely a small
region of the state space. In order to overcome this issue, we pro-
pose a novel method for the distributed aggregation of Gaussian
process models, and extend probabilistic error bounds for Gaus-
sian process regression to the proposed approach. Based on this
distributed learning method, we develop a cooperative tracking
control law for leader-follower consensus of multi-agent systems
with partially unknown, higher-order, control-affine dynamics, and
analyze its stability using Lyapunov theory. The effectiveness of
the proposed methods is demonstrated in numerical evaluations.

Index Terms— Cooperative control, machine learning, dis-
tributed learning, feedback linearization, Gaussian processes.

I. INTRODUCTION

COOPERATIVE control of multi-agent systems has attracted
much attention in the past two decades, see e.g., [1]–[3]. This

is due to its broad applications such as formation control [4] and
autonomous underwater vehicles [5]. However, common approaches
for the control of multi-agent systems typically rely on accurate
models of the system dynamics, which are often not available in
practice, in particular when the agents operate in uncertain and
dynamically changing environments.

To remove the dependency on accurate system models, neural
network techniques are proposed in, e.g. [6], [7]. In [6], distributed
adaptive control laws based on neural networks are proposed for
unknown multi-agent systems with scalar nonlinear agent dynamics.
The results are then generalized to unknown multi-agent systems
with higher-order nonlinear agent dynamics [7]. However, these
approaches often require huge amounts of data for learning, and the
derived control error bounds depend crucially on accuracy guarantees
for the neural networks, which are challenging to obtain in general.
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Probabilistic machine learning methods overcome these issues by
representing epistemic uncertainty [8], thereby achieving high data
efficiency and providing estimates for model errors. In recent years,
these methods have been successfully applied to a variety of control
problems, see, e.g., [9]–[11]. In particular, Gaussian process (GP) re-
gression [12] has become a popular learning method for the control of
single agent systems due to its stochastic foundations, which allow the
derivation of probabilistic regression error bounds [13]. This has been
exploited for the control of Euler-Lagrange systems [11], feedback
linearization of affine systems [14], and model predictive control [9].

In recent years, several of these approaches have been extended
to the control of multi-agent systems. For example, a distributed
model predictive control method, which allows to cooperatively solve
optimal control problems with Gaussian process models as dynamics,
is developed in [15]. In [16], GP models are employed to design
control laws for formation control, while a similar approach is
used for deriving a distributed consensus control law in [17]. Even
though these approaches follow cooperative control principles, they
employ merely local data of each agent [15], [16] or from direct
neighbors [17], but do not disseminate the information contained in
the data through the communication network. Therefore, the control
performance of an agent crucially depends on its local data set.

Analogously to the development of cooperative control methods,
distributed learning techniques based on Gaussian process regres-
sion have also received increasing attraction. Addressing the issues
faced when GPs are scaled to large data sets, early approaches
only distribute the inference in local models to multiple agents
but employ a central coordinator for their aggregation [18]. This
limitation is overcome by computing various summary statistics
for the individual GPs, which can be combined using consensus
protocols [19]. Through an online optimization of hyperparameters
and summary statistics, this can even be extended for implementing
online learning [20]. While these distributed GP approaches have
shown strong empirical performances, probabilistic regression error
bounds similar to those for exact Gaussian process regression have
not been derived. Due to this lack of theoretical guarantees, there
exists, to the best of our knowledge, no approach safely combining
cooperative control with distributed Gaussian process models.

A. Contribution and Structure

In this article, we address this gap in research by proposing
distributed learning-based feedback linearizing tracking control laws
for leader-follower consensus of multi-agent systems with partially
unknown, higher-order, control-affine dynamics. For simplicity of
exposition, we focus here on systems with a single control input, but
the extension to systems with multiple control inputs is straightfor-
ward. To this end, we first present a novel, fully distributed Gaussian
process approach for predicting unknown dynamics, which straight-
forwardly extends approaches requiring centralized coordinators [18]
to arbitrary computation graphs by employing dynamic average
consensus algorithms [21]. Based on GP error bounds [13], we derive
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explicit, distributed regression error bounds for the proposed method,
which are, to the best of our knowledge, the first of their kind for
fully distributed GP predictions. We then make use of the proposed
distributed learning approach to predict partially unknown dynamics
shared by all agents. Subsequently, we present a novel cooperative
tracking control law, which incorporates the proposed distributed
learning approach, and show that the designed control law achieves
tracking consensus with guaranteed control error bounds.

The remainder of this paper is structured as follows: After the prob-
lem statement is provided in Section II, a novel method for computing
distributed GP predictions is introduced in Section III. Section IV
presents the proposed cooperative tracking control law employing dis-
tributed predictions and provides the stability analysis. In Section V,
numerical simulations are given to demonstrate the effectiveness of
the proposed approaches, before Section VI concludes this paper.

B. Notation and Graph Theory
Vectors and matrices are denoted by bold lower and upper case

symbols, respectively, real positive numbers without and with zero
by R+ and R0,+, respectively, and positive integer numbers by N.
The m×m identity matrix is denoted by Im, and the m× 1 vector
with all one components by 1m. If not stated otherwise, | · | denotes
the absolute value, ‖ · ‖ the Euclidean norm and ‖ · ‖F the Frobenius
norm. Minimum/maximum singular values of a matrix are denoted
by σ(·)/σ̄(·). The i-th element of a vector a is denoted by ai,
while aij denotes the element in the i-th row and j-th column of
matrix A. Matrix A � 0, if A is a positive definite matrix.

Throughout this article, the topology of a network is described by
an undirected graph G = (V, E), where V = {1, . . . , N} denotes
the set of agents, which correspond to the vertices of the graph,
and E ⊆ V × V is the set of edges. An edge

(
n, n′

)
∈ E represents

that agent n′ can receive information from agent n, and vice versa.
The edges of a weighted graph can be compactly represented through
the weighted adjacency matrix A ∈ RN×N , with elements ann′ > 0
if (n′, n) ∈ E . The degree matrix of the graph G is a diagonal
matrix with elements Dnn =

∑N
i=1 ani. The Laplacian matrix of

the graph G is defined as L = D − A. Throughout the paper we
assume a fixed topology, i.e., A is constant, and the self-connectivity
element ann = 0. For a connected graph, the eigenvalues of L are
denoted by λ̃1, . . . , λ̃N , where λ̃1 = 0 < λ̃2 ≤ · · · ≤ λ̃N .

II. PROBLEM STATEMENT

We consider a nonlinear multi-agent system with N possibly
heterogeneous follower agents, for simplicity referred to as agents
in the following, whose dynamics can be described by single-input
systems in the controllable canonical form

ẋn,1 = xn,2, · · · ẋn,d = fn(xn) + gn(xn)un + h(xn), (1)

for n = 1, . . . , N , where xn = [xn,1 xn,2 . . . xn,d]T ∈ Rd denotes
the state of agent n, xn(0) = x0

n is the initial state, un ∈ R is the
control input for agent n, fn : Rd → R and gn : Rd → R are
known functions that describe the individual dynamics of agent n,
and h : Rd → R represents an unknown nonlinearity shared by
all agents such as, e.g., hydrodynamic forces due to ocean currents
affecting the dynamics of a fleet of underwater vehicles [22]. In
order to ensure global controllability of each agent, we require the
following assumption on the functions gn(·).

Assumption 1: All functions gn(·) are non-singular for
all xn∈Rd.
The non-singularity of gn(·) is a standard prerequisite for the
design of feedback linearizing control laws [23, Defintion 13.1] and
ensures that each agent’s dynamics exhibits a relative degree d for

all xn. Thereby, global controllability is ensured and the existence of
internal dynamics is excluded. Although this assumption restricts the
considered system class, the focus of this work is on the distributed
learning for cooperative tracking control. Therefore, we leave the
extension to larger system classes for future research.

The goal of the agents is to follow a virtual leader with state xl ∈
Rd, which satisfies the following properties.

Assumption 2: The leader state xl describes a reference trajectory
for the agents, which has the form

xl,1 = xr(t), xl,2 = ẋl,1(t), · · · xl,d = ẋl,d−1(t), (2)

where xr : R+ → R is an at least d − 1 times continuously
differentiable function, such that xl(t) ∈ Ω for all t ≥ 0 and some
compact set Ω ⊂ Rd, and ‖ẋl,d‖ ≤ ∆̂ for some constant ∆̂ ∈ R+.

Since the reference trajectory is a design choice, the assumption on
differentiability is not restrictive in practice. Moreover, practical prob-
lems usually involve tasks in compact state spaces, such that the as-
sumption on a bounded reference is typically not an issue. Therefore,
this assumption can frequently be found in literature, e.g., [11], [14],
in order to ensure that the agents are capable of following the leader.

As multi-agent systems may comprise a large number of agents
in real-world applications, we consider a restricted communication
between agents described by the graph G with adjacency matrix A ∈
RN×N . Moreover, we assume that only a few agents can commu-
nicate with the leader as expressed by the diagonal matrix B =
diag(b1, . . . , bN ) ∈ RN×N , whose diagonal elements satisfy bn =
1 if agent n has access to the leader state, and bn = 0 otherwise. In
order to allow a cooperative tracking control design, we require the
following common assumptions on the communication topology.

Assumption 3: The communication graph G among the agents is
undirected and connected. Moreover, at least one agent is connected
to the leader, i.e., there exists n = 1, . . . , N such that bn = 1.

Assumption 4: The weighted adjacency matrix A ∈ RN×N of
the graph G is weight balanced, i.e., 1TA = A1 = 1.

Assumption 3 guarantees that information about the leader state
is directly transmitted to some agents, and propagates through the
network to all agents since they have at least indirect access through
paths starting at the leader. This assumption is a crucial prerequisite
to track the leader with all agents [7]. Finally, Assumption 4 ensures
that information of each agent is equally treated in the network [1].

In order to be able to infer a model of the unmodeled nonlinear-
ity h(·), we assume the availability of data as stated in the following.

Assumption 5: Each agent n has a training data set Dn =

{(x(m)
n , y

(m)
n ),m= 1, . . . ,Mn} with Mn ∈N data pairs, such that

the noise ςn of observations yn=h(xn)+ςn in each individual data
set Dn follows an i.i.d. Gaussian distribution N (0, σ2

o).
This assumption reflects the fact that agents are often able to collect
data on their own, without sharing data amongst them. It also allows
splitting a large data set into N subsets based on the states xn, but
not if the samples are assigned using the observations yn. While
Assumption 5 requires exact state measurements xn, which is a
necessary requirement for the feedback linearizing control law (3), it
essentially allows noisy observations of the highest derivative ẋn,d
since fn(·) and gn(·) are known, which is a common assumption
when dealing with unknown dynamics, see, e.g., [11], [14].

Based on these assumptions, this article considers the problem of
designing a distributed, feedback linearizing controller of the form

un =
1

gn(xn)
(−fn(xn)−ĥn(xn)+ν(εn)), n=1, . . . , N, (3)

where ĥn : Rd → R is a model of the unknown nonlinearity h(xn)
obtained from data which will be specified later, and ν : Rd → R is
a linear control law depending on the local consensus error
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εn = −
N∑
i=1

an,i(xn − xi)− bn(xn − xl). (4)

Remark 1: We consider a common control law ν(·) in all agents
merely for notational simplicity. An extension to heterogeneous linear
control laws νn(·), n = 1, . . . , N , is straightforward.

The goal of the distributed, feedback linearizing controllers is to
track the state of the leader xl with the agent states xn. Due to the
effects of the unknown nonlinearity h(·), exact tracking cannot be
achieved in general. Therefore, we want to guarantee a small tracking
error, which we formalize using the following notion of stability.

Definition 1: The tracking error en(t) = xn(t) − xl(t) of
agents n = 1, . . . , N is ultimately bounded with time-varying
ultimate bound c1 : R0,+ → R+ if for every c2 ∈ R+ there exists
a T = T (c1, c2) ∈ R+ such that for all n = 1, . . . , N it holds that

‖en(0))‖ ≤ c2 ⇒ ‖en(t)‖ ≤ c1(t),∀t ≥ T. (5)
While it would be straightforward to employ a model ĥn(·) based

merely on the local data set Dn in the cooperative controller (3) and
show this form of stability [16], such an approach crucially relies on
training data being evenly-distributed among the agents. In practice,
this requirement can possibly lead to a poor tracking performance as
each agent typically has only data from a small portion of the state
space, which we demonstrate in Section V. In order to overcome this
issue, this article considers the problem of designing a cooperative
control law of the form (3) with distributedly computed models
ĥn(·), such that the tracking accuracy is improved and an ultimately
bounded tracking error is guaranteed. For achieving this goal, we first
derive a method for the distributed prediction of h(·) with bounded
model errors. Based on the developed prediction scheme, we address
the design of the cooperative control law and its stability guarantees.

III. DISTRIBUTED GAUSSIAN PROCESS REGRESSION
FOR DYNAMICAL SYSTEMS

In order to derive a method for the distributed prediction of an
unmodeled nonlinearity, we employ Gaussian process regression [12]
for learning individual models in each agent and aggregate the
predictions in a distributed fashion using dynamic average consensus
methods. For this purpose, we first introduce Gaussian process
regression in Section III-A before deriving the dynamic average
consensus aggregation scheme for predictions, which we prove to
guarantee bounded regression errors, is presented in Section III-B.

A. Gaussian Process Regression

A Gaussian process defines a distribution over functions, expressed
as h (x) ∼ GP

(
m (x) , k

(
x,x′

))
, where m : Rd → R is the prior

mean function and k : Rd × Rd → R0,+ denotes the covariance
function, also called kernel. The prior mean function is used to em-
ploy prior knowledge such as approximate models into the regression,
while the kernel is used to encode abstract prior information such as
periodicity and smoothness of the unknown function. A commonly
used covariance function is the squared exponential kernel defined as

k(x,x′) = σ2
f exp

(
d∑
i=1

(xi − x′i)2

2l2i

)
, (6)

where σ2
f and l2i are so called hyperparameters, which are typically

determined using log-likelihood maximization [12].
Given noisy observations y(m), m = 1, . . . ,M satisfying Assump-

tion 5, we can compute the posterior Gaussian process by condition-
ing on the training data D. This posterior distribution g(x∗)|D,x∗
at a test point x∗ is again Gaussian with mean and variance

µ
(
x∗
)

= k
(
x∗
)T (

K + σ2
oIM

)−1
y (7)

σ2(x∗) = k
(
x∗,x∗

)
−k

(
x∗
)T (

K+σ2
oIM

)−1
k
(
x∗
)
, (8)

where the elements of k (x∗) ∈ RM and K ∈ RM×M are defined
through km(x∗) = k(x∗,x(m)) and Kmm′ = k(x(m),x(m′)),
respectively, and y = [y(1) . . . y(M)]T .

B. Consensus-Based Distributed Aggregation of Predictions

Our approach for the distributed computation of predictions is
inspired by state-of-the-art aggregation approaches for Gaussian
processes. These inference approximations have the goal of reducing
the computational complexity by splitting the data into several
subsets Dn, n = 1, . . . , N and training individual Gaussian process
models with mean and variance defined via (7) and (8), respectively,
on the subsets. Then, a central coordinator is employed to collect the
individual predictions and aggregate them using schemes of the form

µ̃(x) = φ

(
N∑
n=1

wnψ(µn(x), σ2
n(x))

)
, (9)

where φ : Rq → R, ψ : R × R → Rq can be arbitrary maps
and wn ∈ R+ are weights for the individual predictions. Due to the
generality of the aggregation structure (9), it comprises many popular
methods such as, e.g., product of experts (PoE) [18]. This aggregation
scheme is realized by defining wn = 1 for all n = 1, . . . , N and

ψpoe
(
µn(x), σ2

n(x)
)

=

[
µn(x)σ−2

n (x)

σ−2
n (x)

]
, φpoe (ψ)=

ψ1

ψ2
. (10)

In order to overcome the weaknesses of such centralized schemes,
we employ consensus methods to compute the aggregated prediction
in a distributed fashion. This is possible since the argument of φ(·) in
(9) can be expressed as the dynamic average p̄(t) = 1

N

∑N
n=1 pn(t)

of the local reference signals

pn(t) = wnNψ(µn(x(t)), σ2
n(x(t))) (11)

when time-varying inputs x(t) are considered. The dynamic aver-
age p̄(t) can straightforwardly be determined in a distributed fashion
using consensus algorithms such as the first-order method

ξ̇n = −κp
N∑
i=1

ani(ξn − ξi) + ṗn (12a)

ξn(0) = wnNψ(µn(x(0)), σ2
n(x(0))), (12b)

where ξn(t) denotes the local consensus state of agent n and κp ∈
R+ is a constant controlling the consensus convergence rate. We leave
the extension to more sophisticated consensus algorithms open for
future research. The local consensus state ξn provides each agent with
a local estimate of the dynamic average consensus value p̄(t). There-
fore, each agent can directly approximate the aggregated mean (9) via

µ̂n(x) = φ (ξn) . (13)

Due to the strong theoretical foundation of consensus algorithms,
the distributed prediction (13) inherits error bounds from GP regres-
sion. For their derivation, we introduce the following assumption.

Assumption 6: Assume the function h (·) with Lipschitz con-
stant Lh is a sample from a Gaussian process GP

(
0, k

(
x,x′

))
with Lipschitz continuous kernel k : Rd × Rd → R0,+, which is
used as prior distribution in all agents.
This assumption defines a prior probability distribution over the
unknown functions, where the sample space depends on the choice of
the kernel. Sample spaces of Gaussian processes are well-studied in
the field of machine learning, and it has been shown that the sample
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space of a GP with squared exponential kernel contains all analytic
functions [24]. The hyperparameters of a kernel typically specify the
shape of the corresponding probability distribution, e.g., large length
scales li in (6) put a higher probability on slowly varying functions.

In addition to the assumption on the prior distribution, the aggre-
gation method needs to satisfy the following consistency condition.

Assumption 7: There exists wn:Rd→R0,+,
∑N
n=1 wn(x) = 1

for all x∈Rd, such that µ̃(x)=
∑N
n=1 wn(x)µn(x).

Many frequently used aggregation schemes satisfy this assumption.
For example, we obtain for the PoE aggregation wn(x) =

σ−2
n (x)/(

∑N
n=1 σ

−2
n (x)), which implies that Assumption 7 is

satisfied. Therefore, Assumption 7 is not restrictive in practice.
Based on these assumptions, we show a uniformly bounded error

between the prediction µ̂(·) and the unknown function h(·).
Proposition 1: Consider an unknown function h(·) and N training

data sets Dn satisfying Assumptions 5 and 6 on the compact
set Ω ⊂ Rd. Moreover, assume that an aggregation method (9)
is employed, which meets the conditions of Assumption 7 and
is defined using continuous maps φ(·) and ψ(·) with Lipschitz
constants Lφ and Lψ , respectively. Assume the agents can commu-
nicate according to a topology satisfying Assumptions 3 and 4 and
choose p(0) = [pT1 (0) · · · pTN (0)]T . Pick δ ∈ (0, 1), τ ∈ R+ such
that minx∈Ω σ

2
n(x) ≥ γ2

n(τ)/β(τ, δ) ∀n = 1, . . . , N with

β(τ, δ) = 2d log
(
rΩ
√
d
)
− log(2τ)− 2 log(δ) (14)

γn(τ) = (Lh + Lµn)τ +
√
β(τ, δ)Lσ2n

τ , (15)

where rΩ = maxx,x′∈Ω ‖x−x′‖, Lµn and Lσ2n
are the Lipschitz

constants of individual GP mean and variance functions, respectively.
If x(t)∈Ω for all t∈R0,+ and there exists a finite ∆∈R+ such that

sup
t′≥0
‖ẋ(t′)‖ < ∆, (16)

then, it holds with probability of at least 1− δ that

|h(x(t))− µ̂n(x(t))| ≤ η̄(x(t), δ, t,∆), (17)

for all n = 1, . . . , N , t ∈ R0,+, where

η̄(x(t), δ, t,∆) = ηGP(x(t), δ)+ηtr(t)+
Lµ̃∆

λ̃2κp
(18)

ηGP(x, δ) = 2

√
β

(
τ,
δ

N

) N∑
n=1

wn(x)σn(x) (19)

ηtr(t) = Lφe−λ̃2κpt
∥∥∥∥(IN −

1

N
11T )p(0)

∥∥∥∥ (20)

Lµ̃ = LφLψ

√√√√ N∑
n=1

L2
µn + L2

σ2n
. (21)

Proof: In order to prove this theorem, we apply the triangle
inequality to the left hand side of (17), such that we obtain

|h(x(t))−µ̂(x(t))|≤|h(x(t))−µ̃(x(t))|+ |µ̃(x(t))− φ(ξn(t))| .

Due to Assumptions 6, 7, and minx∈Ω σ
2
n(x) ≥ γ2

n(τ)/β(τ, δ), it
follows from [25, Theorem 3.3] that the first summand satisfies

|h(x(t))− µ̃(x(t))| ≤ ηGP(x(t), δ). (22)

By exploiting the Lipschitz continuity of φ(·), we obtain

|µ̃(x(t))−φ(ξn(t))|≤Lφ

∥∥∥∥∥ξn(t)−
N∑
n=1

wnψ
(
µn(x(t)), σ2

n(x(t))
)∥∥∥∥∥.

This bound corresponds to the consensus error, which is well known
to be bounded for connected communication graphs with weight-
balanced weighted adjacency matrix A, see, e.g., [21]. More pre-
cisely, if ‖ṗ(t)‖ = ‖[ṗT1 (t) · · · ṗTN (t)]T ‖ is bounded for all t ≥ 0,
we obtain the consensus error bound∥∥∥∥∥ξn(t)−

N∑
n=1

wnψ
(
µn(x(t)), σ2

n(x(t))
)∥∥∥∥∥ ≤

e−λ̃2κpt
∥∥∥∥(I − 1

N
11T )p(0)

∥∥∥∥+
1

λ̃2κp
sup

0≤t′≤t
‖ṗ(t′)‖, (23)

where λ̃2 is the smallest nonzero eigenvalue of L. This condition
is satisfied due to the definition of pn(t) in (11), the Lipschitz
continuity of ψ(·) guaranteed by assumption, the Lipschitz continuity
of µn(·) and σ2

n(·) following from the Lipschitz continuous ker-
nel k(·, ·) [13], and the assumed boundedness of ẋ(t). Therefore, we
have ‖ṗ(t)‖ ≤ Lµ̃∆/Lφ for Lµ̃ defined in (21), such that (23) yields

|µ̃(x(t))− φ(ξn(t))| ≤ ηtr(t) +
Lµ̃∆

λ̃2κp
, (24)

where ηtr(·) is defined in (20). Finally, the summation of (22) and
(24) concludes the proof.
The factor

√
β(τ, δ/N) in (19) is a common scaling fac-

tor for the posterior standard deviations σn(x), and the condi-
tion minx∈Ω σ

2
n(x) ≥ γ2

n(τ)/β(τ, δ) is necessary to ensure a
sufficiently large scaling such that the prediction error bound holds
jointly for all x ∈ X. While global Lipschitz continuity is a restrictive
assumption violated, e.g., by the PoE aggregation, local Lipschitz
continuity of φ(·) and ψ(·, ·) on their relevant input domains is
sufficient for Proposition 1. This property is usually satisfied by
commonly used aggregation schemes such as PoE, since the posterior
variance σ2

n(·) is guaranteed to be positive and bounded for GPs
trained using finite data sets. Therefore, this assumption is not
restrictive in practice. Similarly, the assumption on the boundedness
of the temporal derivative ẋ(t) is not a severe restriction, since it
merely requires x(t) to evolve continuously over time. When x(t)
is the state of a control system, this assumption crucially depends
on the specific control law. We will show in Section IV-B that the
proposed cooperative tracking control law guarantees (16), and admits
the straightforward computation of the constant ∆.

Based on these unrestrictive assumptions, Proposition 1 decou-
ples the different components of the error bound in an intuitive
way. In addition to the error bound resulting from a centralized
aggregation ηGP(·, ·), it considers the transient behavior of the
consensus algorithm in ηtr(·), and bounds the stationary consensus
error using Lµ̃∆/(λ̃2κp). While the transient error bound ηtr(·) is
almost negligible in practice due to the exponential decrease, the
stationary error bound Lµ̃∆/(λ̃2κp) can become large if ∆ is large.
In order to reduce this component of the bound, the connectivity of
the communication graph G can be increased, such that λ̃2 grows [1].
Analogously, one can increase the consensus gain κp, such that an
arbitrarily small stationary consensus error can be guaranteed in
principle. Due to [21, Theorem 2], it is in fact straightforward to
see that η̄(x(t), δ, t,∆) converges to the centralized prediction error
bound ηGP(x, δ) if x(t) converges to a constant value.

Even though (12) admits a straightforward derivation of error
bounds, it is impractical for an implementation as it requires the
derivatives ṗn and consequently ẋ(t), which can be a strong restric-
tion. This can be overcome via a simple change of variables ξn =
pn − ζn, which directly yields the new consensus system

ζ̇n = κp

N∑
i=1

ani(pn − pi − ζn + ζi), (25)
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with initial state ζn(0) = 0. Based on the new consensus state ζn,
the prediction can be computed using µ̂n(x) = φ (pn − ζn). Since
merely a linear change of variables is employed for adapting the
consensus algorithm, it is straightforward to see that Proposition 1 im-
mediately extends to the consensus scheme (25). Thereby, this scheme
combines practical applicability and strong theoretical guarantees.

IV. COOPERATIVE TRACKING CONTROL USING
DISTRIBUTED GAUSSIAN PROCESS PREDICTIONS

In order to mitigate the effect of unknown dynamics, we employ the
previously introduced distributed prediction approach in a feedback
linearizing controller to compensate unmodeled nonlinearities. This
cooperative control design is presented in Section IV-A. By exploiting
the probabilistic error bounds accompanying the distributed predic-
tions, we derive a tracking error bound for the agents in Section IV-B.

A. Cooperative Tracking Control Design

Before starting with the derivation of the cooperative tracking con-
trol law using distributed GP predictions, we represent the multi-agent
system in a compact form to simplify notation. The dynamics (1) of
all agents can be jointly described by

ẋ1 = x2, · · · ẋd = f(x) +G(x)u+ h(x), (26)

where xj = [x1,j . . . xN,j ]
T , j = 1, . . . , d, x = [xT1 . . . xTN ]T ,

u = [u1 . . . uN ]T , f(x) = [f1(x1) . . . fN (xN )]T , G(x) =
diag (g1(x1), . . . , gN (xN )), and h(x) = [h(x1) . . . h(xN )]T .
Similarly, the leader dynamics (2) can be augmented, which yields

x1
l =xr(t), x2

l = ẋ1
l , · · · xdl = ẋd−1

l (27)

with xr(t) = xr(t)1N , and we define the joint consensus error
in the j-th dimension as εj =

[
ε1,j ε2,j . . . εN,j

]T ∈ RN . Using
this notation, we introduce the filtered state r = [r1 · · · rN ]T

in analogy to standard feedback linearizing control as r =

E
[
λ1 · · · λd−1 1

]T ∈ RN , where E=
[
ε1 · · · εd

]
∈RN×d

and λi, i = 1, . . . , d − 1, are filter coefficients defining a Hurwitz
polynomial. It can easily be checked that the local filtered states rn
can be computed purely based on the local consensus error εn, such
that we can define the linear control law ν(·) in (3) as

ν(εn) = κcrn +

d−1∑
i=1

λiεn,i+1, (28)

where κc ∈ R+ is a constant control gain. In order to completely
specify the feedback linearizing control law (3), it remains to define
the compensation ĥn of the unmodeled nonlinearity h(xn). For this
purpose, we want to employ the distributed GP prediction scheme
proposed in Section III-B yielding the control law

un =
1

gn(xn)
(−fn(xn)− φ(ξ̃n) + ν(εn)) (29a)

˙̃
ξn = −κp

N∑
i=1

ani(ξ̃n − ξ̃i) + ˙̃pn (29b)

p̃n(t) = wnNψ(µn(xn(t)), σ2
n(xn(t))) (29c)

ξ̃n(0) = wnNψ(µn(xn(0)), σ2
n(xn(0))). (29d)

Remark 2: While all agents employ local models µn(·), σ2
n(·) of

the same function h(·) in (29c), each agent computes the prediction
for its own local state xn(t), which is generally not the same for
all agents. However, using different states in the local predictions
is not an issue, since its effect on the error bound (17) can be
straightforwardly bounded as we will show in Lemma 1.

B. Stability Analysis
For proving an ultimately bounded tracking error of the controlled

multi-agent system, inspired by [7], we define a Lyapunov function

V (r,E1) =
1

2
rT r +

1

2
tr
(
E1PET1

)
, (30)

where E1 =
[
ε1 ε2 · · · εd−1

]
∈ RN×(d−1) and P ∈

R(d−1)×(d−1) is a positive definite, symmetric matrix. The dynamics
of the filtered state r can be described by

ṙ = −L̃
(
f(x) +G(x)u+ h(x)− dd

dtd
xr(t)

)
+ ρ (31)

where ρ= [ρ1 · · · ρN ]T , ρn =
∑d−1
i=1 λiεn,i+1, and L̃=L+B.

From the definition of the filtered state r, it follows that

Ė1 = E1ΛT + rlT , (32)

where l = [0 0 · · · 1]T ∈ Rd−1, and

Λ =

[
0(d−2)×1 Id−2

−λ1 −λ2 · · · − λd−1

]
. (33)

Since the second summand of the Lyapunov function (30) depends
on E1, (32) allows us to relate the decrease of the Lyapunov function
along system trajectories to the weights of the linear control law
(28) described by Λ. Analogously to the augmented Laplacian L̃,
the matrix Λ can be employed to define a positive definite matrix.
For this definition, we employ the fact that Λ is a Hurwitz matrix,
such that P is chosen to be the solution to the Lyapunov equation

ΛTP + PΛ = −Q, (34)

where Q is an arbitrary, positive definite, symmetric matrix.
Before starting with the stability analysis of the multi-agent system

controlled by (29), we introduce the following lemma, which extends
the prediction error bound in Proposition 1 by expressing the impact
of the usage of local states xn in (29c) in terms of r and E1.

Lemma 1: Consider an unknown function h(·) and N training
data sets Dn satisfying Assumptions 5 and 6 on the compact
set Ω⊂Rd. Moreover, assume that an aggregation method (9) is
employed, which meets the conditions of Assumption 7 and is defined
using maps φ(·), ψ(·) with Lipschitz constants Lφ, Lψ , respectively.
Assume the agents can communicate according to a topology satis-
fying Assumptions 3 and 4. If there exists a finite ∆̃∈R+ such that

max
n=1,...,N

sup
t′≥0
‖ẋn(t′)‖ < ∆̃, (35)

then it holds with probability of at least 1 − δ for all t ∈ R0,+,
x ∈ ΩN = Ω× · · · × Ω that

‖h(x)−φ(ξ̃(t))‖≤
√
Nη̄(xl(t), δ, t, ∆̃)+

√
NLµ̃+Lh

σ(L̃)
‖r(t)‖

+

√
NLµ̃+Lh

σ(L̃)
(1+‖Λ‖F)‖E1(t)‖F, (36)

where φ(ξ̃(t)) =
[
φ(ξ̃T1 (t)) · · · φ(ξ̃TN (t))

]T
.

Proof: In order to prove this lemma, we first bound the
difference between φ(ξ̃n(t)) and the corresponding centralized ag-
gregation, which yields analogously to Proposition 1∣∣∣φ(ξ̃n(t))− µ̌n(x)

∣∣∣ ≤ ηtr(t)+
Lµ̃∆̃

λ̃2κp
, (37)

where

µ̌n(x) = φ

(
N∑
n=1

wnψ
(
µn(xn(t)), σ2

n(xn(t))
))

. (38)
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Due to Lipschitz continuity of φ(·), ψ(·, ·), µn(·) and σ2
n(·), we can

bound the distance to the aggregated prediction for xl by

|µ̌n(x)− µ̃(xl)|2 ≤ L2
φL

2
ψ

N∑
i=1

(L2
µi + L2

σ2i
)‖xl − xi‖2. (39)

For obtaining a bound in terms of E(t) and r(t) we make use of
the Cauchy-Schwarz and the triangle inequality to get

‖µ̌(x)− µ̃(xl)‖2 ≤ NL2
µ̃

N∑
i=1

‖xl − xi‖2, (40)

where µ̌(x) and µ̃(xl) are the concatenations of µ̌n(x) and µ̃(xl),
respectively. By reordering the summands, it can be seen that∑N
i=1 ‖xl − xi‖2 =

∑d
i=1 ‖xil − xi‖2, such that we have

‖µ̌(x)− µ̃(xl)‖ ≤
√
NLµ̃

σ(L̃)
(‖r‖+ (1 + ‖Λ‖F)‖E1‖F) (41)

due to εj = −L̃(xj − xjl ),
∑d
i=1 ‖εi‖2 = ‖ε1‖2 + ‖Ė1‖2F

and (32). By applying the triangle inequality, we finally obtain

‖h(x)− φ(ξ̃(t))‖ ≤ ‖h(x)− µ̃(xl)‖+
√
Nηtr(t) +

√
NLµ̃∆̃

λ̃2κp

+

√
NLµ̃

σ(L̃)
(‖r‖+ (1 + ‖Λ‖F)‖E1‖F) , (42)

which directly yields the result due to [25, Theorem 3.3].
Lemma 1 theoretically justifies our approach of employing the local
agent states for computing the local predictions: the smaller the con-
sensus error is, the lower is the impact on the prediction error bound
with local states. This is particularly beneficial since the feedback
control ν(·) dominates the control law (29) for large consensus errors
regardless of the prediction error, such that a small consensus error
can typically be ensured. In fact, due to the linear relationship be-
tween consensus error and prediction error bound, it is even possible
to recover Proposition 1 in the limit of vanishing consensus errors.

Note that Lemma 1 requires a bound ∆̃ for the agents’ state deriva-
tive, which depends on the control law (29) and consequently on the
distributed predictions. Due to the boundedness of GP predictions, we
can provide a closed-form bound ∆̃ as shown in the following lemma.

Lemma 2: Consider a multi-agent system (1) with N agents sat-
isfying Assumption 1 and an unmodeled nonlinearity h(·) satisfying
Assumption 6. Consider a leader of the form (2). Moreover, assume
that a control law (29) with a distributed prediction is employed,
which meets the conditions of Assumption 7 and is defined using
continuous maps φ(·) and ψ(·) with Lipschitz constants Lφ and Lψ ,
respectively. If the state of every agent remains in a compact set Ω
for all t ≥ 0, then we have

max
n=1,...,N

sup
t′≥0
‖ẋn(t′)‖ ≤ ∆̃ (43)

for

∆̃ = h̄+ µ̄+ rΩ

(
1 + (κc + 1)

√
‖Λ‖2F − d+ 3

)
(44)

where h̄ = maxx∈Ω |h(x)|, and µ̄ = maxz∈(Ψ1×···×Ψq) |φ(z)| for
bounded sets Ψi = {z∈R : z = ψi(µn(x), σ2

n(x)) for x ∈ Ω}.
Proof: By substituting the control law (29a) into (1), we obtain

ẋn,d = in(x) + ν(εn), where iii(x) = h(x(t))− φ(ξ̃(t)). Due to
the compactness of Ω and the linearity of ν(·) in εn, we have

|ν(εn)| ≤ rΩ(κc + 1)
√
‖Λ‖2F − d+ 3. (45)

Moreover, ψ(·, ·) is bounded on the compact set Ω due to Lipschitz
continuity, such that ξn ∈ (Ψ1×· · ·×Ψq) is guaranteed. Due to Lips-
chitz continuity of ψ(·), the sets Ψi are bounded, such that continuity
of φ(·) implies the existence of a µ̄, which upper bounds φ(ξn(t)).
Due to continuity of h(·), there exists a finite upper bound h̄ on the
compact set Ω. Hence, it directly follows that |in(x)| ≤ h̄ + µ̄.
Exploiting the compactness of Ω one more time, we finally obtain
supt≥0 ‖ẋn‖ ≤ ∆̃ for ∆̃ defined in (44), such that Lemma 1 holds.

Since the derivative state not only depends on the distributed
prediction, but also on the linear control law ν(·), the bound (44)
depends linearly on the control gain κc. This introduces a linear
dependency of the prediction error bound in Lemma 1 on κc due
to (18), which can be compensated by the reciprocal dependency on
the prediction gain κp. Therefore, the prediction gain κp should be
chosen greater than the control gain κc, which intuitively resembles
the fact that convergence of the prediction is necessary before a
consensus of the agent states can be achieved.

Using these auxiliary results, we quantify the tracking error bound
for multi-agent systems controlled by (29) as shown in the following.

Theorem 1: Consider a multi-agent system (1) with N agents and
a leader (2) satisfying Assumptions 1 and 2, which are connected via
a communication topology, such that Assumptions 3-4 hold. Assume
that the unmodeled nonlinearity h(·) and N training data sets satisfy
Assumptions 5 and 6. Moreover, assume that a control law (29) with
distributed prediction is employed, which meets the conditions of As-
sumption 7 and is defined using maps φ(·), ψ(·) with Lipschitz con-
stants Lφ, Lψ . Choose a control gain κc∈R+ such that Υ�0, where

Υ=

[
κcσ(L̃)− ι − ι2 (1+‖Λ‖F)− 1

2 σ̄(P )

− ι2 (1+‖Λ‖F)− 1
2 σ̄(P ) 1

2σ(Q)

]
(46)

ι= σ̄(IN − L̃)‖λ‖+
(
√
NLµ̃+Lh)σ̄(L̃)

σ(L̃)
(47)

for P , Q defined in (34) such that σ(P ) ≥ 1. Moreover, choose a
compact set Ω ⊂ Rd such that

B(t)=
{
x∈Rd : ‖x−xl(t)‖≤υ(t)

}
⊂ Ω ∀t ≥ 0. (48)

then, with probability of at least 1 − δ, the tracking error
e = [eT1 · · · eTN ]T is ultimately bounded with the ultimate bound

υ(t)=

√
Nσ̄(L̃)

√
σ̄(P )(1+‖Λ‖F)

σ(Υ)σ(L̃)

(̄
η(xl, δ, t, ∆̃)+∆̂

)
. (49)

Proof: We prove this theorem by showing that the temporal
derivative of the Lyapunov function (30) is decreasing except for a
small ball around ε = 0. Let V1(r) = 1

2r
T r denote the first sum-

mand of (30). Due to (31), the temporal derivative of V1(·) is given by

V̇1 = rT
(
−L̃

(
f(x)+G(x)u+h(x)−ẋdl

)
+ρ
)
. (50)

Substituting the control law (29a) yields

V̇1(r) = −κcrT L̃r−rT L̃
(
iii(x)−ẋdl

)
+rT

(
IN−L̃

)
ρ. (51)

It can be easily seen that ρ = Ė1λ with λ = [λ1 · · · λd−1]T .
Therefore, we have due to Eq. (32) that

rT
(
IN − L̃

)
ρ = rT

(
IN − L̃

)(
rlT + E1ΛT

)
λ, (52)

such that we can bound V̇1(r) by

V̇1(r) ≤
(
−κcσ(L̃) + σ̄(IN − L̃)‖λ‖

)
‖r‖2

+ σ̄(IN − L̃)‖λ‖‖Λ‖F ‖r‖‖E1‖F
+ σ̄(L̃)

(
‖iii(x)‖+

∥∥∥ẋdl ∥∥∥) ‖r‖. (53)
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Boundedness of ‖ẋdl ‖ holds by Assumption 2, such that
‖ẋdl ‖ ≤

√
N∆̂. For bounding ‖iii(x)‖ we employ Lemma 1

and Lemma 2, such that we can substitute (36) in (53) to get

V̇1(r)≤
(
−κcσ(L̃) + ι

)
‖r‖2 + ι(1+‖Λ‖F)‖r‖‖E1‖F

+ σ̄(L̃)
√
N
(
η̄(xl(t), δ, t, ∆̃)‖+∆̂

)
‖r‖, (54)

where ι is defined in (47). For bounding the temporal derivative of
the second summand of (30) denoted as V2(E1) = 1

2 tr
(
E1PET1

)
we proceed similarly, such that it follows from (32) and (34) that

V̇2(E1) ≤ −1

2
σ(Q) ‖E1‖2F + σ̄(P ) ‖r‖ ‖E1‖F . (55)

Combining (54) and (55), and writing it in a quadratic form yields

V̇ (r,E1)≤−
[
‖r‖ ‖E1‖F

]
Υ

[
‖r‖
‖E1‖F

]
+υ̃

[
‖r‖
‖E1‖F

]
(56)

where

υ̃(t) =
[√

Nσ̄(L̃)
(
η̄(x(t), δ, t, ∆̃)+∆̂

)
0
]

(57)

and Υ is defined in (46). By employing Sylvester’s criterion, it is
straightforward to see that there exist a κc, such that Υ is positive
definite. Then, we have

V̇ (r,E1) ≤ 0, for all r,E1 :
∥∥[‖r‖ ‖E1‖F

]∥∥≤ ‖υ̃(t)‖
σ(Υ)

. (58)

As V (·) has a quadratic form and σ(P ) ≥ 1, (58) implies that

∥∥[‖r(t)‖ ‖E1(t)‖F
]∥∥ ≤ √σ̄(P )‖υ̃(t)‖

σ(Υ)
. (59)

Due to
∑d
i=1 ‖εi‖2 = ‖ε1‖2 +‖Ė1‖2F and (32), the total consensus

error can be bounded in terms of r and E1, which leads to

‖ε(t)‖ ≤
√
σ̄(P )(1 + ‖Λ‖F )‖υ̃(t)‖

σ(Υ)
. (60)

Finally, the cooperative tracking error ε satisfies the identity
εi = −L̃(xi − xil), such that ‖x− xl‖ ≤ ‖ε(t)‖/σ(L̃).
Theorem 1 exhibits several intuitive properties. A high connectivity
of the graph G augmented by the leader node, as measured through
the singular values of L̃, implies comparatively large singular values
of Υ. This has the effect that a high connectivity allows a lower con-
trol gain κc for ensuring positive definiteness of Υ. Moreover, since
the ultimate tracking error bound (49) is reciprocal to σ(Υ), it can
be reduced by increasing the connectivity of the graph G augmented
by the leader node. In addition to an increase in connectivity, a large
control gain is the main parameter for guaranteeing small tracking
errors. In fact, arbitrarily small ultimate tracking error bounds υ(t)
can be achieved through a suitable value of κc. In order to see this,
note that σ(Q) can be chosen arbitrarily large as positive definiteness
of Υ can always be ensured through a suitable control gain κc.
Moreover, it is trivial to check that σ(Υ) → 1

2σ(Q) for κc → ∞.
Since the ultimate bound is reciprocal to σ(Υ), this implies that
arbitrarily small tracking errors can be guaranteed.

V. NUMERICAL EVALUATION

We evaluate our proposed approach in two simulations. In Sec-
tion V-A, we illustrate the prediction errors and error bounds of the
proposed distributed GP approach. In Section V-B, we demonstrate
the effectiveness of employing distributed predictions in a cooperative
control scheme applied to a system with unmodeled nonlinearities.

−1 0 1

−1

0

1

x1

x
2

D1

D2

D3

D4

x(t)

Fig. 1. Each Gaussian process is trained with data Dn from a single
quadrant, while the trajectory x(t) passes through all quadrants.

10−4
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proposed method local prediction

e 1

|µ̂n(x)−h(x)| |µn(x)−h(x)| η̄ ηloc

10−4

10−2

100

e 2
10−4

10−2

100

e 3

0 2 4 6 8

10−4

10−2

100

t

e 4

Fig. 2. The prediction errors |µ̂n(x)−h(x)| observed when using
the proposed distributed prediction aggregation method (red full line)
are small for the whole trajectory x(t), while the errors |µn(x)−h(x)|
resulting from the standard approach based on local predictions (black
full line) are only small for states x(t) close to the training data of
the corresponding model. The theoretical error bounds for distributed
predictions η̄ (red dashed line) and individual predictions ηloc (black
dashed line) exhibit the same behavior.

A. Distributed Predictions for Dynamical Systems
In this section, we investigate the performance of the distributed GP

approach proposed in (12), (13) for learning the nonlinear function

h(x) = sin(x1) +
1

2(1 + exp(x210 ))
. (61)

We consider a system with N = 4 GP models, each of which
is based on a squared exponential kernel (6) with signal standard
deviation σf =0.5 and length scales li=0.5, i=1, 2. Training data is
uniformly distributed on the domain [−1, 1]×[−1, 1], and training tar-
gets are perturbed by zero mean Gaussian noise with σo=0.1. Each
of the GP models is trained using M=500 training samples from a
single quadrant, as illustrated in Fig. 1. For the distributed aggregation
of the predictions, we employ the PoE scheme (10), and assume a
circular communication graph described by the adjacency matrix

A =
1

2


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 . (62)

The predictions are aggregated along the reference trajectory x(t) =[
xr(t) ẋr(t)

]
with xr(t) = sin(t) using a prediction consensus

gain κp = 1000. The prediction error is uniformly bounded with δ =
0.1 and τ = 0.01, and the Lipschitz constants for φ(·) and ψ(·, ·)
required for (18) are numerically approximated along x(t).
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10−2
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‖e

‖
distributed local none exact
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8

t

υ
(t
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Fig. 3. Tracking errors ‖e‖ (top) and ultimate error bounds υ(t)
(bottom) for cooperative control with distributed learning are significantly
smaller than with local learning and without learning.

We compare the prediction error |µ̂n(x)−h(x)| and error bound η̄
of the proposed method to the prediction error |µn(x)− h(x)| and
error bounds ηloc of the standard approach employing only local
predictions. As depicted in Fig. 2, the distributed predictions yield
errors, which are almost identical to the best available individual
prediction. While the individual predictions achieve these small errors
only for a small period of time, the distributed predictions constantly
maintain this high accuracy. A similar behavior can be observed
for the uniform prediction error bounds, where the distributed GP
approach guarantees an almost constant prediction accuracy, while the
local error bounds strongly vary over time. This clearly demonstrates
the advantages of distributed predictions.

B. Cooperative Tracking Control with Unmodeled Nonlinearities
In order to demonstrate the efficiency of the cooperative control

law proposed in (29), we extend the previously introduced simulation
setting to the control of a multi-agent system. For this purpose, we
define fn(x) = 0 and gn(x) = 1 for n = 1, . . . , 4 and x ∈ R2.
Moreover, we choose the diagonal matrix B=diag(1, 0, 1, 0), such
that two follower agents are connected to the leader. In the feedback
linearizing control law, we employ λ= 7

4 , κc=1000, and use κp=
50000 as gain for the prediction consensus. Finally, we determine
the ultimate tracking error bound υ(t) based on q=600.

We compare the simulation results of our proposed cooperative
tracking control law employing distributed GP predictions to the
same control law using only the individual predictions of the agent,
no compensation of the unknown nonlinearity, and an exact model
of h(·). As illustrated in Fig. 3, employing only the local model
of each agent in the control law yields an improvement compared
to the absence of any model. However, it performs significantly
worse then the proposed control law with distributed predictions,
which even achieves tracking errors almost identical to those of
the control law with exact knowledge of h(·). Even though the
corresponding ultimate tracking error bounds υ(t), which can be
obtained for local predictions and exact model knowledge through a
straightforward adaptation of [7], are conservative, they analogously
reflect this behavior. These results underline the improvement in
control performance resulting from the application of distributed
predictions in cooperative tracking control.

VI. CONCLUSION

This article proposes a novel cooperative tracking control law
for leader-follower consensus of multi-agent systems with partially
unknown, higher-order, control-affine dynamics. In order to compen-
sate unmodeled nonlinearities with feedforward control, we derive
a method for the distributed inference based on Gaussian process
regression. We show probabilistic regression error bounds for the
proposed distributed learning method, such that we can analyze the
stability of the cooperative control law with distributed Gaussian
process predictions using Lyapunov theory. The effectiveness of the
proposed methods is demonstrated in simulations.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[2] Z. Li and Z. Duan, Cooperative Control of Multi-Agent Systems: A
Consensus Region Approach. CRC Press, 2014.

[3] J. Jiao, H. L. Trentelman, and M. K. Camlibel, “A suboptimality
approach to distributed linear quadratic optimal control,” IEEE Trans-
actions on Automatic Control, vol. 65, no. 3, pp. 1218–1225, 2020.

[4] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[5] Z. Yan, Z. Yang, X. Pan, J. Zhou, and D. Wu, “Virtual leader based
path tracking control for multi-UUV considering sampled-data delays
and packet losses,” Ocean Engineering, vol. 216, p. 108065, 2020.

[6] A. Das and F. L. Lewis, “Distributed adaptive control for synchronization
of unknown nonlinear networked systems,” Automatica, vol. 46, no. 12,
pp. 2014–2021, 2010.

[7] H. Zhang and F. L. Lewis, “Adaptive cooperative tracking control of
higher-order nonlinear systems with unknown dynamics,” Automatica,
vol. 48, no. 7, pp. 1432–1439, 2012.

[8] Z. Ghahramani, “Probabilistic machine learning and artificial intelli-
gence,” Nature, vol. 27, pp. 452–459, 2015.

[9] E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig, “Gaussian
process based predictive control for periodic error correction,” IEEE
Transactions on Control Systems Technology, vol. 24, no. 1, pp. 110–
121, 2016.

[10] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models,”
in Advances in Neural Information Processing Systems, 2018, pp. 4754–
4765.
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