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Molecular Dynamics Simulations

I Consider a simulation of N rigid body molecules.
I Each molecule consists of a small number of sites.
I Every timestep, we require the force and torque acting on

every molecule.
I Typically, this requires force calculations between every

inter-molecular pair of sites every timestep.
I ⇒ O(N2) calculations per timestep.

For large N, this is a big computational cost, and can easily
take > 99% the time of a simulation.
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Short range potentials

Consider the Lennard-Jones potential:
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Now introduce a cutoff for r > rc
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Short range particle containers

I We still have O(N2)
distance calculations to
determine the cutoff.

I This is still too costly.

I Particle containers have
been developed to alleviate
this.
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Short range particle containers: Verlet Lists

I Keep neighbour list of
every other molecule
within a rc + s cutoff.

I Only calculate distance to
neighbours to determine
cutoff.

I Rebuild the neighbour list
every nVL timesteps.
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Short range particle containers: Linked Cells

I Divide molecules in cells.

I Calculate cutoffs only with
neighbouring cells.
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Further algorithmic options: Newton’s Third Law

Apply the same force calculation to both particles in a pair.

I Pro: Halves force calculations.

I Con: Introduces race conditions.
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Further algorithmic options: Traversals

For cells-based algorithms, there are many ways to traverse all
cells.

c01 c08 c18
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Further algorithmic options: Data Structure

Array-of-Structures (AoS)

Structure-of-Arrays (SoA)
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Motivation for Auto-tuning in MD Simulations: Homogeneity &
Density
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Motivation for Auto-tuning in MD Simulations: Homogeneity &
Density

Uniform:
I Best: Verlet List with AoS & No N3L optimisation
I Time: 0.01373 s

I Time for VLC C18, SoA, N3L: 0.01586 s

Guassian:
I Best: Verlet List Cells with SoA & N3L optimisation
I Time: 0.0003771 s

I Time for VL, AoS, No N3L: 0.0004145 s
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Motivation for Auto-tuning in MD Simulations: Complexity of
Functor
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Motivation for Auto-tuning in MD Simulations

I There is no optimal ‘silver bullet’ algorithm in all scenarios.

I Choosing which container, traversal, and data structure to
use is often beyond the knowledge of many domain
scientists who build MD simulators.

I The optimal algorithm can vary throughout a simulation.
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AutoPas

I AutoPas is an auto-tuning library for the handling of
particle interactions.

I It contains a collection of algorithms.

I It tests potential algorithms during tuning phases and uses
chosen ‘best’ during subsequent non-tuning phases.
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AutoPas

I All handling of algorithms
and tuning is handled
internally by AutoPas.

I The user must provide
particle and pairwise force
functor classes, that inherit
from AutoPas’.
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AutoPas: Distributed Memory
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AutoPas: Use Cases

I ls1-mardyn: MD Simulator

I LADDS: Large-scale Deterministic Debris Simulation
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Single site experiment: Exploding Liquid
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Single site experiment: Exploding Liquid

I Single node, 16 threads

I 40000 time steps

I Comparing tuning every 2500 steps Vs Once at beginning
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Single site experiment: Exploding Liquid

Multiple Full-Search Single Full-Search
Total 9.130 9.474

Tuning 2.861 0.713
(per iteration) 0.001144 0.0044562

Non-tuning 6.269 8.761
(per iteration) 0.0001672 0.0002199

I With tuning throughout simulation, we get better
performance during non-tuning.

I But we lose a lot of time to tuning.
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The problem

I AutoPas can perform significantly worse than sticking to a
single value.

I Full-search tuning requires testing many sub-optimal
algorithms.

I Some smart tuning algorithms exist, but they are still
relatively poor.
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Any Questions?

Slide 24/25 | AutoPas for Multi-site Molecular Dynamics | Samuel J. Newcome | June 2022



Kokkos

I GPUs can provide a lot of benefits to particle simulations.
I We are a team (currently) of 2 doctorate candidates ⇒ We

cannot maintain different versions for different parallel
frameworks.

I Kokkos provides a hardware agnostic solution - by
providing a layer of abstraction.

I This is not yet fully implemented.
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