[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN
Bachelor’s Thesis in Informatics

Can Reinforcement Learning be used to
improve the autotuning process within

AutoPas”?

Leonhard Laumeyer

0

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Can Reinforcement Learning be used to improve
the autotuning process within AutoPas?

Kann Reinforcement Learning zur Verbesserung
des Autotuning Prozesses in AutoPas eingesetzt
werden?

Author: Leonhard Laumeyer

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Fabio Alexander Gratl, M.Sc., Samuel Newcome, M.Sc.
Date: 15.09.2022

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.09.2022 Leonhard Laumeyer

Abstract

This thesis presents a new tuning strategy for the node-level auto-tuned particle simulation
library AutoPas. The strategy uses reinforcement learning to predict the best configuration
for the simulation to use to achieve the fastest calculation time. An implementation of a
modified version of the SARSA algorithm is shown. Furthermore, the hyperparameters:
learning rate, discount factor, and exploration rate are fine-tuned trough grid search to
produce the best possible results. The reinforcement learning tuning strategy is then tested
according to different criteria. These criteria are then used to compare it against the full
search and predictive tuning strategies. The reinforcement learning tuning interface shows
considerable improvement compared to the already implemented options.

vil

viii

Contents

Abstract vii
l. Introduction and Background 1
1. Introduction 2
2. Background 4
2.1, AutoPas 4
2.1.1. Data Layouts 4

2.1.2. Particle Containers 5

2.1.3. Newtond e)

2.1.4. Traversals 6

2.1.5. Tuning Procedureo L 6

2.1.6. Existing Interfaceso 7

2.2. Machine Learning L L o 8
2.2.1. Reinforcement Learning L oL 8

2.2.2. Temporal Difference 9

2.3. Selection of the Reinforcement Learning Algorithm 10
2.3.1. Advantages and Disadvantages 10

232, Why Sarsa e 10

Il. Implementation 12
3. Actual Implementation 13
3.1. TuningStrategylnterface L L 13
3.1.1. addEvidence() 13

3.1.20 tune() 14

I1l. Results and Analysis 15
4. Hyperparameter Tuning 16
4.1. Learning Rate L 16
4.2. Discount Factor 19
4.3. Imitial States L 20
4.4. Random Exploration 21

ix

5. Comparison with Full Search and Predictive Tuning
5.1. Exploding liquid vs Fallingdrop
5.2. Performance with OpenMP

IV. Future Work and Conclusion
6. Future Work

7. Conclusion

V. Appendix
A. Yaml Configurations
B. Simulation parameters

Bibliography

23
23
26

28
29

30

31
32
34

37

Part |I.

Introduction and Background

1. Introduction

In recent years a majority of applications in computer science have gotten more complex and
detailed [JWCW15]. This resulted in the need for more computing power, which also applies
in Molecular Dynamics. Contrary to other fields, particle simulations have not necessarily
gotten more complex since the underlying physics law didn’t suddenly change in the last
decade. But the simulations have gotten more extensive and more realistic. Usually, there
are two ways to approach this problem of having more and more complex calculations.

First, just a faster or better computer to run these simulations. But this comes with its
own problems, like a limit to the speed of modern CPUs or the pricing going up exponentially
at higher clock speeds.

The second way is to optimize the software itself. The AutoPas library would be one
example of this. AutoPas dynamically changes the configuration of the simulations, such as
the data layout or the particle container. The way it works is that after a set number of
iterations, a selection of configurations is tested, and the best one is chosen at the end. This
configuration is then used until the next tuning phase. There are predefined strategies for
the tuning of options, such as Full Search or Predictive Tuning.

As the name suggests, full search tests every possible combination and then selects the
one with the best results. This comes with a few problems, such as a considerable overhead
in tuning time since it is a brute-force method and might test many bad configurations.
The Predictive Tuning strategy, on the other hand, uses old tuning results to predict the
current run time by extrapolation through linear regression and then selects and only tests
those configurations. The problem with this is that the run time of a simulation is not just
a linear function like the number of particles times calculation time. It is hard and maybe
even impossible to represent the actual values by a polynomial function of the first degree
with acceptable accuracy.

Other fields, like real-time image recognition, also run into similar problems trying to
determine the best of something with the shortest calculation time or knowing the least
about the underlying environment. Most of them turned towards machine learning to solve
this problem. Machine learning is a big field that unites a variety of algorithms and methods
that allow the computer, as the name suggests, to learn. The idea is that instead of giving
the computer a set rule or procedure to follow for the decision-making, it understands
it by itself. Machine learning splits into three categories: supervised, unsupervised, and
reinforcement learning.

Supervised and unsupervised learning try to make sense or find a pattern in existing
data. On the other hand, reinforcement learning tries to learn a policy by trial and error.
Reinforcement learning can be seen as putting a toddler in a situation and letting him try
everything out, supervised and unsupervised learning would be a person discovering the
problem through books.

Reinforcement learning improves over the brute force method by not needing to run
everything every time again since it can use old data to predict new data. On the other

hand, it also handles complex data better than linear regression since it is not limited by the
linearity of the data.[KOKO05] Which would make it an excellent candidate for an AutoPas
tuning strategy. In this paper, we are exploring the potential benefits of using Reinforcement
Learning as the selector strategy in the AutoPas library.

2. Background

2.1. AutoPas

AutoPas is an open-source node-level performance library that can be used for iterative
tuning different configurations for short ranged pairwise force calculations. The options
include Newton’s third law of motion, different data layouts, particle containers, and
traversals. Another option that can be set at the beginning of the simulation is which tuning
strategy should be used. AutoPas also includes MD-flexible, an example implementation
of a molecular simulations software that utilizes AutoPas to tune the configurations. All
simulations are run with the help of this demo software.

2.1.1. Data Layouts

Data Layouts refer to how particle objects are stored during the simulation. AutoPas
supports two different Data Layouts: SoA and AoS. They refer to Structure of Arrays and
Array of Structures, respectively. Array of Structures saves the complete object particles
sequentially, which allows for the fast loading of all the values of a single particle as seen in
2.1. On the other hand structure of Arrays saves the same attributes of all particles in the
same array, which makes loading the values into the same vector registers faster.[GSBN22]
This can be used by modern CPUs since they can apply the same instruction to multiple
values, also called single instruction multiple data (SIMD). This feature allows swift vector
operations such as scalar multiplication, which is used very often in the main calculation of
a molecular dynamics simulation.[GSBN22]

Arraly-of—Structuresi

1
I
3

Particle 0 Particle 1 Particle ... Particle n i "X !
1

rxlrlrzlfxlfylfz rxl Irzlfxlfylfz rxl |rz|fx|fy|fz rxl |rz|fx|fy|fz i-

7
e e 23 . [ran]
t[pefa]... |

0

Structure-of-Arrays

Cakue ol Tyl o “Fore
DEZERE

Figure 2.1.: The difference between AoS and SoA when loading values for force calculation.
[GSBN22]

2.1. AutoPas

2.1.2. Particle Containers

Particle Containers define how the particles are mapped in 2D /3D space, which is important
in order to find out for which particle the force calculation needs to be performed. The main
forces that are being considered in such a simulation are van der Waals forces and Pauli
repulsion. These two forces are combined in the simplified but still realistic Lennard-Jones
12-6 potential. Since the potential mentioned above quickly converges towards zero, it is
helpful to introduce a cut-off radius that helps reduce complexity. So every particle outside
this cut-off radius is not considered for the force calculation.[GSBN22] To take full advantage
of this, three Particle Containers are implemented in AutoPas Direct Sum, Linked Cells,
and Verlet Lists. Direct Sum is the brute force attempt, every particle is checked against all
the other particles, and the force is calculated if the compared particles have a distance less
than the cut-off radius. The linked cells algorithm is the first one that uses the cut-off radius
to improve upon the direct sum version. This is done by introducing sectors, which should
have at least the length of the cut-off radius. This allows for the reduction of the number of
particles that need to be checked for distance since only the particles in the neighboring
cells need to be considered now instead of all. The verlet lists further reduces the number of
particles that need to be considered for force calculation by calculating a list of particles in
proximity. This reduces the number of unnecessary distance calculations even further but
introduces an overhead. The overhead is created by the need to rearrange the particles after
each iteration and create a new neighbor list.[GSBN22]

(a) DirectSum (b) LinkedCells (¢) VerletLists

Figure 2.2.: The red point is the selected main particle for the pairwise force calculation.
The red circle is the cut-off radius for the Lennard Jones potential. The distance
is calculated for every particle pair with an arrow, but the force calculation is
only needed for the blue ones. The yellow circle is the Verlet-skin radius. The
blue and red cells are being used in the neighbor list.[GSBN22]

2.1.3. Newton3

Newton3 refers to the application of Newton’s third law of motion or also commonly known
as ”action equals reaction”. This law declares that every force has an opposing force that
goes in the opposite direction. In molecular dynamics, that means that every force generated
by particle A towards particle B also has an anti force from particle B towards particle A

2. Background

with the opposing direction. The force is defined as Fup = —Fp4[NC23] This law allows for
an extensive optimization in the force calculations since the force between two particles now
only needs to be calculated once and can be applied with the negation of the algebraic sign
for the affected particle. This reduces the number of force calculations by half and only adds
the negating of the force. The other side of the coin is that this performance optimization
allows for race conditions when multiple threads work on the force calculation. This can be
reduced or avoided by selecting an appropriate traversal strategy.[GSBN22]

2.1.4. Traversals

AutoPas also supports the use of OpenMP, which allows for shared-memory parallel pro-
gramming. In order to use this efficiently, predefined traversal patterns are required to
avoid deadlocks or bottlenecks in memory access. The idea is to split the work into parts
that can run synchronized without the need to consider race conditions. The basic version
is to lock all the neighboring cells in the linked cells algorithm. In a 3D space, instead
of locking all 26 neighbors, it is now only necessary to lock 7 neighboring in a 2x2x2 cell.
The second traversal option is slicing the domain in equally sized portions indicated by the
different colors in Figure 2.3a. This has the advantage of very little overhead. To avoid race
conditions on the border of two slices, the last row of the first domain is locked until the
first of the second one is finished. Another option is domain coloring, which splits up the 8
cells in 3D and 4 cells in 2D intelligently so they can be worked on simultaneously. The
Figure 2.3b shows the different domains that can be handled at the same time indicated by
the different colors.[GSBN22]

56 5%0 63 56 A ﬁ‘kﬁ'i*#lkftkﬁ#kﬁe3
4 ¥ ETAY ETY FTA Y Y MY
e e S R R .
e ad i B AR N Y -
40 40 | a3 ladbas| P
ARRT A A AW A Al A wlr
vl v e ¥ T Ay R
32 3 = 1-%51— ?!—-b -
A ¥ A A A W4
¥ ¥ ¥ L Y
24 24+ 272829 T
N L RAENY A A AXlA A
oA v R Y T Y KA ¥ e Y
16 10 <« < <> <> <
A A ¥ A
¥ ¥ 17
- -
§xg 1¢ ;\'11 Pk RAEN AR FRAEN Y
¥) ¥ K[ICIESTIEETIEY
01’1 21-)-3 4 5 6 T -(--)-1-(» 1--h—31h.4+-’-51»6 7

(a) Sliced (b) Domain coloring

Figure 2.3.: Traversal patterns that prevent race conditions. The brown line indicates the
end of the space and the outside cells are used for halo particles.[GSBN22]

2.1.5. Tuning Procedure

The tuning process of AutoPas works in such a way that the simulation is halted after a
preset amount of iterations and starts a tuning phase. The tuning phase begins with the

2.1. AutoPas

tuning interface selecting the first configuration to test. This configuration is now used to
run the simulation for one iteration while the time is recorded. After the iteration, the time
measured is stored for this specific configuration. Then the next configuration is selected
and measured. This goes on until every selected combination is tested. After finishing the
collection of timings, the tuning interface sets an optimal configuration based on the new
results. This best configuration is now used until the next tuning phase, where everything
beings from the start again.[GSBN22]

false true
in tuning phase?

enough samples

collected?
true

build next
combination

build optimal
combination

I-) record time of
next iteration

A4 Y

do iteration <€

Figure 2.4.: Model of the tuning process of the AutoPas library|GSBN22]

2.1.6. Existing Interfaces

AutoPas uses polymorphism to provide the implementation of different tuning algorithms to
the user, which all inherit from the TuningStrategy Interface. The Interface provides the
basic functionality of adding evidence, getting the next configuration, and getting the best
one at the end of the tuning phase. Before the start of the simulation, there is the option to
select one out of these tuning strategies:

autopas::ActiveHarmony

autopas:BayesianCluster
Search

/}mpas::BayeswaHSEElrch
autopas:TuningStrategylinterface |
autopas:MPIParallelized
Strategy

autopas::RandoemSearch

autopas::SetSearchSpaceBased
TuningStrategy
autopas::PredictiveTuning |

Figure 2.5.: The already existing tuning interfaces within AutoPas.

All the other tuning strategies 2.5 besides PredictiveTuning and FullSearch will be excluded

2. Background

since they are not used in this paper.

Full Search

Full search is akin to brute force since it tests every possible configuration one after another
and then returns the one with the shortest run time. It only takes the current iterations into
account and disregards any previous evidence. It has the problem of having a considerable
overhead in the form of spending a long time tuning, depending on the number of possible
configurations. Out of which, especially the really bad performing configurations take a
substantial amount of time.

Predictive Tuning

Contrary to full search, predictive tuning uses only a fraction of all the possible configurations
to reduce run time by ignoring inefficient configurations. It uses one of the three methods,
linear regression, newton polynomial, or Lagrange polynomial, to predict the upcoming run
times based on old evidence. It also allows for the option of a blacklist which is based on the
assumption that inefficient configuration can not improve enough to beat the best one and
therefore disregard this arrangement of options for the rest of the simulation. This allows for
the testing of only relevant configurations depending on these predictions. Which can reduce
the run time by 74% in the spinodal decomposition simulation by using linear regression
and blacklisting. Even though it has faster run times than full search, it not always chooses
the best configuration to use. [Pel20]

2.2. Machine Learning

The definition of machine learning is ”the use and development of computer systems that
are able to learn and adapt without following explicit instructions, by using algorithms and
statistical models to analyze and draw inferences from patterns in data.” [oxf00] So the goal
is to imitate the human brain by not giving it a set or fixed list of instructions that need to
be finished but to learn the process by itself.

The field can be split into supervised, unsupervised, and reinforcement learning. In
supervised learning, the goal is to map the input to outputs, like if the input is ”A”, the
output needs to be ”1”. This is done by giving a computer a set of example data, and it
needs to find the function to get the correct output.[RN10] Unsupervised learning, on the
other hand, also uses a set of example data, but this time the data has no labels. This
forces the computer to find hidden patterns by itself.[HS99] Reinforcement learning goes
even further toward the idea of simulating the human brain.

2.2.1. Reinforcement Learning

Reinforcement Learning is the name for computational learning by experience. What
differentiates reinforcement learning from other areas of machine learning is that it learns
from experience rather than labels or predefined instructions. It achieves that by learning in
an actual environment, that can be simulated or natural, in which an agent takes action
and is rewarded or punished based on the action taken. Those actions align with reaching a

2.2. Machine Learning

specific goal, such as winning a game or finishing a particular task. Reinforcement learning
algorithms consist of a policy, a value function, a reward, and sometimes an environment.

Policy The policy contains the allowed or possible actions an algorithm or agent can
choose from in each state. It can be the cardinal direction one can move in or
the different probabilities of the next dice throw. There are two different classes
on-policy and off-policy. On policy improves the policy itself. Off policy creates a
completely new one.

Value Function The value function annotates the value of each state, meaning how much
a state is worth compared to others. This means a state with a high value will
give you a higher reward in the end. In a Maze solving problem, it would stand
for the distance to the exit.[SB18]

Reward The reward signifies the beneficiality of an action. It is given by the environment
to the agent to signal good or bad behavior regarding reaching the end goal. It
is then used to update the value of each state. The reward can be compared to
information in the hot and cold game, where hot stands for a good thing and
indicates being near the end, and cold means the opposite. So if you get the call
hot, it means you are near the goal, and the place you are should have a high
reward.[SB18]

Environment The environment is a model based on predictions or experience that simulates
the environment or at least tries to guess how the environment would behave. Not
all reinforcement learning systems use models since they can also just explore the
problem through trial and error.[SB18]

2.2.2. Temporal Difference

The Difference between other Reinforcement Learning algorithms and Temporal Difference
is that they do not require the final outcome but can already learn while interacting with
the environment. This is achieved by bootstrapping, i.e., predicting based on prediction.
The way of solving a problem does not change from other algorithms in that it still uses
the acquired experience to update its estimated value for a specific state. There are a few
different algorithms for TD learning, most notably Q-learning, Sarsa, and TD()); each has
multiple modified versions to improve or change the original function.[SB18§]

Q-Learning

Q-Learning is an off-policy TD control algorithm, meaning it evaluates all q values without
following the policy in each state. It learns a value for all existing state action pairs
independent of it being a possible combination and uses the max out of all of them.

Q(St, Ay) < Q(St, A) + a[Ry + ymax Q(Sty1,a) — Q(St, Ay)]

2. Background

Sarsa

Sarsa (State-Action-Reward-Sate-Action) is an on-policy temporal difference algorithm that
learns the reward for each state and action pair rather than just the state value.[SB18] The
algorithm:

Q(St, Ar) < Q(St, At) + a[Ry +vQ(St+1, A1) — Q(S, Ar)] (2.1)

It updates the Q value of the state and action of t based on the old value modified by the
g-value of the next step multiplied with the discount factor gamma subtracted by the old
value. The new g-value is calculated by the value of the next step multiplied by the discount
factor gamma. This is then subtracted by the old value and multiplied by the learning rate
alpha. This is then subtracted from the old value and results in the newly calculated value
for this state-action pair.[SB18] Both algorithms contain the same parts but differ in the
way these are used and combined. Q(S;, A;) is the value for the state and action pair at the
time t. « is the learning rate that regulates at which rate newly acquired information is
used to influence already learned values. It ranges from zero to 1, both included where zero
means no learning at all and one means relying very heavily on newly discovered information.
R;y1 is the reward for the action taken in the state s. = is the factor that decides how much
influence the future reward has on the current state. This parameter also starts at zero but
can exceed one, which introduces the problem of exploding q values. The value zero implies
that the algorithm is short-sighted and only considers current rewards. Higher values make
the function look more into future rewards and even prioritize higher long-term rewards.

2.3. Selection of the Reinforcement Learning Algorithm

As already mentioned in 2.2.2, a few different algorithms will be considered, mainly SARSA
and Q-Learning and their variants.

2.3.1. Advantages and Disadvantages

Q-Learning is often used if the goal is selecting an optimal path, but it suffers from variance
and, therefore, may take longer to converge.[SB18] There are a few modified Q-Learning
algorithms that could also be an option, such as Deep Q-learning, which uses a neural network
to represent the q values, but it adds a lot of complexity and a need for extensive data to
train on, which makes it unusable in AutoPas as there is currently no option to transfer
data between different simulations.[MKS*15] Another option would be the QQ-Learning
algorithm which trains two on each other dependent Q-Learning models at the same time to
help in noisy environments.[Has10] SARSA has the advantage over Q-Learning in that it
might not learn the best path, but it converges faster and with fewer errors.

2.3.2. Why Sarsa

All in all, the SARSA algorithm is a better fit for the AutoPas use case since, even though
always getting the best configuration is preferred, making a bad choice can and will cost a
lot. Furthermore, SARSA also has the advantage of converging faster, which helps with the
limited amount of tuning phases in a simulation. The example of the cliff walking situation

10

2.3. Selection of the Reinforcement Learning Algorithm

2.6 is an excellent example to highlight the difference. Where it shows that SARSA is better
and faster in not choosing a bad path.

R=-1
Safer path
Optimal path ‘ 7
I E
s| The cuifi G
R=-100
Sarsa
25
Sum of .50
rewards Q-learning
during
episode 75
-100 T T T T 1
0 100 200 300 400 500
Episodes

Figure 2.6.: SARSA vs Q-Learnig in high risk high reward situations.[SB18|

11

Part Il.

Implementation

12

3. Actual Implementation

3.1. TuningStrategylnterface

All tuning strategies need to inherit from the TuningStrategyInterface. The interface provides
a set of functions that can or need to be implemented by the actual tuning strategy.

TuningStrategyInterface SetSearchSpaceBasedTuningStrategy
addEvidence() _allowedContainerOptions : set<ContainerOption=
getEvidence() _searchSpace : set<Configuration>
getCurrentConfigurationy) _currentConfig : set<Configuration>::iterator
tune()
reset()

populateSearchSpacel)

getOptimum()

getCurrentConfiguration()
getAllowedContainerOptions()
removeN30ption()

searchSpacelsTrivial()

searchSpacelsEmpty()
smoothedHomogeneityAndMaxDensityNeeded()

]

A

getAllowedContainerOptions()
removeN30ption()

searchSpacelsTrivial()

searchSpaceIsEmpty()
smoothedHomaogeneityAndMaxDensityNeeded()

ReinforcmentLearning

_states : unordered_map<Configuration, size_t, ConfigHash>
_alpha : double

_gamma : double

_randomExplorations : size_t

tune()
addEvidence()
getEvidence()
reset()

Figure 3.1.: Inheritance of ReinforcementLearning. Helper function, function parameter,
and return values are excluded to avoid cluttering.

The reinforcement learning strategy actually inherits from the SetSearchSpaceBased-
TuningStrategy, which already implements all functions except addEvidence, getEvidence,
tune and reset, as well as adding the two additional functions populateSearchSpace and
getOptimum as shown in Figure 3.1. The two functions getEvidence and reset are trivial.

3.1.1. addEvidence()

This function is used to save a certain configuration’s run time and update the Q value.
On the first tuning phase, the state is initialized with the time measured it took to run on
iteration. From the second phase onwards, the value is updated following this algorithm:

13

S UL W N =

3. Actual Implementation

if (_firstTuningPhase) {

_newState = —time;
} else {
_newState = _oldState 4+ _alpha x (—time — _gamma * _oldState);

Listing 3.1: Reinforcement Learning part in addEvidence().

The used reinforcement learning algorithm is based on the SARSA algorithm but modified
to suit the AutoPas environment.

Q(St, At) < Q(St, Ap) + a[Ryp1 4+ v % Q(Str1, Arr1) — Q(St, Ay)] (3.1)

_NewState « _oldSate + o[—time + v * _OldState]

There are two notable changes to the original version 2.1. First, the Reward of the next
state is substituted with the negative of the run time. First, there is no next state in the
AutoPas version since each tuning phase is its own problem. So instead of the usual m x n
Matrix with m,n; 1 it only consists of a matrix with n=1. This also removes the q value in
the latter half of the bracket. The reward function is just the negative time, as suggested in
this paper.[MVC™"10] The second change is that instead of the difference between the next
and current q value, just the present, not updated value is taken since there is no next state.

3.1.2. tune()

The tune function is responsible for the selection of the configurations to test during this
tuning phase, getting the next configuration to try, and selecting the best configuration at
the end.

Collection of Configurations

On the first call of the tune function on each tuning phase, the getCollectionOfConfigura-
tions() helper function is called. On the first run, it returns every possible configuration.
However, on the second and following calls, it returns just a selection of all possible configura-
tions based on the minimum of the _randomExplorations attribute or possible configurations.
The new selection of configurations always contains the best possible from the last tuning
phase and a number of random samples out of the rest.

Optimal Configuration

After the last configuration has been tested, the optimal configuration is selected based on
the maximal value out of all the state values, i.e., the configuration which should take the
least amount of time.

14

Part 1Il.

Results and Analysis

15

4. Hyperparameter Tuning

As stated in 2.2.2 all Temporal Difference algorithms have a learning rate « and a discount
factor v. The modified version of the SARSA algorithm also uses both parameters, even
though the use and function differ from their original use. In order for them to be actually
helpful, they need to be selected carefully or tuned through trial and error.

4.1. Learning Rate

The learning rate is still the same in that it controls how much new results weigh in during
the update of the state value. A common technique used for the learning rate in machine
learning is to adapt the learning rate during the training process to archive a better accuracy
or a faster training time. A changing learning rate can get better end results since it allows
for smaller update steps the further the training continues. It can also be faster since it
allows for bigger update steps in the beginning while still keeping a good accuracy by having
smaller steps towards the end.[Smil5] But since the results of the AutoPas tuning phase
change between each iteration, it only serves as a disadvantage since it assumes that the
results are constant and don’t change over the training. So the best option is to use a
constant predefined learning rate.[SB18]

The function needs to go through hyperparameter optimization to find the best value
for a. There are different techniques for this process. One of them is grid search, which
manually selects a value from a predefined range and then measures its behavior according
to a performance metric and repeats that for all numbers in the range. In the case of
AutoPas, the range is the whole range of allowed values from zero to one, both included in
0.05-sized steps. The performance metric is the time spent per non-tuning iteration during
a simulation, which is calculated by dividing the total time spent non-tuning through the
non-tuning iterations.

16

4.1. Learning Rate

= time per nen tuning iteration
0.0055

0.0050

00045

0.0040

time per non tuning iteration

0.0035

00030

[iTy] 02 04 06 [E:] 10
apha

Figure 4.1.: Learning rate tuning with v = 0.8 on the fallingDrop1 simulation A.1.

0.00062 —— time per non tuning iteration
0.00060
0.00058
0.00056
0.00054
0.00052

0.00050

time per non tuning iteration

0.00048

0.00048

0o 02 04 06 08 10
alpha

Figure 4.2.: Learning rate tuning with v = 0.7 on the explodingLiquid simulation A.2.

Both Figures 4.1 and 4.2 show a clear indication that the learning rates between 0.8 and
0.9 produce the best results. The best testing timing for fallindDropl is at a = 0.85 with
0.003468s spent per iteration and for explodingLiquid the best value is & = 0.8 with a timing
per iteration of 0.000462s. This can be explained by the fact that if you have a deterministic
environment, a learning rate of a = 1 will give you the best results.

17

4. Hyperparameter Tuning

A learning rate of near zero is often seen in a stochastic environment since each result
is only a partial truth of the complete answer. Take the example of a coin throw. If the
learning rate is set to one during each iteration, the state values will change and favor or
even only accept the current result. But since both possibilities are equally likely to occur,
this function will never converge to the right solution. But if the learning rate is set to near
zero, each iteration will lower the distance toward the correct answer of 50% for tails and
heads, as seen in Figure 4.3.

PP TTY S W vr Y

0.75 A o
\ 0.75 A
AL YTI A :
0.50 V»W F. ‘\.‘{ N\), ‘.V‘JVJ o)
: rate=T1.0 I 0.50 Irate=0.1
A €0 140 1ca a0pg 75 oo En 100 1en ong
i | ',.'”,.'JN\.A.,.,—: W
0.75 n G)
Uil 0501 |
0.50 Irate=0.01 { Irate=0.001
I‘\ I:In 1 rl\n | én ')II\I\ II\ Eln | rI\n | llin ')lfl\n
=~
0.6 </_/——-'~ 0.38 1 JJ_P_#{/_/'/‘_‘
04l ~ Irate=0.0001 0.36 1 rate=1le-05
o En 180 aen ang A A 180 _1ta ang
0.34 A —
0.36 1
0.33 1 Irate=1e-06 0.35 Irate=1e-07
0 50 100 150 200 0 50 100 150 200

Figure 4.3.: Line Plots of Train and Test Accuracy for a Suite of Learning Rates on the
Blobs Classification Problem[Bro]

Returning to AutoPas, which in theory is a deterministic environment since each instruction
should always take the same amount of time in optimal conditions. The problem is that
many factors influence the final runtime, such as CPU workload, CPU clock boost, memory
response time, and many more. AutoPas doesn’t have these kinds of information when
saving results since, first of all, most of them have very little influence, and they would
introduce a big overhead to collect and store. Therefore it can happen that the two same
configurations at the same iteration of the same simulation produce different timings, which
makes the result appear stochastic to AutoPas. For example, the fur color of a rabbit, as
defined in Table 4.1, is always the same no matter how often it is checked.

Animal Name Colour of Fur
Rabbit Anton Black
Rabbit Oskar White

Table 4.1.: Color of the rabbits separated by name

But if you stop including the name in the table - which would be all the additional
parameters in AutoPas - the answer changes from being deterministic to stochastic since
the color of either Anton or Oskar is being checked and reported as seen in Table 4.2.

18

4.2. Discount Factor

Animal Colour of Fur Percentage
Rabbit Black 50%
Rabbit White 50%

Table 4.2.: Color of a random rabbit

This allows for the explanation of the learning rate value of roughly 0.8, as the environment
in itself is deterministic. Still, due to missing factors and the high complexity, the timings
appear slightly stochastic.

4.2. Discount Factor

The discount factor v serves a different purpose in the AutoPas version of the SARSA
algorithm since the original use case of limiting the influence of future decisions does not
apply in AutoPas. Because the Equation 3.1 does not subtract the current state from the
next state but only multiplies the current state with ~, its purpose moves towards limiting
the importance of previous timings. Since the discount factor is also a hyperparameter, it
needs to be tuned to achieve the best result. So the same technique as for the learning
rate is applied with the parameters from zero to one with 0.05-sized steps. Even though
higher numbers than one can be used and may provide a better result this time, it may
cause the value of the state to explode, meaning it will continue to diverge from zero instead
of converging on a specific number. The performance metric is also the time spent per
non-tuning iterations during a simulation.

0.0060
& time per non tuning iteration
0.0055
0.0050
0.0045

00040 @ T _ e ° -

00035 @

time per non tuning iteration

0.0030

0o 02 04 113 L] 1.0
gamma

Figure 4.4.: Learning rate tuning with o = 0.9 on the fallingDrop1 simulation A.1.

Even though it has a high variance, it still suggests a clear downwards trend for higher
~v’s. The best timing was measured with v = 0.8 with 0.003504'. The linear regression plot

1The timings are averaged over different o values, which introduces a difference in time measured between
the best alpha and gamma timings.

19

4. Hyperparameter Tuning

would suggest that values higher than one would produce a better result, but it is not being
considered because it can cause an inter overflow. The value of 0.8 can be explained by
the fact that there are clearly better configurations that do not increase efficiency during
a simulation.[Pel20] But there are still changes in the overall distribution of the particles
in the room during a simulation which can make slight variations of configurations better
while the simulation progresses.

4.3. Initial States

The choice of the initial condition can impact the time of learning as well as the initial
bias towards specific actions. The initial bias never disappears for constant o’s but only
gets smaller. But having an initial bias is not necessarily bad since it acts as an additional
parameter that can reflect the prior knowledge about an environment. So there are two
ways to set the initial value for a ¢ state.

First, set the value to something very optimistic, like a high number; this forces the
algorithm towards a high exploration since, after the first testing, the value is going to be
lower and needs to be adjusted to be a worse option. This encourages the algorithm to
try all actions multiple times since the states need several updates to reach their optimal
value.[SB1§|

Optimistic, greedy
Q1=5, =0

Realistic, € -greedy

Q,
% Q1=0, £=0.1

Optimal
action

600 800 1000
Steps

Figure 4.5.: The effect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, a = 0.1. [SB18§]

The second option is to use the reward of the first test, which purposely introduces a
bias towards certain actions. This allows, first of all, the introduction of prior knowledge
about the environment if it is deterministic. In addition, it also speeds up learning and
convergence since there is no need to update the value of the states multiple times to even
get close to the optimal reward.[SNL12]

In AutoPas, since the focus is on getting the best possible result as fast as possible and
not testing or choosing bad configurations, the first option does not fit very well. The second
option offers various advantages as well, like not needing to know what an optimistic value
for this specific simulation would be. Another benefit would be the immediate bias towards
better-performing configurations. In addition, AutoPas tests every configuration in the first
tuning phase to avoid the probability of only selecting bad or suboptimal configurations in

20

4.4. Random Exploration

the first exploration phase.

4.4. Random Exploration

The problem with random exploration is that it is, first of all, it is arbitrary and does not
magically select the best configurations to test. So there is a need for a broad enough
coverage over all possibilities to ensure that it will include the optimal composition of options
with a high enough certainty. But this comes with a trade-off between ensuring that the
best configuration is tested and producing additional overhead.

Average
reward

T 1
1 250 500 750 1000
Steps

%, 60% |
Optimal
action 0% |

c—0 (greedy)

T T 1
1 250 500 730 1000
Steps

Figure 4.6.: Average performance of 7 e-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with different bandit problems. All
methods used sample averages as their action-value estimates. [SB18§]

As seen in Figure 4.6, the higher exploration rate selects better actions and reaches this
faster, but the graph does not show how long each step takes. In AutoPas, the goal is to
reduce time spent on the calculation of the simulation, which includes time spent in the
tuning process. So there is a need to find a balance between selecting the best and spending
less time on tuning.

To find a good trade-off, the parameter needs to be tuned since not optimal tuning has a
high chance of suggesting worse configurations, as seen in Figure 5.4b. So the easiest way is
to perform another grid search, but this time with the focus on the exploration parameter.

21

4. Hyperparameter Tuning

210
0.0106

L
“ P é ﬁ" jiiF?

0.0096

(=]
=1
=1
=

tuning iteration

=]
=}
=}
=}

total time spentin s
g B
— I
-
HI—
|
—{0hH
—

Ime per non

1

12 3 4 5 6 7 & 9% 10 1 12 13 14 15 12 3 4 5 &6 7 8 9% 10 1 12 13 14 15
epsilon epsilon
(a) Time per non tuning iteration (b) Total time spent

Figure 4.7.: Timings with different € values averaged over three runs.

As seen in Figure 4.7a the exploration factor of seven offers the best timings for per non
tuning iteration while not taking too long and even getting the best run once. Even though
one to four have better timings overall, it can be explained by the fact that during the first
run, all configurations are tested, and the best never being a bad choice during the whole
simulation.

22

5. Comparison with Full Search and
Predictive Tuning

All of the following simulations were run on my personal Desktop PC B.

5.1. Exploding liquid vs Falling drop

To compare the different tuning strategies, it is essential to know what exactly will be
compared. The tests are done with two different types of simulations. First of all, the
exploding liquid simulationA.2 simulates a compressed liquid in a rectangular box exploding
outwards towards two opposite sides, as seen in Figure 5.1.

) Start) Middle) End

Figure 5.1.: Parts of the exploding liquid simulation

The second simulation is the falling drop simulation A.1 that recreates the falling of a
drop into water as well as the following splash, as seen in Figure 5.2.

(a) Start (b) Middle (c¢) End

Figure 5.2.: Parts of the falling drop simulation

23

5. Comparison with Full Search and Predictive Tuning

These two simulations were chosen because both of them have different characteristics.
Falling Drop starts out with two bodies that then merge into one connected mass. Exploding
liquid, on the other hand, starts with one entity that continues to separate into two significant
and many small parts. These properties are essential for testing since they have varying
requirements for the best configurations. Falling drop, for example, the optimal configuration
only switches between two slightly different configurations 5.3.

000

lterations

ki
=]
[
-
w
o
(=]
°
o
w
@
5]
-
2
=
5

g
=1
[]
2
w
w
of
(=]
o

]
=)
LF]
=
[
J
K]
o
5]
b=
2
[=]
g

Container, Traversal,Data Layout, Newton 3

Figure 5.3.: Amount of iterations a specific configuration was used during the fallingDrop
simulation

24

5.1. Exploding liquid vs Falling drop

The exploding liquid, on the other hand, due to its chaotic nature, can suggest that a
specific configuration is better even though this might only be the case for a few iterations or
never since the composition changed beforehand 5.4. So why is that important for testing?
Because it forces the tuning strategy to predict a wildly varying process and find the best
configuration or a constant flow without requiring a considerable overhead for useless testing.

3000

6000 2500
5000 2000
5 1500

1000

1000 o

)

lterations
B8 8
g8 8 8
lterations
&
(=]
(VerletClusterLists, vcl_cluster_iteration, AoS, disabled) -

)

{VerletClusterLists, vel_c08, AoS, enabled)

(VerletListsCells, vic_sliced_c02, AoS, enabled)
(VerletClusterLists, vel_c08, SoA, enabled)
(VerletClusterLists, vel_c08, AcS, disabled)
(VerletClusterLists, vcl_c06, SoA, disabled)

(VerletListsCells, vic_c18, AoS, enabled)
VerletClusterLists, vel_c01_balanced, AoS, disabled

VerletListsCells, vic_sliced_c02, AoS, enabled

)

Container, Traversal Data Layout Newton 3 Container, Traversal Data Layout Mewton 3

(a) Full Search (b) Predictive Tuning

Figure 5.4.: Amount of iterations a specific configuration was used during the explodingLiquid
simulation separated by the two different tuning strategies

The next step would be deciding what to test or compare the different tuning strategies.
A good start would be the total time spent on the simulation, but this comes with a problem
since it includes several constant factors that are not influenced by the tuning strategy, such
as halo particle exchange or container updates.

The subsequent step would be the total time spent in the force calculation. This has the
advantage of showing the overhead produced by tuning and can, therefore, especially in
shorter or simulations with more tuning phases, favor strategies that choose a good enough
configuration because time tuning is faster than the rest of the simulation.

Calculating the time spent per non tuning iteration would eliminate this favoring. Still, it
would also show strategies that spent more time finding the best configuration in a better
light. This shows the trade-off between less overhead during tuning phases by only testing a
fraction of the configurations and finding the best configuration.

So both total time spent in the force calculation and time spent per iteration will be
compared going forward.

25

5. Comparison with Full Search and Predictive Tuning

explodingLiquid ‘ fullSearch predictiveTuning reinforcementLearning
Total 15.159s 55.156s 12.157s

Tuning 8.721s 4.648s 4.430s

Non Tuning 6.436s 50.505s 7.725s

Per Non Tuning Iteration | 7.199 % 10™%s 47.646 * 10~%s 7.611 % 10~ %s

Table 5.1.: Timings for the different tuning strategies with the explodinglLiquid simulation.

The Table 5.1 shows that predictive tuning has a problem predicting and therefore
selecting a good configuration. It even goes that far in choosing a terrible option. As seen
in Figure 5.4b it decides to disable Newtond, which, as explained in 2.1.3, is very bad for
performance. This could result from the nonoptimal tuning of the underlying extrapolating
function since this can be recreated with a low exploration value. Full search already shows
its good and bad points since it takes longer to tune than to actually run the simulation.
Reinforcement learning is the fastest of the three regarding tuning time, but it shows that
this is a trade-off with actual simulation time and tuning time since it takes 20% longer for
the actual simulation.

fallingDrop fullSearch predictiveTuning reinforcementLearning
Total 196.330s 170.509s 167.480s

Tuning 50.679s 19.136s 14.197s

Non Tuning 138.964s 144.794s 146.760s

Per Non Tuning Iteration | 1.024 x 10725 1.006 * 10~2s 1.010 %« 1025

Table 5.2.: Timings for the different tuning strategies with the fallingDrop simulation.

The timings for the falling drop simulation in Table 5.2 further show the problems full
search has since it spent more than two and a half times the time in the tuning phase than
the other two strategies for an improvement of only about 5%. This time predictive tuning
produces manages to not select terrible options and is only slightly behind reinforcement
learning in total time needed. It even comes first in the time spent per non tuning iteration,
which should be a full search since it should always select the best configuration in theory.

Predictive tuning shows that it can not handle some situations very well, especially the
falling drop simulation. Even though full search has a considerable overhead through the
testing of all possible configurations, it shows that selecting the best options can make
a noticeable difference compared to selecting just a good one. But as seen in Table 5.2
choosing the configuration that is the fastest at the current iteration does not mean that it
will still be true 100 iterations later, as shown by the time spent on non-tuning iterations,
where reinforcement learning and predictive tuning beat out full search.

5.2. Performance with OpenMP

In recent years CPUs have hit a bottleneck regarding the speed of single core and therefore
started to invest in increasing the overall speed of the computations by adding more cores
and threads. Because of this, it is very uncommon for programs to run simulations without
parallelization since it would just waste the rest of the CPU cores. The next test focuses on

26

5.2. Performance with OpenMP

the speed with OpenMP enabled in AutoPas, allowing the workload to be split into different
threads.

explodingLiquid ‘ fullSearch predictiveTuning reinforcementLearning
Total 17.015s 48.482s 11.542s

Tuning 10.499s 6.542s 4.634s

Non Tuning 6.514s 41.936s 6.905s

Per Non Tuning Iteration | 7.286 x 10™%s 40.005 * 10~4s 6,417 %« 10~ s

Table 5.3.: Timings for the different tuning strategies with the explodingLiquid simulation
and 12 threads.

Surprisingly full search is the only one that performs noticeably worse with 12 workers,
which would suggest running into multiple race conditions, especially during the tuning
phase. Predictive tuning also performs worse in the tuning phase but has improved timings
since 12 threads can calculate the force updates faster, even with the hindrance of a bad
configuration. Reinforcement learning is the only one that shows faster timings across the
board and even manages to beat full search in time spent per non-tuning iteration.

fallingDrop ‘ fullSearch predictiveTuning reinforcementLearning
Total 87.773s 64.398s 57.832s

Tuning 22.618s 8.291s 6.961s

Non Tuning 62.325s 53.655s 49.009s

Per Non Tuning Iteration | 0.460 * 10725 0.371 % 10~2s 0.337 % 1025

Table 5.4.: Timings for the different tuning strategies with the fallingDrop simulation and
12 threads.

Even though full search shows improvement in the multi-threaded version of falling drop,
it has less improvement than the other two and this time took almost three times as long to
find the best configuration. Even the time spent in non-tuning iterations gets beaten by both
the predictive tuning and reinforcement learning strategies. Reinforcement learning also
receives the most significant boost from using multiple threads in the falling drop simulation.
It now is the fastest in total time spent as well as time spent per non-tuning iteration.

In conclusion, full search is terrible at handling race conditions and multi-threaded
simulations in general. Even though predictive tuning shows clear improvement in the
parallel version over the sequential one, it still suffers from the same problems. Reinforcement
learning, on the other hand, only gets better through the introduction of multiple threads
and increases its lead over the other two strategies.

27

Part 1V.

Future Work and Conclusion

28

6. Future Work

There are multiple ways to further improve the implementation of this reinforcement
learning. The first would be to substitute the algorithm with a more sophisticated one,
like the previously mentioned QQ-learning method[Has10]. This variation provides faster
converging while still finding the optimal path. This could be further refined by merging
with the two other fields of machine learning.

The supervised field offers the option of deep Q-learning, which would train a neural
network in the place of the q state values, that would even allow to pretrain a model and
then skip the tuning phase exploration phase altogether.

On the other hand, the unsupervised field would be the merge with the, in predictive tuning
proposed, linear regression, which did select better configurations during the testing 5.2. This
algorithm is called GQ-Learning[MSBS10] and offers faster learning through the prediction
of the action values.

Another point to improve the current algorithm would be to offer hyperparameter tuning.
The current values are optimized for the tested simulations and might not be the best for
other completely different scenarios. This could be done with different kinds of techniques
such as gradient-based optimization, Bayesian optimization, or external frameworks[KO22].

Another point of improvement would be the collection of more data, such as the number
of particles, a value representing the distribution of the particle in the room, and maybe the
average force affecting a particle. This would allow, especially when also training a neural
network for far better prediction and accuracy over the next iteration since the function
now has insight into the simulation instead of selecting the optimal configuration based on a
few values provided by a black box-like simulation environment.

29

7. Conclusion

This thesis aimed to determine if Reinforcement learning can be used to improve the
autotuning process within AutoPas. To do that, it was first necessary to select the most
fitting algorithm out of all the variations that reinforcement learning, especially the ones
temporal difference, has to offer. Since none of them provided exactly what was needed,
the SARSA algorithm was chosen due to its faster learning rate and safer prediction and
was modified to fit better. The function was changed so that it no longer considers future
rewards because these are not known yet to the tuner during the simulation process.

The next step was to tune the algorithm’s hyperparameters to get the best possible results.
The parameter that needed to be tuned were the learning rate, discount factor, and the
exploration. The tuning was done by performing a grid search over all possible values.

To show that the reinforcement learning tuning strategy is actually an improvement, it was
compared to the already existing tuning strategies, full search, and prediction tuning. The
comparison was made with the two different simulations falling drop and exploding liquid,
which offer a different particle distribution over a room. Falling drop is one continuous
object, whereas exploding liquid provides a more random distribution of particles all over
the possible space. The strategies were measured according to the total time spent and time
spent in non-tuning iterations to update the force of the particles. In the single-threaded
comparison, reinforcement learning showed a slight improvement over predictive tuning
while being considerably better than full search. In the multi-threaded version, however, it
managed to beat both tuning strategies by a considerable amount.

30

Part V.

Appendix

31

A. Yaml Configurations

Listing A.1: Falling drop yaml file with Reinforcement as tuning strategy

container : [LinkedCells, VerletLists
VerletListsCells , VerletClusterLlsts]

verlet —rebuild —frequency ;10

verlet —skin—radius : 1.0

verlet —cluster —size 4

selector —strategy : Fastest —Absolute—Value

data—layout : [AoS, SoA]

traversal : [le_e01, lc-c18, lc_c08,

lc_sliced_c02 , vl_list_iteration , vlc_c01l, vlc_cl1l8, vlc_sliced_c02 ,
vel_cluster_iteration , vel_cOl_balanced, vcl_c06]

tuning—strategy : reinforcement—learning
tuning—interval ;1000
tuning—samples 3
tuning—max—evidence ;10
functor : Lennard—Jones—AVX2
newton3 : [disabled , enabled]
cutoff 3
box—min : [0, 0, 0]
box—max [7.25, 7.25, 7.25]
cell —size : 1]
deltaT : 0.0005
iterations ;15000
boundary—type : [reflective ,reflective ,reflective |
globalForce : [0,0,—12]
Objects:
"water”
CubeClosestPacked :
0:
particle —spacing 1.122462048
bottomLeftCorner [1, 1, 1]
box—length [48, 28, 10]
velocity : [0, 0, O]
particle —type 0
particle —epsilon o1
particle —sigma 1
particle —mass 1
Sphere:
0:
center : [18, 15, 30]
radius : 6
particle —spacing ¢ 1.122462048
velocity [0, 0, 0]

32

particle —type 1
particle —epsilon 1
particle —sigma 1
particle —mass |
no—flops . false
no—end—config : true
log—level : info
no—progress—bar : True

Listing A.2: Exploding Liquid yaml file with Reinforcement as tuning strategy

container : [LinkedCells, VerletLists ,
VerletListsCells , VerletClusterLists]
traversal : [le_e01l, lc_c18, lc_c08,

lc_sliced_c02 , vl_list_iteration , vlc_cO0l, vlc_cl8, vlc_sliced_c02,
vel_cluster_iteration , vecl_cOl_balanced, vcl_-c06 |

data—layout : [AoS, SoA]
newton3 : [disabled , enabled]
verlet —rebuild —frequency : 10
verlet —skin—radius 0.2
verlet —cluster —size 4
selector —strategy : Fastest—Absolute—Value
tuning—strategy : reinforcement—learning
tuning—interval : 1000
tuning—samples 10
functor : Lennard—Jones—AVX2
cutoff s 2
box—min : [0, 0, 0]
box—max : [15, 60, 15]
cell —size : 1]
deltaT : 0.00182367
iterations : 12000
periodic —boundaries : true
Objects:
CubeClosestPacked :
0:
box—length [15, 6, 15]
bottomLeftCorner [0, 27, 0]
particle —spacing 1
velocity : [0, 0, O]
particle —type 0
particle —epsilon o1
particle —sigma 1
particle —mass o1
no—flops . false
no—end—config : true

no—progress—bar : true

B. Simulation parameters

CPU
Memory
Storage

Compiler
(O

I7—-8700k (6 cores\12 threads) 4.3ghz—4.7ghz boost
16gb DDR4 3600mhz c16

Samsung 960 evo

Clangl0

: WSL2 Ubuntu 20.04 running on Windows 10

34

List of Figures

2.1. The difference between AoS and SoA when loading values for force calculation.
[GSBN22]
2.2. The red point is the selected main particle for the pairwise force calculation.
The red circle is the cut-off radius for the Lennard Jones potential. The
distance is calculated for every particle pair with an arrow, but the force
calculation is only needed for the blue ones. The yellow circle is the Verlet-skin
radius. The blue and red cells are being used in the neighbor list.[GSBN22]
2.3. Traversal patterns that prevent race conditions. The brown line indicates the
end of the space and the outside cells are used for halo particles.[GSBN22] .
2.4. Model of the tuning process of the AutoPas library|[GSBN22]
2.5. The already existing tuning interfaces within AutoPas.
2.6. SARSA vs Q-Learnig in high risk high reward situations.[SB18]

3.1. Inheritance of ReinforcementLearning. Helper function, function parameter,
and return values are excluded to avoid cluttering.

4.1. Learning rate tuning with v = 0.8 on the fallingDropl simulation A.1.

4.2. Learning rate tuning with v = 0.7 on the explodingLiquid simulation A.2. .

4.3. Line Plots of Train and Test Accuracy for a Suite of Learning Rates on the
Blobs Classification Problem[Bro]

4.4. Learning rate tuning with o = 0.9 on the fallingDropl simulation A.1. . . .

4.5. The effect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, o = 0.1. [SB18]

4.6. Average performance of ” e-greedy action-value methods on the 10-armed
testbed. These data are averages over 2000 runs with different bandit prob-

N EEN N

13

17
17

18
19

lems. All methods used sample averages as their action-value estimates. [SB18] 21

4.7. Timings with different e values averaged over three runs.

5.1. Parts of the exploding liquid simulation
5.2. Parts of the falling drop simulation
5.3. Amount of iterations a specific configuration was used during the fallingDrop
simulation
5.4. Amount of iterations a specific configuration was used during the explod-
ingLiquid simulation separated by the two different tuning strategies

22

35

List of Tables

4.1.
4.2.

5.1.
5.2.
5.3.

5.4.

Color of the rabbits separated by name 18
Color of a random rabbit Lo 19

Timings for the different tuning strategies with the explodingLiquid simulation. 26
Timings for the different tuning strategies with the fallingDrop simulation. 26
Timings for the different tuning strategies with the explodingLiquid simulation

and 12 threads. L 27
Timings for the different tuning strategies with the fallingDrop simulation
and 12 threads. L 27

36

Bibliography

[Bro]

[GSBN22]

[Has10]

[HS99]

[JWCW15]

[KO22]

[KOKO5]

[MKS*15]

[MSBS10]

[MVC*10]

Jason Brownlee. Understand the impact of learning rate on neural network perfor-
mance. https://machinelearningmastery.com/understand-the-dynamics-
of-learning-rate-on-deep-learning-neural-networks/. Accessed: 2022-

09-12.

Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp
Neumann. N ways to simulate short-range particle systems: Automated algo-
rithm selection with the node-level library autopas. Computer Physics Commu-
nications, 273:108262, 2022.

Hado Hasselt. Double g-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc., 2010.

Geoffrey Hinton and Terrence J. Sejnowski. Unsupervised Learning: Foundations
of Neural Computation. The MIT Press, 05 1999.

Xiaolong Jin, Benjamin W. Wah, Xueqi Cheng, and Yuanzhuo Wang. Signifi-
cance and challenges of big data research. Big Data Research, 2(2):59-64, 2015.
Visions on Big Data.

Mariam Kiran and Buse Melis Ozyildirim. Hyperparameter tuning for deep
reinforcement learning applications. CoRR, abs/2201.11182, 2022.

Takashi Kuremoto, Masanao Obayashi, and Kunikazu Kobayashi. Nonlinear
prediction by reinforcement learning. In Advances in Intelligent Computing,
volume 3644, pages 1085-1094, 08 2005.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, loannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, February 2015.

H.R. Maei, Cs. Szepesvari, S. Bhatnagar, and R.S. Sutton. Toward off-policy
learning control with function approximation. In J. Flirnkranz and T. Joachims,
editors, ICML, pages 719-726. Omnipress, June 2010.

Martin Midtgaard, Lars Vinther, Jeppe R. Christiansen, Allan M. Christensen,
and Yifeng Zeng. Time-based reward shaping in real-time strategy games. In
Longbing Cao, Ana L. C. Bazzan, Vladimir Gorodetsky, Pericles A. Mitkas,

37

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

Bibliography

[NC23]

[0xf00]

[Pel20]

[RN10]

[SB18]

[Smil5]

[SNL12]

Gerhard Weiss, and Philip S. Yu, editors, Agents and Data Mining Interaction,
pages 115-125, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

I. Newton and R. Cotes. Philosophiae naturalis principia mathematica.
Sumptibus Societatis, 1723.

Oxford english dictionary, 2000.

Julian Mark Pelloth. Implementing a predictive tuning strategy in autopas
using extrapolation. Bachelorarbeit, Technical University of Munich, Sep 2020.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3 edition, 2010.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, second edition, 2018.

Leslie N. Smith. No more pesky learning rate guessing games. CoRR,
abs/1506.01186, 2015.

Hanan Shteingart, Tal Neiman, and Yonatan Loewenstein. The role of first
impression in operant learning. Journal of experimental psychology. General,
142, 08 2012.

38

	Abstract
	Introduction and Background
	Introduction
	Background
	AutoPas
	Data Layouts
	Particle Containers
	Newton3
	Traversals
	Tuning Procedure
	Existing Interfaces

	Machine Learning
	Reinforcement Learning
	Temporal Difference

	Selection of the Reinforcement Learning Algorithm
	Advantages and Disadvantages
	Why Sarsa

	Implementation
	Actual Implementation
	TuningStrategyInterface
	addEvidence()
	tune()

	Results and Analysis
	Hyperparameter Tuning
	Learning Rate
	Discount Factor
	Initial States
	Random Exploration

	Comparison with Full Search and Predictive Tuning
	Exploding liquid vs Falling drop
	Performance with OpenMP

	Future Work and Conclusion
	Future Work
	Conclusion

	Appendix
	Yaml Configurations
	Simulation parameters
	Bibliography

