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Abstract— Motion planning for autonomous agents requires
compliance with a variety of constraints. However, in some
situations, all constraints cannot be simultaneously satisfied,
e.g., due to the misbehavior of other traffic participants. In such
situations, one strategy for guaranteeing a feasible behavior of
the system is deliberately ignoring less important constraints
while maintaining the satisfaction of more important ones. We
address this problem by presenting a novel velocity planner for
an autonomous shuttle that violates temporal logic constraints
as little as possible in the sense that important constraints are
violated last. In particular, we provide an A∗-based velocity
planner that minimally violates a hierarchically ordered set
of constraints formalized in signal temporal logic. We apply
our approach to challenging scenarios from the CommonRoad
benchmark suite, showing that our proposed method yields
easily interpretable and explainable decisions.
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I. INTRODUCTION

Compliance with the intended driving behavior of an
autonomous shuttle is a particularly hard task to solve, as
there are various constraints to be satisfied simultaneously.
Some examples of system constraints are safety and traffic
regulation rules, mission specifications, and comfort require-
ments. During operation, the satisfaction of all constraints
often cannot be guaranteed due to the potential misbehavior
of other traffic participants. Nonetheless, especially in such
situations, the explainability and justification of the chosen
actions are significant. Minimum-violation planning tackles
this challenge by finding a plan when the violation of
constraints is unavoidable [1]. It tries to restore the system
to a state of compliance as fast and with as little additional
constraint violation as possible.

Motion planning is often separated into a lateral and
longitudinal subproblem [2]. In this work, we focus on
the latter and present a novel minimum-violation velocity
planner for autonomous vehicles. An application of our
planner is ZF’s autonomous shuttle (see Fig. 1), which moves
along a predefined path using a magnetic positioning system
according to an online computed target velocity profile [3].

A. Related Work

Subsequently, we review related works on formalizing
constraints, the qualitative preferences between them, and
minimum-violation planning.
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Fig. 1. The autonomous shuttle GRT 3 of ZF (picture: ZF Group).

Formalization of Constraints and Quantification of Con-
straint Violation: Regarding motion planning, temporal logic
is often used to formalize traffic rules because of their inher-
ent temporal nature [4]. For instance, [5], [6] formalize traffic
rules in metric temporal logic (MTL) based on German traffic
laws and court decisions. Unfortunately, to the best of our
knowledge, no set of formalized constraints solely dedicated
to the operation of autonomous shuttles is available.

The predominant temporal formalization language in
minimum-violation planning is linear temporal logic (LTL)
(e.g., see [7]–[9]) and subsets of it, such as syntactically co-
safe LTL (e.g., see [10]–[12]). However, without additional
assumptions, LTL does not provide quantitative semantics.
Thus, defining a cost function for a motion planning problem
subject to LTL constraints can be cumbersome, as a metric
quantifying the violation must be found manually [13], [14].
In contrast, signal temporal logic (STL) offers the quantita-
tive semantics of robustness [15], which indicates the level of
satisfaction or violation of a system’s behavior with respect
to a constraint.

Qualitative Preferences of Constraints: In many multi-
objective motion planning approaches, preferences be-
tween constraints are quantified and expressed by scalar
weights [2]. In contrast, rulebooks [16] define qualitative
relations between constraints as a preorder. That is, they
prioritize compliance with constraints, where several con-
straints can have the same priority. Based on these relations,
rulebooks induce a preorder on trajectories, including equal
priorities between them. This ambiguity between trajectories
is seen as beneficial by the authors, as it provides additional
freedom of choice. In [17], such ambiguities are resolved by
using a decision tree to provide one best output trajectory.



Minimum-Violation Planning: Most minimum-violation
planning approaches operate on a sampled configuration
space, use constraints formalized in temporal logic, and apply
graph-search-based methods. These approaches translate the
temporal logic constraints into a weighted transition sys-
tem and combine this transition system with the sampled
configuration space in a product automaton. Therein, the
shortest accepting run correlates with the minimum-violation
trajectory [7], [18], [19]. Some approaches build the product
automaton explicitly [20]–[22], whereas others construct it
incrementally using sampling-based algorithms [8], [23].
Furthermore, some approaches avoid converting the LTL
formulas into finite automata and immediately create a
combined transition system [9], [11], [14].

Only a few minimum-violation planning approaches use
constraints formalized in STL. The authors of [24] develop
a sampling-based minimum-violation planner using STL
constraints. The costs in the planning problem are composed
from a combination of space and time robustness. The
authors of [25] show that the robustness property of STL
is well suited for encoding interpretable driving-behavior
preferences.

An exception among the presented methods of minimum-
violation planning is [26]. The authors transfer the con-
straints of the planning problem successively from hard to
soft constraints and solve an optimal control problem in each
computation cycle until a feasible solution is found. The
formulation of their constraints is inspired by STL.

B. Contributions

In this paper, we present a novel A∗-based minimum-
violation velocity planner for longitudinal motion applica-
tions, which are subject to constraints formalized in STL. In
detail, our contributions are:

• combining a lattice representation of the configuration
space with an A∗ search to solve a lexicographic
optimization problem,

• formalizing 32 STL constraints specifying the move-
ment of an autonomous shuttle along a predefined
reference path,

• redefining the robustness of the temporal globally op-
erator to quantify the level of constraint violation over
the planning time horizon, and

• presenting a method to significantly reduce the overall
number of constraint evaluations in the A∗ search
process.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the necessary preliminaries and state the
motion planning problem. Sec. III describes the redefinition
of the robustness and presents our STL constraints. Sec. IV
explains the minimum-violation planning algorithm and the
approach to reduce the number of rule evaluations. Finally,
we present the results of numerical experiments in Sec. V
and conclude in Sec. VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we present the semantics of STL, intro-
duce totally ordered rulebooks, and formalize our minimum-
violation planning problem.

A. Signal Temporal Logic

STL facilitates temporal reasoning over real-valued trajec-
tories [15]. Let a discrete time step k ∈ N0 correspond to
the time tk = k∆t, where ∆t ∈ R+ is the time increment.
A discrete-time trajectory is a map τ : K → Rn, where
K = [k0, kf ] ⊆ N0 is the discrete time domain, with k0
and kf being the initial and final time step, respectively, and
k0 ≤ kf . The state of a trajectory at time step k is denoted
as τ k. We refer to (τ , I) as the portion of τ in the time
interval I ⊆ N0. When I = [k, kf ], we simply write (τ , k).
In order to map a trajectory τ to the domain of Boolean
values B, we define predicates of the form µ := p(τ k) ≥ c,
with p : Rn → R and c ∈ R. An STL formula ϕ is defined
by the following grammar [27, Sec. 2.1]:

ϕ := µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 | ϕ1SIϕ2,

where ϕ1, ϕ2 are STL formulas, and ¬,∧ are negation and
conjunction, respectively. UI is the temporally bounded
until operator, and SI is the temporally bounded since
operator. Note that I is omitted from the grammar when
I = [k0, kf ]. We denote the satisfaction of a formula ϕ by
a trajectory τ in the time interval [k, kf ] by (τ , k) |= ϕ.
For the semantics of STL, we refer to [27, Sec. 2.1]. Let
us introduce > := ¬(¬ϕ ∧ ϕ) and the shorthand notations
future FIϕ := >UIϕ, once OIϕ := >SIϕ, and globally
GIϕ := ¬FI¬ϕ, as described in [27, Sec. 2.1]. Addition-
ally, the implication ϕ1 ⇒ ϕ2 can be written as ¬ϕ1 ∨ ϕ2.

Robustness quantifies the level of compliance of an STL
formula, where a positive value indicates satisfaction, and a
negative value indicates violation [27]. Formally, the robust-
ness ρ(ϕ, τ , k) of a formula ϕ and a trajectory τ at time
step k is defined as follows [27, Sec. 2.2]:

ρ(>, τ , k) :=∞,
ρ(p(τ ) ≥ c, τ , k) := p(τ k)− c,

ρ(¬ϕ, τ , k) := −ρ(ϕ, τ , k),

ρ(ϕ1 ∧ ϕ2, τ , k) := min
(
ρ(ϕ1, τ , k), ρ(ϕ2, τ , k)

)
,

ρ(GIϕ, τ , k) := min
k′∈(k+I)∩K

(
ρ(ϕ, τ , k′)

)
,

ρ(OIϕ, τ , k) := max
k′∈(k−I)∩K

(
ρ(ϕ, τ , k′)

)
,

ρ(ϕ1SIϕ2, τ , k) := max
k′∈(k−I)∩K

(
min(ρ(ϕ2, τ , k

′),

min
k′′∈(k′,k]

(ρ(ϕ1, τ , k
′′)))

)
.

B. Rules and Rulebooks

In the remainder of this work, we refer to rules as a general
term summarizing different types of constraints (e.g., traffic
rules, mission specifications, or comfort requirements). Let
a rule be an STL formula ϕ. The relation ρ(ϕ, τ 1, k) >
ρ(ϕ, τ 2, k) indicates that τ 1 violates ϕ to a smaller extent
(or satisfies it to a greater extent) than τ 2.
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Fig. 2. An example scenario at initial time step k0 with three possi-
ble trajectories τ1, τ2, and τ3 at time step k1 > k0. The required
distance to the front and the rear of the ego vehicle is represented
by df and dr , respectively. A rulebook B1 = (keep front distance >
keep rear distance) induces the order τ3 > τ2 > τ1, and a rulebook
B2 = (keep rear distance > keep front distance) induces the order
τ1 > τ3 > τ2.

We sort the rules ϕi ∈ R in descending order according
to their importance and define a totally ordered rulebook as
a tuple B := 〈R, <〉, where R is a set of rules and < is a
strict total order. A rule ϕi corresponds to a rank i in B, with
i ∈ 1, 2, . . . , R and R = |R|, where i = 1 is the highest rank,
and i = R is the lowest rank (ϕ1 ≥ ϕi ≥ ϕR). Note that we
do not consider the general case of preordered rulebooks in
this work (cf. [16]).

Based on the totally ordered rules R, a rulebook B
induces the lexicographic order [28, (8.17)] on a set of
trajectories T [16]. Given two trajectories τ 1, τ 2 ∈ T , we
write τ 1 > τ 2 if τ 1 is lexicographically better than τ 2 with
respect to a rulebook B. To illustrate the induced order on
a set of trajectories by a rulebook, Fig. 2 shows an example
scenario with three trajectories and two different rulebooks.

C. Reference Path and Vehicle Model

Let us introduce the reference path Γ : R → R2,
which maps the arc length s ∈ R to a position coordinate
z ∈ R2 in the global Cartesian frame. Further, let the set
of admissible states be X ⊆ Rn and the set of admissible
inputs be U ⊆ Rm, where x ∈ X represents the state and
u ∈ U represents the input. We model the dynamics of the
autonomous vehicle along the reference path Γ with:

xk+1 =

(
1 ∆t
0 1

)
xk +

(
1
2∆t2

∆t

)
uk, (1)

where x = (s, v)T corresponds to the position and the
velocity of the ego’s center point along Γ, and the input
u = a is the acceleration. In the remainder of this paper,
the notations � and � are used to indicate a minimum and
maximum value of a variable �, respectively. We assume the
states and the inputs of system (1) to be constrained by:

v ≤ v ≤ v,√
a2 + (v2κs)2 ≤ a,

a ≤ a,
(2)

where κs is the curvature of Γ(s). We denote the solution
of (1) for an input trajectory u(·) and an initial state x(k0)
by τ (k, x(k0), u(·)).

D. Minimum-Violation Planning Problem

We define the minimum-violation planning problem as a
lexicographic optimization problem [29, (13)]:

max
τ∈T

ρ(ϕi, τ , [k0, kf ])

s.t. ρ(ϕj , τ , [k0, kf ]) = ρ(ϕj , τ
∗
j , [k0, kf ]),

with j = 1, 2, . . . , i− 1, when i > 1,

for i = 1, 2, . . . , R,

(3)

where i corresponds to a rank in B. This problem describes
a series of i = 1, 2, . . . , R optimization problems evaluated
sequentially, each aiming to find an optimal trajectory τ ∗i
maximizing the robustness regarding a rule ϕi. The ith

optimization problem is constrained by the j optimal ro-
bustness values ρ(ϕj , τ

∗
j , [k0, kf ]) resulting from the optimal

trajectories τ ∗j of the problems j = 1, 2, . . . , i− 1 when
i > 1. Informally, the optimal robustness values for higher
rank rules constrain the solution space of the optimization
problems of lower rank rules. Please note that we incorporate
the state and input constraints (2) as rules ϕi into B.

III. ROBUSTNESS AND RULES

In this section, we redefine the robustness of the temporal
globally operator and present our formalized STL rules for
an autonomous shuttle application.

a) Redefinition of Robustness: To quantify the rule
violation of a trajectory, we draw inspiration from [24],
which defines a new temporal operator similar to the globally
operator, whose semantics combines space and time robust-
ness. In contrast, we merely redefine the robustness of the
globally operator GI and derive a measure quantifying the
rule violation of a trajectory over the planning time horizon
as:

ρ(GI ϕ, τ , k) :=
∑

k′∈(k+I)∩K

min
(
0, ρ(ϕ, τ , k′)

)
∆t. (4)

Informally, this semantics sums up the extent to which a
formula ϕ is violated by a trajectory τ over the planning
time horizon, based on a numerical integration. Note that
we bound the robustness by zero and only consider negative
robustness values. As presented subsequently, all our rules
are of type GI ϕ; hence, according to (3) and (4), only
the violation of rules by a trajectory generates costs in the
optimization problem. To illustrate this, Fig. 3 presents three
velocity profiles subject to a maximum velocity rule and
their respective robustness values over an increasing time
horizon. Herein, the motivation to redefine the robustness of
the GI operator becomes evident since, using its standard
definition as presented in Sec. II-A, the robustness for τ 1 and
τ 3 would be equal. We consider this to be counterintuitive
in our application because, although the maximum violation
of the rule is the same for both trajectories, τ 1 returns to a
state of rule compliance, whereas τ 3 does not.
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Fig. 3. An example of the robustness of three trajectories τ1, τ2, and
τ3 and rule ϕ = Gφ, with φ := v < v and ρ(φ, τ , k) = v − v, over an
increasing time horizon. The induced order on the trajectories in the time
horizon [0, kf ] is τ2 > τ1 > τ3.

b) Formalized STL Rules: Subsequently, we formalize
rules inspired by the German traffic law and by [5], [6].
We want to emphasize that some rules are simplified and
we do not claim any legal correctness or completeness.
Nevertheless, we believe that our formalized rules capture
the essence of the law text, as shown in the experiments in
Sec. V.

Tab. I shows our formalized STL rules. As they are of a
simple structure, we focus on explaining the used predicates
and functions subsequently. For readability, we mark func-
tions with [f], whereas the predicates remain unmarked. We
denote the ego vehicle by e and obstacles by o ∈ O, where
O is the set of obstacles in a scenario. The position so corre-
sponds to the center point of obstacle o projected onto Γ, δo
is the minimum Euclidean distance of the obstacle’s center
point to Γ, and vo is the obstacle’s velocity. Moreover, let us
introduce the abbreviation VRU, which stands for vulnerable
road user. Note that rule ϕ24 considers intersections (left
turns are excluded) and crosswalks [30]. Notably, some of
the rules can be interpreted as cost functions (e.g., rule ϕ32).
The predicates and functions are as follows:

• keeps vehicle constraints(e): Indicates if the vehicle
constraints (cf. (2)) are satisfied;

• contact(e, o, ε): Indicates if there is a geometrical over-
lap between the occupancy of ego e and obstacle o.
The optional parameter ε specifies a rule-dependent
expansion of the respective occupancies. For instance,
in rule ϕ8, ε corresponds to an enlargement of the
ego’s occupancy in its driving direction. For the sake
of simplicity, we omit a detailed description of ε, as its
meaning directly follows from the context of the rules;

• type(o) [f]: Returns the type of obstacle o (cf. [30]);
• is emergency vehicle on duty(o): Indicates if obstacle o

is an emergency vehicle and currently on duty;
• is leading(e, o): Indicates if obstacle o is ahead of ego e

along Γ. Therefore, we evaluate (s < so) ∧ (δo < δ),
where δ is a predefined threshold;

• dist(e, o) [f]: Returns the Euclidean distance between
the occupancy of ego e and obstacle o;

• safe dist(e, o) [f]: Returns the safe distance between
ego e and obstacle o as defined in [31, (4)];

• passing(e, o): Indicates if ego e passes obstacle o by
evaluating (s > so) ∧O[0,1](s ≤ so);

• speed limit conditions(sc, {weather, road}) [f]: Re-
turns a maximum velocity limit depending on the
weather or road conditions in scenario sc (cf. [30]);

• in degradation(e): Indicates whether ego e has an in-
ternal error;

• speed limit lane(e) [f]: Returns the speed limit of the
lane on which the center point of ego e is located;

• has right of way(o, e): Indicates if obstacle o has prior-
ity over ego e, based on traffic signs, traffic lights, and
the future path of the ego vehicle (cf. [6]);

• occupies({e, o}, object type): Indicates if ego e or ob-
stacle o occupies a road object of the respective type
(cf. [6]);

• crosses stop line(e): Indicates if ego e crosses a stop
line by evaluating (s > sstop)∧O[0,1](s ≤ sstop), with
sstop = s stop line({stop sign, traffic light});

• s stop line({stop sign, traffic light}) [f]: Returns the
stop line position corresponding to a stop sign or traffic
light;

• is red(tl): Indicates if traffic light tl is currently red;
• s in range(s, s): Indicates if the current position s is in

the interval [s, s];
• Fres(e) [f]: Returns the current driving resistance force

of ego e (cf. [32, Sec. 4.1]).
Further, we introduce the following adjustable parameters:
ssc and ssc are station limits; vcl,b, vcross, vbic, vbus, vnp,
vdeg , vmission, vbump, and vnoise are velocity limits; dbic,
dbus, and dnp are limits on the Euclidean distance; aabr,
amission, alat,comf , and alon,comf are acceleration limits; P
is a power limit; ∆vflow is a velocity range; Istop, Iabr, and
Isc are time intervals; and ksc is a time step.

IV. ALGORITHM

Our approach to solving problem (3) can be summarized
as follows: We discretize the configuration space using a
lattice and sample time, position, and velocity equidistantly.
Within the lattice graph, a lexicographic A∗ search is per-
formed, where the traversal costs of a trace are based on
its robustness regarding the rules of a rulebook. We omit a
detailed description of the A∗ algorithm and refer to [33] for
further details. The optimal trajectory τ ∗ corresponds to the
lexicographically best trace in the lattice graph. We increase
the performance of our algorithm by reducing the number of
necessary rule evaluations and using a custom priority queue.

A. Lattice Representation

In order to explain our velocity planning algorithm, we
first introduce the directed acyclic lattice graph G = (N , E),
where N is a set of nodes, and E ⊆ N × N is a
set of edges. Each node is uniquely specified by a state
x = (s, v)T ∈ X and a time step k ∈ N0. Further, let
STATE(n) and TIMESTEP(n) return the state x and the
time step k associated with node n ∈ N . Edges are added
between nodes if the corresponding state transition satisfies
the vehicle model (1) subject to (2) [34].



TABLE I
STL RULES FOR AN AUTONOMOUS SHUTTLE APPLICATION.

Description Rule Description Rule

Vehicle constraints ϕ1 = G(keeps vehicle constraints(e)) Mission acc. limit ϕ17 = G(|a| ≤ amission)

Stop after crash ϕ2 = G(O(contact(e, o))⇒ v = 0) Lane velocity limit ϕ18 = G(v ≤ speed limit lane(e))

Collision avoid. VRU ϕ3 = G(type(o) = vru ∧ contact(e, o)⇒ v = 0) Right of way ϕ19 = G(has right of way(o, e)⇒ ¬contact(e, o, ε))
Collision avoid. vehicle ϕ4 = G(type(o) = vehicle ∧ contact(e, o)⇒ |v − vo| = 0) Stop at crosswalk ϕ20 = G(occupies(o, crosswalk)⇒ ¬contact(e, o, ε))
Collision avoid. static ϕ5 = G(type(o) = static ∧ contact(e, o)⇒ v = 0) Stop at stop sign ϕ21 = G(crosses stop line(e)⇒ OIstop (v = 0))

Emergency vehicle ϕ6 = G(is emergency vehicle on duty(o) ∧ ¬contact(e, o, ε)) Stop at red traffic light ϕ22 = G(is red(tl) ∧ crosses stop line(e)⇒ s ≤ sstop)

Safe distance ϕ7 = G(is leading(e, o)⇒ dist(e, o) ≥ safe dist(e, o)) Abrupt braking ϕ23 = G(a ≥ aabr)

Clearance front ϕ8 = G(contact(e, o, ε)⇒ v = 0) Blocking of crossings ϕ24 = G(occupies(e, crossing)⇒ v ≥ vcross)

Clearance back ϕ9 = G(v ≥ vcl,b ⇒ ¬contact(e, o, ε)) Preserve traffic flow ϕ25 = G(v ≥ (speed limit lane(e)−∆vflow))

Passing of bicycles ϕ10 = G(type(o) = bicycle ∧ passing(e, o) ∧ dist(e, o) ≤ dbic ⇒ v ≤ vbic) Lat. comf. acceleration ϕ26 = G(|v2κs| ≤ alat,comf )

Passing of buses ϕ11 = G(type(o) = bus ∧ passing(e, o) ∧ dist(e, o) ≤ dbus ⇒ v ≤ vbus) Lon. comf. acceleration ϕ27 = G(|a| ≤ alon,comf )

Narrow passing ϕ12 = G(passing(e, o) ∧ dist(e, o) ≤ dnp ⇒ v ≤ vnp) Vertical comfort ϕ28 = G(occupies(e, speed bump)⇒ v ≤ vbump)

Weather conditions ϕ13 = G(v ≤ speed limit conditions(scenario, weather)) Schedule ϕ29 = G(k = ksc ⇒ OIsc (s in range(ssc, ssc)))

Road conditions ϕ14 = G(v ≤ speed limit conditions(scenario, road)) Power limitation ϕ30 = G(vFres(e) ≤ P )

Degradation ϕ15 = G(is in degradation(e)⇒ v ≤ vdeg) Noise emission ϕ31 = G(v ≤ vnoise)

Mission velocity limit ϕ16 = G(v ≤ vmission) Minimize acceleration ϕ32 = G(a2 = 0)

B. Planning Procedure

Alg. 1 shows our minimum-violation velocity planning
approach. The input is a lattice graph G, an initial state x0,
a rulebook B, and the final time step kf . The output is the
optimal final node n∗, where the trace leading to n∗ encodes
the minimum-violation velocity profile. In contrast to the
standard A∗ algorithm, we do not use scalar costs. However,
we compare traces in G lexicographically according to
their robustness regarding the rules in B. We present our
modifications for the trace comparison (see line 16) and the
priority queue representation (see lines 3, 5, 12, and 18) in
the subsequent subsections.

C. Trace Comparison

The function BETTER(·) (see line 16 in Alg. 1) performs
a lexicographic comparison between two competing traces,

Algorithm 1 MINIMUMVIOLATIONVELOCITYPLANNING

Input: Lattice G, initial state x0, rulebook B, final time step kf
Output: Optimal final node n∗

1: n0 ← SETINITIALNODE(x0, B)
2: C ← {}, Q← {}
3: ADD(Q,n0) . Sec. IV-D.a
4: while true do
5: np ← POP(Q) . Sec. IV-D.b
6: if TIMESTEP(np) == kf then
7: return n∗ ← np

8: end if
9: INSERT(C, np)

10: for nc in GETCHILDNODES(G, np) do
11: if nc /∈ C ∧ nc /∈ Q then
12: ADD(Q,nc) . Sec. IV-D.a
13: end if
14: if nc ∈ Q then
15: ninc ← Q(nc)
16: if BETTER(nc, ninc, B) then . Sec. IV-C
17: REMOVE(Q,ninc)
18: ADD(Q,nc) . Sec. IV-D.a
19: end if
20: end if
21: end for
22: end while

which end in the same node. Therefore, it evaluates and com-
pares the robustness values of all rules R in the rulebook B
for a trajectory τ tr, which is induced by the respective traces.
We refer to the robustness of a trace regarding a rule ϕi as
ρϕi

tr = ρ(ϕi, τ tr, [k0, k
tr
f ]), with k0 ≤ ktrf ≤ kf .

An admissible heuristic never overestimates the costs of
reaching the goal. In our application, this corresponds to
not overestimating the negative robustness of a trace. Thus,
we introduce τh as the trace starting from the final state
of τ tr at ktrf and ending at the time step kf , determined
based on vehicle model (1) with the constant inputs a or a.
For rules that are of the form ϕ := v ≤ v or ϕ := v ≥ v
(e.g., see ϕ13 or ϕ25 in Tab. I), an admissible heuristic
ρϕi

h = ρ(ϕi, τh, [k
tr
f , kf ]) can be easily derived: The con-

stant inputs a or a return system (1) to a rule-compliant
state as fast as possible. Thus, there cannot be a trace with
a smaller negative robustness value than the trace generated
by the inputs a or a for rules of the mentioned form. We
save the definition of ρϕi

h for the remaining rules for future
work and set ρϕi

h = 0.

Each trace corresponds to a tuple of robustness values
% = (ρϕ1

tr + ρϕ1

h , . . . , ρϕR

tr + ρϕR

h ), where each entry is the
sum of the trace and the heuristic robustness for each rule
ϕi ∈ R. To compare two traces in G, we compare their
corresponding robustness tuples lexicographically. According
to the lexicographic comparison rule (i.e., (y1, y2) > (y3, y4)
iff y1 > y3∨(y1 = y3∧y2 > y4), with y ∈ R [28]), only the
lowest non-equal element of the tuples is decisive. To pre-
vent unnecessary evaluations of rules, function BETTER(·)
successively evaluates each rule ϕi of rulebook B for the
competing traces and directly compares their robustness
values. For instance, the robustness tuples %1 = (-2, -3, . . . )
and %2 = (-2, -4, . . . ) are equal for the robustness of rule ϕ1

but already deviate for the robustness of rule ϕ2. Thus, the
result of the lexicographic comparison between %1 and %2 is
independent of rules of rank i > 2, and the robustness does
not need to be evaluated for these rules.



D. Priority Queue

To reduce the number of lexicographic comparisons, we
present a custom priority queue. The main idea is to as-
sign the priority queue elements based on a lexicographic
comparison into unsorted buckets (likewise the bucket sort
algorithm [35, Sec. 8.4]) and, subsequently, only search
the most promising bucket based on the lexicographic sort
algorithm [36, Alg. 3.1] (also known as the most significant
digit radix sort algorithm [35, Sec. 8.3]) for the current
best element. This contrasts with classic priority queue
approaches, where a completely ordered list of elements is
always maintained. Below, we illustrate with an example how
we add and pop nodes to and from our priority queue.

a) Adding Nodes: We create a bucket Bi ∈ P for each
rank i in rulebook B (i.e., P contains |P| = R buckets).
Function ADD(·) (see lines 3, 12, and 18 in Alg. 1) adds a
new child node nc ∈ N to Q by comparing its robustness
tuple %c lexicographically with the robustness tuple %∗ of the
popped (i.e., best) element from the previous iteration of the
A∗ algorithm. The node nc is then assigned to bucket Bj ,
where j is the rank of the lowest non-equal entry of the
robustness tuples (cf. Sec. IV-C). Fig. 4 shows an example.
Therein, ADD(·) is called on tuple %c = (-1, -2, -3), which
is compared with %∗ = (-1, -1, -3). As %c deviates from %∗

on rank i = 2, it is assigned to bucket B2.
b) Popping Nodes: To find and pop the current lexico-

graphically best node in Q, we only must search the bucket
corresponding to the lowest-rank non-empty bucket B∗i .
Therefore, function POP(·) (see line 5 in Alg. 1) sorts the
best elements in B∗i recursively into buckets corresponding to
lower rank rules using the lexicographic sort algorithm and
returns the lexicographically best element. The robustness
tuple of this best element replaces the current value of %∗.
Again, Fig. 4 shows an example. When POP(·) is called,
the lowest-rank non-empty bucket B∗2 is evaluated. The best
tuples regarding the robustness of rule ϕ2, (-1, -2, -1) and
(-1, -2, -3), are then transferred to bucket B∗3 , where holds
that (-1, -2, -1) > (-1, -2, -3). Thus, (-1, -2, -1) replaces the
current value of %∗, and the corresponding node is returned.

%∗ = (-1, -1, -3)

B1 : {(-3, -1, -2)}
B∗2 : {(-1, -3, -3),
B2 : {(-1, -2, -1)}

B3 : {}

%∗ = (-1, -1, -3)

B1 : {(-3, -1, -2)}
B∗2 : {(-1, -3, -3),
B2 : {(-1, -2, -1),
B2 : {(-1, -2, -3)}
B3 : {}

%∗ = (-1, -1, -3)

B1 : {(-3, -1, -2)}
B2 : {(-1, -3, -3)}

B∗3 : {(-1, -2, -1),
B2 : {(-1, -2, -3)}

%∗ = (-1, -2, -1)

B1 : {(-3, -1, -2)}
B2 : {(-1, -3, -3)}

B∗3 : {(-1, -2, -3)}

(-1, -2, -3) → ADD POP → (-1, -2, -1)

Q Q Q Q

Fig. 4. An exemplary priority queue progress showing a priority Q already
filled with nodes and their respective robustness tuples.

V. NUMERICAL EXPERIMENTS

To emphasize the interpretability of our velocity planner’s
outputs, we present three scenarios from the CommonRoad
benchmark suite [30]. A reference path is given by a high-
level planner, and the predicted trajectories of other traffic
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Fig. 5. Scenario I: Passing of a bus at a bus stop. (a) Start configuration
of the scenario. (b) Minimum-violation velocity profile τ1 and two lex-
icographically worse candidates τ2 and τ3. (c) Robustness for the rules
according to Tab. I.

participants are provided in the scenarios. We use the rules
from Tab. I and keep the presented order to form a rule-
book B (ϕ1 > ϕ2 > · · · > ϕ32). We set kf = 15 and the
time increment ∆t = 0.4 s. The algorithm is implemented
in Python, and collision checks are performed with the
CommonRoad Drivability Checker [37]. The experiments are
executed on an Intel CoreTM i5-10310U CPU. Animations of
the scenarios are provided as supplementary material.

A. Scenario I

The first scenario, DEU Flensburg-6 2 T-1, is an
inner-city scenario, in which the ego vehicle passes a bus
at a bus stop. Fig. 5 shows the start configuration of the
scenario, the resulting minimum-violation velocity profile
τ 1 and two lexicographically worse profiles τ 2 and τ 3 for
comparison. We visualize the robustness per rule normalized
to the range [0, -1], where -1 corresponds to the minimum
robustness value of either τ 1, τ 2, or τ 3. At the initial
time step k0, the ego vehicle already violates certain rules,
e.g., the mission velocity limit ϕ16. As a result, the safe-
distance rule ϕ7 and the passing-of-buses rule ϕ11 cannot
be satisfied. Nevertheless, by performing a hard braking
maneuver, the minimum-violation trajectory minimizes the
negative robustness of these rules. The velocity plot shows
that τ 2 applies less deceleration starting from k = 3 than
τ 1. This leads to a higher violation of rule ϕ7 by τ 2 and,
thus, to the relation τ 1 > τ 2. As velocity profile τ 3 does
not brake in time and causes a crash, the resulting order is
τ 1 > τ 2 > τ 3. Due to the lexicographic preferences, the
violation of rules on lower ranks (e.g., schedule rule ϕ29)
does not influence the resulting order of the trajectories in
this scenario.



B. Scenario II

As a second example, we present the cut-in scenario
ZAM Zip-2 1 T-1, where an obstacle performs a cut-in
maneuver in front of the ego vehicle, resulting in an un-
avoidable front-bumper crash. Fig. 6 presents the results. We
can see that all three trajectories violate the stop-after-crash
rule ϕ2, as all continue driving for some time. However,
velocity profile τ 1 generates the fastest stopping maneuver,
resulting in the order τ 1 > τ 2 > τ 3. Furthermore, profile τ 3

is the only profile that does not come to a stop on the cross-
walk and, hence, does not violate rule ϕ24. However, as this
rule is on the low rank i = 24, the corresponding violation
is not pivotal to the decision process in this scenario.
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Fig. 6. Scenario II: Cut-in maneuver of an obstacle. (a) Start configu-
ration of the scenario. (b) Minimum-violation velocity profile τ1 and two
lexicographically worse candidates τ2 and τ3. (c) Robustness for the rules
according to Tab. I.

C. Scenario III

The last scenario we present is USA Peach-5 1 T-1,
where an emergency vehicle on duty is approaching an
intersection; however, the ego vehicle is blocking its way.
Additionally, poor visibility and weather conditions prevail.
Fig. 7 shows the results. Our rulebook B implies that not
blocking an emergency vehicle on duty is more important
than remaining stopped at a red traffic light. Thus, the
minimum-violation velocity profile violates the stop-at-red-
traffic-light rule ϕ22 and slowly moves into the intersection
to avoid interfering with the emergency vehicle. In contrast,
velocity profile τ 2 stops and remains stopped at the traffic
light and, thus, violates rule ϕ6. The resulting order is
τ 1 > τ 3 > τ 2.

D. Performance

Our algorithm is complete and optimal regarding the set
of traces induced by the lattice graph G. It has the same time
complexity as the standard A∗ algorithm, but additionally, it
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Fig. 7. Scenario III: Blocking of an emergency vehicle on duty at a red
traffic light. (a) Start configuration of the scenario. (b) Minimum-violation
velocity profile τ1 and two lexicographically worse candidates τ2 and τ3.
(c) Robustness for the rules according to Tab. I.

also depends on the number of rules that must be evaluated
for each transition. Tab. II presents the number of evaluated
rules Nr and the average computation times Tc for the
three scenarios discussed previously. We compare a pure A∗

implementation with the adapted approach using a minimum
number of rule evaluations A∗mre and find that the number
of evaluated rules can be reduced significantly. However, the
differences in the calculation times appear to be minor. This
is because the number of evaluations for rules on lower
ranks (e.g., ϕ31) can mostly be reduced, which are less
costly to evaluate in our implementation than rules on higher
ranks (e.g., ϕ4) where collision checking is involved. Overall,
we believe that the calculation times are reasonable for a
prototypical implementation.

TABLE II
NUMBER OF RULE EVALUATIONS AND AVERAGE COMPUTATION TIMES.

Algo.
Scenario I Scenario II Scenario III

Nr Tc (ms) Nr Tc (ms) Nr Tc (ms)

A∗ 13152 106 5376 35 18912 90
A∗

mre 9332 94 1978 30 11965 78

VI. CONCLUSIONS

We propose a novel method for minimum-violation ve-
locity planning. Contrary to existing works, our A∗-based
velocity planner utilizes rules formalized in STL and uses
its quantitative semantics to reason about the level of rule
violation of a trajectory over time. We facilitate this by
redefining the robustness of the temporal globally opera-
tor. Furthermore, we show that the overall number of rule
evaluations can be reduced. Our experiments demonstrate



that even for scenarios where multiple rules must be vio-
lated simultaneously, the resulting velocity profiles remain
interpretable and reasonable. Our approach can be beneficial
for the certification of autonomous shuttles. In the future,
we intend to develop more complex and realistic rules (e.g.,
based on [5], [6]) and deduce an automatism to derive
heuristics, independent of the rule type. As we solely use
totally ordered rulebooks in this work, we want to extend our
approach to the more general case of preordered rulebooks.
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