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Abstract— Traffic state estimation is relevant for real-time
traffic control, providing travel information as well as for ex-
post analysis of traffic patterns. While the output is usually the
average speed and vehicle flow along street segments, the type
of input data and the existing methods to obtain the output
are diverse. Recently, physics-informed data-driven approaches
started to emerge that enrich the estimation process with infor-
mation taken from physical models. In traffic, so far, these have
been the continuity equation and the fundamental diagram,
designed to describe fully the traffic dynamics along links and
corridors. In this paper, we propose a simpler and practice-
ready physics-informed machine learning approach that in-
forms the estimation through the well-established fundamental
diagram in a loss constraint. It is designed for a link-level
analysis where traffic homogeneity along the considered link
is assumed. We apply the proposed method to full-trajectory
drone data from Athens, Greece, demonstrate the applicability
of our proposed approach, and point out its potential to future
applications, e.g., a filter for control algorithms.

I. INTRODUCTION

Traffic state estimation (TSE) is an essential part in
transport planning and operations since it is required for
effective design, evaluation, and selection of measures. The
general aim is to infer the macroscopic traffic variables of
flow, speed and density for a given point in time and space,
by processing the available information from sensors such as
loop detectors or probe vehicles.

Classical TSE was first developed for freeways. A well-
known method is the adaptive smoothing method [1] that
estimates traffic states between observation points and re-
duces the measurement noise. Further approaches are based
on the extended Kalman Filter (EKF) and loop detector
data (LDD) [2]; an EKF, LDD, and a multi-class first-order
traffic flow model [3]; a Kalman Filter and floating car data
(FCD) [4]; and an EKF exploiting both FCD and LDD using
the Godunov scheme [5]. Also, data-driven approaches with
clustering and time series analysis were applied for state
estimation and prediction [6]. EKF and particle filtering has
also been used for online TSE for multimodal traffic [7].
In recent years, advances in machine learning and rich data
availability enabled the deployment of powerful methods
such as deep learning for TSE, e.g. [8]. A review on highway
state estimation can be found in Seo et al. [9].
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In contrast to highways, urban areas are usually associated
with substantially higher complexities such as traffic lights,
public transport operation, slower road users, and the net-
work structure itself. These aspects increase the complexity
of TSE for urban areas. Similar to highways, the main data
sources are still LDD and FCD (e.g., taxis and public trans-
port vehicles). Respective methods were developed based on
the Lighthill-Whitham-Richards model using artificial FCD
[10], the Markovian queueing model [11], speed transition
matrices [12], and multiple regression [13]. Recently, data
from drones has become available which seems promising
for TSE, e.g. [14]. A number of data-driven TSE methods
for congestion detection are also reviewed in [15].

Lately, progress has been made in numerical methods for
modeling physical systems with deep learning [16]–[19].
These advances allow the learning process to be regularized
with the information contained in the differential equations
of the physical system. As traffic flow dynamics can be
described by differential equations, these new insights were
applied to TSE [20]–[23] and it was shown that they can out-
perform comparable conventional methods in performance
[24], [25]. Also, the fusion of LDD and FCD can be further
improved using physics-informed TSE [26].

Current physics-informed approaches are a promising way
to combine the best of both worlds - physical model-based
and data-driven TSE techniques. The state of the art is
heavily focused on integrating partial differential equations
into data-driven estimation. However, these approaches’ re-
quirements likely stand against scaling it to entire networks.
In this paper we contribute a simple approach that com-
bines well-established physical traffic flow concepts and
widely used data-driven techniques to develop an explainable
physics-informed and data-driven TSE approach based on
loss constraints. More specifically, we combine the funda-
mental diagram of traffic flow (FD) with multiple linear
regression and neural networks. While existing methods
describe the full complexity of traffic dynamics along links
and corridors, we assume traffic homogeneity along links that
simplifies computational complexity. Drone data providing a
multimodal ground truth traffic state is used to mimic LDD
and FCD data used in the TSE procedure, which ensures
the transferability of our approach. As the used methods
are well-known and data becomes increasingly available, our
proposed approach is highly relevant for practice and science.

II. METHODOLOGY
A. Mapping function

As the idea of a loss constraint has received limited
attention in the field of traffic engineering, we use two simple
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mapping functions to predict vehicle flow q̂ and vehicle
density k̂. More specifically, we introduce the idea of loss
constraint TSE for a multi-linear regression (MLR) and a
simple neural network (NN). However, the integration of a
loss constraint-based TSE is possible for various machine
learning methods.

The MLR models a linear relationship between the in-
dependent (input) variables xi and the dependent (output)
variable y. Each input variable is weighted by a factor βi,
resulting in y = β0 +

∑
i βixi + ε, where β0 equates to the

bias and ε is the error term. The MLR is implemented as a
linear NN with no hidden layers.

The NN approach introduces non-linearity to the esti-
mation. Instead of just one transformation from inputs to
outputs, such as for the MLR, there are multiple layers that
are separated by (non-)linear functions (activation functions).
All weighting factors (weights) are learned from the losses
incurred when training with a designated data set. Several
parameters such as the learning rate, activation function,
optimizer, and the architecture, i.e., number of layers and
nodes, must be selected such that the network can best learn
to model the inherent relationships reflected in the data.

B. Loss constraint

Loss constraint in general refers to a customized loss
function that constrains the learning of the parameters of
the mapping function. Physics-informed networks typically
include the ‘physics’ component by modifying the loss
function. This can be in the form of an equation, regularizing
terms, or a constraint, as explained by Alber et al. [27].
For example, McGowan [28] tested a variety of physics-
informed custom loss functions by adding formulae known
from additive manufacturing to the regular loss. Jin et al.
[29] also added a physical loss to the regular loss function to
enforce boundary and initial conditions of the Navier-Stokes
equation when modeling incompressible fluids. So far, their
application in transportation research are very limited.

In this paper, we implement a loss constraint that aims to
improve physical consistency in data-driven TSE by building
on the well-known FD, e.g., [30]. Typically, we would expect
data points to deviate from the theoretical FD and show
scatter, as the stationary states described in the FD are
rarely observed in complex urban settings. Yet, we would not
expect a very strong deviation in the positive direction, as
disturbances generally reduce rather than increase the traffic
speed and flow. We use this knowledge to our advantage to
improve the purely data-driven TSE by the MLR and the NN.
Imposing a loss constraint could achieve fewer physically
unreasonably high speeds, i.e., points with a very steep slope
in Fig. 1, or flows, i.e., points that deviate substantially from
the FD, which stem from noise.

We test the loss constraint approach with three common
representations of the FD: the triangular, trapezoidal [31],
and Greenshield’s [30] model. Their functional form is
shown schematically in Figure 1. We only explain in detail
the loss constraint formulation for the triangular FD, as the
general procedure for the other two representations is highly

similar. The triangular FD Q(K) can be described by Eqn. 1,
where uf is the free flow speed, Kc is the critical density,
and w is backward wave speed. These parameters must be
provided as input parameters to the model.

Q(K) =

{
uf ∗K : K < Kc

w ∗ (K −Kc) + uf ∗Kc : K ≥ Kc
(1)

The loss is implemented differently for the MLR and the
NN. For the MLR, two models are trained in parallel to
predict q̂ and k̂, whilst the observed values q and k are used
to determine the losses. Each model only receives the loss
relating to its output variable, i.e., flow (Lq

MLR) or density
(Lk

MLR). In the NN, one model simultaneously predicts q̂
and k̂, thus they share a loss function, LNN . This function
has two components as shown in Eqn. 2 and 6: the mean
squared error LMSE and the physical constraint LPHY .
This loss function is modified for the subset of points in
the sample where the predicted values, q̂ and k̂, and its
corresponding observed values, q and k, are above Q(K).
The loss function is adjusted such that the corresponding
point on the function is (partially) used in place of the
observed value when calculating the Mean Square Error
(MSE). The rationale is to encourage a state where these
points are below Q(k̂). This is expressed in Eqn. 2 for the
MLR function, where the parameter γ signifies the amount
by which the loss constraint Lq

PHY replaces the regular MSE
loss Lq

MSE . The loss functions for density Lk are formulated
in the same way as for the flow.

Lq
MLR = (1 − γ) ∗ Lq

MSE + γ ∗ Lq
PHY (2)

Here, Lq
MSE is defined in the usual MSE formulation as

shown in Eqn. 3.

Lq
MSE = (q − q̂)

2 (3)

The physics-informed loss Lq
PHY is defined as the squared

difference between the flow on the FD Q(k̂) at the predicted
density k̂ and the predicted flow q̂ as shown in Eqn. 4, and
similarly Eqn. 5 for Lk

PHY .

Lq
PHY =

(
Q
(
k̂
)
− q̂

)2

(4)

Lk
PHY =

(
K (q̂)− k̂

)2

(5)

In the NN’s loss function LNN , the single losses of flow
and density for the MSE as well as the physics-informed loss
are combined as shown in Eqn. 6.

LNN =
1

2n

( n∑
i=1

(
(1− γ) ∗ Lq

MSE,i + γ ∗ Lq
PHY,i

)
+

n∑
i=1

(
(1− γ) ∗ Lk

MSE,i + γ ∗ Lk
PHY,i

))
(6)

where n is the batch size. As the network output is a tensor,
which takes the form of [q k], it is split into two flow and
density tensors to calculate the individual losses.

All points in the sample that are below the FD are not
subject to LPHY , i.e., γ = 0, as summarized in Table 1.

2



γ Predictions Predictions
below curve above curve

Observed values below curve 0 0
Observed values above curve 0 [0,1]

TABLE 1: The factor γ is only applied to a subset of points.

Points that are above the FD and have their observed values
below the FD, do not require a physics-informed loss, hence
γ = 0 in Eqn. 2. In other words, the FD parameters must
be defined in such a way that the FD presents the physically
meaningful information that is required for the respective
TSE application, e.g., filter for control algorithms. However,
this paper focuses on showing the applicability of loss-
constraining, while it is clear that the parameters of the
FD and γ must be calibrated to each individual situation.
Further points of research are suggested in the conclusion.
In case of the piece-wise linear triangular FD, which is
non-differentiable at the capacity, LPHY will be calculated
separately either for the case k < Kc or k ≥ Kc as defined
in Eqn. 1.

C. Alternative FD functions for the loss constraint

As previously mentioned, the loss constraint approach is
also applied to Greenshields’ quadratic FD and the trape-
zoidal FD. Both representations can be included in the
loss constraint model in a similar fashion as the triangular
FD. While the loss for the triangular FD is split into two
differentiable segments, the trapezoidal FD is split into three.
The Greenshields’ approach is fully differentiable and thus
does not require a case distinction with respect to density.
However, two separate flow cases must be considered. When
the flow is greater than the capacity (maximum flow), there
is no corresponding density on the quadratic curve, thus the
critical density is used. The issue of an FD not being fully
differentiable could alternatively be resolved, e.g., by using a
smooth maximum function [32] or a barrier function where
applicable.

III. CASE STUDY

A. Data set

We apply the proposed loss constraint TSE method to
empirical data to demonstrate its applicability in complex
urban traffic situations. To do so, we use the pNEUMA data
[14]. It stems from video recordings of a swarm of drones

Fig. 1: The three shapes of the FD used in this analysis.

Fig. 2: Map of the case study area in Athens. The selected
links are highlighted in blue.

Fig. 3: A space-time plot of a short time interval for one of
the road segments. It illustrates the speed variation between
vehicle classes.

of an area of 1.3 km2 in the congested city center of Athens.
The resulting processed data set contains the trajectories of
all detected vehicles including their speeds, vehicle class,
and vehicle id. For our case study, we selected eleven one-
way links from the recorded network, which are defined as
road segments between two intersections. This is illustrated
in Figure 2.

The observed traffic states include substantial scatters that
reflect the complex dynamics and multi-modal heterogeneity
of urban traffic during rush hours as seen in the time-space
diagram in Figure 3. This ground truth data has the advantage
over LDD or FCD that the traffic states and their distribution
are entirely known, which facilitates the comprehensive
understanding of the loss constraint mechanism.

B. Data pre-processing

The data was filtered to ensure that the selected links do
not contain vehicles moving against the direction of travel.
Additionally, any parking vehicles or objects classified as
pedestrians or cyclists are removed. The traffic states are
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Fig. 4: A density-flow plot (probe vehicle approach) of the
data set after link-specific scaling.

aggregated at 3-minute intervals to consider the general
current state and to incorporate the effect of the signals.

C. Extracted variables

The observed outcome variables of the MLR and NN
models, i.e., the traffic states (q, k), are computed using
Edie’s definition [33]. The speed is calculated using the
fundamental equation of traffic flow q = k ∗v. In addition to
the overall q and k, the mode-specific values are determined
for the taxis and cars. Lastly, a virtual loop detector is placed
on each link and the occupancy time and flow are used to
calculate the density and flow at the LD’s location along the
link.

The characteristics of the considered links vary regarding
the number of lanes and bus stops, and the presence of dedi-
cated bus lanes. To account for these effects, a transformation
is applied to the data set to collapse all subsets (one per
link) into a single FD. First, the observed density and flow
are normalized by dividing by the respective mean values:
ks = k/k and qs = q/q. Then the normalized flow values
are divided by the link-specific free flow speed: qs2 = qs/uf .
These three factors are later applied to the results of the MLR
and NN. The resulting data is shown in Fig. 4.

The scatter in Figure 4 is informative. We find that it is
common to a group of outliers above the FD that they corre-
spond to traffic states with a high share of motorcycles. This
points out to another application of the proposed method as
it allows to project multimodal traffic states to a standardized
unimodal FD, e.g., for traffic control purposes.

D. Model specification and estimation

The model specification of the MLR and NN includes the
following input features: the existence of a dedicated bus
lane, the number of bus stops and lanes, the link length, and
the rank of the link. The latter describes the functional level
of the link within the overall road network. Additionally, the
observed flow and density (q and k) of the virtual LD, taxis,
and cars at 5 % probe penetration are used. The outputs is
the q̂ and k̂ of the overall traffic on a link.

The architecture of the NN contains seven hidden layers
with 64 nodes each. The input layer has 11 nodes, while the

output layer has two. The following parameters are used:
learning rate [0.001], optimizer [Adam], activation function
[LeakyReLU(0.01)], weight initialization [Kaiming], train-
val-test split [0.7,0.15,0.15]. Furthermore, the training data
was processed in batches of 256 rather than learning from
each sample individually.

IV. RESULTS AND DISCUSSION

A. Results

The impact of the γ parameter of the physics-informed
loss LPHY is explored by testing values between 0 and 1, as
it reflects the amount by which LPHY replaces the MSE loss.
Other sensitivity factors are left for further exploration, as we
here focus on the feasibility of the proposed method. The
higher the γ value, the more the model will avoid predicting
values above the FD, as depicted in Figure 5, where the FD
curve is set lower than in Figure 4 to emphasize the effect of
changing γ. When it equals zero, the model will only train
based on the MSE loss.

The evaluation of the average results across 20 runs (ex-
periments) will be shown in this section. There is no notable
change in the accuracy of the immediate model outputs (flow
and density), as there are relatively few points above the FD
when considering the whole data set, i.e., affected by the
physics loss. A larger difference is, however, observed for
the speeds associated with those flow and density values.
The speeds derived from the model predictions (v̂ = q̂/k̂)
are compared, first, to the observed speed (v), which reflects
the mean actual speed on a link of the last 3-minutes. Second,
they are compared to vtarget = q/k, which reflects the
speed obtained from the models’ input flow and density. v
and vtarget differ slightly, as the data is resampled from 30
seconds to 3 minutes to counteract the effect of traffic lights.
We expect the model to estimate vtarget better, yet v reflects
the actual traffic state more accurately.

In the case of the MLR model using the triangular FD,
the RMSE of the vtarget and v improves by 2.3 % and 1.7 %
for a γ value of 0.6 compared to a value of 0, respectively.
The slight improvement in the R2 value and the expected
reduction in the number of predictions above the FD are also
shown in Table 2. More γ values were tested and consistent
with the above trends; this also applies to the NN.

The Greenshield approach improves the RMSE of the
speed estimates most for γ = 0.6, by about 7.0 % for
vtarget and 7.4 % for v. For the trapezoidal FD, there is
an improvement of 6.5 % for vtarget and 5.6 % for v for
γ = 0.6. The number of points above the FD is reduced, as
expected.

γ RMSE RMSE R2 R2 Max. Num. preds
vtarget v vtarget v v̂ above FD

0 3.89 4.29 0.891 0.855 58.8 12.2
0.3 3.84 4.20 0.892 0.857 58.9 10.4
0.6 3.80 4.22 0.894 0.858 53.7 9.0

TABLE 2: Results for MLR with triangular FD. Mean over
20 runs.
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Fig. 5: Sample plots of the output and observed flow and density for different γ values. The FD is set much lower in this
example to emphasize the effect and behavior of the proposed physics loss.

With regards to the NN, the triangular FD shows the most
promising results. These are displayed in Table 3. The mean
maximum predicted speed per run is lowest for γ = 0.6,
decreasing from 76 km/h to 54 km/h. This is also where the
improvement for the RMSE of v is greatest at 10.4 %. The
error of vtarget is reduced by 10.5 %. Improvements are also
observed for the R2 values (3 % each) and the number of
points above the FD.

The Greenshield method shows a 9.4 % and 9.9 % im-
provement for the RMSE of vtarget and v at γ = 0.3, and has
a reduced number of predictions above the FD. The R2 also
slightly improves for both speeds by 2 %. Lastly, when using
the trapezoidal FD, for a γ of 0.3 there is an improvement
of 3.2 % for the RMSE of vtarget. The other RMSE remains
roughly the same, yet the R2 improves. As in all the other
cases, the number of points above the curve is reduced, on
average from 29 to 16.

B. Discussion

During the in-depth analysis it is observed that the RMSE
values improve and extremely high speeds occur less fre-
quently when the physics-informed loss is applied. Points
above the left-hand-side of the triangular FD are associated
with high speeds and discouraged, as they are subject to the
physics-informed loss. As this loss is a soft constraint, rather
than a strict constraint that would force all points to be below
the FD, it is still possible that (high) speeds above the FD
occur.

In this case study the FD was set at a specific, but arbitrary
location. In a calibrated model, one would want to stretch
the actual FD curve, as the FD is typically lower than the
curve illustrated in Fig. 4.

The most suitable γ value will vary for each case, too.
However, it was observed that a γ = 0.3 improved the RMSE
and R2 in all studied cases, a value of 0.6 only offered further

γ RMSE RMSE R2 R2 Max. Num. preds
vtarget v vtarget v v̂ above FD

0 3.67 4.0 0.903 0.880 76.8 57.1
0.3 3.60 3.93 0.908 0.883 67.2 34.4
0.6 3.29 3.58 0.932 0.908 54.6 32.6

TABLE 3: Results for NN with triangular FD. Mean over 20
runs.

improvement for some. Thus, our method outperforms the
reference case where γ = 0, i.e., no physical loss constraint
is applied. These values will also depend on whether the
focus of the application is more on improving speeds or
dealing with multi-modal traffic states. The latter is likely
to benefit from a higher value, as this would further reduce
the number of points that are above the curve.

In closing, the proposed method evidently improves the
speed predictions’ RMSE and R2 values, and also reduces
the number of predictions above the FD, compared to the
non-physics-informed case of γ = 0.

V. CONCLUSIONS

In this paper, we proposed a novel approach of physics-
informed data-driven TSE. Using traffic data recorded during
the pNEUMA experiment in Athens [14], we showed that
the speed prediction can be improved when the FD is
incorporated in the loss function. Compared to the idea of
integrating both the partial differential equation and the FD
in the loss function, the presented approach is a more direct
and parsimonious one, as it considers only the latter concept.
This has several advantages:

• The FD alone is a simple, widely acknowledged concept
and explainable function, which can be estimated for
almost every street using publicly available data and
guidelines.

• It scales easily to an entire network as it assumes
traffic homogeneity at the link level, which reduces
the computational complexity of estimating gradients
in space-and-time for every link.

It must further be explored how and with which sensitivity
the parameters of the FD, the γ, along with the LD location
and penetration rate, affect the exact behavior of the proposed
model. Additionally, it can be compared to conventional TSE
methods (e.g. EKF [34], [35]) other than the regular NN
(when γ = 0).

Possible applications of the proposed method are its use as
a filter for traffic control algorithms, where physics-informed
input data is required for performance, or for improved
detection of the critical density and flow. The loss constraint
can, however, accommodate and communicate various types
of information. For example, in terms of online or real-time
estimation of (macroscopic) FDs, the patterns and time-series
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of residuals could be informative of the prevailing traffic or
congestion patterns [36]. This can be useful for the control
of larger networks. Future research refers to the extension
of the method to motorways, the incorporation of a multi-
class FD that can explain the observed scatter inside the TSE
algorithm, the consideration of loss constraints in other TSE
methods, as well as the integration of the proposed method
into real applications.
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