

Seismo-Acoustic Wavefield Simulations

Lukas Krenz¹, Sebastian Wolf¹, Alice-Agnes Gabriel², Gregor Hillers³, Michael Bader¹

¹ Technical University of Munich, ²Scripps Institution of Oceanography, ³ University of Helsinki

Technical University of Munich

11th October 2022

Otaniemi Project – Geothermal Energy & Seismic Hazards

Exploitation of geothermal energy is **controversially discussed** in the public: *"Many residents feel unsettled and are afraid of noise and cracks in buildings." (TA, 2009-06-04) "The resident describes the project as dangerous, incalculable, and full of contradictions." (TA, 2009-06-09)*"

Quotes via: Stauffacher, Michael, et al. "Framing deep geothermal energy in mass media: the case of Switzerland." Technological Forecasting and Social Change 98 (2015): 60-70.

Otaniemi project

- Enhanced geothermal system (EGS) In Greater Helsinki area
- Stimulated in June and July 2018
- Thousands of induced earthquakes
- No event exceeded threshold magnitude

Traffic Light System

Red: Stop; $M_L \ge 2.1$ Amber: Be Careful; PGV ≥ 1 mm/s detected and $M_L \ge 1.0$; $M_L \ge 1.2$ Green: Everything's fine

SCIENCE ADVANCES | RESEARCH ARTICLE

EARTH SCIENCES

Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland

Grzegorz Kwiatek^{1,2}*, Tero Saarno³, Thomas Ader⁴, Felix Bluemle¹, Marco Bohnhoff^{1,2}, Michael Chendorain⁴, Georg Dresen^{1,5}, Pekka Heikkinen^{3,6}, Ilmo Kukkonen⁶, Peter Leary⁷, Maria Leonhardt¹, Peter Malin^{1,7}, Patricia Martínez-Garzón¹, Kevin Passmore⁷, Paul Passmore⁷, Sergio Valenzuela⁷, Christopher Wollin¹

Design and implementation of a traffic light system for deep geothermal well stimulation in Finland

Thomas Ader • Michael Chendorain • Matthew Free • Tero Saarno • Pekka Heikkinen • Peter Eric Malin • Peter Leary • Grzegorz Kwiatek • Georg Dresen • Felix Bluemle • Tommi Vuorinen

Just Because It's Safe Doesn't Mean It's Not Annoying

Observations of **ground shaking** and **audible disturbances** collected by Macroseismic questionnaire of the Institute of Seismology, University of Helsinki

"Big blast followed by a long 10-second echo", Helsinki 2018-07-08 20:37 From: (Hillers et al., 2020). SH wave radiation pattern Filled & open circles: felt and heard disturbances were reported

Our Model¹

- Model as point source using inversion from (G. Hillers et al., 2020)
- Fully **3D setup**, real topography, highly accurate ADER Discontinuous Galerkin method using SeisSol
- **Fully-coupled** elastic (Earth) acoustic (air) simulation.
- Compute loudness by pressure perturbations of acoustic layer
- Need to resolve ~20Hz, preferable more

Snapshot of SeisSol mesh

¹Krenz, Lukas, et al. The variability of seismo-acoustic nuisance patterns: a case study from the Helsinki geothermal stimulation. No. EGU22-10183. Copernicus Meetings, 2022.

Velocity Models

Slice through a 3D Velocity model. From Sisprobe (currently unpublished)

Idea: Generate "discomfort maps"

Visualize spatial distribution of sound as map

x/y Distance from epicenter

Color: Sound pressure level in decibel (logarithmic unit!)

Which phase is responsible for noise?

P(rimary) wave: Fast (6km/s)

S(econdary) wave: Slower (~3.5km/s), often stronger

Peak Ground Velocity

Peak Ground Velocity (PGV) quantifies shaking

Visible here:

- Complex structure
- Overall polygon shape is our refinement structure

Approximating Pressure Perturbation

Approximation $\Delta P = \rho c v$ with ρ , c density/speed of sound in air; v vertical velocity on ground

Comparison: Peak sound pressure level

Complex Wavefield at Surface

Wavefield at surface after 2s

Complex wavefield through interactions with topography

Conclusions & Further Work

- **Discomfort maps** show spatial distribution of noise generated by small, induced earthquakes. Important supplement to hazard maps
- **Simulated** spatial distribution of sound aligns with observations
- Further contribution: Evaluate validity of common assumptions:
 - Which phase is responsible for sound: both, but mostly s-phase
 - Can we approximate peak pressure from peak ground velocity: Yes, but not exactly

Further work:

- Case study with different material models and source models what if analysis
- Paper will be submitted soon