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ABSTRACT

Abstract

This thesis considers generalized Nash equilibrium problems (GNEPs) in an infinite-dimensio-
nal setting with as general assumptions on the underlying functions and spaces as possible.

The theory of and numerical methods for (generalized) Nash equilibrium problems are
well-investigated in the finite-dimensional setting under suitable convexity assumptions.
Here, we investigate GNEPs in an infinite-dimensional nonconvex setting. In the case of
convex constraints, we express the GNEP in terms of the regularized Nikaido–Isoda merit
functional and apply a generalized version of the Kakutani fixed point theorem in order
to prove the existence of fixed points. We present characterizations of these points by
the regularized Nikaido–Isoda merit functional and conclude the existence of variational and
normalized equilibria. We emphasize that the Nikaido–Isoda merit functional is not straight-
away differentiable in the classical sense. Thus, we develop differentiability results using a
generalized version of Danskin’s theorem, which enables the use of derivative-based solution
methods.

For handling general, possibly nonconvex, constraints, we also present an augmented
Lagrangian method for GNEPs in infinite-dimensional spaces. In contrast to previous studies,
such as works by Kanzow and Steck, we require weaker assumptions in order to provide
convergence results for Karush–Kuhn–Tucker-type equilibria. In particular, we can work
with multiplier-penalty terms in more general spaces than Hilbert spaces.

Zusammenfassung

Diese Arbeit betrachtet verallgemeinerte Nash-Gleichgewichtsprobleme (engl. GNEPs) in
einem unendlich-dimensionalen Rahmen mit möglichst allgemeinen Annahmen an die zu-
grundeliegenden Funktionen und Räume.

Die Theorie und die numerischen Methoden für (verallgemeinerte) Nash-Gleichgewichts-
probleme sind im endlich-dimensionalen Rahmen unter geeigneten Konvexitätsannahmen gut
erforscht. Hier untersuchen wir GNEPs in einem unendlich-dimensionalen, nicht-konvexen
Rahmen. Im Falle von konvexen Nebenbedingungen drücken wir das GNEP mittels des
regularisierten Nikaido–Isoda-Funktionals aus und wenden eine verallgemeinerte Version
des Kakutani Fixpunkttheorems an, um die Existenz von Fixpunkten zu beweisen. Wir
zeigen verschiedene Charakterisierungen dieser Punkte mittels des regulariserten Nikaido–
Isoda Funktionals und schließen auf die Existenz variationeller und normalisierter Gle-
ichgewichte. Wir betonen, dass das Nikaido–Isoda-Funktional nicht direkt im klassischen
Sinne differenzierbar ist, und entwickeln daher Differenzierbarkeitsergebnisse unter Verwen-
dung einer verallgemeinerten Version des Danskin-Satzes. Dies ermöglicht die Verwendung
von Lösungsmethoden, welche Ableitungenen verwenden.

Für den Umgang mit allgemeinen, möglicherweise nicht-konvexen, Nebenbedingungen
stellen wir außerdem eine augmentierte Lagrange-Methode zur Bestimmung von Karush-
Kuhn-Tucker-basierten Gleichgewichtspunkten vor. Im Gegensatz zu früheren Studien, wie
beispielsweise der Arbeiten von Kanzow und Steck, benötigen wir schwächere Annahmen,
um Konvergenzergebnisse zu zeigen. Insbesondere können wir mit Multiplikator-Penalty-
Termen in allgemeineren unendlich-dimensionalen Räumen als Hilberträumen arbeiten.
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special mention for her assistance with administrative matters. Thank you for creating such
a lovely, productive, and welcoming workplace.

Throughout my Master’s and Ph.D. studies, Prof. Dr. Christina Kuttler served as my
mentor and provided invaluable advice and counsel. I would like to thank her for her support
in difficult situations and her uplifting words.

I am grateful to everyone who proofread the present document. Moreover, I would like
to thank all of my friends who have assisted me in various ways throughout the years,
especially Ina, Martin, Nadine, Sina, and Stefan. In addition, I would want to convey my
deepest thanks to my beloved husband Marvin, who has been there for me throughout the
years. Without the encouragement and support of my parents, Michael and Susanne, as well
as my sister, Sonja, none of this would have been possible. A special thanks to Lilli for being
such a lovely and well-behaved daughter.

Thank you everybody, you are incredible.

iii



ABSTRACT

iv



Contents

Abstract i

Zusammenfassung i

Acknowledgments iii

1 Introduction 1

2 Mathematical Preliminaries 5

2.1 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Operator Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Monotone Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Projection Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Duality Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Theory of Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Equilibrium Concepts for Games . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Concept of the Augmented Lagrangian Method . . . . . . . . . . . . . 29

2.4 Generalized Danskin Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Mathematical Setting and Assumptions 41

3.1 Topology Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Continuity and Differentiability Assumptions . . . . . . . . . . . . . . . . . . 43

3.3 Convexity Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Existence of Fixed Points of the Solution Map 47

4.1 Fixed Point of the Solution Map . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Fixed Point of the Solution Map via Optimality Condition . . . . . . . . . . . 51

v



CONTENTS

5 Nikaido–Isoda Merit Functionals 59
5.1 Localization of Merit Functionals . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Localizing the Feasible Set . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Penalty-type and Barrier-type Method . . . . . . . . . . . . . . . . . . 60
5.1.3 Combination of Localizing and Penalizing . . . . . . . . . . . . . . . . 61

5.2 Merit Functionals and Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Normalized Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Difference of Merit Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Differentiability of Regularized and Localized Nikaido–Isoda Merit Functionals 86

5.4.1 Differentiability of regularized Merit Nikaido–Isoda functionals . . . . 87
5.4.2 Application to Localized Nikaido–Isoda Merit Functionals . . . . . . . 91

6 Algorithms and Methods for Computing Equilibria 103
6.1 Descent Method for the Regularized Nikaido–Isoda Merit Functional . . . . . 104
6.2 Augmented Lagrangian Method . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Augmented Lagrangian Method for Quasi-Nash Equilibria . . . . . . . 111
6.2.2 Augmented Lagrangian Method for Variational Equilibria . . . . . . . 124

7 Conclusion and Outlook 131

Acronyms 133

Bibliography 135

vi



Chapter 1

Introduction

The concept of a Nash equilibrium n-tuple is perhaps the most important idea
in non-cooperative game theory. Whether we are analysing candidates’ election
strategies, the causes of war, agenda manipulation in legislatures, or the actions
of interest groups, predictions about events reduce to a search for and description
of equilibria. Put simply, equilibrium strategies are the things that we predict
about people. (Thomas Schelling)

This thesis aims to provide analytical and numerical solutions to generalized Nash equilib-
rium problems (GNEPs) in infinite-dimensional spaces. Nash equilibrium problems (NEPs)
were first described by Nash in his work [84] in 1950 and afterward extended by Arrow and
Debreu in 1954, see [5], and Rosen in 1965, see [94]. The concept of Nash equilibria has been
discussed and investigated in numerous articles since then, see [40, 42–45, 106]. Facchinei
and Kanzow’s survey paper [43] summarizes the theory for GNEPs in the convex and finite-
dimensional case. In comparison to the well-studied finite-dimensional case, the literature on
GNEPs in infinite-dimensional spaces is quite limited, see [58,85,86,109,112]. The majority
of them impose strict requirements on the objective functional, particularly some kind of
convexity assumption, e.g., [86, 109, 112]. There is also literature for some specific objec-
tive functionals and appropriate infinite spaces, see [57]. Hintermüller has provided a brief
overview of an analogous theory as in the finite-dimensional case in [58] for a class of convex
objective functionals.

GNEPs have been used in a variety of real-world scenarios, including economics, aero-
dynamics [102], and electricity [39]. Furthermore, optimization problems with infinite-
dimensional spaces have important applications, such as in traffic flow [19–21] and natural
gas spot markets [58]. As a result, having the same tools available as in finite dimensions
is advantageous. To prove new analytical and numerical results, we combine the meth-
ods of finite-dimensional GNEPs with optimality theory in Banach spaces, see, for exam-
ple [10,18,78,114].

The majority of GNEP research focuses on the case where the objective functionals are
convex. Classically, one considers the Nikaido–Isoda functional and the corresponding merit
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CHAPTER 1. INTRODUCTION

functional, see the original work [86] of Nikaido and Isoda. The properties of this merit func-
tional have been thoroughly investigated, particularly its relationship to variational equilibria
and normalized equilibria, see [43, 58, 106]. In the case of convex objective functionals, for
example, the concept of variational equilibria is equivalent to normalized equilibria. De-
scent methods for these Nikaido–Isoda merit functionals, which usually require first-order
derivatives, are used in algorithms for computing Nash equilibria and normalized equilibria
for convex constraints. It was pointed out in [106] that the numerical methods for quasi-
variational inequalitys (QVIs) are not as developed or efficient as those for Nikaido–Isoda
merit functionals. Nonetheless, theoretical literature for numerical methods for GNEPs
and their convergence properties is still scarce. The GNEP can be reformulated as a con-
strained minimization problem for the (regularized) Nikaido–Isoda functional. Interesting
results for the merit functionals in the jointly convex case have been obtained, for example,
see [40, 54, 106, 107]. This merit functional is not twice continuously differentiable in gen-
eral. However, it is shown in [105] that the gradient of the (regularized) Nikaido–Isoda merit
functional is semismooth under additional assumptions. In such a case, there are locally fast
convergent Newton-type methods, see the books [62, 104], and they have been applied to
GNEPs in [45,105].

In contrast to the majority of papers, we concentrate on GNEPs with nonconvex objective
functionals, resulting in the existence of quasi-Nash equilibria rather than Nash equilibria
and variational equilibria rather than normalized equilibria. To that end, we reformulate
the GNEP in terms of the Nikaido–Isoda merit functional, as shown in [86], and its regular-
ization, as shown in [106], and using QVIs, as shown in [44, 53, 89]. QVIs were introduced
in [9] and have since then become a standard tool for modeling various equilibrium-type
scenarios in natural sciences, such as solid and continuum mechanics [75,88], economics [60],
transportation [16, 98], and electrostatics [2, 55, 56, 76, 93]. For more information on QVIs,
see the monographs [7, 75,83] and the references therein.

We consider the solution map, which is based on the regularized Nikaido–Isoda functional
and a first-order optimality condition, and we use a generalized version of the Kakutani fixed
point theorem to prove the existence of a fixed point. These fixed points can be translated
into variational equilibria or normalized equilibria.

Due to the objective functional’s lack of strict convexity, the solution map could be
multivalued, and thus, the Nikaido–Isoda merit functional is not straightaway differentiable
in the classical sense. We compute a continuous derivative of the regularized and localized
Nikaido–Isoda merit functional using a generalized version of Danskin’s theorem. Further, we
use the representation of variational equilibria in terms of the regularized Nikaido–Isoda merit
functional and construct a descent method for the corresponding minimization problem to
find variational equilibria numerically. Furthermore, we demonstrate its global convergence
solely under the assumption of the regularized Nikaido–Isoda merit functional’s continuous
differentiability.

In order to solve GNEPs with additional (possibly nonconvex) constraints that arise from
a solution operator to a partial differential equation, we build an augmented Lagrangian
method that employs the descent method for a suitable subproblem. The augmented La-
grangian method was introduced in [89] in 2005 and later improved in [65] in 2016. The
augmented Lagrangian method is a well-known method for solving constrained optimiza-
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CHAPTER 1. INTRODUCTION

tion problems, and it is mentioned in textbooks such as [12, 13, 32, 87]. In recent years, the
augmented Lagrangian method has been used in the form of safeguarded methods, which
have strong global convergence properties and use a different update of the Lagrangian
multiplier estimate, see [14]. The work [69] compares the classical augmented Lagrangian
method and its safeguarded analogue. In addition, the safeguarded augmented Lagrangian
method has been extended to QVIs in finite dimensions, as shown in [65,70,89], as well as to
constrained optimization problems and variational inequalities in Banach spaces, as shown
in [66,71,73,74]. We refer to [24,25,66,68,101] for results on convergence properties.

We develop and demonstrate the convergence of a safeguarded augmented Lagrangian
method for games in this thesis. Unlike the majority of the literature, we consider a GNEP
based on minimization problems with objective functionals and constraints that are not
necessarily convex. In this case, the convergence theory only provides convergence to Karush–
Kuhn–Tucker (KKT) points that satisfy the first-order optimality conditions. These are the
corresponding GNEP’s quasi-Nash equilibria and variational equilibria, see the work [72] of
Kanzow and Steck. In the general assumption of the underlying state space, our results
differ. By assuming a uniformly smooth and uniformly convex Banach space, we generalize
the Hilbert space assumption. Because the constraints are nonconvex, we use an augmented
Lagrangian method whose subproblems approximate a variational inequality (VI) rather
than solving a minimization problem based on the augmented Lagrangian functional.

This thesis is structured as follows. We provide an overview of the mathematical pre-
liminaries in Chapter 2. In detail, we present a collection of important functional analysis
theorems, generalize Danskin’s theorem in Section 2.4, describe game equilibrium concepts in
Subsection 2.3.2, and explain the augmented Lagrangian method concept in Subsection 2.3.3.

In Chapter 3, we present the mathematical context and key definitions for our problem.
In Chapter 4, we look at two optimization problems with objective functionals of Nikaido–
Isoda type. Using a generalized version of the Kakutani fixed point theorem, we show that
the corresponding solution maps have a fixed point. These fixed points are linked to Nikaido–
Isoda merit functionals, the analytical properties of which are examined in Chapter 5. We
then look at the corresponding localized merit functionals. We establish a link between
these merit functionals, (quasi-)variational inequalitys ((Q)VIs), (local) Nash equilibria, and
(local) normalized equilibria. In Section 5.4, we prove the differentiability of the two Nikaido–
Isoda merit functionals and their localized variants. To that end, we employ a suitable version
of Danskin’s theorem, see Section 2.4.

In Section 6.1, we present a descent method for the regularized Nikaido–Isoda merit
functional using the projected gradient. Finally, in Section 6.2, we create a safeguarded
augmented Lagrangian method for games by transferring the descent method to a suitable
subproblem. Subsection 6.2.1 and Subsection 6.2.2 demonstrate convergence towards QNEs
and VEs.
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Chapter 2

Mathematical Preliminaries

In most sciences one generation tears down what another has built, and what one
has established another undoes. In mathematics alone each generation builds a
new story to the old structure. (Hermann Hankel)

This opening chapter establishes several key concepts that are required for the rest of the
thesis. The majority of the content offered here is basically a meticulous compilation of
results from the literature, structured and presented in such a way that the theory is as
apparent as possible.

The following is an outline of the chapter’s structure. In Section 2.1, we will primarily
focus on the instruments of functional analysis that we require for our findings in infinite-
dimensional spaces. The results in this part can be found in classical and newer books
such as [3,4,8,23,29,30,33,49,79,82,95,103,111,113]. Subsection 2.1.1 contains preliminary
results on topological spaces, including a discussion of distinct definitions of compactness and
convergence in the sequential topology. Furthermore, we describe operator properties such as
pseudomonotonicity and complete continuity. Subsection 2.1.2 presents some fundamental
conclusions on normed spaces, weak convergence, and distinct types of differentiability. The
following Subsection 2.1.3 is devoted to Banach spaces, and we discuss several topological
properties such as reflexive, uniformly smooth, and uniformly convex spaces. Furthermore,
we introduce the concepts of different notions of continuity, such as hemicontinuity and
complete continuity. Finally, in Subsection 2.2.3, we present some special operators known
as duality mappings, which introduce a connection between the original space and its dual.
In particular, we discuss the link between the duality mapping and the derivative of Banach
norms.

In Section 2.3, we will look at the theoretical background of constrained optimization in
normed spaces. In many ways, we are only scratching the surface of these vast topics and
mostly focus on the equilibrium concepts for games. For the general theory of constrained
optimization in infinite-dimensional spaces, we refer to [18, 59]. Subsection 2.3.1 introduces
some essential notions of cones and optimality conditions. Furthermore, constraint qualifica-
tions (CQs) and the well-known KKT pairs are discussed. Subsection 2.3.2 provides an intro-
duction to the equilibrium concept of games, including a number of notable examples such
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2.1. FUNCTIONAL ANALYSIS CHAPTER 2. MATHEMATICAL PRELIMINARIES

as Nash equilibria, as well as the important characterization of equilibria via Nikaido–Isoda
merit functionals. Finally, Subsection 2.3.3 contains the augmented Lagrangian method and
we provide a first look at the general outline of an algorithm.

We close this chapter with Section 2.4 where we provide a generalized version of the
Danskin theorem in order to ensure the differentiability of a specific bidual optimization
problem.

2.1 Functional Analysis

This section introduces various functional analysis concepts applicable to spaces with distinct
topologies and structures. We begin with topological spaces before introducing the concept
of compactness. We present significant results from normed spaces and differentiability, as
well as discuss the concept of weak convergence and weak compactness principles.

2.1.1 Topological Spaces

This section is predominately based on the results presented in the book [111], and we begin
by defining a topological space and a Hausdorff space.

Definition 2.1 (Topological and Hausdorff space). A topological space (X, τ) consists of a
set X together with a topology τ , which is a system of subsets such that

(i) ∅, X ⊆ τ ,

(ii) ∪iAi ⊆ τ for all Ai ⊆ τ , i ∈ N,

(iii) ∩iAi ⊆ τ for all Ai ⊆ τ , i ∈ N finite.

The sets in τ are called open sets of the topological space (X, τ). Furthermore, (X, τ) is
called a Hausdorff space if for all x, y ∈ X with x ̸= y there exist disjoint open sets A1, A2 ∈ τ
such that x ∈ A1, y ∈ A2.

In accordance with a common abuse of notation, we write X instead of (X, τ) for the
concept of the topological space when the underlying topology is obvious or when it is
unnecessary to specify the precise topology. Later on, however, we will equip the underlying
set X with different topologies, necessitating a definition for comparing two topologies. This
is specified in the following definition.

Definition 2.2 (Finer and coarser topology). Let τ1, τ2 be two topologies on the same set
X. We say τ2 is finer than τ1 (or: τ1 is coarser than τ2) if every subset that is open with
respect to τ1 is also open with respect to τ2. Shortly, we write τ2 ⊆ τ1.

Since equilibrium problems typically involve multiple players, we must define a product
space and discuss its underlying topology.

6



CHAPTER 2. MATHEMATICAL PRELIMINARIES 2.1. FUNCTIONAL ANALYSIS

Definition 2.3 (Product topology). Let {Xi}i∈[N ], [N ] = {1, . . . , N}, be topological spaces.
Then the topology of the product space∏

i∈[N ]

Xi = X1 ×X2 × · · ·XN

is defined by the sets of the form
∏

i∈[N ]Ai where {Ai}i∈[N ] are open sets in the corresponding
topological space Xi, i ∈ [N ], and coincide with Xi.

Let X be a topological space. In the following, we briefly address some classical termi-
nology in functional analysis. A neighborhood of a point x ∈ X is a set A such that there
exists an open set C ⊆ A with x ∈ C. Note that the neighborhood A is not assumed to
be open. We call a set A closed if and only if its complement Ac = X\A is open in X.
The closure of A, denoted by A or cl(A), is the intersection of all closed subsets of X which
contains A. The interior of A, denoted by int(A), is given by the union of all open subsets
of A. A set A ⊆ X is said to be dense if A = X. A set A ⊆ X is compact if for every system
of open sets {Oi}i∈I that covers A, i.e., A ⊆ ∪i∈IOi, there exists a finite set of indices J ⊆ I
such that A ⊆ ∪i∈JOi. Furthermore, A is convex if for all x, y ∈ A and t ∈ [0, 1] it holds
(1− t)x+ ty ∈ A.

The next result demonstrates an important property of compact sets of topological spaces.

Proposition 2.4 (cf. [111, Proposition 1, 2]). Let A be a compact set of a topological space.
Then A is closed and every closed subset of A is compact.

In metric spaces, the convergence of sequences can express equivalently the topological
notions of openness, closedness, and compactness of sets. However, in general topological
spaces, these correspondences no longer hold true. For example for the weak topology weakly
open sets are weakly sequentially open but weakly sequentially open sets are not weakly
open, see [23, Chapter 3.2, Remark 3]. Specifically, there is the notion of nets to ensure the
equivalence between the topological and sequential definitions of openness, closedness, and
compactness, see [8, Lemma 1.10].

Since nets are challenging to handle, we work with sequences and distinguish between
their topological and sequential definitions. Thus, we introduce the essential concept of
convergent sequences.

Definition 2.5 (Convergence). A sequence {xk}k∈N ⊆ X is said to be convergent to a point
x̄ ∈ X, in symbols xk → x̄ in X as k → ∞, if every neighborhood of x̄ contains all but
finitely many elements of {xk}k∈N.

We note that the limit point is unique in Hausdorff spaces, see [52, Proposition 2.4].
The usage of sequences and their convergence leads to the sequential definition of openness,
closedness, and compactness, as we state in the next definition that is based on [52, Definition
1.5] and [4, Definition 1.47].

Definition 2.6 (Sequential properties). A set A ⊆ X is called

(i) sequentially open if whenever {xk}k∈N ⊆ X, x̄ ∈ A, xk → x̄ in X as k → ∞, then
xk ∈ A for sufficiently large k,

7
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(ii) sequentially closed if every limit point of a convergent sequence {xk}k∈N ⊆ A belongs
to A,

(iii) sequentially compact if every sequence {xk}k∈N ⊆ A has a convergent subsequence
{xkl}l∈N ⊆ {xk}k∈N with a limit point in A.

We note that A is sequentially open if X\A is sequentially closed. Each open set is
sequentially open, and each closed set is sequentially closed. A topological space X is called
sequential if every sequentially open subset is open, see [52, Definition 1.7]. By the result
[8, Lemma 1.34], a sequentially compact set is automatically sequentially closed. Further-
more, a sequentially closed subset of a sequentially compact set is sequentially compact, refer
to [49, Proposition 15.2.1] and [8, Lemma 1.34].

In case of set-valued mappings, we also mention the following definition of sequential
closedness, see [50, Chapter 1, Definition].

Definition 2.7 (Sequentially closed for set-valued mappings). Let X be a Hausdorff linear
topological space and A ⊆ X a (nonempty) convex subset of X. Furthermore, let f : A ⇒ X
be a set-valued mapping and let {ak}k∈N ⊆ A, {xk}k∈N ∈ f(ak) be two arbitrary converging
sequences with ak → ā in A and xk → x̄ in X as k → ∞ for the limit points ā ∈ A and
x̄ ∈ X. Then the set-valued mapping f is called sequentially closed if it holds x̄ ∈ f(ā).

Moreover, the Kakutani fixed point theorem applies to set-valued mappings and is ex-
tremely important for proving the existence of fixed points on convex sets.

Theorem 2.8 (Kakutani fixed point theorem, cf. [50, Chapter 1, Theorem]). Let X be a
Hausdorff locally convex linear topological space and A ⊆ X be a nonempty, convex and
compact subset. Let T : A ⇒ A be a set-valued mapping. If T is sequentially closed and
T (a) is a nonempty and convex subset of A for any a ∈ A, then there exists a fixed point
x ∈ A with x ∈ T (x).

Next, we introduce the concept of sequential continuity for mappings, see [23, Chapter
1.4].

Definition 2.9 (Sequential continuity). Let X, Y be two topological spaces.

(i) An operator T : X → Y is called (sequentially) continuous if T−1(A) ⊆ X is (se-
quentially) open for every open set A of Y .

(ii) A functional f : X → R ∪ {∞} is called (sequentially) lower semicontinuous if the
level set {x ∈ X : f(x) ≤ c} is (sequentially) closed for all c ∈ R.

(iii) A functional f : X → R ∪ {∞} is called (sequentially) upper semicontinuous if the
level set {x ∈ X : f(x) ≥ c} is (sequentially) closed for all c ∈ R.

Note that a functional f : X → R ∪ {∞} is (sequentially) upper semicontinuous if and
only if −f is (sequentially) lower semicontinuous. The following proposition can be seen as
an alternative characterization of sequential continuity.

8
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Proposition 2.10 (cf. [103, page 12, Definition 8.1], [52, Lemma 3.1]). Let X,Y be two
topological spaces. The operator T : X → Y is sequentially continuous if and only if for
every sequence {xk}k∈N with xk → x̄ in X as k → ∞ it holds T (xk) → T (x̄) in Y as k → ∞.

A continuous operator T : X → Y is sequentially continuous. For the reverse direction,
one has to assume a sequential space as first-countable spaces or metric spaces, as we state
in the next proposition.

Proposition 2.11 (cf. [52, Lemma 3.1]). Let X be a sequential topological space and Y a
topological space. Then T : X → Y is continuous if and only if it is sequentially continuous.

Next, we characterize sequential lower and upper semicontinuity in Hausdorff spaces
using the notion of limit inferiors and superiors instead of level sets.

Proposition 2.12 (cf. [8, Lemma 1.36]). Let X be a Hausdorff space. Then the functional
f : X → R ∪ {∞} is

(i) sequentially lower semicontinuous if and only if for any sequence {xk}k∈N such that
xk → x̄ in X as k → ∞ it holds lim infk→∞ f(xk) ≥ f(x̄),

(ii) sequentially upper semicontinuous if and only if for any sequence {xk}k∈N such that
xk → x̄ in X as k → ∞ it holds lim supk→∞ f(xk) ≤ f(x̄).

If f : X → R∪{∞} is lower (upper) semicontinuous, then it is sequentially lower (upper)
semicontinuous. The converse direction holds for sequential spaces, see [8, Remark 1.37].

Definition 2.13 (Convex functional). Let X be a vector space. Then the functional
f : X → R ∪ {∞} is called

(i) convex if for x, y ∈ X and t ∈ [0, 1] it holds

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y),

(ii) strictly convex, if for x, y ∈ X, x ̸= y, and t ∈ (0, 1) it holds

f((1− t)x+ ty) < (1− t)f(x) + tf(y).

In this dissertation, we will examine the concept of the sequential topology, see [15]
and [41]. The topology defined by sequentially open sets is called sequential topology, and
the topological space that corresponds to it is called sequential. This concept can be applied
not only to strongly convergent sequences but also weakly convergent sequences.

We will employ the weak sequential topology, which is induced by weakly sequentially
open sets in a topological space. Indeed, it is a topology, compare [15] and [41]. In order to
define weak convergence, we first introduce the space L (X;Y ) of all linear and continuous
operators from X to Y . For the special choice Y = R, we call the space L (X;R) the
dual space of X and shortly write this space as X∗. Next, we define the concept of weak
convergence.

9
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Definition 2.14 (Weak and weak-∗ convergence). A sequence {xk}k∈N ⊆ X converges
weakly to a point x̄ ∈ X if it holds

⟨x∗, xk⟩X∗,X → ⟨x∗, x̄⟩X∗,X ∀x∗ ∈ X∗,

as k → ∞. Moreover, a sequence {x∗k}k∈N ⊆ X∗ converges weakly-∗ to a point x̄∗ ∈ X if it
holds

⟨x∗k, x⟩X∗,X → ⟨x̄∗, x⟩X∗,X ∀x ∈ X,

as k → ∞. Shortly, we write xk ⇀ x̄ in X and x∗k
∗
⇀ x̄∗ in X∗ as k → ∞, respectively.

We must identify the distinction between weak topology and weak sequential topology.
The weak topology is the smallest topology such that each operator Ti : X → Yi in the
operator family {Ti}i∈I with the topological spaces Yi, i ∈ I, is continuous, see [99, Section
6.6.1]. The weak topology defines a Hausdorff topology for Hausdorff spaces Yi, i ∈ I,
see [4, Proposition 1.8]. Specifically, sequentially open sets with respect to the weak topology
are called weakly sequentially open sets, which are equivalent to open sets with respect to the
weak sequential topology. We must be cautious because the term ”sequentially” is frequently
not written explicitly in the literature. Weakly open sets or open sets with respect to the
weak topology are weakly sequentially open sets or open sets with respect to the weak
sequential topology, but the reverse implication is invalid because the weak topology is not
metrizable, as shown in [23, Chapter 3.2, Remark 3]. Consequently, the weak sequential
topology is more refined than the weak topology and is also a Hausdorff topology.

In addition, one must be careful when describing compact sets: weakly sequentially com-
pact refers to sequentially compact with respect to the weak topology, not compact with re-
spect to the weak sequential topology. Later, we’ll discuss the theorem of Eberlein–Šmulian,
which equates weakly compactness and weakly sequentially compactness, see Theorem 2.25
in Subsection 2.1.3. In normed spaces, we will see that these three notions of compactness
for a set are equivalent:

• weak compactness,

• weak sequential compactness (or more precisely, sequential compactness with respect
to the weak topology),

• compactness with respect to the weak sequential topology.

Since the space with the weak sequential topology is sequential, the topological terminolo-
gies in Definition 2.9, Proposition 2.11, and Proposition 2.12 are identical to the following
sequential concepts. We refer to [8, p.35] and [33, Definition 3.2].

Definition 2.15 (Continuity in the weak sequential topology). Let {xk}k∈N be a sequence
such that xk ⇀ x̄ in X as k → ∞. An operator T : X → Y is called

(i) continuous with respect to the weak sequential topology if T (xk) ⇀ T (x̄) in Y as
k → ∞,

10
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(ii) completely continuous if T (xk) → T (x̄) in Y as k → ∞.

A functional f : X → R ∪ {∞} is called

(i) lower semicontinuous with respect to the weak sequential topology if

lim inf
k→∞

f(xk) ≥ f(x̄),

(ii) upper semicontinuous with respect to the weak sequential topology if

lim sup
k→∞

f(xk) ≤ f(x̄).

Remark 2.16. Clearly, every completely continuous operator is continuous with respect
to the weak sequential topology. In the literature, there is the related notion of compact
operators. In fact, a linear operator T : X → Y is called compact if T maps bounded sets
to relatively compact sets (i.e., sets with compact closure [103, Definition 6.2]), see also
[97, p. 98]. For two Banach spaces X and Y , every compact operator is completely
continuous. However, the converse only holds true if X is reflexive, compare the book
[33, Proposition 3.3]. In this study, the weaker condition of a completely continuous opera-
tor is sufficient. Note that the complete continuity is identical to the continuity between the
weak sequential and strong topologies. A completely continuous operator is also known as
weak-to-strong sequentially continuous.

2.1.2 Normed Spaces

In optimization theory, topological spaces can be challenging to manipulate, and certain
properties require more structure. Following are the primary definitions of normed spaces,
including boundedness, differentiability of an operator, dual space, and bidual space. In
addition, we will examine the well-known theorem of Eberlein and Šmulian, which allows us
to characterize compact sets in terms of the weak sequential topology.

We begin with the definition of a linear and bounded operator.

Definition 2.17 (Bounded operator). Let X and Y be normed spaces. A linear operator
T : X → Y is called bounded if T (A) ⊆ Y is bounded for every bounded set A ⊆ X.

We note that a linear operator that is bounded is also continuous and vice versa, see
[3, Lemma 5.1]. Thus, the set L (X;Y ) contains all the linear and bounded operators that
map from X to Y . The operator norm of an operator T ∈ L (X;Y ) is defined by

∥T∥L (X;Y ) = sup
∥x∥X≤1

∥Tx∥Y .

Next, we define the concepts of isomorphisms and isometric operators, see [82, Definition
1.4.13].

11
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Definition 2.18 (Isometric isomorphism). Let X and Y be normed spaces and T : X → Y
be linear. Then T is an isomorphism if it is injective and continuous and its inverse T−1 is
continuous. The operator T is called isometric if ∥Tx∥Y = ∥x∥X for all x ∈ X. The space
X is (isometrically) embedded in Y if there exists an (isometric) isomorphism from X to Y .
The spaces X and Y are (isometrically) isomorphic if there is an (isometric) isomorphism
from X to Y , i.e., X ∼= Y .

Before, we introduced the notion of the dual space X∗ = L (X;R) of a given space X.
We can even take the dual of the dual space and call this space the bidual space, see [4, page
62] and the next definition.

Definition 2.19 (Biduality). We define the bidual space X∗∗ as the dual space of X∗.
Furthermore, we define the biduality mapping J̃ : X → X∗∗ between X and its bidual X∗∗

by

⟨J̃(x), x∗⟩X∗∗,X∗ = ⟨x∗, x⟩X∗,X with ∥J̃(x)∥X∗∗ = ∥x∥X .

In general, this mapping J̃ is only continuous. A normed space is called reflexive if J̃ is
an isomorphism, see [103, Definition 36.2]. The concept of reflexivity is very useful in the
context of the differentiability of the distance functional, see Subsection 2.1.3.

But first, we have to discuss various notions of the differentiability of operators. More
precisely, a directional derivative can be nonlinear and discontinuous in contrast to finite
dimensions. However, there is the concept of Gâteuax and Fréchet derivatives, see the
book [18, Definition 2.44].

Definition 2.20 (Directional, Gâteaux, Fréchet derivative). Let X, Y be normed spaces
and consider an operator T : X → Y . Then T is called

(i) directionally differentiable at x ∈ X in direction h ∈ X if the following limit exists

dT (x, h) = lim
t↓0

T (x+ th)− T (x)

t
,

(ii) Gâteaux differentiable at x ∈ X if the directional derivative dT (x, h) is linear and
continuous in h, and the Gâteaux derivative is denoted by T ′(x), i.e.,

T ′(x)h = dT (x, h) ∀h ∈ X,

(iii) Fréchet differentiable at x ∈ X if

T (x+ h) = T (x) + T ′(x)h+ o(∥h∥X) ∀h ∈ X.

Every Fréchet differentiable operator is also Gâteaux differentiable, and the derivatives
in this case are identical. The opposite is not generally true. Provided that it is clear after
which variable the derivative is taken, we use the notation T 7→ T ′. Otherwise, we emphasize
it with T 7→ Tx.

12



CHAPTER 2. MATHEMATICAL PRELIMINARIES 2.1. FUNCTIONAL ANALYSIS

Theorem 2.21 (Mean value theorem, cf., [28, Chapter 3.2, Theorem 1]). Let X be a normed
space and f : X → R be Fréchet differentiable. Furthermore, let x, y ∈ X. Then there exists
an element z ∈ {(1− t)x+ ty : 0 ≤ t ≤ 1} such that

f(x)− f(y) = ⟨f ′(z), x− y⟩X∗,X .

Following this, we will introduce pseudoconvex functionals, which are closely related to
directionally differentiable functionals. This concept was first introduced by Levi in 1910 in
the topic of analytic functionals [77] and later on in 1965 by Mangasarian [80, 81] for opti-
mization problems. Such functionals are included in the class of differentiable quasiconvex
functionals, and interestingly, a local property such as a vanishing gradient implies a global
optimality condition in the case of pseudoconvex functionals. In fact, every local minimizer
corresponds to a global minimizer.

Classically, pseudoconvex functionals need to be differentiable in order to be well-defined.
This definition was relaxed to subdifferentials and Dini derivatives in [6, 63]. These articles
also relax the underlying spaces to Banach and linear spaces, respectively, and we state our
definition also for infinite-dimensional spaces but for differentiable functions nonetheless.

Definition 2.22 (Pseudoconvex functional). Let A be a convex subset of the normed space
X. We call the directionally differentiable functional f : A → R pseudoconvex if for any
x, y ∈ A it holds:

df(x, y − x) ≥ 0 =⇒ f(y) ≥ f(x).

In general, sums of pseudoconvex functionals are not pseudoconvex. The sum of a convex
and a pseudoconvex functional is also not necessarily pseudoconvex, e.g., consider the sum
of the functions f(x) = x3 + x and g(x) = −x.

In the following, we discuss some properties of the norm of a normed space X.

Lemma 2.23 (cf. [8, Lemma 2.35]). The norm of a normed space is lower semicontinuous
with respect to the weak sequential topology.

Furthermore, we introduce the notion of closed balls around some element x ∈ X with
radius R as

BX
R (x) = {y ∈ X : ∥x− y∥X ≤ R}.

We note that every ball in a normed space, open or closed, is convex, see [82, Proposition
1.3.12].

Theorem 2.24. Let Xi be a normed space for all i ∈ [N ]. Then the product topology of
X = ΠN

i=1Xi is induced by the norm

∥x∥X =
( N∑

i=1

∥xi∥2Xi

) 1
2 (2.1)

Next, we discuss the peculiarities of the weak sequential topology and compare it with
the weak topology. We have seen that weakly open sets are weakly sequentially open and
the other direction does not hold (since the weak topology is not metrizable). Furthermore,

13



2.1. FUNCTIONAL ANALYSIS CHAPTER 2. MATHEMATICAL PRELIMINARIES

the terms of a weakly sequentially open set coincide with an open set with respect to the
weakly sequential topology. The theorem of Eberlein–Šmulian provides a characterization
of weakly compact sets in the context of weakly sequentially compact sets. Moreover, it can
be shown that weakly compact sets are the same as the compact sets with respect to the
weakly sequential topology.

Theorem 2.25 (Eberlein–Šmulian, [82, Theorem 2.8.6]). Let A be a subset of a normed
space. Then the following are equivalent:

(i) A is weakly compact.

(ii) A is weakly sequentially compact.

Corollary 2.26 (cf. [100]). Let X be a normed space. Then a subset A ⊆ X is compact in
the weak topology if and only if it is compact in the weak sequential topology.

Proof. Let A be a weakly compact set or compact set with respect to the weak topology,
respectively. By the theorem of Eberlein–Šmulian, see Theorem 2.25, the set A is also weakly
sequentially compact. Furthermore, let C ⊆ A be a weakly sequentially closed subset. That
means C is sequentially closed with respect to the weak topology or closed with respect to the
weak sequential topology. Then C is weakly sequentially compact by the weak sequential
compactness of A. Using the theorem of Eberlein–Šmulian once again, we get the weak
compactness of C and thus, C is weakly closed, see Proposition 2.4. Since every weakly
closed set is weakly sequentially closed, we have shown that C ⊆ A is weakly sequentially
closed if and only if it is weakly closed. Hence, on a weakly compact set the weak and the
weak sequential topology coincide.

Let A be a compact set with respect to the weak sequential topology. Furthermore, let
{Ai}i∈I be an open cover of A with respect to the weak topology. Since the weak sequential
topology is finer than the weak topology, {Ai}i∈I is an open cover of A with respect to the
weak sequential topology. Then there exists an finite index J ⊆ I such that A ⊆ ∪i∈JAi.

All together, we get the equivalence of all three notions of compactness in normed spaces.

2.1.3 Banach Spaces

Next, we add more structure to the topology and end up with Banach spaces. Banach
spaces are the completion of normed spaces. A metric space (X, d) is called complete if any
Cauchy sequence in it converges to a point in X. Any sequence {xk}k∈N ⊆ X satisfying
limn,m→∞ d(xn, xm) = 0 is a Cauchy sequence, see [111] and [82, Definition 1.2.12]. This
subsection focuses on the various classes of Banach spaces and the properties that give the
space more structure.

Definition 2.27 (Hilbert space). A Banach space with a complete inner product is called
a Hilbert space.

This concept is quite robust, as it requires not only an inner product but also the com-
pletion of the Banach space with this inner product. Hilbert spaces have strong properties
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regarding projections and duality mappings. In contrast to this strong assumption, we con-
struct special Banach spaces such that certain of these properties continue to hold. To this
end, we will introduce Banach spaces that are uniformly smooth and uniformly convex.

First, however, we present some fundamental results in Banach and Hilbert spaces.

Theorem 2.28 (cf. [82, Theorem 1.4.8]). Let X and Y be normed spaces. Then the space
(L (X;Y ), ∥ ·∥L (X;Y )) is a normed space. If Y is a Banach space, then L (X;Y ) is a Banach
space.

We note that the Riesz representation theorem guarantees that Hilbert spaces are reflex-
ive, see [23, Proposition 5.1]. In case of Banach spaces, we have the following relationship of
reflexivity between X and its dual.

Lemma 2.29 (cf. [3, Chapter 8.8]). Let X be a Banach space. If X is reflexive, then X∗ is
reflexive.

Next, we present some results on the existence of weakly and weakly-∗ converging sub-
sequences of bounded sequences. But first, we state the following classical result of Banach–
Alaoglu on the compactness of the closed unit ball in the dual space.

Theorem 2.30 (Banach–Alaoglu, cf. [23, Theorem 3.16]). Let X be a Banach space. Then
BX∗

1 (0) is compact in the weak-∗ topology of X∗.

Hence, if we have a bounded sequence {xk}k∈N in X∗, then we obtain the existence of a
weakly-∗ convergent subsequence in X∗. Using reflexivity and a combination of the theorems
of Eberlein–Šmulian and Banach–Alaoglu, see Theorem 2.25 and Theorem 2.30, we obtain
the following result on weak convergence.

Lemma 2.31 (cf. [23, Theorem 3.18]). Let X be a reflexive Banach space and {xk}k∈N be
bounded in X∗. Then there exists a weakly convergent subsequence {xkl}l∈N in X∗.

Remark 2.32. Since X∗ is reflexive, we obtain the existence of a weakly-∗ convergent
subsequence in X∗. In fact, let {xk}k∈N ⊆ X∗ be bounded. Then it holds xkl ⇀ x in X∗ as
l → ∞, i.e.,

lim
l→∞

⟨y, xkl⟩X∗∗,X∗ = ⟨y, x⟩X∗∗,X∗ ∀ y ∈ X∗∗.

By the definition of the reflexivity of X, we know that X∗∗ is isomorphic to X with the iso-
morphism J̃X : X → X∗∗, see again Definition 2.19. Thus, it directly yields the convergence

lim
l→∞

⟨xkl , z⟩X∗,X = lim
l→∞

⟨J̃Xy, xkl⟩X∗∗,X∗ = ⟨J̃Xy, x⟩X∗∗,X∗ = ⟨x, z⟩X∗,X ∀ z ∈ X.

This corresponds to weak-∗ convergence of the subsequence {xkl}l∈N in X∗.

We note that the existence of a weakly-∗ convergent subsequence in X∗ is already guar-
anteed if X is a separable normalized space, as the next theorem states. In particular,
no completeness and no reflexivity is needed, which is particularly useful for the spaces
X = L1(0, 1) or X = C([0, 1]).
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Theorem 2.33 (Sequential Banach–Alaoglu, cf. [46, Section 5, Exercise 50]). Let X be a
separable normed space. Then BX∗

1 (0) is sequentially compact in the weak-∗ topology of
X∗. Equivalently, if {xk}k∈N is a bounded sequence in X∗, then there exists a weakly-∗
converging subsequence {xkl}l∈N in X∗.

We define the important concept of an adjoint operator in normed spaces, see the book
[79, Section 6.5], and in the special case if Hilbert spaces are involved.

Definition 2.34 (Adjoint operator). Let X, Y be normed spaces and let T : X → Y be a
linear and bounded operator. Then the adjoint operator of T is denoted by T ∗ : Y ∗ → X∗

and fulfills
⟨T ∗y∗, x⟩X∗,X = ⟨y∗, Tx⟩Y ∗,Y ∀x ∈ X, y∗ ∈ Y ∗.

Furthermore, if X and Y are Hilbert spaces, then T ′ : Y → X is called the Hilbert adjoint if
it holds

(T ′y, x)X = (y, Tx)Y ∀x ∈ X, y ∈ Y.

We note that the Hilbert space adjoint can be related to the Banach space adjoint via

T ′ = R−1
X T ∗RX .

In this formula, RX : X → X∗ denotes the bijective Riesz mapping in Hilbert spaces, which
is defined by RXx = (·, x)X ∈ X∗.

We mention the following generalization of the open mapping theorem that applies to
set-valued functions in Banach spaces.

Theorem 2.35 (Generalized open mapping theorem, cf. [91,92]). Let X and Y be Banach
spaces. Furthermore, let T : X ⇒ Y be a convex and closed set-valued operator. Moreover,
let y ∈ int(rangeT ). Then for every x ∈ T−1(y), it follows that y ∈ intT (BX

R (x)) for all
R > 0.

Next, we define the concept of strictly convex spaces, in which the closed unit ball is a
strictly convex set, see [30, Chapter II, Definition 1.1]. In other words, given any two distinct
points x and y on the unit sphere, the segment connecting x and y only meets the sphere at
x and y. We observe that every Hilbert space is strictly convex.

Definition 2.36 (Strictly convex space). A Banach space X is strictly convex if for all
x, y ∈ X with x ̸= y and ∥x∥X = ∥y∥X = 1 there holds

∥tx+ (1− t)y∥X < 1

for all t ∈ (0, 1).

The following characterizations apply to strictly convex Banach spaces.

Proposition 2.37 (cf. [30, Chapter II, Proposition 1.2, Proposition 1.6]). LetX be a Banach
spaces. Then following statements are equivalent:

(i) X is strictly convex.
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(ii) For all x, y ∈ X with x ̸= y and ∥x∥X = ∥y∥X = 1 there holds ∥x+ y∥X < 2.

(iii) The mapping x 7→ ∥x∥2X is strictly convex.

Next, we will discuss uniformly convex Banach spaces, which serve as examples of typical
reflexive Banach spaces. In fact, every Hilbert space and every Lp(0, 1) space, p ∈ (1,∞), is
uniformly convex. This concept was first used by Clarkson in 1936, see [31], and we will see
that such spaces are closely related to the notion of strict convexity. This definition is based
on [30, Chapter II, Definition 2.1].

Definition 2.38 (Uniformly convex space). A Banach space X is called uniformly convex
if for all {xk}k∈N ⊆ X, {yk}k∈N ⊆ X with ∥xk∥X = ∥yk∥X = 1, k ∈ N, and ∥xk + yk∥X → 2
as k → ∞, it follows ∥xk − yk∥X → 0 as k → ∞.

Again, we present some equivalences of uniform convex spaces that can also serve as
alternative definitions.

Proposition 2.39 (cf. [30, Chapter II, Proposition 2.3, Proposition 2.11]). Let X be a
Banach space. Then the following statements are equivalent:

(i) X is uniformly convex.

(ii) For all ε > 0, there exists δ > 0 such that for all x, y ∈ X with ∥x∥X = ∥y∥X = 1
and ∥y − x∥X ≥ ε there holds ∥y + x∥X ≤ 2(1− δ).

(iii) For all x ∈ X with ∥x∥X = 1 and for all ε > 0, there exists δ(x) > 0 such that for all
y ∈ X with ∥y∥X = 1 and ∥y − x∥X ≥ ε there holds ∥y + x∥X ≤ 2(1− δ(x)).

(iv) f(x) = 1
2∥x∥

2
X is uniformly strictly convex, i.e., f is convex and, for all ε > 0,

inf
{
f(x)− 2f(x+y

2 ) + f(y) : ∥x∥X = 1, ∥y − x∥X ≥ ε
}
> 0.

The following proposition relates uniformly convex Banach spaces to strictly convex Ba-
nach spaces.

Proposition 2.40 (cf. [30, Chapter II, Proposition 2.7, Proposition 2.8]). Any uniformly
convex Banach space X is strictly convex. Furthermore, for a sequence {xk}k∈N in X the
following implication holds:

xk ⇀ x̄ in X, ∥xk∥X → ∥x̄∥X as k → ∞ =⇒ xk → x̄ in X as k → ∞.

The famous Milman–Pettis theorem is stated next, which was independently proved by
Milman and Pettis.

Theorem 2.41 (Milman–Pettis, cf. [30, Chapter II, Theorem 2.9]). A uniformly convex
Banach space is reflexive.

We introduce uniformly smooth spaces, which are closely related to uniformly convex
spaces through their dual spaces. In fact, we will demonstrate that a space is uniformly
smooth only if its dual is uniformly convex. However, we will begin with the definition of
uniform smoothness, see [29, Definition 2.4].

17



2.2. OPERATOR THEORY CHAPTER 2. MATHEMATICAL PRELIMINARIES

Definition 2.42 (Uniformly smooth space). A normed space X is if, given ε > 0, there
exists a δ > 0 such that for all x, y ∈ X with ∥x∥X = 1 and ∥y∥X ≤ δ, then

∥x+ y∥X + ∥x− y∥X < 2 + ε∥y∥X .

An alternative characterization can again be stated, as the following result shows.

Proposition 2.43 (cf. [29, Theorem 2.5]). A normed space X is uniformly smooth if and
only if

lim
t↓0

sup
∥x∥X=∥y∥X=1

∥x+ ty∥X + ∥x− ty∥X − 2

2t
= 0.

One of the main theorems in the theory of uniformly smooth spaces is the following.

Theorem 2.44 (cf. [30, Chapter II, Theorem 2.13], [29, Theorem 2.10], [82, Theorem
5.5.12]). Let X be a Banach space. Then X is uniformly convex if and only if X∗ is uniformly
smooth, and X is uniformly smooth if and only if X∗ is uniformly convex.

Now, an easy consequence of this theorem and the Milman–Pettis theorem, see Theo-
rem 2.41, is as follows.

Corollary 2.45 (cf. [30, Chapter II, Corollary 2.15], [29, Corollary 2.11]). Every uniformly
smooth Banach space is reflexive.

Remark 2.46. We note that the product space X of uniformly convex Banach spaces Xi,
i ∈ I finite, is a uniformly convex Banach space, see [31, Theorem 1]. The product space of
reflexive Banach spaces is reflexive. Furthermore, we know that a Banach space is uniformly
smooth if the dual space is uniformly convex. And hence, the product space is also uniformly
smooth, uniformly convex and reflexive.

We summarize the stated results in the following graph for a given Banach space X.

X Hilbert space

X reflexive X uniformly convex X∗ uniformly smooth

X strictly convex

2.2 Operator Theory

In this section, special operators such as monotone operators, projections, and duality oper-
ators are discussed. Typically, such operators are nonlinear and do not belong to the class
L (X;Y ), but we nevertheless provide interesting and practical results.
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2.2.1 Monotone Operators

Pseudomonotone operators play an important role in the analysis of nonmonotone partial
differential equations such as

div(|∇u|p−2∇u) + su = f

for s < 0 and a given function f , which is assumed to be sufficiently regular. Such partial
differential equations cannot be solved by the theory of monotone operators. But it can
be checked that the famous Browder–Minty theorem can be adapted to the more general
pseudomonotone operators, see, e.g., [96].

One can introduce pseudomonotone operators on topological vector spaces, see, e.g., the
works [22,61,113]. Typically, the concept is used for partial differential equations with solu-
tion spaces that are reflexive Banach spaces, e.g., see the monograph [48]. For applications
of pseudomonotone operators to game theory in the setting of Euclidean spaces, we refer to
the book [67]. Additionally, we introduce the concept of hemicontinuous and monotone op-
erators on reflexive Banach space, which are closely connected to pseudomontone operators.
In the following definition, all terms are defined on a reflexive Banach space.

Definition 2.47 ((Pseudo)monotonicity and hemicontinuity). Let X be a reflexive Banach
space. An operator T : X → X∗ is called

(i) pseudomonotone if the conditions xk ⇀ x̄ weakly in X as k → ∞ and

lim inf
k→∞

⟨T (xk), x̄− xk⟩X∗,X ≥ 0

imply
lim sup
k→∞

⟨T (xk), y − xk⟩X∗,X ≤ ⟨T (x̄), y − x̄⟩X∗,X ∀ y ∈ X,

(ii) hemicontinuous if the functional t 7→ ⟨T (x+ ty), z⟩X∗,X is continuous on [0, 1] for all
x, y, z ∈ X,

(iii) monotone if it holds ⟨Tx− Ty, x− y⟩X∗,X ≥ 0 for all x, y ∈ X.

The next theorem establishes relationships between the previously defined operators. In
particular, every completely continuous operator, see Definition 2.15, is pseudomonotone and
we will heavily exploit this property later on.

Proposition 2.48 (cf. [113, Proposition 27.6]). Let X be a reflexive Banach space and
T : X → X∗ and S : X → X∗ be operators. Then it holds:

(i) If T is monotone and hemicontinuous, then T is pseudomonotone.

(ii) If T is completely continuous, then T is pseudomonotone.

(iii) If T and S are pseudomonotone, then T + S is pseudomonotone.

(iv) If T is monotone and hemicontinuous and S is completely continuous, then T + S is
pseudomonotone.
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Since we have already found a connection between pseudomonotone and completely con-
tinuous operators, we also provide the following result on the Fréchet derivative of a com-
pletely continuous operator.

Theorem 2.49 (cf. [38, Proposition 8.2]). Let X and Y be Banach spaces. Furthermore,
let T ∈ L (X;Y ) be Fréchet differentiable in x ∈ X. If T is completely continuous, then
T ′(x) ∈ L (X;Y ) is completely continuous.

Thus, we know that the Fréchet derivative of a completely continuous operator is pseu-
domonotone.

2.2.2 Projection Operator

We state some properties of the projection onto a convex and closed set. This operator
will become particularly useful when studying the projected descent method later on in
Section 6.1. But first, we begin with its definition, which we base on [8, p.16] and [23, Exercise
3.32].

Definition 2.50 (Distance functional and projection). Let X be a normed space and A ⊆ X
be a closed subset of X. Then, the distance functional is defined by

dist(x,A) = inf
y∈A

∥x− y∥X .

In case of a uniformly convex Banach space X, the projection PA(x) of some element x ∈ X
to the convex and closed subset A is given by

∥x− PA(x)∥X = dist(x,A).

We note that the infimum in the definition of the distance functional can be replaced by
the minimum if we additionally assume that A is a convex subset of X. Often, the projection
is already defined with this assumption, see [59].

Moreover, we note that we require the assumption of a uniformly convex Banach space in
order to define the projection in the stated manner. Theoretically, one could also define the
projection on general Banach spaces, but in this case, the projection of a given element is a
set and one has to deal with so-called Chebyshev subsets in order to achieve single-valued
projection operators. The neat thing is that any convex and closed subset of a uniformly
convex Banach space is automatically Chebyshev, see also [110].

We state the following lemma, which summarizes some useful results of the projection
operator that we will require later on when studying the projected gradient method.

Lemma 2.51 (cf. [59, Lemma 1.10]). Let A ⊆ X be a nonempty, convex, and closed subset
of the Hilbert space X. Then the following holds:

(i) for all u ∈ A and d ∈ X, the function t 7→ 1
t ∥PA(u + td) − u∥X is nonincreasing for

all t > 0.

(ii) for all u, v ∈ X it holds the equivalency

v = PA(u) ⇐⇒ v ∈ A, (u− v, w − v)X ≤ 0 ∀w ∈ A.
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Lemma 2.52 (cf. [1, Remark 3.4], [110, Theorem 2], [51, Proposition 3.2]). Let X be a
uniformly smooth and uniformly convex Banach space. If A is a convex and closed subset of
X, then the projection PA : X → A is continuous on X, and uniformly continuous on any
bounded subset of X.

Results on the (uniform) continuity of the projection PA can be found in [1]. In particular,
if X is uniformly convex, then PA is continuous, and if X is uniformly smooth and uniformly
convex, then PA is uniformly continuous on bounded sets. By the smoothness properties
of the norm and these results, we can obtain continuous differentiability of dist2(·, A) and
uniform continuity of its derivative on bounded sets under suitable conditions posed on X.

2.2.3 Duality Mapping

This section introduces the duality operator that maps a given space X to its dual X∗,
see [30, Definition 4.1]. We discuss several properties of this mapping and we will build a
connection to the derivative of the distance functional that we have seen in Definition 2.50.
This section is based on [29, Section 3] and [113, Section 32].

Definition 2.53 (Duality mapping). Let X be a normed space. The duality mapping of X
is denoted by JX : X → X∗ and it is given by the element x∗ = JX(x) ∈ X∗ for x ∈ X,
which is uniquely defined by the properties

⟨x∗, x⟩X∗,X = ∥x∥2X and ∥x∗∥X∗ = ∥x∥X .

Even though we have defined the duality mapping on normed spaces, it exhibits several
interesting properties if we assume more structure on the underlying space. In fact, we have
the following result.

Proposition 2.54 (cf. [113, Proposition 32.22]). Let X be a reflexive Banach space with
strictly convex dual space X∗. Then it holds:

(i) The duality map JX is single-valued, monotone, and bounded.

(ii) If X is additionally a strictly convex Banach space, then the duality map JX is
bijective.

(iii) If X∗ is uniformly convex, then JX is hemicontinuous and uniformly continuous on
bounded sets.

If we assume that X is a uniformly smooth and uniformly convex Banach space, then the
duality map is single-valued, odd, demicontinuous, bounded, bijective, maximal monotone,
coercive, positively homogeneous, strictly monotone, and uniformly continuous on bounded
sets. These properties can be partially shown under lower assumptions, see [113, Proposition
32.22].

We note that the duality mapping JX is usually nonlinear and that the single-valuedness
and further properties only hold due to higher requirements onX as the following equivalence
statement shows.
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Proposition 2.55 (cf. [29, Proposition 3.6, Proposition 3.7]). Let X be a Banach space.
The duality mapping JX is linear and single-valued if and only if X is a Hilbert space.

In the case of a Hilbert spaceX the duality mapping JX corresponds to the Riesz operator
RX , which we introduced in Definition 2.34. The inverse operator of JX can be expressed
by the duality map JX∗ of X∗, as we see in the next proposition.

Proposition 2.56 (cf. [113, Proposition 32.22]). Let X be a strictly convex reflexive Banach
space with a strictly convex dual space. It holds J−1

X = J̃−1JX∗ , where J̃ : X → X∗∗ is an
isometry between X and the bidual space X∗∗. If we identify X∗∗ with X, then it reduces
to J−1

X = JX∗ .

Proof. By definition of the isometry, it holds

⟨J̃x, x∗⟩X∗∗,X∗ = ⟨x∗, x⟩X∗,X ∀x ∈ X, x∗ ∈ X∗,

and J̃ is injective and isometric. Let x = J̃−1JX∗(x∗) ∈ X. Then we have

∥x∗∥X∗ = ∥JX∗(x∗)∥X∗∗ = ∥J̃x∥X∗∗ = ∥x∥X , (2.2)

where we used the definition of the duality mapping JX∗ : X∗ → X∗∗ in the first equality
and the definition of an isometry in the last one. Next, we use the properties of the isometry
J̃ and its inverse J̃−1 to obtain

⟨x∗, x⟩X∗,X = ⟨x∗, J̃−1JX∗(x∗)⟩X∗,X = ⟨J̃ J̃−1JX∗(x∗), x∗⟩X∗∗,X∗ = ⟨JX∗(x∗), x∗⟩X∗∗,X∗ .

Furthermore, we get

⟨JX∗(x∗), x∗⟩X∗∗,X∗ = ∥x∗∥2X∗ = ∥JX∗(x∗)∥2X∗∗ = ∥x∥2X
by the definition of the duality mapping JX∗ and (2.2). Thus, we arrive at

⟨x∗, x⟩X∗,X = ∥x∥2X .

Finally, we obtain x∗ = JX(x) = JX(J̃−1JX∗(x∗)) for all x∗ ∈ X∗ and by the bijectivity of
JX it yields the result.

Proposition 2.57 (cf. [113, Proposition 32.22]). IfX is a reflexive Banach space with strictly

convex dual X∗, then ∥·∥X is Gâteaux differentiable with derivative x 7→ JX(x)
∥x∥X on X\{0}. If

X is additionally uniformly smooth, then the norm ∥ · ∥X is Fréchet differentiable on X\{0}
and its derivative is uniformly continuous on bounded subsets that does not contain some
neighborhood of 0.

It is clear that if ∥·∥X is Fréchet differentiable outside 0, then ∥·∥2X is Fréchet differentiable
everywhere since ∥·∥2X is Fréchet differentiable at 0. Moreover, ∥·∥2X is Gâteaux differentiable
with derivative x 7→ 2JX(x). If JX is uniformly continuous on every bounded set, then the
same holds true for the derivative of ∥ · ∥2X , since (∥ · ∥2X)′(x) = 2JX(x).

Proposition 2.58 (cf. [108, Proposition 5, Proposition 7]). If A is a convex and closed subset
of the Banach space X, then the squared distance functional dist2(·, A) is differentiable on
A and it holds for all x ∈ A〈

dist2x(x,A), h
〉
X∗,X =

〈
(∥ · ∥2X)′(x− PA(x)), h

〉
X∗,X

= 2
〈
JX(x− PA(x)), h

〉
X∗,X ∀h ∈ X.
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2.3 Theory of Constrained Optimization

This chapter focuses on the theoretical background of constrained optimization in general
Banach spaces and its application to the equilibrium concept of games. In this context, we
also introduce the augmented Lagrangian method, which is in the class of penalty methods.

We start with optimization problems in Banach spaces and discuss the well-known KKT
conditions and give some results on CQs and their consequences on the existence of mini-
mizers.

2.3.1 Optimality Conditions

In the following, we consider the minimization problem

min
u∈U

f(u) s.t. G(u) ∈ K, u ∈ X , (2.3)

with f : U → R, G : U → X, K ⊆ X and X ⊆ U . Here, U and X are normed spaces. We
say that an element u ∈ U is feasible if u ∈ X and G(u) ∈ K. We denote the feasible set by
F = X ∩G−1(K).

But first, we introduce the important concept of tangent and normal cones, see the
book [35, Definition 2.1].

Definition 2.59 (Bouligand tangent cone and normal cone). The Bouligand tangent cone
at ū ∈ U is defined as the empty set if ū /∈ X , and otherwise as

TX (ū) =
{
d ∈ U : ∃ ηk > 0, {uk}k∈N ⊆ X : lim

k→∞
uk = ū, lim

k→∞
ηk(uk − ū) = d in U

}
. (2.4)

The normal cone NX (ū) is defined as the polar cone of TX (ū).

The following lemma lets us rewrite the relevant cones, which makes them easier to
handle.

Lemma 2.60 (cf. [35, Proposition 2.1]). For a convex and closed set X ⊆ U , the tangent
and normal cones at ū ∈ U can be written as

TX (ū) = cl
{
d ∈ U : d = η(z − ū), z ∈ X , η > 0

}
,

NX (ū) =
{
d ∈ U∗ : ⟨d, z − ū⟩U∗,U ≤ 0 ∀ z ∈ X

}
.

(2.5)

We say that the first-order necessary optimality condition holds in a point ū for the
minimization problem (2.3) if the following inequality is fulfilled:

⟨f ′(ū), d⟩U∗,U ≥ 0 ∀ d ∈ TF (ū).

If there exists some d ∈ TF (ū), then the tangent cone is nonempty and ū is feasible. In
this case, we will speak about first-order optimality conditions including feasibility. If f is
continuously differentiable in ū and ū is a local solution to the problem (2.3), then these con-
ditions must be true and are indeed necessary, see [17, Lemma 3.7]. In fact, these conditions
build the basis of the famous KKT conditions.
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We also state the following sufficient conditions that directly yield a minimum in case of
a simplified minimization problem with strict assumptions such as an underlying reflexive
Banach space. Nevertheless, we will later on apply it to achieve the existence of a minimizer
in a reduced problem.

Lemma 2.61 (cf. [23, Corollary 3.23]). Let U be a reflexive Banach space and assume that
X ⊆ U is a nonempty, convex, closed, and bounded subset of U . Furthermore, let f : X → R
be a convex and lower semicontinuous functional. Then there exists a x0 ∈ X such that
f(x0) = minx∈X f(x).

In order to reformulate the Bouligand tangent cone (2.4) in terms of the tangent cone (2.5)
with respect to X and K, we introduce the concept of the well-known Robinson constraint
qualification (RCQ). Moreover, to validate the feasibility of (weak) limit points in our global
convergence analysis later on, we define a generalization of the RCQ to consider potentially
infeasible points, the so-called extended RCQ, which has been defined in [27, Definition 2.2].

Definition 2.62 (Extended Robinson constraint qualification). Let u ∈ U be an arbitrary,
not necessarily feasible point, and G be continuously differentiable at the point u. We say
that the extended Robinson constraint qualification (ERCQ) holds for problem (2.3) in u if

0 ∈ int
(
G(u) +Gv(u)(X − u)−K

)
. (2.6)

If u is an admissible point, then we refer to this condition as RCQ.

We note that the ERCQ is equivalent to the existence of some R > 0 such that for all
x ∈ BX

R (0) there are elements y ∈ K and z ∈ X with

x = G(u) +Gv(u)(z − u).

If the RCQ holds in some element u, then the tangent cone of the feasible set
F = X ∩G−1(K) at u reads

TF (u) =
{
d ∈ TX (u) : Gv(u)d ∈ TK(G(u))

}
,

see [18, Corollary 2.91]. By this result, we can interpret the well-known KKT conditions
geometrically.

Definition 2.63 (KKT pair and Lagrangian functional). Let f : U → R and G : U → X be
continuously differentiable at the point u. We call a tuple (u, λ) ∈ U ×X∗ a KKT pair for
the optimization problem (2.3) if it holds

−
[(
LX

)
v(v, λ)

]
|v=u

∈ NX (u),

λ ∈ NK(G(u)),

with the Lagrangian functional

LX(v, λ) = f(v) + ⟨λ,G(v)⟩X∗,X .
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Note that the Bouligand tangent cone and the normal cone are empty if u /∈ X and
thus, KKT points are feasible, see also [47]. Moreover, the KKT conditions are first-order
optimality conditions using the Lagrangian functional.

Since we only assume first-order differentiability of our constraints and objective function-
als, we are only interested in necessary optimality conditions instead of sufficient conditions.
In the case of second-order differentiability and sufficient conditions in infinite-dimensional
normed spaces, we refer to the book [90].

2.3.2 Equilibrium Concepts for Games

Let N ∈ N be the finite number of players. For each i ∈ [N ] = {1, . . . , N} the i-th player’s
strategy (or control) is denoted by ui ∈ Ui and we write U =

∏
i∈[N ] Ui for the strategy set of

all players. Here, the individual control spaces Ui, i ∈ [N ], are normed spaces. In addition,
the symbol u−i ∈ U−i represents the tuple of all strategies excluding that of player i. We
employ the notation u = (ui, u−i) to emphasize the i-th player, but we do not reorder the
tuple. For each i ∈ [N ], the i-th player solves the minimization problem

min
vi∈Fi(u−i)

θi(v
i, u−i), (2.7)

where Fi(u
−i) ⊆ Ui denotes the feasible set of player i that depends on the chosen strategies

of the other players. If this feasible set is independent of the selected strategies, the collection
of problems (2.7), i ∈ [N ], is called a NEP, while in the general case it is called a GNEP.
In the vast majority of published works, the objective functionals θi : U → R, i ∈ [N ], are
assumed to be convex and continuously differentiable in the i-th component. In this thesis,
this assumption is relaxed. Specifically, we will employ solution maps with a regularization
term α

2 ∥ιHi(v
i)− ιHi(u

i)∥2Hi
added to the cost functional θi. Here, ιHi : Ui → Hi is a linear

and continuous operator that maps to some given normed space Hi. Detailed requirements
on all spaces and problem data will be given in Chapter 3 in Assumption 3.1, Assumption 3.3
and Assumption 3.4.

We are interested in Nash equilibria and normalized equilibria, as well as points that
satisfy their first-order necessary optimality conditions.
The N -tuple u = (u1, . . . , uN ) ∈ U is a

• Nash equilibrium for the GNEP consisting of (2.7) if and only if, for all i ∈ [N ],
given u−i, the vector vi = ui solves the i-th player’s optimization problem (2.7), i.e.,
u ∈ F (u) =

∏
i∈[N ] Fi(u

−i) fulfills

θi(u
i, u−i) ≤ θi(v

i, u−i) ∀ vi ∈ Fi(u
−i), i ∈ [N ].

Equivalently, we can state: If Si(u
−i) denotes the set of all solutions to the i-th

player’s optimization problem (2.7), then u is a Nash equilibrium if and only if it holds
ui ∈ Si(u

−i) for all i ∈ [N ].

• quasi-Nash equilibrium if and only if, for all i ∈ [N ], given u−i, the vector vi = ui

solves the first-order optimality conditions of the i-th player’s optimization problem
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(2.7). If Fi(u
−i) is convex and θi is differentiable with respect to its i-th component

for all i ∈ [N ], then the first-order necessary conditions read (which is sufficient if θi is
additionally convex in the i-th component for all i ∈ [N ])

ui ∈ Fi(u
−i),

〈
(θi)vi(u

i, u−i), zi − ui
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Fi(u
−i), i ∈ [N ]. (2.8)

If the feasible set Fi(u
−i) is of the form

Fi(u
−i) = {vi ∈ Ui : (v

i, u−i) ∈ X}, (2.9)

with X ⊆ U nonempty and convex, then the point u ∈ U is a quasi-Nash equilibrium
if

u ∈ X ,
〈
(θi)vi(u), z

i − ui
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Ui with (zi, u−i) ∈ X , i ∈ [N ].

In the case that X has product structure, i.e., if Fi(u
−i) = Xi, the first-optimality

conditions simplify to

u ∈ X ,
〈
(θi)vi(u), z

i − ui
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Xi, i ∈ [N ].

If the feasible set Fi(u
−i) is of the form

Fi(u
−i) = {vi ∈ Ui : (v

i, u−i) ∈ X , G(vi, u−i) ∈ K}, (2.10)

then vi ∈ Ui satisfies the optimality conditions if there exists some element λi ∈ X∗

such that

(vi, u−i) ∈ X , G(vi, u−i) ∈ K, λi ∈ NK(G(vi, u−i)),〈
(θi)vi(v

i, u−i) +Gvi(v
i, u−i)∗λi, zi − vi

〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Ui with (zi, u−i) ∈ X .

(2.11)
Summarizing, one needs to find a point u such that vi = ui satisfies (2.11) for all
i ∈ [N ]. We can characterize a quasi-Nash equilibrium u by the system that we obtain
by inserting ui for vi into (2.11) and collecting all resulting systems for i ∈ [N ]. In
fact, one obtains

u ∈ X , G(u) ∈ K, λi ∈ NK(G(u)),〈
(θi)vi(u) +Gvi(u)

∗λi, zi − ui
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Ui with (zi, u−i) ∈ X .
(2.12)

In the case X = X1 × · · · × XN , the system simplifies to

u ∈ X , G(u) ∈ K, λi ∈ NK(G(u)),〈
(θi)vi(u) +Gvi(u)

∗λi, zi − ui
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Xi.

• normalized equilibrium for GNEP consisting of (2.7) with the feasible set (2.9) if and
only if, given u, the vector v = u solves the problem

min
v∈X

∑
i∈[N ]

θi(v
i, u−i), (2.13)
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or in other words, it holds∑
i∈[N ]

θi(u
i, u−i) ≤

∑
i∈[N ]

θi(v
i, u−i) ∀ v ∈ X . (2.14)

Equivalently, we can formulate it as follows. If, for a given u, S(u) denotes the set of all
solutions to (2.13), then u is a normalized equilibrium if and only if it holds u ∈ S(u).

• variational equilibrium if and only if, given u, the vector v = u satisfies the first-order
optimality conditions of (2.13). If X ⊆ U is nonempty and convex and θi is differen-
tiable, then u satisfies the necessary first-order optimality conditions for a normalized
equilibrium if the following variational inequality (VI) is valid

u ∈ X ,
∑
i∈[N ]

〈
(θi)vi(u

i, u−i), zi − ui
〉
U∗
i ,Ui

≥ 0 ∀ z ∈ X , (2.15)

and feasibility is ensured. For a feasible set of the form (2.10), v satisfies the stated first-
order optimality conditions of (2.13), given u, if there exists a Lagrangian multiplier
λ ∈ X∗ such that it holds

v ∈ X , G(v) ∈ K, λ ∈ NK(G(v)),∑
i∈[N ]

[〈
(θi)vi(v

i, u−i), zi − vi
〉
U∗
i ,Ui

]
+
〈
Gv(v)

∗λ, z − v
〉
U∗,U

≥ 0 ∀ z ∈ X . (2.16)

Since u is a variational equilibrium if and only if v = u satisfies (2.16), we obtain that
u is a variational equilibrium if and only if it holds

u ∈ X , G(u) ∈ K, λ ∈ NK(G(u)),∑
i∈[N ]

[〈
(θi)vi(u), z

i − ui
〉
U∗
i ,Ui

]
+
〈
Gv(u)

∗λ, z − u
〉
U∗,U

≥ 0 ∀ z ∈ X . (2.17)

In order to relate such equilibria to KKT points, we define the Lagrangian functionals of
(2.7) and (2.13) with the feasible set (2.10) by

Li
X(vi, u−i, λi) = θi(v

i, u−i) +
〈
λi, G(vi, u−i)

〉
X∗,X ,

LX(v, λ;u) =
∑
i∈[N ]

[
θi(v

i, u−i)
]
+

〈
λ,G(v)

〉
X∗,X , (2.18)

where u−i ∈ U−i and u ∈ U are the corresponding parameters. Then the VIs (2.12) and
(2.17) can be formulated with the corresponding Lagrangian. Indeed, for all directions h ∈ U
we obtain for the derivatives〈[(

Li
X

)
vi(v

i, u−i, λi)
]
|vi=ui

, hi
〉
U∗
i ,Ui

=
〈
(θi)vi(u), h

i
〉
U∗
i ,Ui

+
〈
Gvi(u)

∗λi, hi
〉
U∗
i ,Ui〈[(

LX
)
v(v, λ;u)

]
|v=u

, h
〉
U∗,U

=
∑
i∈[N ]

〈[(
LX

)
vi(v, λ;u)

]
|v=u

, hi
〉
U∗
i ,Ui

=
∑
i∈[N ]

[〈
(θi)vi(u), h

i
〉
U∗
i ,Ui

]
+
〈
Gv(u)

∗λ, h
〉
U∗,U

.
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In this setting, quasi-Nash equilibria and variational equilibria can be interpreted as KKT
points of the corresponding optimization problem, see Definition 2.63.

For a GNEP with feasible sets Fi(u
−i) = {vi ∈ Ui : (vi, u−i) ∈ X}, every normalized

equilibrium u ∈ X is a Nash equilibrium. In fact, if u is a normalized equilibrium, then for
any fixed i ∈ [N ] and for all vi ∈ Fi(u

−i), there holds v = (vi, u−i) ∈ X and

θi(v
i, u−i) =

∑
j∈[N ]

θj(v
j , u−j)−

∑
j ̸=i

θj(u
j , u−j) ≥

∑
j∈[N ]

θj(u
j , u−j)−

∑
j ̸=i

θj(u
j , u−j) = θi(u

i, u−i),

where the inequality follows directly from the fact that u is a normalized equilibrium.
There are various ways to characterize and compute the introduced types of equilibria

(Nash, quasi-Nash, normalized, variational), with the Nikaido–Isoda functional being one of
them, see [86]. Indeed, the Nikaido–Isoda functional reads

Ψ(u, v) =
∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)
]
, (2.19)

but regularized versions of the functional have also been studied in the literature, as we will
see in the thesis later on. It is evident that u ∈ X is a normalized equilibrium if and only
if Ψ(u, v) ≤ 0 for all v ∈ X . This is equivalent to u ∈ X being a solution to supv∈X Ψ(u, v)
with optimal value 0, while if u ∈ X is not a normalized equilibrium, then the optimal value
is strictly positive. Consequently, the so-called Nikaido–Isoda merit functional V : U → R,
V (u) = supv∈X Ψ(u, v), is nonnegative on X and it holds u ∈ X and V (u) = 0 if and
only if u is a normalized equilibrium. A similar construction, where the supremum is taken
over Fi(u

−i) rather than X , yields a Nikaido–Isoda merit functional that represents Nash
equilibria. In order to handle the nonconvexity of the objective functional θi, we introduce
a regularized Nikaido–Isoda functional, see [106], which is given by

Ψα(u, v) =
∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (2.20)

The corresponding regularized Nikaido–Isoda merit functional is defined by

Vα(u) = sup
v∈X

Ψα(u, v). (2.21)

Note that solving the problem supv∈X Ψα(u, v) is equivalent to solving infv∈X ‹Ψα(u, v),
where the associated objective functional is represented by‹Ψα(u, v) =

∑
i∈[N ]

[
θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (2.22)

One can proceed similarly for Nash equilibria and define the regularized Nikaido–Isoda merit
functional by‹Vα(u) =

∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (2.23)
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Detailed requirements on all spaces and problem data are given in Chapter 3 in Assump-
tion 3.1 and Assumption 3.3. The parameter α ≥ 0 is chosen according to Assumption 3.4 in
order to guarantee suitable convexity properties. This might result in a large value of α. In
order to minimize the requirement for potentially fairly high values of α, which could slow
down numerical approaches that employ Vα or ‹Vα, we also investigate local features of the
GNEP consisting (2.7).

2.3.3 Concept of the Augmented Lagrangian Method

In the following, we describe the concept of the augmented Lagrangian method for the
minimization problem

min
u∈U

f(u) s.t. G(u) ∈ K, u ∈ X . (2.24)

Here, we have introduced the functional f : U → R, the operator G : U → X, and the
subsets K ⊆ X, X ⊆ U of given normed spaces U , X. The exact requirements are discussed
in Chapter 3 later on.

The augmented Lagrangian method operates as follows: In order to obtain a differentiable
multiplier term, we must utilize a space for which the squared distance functional for convex
and closed sets is continuously differentiable. Consequently, we reformulate the problem
(2.24) equivalently and assume that there exists an operator e : X → Y such that KY ⊆ Y
is a convex and closed set with e−1(KY ) = K. Then the reformulated problem reads

min
u∈U

f(u) s.t. e(G(u)) ∈ KY , u ∈ X . (2.25)

The precise specifications for the spaces, sets, and operators are provided in Chapter 3. The
canonical choice for Y is some Hilbert space, but we later extend this to a uniformly smooth
and uniformly convex Banach space. We denote by PKY

the metric projection of Y onto
KY , and by

dist(h,KY ) = ∥h− PKY
(h)∥Y

the distance between some element h ∈ Y and the set KY , see again Definition 2.50.

The augmented Lagrangian functional for (2.25) reads

Lρ(u,w) = f(u) +
ρ

2
dist2

(
e(G(u)) +

J−1
Y (w)
ρ ,KY

)
,

where JY : Y → Y ∗ denotes the duality mapping of Y , see again Definition 2.53, and ρ is a
positive parameter. In the case of a Hilbert space, the duality mapping corresponds to the
Riesz mapping. The general augmented Lagrangian algorithm is given by:

Algorithm 2.64.

0. Choose parameters ρ0 > 0, γ > 1, τ ∈ (0, 1) and some bounded set B ⊆ Y ∗.

For k = 0, 1, 2, 3, . . . :
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1. Choose wk ∈ B and compute uk+1 as solution to the augmented Lagrangian subprob-
lem:

min
u∈U

Lρk(u,wk) s.t. u ∈ X . (2.26)

2. Compute

rk+1 =
∥∥∥e(G(uk+1))− PKY

(
e(G(uk+1)) +

J−1
Y (wk)
ρk

)∥∥∥
Y
.

If k = 0 or rk+1 ≤ τrk, set ρk+1 = ρk. Otherwise, set ρk+1 = γρk.

This strategy is challenging to apply to nonconvex problems because it demands global
solutions to the general nonconvex problem (2.26). Convexity of (2.26) would necessitate
appropriate convexity properties of f and cone-convexity characteristics of G. Consequently,
there are versions of the augmented Lagrangian method in which only first-order stationary
points of (2.26) are calculated. Then, the first step of Algorithm 2.64 is replaced by:

1∗. Choose wk ∈ B and compute uk+1 by solving the VI

uk+1 ∈ X ,
〈[(

Lρk

)
v(v, wk)

]
|v=uk+1

, z − uk+1

〉
U∗,U

≥ 0 ∀ z ∈ X .

Lemma 2.65. Let us define the elements λk = e∗λ̃k, k ∈ N, and

λ̃k = ρk−1JY
(
e(G(uk)) +

J−1
Y (wk−1)
ρk−1

− PKY

(
e(G(uk)) +

J−1
Y (wk−1)
ρk−1

))
. (2.27)

Then there exists a sequence ζk ↓ 0 with

⟨λ̃k, h− e(G(uk))⟩Y ∗,Y ≤ ζk ∀h ∈ KY .

Moreover, the following similar result holds for λk

⟨λk, y −G(uk)⟩X∗,X ≤ ζk ∀ y ∈ K.

Proof. Let zk = e(G(uk)) +
J−1
Y (wk−1)
ρk−1 and pk = PKY

(zk+1) ∈ KY . Note that the element

PKY
(zk+1) minimizes the functional h 7→ 1

2∥h− zk+1∥2Y on the set KY . Since the derivative
of this functional is equal to JY (h − zk+1), the first-order optimality condition for this
minimizer reads〈

JY
(
PKY

(zk+1)− zk+1

)
, h− PKY

(zk+1)
〉
Y ∗,Y

≥ 0 ∀h ∈ KY .

This yields

⟨λ̃k+1, h− pk+1⟩Y ∗,Y = ρk
〈
JY

(
zk+1 − PKY

(zk+1)
)
, h− PKY

(zk+1)
〉
Y ∗,Y

≤ 0 ∀h ∈ KY ,

(2.28)
which shows λ̃k+1 ∈ NKY

(pk+1). Furthermore, solving

λ̃k+1 = ρkJY (zk+1 − pk+1) = ρkJY
(
e(G(uk+1)) +

J−1
Y (wk)
ρk − pk+1

)

30



CHAPTER 2. MATHEMATICAL PRELIMINARIES 2.3. OPTIMIZATION

for e(G(uk+1)) we get

e(G(uk+1)) =
1

ρk
(J−1

Y (λ̃k+1)− J−1
Y (wk)) + pk+1. (2.29)

Now, inserting (2.29) and using the estimate (2.28) in the second step it yields for all h ∈ KY ,

⟨λ̃k+1, h− e(G(uk+1))⟩Y ∗,Y = ⟨λ̃k+1, h− pk+1⟩Y ∗,Y − 1

ρk
⟨λ̃k+1, J

−1
Y (λ̃k+1)− J−1

Y (wk)⟩Y ∗,Y

≤ − 1

ρk
⟨λ̃k+1, J

−1
Y (λ̃k+1)− J−1

Y (wk)⟩Y ∗,Y .

Moreover, it holds

rk+1 = ∥e(G(uk+1))− pk+1∥Y =
1

ρk
∥J−1

Y (λ̃k+1)− J−1
Y (wk)∥Y .

If {ρk}k∈N stays bounded, then rk → 0 as k → ∞ and thus, it holds

∥J−1
Y (λ̃k+1)− J−1

Y (wk)∥Y = ρkrk+1 → 0,

as k → ∞. We have ∥wk∥Y ∗ = ∥JY (J−1
Y (wk))∥Y ∗ = ∥J−1

Y (wk)∥Y . Since {wk}k∈N is bounded

in Y ∗, we get that {J−1
Y (wk)}k∈N is bounded in Y and hence, {J−1

Y (λ̃k+1)}k∈N is bounded in

Y . By the boundedness of JY on bounded sets, {λ̃k+1}k∈N is bounded in Y ∗. Thus, we have∣∣⟨λ̃k+1, J
−1
Y (λ̃k+1)− J−1

Y (wk)⟩Y ∗,Y

∣∣ ≤ ∥λ̃k+1∥Y ∗∥J−1
Y (λ̃k+1)− J−1

Y (wk)∥Y → 0,

as k → ∞. It holds that {ρk}k∈N ⊆ RN
>0 is increasing but bounded and hence ρk ↛ 0 as

k → ∞ and
{ 1
ρk

}
k∈N is bounded. Consequently, in this case, we can choose

ζk+1 =
1

ρk

[
⟨λ̃k+1, J

−1
Y (wk)− J−1

Y (λ̃k+1)⟩Y ∗,Y
]
+.

To tackle the case ρk → ∞ as k → ∞, we use the representation of the inverse of the
duality mapping J−1

Y = J̃−1JY ∗ , see Proposition 2.56. Inserting this fact implies

⟨λ̃k+1, J
−1
Y (λ̃k+1)⟩Y ∗,Y = ⟨λ̃k+1, J̃

−1JY ∗(λ̃k+1)⟩Y ∗,Y ,

where J̃ : Y → Y ∗∗ and JY ∗ : Y ∗ → Y ∗∗ is the duality mapping on Y ∗ analogously defined
to JY . Furthermore, we use that the isometry J̃ is bijective and obtain

⟨λ̃k+1, J̃
−1JY ∗(λ̃k+1)⟩Y ∗,Y =⟨J̃ J̃−1JY ∗(λ̃k+1), λ̃k+1⟩Y ∗∗,Y ∗ =⟨JY ∗(λ̃k+1), λ̃k+1⟩Y ∗∗,Y ∗ = ∥λ̃k+1∥2Y ∗ .

Observe that minimizing

⟨λ̃k+1, J
−1
Y (λ̃k+1)− J−1

Y (wk)⟩Y ∗,Y = ∥λ̃k+1∥2Y ∗ − ⟨λ̃k+1, J
−1
Y (wk)⟩Y ∗,Y
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with respect to λ̃k+1 yields 2JY ∗(λ̃k+1) − JY ∗(wk) = 0 and thus λ̃k+1 = wk
2 , since J−1

Y

and J̃ are bijective this property holds also for JY ∗ . The corresponding minimum value is
−1

4∥wk∥2Y ∗ . Hence, we arrive at

− 1

ρk
⟨λ̃k+1, J

−1
Y (λ̃k+1)− J−1

Y (wk)⟩Y ∗,Y ≤ 1

4ρk
∥wk∥2Y ∗ .

For ρk → ∞ as k → ∞, the right-hand side tends to 0 as k → ∞. In this case, we thus can
choose ζk+1 =

1
4ρk

∥wk∥2Y ∗ .

Finally, for any y ∈ K, it holds e(y) ∈ KY and thus

⟨λk, y −G(uk)⟩X∗,X = ⟨λ̃k, e(y)− e(G(uk))⟩Y ∗,Y ≤ ζk.

2.4 Generalized Danskin Theorem

Danskin first proved the differentiability of a bilevel optimization problem in 1966, see [36,37].
In fact, he demonstrated that the functional g : Rn → R with

g(x) = max
z∈Z

f(x, z)

admits the directional derivative

∇g(x) · h = max
z∈Z,

f(x,z)=g(x)

∇xf(x, z) · h

in direction h ∈ Rn, provided that f : Rn × Z → R is continuous and C1 in the first
component for a given compact topological space Z. Since then, many more general results
have been proved, and we refer to [11] for a discussion of several extensions. We highlight the
books [18,78], as well as the article [34], which allows for a more general setting of a Hausdorff
locally convex topological vector space X as the domain of the functional g : X → R.
Furthermore, the notion of continuity in the second component of f is replaced by upper
semicontinuity.

Danskin’s theorem is extended in this chapter by introducing two different topologies on
the normed space X and assuming the continuity of f in the first component with respect
to some coarser topology on X. In contrast to the assumption of a Hausdorff locally convex
topological vector space, we assume that X is only a Hausdorff space with respect to this
coarser topology. Furthermore, we investigate the directional differentiability of g as well as
the Gâteaux and Fréchet derivatives. This was also done in [18], but for a Banach space Z
and with the assumption of inf-compactness.

From here on, let (A1)–(A5) of the following assumption be valid.
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Assumption 2.66.

(A1) (X, ∥ · ∥X) is a normed space, (X, τX) is a Hausdorff topological space with a
(coarser) topology τX such that the identity operator on X is ∥ · ∥X -to-τX contin-
uous.

(A2) (Z, τZ) is a Hausdorff topological space.

(A3) W ⊆ X is an open set.

(A4) Y ⊆ Z is a sequentially compact set with respect to τZ .

(A5) f : W × Y → R is sequentially upper semicontinuous with respect to τX × τZ and
f(·, z) : W → R is sequentially continuous with respect to τX for all z ∈ Y .

(A6) f : W × Y → R is Fréchet differentiable in the first variable and its derivative
fx : W × Y → X∗ is sequentially continuous from τX × τZ to ∥ · ∥X∗ .

Unless otherwise stated, all properties, e.g., compactness, closedness, or convergence, are
considered with respect to the norm topology.

We define the functional g : W → R by g(x) = maxz∈Y f(x, z) and the set-valued
operator M : W ⇒ Z such that M(x) denotes the set of all elements z ∈ Y for a given
points x ∈ W such that the maximum of g is attained, i.e.,

M(x) = {z ∈ Y : g(x) = f(x, z)}. (2.30)

The ∥ · ∥X -topology may be the canonical option for τX . However, by introducing a
topology τX that is coarser than the norm topology, it enables us to establish continuity
results for g, M , and the derivative of g.

Next, we prove that the set-valued mapping M is sequentially closed as defined in Defini-
tion 2.7. But first off, we show that the function g is mathematically well-defined. Moreover,
we derive other useful properties of g and M such as local Lipschitz continuity and differen-
tiability.

Lemma 2.67. The functional g is well-defined and M(x) is nonempty for all x ∈ W .

Proof. Let x ∈ W be arbitrarily fixed. We demonstrate that the supremum supz∈Y f(x, z)
is indeed attained by some element in Y . Let {zk}k∈N ⊆ Y be a maximizing sequence, i.e.,
f(x, zk) → supz∈Y f(x, z) ∈ R ∪ {∞} as k → ∞. By assumption (A4), Y is sequentially
compact with respect to τZ and thus, there exists a subsequence {zkl}l∈N ⊆ {zk}k∈N ⊆ Y
and an element z̄ ∈ Y such that it holds zkl → z̄ with respect to τZ as l → ∞. Moreover, it
yields the estimate

sup
z∈Y

f(x, z) = lim
k→∞

f(x, zk) = lim
l→∞

f(x, zkl) = lim sup
l→∞

f(x, zkl) ≤ f(x, z̄),

due to the sequential upper semicontinuity of f(x, ·) with respect to τZ . Consequently, we
obtain

sup
z∈Y

f(x, z) ≤ f(x, z̄),

from which we conclude that the supremum is attained at z̄ ∈ Y , i.e., the maximum exists
on Y . Finally, g is well-defined with g(x) = f(x, z̄) and z̄ ∈ M(x) ̸= ∅.
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Next, we prove that the set M(x), see again (2.30) for its definition, is sequentially
compact in Y and Z with respect to the topology τZ .

Lemma 2.68. M(x) ⊆ Y ⊆ Z is sequentially compact with respect to τZ for x ∈ W .

Proof. Let x ∈ W be arbitrarily fixed and let {zk}k∈N be a given sequence in M(x). Since
Y ⊆ Z is sequential compact with respect to τZ , there exists a subsequence
{zkl}l∈N ⊆ {zk}k∈N ⊆ Y and an element z̄ ∈ Y such that it holds zkl → z̄ with respect
to τZ as l → ∞. We apply the sequential upper semicontinuity of f(x, ·) with respect to τZ
and zkl ∈ M(x), which implies f(x, zkl) = g(x) for all l ∈ N and consequently, we obtain

g(x) ≥ f(x, z̄) ≥ lim sup
l→∞

f(x, zkl) = lim sup
l→∞

g(x) = g(x).

This proves f(x, z̄) = g(x) and z̄ ∈ M(x) from which we conclude that M(x) ⊆ Z is
sequentially compact with respect to τZ for x ∈ W .

With the compactness of M(x) at hand, we are ready to prove that the set-valued map-
ping M is indeed sequentially closed.

Lemma 2.69. The mapping M : X ⇒ Z has a sequentially closed graph with respect to
τX × τZ .

Proof. Let {xk}k∈N ⊆ W be a converging sequence in W with respect to the topology τX ,
i.e., there exists an element x̄ ∈ W with xk → x̄ in τX as k → ∞. Moreover, we consider
another converging sequence zk ∈ M(xk), k ∈ N, with zk → z̄ with respect to τZ as k → ∞
for some element z̄ ∈ Z. We have to verify z̄ ∈ M(x) in order to prove the claim of the
lemma. First off, we note that for all z ∈ Y it holds

f(x̄, z̄) ≥ lim sup
k→∞

f(xk, zk) ≥ lim sup
k→∞

f(xk, z) = f(x̄, z),

where we applied the sequential upper semicontinuity of f with respect to τX×τZ in the first
step and the sequential continuity of f(·, z) with respect to τX in the last equality. Thus, we
arrive at f(x̄, z̄) ≥ f(x̄, z) for all z ∈ Y , which shows z̄ ∈ M(x).

In the next step, we prove several continuity and differentiability aspects of the function
g. First, we begin with the sequential continuity of g in the next lemma.

Lemma 2.70. The functional g : W → R is sequentially continuous with respect to τX and
continuous in the norm topology.

Proof. We proof this statement by contradiction and assume that g is not sequentially con-
tinuous onW with respect to τX . Consequently, there is a sequence {xk}k∈N ⊆ W and x̄ ∈ W
such that xk → x̄ with respect to τX as k → ∞ and some ε > 0 such that |g(xk)− g(x̄)| ≥ ε
for all k ∈ N. We assume a sequence zk ∈ M(xk) ⊆ Y , k ∈ N, and since Y ⊆ Z is sequentially
compact with respect to τZ , there exists a subsequence {zkl}l∈N ⊆ {zk}k∈N and an element
z̄ ∈ Z such that it holds zkl → z̄ with respect to τZ as l → ∞. We make use of the sequential
closedness of the mapping M : W ⇒ Z and the fact that zkl ∈ M(xkl) to conclude z̄ ∈ M(x).
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Next, we distinguish the sign of the difference g(xkl) − g(x̄) by considering two cases.
First, if it holds g(xkl) − g(x̄) ≥ ε, then we obtain by sequential upper semicontinuity of f
with respect to τX × τZ the following estimate

g(x̄) + ε ≤ lim sup
l→∞

g(xkl) = lim sup
l→∞

f(xkl , zkl) ≤ f(x̄, z̄) = g(x̄).

Consequently, we arrive at the contradiction g(x̄) + ε ≤ g(x̄) for ε > 0. In the other case, it
has to hold g(xkl)− g(x̄) ≤ −ε and we obtain

g(x̄)− ε ≥ lim sup
l→∞

g(xkl) = lim sup
l→∞

f(xkl , zkl).

Since it holds zkl ∈ M(xkl), we can conclude the estimate

lim sup
l→∞

f(xkl , zkl) ≥ lim sup
l→∞

f(xkl , z̄),

and by the sequential continuity of f(·, z̄) with respect to τX it yields

lim sup
l→∞

f(xkl , z̄) = lim
l→∞

f(xkl , z̄) = f(x̄, z̄) = g(x̄).

Finally, we arrive at
g(x̄)− ε ≥ g(x̄),

which is a contradiction to ε > 0. Altogether, we have proved that g is sequentially contin-
uous with respect to τX .

From here on, let (A6) of Assumption 2.66 be additionally valid. This assumption is key
in proving that g is locally Lipschitz continuous, as the next lemma states.

Lemma 2.71. The functional g : W → R is locally Lipschitz continuous.

Proof. We consider the functional ∥fx(·, ·)∥X∗ : W × Y → R, which fulfills (A5) of Assump-
tion 2.66. Indeed, ∥fx(·, ·)∥X∗ : W × Y → R is sequentially upper semicontinuous with
respect to τX × τZ and ∥fx(·, z)∥X∗ : W → R is continuous since fx : W × Y → X∗ is
sequentially continuous with respect to τX × τZ . Consequently, we can apply Lemma 2.70
and obtain the continuity of the mapping x 7→ maxz∈Y ∥fx(x, z)∥X∗ with respect to τX . By
the ∥ · ∥X -to-τX continuity of the identity operator on X, this also implies the continuity of
x 7→ maxz∈Y ∥fx(x, z)∥X∗ with respect to the norm topology.

By definition of the derived continuity, we know that for any x ∈ W and for each ε > 0,
there exists some δ > 0 such that∣∣max

z∈Y
∥fx(x, z)∥X∗ −max

z∈Y
∥fx(y, z)∥X∗

∣∣ ≤ ε

for all y ∈ W with ∥x − y∥X < δ. We consider some fixed element x0 ∈ W and by the last
inequality we obtain

max
z∈Y

∥fx(y, z)∥X∗ ≤ ε+max
z∈Y

∥fx(x0, z)∥X∗
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for all y ∈ Bδ(x0) ⊆ W . Thus, there exists some constant L > 0 with

max
z∈Y

∥fx(y, z)∥X∗ ≤ L ∀ y ∈ Bδ(x0) ⊆ W. (2.31)

Next, we consider the two elements x1 ∈ Bδ(x0), x2 ∈ Bδ(x0) and another two elements
z1 ∈ M(x1), z2 ∈ M(x2). Without loss of generality, we assume g(x1) ≥ g(x2). Since it
holds z2 ∈ M(x2), it yields

|g(x1)− g(x2)| = g(x1)− g(x2) = f(x1, z1)− f(x2, z2) ≤ f(x1, z1)− f(x2, z1),

and by the mean value theorem, see Theorem 2.21, there exists some parameter t ∈ [0, 1]
with

f(x1, z1)− f(x2, z1) =
〈
fx((1− t)x1 + tx2, z1), x1 − x2

〉
X∗,X

.

Since the ball Bδ(x0) is convex, we are allowed to consider the convex combination
(1 − t)x1 + tx2 ∈ Bδ(x0). Applying the bound (2.31) from before, we have shown that
it holds ∥fx(x1 + t(x2 − x1), z1)∥X∗ ≤ L and we obtain the local Lipschitz continuity of g as
follows

|g(x1)− g(x2)| ≤
〈
fx((1− t)x1 + tx2, z1), x1 − x2

〉
X∗,X

≤ ∥fx(x1 + t(x2 − x1), z1)∥X∗∥x1 − x2∥X
≤ L∥x1 − x2∥X .

We will heavily exploit the next result later on in the thesis since it states the directional
differentiability of g and provides a formula for its derivative.

Lemma 2.72. The functional g : W → R is directionally differentiable for all h ∈ X with

dg(x, h) = max
z∈M(x)

〈
fx(x, z), h

〉
X∗,X

.

Proof. We introduce a parameter T > 0 that fulfills x + [0, T ]h ⊆ W . Furthermore, let

{tk}k∈N ⊆ (0, T ] be a sequence with tk ↓ 0. We demonstrate that the limit of g(x+th)−g(x)
t as

t ↓ 0 exists and is equal to maxz∈M(x)⟨fx(x, z), h⟩X∗,X . We prove this statement by consider-

ing the limit superior lim supk→∞
g(x+tkh)−g(x)

tk
and the limit inferior lim infk→∞

g(x+tkh)−g(x)
tk

one after another.

Let us denote xk = x + tkh and let zk ∈ M(xk), k ∈ N. Furthermore, let z ∈ M(x) be
arbitrary. Using the assumption zk ∈ M(xk), it yields

g(x+ tkh)− g(x) = f(xk, zk)− f(x, z) ≥ f(xk, z)− f(x, z).

By the mean value theorem, see Theorem 2.21, there exists some λ ∈ [0, 1] such that

f(xk, z)− f(x, z) =
〈
fx((1− λ)xk + λx, z), xk − x

〉
X∗,X

=
〈
fx(x+ (1− λ)tkh, z), tkh

〉
X∗,X

.
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Thus, combining these two estimates we obtain the inequality

lim inf
k→∞

g(xk)− g(x)

tk
≥ lim inf

k→∞

〈
fx(x+ (1− λ)tkh, z), h

〉
X∗,X

= lim
k→∞

〈
fx(x+ (1− λ)tkh, z), h

〉
X∗,X

=
〈
fx(x, z), h

〉
X∗,X

,

where we applied the (sequential) continuity of fx(·, z) with respect to τX and by (A1)
of Assumption 2.66 with respect to the norm topology. Since this inequality holds for all
z ∈ M(x), it yields

lim inf
k→∞

g(xk)− g(x)

tk
≥ max

z∈M(x)

〈
fx(x, z), h

〉
X∗,X

. (2.32)

For the other direction, we bound lim supk→∞
g(xk)−g(x)

tk
from above. We prove this by

contradiction. Suppose that there exists some ε > 0 such that it holds

lim sup
k→∞

g(xk)− g(x)

tk
≥ max

z∈M(x)

〈
fx(x, z), h

〉
X∗,X

+ ε. (2.33)

By the sequential compactness of Y with respect to τZ , there exists a subsequence
{zkl}l∈N ⊆ Y and some element z̄ ∈ Z such that zkl → z̄ with respect to τZ as l → ∞.
In particular, we obtain zkl ∈ M(xkl), l ∈ N. Furthermore, it yields z̄ ∈ M(x) due to the
sequential closedness of M : W ⇒ Z. Thus, we arrive at the bound

lim sup
l→∞

g(xkl)− g(x)

tkl
≥ max

z∈M(x)

〈
fx(x, z), h

〉
X∗,X

+ ε. (2.34)

Let z ∈ M(x) be arbitrary in the following. Similarly to before, we compute

g(xkl)− g(x) = f(xkl , zkl)− f(x, z) ≤ f(xkl , zkl)− f(x, zkl),

and by the mean value theorem, see Theorem 2.21, there exists some parameter λ ∈ [0, 1]
such that

f(xkl , zkl)− f(x, zkl) =
〈
fx((1− λ)xkl + λx, zkl), xkl − x

〉
X∗,X

=
〈
fx(x+ (1− λ)tklh, zkl), tklh

〉
X∗,X

.

Again, we make use of the sequential continuity of fx with respect to ∥ · ∥X × τZ and obtain
the estimate

lim sup
l→∞

g(xkl)− g(x)

tkl
≤ lim sup

l→∞

〈
fx(x+ (1− λ)tklh, zkl), h

〉
X∗,X

= lim
l→∞

〈
fx(x+ (1− λ)tklh, zkl), h

〉
X∗,X

=
〈
fx(x, z̄), h

〉
X∗,X

.
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Together with (2.34), we obtain the contradiction

max
z∈M(x)

〈
fx(x, z), h

〉
X∗,X

+ ε ≤ lim sup
l→∞

g(xkl)− g(x)

tkl
≤

〈
fx(x, z̄), h

〉
X∗,X

.

Consequently, the assumption (2.33) was false and it holds an upper bound for the limit
superior.

Together with the bound from before on the limit inferior, see (2.32), we obtain

lim sup
k→∞

g(xk)− g(x)

tk
≤ max

z∈M(x)

〈
fx(x, z), h

〉
X∗,X

≤ lim inf
k→∞

g(xk)− g(x)

tk
.

Since tk ↓ 0 was arbitrary, we can conclude the desired result

dg(x, h) = lim
t↓0

g(xk)− g(x)

t
= max

z∈M(x)

〈
fx(x, z), h

〉
X∗,X

.

Later on, we are often in a scenario where the correspondence map M(x) is a singleton
or, more precisely, it is single-valued near x. Next, we make such an additional assumption
and prove additional properties of g.

Lemma 2.73. If the set M(x) = {m(x)} is a singleton at the point x ∈ W , then it holds

dg(x, h) =
〈
fx(x,m(x)), h

〉
X∗,X

. (2.35)

Additionally, it follows that g : W → R is Gâteaux differentiable at x.

Proof. By Lemma 2.72, the functional g : W → R is directionally differentiable at x where its
derivative is given by (2.35). We prove that g′(x) : X → R, which is defined by h 7→ dg(x, h),
is linear and bounded. The linearity of dg(x, h) =

〈
fx(x,m(x)), h

〉
X∗,X

with respect to h is
obvious and the boundedness follows due to the inequalities

dg(x, h) =
〈
fx(x,m(x)), h

〉
X∗,X

≤ ∥fx(x,m(x))∥X∗∥h∥X ≤ C∥h∥X .

Lemma 2.74. If the correspondence M : W ⇒ Z is single-valued at x ∈ W , i.e., it holds
M(x) = {m(x)} with m(x) ∈ Y , then M is sequentially τX to τZ continuous at x.

Proof. Let x̄ ∈ W be arbitrary but fixed. Suppose that M is not sequentially τX to τZ
continuous. Then there exists some converging sequence {xk}k∈N ⊆ W with xk → x̄ with
respect to τX as k → ∞ such that zk ∈ M(xk), k ∈ N, is not converging to the element
z ∈ M(x̄) = {m(x̄)} with respect to τZ as k → ∞. Since zk does not converge to m(x̄) with
respect to τZ , there is some open neighborhood VZ of m(x̄) with respect to τZ such that it
holds zk /∈ VZ for all k ∈ N.

Moreover, by assumption, we know that Y ⊆ Z is sequentially compact with respect to τZ
and therefore, we are allowed to choose a subsequence {zkl}l∈N ⊆ {zk}k∈N with zkl → m with
respect to τZ as l → ∞. We obtain zkl /∈ VZ for all l ∈ N because it holds {zkl}l∈N ⊆ {zk}k∈N.
Furthermore, we can conclude m ∈ M(x̄) due to the sequential closedness of M and thus,
it follows m = m(x̄). Since VZ is an open neighborhood of m = m(x̄) with respect to τZ
and zkl → m with respect to τZ as l → ∞, we are able to find an index L with zkl ∈ VZ for
all l ≥ L. However, this is a contradiction to the supposition in the beginning of the proof.
Consequently, M is indeed sequentially τX to τZ continuous at x̄.
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Our modification of the famous theorem of Danskin stating the continuous differentia-
bility of x 7→ g(x) = maxz∈Y f(x, z) follows.

Theorem 2.75 (Danskin). If the correspondence M : W ⇒ Z is single-valued in an open
set UX ⊆ W , then g : W → R is Fréchet differentiable on UX and its derivative g′ : UX → X∗

is continuous with respect to τX and with respect to the norm topology.

Proof. Let M(·) = {m(·)} be defined on the set UX ⊆ W . By Lemma 2.72 and Lemma 2.73,
we conclude that g : W → R is Gâteaux differentiable on UX with the derivative

⟨g′(x), h⟩X∗,X = dg(x, h) =
〈
fx(x,m(x)), h

〉
X∗,X

∀h ∈ X, x ∈ UX .

Furthermore, M : W ⇒ Z is sequentially τX to τZ continuous at any x ∈ UX due to
Lemma 2.74 and thus, the same holds for m : W → Z on the set UX . Hence, fx(·,m(·)) :
W → X∗ is continuous on UX with respect to τX and with respect to the norm topology.
Finally, we conclude that g is continuously Gâteaux differentiable on UX , which is equivalent
to the continuous Fréchet differentiability on UX .

We can generalize Danskin’s theorem to a functional f : W × Z → R that can be split
into two functionals f1 : W × Z → R and f2 : Z → R in the following way

f(x, z) = f1(x, z) + f2(z).

Let f1 be sequentially continuous with respect to τX × τZ and let f2 be sequentially upper
semicontinuous with respect to τZ . Then f(·, z) is sequentially continuous with respect to
τX and f is sequentially upper semicontinuous with respect to τX × τZ .

Indeed, let {xk}k∈N ⊆ X be a converging sequence with xk → x̄ with respect to τX as
k → ∞ and let {zk}k∈N ⊆ Z be a sequence such that it holds zk → z̄ with respect to τZ as
k → ∞. It holds

lim sup
k→∞

f(xk, zk) ≤ lim sup
k→∞

f1(xk, zk) + lim sup
k→∞

f2(zk) ≤ f1(x̄, z̄) + f2(z̄) = f(x̄, z̄),

where we applied the sequential continuity of f1 with respect to τX × τZ and the sequential
upper semicontinuity of f2 with respect to τZ .

Furthermore, if f1 is differentiable in x and (f1)x : W×Z → X∗ is sequentially continuous
with respect to τX×τZ , then f is differentiable in x with fx = (f1)x where fx : W ×Z → X∗

is sequentially continuous from τX × τZ to ∥ ·∥X∗ . In this situation, (A5) of Assumption 2.66
is satisfied and the above results can be applied to this choice of f .

In order to differentiate localized versions of the Nikaido–Isoda merit functionals later
on, it would be helpful if we have some theory for constrained problems with the feasible set
depending on x. This type of problem reads

max
z∈Φ(x)

f(x, z)

for some set-valued correspondence map Φ : X ⇒ Z. We note that some steps of the proof
of Danskin’s theorem are no longer doable for such general correspondences.
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Chapter 3

Mathematical Setting and
Assumptions

. . . the great watershed in optimization isn’t between linearity and nonlinearity,
but between convexity and nonconvexity. (Ralph Tyrrell Rockafellar)

In the following, we set up the mathematical framework for GNEPs. In the literature,
GNEPs have been studied mostly in finite-dimensional spaces, see the review paper [43]
and the book [67]. In the case of infinite-dimensional spaces with finer topology than that
considered in this thesis, the dissertation [101] is consulted.

Our conclusions, depending on their nature, necessitate different kinds of assumptions
for the underlying spaces, continuity and differentiability of the objective functionals, and
different sized parameters. It is worth noting that we provide various assumptions, but we
only use one at a time while developing particular outcomes. Detailed requirements on all
spaces and problem data will be given in this chapter in Assumption 3.1, Assumption 3.3,
and Assumption 3.4 in their respective sections.

3.1 Topology Assumptions

We pose the following assumptions on the underlying spaces U , ‹U , H, X, and Y . Here,
U denotes the space in which the optimization problem is formulated. As we will see, the
auxiliary space ‹U is strongly connected to U . The space H has a regularizing character and
is at least a normed space. In particular, we regularize a nonconvex functional with the
squared norm of H. The spaces X and Y are required for augmented Lagrangian method
and they model the additional constraints.

Assumption 3.1.

(A1) (Ui, ∥ · ∥Ui), (Hi, ∥ · ∥Hi) are normed spaces.
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(A2) (Ui, ∥ · ∥Ui) is a Banach space, (Hi, ∥ · ∥Hi) is a uniformly smooth and uniformly
convex Banach space with duality map JHi : Hi → H∗

i .

(A3) (Ui, ∥·∥Ui), (Hi, ∥·∥Hi) are uniformly smooth and uniformly convex Banach spaces
with duality maps JUi : Ui → U∗

i and JHi : Hi → H∗
i .

(A4) (Ui, ∥ · ∥Ui), (Hi, ∥ · ∥Hi), and (‹Ui, ∥ · ∥‹Ui
) are normed spaces.

(A5) (Ui, ∥ · ∥Ui) is a reflexive Banach space, (Hi, ∥ · ∥Hi) and (‹Ui, ∥ · ∥‹Ui
) are normed

spaces.

(A6) (Ui, ∥ ·∥Ui) is a uniformly smooth and uniformly convex Banach space with duality

map JUi : Ui → U∗
i , (Hi, ∥ · ∥Hi) and (‹Ui, ∥ · ∥‹Ui

) are normed spaces.

(A7) (Ui, ∥·∥Ui), (Hi, ∥·∥Hi) are uniformly smooth and uniformly convex Banach spaces

with duality maps JUi : Ui → U∗
i and JHi : Hi → H∗

i , (
‹Ui, ∥ · ∥‹Ui

) is a normed
space.

(A8) (Ui, ∥ · ∥Ui) is a Hilbert space, (Hi, ∥ · ∥Hi) is a uniformly smooth and uniformly

convex Banach space with duality map JHi : Hi → H∗
i , and (‹Ui, ∥·∥‹Ui

) is a normed
space.

(A9) (Ui, ∥ · ∥Ui), (X, ∥ · ∥X) are Banach spaces, (Y, ∥ · ∥Y ) is a uniformly smooth and
uniformly convex Banach space with duality map JY : Y → Y ∗, and e : X → Y is
a linear and bounded operator with e−1(KY ) = K for KY ⊆ Y being convex and
closed.

(A10) (Ui, ∥ · ∥Ui) is a Hilbert space, (X, ∥ · ∥X) is a Banach spaces, and (Hi, ∥ · ∥Hi),
(Y, ∥ · ∥Y ) are uniformly smooth and uniformly convex Banach spaces with duality
maps JHi : Hi → H∗

i and JY : Y → Y ∗, and e : X → Y is a linear and bounded
operator with e−1(KY ) = K for KY ⊆ Y being convex and closed.

In the case of (A1)–(A8) and (A10), let ιHi : Ui → Hi be a linear, completely continuous, and
injective operator. Furthermore, we consider a linear and completely continuous operator
ι‹Ui

: Ui → ‹Ui in the case of (A4)–(A8). As we see in Remark 2.16 for reflexive spaces
completely continuous operators are compact. The corresponding product spaces are denoted
by U =

∏
i∈[N ] Ui, ‹U =

∏
i∈[N ]

‹Ui and H =
∏

i∈[N ]Hi. Moreover, we define the embeddings

ι‹U : U → ‹U and ιH : U → H by ι‹U (u) = (ι‹Ui
(ui), ι‹U−i

(u−i)) and ιH(u) = (ιHi(u
i), ιH−i(u

−i)),

respectively. Note that the product spaces have the same properties as their components
using the product norms given by (2.1), see Remark 2.46. The duality maps of U , H, and
Y are indicated by JU : U → U∗, JH : H → H∗, and JY : Y → Y ∗, respectively. These are
defined as usual, see Definition 2.53.

Lastly, we remark that the condition e−1(KY ) = K of (A9) and (A10) can be equivalently
stated as the following lemma shows.

Lemma 3.2. It holds that e−1(KY ) = K if and only if x ∈ K is equivalent to e(x) ∈ KY .

Proof. We begin the proof with the backward direction “⇐”. Let the equivalence statement
“x ∈ K ⇔ e(x) ∈ KY ” be valid. Then we have

e−1(KY ) = {x ∈ X : e(x) ∈ KY } = K.
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Next, we prove the forward direction “⇒”. If it holds e−1(KY ) = K, then we observe
that K ⊆ e−1(KY ) is equivalent to e(K) ⊆ KY . In other words, for any x ∈ K we obtain
e(x) ∈ KY . Furthermore, the assumption e−1(KY ) ⊆ K directly yields x ∈ K for e(x) ∈
KY .

3.2 Continuity and Differentiability Assumptions

Depending on their nature, our results necessitate varying notions of continuity and differ-
entiability assumptions on the objective functionals θi, i ∈ [N ], which we describe below.
Note that we provide multiple assumptions, but choose just one at a time when developing
specific result. In the following, let U and ‹U be normed spaces.

Assumption 3.3.

(B1) θi : U → R is Fréchet differentiable in the i-th component.

(B2) θi : U → R is of the form θi(u) = θ̃i(ι‹U (u)) + γ
2∥u

i∥2Ui
and one of the following

conditions holds

(B2a) θ̃i : ‹U → R is continuous.

(B2b) θ̃i : ‹U → R is continuously differentiable in the i-th component.

(B2c) θ̃i : ‹U → R is continuously differentiable.

We point out the difference between the derivative with respect to an element in U or to
an element in ‹U . As before, we denote the partial derivative with respect to some element
ṽi ∈ ‹Ui by (θ̃i)ṽi : ‹Ui → ‹U∗

i . By the chain rule, it holds that

〈[
θ̃i(ι‹Ui

(vi), ι‹U−i
(u−i))

]
vi
, hi

〉
U∗
i ,Ui

=
〈
(θ̃i)ṽi(ι‹Ui

(vi), ι‹U−i
(u−i)), ι‹Ui

(hi)
〉‹U∗

i ,
‹Ui

=
〈
ι∗‹Ui

(θ̃i)ṽi(ι‹Ui
(vi), ι‹U−i

(u−i)), hi
〉
U∗
i ,Ui

,
(3.1)

for all hi ∈ Ui. Here, we see that we have transformed the dual pairing in Ui to the one in‹Ui by an application of the adjoint operator of ι‹Ui
. Clearly, under (B2c) of Assumption 3.3,

the objective functional θi : U → R is continuously differentiable.

3.3 Convexity Assumptions

In this section, we study the choice of the parameter α ≥ 0 appearing in the definition of
the regularized Nikaido–Isoda functional, see (2.20). This parameter is chosen according to
Assumption 3.4 in such a way that it guarantees suitable convexity properties. These might
result in a large value of α. We want to avoid possibly quite large values of α, which might
slow down numerical globally convergent methods that use ‹Vα or Vα. Hence, we study local
properties of the GNEP consisting of (2.7) and to this end, let BR(u

i) ⊆ Ui be the closed
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ball with radius R > 0 centered at ui ∈ Fi(u
−i). Furthermore, let BR(u) ⊆ U be the closed

ball with radius R and center u ∈ X . We define the intersections‹Fi(u) = Fi(u
−i) ∩BR(u

i), ‹X (u) = X ∩BR(u).

Moreover, we introduce the continuously differentiable penalty-type or barrier-type func-
tional p : [0,∞) → [0,∞] with p(0) = 0. The corresponding monotonically increasing or
decreasing sequence of parameters are given by {ρik}k∈N ⊆ R>0 and {ρk}k∈N ⊆ R>0, respec-
tively. Another possibility for localizing is the combination of a further restriction of the
feasible set and an addition of a special term. To this end, one defines the convex sets“Fi(u) ⊆ Fi(u

−i) with Fi(u
−i) ∩BR(u

i) ⊆ “Fi(u), “X (u) ⊆ X with X ∩BR(u) ⊆ “X (u).

For i ∈ [N ], let qi : Ui → [0,∞] be convex, continuously differentiable at the point 0 with
qi(0) = 0, and let qi be finite on BUi

R (0). We define the functional q : U → [0,∞] analogously
with the same properties.

In the following, we state several convexity assumptions on the regularized versions of θi,
i ∈ [N ], and on the functionals ‹Ψα. Again we collect them here and will require only one of
them at a time for obtaining specific results.

Assumption 3.4. Let α ≥ 0 be such that one of the following conditions holds

(C1) θi(·, u−i) + α
2 ∥ιHi(·)− ιHi(u

i)∥2Hi
is pseudoconvex at ui on Fi(u

−i) for all i ∈ [N ].

(C2) θi(·, u−i) + α
2 ∥ιHi(·)− ιHi(u

i)∥2Hi
is pseudoconvex at ui on ‹Fi(u) for all i ∈ [N ].

(C3) θi(·, u−i)+ α
2 ∥ιHi(·)− ιHi(u

i)∥2Hi
+ρikp(∥ ·−ui∥2Ui

) is pseudoconvex at ui on Fi(u
−i)

for all i ∈ [N ] and for an arbitrarily fixed k ∈ N.

(C4) θi(·, u−i) + α
2 ∥ιHi(·)− ιHi(u

i)∥2Hi
+ qi(· − ui) is pseudoconvex at ui on “Fi(u) for all

i ∈ [N ].

(C5) ‹Ψα(u, ·) is convex on X ,

(C6) ‹Ψα(u, ·) is pseudoconvex at u on X .

(C7) ‹Ψα(u, ·) is pseudoconvex at u on ‹X (u).

(C8) ‹Ψα(u, ·) + ρkp(∥ · −u∥2U ) is pseudoconvex at u on X for an arbitrarily fixed k ∈ N.

(C9) ‹Ψα(u, ·) + q(· − u) is pseudoconvex at u on “X (u).

We note that (C1) implies (C3) and (C4). In fact, for vi ∈ Fi(u
−i) the pseudoconvexity

yields〈
(θi)vi(u), v

i − ui
〉
U∗
i ,Ui

≥ 0
(C1)
=⇒ θi(u) ≤ θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

.

(3.2)

Furthermore, it holds for all vi ∈ Fi(u
−i) and vi ∈ “Fi(u) ⊆ Fi(u

−i), respectively,

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi
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≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

+ ρikp(∥vi − ui∥2Ui
),

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

+ qi(v
i − ui).

Since the penalty-type or barrier-type term p(∥ · −ui∥2Ui
) and qi(· − ui) are chosen such

that they vanish at the point ui, the corresponding function values correspond to θi(u).
Furthermore, the derivatives of the functionals in (C3) and (C4) at ui coincide to (θi)vi(u)
due to the representation of the derivatives. Indeed, we see that both (C3) and (C4) hold.
Accordingly, the assertions (C8) and (C9) apply under (C6).
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Chapter 4

Existence of Fixed Points of the
Solution Map

The greatest challenge to any thinker is stating the problem in a way that will
allow a solution. (Bertrand Russell)

A drunk man will find his way home, but a drunk bird may get lost forever.
(Shizuo Kakutani)

Doppelpunkt definition

This chapter is dedicated to the study of the two minimization problems

min
v∈X
‹Ψα(u, v) and min

v∈X
Φα(u, v). (4.1)

Here, the Nikaido–Isoda type functional ‹Ψα, see (2.22), and the new objective functional Φα

are given by‹Ψα(u, v) =
∑
i∈[N ]

[
θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
,

Φα(u, v) =
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), vi⟩U∗

i ,Ui

]
+

α

2
∥ιH(v)− ιH(u)∥2H .

The objective of this chapter is to demonstrate the existence of a fixed point of the corre-
sponding solution maps of the stated optimization problems. In this respect, we extensively
rely on a variant of the Kakutani fixed point theorem, which was discovered by the Japanese
mathematician Kakutani in 1941, see [64], and applied to game theory and economic issues
by Nash as early as 1950, see [84]. We refer to [101] for applications of some fixed point the-
orems related to GNEPs in the case of convex functionals in Hilbert spaces. In this chapter,
we extend such results to the nonconvex case and coarser topologies.

In Section 4.1, we investigate the left optimization problem in (4.1) and prove that the
corresponding solution map admits a fixed point via a generalization of Kakutani’s fixed
point theorem. In Section 4.2, we proceed similar and study the right optimization problem
in (4.1) with regards to its solution map.
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4.1 Fixed Point of the Solution Map

In the following, we consider the optimization problem

min
v∈X
‹Ψα(u, v) (4.2)

with the objective functional‹Ψα(u, v) =
∑
i∈[N ]

[
θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

We show that the corresponding solution map u 7→ v‹Ψα
(u) has a fixed point.

From here on, we assume that (A5) holds for the underlying spaces. Furthermore, let
θi : U → R fulfill the (B2a) of Assumption 3.3 and let the feasible set X ⊆ U be nonempty,

convex, closed, and bounded. We choose α ≥ 0 such that ‹Ψα(u, ·) : U → R is convex.
Consequently, (C5) of Assumption 3.4 holds.

The following proposition relates a solution to the optimization problem to the regularized
Nikaido–Isoda merit functional Vα = supv∈X Ψα(·, v), which was already defined in (2.21)
and partly investigated afterwards in Chapter 2.

Proposition 4.1. Let u ∈ X and assume that v = u is a global solution to (4.2). Then it
holds Vα(u) = 0.

Proof. Since u ∈ X minimizes ‹Ψα(u, ·) on X , it also maximizes Ψα(u, ·) on X and thus, we
obtain

Vα(u) = Ψα(u, u) = 0.

Next up, we investigate the solution map u 7→ v‹Ψα
(u) for ‹Ψα, defined by

v‹Ψα
(u) =

{
v ∈ U : v solves min

v∈X
‹Ψα(u, v)

}
. (4.3)

In particular, we show that the solution map admits a fixed point using the generalization
of the Kakutani fixed point theorem, see Theorem 2.8. The statement of the main theorem
reads as follows.

Theorem 4.2. The solution map u 7→ v‹Ψα
(u) has a fixed point in X .

In order to prove this result by an application of the Kakutani fixed point theorem, we
verify the theorem’s assumptions in the following propositions. To this end, we have to show
that X ⊆ U is convex, closed, and compact with respect to the weak sequential topology.
Moreover, we have to verify that the solution map u 7→ v‹Ψα

(u) is closed and has a convex
image. In order to show that the solution mapping is well-defined, we check whether the
solution map has a nonempty image.

In order to prove that the solution set contains at least one element, we first check that‹Ψα : U × U → R is lower semicontinuous with respect to the weak sequential topology.
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Lemma 4.3. The functional ‹Ψα : U × U → R is lower semicontinuous with respect to the
weak sequential topology.

Proof. In order to show the lower semicontinuity of ‹Ψα : U × U → R with respect to the
weak sequential topology, we consider two arbitrary sequences {uk}k∈N and {vk}k∈N in U
that fulfill uk ⇀ ū and vk ⇀ v̄ in U as k → ∞. By the completely continuity of the operators
ι‹U : U → ‹U and ιH : U → H, we obtain the strong convergences

ι‹U (uk) → ι‹U (ū) in ‹U,

ι‹U (vk) → ι‹U (v̄) in ‹U,

ιH(uk) → ιH(ū) in H,

ιH(vk) → ιH(v̄) in H,

as k → ∞. Consequently, we have

lim
k→∞

ι‹U (vik, u−i
k ) = ι‹U (v̄i, ū−i) in ‹U,

for each i ∈ [N ], and by the sequential continuity of θ̃i : ‹U → R, i ∈ [N ], it yields

lim
k→∞

θ̃i(ι‹U (vik, u−i
k )) = θ̃i(ι‹U (v̄i, ū−i)).

Furthermore, it holds

lim
k→∞

∥ιH(vk)− ιH(uk)∥H = ∥ιH(v̄)− ιH(ū)∥H ,

and using the lower semicontinuity of ∥·∥2Ui
in the weak sequential topology, see Lemma 2.23,

we obtain the estimate‹Ψα(ū, v̄) =
∑
i∈[N ]

[
θ̃i(ι‹U (v̄i, ū−i)) +

γ

2
∥v̄i∥2Ui

]
+

α

2
∥ιH(v̄)− ιH(ū)∥2H

≤ lim
k→∞

[ ∑
i∈[N ]

[
θ̃i(ι‹U (vik, u−i

k ))
]
+

α

2
∥ιH(vk)− ιH(uk)∥2H

]
+

γ

2

∑
i∈[N ]

[
lim inf
k→∞

∥vik∥2Ui

]
Since the limes inferior is superadditive, we get‹Ψα(ū, v̄) ≤ lim inf

k→∞

[ ∑
i∈[N ]

[
θ̃i(ι‹U (vik, u−i

k )) +
γ

2
∥vik∥2Ui

]
+

α

2
∥ιH(vk)− ιH(uk)∥2H

]

= lim inf
k→∞

‹Ψα(uk, vk).

We could replace the assumption of the complete continuity of the embedding operator
ι‹U : U → ‹U by assuming that θ̃i : U → R is completely continuous for all i ∈ [N ], i.e.,

uk ⇀ ū in U as k → ∞ =⇒ θ̃i(uk) → θ̃i(ū) as k → ∞.

Alternatively, we could also replace it by assuming that the embedding ι̃‹U is continuous and

θ̃i : ‹U → R completely continuous for all i ∈ [N ]. This implies again θ̃i(ι̃‹U (uk)) → θ̃i(ι̃‹U (ū))
for uk ⇀ ū in U as k → ∞ for all i ∈ [N ].

Next, we make sure that a solution to the problem exists, i.e., the solution set is nonempty.
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Lemma 4.4. Let u ∈ U be arbitrary. Then the solution set v‹Ψα
(u) to (4.2) is nonempty

and convex.

Proof. We note that U is a reflexive Banach space and X is assumed to be nonempty,
convex, closed, and bounded. Furthermore, we know by Lemma 4.3 that the functional‹Ψα(u, ·) : U → R is lower semicontinuous with respect to the weak sequential topology
and with respect to the norm topology. Thus, we can apply Lemma 2.61 to conclude that
minv∈X ‹Ψα(u, v) possesses at least one solution with optimal value ‹Ψ∗

α(u). Hence, we have
shown that v‹Ψα

(u) is nonempty.

The convexity of the solution set v‹Ψα
(u) is a consequence of the convexity of ‹Ψα(u, ·) and

X . Indeed, for given solutions x, y ∈ v‹Ψα
(u) with λx+ (1− λ)y ∈ X , λ ∈ [0, 1] arbitrary, it

holds that‹Ψ∗
α(u) ≤ ‹Ψα(u, λx+ (1− λ)y) ≤ λ‹Ψα(u, x) + (1− λ)‹Ψα(u, y) = ‹Ψ∗

α(u).

Hence, we obtain λx+ (1− λ)y ∈ v‹Ψα
(u).

Next, we prove that the solution map is closed in the weak sequential topology, which is
required for the application of the Kakutani fixed point theorem.

Lemma 4.5. Let u ∈ U be arbitrary. Then the solution map u 7→ v‹Ψα
(u) to (4.2) is closed

in the weak sequential topology.

Proof. Let {uk}k∈N ⊆ U and vk ∈ v‹Ψα
(uk), k ∈ N, be arbitrary sequences such that uk ⇀ ū

in U and vk ⇀ v̄ in U as k → ∞. We have to verify v̄ ∈ v‹Ψα
(ū). To this end, we apply

Lemma 4.3 and obtain ‹Ψα(ū, v̄) ≤ lim inf
k→∞

‹Ψα(uk, vk).

For all x ∈ X and y ∈ v‹Ψα
(ū) it holds ‹Ψα(ū, y) ≤ ‹Ψα(ū, x) and thus, we get the inequality

lim inf
k→∞

‹Ψα(uk, vk) ≤ lim inf
k→∞

‹Ψα(uk, x)

= lim inf
k→∞

[ ∑
i∈[N ]

[
θ̃i(ι‹U (xi, u−i

k )) +
γ

2
∥xi∥2Ui

]
+

α

2
∥ιH(x)− ιH(uk)∥2H

]
.

Next, the fact that ι‹U and ιH are completely continuous yields

lim inf
k→∞

‹Ψα(uk, vk) ≤
∑
i∈[N ]

[
lim
k→∞

θ̃i(ι‹U (xi, u−i
k )) +

γ

2
∥xi∥2Ui

]
+ lim

k→∞

[α
2
∥ιH(x)− ιH(uk)∥2H

]

=
∑
i∈[N ]

[
θ̃i(ι‹U (xi, ū−i)) +

γ

2
∥xi∥2Ui

]
+

α

2
∥ιH(x)− ιH(ū)∥2H

= ‹Ψα(ū, x).

Summarizing, we obtain ‹Ψα(ū, v̄) ≤ ‹Ψα(ū, x) for all x ∈ X . By vk ∈ v‹Ψα
(uk) ⊆ X and

the closedness of X in U in the weak sequential topology, we conclude v̄ ∈ X and thus, v̄ is
a minimizer to ‹Ψα(ū, ·) on X . Finally, this proves v̄ ∈ v‹Ψα

(ū).
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Proof of Theorem 4.2. Since X ⊆ U is convex and closed, it is closed in the weak topology of
U . By this property and the boundedness of X , we conclude that X is weakly compact in the
reflexive Banach space U . Due to the Eberlein–Šmulian theorem, see Theorem 2.25, we know
that weak compactness implies compactness in the weak sequential topology. The closedness
of the solution map in the weak sequential topology holds due to Lemma 4.5. Moreover,
we have obtained in Lemma 4.4 that this map has a nonempty and convex image. Thus,
Glicksberg’s version of the Kakutani fixed point theorem, see Theorem 2.8, is applicable and
establishes the existence of a fixed point of the solution map.

Overall, we have proved the existence of a fixed point of the solution map u 7→ v‹Ψα
(u)

corresponding to the problem (4.2), i.e.,

min
v∈X
‹Ψα(u, v)

with ‹Ψα(u, v) =
∑
i∈[N ]

[
θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

In other words, there exists an element u ∈ X that fulfills both u 7→ v‹Ψα
(u) = u and‹Ψα(u, u) ≤ ‹Ψα(u, v) for all v ∈ X . This is equivalent to the property∑

i∈[N ]

[
θi(u

i, u−i)− θi(v
i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ 0

for all v ∈ X . Hence, it holds Vα(u) = 0. In Chapter 5, we analyze whether and under
what assumptions this condition corresponds to u ∈ X being a variational equilibrium or
normalized equilibrium, see Theorem 5.4 below.

4.2 Fixed Point of the Solution Map via Optimality Condition

In this section, we consider a solution map based on optimality requirements of the first order.
In the end, we derive similar results as we have seen in the preceding section. Particularly,
we apply the Kakutani fixed point theorem to obtain the existence of minimizers.

Since we consider solution maps based on a first-order optimality condition, we define
the functional Φ : U × U → R and its regularization Φα : U × U → R by

Φ(u, v) =
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), vi⟩U∗

i ,Ui

]
,

Φα(u, v)= Φ(u, v) +
α

2
∥ιH(v)− ιH(u)∥2H ,

(4.4)

where α ≥ 0 is chosen accordingly. Note that it holds

Φ(u, v) =
∑
i∈[N ]

[〈[
θi(u)

]
ui , v

i − ui
〉
U∗
i ,Ui

]
+ const(u),

51



4.2. SOLUTION MAP VIA OPTIMALITY CONDITION CHAPTER 4. EXISTENCE

and α could be chosen as zero. Here, the symbol const(u) denotes a constant that may
possibly depend on u. In the following, we study the problem

min
v∈X

Φα(u, v),

and show the existence of a fixed point of the corresponding solution map u 7→ vΦα(u).

From here on, let (A6) be fulfilled for the underlying spaces. That means, we assume

that Hi, ‹Ui are both normed spaces and that Ui is a uniformly smooth and uniformly convex
Banach space. Moreover, we assume that the feasible set X ⊆ U is nonempty, convex,
closed, and bounded. Lastly, we have to set some assumptions on the differentiability of the
objective functional θi : U → R. In particular, let (B2b) of Assumption 3.3 be valid, i.e.,

it is assumed that it holds θi(u) = θ̃i(ι‹U (u)) + γ
2∥u

i∥2Ui
with θ̃i : ‹U → R being a functional

that is continuously differentiable in its i-th component. In particular, the notation (θ̃i)ũi

expresses the derivative of θ̃i in ‹U∗
i , see Section 3.2.

We state the following theorem on the existence of fixed points of the minimization
problem.

Theorem 4.6. There exists a fixed point of the mapping u 7→ vΦα(u) on X .

In order to prove this result, we would like to perform a similar calculation as before.
However, this time the objective functional contains the terms

⟨JUi(u
i), vi⟩U∗

i ,Ui ,

which are not continuous with respect to the weak sequential topology for all i ∈ [N ]. For
this reason, instead of Φ and Φα we consider Φ̃ : U × U → R and its regularization Φ̃α that
we define by

Φ̃(u, v) =
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i
〉
U∗
i ,Ui

+
γ

2
∥vi∥2Ui

]
,

Φ̃α(u, v)= Φ̃(u, v) +
α

2
∥ιH(v)− ιH(u)∥2H .

(4.5)

First of all, we prove the simultaneous existence of a fixed point of the solution maps
corresponding to the minimizing problems minv∈X Φα(u, v) and minv∈X Φ̃α(u, v). We pro-
ceed as in the section before and show both the lower semicontinuity in the weak sequential
topology as well the well-posedness of the solution map.

Proposition 4.7. If it holds for all i ∈ [N ] that

⟨JUi(y), x⟩U∗
i ,Ui = ⟨JUi(x), y⟩U∗

i ,Ui ∀x, y ∈ Ui, (4.6)

then for a given u ∈ X it yields the following equivalency:

Φα(u, u) ≤ Φα(u, v) ∀ v ∈ X ⇐⇒ Φ̃α(u, u) ≤ Φ̃α(u, v) ∀ v ∈ X .
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Proof. First, we begin with the direction “⇒” of the equivalency. Let Φα(u, u) ≤ Φα(u, v)
be valid for all v ∈ X . By definition of Φ̃, see (4.5), and of the dual product of the product
space U , we obtain〈

(Φ̃)v(u, v), h
〉
U∗,U

=
〈( ∑

i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i
〉
U∗
i ,Ui

+
γ

2
∥vi∥2Ui

])
v
, h

〉
U∗,U

=
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , h

i
〉
U∗
i ,Ui

+ γ⟨JUi(v
i), hi⟩U∗

i ,Ui

]
.

(4.7)

Using the convexity of Φ̃(u, ·) on X and its differentiability in the second component, it yields

Φ̃α(u, v)− Φ̃α(u, u) = Φ̃(u, v)− Φ̃(u, u) +
α

2
∥ιH(v)− ιH(u)∥2H

≥
〈
(Φ̃)v(u, v)|v=u

, v − u
〉
U∗,U

+
α

2
∥ιH(v)− ιH(u)∥2H .

Applying (4.7) we get

Φ̃α(u, v)−Φ̃α(u, u)≥
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i−ui
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), vi−ui⟩U∗

i ,Ui

]

+
α

2
∥ιH(v)−ιH(u)∥2H

=
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), vi⟩U∗

i ,Ui

]
+
α

2
∥ιH(v)−ιH(u)∥2H

−
[∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , u

i
〉
U∗
i ,Ui

+γ⟨JUi(u
i), ui⟩U∗

i ,Ui

]
+
α

2
∥ιH(u)−ιH(u)∥2H

]
.

Thus, we obtain
Φ̃α(u, v)− Φ̃α(u, u) ≥ Φα(u, v)− Φα(u, u) ≥ 0.

We conclude that u minimizes Φ̃α(u, ·) on X .

Next, we prove the other direction “⇐” of the equivalency. We assume that u is a minimizer
to Φ̃α(u, ·) on X . In particular, it holds due to the convexity of X

Φ̃α(u, u) ≤ Φ̃α(u, (1− t)u+ tv),

for v ∈ X and t ∈ (0, 1]. Furthermore, the convexity of Φα(u, ·) implies

Φα(u, (1− t)u+ tv) ≤ (1− t)Φα(u, u) + tΦα(u, v),

and we obtain the following inequality

Φα(u, v)− Φα(u, u) ≥
1

t
[Φα(u, u+ t(v − u))− Φα(u, u)]

=
1

t

[ ∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , u

i + t(vi − ui)
〉
U∗
i ,Ui
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+ γ⟨JUi(u
i), ui + t(vi − ui)⟩U∗

i ,Ui

]
+

α

2
∥ιH(u+ t(v − u))− ιH(u)∥2H

−
( ∑

i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , u

i
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), ui⟩U∗

i ,Ui

]

+
α

2
∥ιH(u)− ιH(u)∥2H

)]
.

Selecting the terms of Φ̃α we get

Φα(u, v)−Φα(u, u) ≥
1

t

[
Φ̃α(u, u+ t(v − u))− Φ̃α(u, u)−

∑
i∈[N ]

[γ
2
∥ui + t(vi − ui)∥2Ui

− γ⟨JUi(u
i), ui + t(vi − ui)⟩U∗

i ,Ui

]
+

∑
i∈[N ]

[γ
2
∥ui∥2Ui

− γ⟨JUi(u
i), ui⟩U∗

i ,Ui

]]
.

In the next step, we use that u is a minimizer to Φ̃α(u, ·) on X and extend the squared norm.
Then we arrive at

Φα(u, v)− Φα(u, u) ≥
1

t

[ ∑
i∈[N ]

[
γ⟨JUi(u

i), t(vi − ui)⟩U∗
i ,Ui −

γ

2
∥ui + t(vi − ui)∥2Ui

+
γ

2
∥ui∥2Ui

]]
=

∑
i∈[N ]

[
γ⟨JUi(u

i), vi − ui⟩U∗
i ,Ui −

γ

2t
∥ui∥2Ui

− γ

2t

[
⟨JUi(u

i), t(vi − ui)⟩U∗
i ,Ui

+ ⟨JUi(t(v
i − ui)), ui⟩U∗

i ,Ui

]
− γ

2t
∥t(vi − ui)∥2Ui

+
γ

2t
∥ui∥2Ui

]
= −

∑
i∈[N ]

γt

2
∥vi − ui∥2Ui

,

where we used the assumption (4.6) on the duality map. The right-hand side tends to 0 as
t → 0 and therefore, we conclude that u ∈ X is the minimizer to Φα(u, ·).

The condition ⟨JUi(y), x⟩U∗
i ,Ui = ⟨JUi(x), y⟩U∗

i ,Ui for any x, y ∈ Ui is equivalent to JUi =

J∗
Ui
J̃ for all i ∈ [N ]. In fact, we can make use of the biduality mapping J̃ , see Definition 2.19,

to obtain

⟨JUi(x), y⟩U∗
i ,Ui = ⟨J̃y, JUi(x)⟩U∗∗

i ,U∗
i
= ⟨J∗

Ui
(J̃y), x⟩U∗

i ,Ui ∀x, y ∈ Ui.

Together with the bijectivity of the duality mapping JUi , it yields JUi = J∗
Ui
J̃ . This assump-

tion is satisfied, for example, if Ui is a Hilbert space.

We have demonstrated that fixed points can only exists concurrently for the two min-
imization issues minv∈X Φα(u, v) and minv∈X Φ̃α(u, v). Consequently, we can complete the
following proofs using the regularized functional Φ̃α rather than Φα itself. Afterwards, we
can still conclude the existence of fixed points of the original minimization problem.

We start the procedure by showing that the regularized functional is, in fact, lower
semicontinuous with respect to the weak sequential topology.
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Lemma 4.8. The functional Φ̃α : U × U → R is lower semicontinuous with respect to the
weak sequential topology.

Proof. Let {uk}k∈N ⊆ U and {vk}k∈N ⊆ U be weakly convergent sequences with uk ⇀ ū and
vk ⇀ v̄ in U as k → ∞. In the following, let i ∈ [N ] be arbitrary. Since it holds the strong

convergence ι‹U (uk) → ι‹U (ū) in ‹U as k → ∞, it implies that (θ̃i)ũi(ι‹U (uk)) → (θ̃i)ũi(ι‹U (ū)) in‹U∗
i as k → ∞. By the weak convergence of vik in Ui as k → ∞, we obtain ι‹Ui

(vik) → ι‹Ui
(v̄i)

in ‹Ui as k → ∞. Hence, we arrive at the convergence

lim
k→∞

〈[
θ̃i(ι‹U (uk))]ui , v

i
k

〉
U∗
i ,Ui

= lim
k→∞

〈
(θ̃i)ũi(ι‹U (uk)), ι‹Ui

(vik)
〉‹U∗

i ,
‹Ui

=
〈
(θ̃i)ũi(ι‹U (ū)), ι‹Ui

(v̄i)
〉‹U∗

i ,
‹Ui

=
〈[
θ̃i(ι‹U (ū))]ui , v̄

i
〉
U∗
i ,Ui

.

Since the norm functional ∥ · ∥2Ui
is lower semicontinuous in the weak sequential topology, we

obtain

Φ̃α(ū, v̄) =
∑
i∈[N ]

[〈[
θ̃i(ι‹U (ū))]ui , v̄

i
〉
U∗
i ,Ui

+
γ

2
∥v̄i∥2Ui

]
+

α

2
∥ιH(v̄)− ιH(ū)∥2H

≤ lim
k→∞

[ ∑
i∈[N ]

[〈[
θ̃i(ι‹U (uk))]ui , v

i
k

〉
U∗
i ,Ui

]
+

α

2
∥ιH(vk)− ιH(uk)∥2H

]
+

γ

2

∑
i∈[N ]

[
lim inf
k→∞

∥vik∥2Ui

]
.

The lower semicontinuity of Φ̃α follows from the superadditivity of the limes inferior and

Φ̃α(ū, v̄) ≤ lim inf
k→∞

[ ∑
i∈[N ]

[〈[
θ̃i(ι‹U (uk))]ui , v

i
k

〉
U∗
i ,Ui

+
γ

2
∥vik∥2Ui

]
+

α

2
∥ιH(vk)−ιH(uk)∥2H

]
= lim inf

k→∞
Φ̃α(uk, vk).

Alternatively, we could have assumed that θ̃i(·, u−i) : Ui → R is differentiable for all
i ∈ [N ] with (θ̃i)ui(u) ∈ U∗

i being continuous with respect to the weak sequential topology.
Then we would obtain 〈[

θ̃i(u)
]
ui , v

i
〉
U∗
i ,Ui

=
〈
(θ̃i)ui(u), vi

〉
U∗
i ,Ui

,

and (θ̃i)ui(uk) → (θ̃i)ui(ū) in U∗
i for uk ⇀ ū in U as k → ∞ for all i ∈ [N ].

Next, we prove that the image of the corresponding solution map is, in fact, nonempty.

Lemma 4.9. The solution map u 7→ v
Φ̃α

(u) of the minimizing problem minv∈X Φ̃α(u, v) is
well-defined in the sense that v

Φ̃α
(u) is nonempty and convex.

Proof. By Lemma 4.8, we know that the functional Φ̃α(u, ·) is lower semicontinuous with
respect to the weak sequential topology. Hence, we can apply Lemma 2.61 that yields the
existence of a solution to the minimization problem minv∈X Φ̃α(u, v). We conclude that the
set v

Φ̃α
(u) is nonempty. The convexity follows analogously to the proof of Lemma 4.4.
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We continue with the next auxiliary result that provides us with the closedness of the
solution map in the weak sequential topology.

Lemma 4.10. The solution map u 7→ v
Φ̃α

(u) to the minimization problem minv∈X Φ̃α(u, v)
is closed in the weak sequential topology.

Proof. Let {uk}k∈N ⊆ U and vk ∈ v
Φ̃α

(uk), k ∈ N, be two weakly convergent sequences in
U . That means, there are elements ū, v̄ ∈ U such that it holds uk ⇀ ū and vk ⇀ v̄ in U as
k → ∞. In order to show this lemma, we are going to prove that v̄ ∈ v

Φ̃α
(ū). By Lemma 4.8,

we obtain the inequality
Φ̃α(ū, v̄) ≤ lim inf

k→∞
Φ̃α(uk, vk),

and additionally, it holds the estimate

Φ̃α(ū, y) ≤ Φ̃α(ū, x) ∀x ∈ X , y ∈ v
Φ̃α

(ū).

Using these two results, we obtain the following inequality

Φ̃α(ū, v̄) ≤ lim inf
k→∞

Φ̃α(uk, vk)

≤ lim inf
k→∞

Φ̃α(uk, x)

= lim inf
k→∞

[ ∑
i∈[N ]

[〈[
θ̃i(ι‹U (uk))]ui , x

i
〉
U∗
i ,Ui

+
γ

2
∥xi∥2Ui

]
+

α

2
∥ιH(x)− ιH(uk)∥2H

]
,

for any x ∈ X . Since the operators ι‹U and ιH are completely continuous, the same holds for

the derivative of θ̃i. Thus, we get

Φ̃α(ū, v̄) ≤
∑
i∈[N ]

[〈[
θ̃i(ι‹U (ū))]ui , x

i
〉
U∗
i ,Ui

+
γ

2
∥xi∥2Ui

]
+

α

2
∥ιH(x)− ιH(ū)∥2H

= Φ̃α(ū, x),

for any x ∈ X . By the definition of the solution map, we obtain that v̄ ∈ X is a minimizer.
Hence, we are able to conclude the desired result v̄ ∈ v

Φ̃α
(ū).

Proof of Theorem 4.6. Analogously to the proof of Theorem 4.2, we obtain the compactness
of X in the weak sequential topology. By Lemma 4.8, Lemma 4.9 and Lemma 4.10, the
assumptions of the fixed point theorem of Kakutani, see Theorem 2.8, are satisfied and we
can apply it to the map u 7→ v

Φ̃α
(u). Hence, it yields the existence of a fixed point of

u 7→ argminv∈X Φ̃α(u, v). By Proposition 4.7, we finally obtain a fixed point of the mapping
u 7→ argminv∈XΦα(u, v).

Let us now summarize this section. We have proved that a fixed point u ∈ X exists for the
solution mapping corresponding to the minimization problem minv∈X Φα(u, v). Specifically,
this means that the following inequality holds:

Φα(u, u) ≤ Φα(u, v) ∀ v ∈ X .
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Furthermore, we can derive the inequality∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , u

i
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), ui⟩U∗

i ,Ui

]

≤
∑
i∈[N ]

[〈[
θ̃i(ι‹U (u))]ui , v

i
〉
U∗
i ,Ui

+ γ⟨JUi(u
i), vi⟩U∗

i ,Ui

]
+

α

2
∥ιH(v)− ιH(u)∥2H ,

or equivalently, it holds∑
i∈[N ]

[〈
(θi)ui(u), ui

〉
U∗
i ,Ui

]
≤

∑
i∈[N ]

[〈
(θi)ui(u), vi

〉
U∗
i ,Ui

]
+

α

2
∥ιH(v)− ιH(u)∥2H . (4.8)

Especially in the case α = 0, one obtains the VI∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X . (4.9)

This VI can also be obtained for arbitrary α ≥ 0. In fact, for any v ∈ X and t ∈ (0, 1],
one inserts u+ t(v − u) ∈ X into (4.8) and achieves the estimate

∑
i∈[N ]

〈
(θi)ui(u), t(vi − ui)

〉
U∗
i ,Ui

≥ −αt2

2
∥ιH(v)− ιH(u)∥2H .

From here, we divide this inequality by t and pass the limit t ↓ 0, which finally yields (4.9).
In the following section, we study the connection between this VI and normalized equilibria.
Particularly, we refer to Theorem 5.3 and Theorem 5.4 below.
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Chapter 5

Nikaido–Isoda Merit Functionals

One should avoid by all means to deprive oneself of analytical flexibility by adher-
ing to any single technique. It is essential to choose a method most appropriate
to the kind and nature of a problem under study. (Hukukane Nikaido)

This chapter investigates the analytical features of Nikaido–Isoda merit functionals and their
local variations. There are a variety of methods for localizing such functionals, and we will
explore a few of them here. We shall investigate the origins of merit functionals and determine
their relationship with various-types of equilibria. Particularly, we will observe that merit
functionals serve as a link between equilibria and optimization problems. Such linkages have
been utilized in a number of previous publications, and in the finite-dimensional case, we
specifically mention the extensive book [67].

In Section 5.1, we give an overview of the various-types of localized Nikaido–Isoda merit
functionals. In Subsection 5.2.1, we demonstrate that Nash equilibria are the zeros of par-
ticular Nikaido–Isoda merit functionals that contain the supremum operator within the sum
over the players. In contrast to this-type, we will examine other Nikaido–Isoda merit func-
tionals in Subsection 5.2.2 and see that, under certain assumptions, their zeros are in fact
normalized equilibrium points. In Section 5.3, we investigate the difference between two
regularized Nikaido–Isoda merit functionals and demonstrate that the roots of the difference
functional are strongly associated with the roots of the two original merit functionals. The
differentiation of regularized and localized merit functionals follows. Subsection 5.4.2 dis-
cusses the differentiability of the regularized and localized variants by applying Danskin’s
theorem, see Section 2.4.

5.1 Localization of Merit Functionals

In this section, we investigate localized versions of the regularized merit functionals Vα and‹Vα. Recalling their definitions in Chapter 2, see (2.21) and (2.23), they are given by‹Vα(u) =
∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
, (5.1)
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Vα(u) = sup
v∈X

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (5.2)

To avoid potentially very large values of the regularization parameter α ≥ 0, the merit
functionals will be localized. There are several techniques for localizing the merit functionals,
as indicated in Section 3.3, and we investigate these in this section.

5.1.1 Localizing the Feasible Set

In the first option we will give, the admissible sets Fi(u
−i) and X are localized, and the

convexity assumptions are imposed only in a neighborhood surrounding ui or u.

Particularly, the admissible set is restricted to the closed balls centered around ui and u
for a given radius R > 0, i.e., the sets BR(u

i) ⊆ Ui and BR(u) ⊆ U are of interest. On the

intersections ‹Fi(u) = Fi(u
−i) ∩ BR(u

i) and ‹X (u) = X ∩ BR(u), we define the regularized
and localized Nikaido–Isoda merit functionals as follows:‹V loc

α (u) =
∑
i∈[N ]

sup
vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
, (5.3)

V loc
α (u) = sup

v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (5.4)

5.1.2 Penalty-type and Barrier-type Method

Instead of directly localizing the feasible set, we will also employ penalty-type or barrier-type
terms in the merit functionals of Nikaido–Isoda-type. This approach will lead to a localized
solution nonetheless. Let p : [0,∞) → [0,∞] be a continuously differentiable penalty-type
or barrier-type function with p(0) = 0. Furthermore, we introduce the parameter sequences
{ρik}k∈N ⊆ [0,∞) and {ρk}k∈N ⊆ [0,∞) corresponding to the function p, which is chosen as
a penalty-type or a barrier-type function. The difference lies in the region of penalization
and monotonicity of the parameter sequence. The penalty-type function p is defined by
the key property p(∥vi − ui∥2Ui

) = 0 for vi ∈ BR(u
i), and the corresponding sequence of

parameters {ρik}k∈N is monotonically increasing. In the case of a barrier-type function, we
define p(∥vi − ui∥2Ui

) ≥ 0 for vi ∈ BR(u
i), p(∥vi − ui∥2Ui

) = ∞ for v ∈ Ui\BR(u
i), and

the sequence {ρik}k∈N is monotonically decreasing. In case of the feasible set X (u) and
the parameter sequence {ρk}k∈N, the penalty-type and barrier-type functions are defined
analogously.

We introduce the regularized and localized Nikaido–Isoda merit functionals with the
addition of a penalty-type or barrier-type term by‹V pk

α (u) =
∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)
]
,

(5.5)

V pk
α (u) = sup

v∈X

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U )

]
. (5.6)
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5.1.3 Combination of Localizing and Penalizing

As the third option, we combine both methods from the previous sections and simultaneously
restrict the admissible set and include a penalty-type or barrier-type term in the Nikaido–
Isoda merit functionals.
We introduce the restricted feasible sets “Fi(u) and “X (u) with the following properties:

• “Fi(u) ⊆ Fi(u
−i) is convex with Fi(u

−i) ∩BR(u
i) ⊆ “Fi(u) for some R > 0.

• “X (u) ⊆ X is convex with X ∩BR(u) ⊆ “X (u) for some R > 0.

Moreover, we define the penalty-type or barrier-type functionals qi : Ui → [0,∞], i ∈ [N ],
and q : U → [0,∞] by requiring that they are convex and continuously differentiable at 0
with qi(0) = 0 and q(0) = 0. Furthermore, we assume that the functionals qi and q are finite
on BUi

R (0) and BU
R(0), respectively.

As the third method, the regularized and localized merit functionals of Nikaido–Isoda-
type are defined by‹V lp

α (u) =
∑
i∈[N ]

sup
vi∈“Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui)

]
, (5.7)

V lp
α (u) = sup

v∈“X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− q(v − u). (5.8)

Since the penalty-type or barrier-type functional qi : Ui → R is assumed to be continuously
differentiable with qi(0) = 0 and qi(v

i) ≥ 0 for all vi ∈ Ui, the element 0 is a local minimum
and it holds q′i(0) = 0. The same statement applies to q.

We note that as a special case, we can select the functional q as the sum over qi. In
addition, there are various generalizations that weaken the criteria of the parameter α while
maintaining the validity of the results in Section 5.2. In fact, we make the following remarks:

• The parameter α ≥ 0 can be replaced by choosing αi ≥ 0 for each i ∈ [N ] separately.
Especially, one can interpret α ≥ 0 either as α = maxi∈[N ] αi or as α = (αi)i∈[N ].

• One can replace the assumption of pseudoconvexity in the closed ball BR(u
i) or BR(u)

by the pseudoconvexity in an open neighborhood B(ui) or B(u), respectively. In fact,
one can find some open and closed balls such that Bδ(u

i) ⊆ Bε(u
i) ⊆ B(ui) and

Bδ(u) ⊆ Bε(u) ⊆ B(u) with 0 < δ ≤ ε. Here, it is presumed that the balls are closed
for reasons of convention.

• It would be even more general to include the regularization term α
2 ∥ιHi(v

i)−ιHi(u
i)∥2Hi

and qi(v
i−ui) in a newly defined functional that is assumed to be convex, continuously

differentiable and vanishes at ui. We do not pursue this point further because we want
to obtain a similar structure to the globally regularized Nikaido–Isoda merit functional,
see (5.1).

We note that we do not require a convexity assumption on the functionals q and qi for any
i ∈ [N ]. To avoid adding additional difficulties with nonconvexities, it is advantageous to
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localize and regularize nonetheless using a convex functional. In fact, a nonconvex regulariza-
tion term may bring undesirable properties to the objective functional and could exacerbate
its nonconvexity.

5.2 Merit Functionals and Equilibria

This section examines the regularized and localized functionals (5.1)–(5.8) and discusses
their relationship to the various-types of equilibria. Specifically, we demonstrate that these
functionals are, in fact, merit functionals to (Q)VIs that express first-order optimality criteria
for (local) Nash or (local) normalized equilibria. Under certain pseudoconvexity assumptions,
we uncover a relationship between the roots of the regularized merit functional and the roots
of the regularized and localized versions. In addition, we link (local) Nash and (local)
normalized equilibria to zeros of the respective merit functionals. Let (A3) be satisfied for
the underlying spaces moving forward.

We note that only the assertions involving derivatives necessitate the space assumptions
on U and H. In other circumstances, these assumptions can be reduced by using normed
spaces. In addition, only the penalized functionals ‹V pk

α and V pk
α require that the space U is

a uniformly smooth and uniformly convex Banach space.

5.2.1 Nash Equilibria

In this part of the section, we study the connection between the various merit functionals and
Nash equilibria. We consider the regularized and localized Nikaido–Isoda merit functionals‹Vα : U → R, ‹V loc

α : U → R, ‹V pk
α : U → R and ‹V lp

α : U → R as defined in (5.1), (5.3), (5.5)
and (5.7). We relate them to QVIs that express first-order optimality conditions for (local)
Nash equilibria.

Theorem 5.1. Let k ∈ N be arbitrarily fixed, α ≥ 0, and let u ∈ U satisfy u ∈ F (u). In the
case of the assertions (ii)–(vi), we further assume that (B1) of Assumption 3.3 is satisfied
and that the feasible set Fi(u

−i) is convex, i ∈ [N ]. In the case of “⇒” of (ii), let the three
assumptions (C2), (C3), (C4) of Assumption 3.4 hold for the three statements, respectively.
Regarding “⇒” of (iv), (v) and (vi), we assume (C1). In the matter of “⇒” of (vii), we
assume (C3) and for the reverse implication “⇐” that p : [0,∞) → [0,∞] is chosen as a
penalty-type function. Then it holds:

(i) ‹Vα(u) ≥ ‹V loc
α (u) ≥ 0,‹Vα(u) ≥ ‹V pk
α (u) ≥ 0,‹Vα(u) ≥ ‹V lp
α (u) ≥ 0.

Moreover, if p : [0,∞) → [0,∞] is chosen as a penalty-type function, it holds‹V pk
α (u) ≥ ‹V loc

α (u).

(ii)
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ ‹Fi(u), i ∈ [N ] ⇐⇒ ‹V loc
α (u) = 0,〈

(θi)ui(u), vi − ui
〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i), i ∈ [N ] ⇐⇒ ‹V pk

α (u) = 0,
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〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ “Fi(u), i ∈ [N ] ⇐⇒ ‹V lp
α (u) = 0.

(iii) For all i ∈ [N ]: 〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i)

⇐⇒
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ ‹Fi(u)

⇐⇒
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ “Fi(u).

(iv) ‹V loc
α (u) = 0 ⇐⇒ ‹Vα(u) = 0.

(v) ‹V pk
α (u) = 0 ⇐⇒ ‹Vα(u) = 0.

(vi) ‹V lp
α (u) = 0 ⇐⇒ ‹Vα(u) = 0.

(vii) ‹V loc
α (u) = 0 ⇐⇒ ‹V pk

α (u) = 0.

Proof. We begin by proving that the inequalities of the first assertion are satisfied.

Proof of (i). Let i ∈ [N ] be arbitrary. By the inclusion ‹Fi(u) ⊆ Fi(u
−i), we obtain the

first inequality of the claimed result, i.e., ‹Vα(u) ≥ ‹V loc
α (u). The fact ‹Vα(u) ≥ ‹V pk

α (u) follows
from the nonnegativity of the penalty-type or barrier-type function p. Moreover, it holds‹Vα(u) ≥ ‹V lp

α (u) since qi(u) is nonnegative for all u ∈ U and “Fi(u) is a subset of Fi(u
−i). For

the nonnegativity of the respective regularized and localized Nikaido–Isoda merit functionals,
we plug vi = ui into the respective definitions of ‹V loc

α , ‹V pk
α and ‹V lp

α , which results in‹V loc
α (u) ≥

∑
i∈[N ]

[
θi(u)− θi(u

i, u−i)− α

2
∥ιHi(u

i)− ιHi(u
i)∥2Hi

]
= 0,‹V pk

α (u) ≥
∑
i∈[N ]

[
θi(u)− θi(u

i, u−i)− α

2
∥ιHi(u

i)− ιHi(u
i)∥2Hi

− ρikp(0)
]
= 0,‹V lp

α (u) ≥
∑
i∈[N ]

[
θi(u)− θi(u

i, u−i)− α

2
∥ιHi(u

i)− ιHi(u
i)∥2Hi

− qi(0)
]

= 0.

Regarding a penalty-type function it holds by definition that p(∥vi − ui∥2Ui
) > 0 for all

vi /∈ BR(u
i). Hence, we obtain the inequality

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≥ sup

vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)
]
.

Furthermore, we can estimate the supremum cutting the feasible set with the set

{vi ∈ Ui : p(∥vi − ui∥2Ui
) = 0}.
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Then using the definition of a penalty-type function we arrive at

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)
]

≥ sup
vi∈Fi(u−i)∩{vi:p(∥vi−ui∥2Ui

)=0}

[
θi(u)−θi(v

i, u−i)−α

2
∥ιHi(v

i)−ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)
]

= sup
vi∈Fi(u−i)∩BR(ui)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

Rewriting this with the feasible set ‹Fi(u) we get

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≥ sup

vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

All together, we arrive at

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≥ sup

vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

By setting vi = ui ∈ ‹Fi(u) ⊆ Fi(u
−i) for all i ∈ [N ] into the derived inequalities, we conclude

that ‹Vα(u) ≥ ‹V pk
α (u) ≥ ‹V loc

α (u) ≥ 0.

Proof of (ii). We begin by proving the direction “⇒” of the equivalency. Let i ∈ [N ] be
arbitrary. Since the functional θi(·, u−i) + α

2 ∥ιHi(·) − ιHi(u
i)∥2Hi

is pseudoconvex at ui on‹Fi(u), we obtain the estimate

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

for all vi ∈ ‹Fi(u). Here, we have applied the inequality〈([
θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
vi

)
|vi=ui

, vi − ui
〉
U∗
i ,Ui

=
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0.

Consequently, this yields that ‹V loc
α (u) is nonpositive, i.e.,‹V loc

α (u) =
∑
i∈[N ]

sup
vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ 0.
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However, we have already seen in the first part of the proof that ‹V loc
α is nonnegative and

therefore, we conclude that u is a root of ‹V loc
α .

Next, we prove the direction “⇐” of (ii). Let i ∈ [N ] again be arbitrary. First off, we

show that roots of ‹V loc
α fulfill the inequality

θi(u) ≤ θi(w
i, u−i) +

α

2
∥ιHi(w

i)− ιHi(u
i)∥2Hi

∀wi ∈ ‹Fi(u). (5.9)

Otherwise, there would exist an element zj ∈ ‹Fj(u) for some index j ∈ [N ] with

θj(u) > θj(z
j , u−j) +

α

2
∥ιHj (z

j)− ιHj (u
j)∥2Hj

.

By choosing vj = zj and vi = ui, i ̸= j, in the definition of ‹V loc
α (u), this results in the

inequality ‹V loc
α (u) ≥ θj(u)− θj(z

j , u−j)− α

2
∥ιHj (z

j)− ιHj (u
j)∥2Hj

> 0.

However, this positivity of ‹V loc
α (u) contradicts the fact that u is a root of ‹V loc

α . Thus, the

zero u fulfills the inequality (5.9). Exploiting the convexity of ‹Fi(u), it holds for the convex

combination wi = ui + t(vi − ui) ∈ ‹Fi(u) for all u
i, vi ∈ ‹Fi(u) and t ∈ (0, 1]. Using Taylor’s

expansion, it yields

θi(u) ≤ θi(u
i + t(vi − ui), u−i) +

α

2
∥ιHi(t(v

i − ui))∥2Hi

= θi(u
i, u−i) +

〈
(θi)ui(u), t(vi − ui)

〉
U∗
i ,Ui

+ o(t).

Dividing by t ∈ (0, 1] and letting t ↓ 0, we arrive at the desired inequality〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0.

We note that the proofs for the two other equivalency statements in (ii) follow the pre-
ceding lines. Indeed, in the case of the direct implication we exploit the pseudoconvexity of
the objective functionals at the point ui and〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

=
〈([

θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

+ ρikp(∥vi − ui∥2Ui
)
]
vi

)
|vi=ui

, vi − ui
〉
U∗
i ,Ui

=
〈([

θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

+ qi(v
i − ui)

]
vi

)
|vi=ui

, vi − ui
〉
U∗
i ,Ui

.

Then we make use of the assumptions (C3) and (C4).

The respective reverse directions are based on the fact that the statements ‹V pk
α (u) = 0

and ‹V lp
α (u) = 0 imply that

θi(u) ≤ θi(w
i, u−i) +

α

2
∥ιHi(w

i)− ιHi(u
i)∥2Hi

+ ρikp(∥wi − ui∥2Ui
) ∀wi ∈ Fi(u

−i),

θi(u) ≤ θi(w
i, u−i) +

α

2
∥ιHi(w

i)− ιHi(u
i)∥2Hi

+ qi(w
i − ui) ∀wi ∈ “Fi(u).
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Applying Taylor’s expansion at this step and taking the limit t ↓ 0, we arrive at the desired
inequality

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 for all vi ∈ Fi(u
−i) or vi ∈ “Fi(u), respectively, and all

i ∈ [N ].

Proof of (iii). Let i ∈ [N ] be fixed but arbitrary. In the special case of Fi(u
−i) containing

only a single element, it has to hold ui ∈ Fi(u
−i). Hence, it follows Fi(u

−i) = ‹Fi(u) = “Fi(u)
and the equivalences of (iii) hold trivially.

Generally, we assume that the first VI of (iii) holds for all vi ∈ Fi(u
−i). By the relations‹Fi(u) ⊆ Fi(u

−i) and “Fi(u) ⊆ Fi(u
−i), we directly obtain the desired result〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0

for all vi ∈ ‹Fi(u) and for all vi ∈ “Fi(u).
Let one of the other two VIs hold, i.e.,〈

(θi)ui(u), ṽi − ui
〉
U∗
i ,Ui

≥ 0 ∀ ṽi ∈ ‹Fi(u),〈
(θi)ui(u), v̂i − ui

〉
U∗
i ,Ui

≥ 0 ∀ v̂i ∈ “Fi(u).

We consider an arbitrary element vi ∈ Fi(u
−i). If it holds vi ∈ ‹Fi(u) or vi ∈ “Fi(u) in

their respective cases, we can already finish the proof. In the matter of vi ∈ Fi(u
−i)\‹Fi(u)

or vi ∈ Fi(u
−i)\“Fi(u), we can construct a suitable element with ṽi ∈ ‹Fi(u) or v̂i ∈ “Fi(u),

respectively. Indeed, let the auxiliary parameter t ∈ (0, 1) satisfy t∥vi − ui∥Ui ≤ R and set
ṽi = ui + t(vi − ui) or v̂i = ui + t(vi − ui), respectively. Exploiting the convexity of Fi(u

−i),

we obtain ṽi ∈ Fi(u
−i) ∩ BR(u

i) = ‹Fi(u) and v̂i ∈ Fi(u
−i) ∩ BR(u

i) ⊆ “Fi(u), respectively.
This concludes the proof of (iii) by observing〈

(θi)ui(u), vi − ui
〉
U∗
i ,Ui

=
1

t

〈
(θi)ui(u), ṽi − ui

〉
U∗
i ,Ui

≥ 0,〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

=
1

t

〈
(θi)ui(u), v̂i − ui

〉
U∗
i ,Ui

≥ 0.

Proof of (iv). We begin the proof of the equivalency statement by showing the direction

“⇒”. Let u be a root of ‹V loc
α . By applying (ii) of this theorem, we know that it has to hold〈

(θi)ui(u), vi − ui
〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ ‹Fi(u), i ∈ [N ].

Here, i ∈ [N ] is chosen arbitrarily. Using (iii), we obtain〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i).

Since the functional θi(·, u−i) + α
2 ∥ιHi(·) − ιHi(u

i)∥2Hi
is pseudoconvex at ui on Fi(u

−i), it
holds by definition, see Definition 2.22, that

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

∀ vi ∈ Fi(u
−i).
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Thus, we arrive at

0 ≤ ‹Vα(u) =
∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ 0.

The backwards direction “⇐” is an immediate consequence of both of the results‹Vα(u) = 0 and 0 ≤ ‹V loc
α (u) ≤ ‹Vα(u), see also (i).

Proof of (v). First, we take a look at the direction “⇒” and assume that it holds ‹V pk
α (u) = 0.

We obtain the variational inequality〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
i), i ∈ [N ]

by applying the statements (ii) and (iii). Let i ∈ [N ] be arbitrarily fixed. By the assumed
pseudoconvexity of the functional θi(·, u−i)+ α

2 ∥ιHi(·)−ιHi(u
i)∥2Hi

at ui on Fi(u
−i), we obtain

the inequality

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

for all vi ∈ Fi(u
−i) and thus, it holds ‹Vα(u) = 0.

The reverse direction “⇐” follows immediately by ‹Vα(u) = 0 and 0 ≤ ‹V pk
α (u) ≤ ‹Vα(u)

for a penalty-type function p : [0,∞) → [0,∞].

Proof of (vi). This proof follows the lines to the proof of the preceding statement (v). In the

case of the forward direction “⇒”, we assume that it holds ‹V lp
α (u) = 0. We apply (ii) and

(iii) to achieve the variational inequality〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i), i ∈ [N ].

Let i ∈ [N ] again be arbitrary. The pseudoconvexity of θi(·, u−i) + α
2 ∥ιHi(·)− ιHi(u

i)∥2Hi
at

ui on Fi(u
−i) yields

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

∀ vi ∈ Fi(u
−i).

Hence, we arrive at

0 ≤ ‹Vα(u) =
∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ 0.

Lastly, the direction “⇐” is an immediate consequence of ‹Vα(u) = 0 and the inequality

0 ≤ ‹V lp
α (u) ≤ ‹Vα(u).

Proof of (vii). We begin with the direction “⇒” and assume that it holds ‹V loc
α (u) = 0. By

the already proved statements (ii) and (iii), we obtain the variational inequality〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
i), i ∈ [N ].
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Let i ∈ [N ] be arbitrarily fixed. By the assumed pseudoconvexity of the functional

θi(·, u−i) +
α

2
∥ιHi(·)− ιHi(u

i)∥2Hi
+ ρikp(∥ · −ui∥2Ui

)

at ui on Fi(u
−i), we obtain the inequality

θi(u) ≤ θi(v
i, u−i) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

+ ρikp(∥vi − ui∥2Ui
)

for all vi ∈ Fi(u
−i) and thus, it holds ‹V pk

α (u) = 0.

The reverse direction “⇐” follows immediately by ‹V pk
α (u) = 0 and 0 ≤ ‹V loc

α (u) ≤ ‹V pk
α (u).

We cannot determine much about the relationship between ‹V loc
α (u), ‹V pk

α (u), and ‹V lp
α (u).

The merit functional ‹V lp
α (u) combines the localization of the admissible set and the addition

of a penalty-type or barrier-type term. Indeed, the admissible sets have the link ‹Fi(u) ⊆“Fi(u) ⊆ Fi(u
−i) with one another. However, the penalty-type terms p and qi restrict us from

conceiving any connection between the corresponding merit functionals. In the special case
of ‹Fi(u) = “Fi(u), we obtain ‹V loc

α (u) ≥ ‹V lp
α (u).

The parts (i)–(iii) of Theorem 5.1 tell us that ‹V loc
α and ‹V pk

α can be utilized as merit
functionals to the their corresponding systems of QVIs

ui ∈ Fi(u
−i),

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i) (1 ≤ i ≤ N), (5.10)

ui ∈ ‹Fi(u),
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ ‹Fi(u) (1 ≤ i ≤ N). (5.11)

if the admissible set F (u) is convex, (B1) of Assumption 3.3 holds, and either (C2) or (C3)

of Assumption 3.4 holds. If (C4) of Assumption 3.4 is valid, then ‹V lp
α can be served as a

merit functional for either of the two subsequent systems of QVIs

ui ∈ Fi(u
−i),

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i) (1 ≤ i ≤ N), (5.12)

ui ∈ “Fi(u),
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ “Fi(u) (1 ≤ i ≤ N). (5.13)

Furthermore, if we replace (C2), (C3) and (C4) by the stronger assumption (C1), then ‹Vα can
be utilized as a merit functional for both (5.11) and (5.12). Next, we study the relationship

between a (local) Nash equilibrium and the Nikaido–Isoda merit functionals ‹Vα, ‹V loc
α , ‹V pk

α ,

and ‹V lp
α .

Theorem 5.2. Let u ∈ U satisfy u ∈ F (u) and let Fi(u
−i) be a convex set for all i ∈ [N ].

Furthermore, we assume that (B1) holds. Then we conclude the subsequent statements.

(i) If u is a local Nash equilibrium on ‹F (u) in the sense that it fulfills θi(u) ≤ θi(v
i, u−i)

for all vi ∈ ‹Fi(u) and all i ∈ [N ], then it holds ‹V loc
α (u) = 0.

If u is a local Nash equilibrium on “F (u) in the sense that it fulfills θi(u) ≤ θi(v
i, u−i)

for all vi ∈ “Fi(u) and all i ∈ [N ], then it holds ‹V lp
α (u) = 0.
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(ii) If θi(·, u−i) is pseudoconvex at ui on ‹Fi(u) for all i ∈ [N ] and if ‹V loc
α (u) = 0 holds,

then u is a local Nash equilibrium on ‹F (u).

If θi(·, u−i) is pseudoconvex at ui on “Fi(u) for all i ∈ [N ] and if ‹V lp
α (u) = 0 holds,

then u is a local Nash equilibrium on “F (u).

(iii) If u is a Nash equilibrium, then it holds‹Vα(u) = ‹V loc
α (u) = ‹V pk

α (u) = ‹V lp
α (u) = 0.

(iv) If θi(·, u−i) is pseudoconvex at ui on Fi(u
−i) for all i ∈ [N ], then for arbitrarily fixed

k ∈ N the following equivalences hold true:

u Nash equilibrium ⇐⇒ ‹V lp
α (u) = 0 ⇐⇒ ‹Vα(u) = 0 ⇐⇒ ‹V loc

α (u) = 0 ⇐⇒ ‹V pk
α (u) = 0.

Proof. We first note that the regularized functionals

α

2
∥ιHi(·)− ιHi(u

i)∥2Hi
+ ρkp(∥ · −ui∥2Ui

),

α

2
∥ιHi(·)− ιHi(u

i)∥2Hi
+ qi(· − ui),

are nonnegative and vanish at ui. Moreover, their derivatives vanish again at ui and the
presumed pseudoconvexity of θi(·, u−i) at ui on Fi(u

−i) (or “Fi(u)) implies (C3) and (C4) of
Assumption 3.4.

Proof of (i). By α ≥ 0, it holds‹V loc
α (u) =

∑
i∈[N ]

sup
vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤

∑
i∈[N ]

sup
vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)
]
.

Since u is a local Nash equilibrium on ‹Fi(u), we obtain ‹V loc
α (u) ≤ 0. Furthermore, we get‹V lp

α (u) =
∑
i∈[N ]

sup
vi∈“Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui)

]
≤

∑
i∈[N ]

sup
vi∈“Fi(u)

[
θi(u)− θi(v

i, u−i)
]

by the positivity of the parameter α and the functionals qi, i ∈ [N ]. If u is assumed to be a

local Nash equilibrium on “Fi(u), then it yields ‹V lp
α (u) ≤ 0.

Proof of (ii). Let either ‹V loc
α (u) = 0 or ‹V lp

α (u) = 0 be valid. By (ii) of Theorem 5.1, we
obtain the variational inequality〈

(θi)ui(u), vi − ui
〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ ‹Fi(u) or v
i ∈ “Fi(u),
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respectively. Here, the index i ∈ [N ] is arbitrary. By the pseudoconvexity of θi(·, u−i) at ui

on ‹Fi(u) or “Fi(u), we conclude that it holds θi(u) ≤ θi(v
i, u−i) for all vi ∈ ‹Fi(u) or v

i ∈ “Fi(u),
respectively.

Proof of (iii). Since u is a Nash equilibrium, we can prove the fact ‹Vα(u) = 0 similar to (i)

by replacing ‹Fi(u) with Fi(u
−i). The rest of the proof follows the lines from the inequalities

0 ≤ ‹V loc
α (u) ≤ ‹Vα(u), 0 ≤ ‹V pk

α (u) ≤ ‹Vα(u) and 0 ≤ ‹V lp
α (u) ≤ ‹Vα(u).

Proof of (iv). Since u is a Nash equilibrium, it holds ‹V lp
α (u) = ‹V pk

α (u) = ‹V loc
α (u) = 0 = ‹Vα(u)

by (iii). By (ii) Theorem 5.1, the first-order optimality conditions (2.8) are satisfied. Finally,
we conclude that u is a Nash equilibrium by the pseudoconvexity of θi(·, u−i) at ui on
Fi(u

−i).

We remark that the first assertion (i) is not valid in case of the regularized and localized

merit functional ‹V pk
α (u). Indeed, since p is nonnegative, we can only achieve‹V pk

α (u) =
∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)
]

≤
∑
i∈[N ]

sup
vi∈Fi(u−i)

[
θi(u)− θi(v

i, u−i)
]
.

In addition, for the premise of a local Nash equilibrium to hold true, we would need the
supremum over ‹Fi(u). However, this is not possible in the case of penalty-type functions

since it would imply that ‹V pk
α coincides with ‹V loc

α .

Since it holds the estimate

θi(u)− θi(v
i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

≤ θi(u)− θi(v
i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

,

for all β ≥ α ≥ 0 and all vi ∈ Fi(u
−i), we obtain the following relations between the merit

functionals ‹Vβ(u) ≤ ‹Vα(u) ≤ ‹V0(u),‹V loc
β (u) ≤ ‹V loc

α (u) ≤ ‹V loc
0 (u),‹V pk

β (u) ≤ ‹V pk
α (u) ≤ ‹V pk

0 (u),‹V lp
β (u) ≤ ‹V lp

α (u) ≤ ‹V lp
0 (u),

for all u ∈ F (u) and k ∈ N fixed. Consequently, for any u ∈ U with u ∈ F (u) and F (u)
convex we conclude the following implications

u local Nash equilibrium =⇒ ‹V loc
0 (u)= 0 =⇒ ‹V loc

α (u)= 0,

u local Nash equilibrium =⇒ ‹V lp
0 (u) = 0 =⇒ ‹V lp

α (u) = 0,

u Nash equilibrium =⇒ ‹V pk
0 (u)= 0 =⇒ ‹V pk

α (u)= 0,

u Nash equilibrium =⇒ ‹V0(u) = 0 =⇒ ‹Vα(u) = 0,
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for all α ≥ 0. The reverse implications would require pseudoconvexity assumptions, cf.
Theorem 5.2 above.

Altogether, if it holds u ∈ U with u ∈ F (u) and θi(·, u−i) is pseudoconvex at ui on ‹Fi(u)

or “Fi(u) for all i ∈ [N ], then we have proved that for any α ≥ 0 it holds‹V loc
0 (u) = 0 ⇐⇒ ‹V loc

α (u) = 0 ⇐⇒
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ ‹Fi(u), i ∈ [N ],

⇐⇒
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i), i ∈ [N ],

⇐⇒ u local Nash equilibrium,‹V lp
0 (u) = 0 ⇐⇒ ‹V lp

α (u) = 0 ⇐⇒
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ “Fi(u), i ∈ [N ],

⇐⇒
〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ vi ∈ Fi(u
−i), i ∈ [N ],

⇐⇒ u local Nash equilibrium.

Moreover, if θi(·, u−i) is pseudoconvex at ui on Fi(u
−i) for all i ∈ [N ], we obtain for any

α ≥ 0‹V lp
0 (u) = 0 ⇐⇒ ‹V lp

α (u) = 0 ⇐⇒ ‹V loc
0 (u) = 0 ⇐⇒ ‹V loc

α (u) = 0,

⇐⇒ ‹V0(u) = 0 ⇐⇒ ‹Vα(u) = 0,

⇐⇒ ‹V pk
0 (u) = 0 ⇐⇒ ‹V pk

α (u) = 0,

⇐⇒ u Nash equilibrium.

5.2.2 Normalized Equilibria

Now, we investigate the relationship between the various regularized and localized Nikaido–
Isoda merit functionals and normalized equilibria. We study the functionals Vα : U → R,
V loc
α : U → R, V pk

α : U → R and V lp
α : U → R presented in (5.2), (5.4), (5.6), and (5.8).

These functionals are demonstrated to be Nikaido–Isoda merit functionals that correspond
to a (Q)VI. Under certain pseudoconvexity assumptions, we arrive at a link between the
Nikaido–Isoda merit functionals and (local) normalized equilibria. Hence, we only consider
the feasible sets

Fi(u
−i) = {vi ∈ Ui : (v

i, u−i) ∈ X},

such that X ⊆ U is nonempty and convex.

Theorem 5.3. We assume α ≥ 0. Moreover, let (B1) be satisfied and X be convex in
case of the assertions (ii)–(vi). Regarding “⇒” in (ii), we additionally assume (C7), (C8)
and (C9) of Assumption 3.4, respectively. Addressing the implication “⇒” in (iv), (v), and
(vi), we additionally assume (C6) of Assumption 3.4 hold. In the case of “⇒” in (vii),
let (C8) of Assumption 3.4 hold. For the reverse direction “⇐” in (vii), we assume that
p : [0,∞) → [0,∞] is a penalty-type function. Then for all u ∈ X it holds the following
statements.

(i) Vα(u) ≥ V loc
α (u) ≥ 0,
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Vα(u) ≥ V pk
α (u) ≥ 0,

Vα(u) ≥ V lp
α (u) ≥ 0.

Moreover, it holds Vα(u) ≥ V pk
α (u) ≥ V loc

α (u) ≥ 0 in the case of a penalty-type
function p.

(ii)
∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ ‹X (u) ⇐⇒ V loc
α (u) = 0,∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X ⇐⇒ V pk
α (u) = 0,∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ “X (u) ⇐⇒ V lp
α (u) = 0.

(iii)
∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X

⇐⇒
∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ ‹X (u)

⇐⇒
∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ “X (u)

(iv) V loc
α (u) = 0 ⇐⇒ Vα(u) = 0.

(v) V pk
α (u) = 0 ⇐⇒ Vα(u) = 0.

(vi) V lp
α (u) = 0 ⇐⇒ Vα(u) = 0.

(vii) V loc
α (u) = 0 ⇐⇒ V pk

α (u) = 0.

Proof. Let u ∈ X be arbitrary. We will prove the statement individually, beginning with the
first claim.

Proof of (i). By the inclusions ‹X (u) ⊆ X and “X (u) ⊆ X , and the nonnegativity of the
penalty-type or barrier-type functions p and q, we obtain the first inequalities of the respec-
tive statements. Setting the specific element v = u instead of taking the supremum, we
obtain the following relationship between the merit functionals

Vα(u) ≥ V loc
α (u) ≥

∑
i∈[N ]

[
θi(u)− θi(u

i, u−i)− α

2
∥ιHi(u

i)− ιHi(u
i)∥2Hi

]
= 0,

Vα(u) ≥ V pk
α (u) ≥

∑
i∈[N ]

[
θi(u)− θi(u

i, u−i)− α

2
∥ιHi(u

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥u− u∥2U ) = 0,

Vα(u) ≥ V lp
α (u) ≥

∑
i∈[N ]

[
θi(u)− θi(u

i, u−i)− α

2
∥ιHi(u

i)− ιHi(u
i)∥2Hi

]
− q(u− u) = 0.

Lastly, in the case of a penalty-type function it holds by definition p(∥v − u∥2U ) = 0 for all
v ∈ BR(u) and thus, we obtain the inequality

sup
v∈X

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≥ sup

v∈X

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U )

]
.
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Cutting the feasible set with the set {v ∈ U : p(∥v − u∥2U ) = 0} we get

sup
v∈X

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U )

]
≥ sup

v∈X∩{v:p(∥v−u∥2U )=0}

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U )

]
= sup

v∈X∩BR(u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

We arrive at the inequality

sup
v∈X

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≥ sup

v∈X

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U )

]
≥ sup

v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

We can further estimate from below by setting the specific value v = u ∈ ‹X (u) instead of
using the supremum. Thus, we obtain the desired result

Vα(u) ≥ V pk
α (u) ≥ V loc

α (u) ≥ 0.

Proof of (ii). First, we consider the forward implication “⇒” in the equivalency statement.

By the definitions of ‹Ψα and the dual product of the product space U , it holds〈[(‹Ψα(u, v)
)
v

]
|v=u

, v − u
〉
U∗,U

=
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

.

Moreover, we make use of the pseudoconvexity of ‹Ψα(u, ·) at u on ‹X (u) and of the QVI that
holds by assumption. Altogether, this yields∑

i∈[N ]

θi(u) = ‹Ψα(u, u) ≤ ‹Ψα(u, v) ∀ v ∈ ‹X (u),

and we obtain V loc
α (u) = 0.

In the setting of the backward implication “⇐”, we have V loc
α (u) = 0. This leads to the

conclusion that it holds ∑
i∈[N ]

θi(u) ≤ ‹Ψα(u,w) ∀w ∈ ‹X (u).
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Since the set ‹X (u) is assumed to be convex, we are allowed to consider the convex combination

w = u + t(v − u) ∈ ‹X (u) for u, v ∈ ‹X (u) and t ∈ (0, 1]. We apply Taylor’s expansion of‹Ψα(u, ·) around w and we obtain

0 ≤ ‹Ψα(u, u+ t(v − u))−
∑
i∈[N ]

θi(u) =
∑
i∈[N ]

[〈
(θi)ui(u), t(vi − ui)

〉
U∗
i ,Ui

]
+ o(t).

We divide this inequality by t and take the limit t ↓ 0, which directly yields the statement’s
desired inequality.

The proof of the other equivalences in (ii) follows the lines above. The direct implication
is based on the corresponding pseudoconvexity assumptions at the point u, (C8) and (C9),
and the fact that we can write∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

=
〈[(‹Ψα(u, v) + ρkp(∥v − u∥2U )

)
v

]
|v=u

, v − u
〉
U∗,U

=
〈[(‹Ψα(u, v) + q(v − u)

)
v

]
|v=u

, v − u
〉
U∗,U

.

For the reverse implication we exploit that V pk
α (u) = 0 and V lp

α (u) = 0 imply the following∑
i∈[N ]

θi(u) ≤ ‹Ψα(u,w) + ρkp(∥w − u∥2U ) ∀w ∈ X ,

∑
i∈[N ]

θi(u) ≤ ‹Ψα(u,w) + q(w − u) ∀w ∈ “X (u).

After applying Taylor’s expansion, dividing by t, and taking the limit t ↓ 0, it yields the
desired inequalities.

Proof of (iii). If X contains only one point, then it follows X = {u} = ‹X (u) = “X (u) and the
claim holds trivially.

In the general case, we assume that the VI holds for all v ∈ X . By the known subset
relationships ‹X (u) ⊆ X and “X (u) ⊆ X , we directly obtain∑

i∈[N ]

〈
(θi)vi(u), v

i − ui
〉
U∗
i ,Ui

≥ 0

for all v ∈ ‹X (u) and for all v ∈ “X (u), respectively.
Next, we assume that one of the following VIs holds:∑

i∈[N ]

〈
(θi)ui(u), ṽi − ui

〉
U∗
i ,Ui

≥ 0 ∀ ṽ ∈ ‹X (u),

∑
i∈[N ]

〈
(θi)ui(u), v̂i − ui

〉
U∗
i ,Ui

≥ 0 ∀ v̂ ∈ “X (u).

We consider any v ∈ X and we note that in the cases with either v ∈ ‹X (u) or v ∈ “X (u), the

first inequality clearly holds. Consequently, we consider an element v with either v ∈ X\‹X (u)
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or v ∈ X\“X (u). Furthermore, we choose a parameter t ∈ (0, 1] with t∥v − u∥U ≤ R and by

convexity of X , it follows ṽ = u + t(v − u) ∈ ‹X (u) and v̂ = u + t(v − u) ∈ “X (u). Thus, we
obtain the desired VIs, i.e.,∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

=
1

t

∑
i∈[N ]

〈
(θi)ui(u), ṽi − ui

〉
U∗
i ,Ui

≥ 0,

∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

=
1

t

∑
i∈[N ]

〈
(θi)ui(u), v̂i − ui

〉
U∗
i ,Ui

≥ 0.

Proof of (iv). First, we consider the direction “⇒” and consequently, assume that it holds
V loc
α (u) = 0. By (ii) and (iii) of this theorem, we obtain〈[

(‹Ψα)v(u, v)
]
|v=u

, v − u
〉
U∗,U

=
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X .

Moreover, the pseudoconvexity of ‹Ψα(u, ·) at u on X yields∑
i∈[N ]

θi(u) = ‹Ψα(u, u) ≤ ‹Ψα(u, v) ∀ v ∈ X ,

which implies the desired result Vα(u) = 0.
The direction “⇐” trivially follows from 0 ≤ V loc

α (u) ≤ Vα(u).

Proof of (v). We begin with the implication “⇒” and assume that it holds V pk
α (u) = 0. Then

we obtain the inequality∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X

by the statements (ii) and (iii) of this theorem. Furthermore, we apply the pseudoconvexity

of ‹Ψα(u, ·) at u on X and arrive at the result∑
i∈[N ]

θi(u) ≤ ‹Ψα(u, v) ∀ v ∈ X .

Thus, we have Vα(u) = 0.
The reverse direction “⇐” follows immediately by 0 ≤ V pk

α (u) ≤ Vα(u).

Proof of (vi). In the forward direction “⇒”, we assume that it holds V lp
α (u) = 0. Again, by

(ii) and (iii) we can conclude〈[
(‹Ψα)v(u, v)

]
|v=u

, v − u
〉
U∗,U

=
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X .

Furthermore, we exploit the pseudoconvexity of ‹Ψα(u, ·) at u on X and obtain∑
i∈[N ]

θi(u) = ‹Ψα(u, u) ≤ ‹Ψα(u, v) ∀ v ∈ X ,
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which finally implies Vα(u) = 0.

The implication “⇐” can be concluded as before by the inequality 0 ≤ V lp
α (u) ≤ Vα(u).

Proof of (vii). We prove the implication “⇒” and assume that it holds V loc
α (u) = 0. Then

we obtain by (ii) and (iii) of this theorem the inequality∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X .

Due to the pseudoconvexity of ‹Ψα(u, ·) + ρkp(∥ · −u∥2U ) at u on X , we arrive at the result∑
i∈[N ]

θi(u) ≤ ‹Ψα(u, v) + ρkp(∥v − u∥2U ) ∀ v ∈ X .

Thus, we have V pk
α (u) = 0.

The reverse direction “⇐” follows immediately by V pk
α (u) = 0 and 0 ≤ V loc

α (u) ≤ V pk
α (u)

in the case of a penalty-type function p : [0,∞) → [0,∞].

Under the assumptions (B1) of Assumption 3.3, (C7) and (C8) of Assumption 3.4, respec-
tively, and that X is convex, Theorem 5.3, (i)–(iii), yields that V loc

α and V pk
α , respectively,

can be utilized as a merit functional for any of the two (Q)VIs

u ∈ X ,
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X , (5.14)

u ∈ ‹X (u),
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ ‹X (u). (5.15)

Moreover, if (C9) of Assumption Assumption 3.4 holds, then V lp
α can be used as a merit

functional for any of the two (Q)VIs

u ∈ X ,
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X , (5.16)

u ∈ “X (u),
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ “X (u). (5.17)

Furthermore, if we replace (C7), (C8) and (C9) by the stronger assumption (C6), then Vα

can be used as a merit functional for (5.14) and (5.16).
In the following, we consider the connection between these merit functionals and a (local)

normalized equilibrium.

Theorem 5.4. Let α ≥ 0 and X ⊆ U be convex, and assume that (B1) holds true. Moreover,
we assume u ∈ X .

(i) If u is a local normalized equilibrium on ‹X (u), i.e., if it holds∑
i∈[N ]

θi(u) ≤
∑
i∈[N ]

θi(v
i, u−i) ∀ v ∈ ‹X (u),
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then it implies V loc
α (u) = 0. On the other hand, if u is a local normalized equilibrium

on “X (u), i.e., if it holds∑
i∈[N ]

θi(u) ≤
∑
i∈[N ]

θi(v
i, u−i) ∀ v ∈ “X (u),

then it implies V lp
α (u) = 0.

(ii) If
∑

i∈[N ] θi(·, u−i) is pseudoconvex at u on ‹X (u) and if V loc
α (u) = 0 holds, then u is

a local normalized equilibrium on ‹X (u).

If
∑

i∈[N ] θi(·, u−i) is pseudoconvex at u on “X (u) and if V lp
α (u) = 0 holds, then u is a

local normalized equilibrium on “X (u).

(iii) If u is a normalized equilibrium, then it holds

Vα(u) = V loc
α (u) = V pk

α (u) = V lp
α (u) = 0.

(iv) If
∑

i∈[N ] θi(·, u−i) is pseudoconvex at u on X , then for arbitrarily fixed k ∈ N the
following equivalences hold true:

u normalized eq. ⇐⇒ V lp
α (u) = 0 ⇐⇒ Vα(u) = 0 ⇐⇒ V loc

α (u) = 0 ⇐⇒ V pk
α (u) = 0.

Proof. We begin the proof by showing the first statement.

Proof of (i). Let u be a local normalized equilibrium on ‹X (u). By definition of a local

normalized equilibrium, it holds
∑

i∈[N ] θi(u) ≤
∑

i∈[N ] θi(v
i, u−i) for all v ∈ ‹X (u) and thus,

sup
v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)
]
≤ 0.

Since the parameter α ≥ 0 is nonnegative we get

V loc
α (u) = sup

v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ sup

v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)
]
.

All together, we obtain 0 ≤ V loc
α (u) ≤ 0 by (i) of Theorem 5.3.

In the case of a local normalized equilibrium on “X (u), we proceed similarly. If u is a

local normalized equilibrium on “X (u), it yields

sup
v∈“X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)
]
≤ 0.
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Once again by the nonnegativity of α ≥ 0 and using that q : U → R is nonnegative, we
obtain the estimate

V lp
α (u) = sup

v∈“X (u)

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− q(v − u)

]
≤ sup

v∈“X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)
]
.

Finally, we arrive at 0 ≤ V lp
α (u) ≤ 0.

Proof of (ii). Let V loc
α (u) = 0 or V lp

α (u) = 0 be valid, respectively. By Theorem 5.3, (ii), we
have ∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 (5.18)

for all v ∈ ‹X (u) or v ∈ “X (u), respectively. Since
∑

i∈[N ] θi(·, u−i) : U → R is pseudoconvex

at the point u on the sets ‹X (u) or “X (u), using (5.18) we get∑
i∈[N ]

θi(u) ≤
∑
i∈[N ]

θi(v
i, u−i)

for all v ∈ ‹X (u) or v ∈ “X (u), respectively. Consequently, u ∈ X is a local normalized

equilibrium on ‹X (u) or “X (u).

Proof of (iii). The assertion Vα(u) = 0 is proved like in (i), replacing ‹X (u) by X . The rest
follows from the facts

0 ≤ V loc
α (u) ≤ Vα(u), 0 ≤ V pk

α (u) ≤ Vα(u) and 0 ≤ V lp
α (u) ≤ Vα(u),

see (i) of Theorem 5.3.

Proof of (iv). If u is a normalized equilibrium, then

V lp
α (u) = V pk

α (u) = V loc
α (u) = Vα(u) = 0

follows from (iii). For the last implication, let V lp
α (u) = 0. Then we obtain∑

i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X (5.19)

by Theorem 5.3, (ii) and (iii). The pseudoconvexity of
∑

i∈[N ] θi(·, u−i) at u on X and (5.19)
yield ∑

i∈[N ]

θi(u) ≤
∑
i∈[N ]

θi(v
i, u−i)

for all v ∈ X . Thus, u is a normalized equilibrium.
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We note that we obtain for all β ≥ α ≥ 0 and v ∈ X the following estimate∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)

− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
,

which allows us to conclude the following useful relationships between the merit functionals

Vβ(u) ≤ Vα(u) ≤ V0(u),

V loc
β (u) ≤ V loc

α (u) ≤ V loc
0 (u),

V pk
β (u) ≤ V pk

α (u) ≤ V pk
0 (u),

V lp
β (u) ≤ V lp

α (u) ≤ V lp
0 (u),

for u ∈ X and k ∈ N fixed. Furthermore, for any u ∈ X with X convex, we conclude

u local normalized equilibrium =⇒ V loc
0 (u)= 0 =⇒ V loc

α (u)= 0,

u local normalized equilibrium =⇒ V lp
0 (u) = 0 =⇒ V lp

α (u) = 0,

u normalized equilibrium =⇒ V pk
0 (u)= 0 =⇒ V pk

α (u)= 0,

u normalized equilibrium =⇒ V0(u) = 0 =⇒ Vα(u) = 0,

for all α ≥ 0. In the second line, the first implications can be converted to an equivalence
if it holds q = 0. The reverse directions require suitable pseudoconvexity assumptions, see
Theorem 5.4.

Summarizing, if
∑

i∈[N ] θi(·, u−i) is pseudoconvex at u ∈ X on ‹X (u) or “X (u), respectively,
we have shown that it holds for any α ≥ 0

V loc
0 (u) = 0 ⇐⇒ V loc

α (u) = 0 ⇐⇒
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ ‹X (u),

⇐⇒
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X ,

⇐⇒ u ∈ X local normalized equilibrium,

V lp
0 (u) = 0 ⇐⇒ V lp

α (u) = 0 ⇐⇒
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ “X (u),

⇐⇒
∑
i∈[N ]

〈
(θi)ui(u), vi − ui

〉
U∗
i ,Ui

≥ 0 ∀ v ∈ X ,

⇐⇒ u ∈ X local normalized equilibrium.

Moreover, if
∑

i∈[N ] θi(·, u−i) is pseudoconvex at u on X , we obtain for any α ≥ 0

V lp
0 (u) = 0 ⇐⇒ V lp

α (u) = 0 ⇐⇒ V loc
0 (u) = 0 ⇐⇒ V loc

α (u) = 0,

⇐⇒ V0(u) = 0 ⇐⇒ Vα(u) = 0,
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⇐⇒ V pk
0 (u) = 0 ⇐⇒ V pk

α (u) = 0,

⇐⇒ u normalized equilibrium.

Lastly, if
∑

i∈[N ] θi(·, u−i) is convex on X , then we have shown the existence of a fixed
point u ∈ X of the corresponding solution maps in Chapter 4. Consequently, we obtain
Vα(u) = 0 and we conclude that u ∈ X is a normalized equilibrium due to Theorem 5.4, (iv).

5.3 Difference of Merit Functionals

In this part of the thesis, we consider the difference between two regularized Nikaido–Isoda
merit functionals, which are denoted by

Vαβ(u) = Vα(u)− Vβ(u),

and the corresponding localized modifications V loc
αβ , V pk

αβ , and V lp
αβ for the parameters

β > α ≥ 0, see also the works [45, 106]. We prove analytical properties of Vαβ, V
loc
αβ , V pk

αβ ,

and V lp
αβ. In particular, we show a relation between roots of the regularized and localized

Nikaido–Isoda merit functional and the roots of the difference of two of these.

In the following, we only require that (A1) of Assumption 3.1 is fulfilled, i.e., U and H are

normed spaces. Furthermore, let X ⊆ U be nonempty, convex, closed, and bounded and “X (u)

be nonempty and closed. By definition of “X (u) is also convex and bounded. Then X and“X (u) are compact with respect to the weak sequential topology. Furthermore, note that ‹X (u)
is compact with respect to the weak sequential topology as an intersection of two compact
sets with respect to the weak sequential topology. Moreover, ‹X (u) is nonempty, convex,
closed and bounded. To ensure the well-posedness of the definitions of the difference of the
regularized and localized Nikaido–Isoda merit functionals, we assume that the supremum of
Ψβ(u, ·) exists on X .

An option for demonstrating this existence is to presume that θi : U → R is continuously
differentiable in the i-th component, i.e., (B1) of Assumption 3.3 holds, and that α ≥ 0 is
chosen such that ∑

i∈[N ]

[
θi(·, u−i) +

α

2
∥ιHi(·)− ιHi(u

i)∥2Hi

]
is convex on X . In this setting, we are able to prove the existence of the supremum of
Ψβ(u, ·) on X . In fact, for β > α the convexity and differentiability of the functional

∑
i∈[N ]

[
θi(·, u−i) +

α

2
∥ιHi(·)− ιHi(u

i)∥2Hi

]
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yields∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ −

∑
i∈[N ]

⟨(θi)ui(u), vi − ui⟩U∗
i ,Ui .

(5.20)

Next, we apply standard estimates to (5.20) and get∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤

∑
i∈[N ]

∥(θi)ui(u)∥U∗
i
∥vi − ui∥Ui

≤ max
i∈[N ]

[
∥(θi)ui(u)∥U∗

i

] ∑
i∈[N ]

[
∥vi∥Ui + ∥ui∥Ui

]
.

In addition, by maxi∈[N ] ∥(θi)ui(u)∥U∗
i
≤ C(u) < ∞ and Young’s inequality, we obtain∑

i∈[N ]

[
θi(u)− θi(v

i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
≤ C(u)

∑
i∈[N ]

[
∥vi∥2Ui

+
1

4
+ ∥ui∥2Ui

+
1

4

]
≤ C(u)

[
∥v∥2U + ∥u∥2U +

1

2
N
]
,

where we recall that N denotes the number of players. Moreover, it holds ∥u∥2U ≤ K(u) < ∞,
and due to the boundedness of the set X ⊆ U , there exists some constant K < ∞ such that
∥v∥U ≤ K for all v ∈ X . Hence, we arrive at

sup
v∈X

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
< ∞.

Due to ‹X (u) ⊆ X it also holds

sup
v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− β

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
< ∞.

Consequently, a maximizing sequence of Ψβ(u, ·) on X and ‹X (u) respectively, exists. By

theorem Theorem 5.3, (i), it holds V pk
β (u) ≤ Vβ(u) < ∞ and V lp

β (u) ≤ Vβ(u) < ∞. Thus,

there exist maximizing sequences of Ψβ(u, ·)− ρkp(∥ · −u∥2U ) on X and of Ψβ(u, ·)− q(· − u)

on “X (u).
Note that the continuous differentiability of the objective functional θi : U → R is only

assumed to demonstrate the existence of the supremum of Ψβ(u, ·) on the set X . This
assumption is not needed for the following results.
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Theorem 5.5. For assertions (iii) and (iv), let
∑

i∈[N ] θi(·, u−i) : U → R be lower semicon-
tinuous with respect to the weak sequential topology. For the first equivalence in (iv) let
p(∥ · −u∥2U ) be lower semicontinuous on X with respect to the weak sequential topology and
for the second characterization therein we assume that q(· − u) is lower semicontinuous on“X (u) with respect to the weak sequential topology. Then it holds:

(i) Vαβ(u) ≥ 0, V loc
αβ (u) ≥ 0, V pk

αβ (u) ≥ 0, and V lp
αβ(u) ≥ 0 for all u ∈ U .

(ii) Vαβ(u) > 0 and V pk
αβ (u) > 0 for all u /∈ X , V loc

αβ (u) > 0 for all u /∈ ‹X (u), and

V lp
αβ(u) > 0 for all u /∈ “X (u).

(iii) Vαβ(u) = 0 ⇐⇒ u ∈ X and Vα(u) = 0,

V loc
αβ (u) = 0 ⇐⇒ u ∈ ‹X (u) and V loc

α (u) = 0.

(iv) V pk
αβ (u) = 0 ⇐⇒ u ∈ X and V pk

α (u) = 0,

V lp
αβ(u) = 0 ⇐⇒ u ∈ “X (u) and V lp

α (u) = 0.

Proof. Proof of (i). Due to the assumption that the supremum of Ψβ(u, ·) on X is finite, the

implications ‹X (u) ⊆ X and “X (u) ⊆ X , the nonnegativity of p : R → R and q : U → R yield

sup
v∈‹X (u)

Ψβ(u, v) < ∞,

sup
v∈X

[
Ψβ(u, v)− ρkp(∥v − u∥2U )

]
≤ sup

v∈X
Ψβ(u, v) < ∞,

sup
v∈“X (u)

[
Ψβ(u, v)− q(v − u)

]
≤ sup

v∈X
Ψβ(u, v) < ∞.

(5.21)

Hence, there exist some maximizing sequences {vl}l∈N ⊆ X of Ψβ(u, ·), {vlocl }l∈N ⊆ ‹X (u) of

Ψβ(u, ·), {vpkl }l∈N ⊆ X of Ψβ(u, ·)−ρkp(∥·−u∥2U ), and {vlpl }l∈N ⊆ “X (u) of Ψβ(u, ·)−q(·−u).
For the maximizing sequence {vl}l∈N we get

0 ≤ β − α

2
∥ιH(vl)− ιH(u)∥2H = Ψα(u, vl)−Ψβ(u, vl) ≤ sup

v∈X

[
Ψα(u, v)

]
−Ψβ(u, vl), (5.22)

using β > α in the first estimate and the definition of a supremum in the last equation.
Thus, we obtain the inequalities for the corresponding maximizing sequences by a similar
reasoning

0 ≤ Ψα(u, v
loc
l )−Ψβ(u, v

loc
l ) ≤ sup

v∈‹X (u)

[
Ψα(u, v)

]
−Ψβ(u, v

loc
l ),

0 ≤ Ψα(u, v
pk
l ) −Ψβ(u, v

pk
l ) ≤ sup

v∈X

[
Ψα(u, v)− ρkp(∥v − u∥2U )

]
−Ψβ(u, v

pk
l )

+ ρkp(∥vpkl − u∥2U ),

0 ≤ Ψα(u, v
lp
l ) −Ψβ(u, v

lp
l ) ≤ sup

v∈“X (u)

[
Ψα(u, v)− q(v − u)

]
−Ψβ(u, v

lp
l ) + q(vlpl − u).

(5.23)
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Taking the limit l → ∞ on the right side of the inequalities (5.22) and (5.23) results in

Vαβ(u) = sup
v∈X

[
Ψα(u, v)

]
− sup

v∈X
Ψβ(u, v) ≥ 0,

V loc
αβ (u) = sup

v∈‹X (u)

[
Ψα(u, v)

]
− sup

v∈‹X (u)

Ψβ(u, v) ≥ 0,

V pk
αβ (u) = sup

v∈X

[
Ψα(u, v)− ρkp(∥v − u∥2U )

]
− sup

v∈X

[
Ψβ(u, v)− ρkp(∥v − u∥2U )

]
≥ 0,

V lp
αβ(u) = sup

v∈“X (u)

[
Ψα(u, v)− q(v − u)

]
− sup

v∈“X (u)

[
Ψβ(u, v)− q(v − u)

]
≥ 0.

Proof of (ii). Let u /∈ X and {vl}l∈N ⊆ X be a maximizing sequence. By compactness of
X with respect to the weak sequential topology, it yields the existence of some subsequence
{vlm}m∈N ⊆ {vl}l∈N ⊆ X such that vlm ⇀ v̄ ∈ X as m → ∞ holds true and hence, it yields
v̄ ̸= u. Thus, we obtain ιH(vlm) → ιH(v̄) in H as m → ∞ due to the complete continuity
of the embedding operator ιH : U → H. Since ιH is also injective, we have ιH(v̄) ̸= ιH(u).
Hence, there exists some ε > 0 such that ∥ιH(vlm)−ιH(u)∥H ≥ ε. Moreover, for any sequence
{xl}l∈N ⊆ X it holds

lim sup
l→∞

Ψα(u, xl) = lim
n→∞

sup{Ψα(u, xl) : l ≥ n}

by the definition of the limes superior. Since the maximizing sequence {vlm}m∈N ⊆ {vl}l∈N
lies in the set X we get

lim sup
m→∞

Ψα(u, vlm) ≤ lim
n→∞

sup{Ψα(u, v) : v ∈ X}

= sup
v∈X

Ψα(u, v).
(5.24)

Hence, by definition of a maximizing sequence and applying the estimate (5.24) we obtain

Vαβ(u) = sup
v∈X

[
Ψα(u, v)

]
− sup

v∈X
Ψβ(u, v)

= sup
v∈X

[
Ψα(u, v)

]
− lim

m→∞
Ψβ(u, vlm)

≥ lim sup
m→∞

[
Ψα(u, vlm)

]
− lim

m→∞
Ψβ(u, vlm).

Using the superaddivity of the limes superior we arrive at

Vαβ(u) ≥ lim sup
m→∞

[
Ψα(u, vlm)−Ψβ(u, vlm)

]
= lim sup

m→∞

β − α

2
∥ιH(vlm)− ιH(u)∥2H

≥ β − α

2
ε2,

(5.25)

and Vαβ(u) > 0 for u /∈ X .
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An analogous calculation holds for V loc
αβ (u), V pk

αβ (u), and V lp
αβ(u). To this end, we consider

u /∈ ‹X (u), u /∈ X or u /∈ “X (u), respectively. By (5.21), the corresponding maximizing

sequence {vloclm
}m∈N ⊆ ‹X (u) of Ψβ(u, ·), {vpklm}m∈N ⊆ X of Ψβ(u, ·) − ρkp(∥ · −u∥2U ), and

{vlplm}m∈N ⊆ “X (u) of Ψβ(u, ·) − q(· − u) exists. Thus, there are some constants εloc > 0,

εpk > 0, and εlp > 0 such that ∥ιH(vloclm
) − ιH(u)∥H > εloc, ∥ιH(vpklm) − ιH(u)∥H > εpk , and

∥ιH(vlplm)− ιH(u)∥H > εlp, respectively. Furthermore, using the estimate (5.25) it yields

V loc
αβ (u) ≥ lim sup

m→∞

[
Ψα(u, v

loc
lm )

]
− lim

m→∞
Ψβ(u, v

loc
lm )

≥ β − α

2
(εloc)2,

V pk
αβ (u) ≥ lim sup

m→∞

[
Ψα(u, v

pk
lm
)− ρkp(∥vpklm − u∥2U )

]
− lim

m→∞

[
Ψβ(u, v

pk
lm
)− ρkp(∥vpklm − u∥2U )

]
≥ β − α

2
(εpk)2,

V lp
αβ(u) ≥ lim sup

m→∞

[
Ψα(u, v

lp
lm
)− q(vlplm − u)

]
− lim

m→∞

[
Ψβ(u, v

lp
lm
)− q(vlplm − u)

]
≥ β − α

2
(εlp)2,

and hence, we obtain V loc
αβ (u) > 0 for u /∈ ‹X (u), V pk

αβ (u) > 0 for u /∈ X , and V lp
αβ(u) > 0 for

u /∈ “X (u).

Proof of (iii). For the forward implication “⇒”, let Vαβ(u) = 0 be valid. Since Vαβ(u) > 0
holds for u /∈ X by (ii), we have u ∈ X . Let {vl}l∈N ⊆ X be a maximizing sequence of
Ψβ(u, ·) on X . By compactness of X with respect to the weak sequential topology, there
exists a subsequence {vlm}m∈N ⊆ {vl}l∈N ⊆ X such that vlm ⇀ v̄ ∈ X as m → ∞ and by
the complete continuity of the embedding operator ιH it holds ιH(vlm) → ιH(v̄) in H as
m → ∞. Applying the equation (5.25) we obtain

Vαβ(u) ≥ lim sup
m→∞

β − α

2
∥ιH(vlm)− ιH(u)∥2H ≥ 0.

By the assumption Vαβ(u) = 0, it follows

lim sup
m→∞

β − α

2
∥ιH(vlm)− ιH(u)∥2H = 0.

Thus, it yields the strong convergences ιH(vlm) → ιH(u) in H and vlm ⇀ u in U as m → ∞
by uniqueness of limits and injectivity of ιH . Using the definition

Ψβ(u, v) =
∑
i∈[N ]

[
θi(u)

]
−‹Ψβ(u, v),

the lower semicontinuity of
∑

i∈[N ] θi(·, u−i) : Ui → R with respect to the weak sequential
topology and Lemma 4.3, we obtain the upper semicontinuity with respect to the weak
sequential topology of Ψβ(u, ·) : U → R. Then it follows

Vβ(u) = lim sup
m→∞

Ψβ(u, vlm) ≤ Ψβ(u, u) = 0,
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and thus Vα(u) = Vβ(u) + Vαβ(u) = 0.

In case of the other direction “⇐”, we assume Vαβ(u) > 0 for u ∈ U . Then it yields
Vα(u) = Vβ(u) + Vαβ(u) > Vβ(u) and either u ∈ X or u /∈ X . In the case u ∈ X , we
additionally have Vβ(u) ≥ 0 and thus Vα(u) > 0.

Next, we move on to the second equivalence. For the direct implication “⇒”, we assume
V loc
αβ (u) = 0. Then we have u ∈ ‹X (u) by assertion (ii). Denote the weakly converging

maximizing subsequence of Ψβ(u, ·) on ‹X (u) by {vloclm
}m∈N with vloclm

⇀ v̄loc ∈ ‹X (u) as
m → ∞. By a similar reasoning as in the first equivalence, we get the strong convergence of
ιH(vloclm

) → ιH(u) in H as m → ∞ and therefore, it yields vloclm
⇀ u in U as m → ∞ by the

injectivity of the operator ιH . Thus, we obtain

V loc
α (u) = V loc

β (u) + V loc
αβ (u) = V loc

β (u) = lim sup
m→∞

Ψβ(u, v
loc
lm ) ≤ 0

by the assumption of V loc
αβ (u) = 0 and the upper semicontinuity of Ψβ(u, ·) : U → R with

respect to the weak sequential topology.

To demonstrate the other direction “⇐”, we assume V loc
αβ (u) > 0 holds for all u ∈ U . Then

either u ∈ ‹X (u) or u /∈ ‹X (u). Furthermore, we get V loc
α (u) > V loc

β (u) ≥ 0 for u ∈ ‹X (u).

Proof of (iv). For the functionals V pk
αβ (u) and V lp

αβ(u) we argue analogously using the corre-
sponding lower semicontinuity with respect to the weak sequential topology.

For the direction “⇒”, let it hold either V pk
αβ (u) = 0 or V lp

αβ(u) = 0. Then we have u ∈ X
and u ∈ “X (u) by (ii), respectively. Denoting the corresponding maximizing sequences of

Ψβ(u, ·)− ρkp(∥ · −u∥2U ) on X and of Ψβ(u, ·)− q(· − u) on “X (u) by {vpkl }l∈N and {vlpl }l∈N,
respectively, the compactness of X and “X (u) with respect to the weak sequential topology

yields the existence of subsequences {vpklm}m∈N and {vlplm}l∈N such that it holds vpklm ⇀ v̄pk ∈ X
and vlplm ⇀ v̄lp ∈ “X (u) as m → ∞, respectively. Following the argumentation in (iii), we

obtain the strong convergences ιH(vpklm) → ιH(u) in H and ιH(vlplm) → ιH(u) in H as m → ∞
and therefore, it holds vpklm ⇀ u and vlplm ⇀ u in U as m → ∞ by the injectivity of ιH . By
the assumption of V pk

αβ (u) = 0, we have

V pk
α (u) = V pk

β (u) + V pk
αβ (u) = V pk

β (u).

By arguments as in Lemma 4.3 and the assumption that
∑

i∈[N ] θi(·, u−i), p(∥ · −u∥2U ) and
q(v − ·) are lower semicontinuous with respect to the weak sequential topology, we get the

lower semicontinuity of Ψβ(u, ·) − p(∥ · −u∥2U ) on X and Ψβ(u, ·) − q(v − ·) on “X (u) with
respect to the weak sequential topology. Using this fact, we obtain

V pk
α (u) = lim sup

m→∞

[
Ψβ(u, v

pk
lm
)− ρkp(∥vpklm − u∥2U )

]
≤ Ψβ(u, u)− ρkp(∥u− u∥2U ).
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Hence, we get V pk
α (u) = 0 for u ∈ X . We present the similar argument for the difference of

two merit functionals V lp
αβ. The assumption V lp

αβ(u) = 0 yields

V lp
α (u) = V lp

β (u) + V lp
αβ(u) = V lp

β (u).

Since Ψβ(u, ·)− q(u− ·) is lower semicontinuous on “X (u) we arrive at

V lp
α (u) = lim sup

m→∞

[
Ψβ(u, v

lp
lm
)− q(vlplm − u)

]
≤ Ψβ(u, u)− q(u− u).

All together, we obtain V lp
α (u) = 0 for u ∈ “X (u).

For the direction “⇐” we assume that V pk
αβ (u) > 0 or V lp

αβ(u) > 0 holds for all u ∈ U . Then

either u ∈ X or u /∈ X and u ∈ “X (u) or u /∈ “X (u), respectively. Furthermore, we get

V pk
α (u) > V pk

β (u) ≥ 0 for u ∈ X and V lp
α (u) > V lp

β (u) ≥ 0 for u ∈ “X (u), respectively.

By the nonnegativity of Vαβ(u) and Vα(u) on U , the third and fourth properties of
Theorem 5.5 are equivalent to

Vαβ(u) > 0 ⇐⇒ u /∈ X or Vα(u) > 0,

V loc
αβ (u) > 0 ⇐⇒ u /∈ ‹X (u) or V loc

α (u) > 0,

V pk
αβ (u) > 0 ⇐⇒ u /∈ X or V pk

α (u) > 0,

V lp
αβ(u) > 0 ⇐⇒ u /∈ “X (u) or V lp

α (u) > 0.

In the proof of the second assertion, the compactness of X is needed, because the subse-
quences {vlm}, {vloclm

}, {vpklm}, and {vlplm} have to lie in X , ‹X (u), X , or “X (u), respectively.
Note that we have no assumptions on the regularization parameters α ≥ 0 or β ≥ 0. Thus,

we do not use convexity of the cost functionals except to show the existence of supremum of
Ψβ(u, ·) on the set X .

The essential statement is the equivalence between Vαβ(u) = 0 and Vα(u) = 0 for u ∈ X .
Thus, one could search for an element u ∈ U such that it holds Vαβ(u) = 0, V loc

αβ (u) = 0,

V pk
αβ (u) = 0 or V lp

αβ(u) = 0 and get a root of the corresponding regularized and localized

Nikaido–Isoda merit functionals Vα, V
loc
α , V pk

α or V lp
α , respectively. Furthermore, in Sub-

section 5.2.2 we have established assumptions under which these conditions give a (local)
normalized equilibrium.

5.4 Differentiability of Regularized and Localized Nikaido–
Isoda Merit Functionals

In this section, we study the differentiability of the regularized Nikaido–Isoda merit func-
tionals ‹Vα, Vα, and their localized modifications ‹V loc

α , ‹V pk
α , ‹V lp

α , V loc
α , V pk

α and V lp
α . These

different Nikaido–Isoda merit functionals are defined in (5.1)–(5.8). We have already seen
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these functionals in Subsection 5.2.1 and Subsection 5.2.2 where we studied their connection
to equilibria. In this section, we will differentiate this kind of merit functionals. First of all,
we consider the corresponding merit functionals based on the regularized Nikaido–Isoda func-
tional on the fixed sets Xi and X , respectively. We show that we can apply a suitable version
of Danskin’s theorem, see Section 2.4 above, on these functionals. In Subsection 5.4.2, we
discuss the differentiability of the regularized and localized merit functionals ‹V loc

α , ‹V pk
α , ‹V lp

α ,
V loc
α , V pk

α and V lp
α . For feasible sets dependent on u itself we need additional assumptions

in order to use Danskin’s theorem, and for independent ones we apply Danskin’s theorem
directly. In the following, let (A7) of Assumption 3.1 hold for the underlying spaces. Fur-
thermore, let Xi ⊆ Ui and X ⊆ U be nonempty, convex, closed, and bounded. Consequently,
they are compact with respect to the respective weak sequential topology. We assume that
(B2c) of Assumption 3.3 for the objective functional θi : U → R is valid.

5.4.1 Differentiability of regularized Merit Nikaido–Isoda functionals

In this subsection, we consider the regularized Nikaido–Isoda merit functional ‹Vα, defined in
(5.1), on the nonempty, convex, closed, and bounded set X = ΠiXi. Moreover, we investigate
the merit functional Vα, see (5.2), which is defined on the nonempty, convex, closed, and
bounded set X . These sets are independent of ui and u, respectively. Thus, we can apply
Danskin’s theorem, see Theorem 2.75.

First, we consider the regularized Nikaido–Isoda merit functional ‹Vα, which simplifies to‹Vα(u) =
∑
i∈[N ]

max
vi∈Xi

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (5.26)

Theorem 5.6. Let α ≥ 0 and the nonempty, open set A be such that the solution mapping
u 7→ vfi(u) to the maximization problem maxvi∈Xi

fi(u, v
i) where fi : U × Ui → R is given

by

fi(u, v
i) = −θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

,

is single-valued on A for each i ∈ [N ]. Then ‹Vα, defined in (5.26), is continuously differen-
tiable on the set A. For the derivative there holds

d‹Vα(u)h =
∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ⟨JUi(u

i), hi⟩U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vfi(u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(vfi(u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
,

(5.27)

and the derivative is continuous from the weak sequential topology of U to the norm topology
of U∗.

Proof. We prove the differentiability by Danskin’s theorem, see Section 2.4. To this end, we
show that each term of the sum in (5.26) is differentiable. Since the term θi(u) is independent
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of vi, we split up the maximum term and get

max
vi∈Xi

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
= θi(u) + max

vi∈Xi

[
− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

By this characterization, we consider the terms θi(u) and

max
vi∈Xi

fi(u, v
i) (5.28)

of the sum separately where the objective functional is given by

fi(u, v
i) = −θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

.

The mapping u 7→ θi(u) is continuously differentiable with〈
(θi)u(u), h

〉
U∗,U

=
〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ⟨JUi(u

i), hi⟩U∗
i ,Ui

for all h ∈ U . For the second term (5.28) we apply Danskin’s theorem in the setting such
that U represents X, Ui represents Z, and the corresponding topologies τX and τZ are the
weak sequential topologies of U and Ui, respectively, see Section 2.4. Then we have to satisfy
Assumption 2.66 and apply Theorem 2.75 to obtain the differentiability of the maximization
problem (5.28). To this end, we define f1

i : U × Ui → R and f2
i : Ui → R by

f1
i (u, v

i) = −θ̃i(ι‹U (vi, u−i))− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

,

f2
i (v

i) = −γ

2
∥vi∥2Ui

.

Here, f1
i is continuous in both arguments with respect to the weak sequential topology and

f2
i is upper semicontinuous with respect to the weak sequential topology. Thus, fi = f1

i +f2
i

is continuous in u and upper semicontinuous in both variables with respect to the weak
sequential topology.

Due to the assumption that Hi is a uniformly smooth and uniformly convex Banach
space, the mapping ∥ιHi(v

i) − ιHi(·)∥2Hi
: Ui → R is differentiable in direction hi ∈ Ui with

the continuous derivative

−2
〈
JHi(ιHi(v

i)− ιHi(·)), ιHi(h
i)
〉
H∗

i ,Hi

from the weak sequential topology of Ui to the norm topology of U∗
i . Since θ̃i ◦ ι‹U : U → R

is continuously differentiable with respect to the weak sequential topology, we obtain the
continuity of (f1

i )u in both arguments from the weak sequential topology of U × Ui to the
norm topology of U∗. Furthermore, f2

i is independent of u which yields〈
(fi)u(u, v

i), h
〉
U∗,U

=
〈
(f1

i )u(u, v
i), h

〉
U∗,U

=
∑
j∈[N ]

〈
(f1

i )uj (u, vi), hj
〉
U∗
j ,Uj

.
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Then the derivative of fi with respect to u reads〈
(fi)u(u, v

i), h
〉
U∗,U

= −
∑
j∈[N ]

[〈
(θ̃i(ι‹U (vi, u−i)))uj , hj

〉
U∗
j ,Uj

+
α

2

〈(
∥ιHi(v

i)− ιHi(u
i)∥2Hi

)
uj , h

j
〉
U∗
j ,Uj

]
= −

∑
j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vi, u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(v

i)− ιHi(u
i)), ιHi(h

i)
〉
H∗

i ,Hi
.

(5.29)

We see that (fi)u is continuous in both arguments from the weak sequential topology of
U × Ui to the norm topology of U∗. Thus, Assumption 2.66 is fulfilled and we can apply
Danskin’s theorem to the regularized Nikaido–Isoda merit functional ‹Vα. If one chooses
α ≥ 0 sufficiently large such that the solution map u 7→ vfi(u) to (5.28) is single-valued on
some open set A for each i ∈ [N ], then the mapping u 7→ maxvi∈Xi

fi(u, v
i) is continuously

differentiable on A by Danskin’s theorem, see Theorem 2.75. For the derivative we apply
(5.29) and obtain

du
[
max
vi∈Xi

fi(u, v
i)
]
h = dumax

vi∈Xi

[
− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
h

= −
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vfi(u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(vfi(u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi
.

(5.30)

and the derivative is continuous from the weak sequential topology of U to the norm topology
of U∗. Altogether, we have shown that ‹Vα(u), defined as in equation (5.26), is continuously
differentiable on A.

Note, we do not achieve the continuous differentiability of the regularized Nikaido–Isoda
merit functional, defined in (2.23), unless we assume that X =

∏
i∈[N ]Xi and thus, it holds

Fi(u
−i) = Xi.

Remark 5.7. Under weaker assumptions, some results of Section 2.4 are still applicable. For
instance, if θ̃i : ‹U → R is only continuous, then, without requiring the single-valuedness of
the solution map u 7→ vfi(u) for fi(u, v

i) = −θi(v
i, u−i)− α

2 ∥ιHi(v
i)−ιHi(u

i)∥2Hi
, Lemma 2.70

still yields that (5.28) is continuous with respect to the weak sequential topology and thus,‹Vα(u) is continuous with respect to the norm topology and lower semicontinuous with respect
to the weak sequential topology.

Next, we move on to the regularized Nikaido–Isoda merit functional Vα, see (5.2). Recall
the definition of the merit functional

Vα(u) = sup
v∈X

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (5.31)
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Theorem 5.8. Let α ≥ 0 and the nonempty, open set A be such that the solution mapping
u 7→ vf (u) to the maximization problem maxv∈X f(u, v) where f : U × U → R is given by

f(u, v) = −
∑
i∈[N ]

[
θi(v

i, u−i)
]
− α

2
∥ιH(v)− ιH(u)∥2H ,

is single-valued on A. Then Vα, defined in (5.31), is continuously differentiable on the set A.
For the derivative there holds

dVα(u)h =
∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ⟨JUi(u

i), hi⟩U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vif (u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(v

i
f (u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
,

(5.32)

and the derivative is continuous from the weak sequential topology of U to the norm topology
of U∗.

Proof. We proceed as above and split the supremum in (5.31) into the terms
∑

i∈[N ] θi(u)
and

sup
v∈X

∑
i∈[N ]

[
− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
=: f(u, v).

The mapping u 7→
∑

i∈[N ] θi(u) is continuously differentiable with〈[ ∑
i∈[N ]

θi(u)
]
u
, h

〉
U∗,U

=
∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U ]

+ γ⟨JU (u), h⟩U∗,U .

Furthermore, we apply Danskin’s theorem, see Theorem 2.75, to achieve the continuous
differentiability of u 7→ maxv∈X f(u, v). To this end, we define f1 : U × U → R and
f2 : U → R by

f1(u, v) = −
∑
i∈[N ]

[
θ̃i(ι‹U (vi, u−i))

]
− α

2
∥ιH(v)− ιH(u)∥2H ,

f2(v) = −γ

2
∥v∥2U .

By an analogous reasoning as in the proof of Theorem 5.6, the functional f : U × U → R,
f(u, v) = f1(u, v) + f2(v), is continuous in u and upper semicontinuous in both arguments
with respect to the weak sequential topology. Additionally, f is differentiable in u with
continuous derivative fu = (f1)u from the weak sequential topology of U × U to the norm
topology of U∗. Hence, the Assumption 2.66 is fulfilled and the theorem of Danskin, Theo-
rem 2.75, is applicable. For α ≥ 0 chosen large enough to ensure that the solution map of
maxv∈X f(u, v) is single-valued on some open set A, one obtains the continuous differentia-
bility of

u 7→ max
v∈X

∑
i∈[N ]

[
− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]

90



CHAPTER 5. NIKAIDO–ISODA 5.4. DIFFERENTIABILITY

and its derivative is continuous from the weak sequential topology of U to the norm topology
of U∗. Thus, Vα is continuously differentiable on A and it holds (5.32) with the solution map
u 7→ vf (u).

5.4.2 Application to Localized Nikaido–Isoda Merit Functionals

In this subsection, we consider the differentiability of regularized and localized Nikaido–
Isoda merit functionals ‹V loc

α , ‹V pk
α , ‹V lp

α , V loc
α , V pk

α , and V lp
α , given in (5.3)–(5.8). We recall

the definitions of these merit functionals‹V loc
α (u) =

∑
i∈[N ]

sup
vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
,‹V pk

α (u) =
∑
i∈[N ]

sup
vi∈Xi

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)
]
,‹V lp

α (u) =
∑
i∈[N ]

sup
vi∈“Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui)

]
,

and

V loc
α (u) = sup

v∈‹X (u)

∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
,

V pk
α (u) = sup

v∈X

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U )

]
,

V lp
α (u) = sup

v∈“X (u)

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− q(v − u)

]
.

We would like to apply the theory of Danskin’s theorem, see Section 2.4, to these kinds
of regularized and localized Nikaido–Isoda merit functionals. Considering the various merit
functionals, we notice that we have two different-types of feasible sets. In fact, the constraint
is either dependent on u itself or independent of any variable. For ‹V pk

α and V pk
α , we can apply

the generalized Danskin theorem, see Theorem 2.75, directly since the feasible sets are fixed.
In the case that the constraints are dependent on ui and u, i.e., for ‹V loc

α , ‹V lp
α , V loc

α and V lp
α ,

we have to find another way to differentiate and apply Danskin’s theorem.

We begin with the part that is more straight-forward and investigate the differentiability
of the merit functionals ‹V pk

α and V pk
α in the next two theorems.

Theorem 5.9. For the penalty-type or barrier-type function p : [0,∞) → [0,∞] we assume
the following for each i ∈ [N ]:

• (ui, vi) 7→ p(∥vi − ui∥2Ui
) is continuous with respect to the weak sequential topology of

Ui × Ui.

• (ui, vi) 7→ (p(∥vi−ui∥2Ui
))ui is continuous from the weak sequential topology of Ui×Ui

to the norm topology of U∗
i .
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Let α be nonnegative and the nonempty, open set A ⊆ U be chosen such that the solution
mapping u 7→ vfi(u), i ∈ [N ], to the problem maxvi∈Xi

fi(u, v
i) with u ∈ A is single-valued

where the objective functional fi : U × Ui → R is given by

fi(u, v
i) = −θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
).

Then ‹V pk
α , defined in (5.5), is continuously differentiable on A with the derivative

d‹V pk
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ⟨JUi(u

i), hi⟩U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vfi(u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(vfi(u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

+ 2ρikp
′(∥vfi(u)− ui∥2Ui

)
〈
JUi(vfi(u)− ui), hi

〉
U∗
i ,Ui

]
,

(5.33)

which is continuous from the weak sequential topology of U to the norm topology of U∗.

Proof. As in the proof of Theorem 5.6, we study the terms θi(u) and maxvi∈Xi
fi(u, v

i) of
the sum separately. Here, i ∈ [N ] is arbitrary but fixed. We split fi : U × Ui → R into the
sum of the functionals f1

i : U × Ui → R and f2
i : Ui → R with

f1
i (u, v

i) = −θ̃i(ι‹U (vi, u−i))− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− ρikp(∥vi − ui∥2Ui
)

f2
i (v

i) = −γ

2
∥vi∥2Ui

.

Making use of the assumptions on the penalty-type or barrier-type function p, we conclude
that fi(·, vi) is continuous for any vi ∈ Ui and fi is upper semicontinuous in both arguments
with respect to the weak sequential topology. Furthermore, the continuous derivative regard-
ing u from the weak sequential topology of U to the norm topology of U of the functional fi
is given by (fi)u = (f1

i )u. Hence, Assumption 2.66 is satisfied and we are allowed to apply
Danskin’s theorem, see Theorem 2.75, to the map u 7→ maxvi∈Xi

fi(u, v
i) with the setting

X = U , Z = Ui, Y = Xi, and τX , τZ as the corresponding weak sequential topologies.
Consequently, we obtain its continuous differentiability from the weak sequential topology of
U ×Ui to the norm topology of U∗ on the open set A on which the solution map u 7→ vfi(u)
is single-valued. It follows

du
[
max
vi∈Xi

fi(u, v
i)
]
h = −

∑
j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vfi(u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(vfi(u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

+ 2ρikp
′(∥vfi(u)− ui∥2Ui

)
〈
JUi(vfi(u)− ui), hi

〉
U∗
i ,Ui

,

and thus, the functional ‹V pk
α is continuously differentiable from the weak sequential topology

of U to the norm topology of U∗ on the open set A with desired derivative (5.33).
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Having examined the differentiability of ‹V pk
α , we now turn to V pk

α . The distinction lies
in whether the supremum or the sum is taken first.

Theorem 5.10. For the penalty-type or barrier-type function p : [0,∞) → [0,∞], we assume
the following:

• (u, v) 7→ p(∥v − u∥2U ) is continuous with respect to the weak sequential topology of
U × U .

• (u, v) 7→ (p(∥v − u∥2U ))u is continuous from the weak sequential topology of U × U to
the norm topology of U∗.

Let α be nonnegative and A ⊆ U be a nonempty, open set such that the solution mapping
u 7→ vf (u) to the problem maxv∈X f(u, v) with u ∈ A is single-valued where f : U × U → R
is given by

f(u, v) =
∑
i∈[N ]

[
− θi(v

i, u−i)− α

2
∥ιH(v)− ιH(u)∥2H

]
− ρkp(∥v − u∥2U ).

Then V pk
α , defined in (5.6), is continuously differentiable on A and its continuous derivative

from the weak sequential topology of U to the norm topology of U∗ reads as follows:

dV pk
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ⟨JUi(u

i), hi⟩U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vif (u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(v

i
f (u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
+ 2ρkp

′(∥vf (u)− u∥2U )
〈
JU (vf (u)− u), h

〉
U∗,U

.

(5.34)

Proof. We apply Danskin’s theorem, see Theorem 2.75, to the second term of the regularized
and localized Nikaido–Isoda merit functional

V pk
α (u) =

∑
i∈[N ]

[
θi(u)

]
+max

v∈X
f(u, v),

where the objective functional f : U × U → R is defined by

f(u, v) =
∑
i∈[N ]

[
− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− ρkp(∥v − u∥2U ).

Analogously to the proof of Theorem 5.9, we write f as the sum of the two functionals
f1 : U × U → R and f2 : U → R with

f1(u, v) = −
∑
i∈[N ]

[
θ̃i(ι‹U (vi, u−i))

]
− α

2
∥ιH(v)− ιH(u)∥2H − ρkp(∥v − u∥2U ),

f2(v) = −γ

2
∥v∥2U .
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We observe that Assumption 2.66 is fulfilled and by an application of Danskin’s theorem,
see Theorem 2.75, it implies the continuous differentiability of V pk

α from the weak sequential
topology of U to the norm topology of U∗ on the set A. Moreover, it yields the derivative

dV pk
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ⟨JUi(u

i), hi⟩U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vif (u), u−i)), ι‹Uj

(hj)
〉‹U∗

j ,
‹Uj

]

+ α
〈
JHi(ιHi(v

i
f (u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
+ 2ρkp

′(∥vf (u)− u∥2U )
〈
JU (vf (u)− u), h

〉
U∗,U

.

Next, we move on to the regularized and localized Nikaido–Isoda merit functionals whose
feasible sets are dependent on u itself. First, we look at the merit functionals ‹V lp

α and V lp
α . In

general, the u-dependent constraints vi ∈ “Fi(u) and v ∈ “X (u) would cause nonsmoothness

of ‹V lp
α and V lp

α , respectively. This is the reason for introducing a C1-penalty or barrier
term, denoted by qi and q, to enforce locality without ruining differentiability. To apply
Danskin’s theorem, we require additional assumptions on the sets “Fi(u) and “X (u) and on
the functionals qi : Ui → R and q : U → R.

First, we consider the merit functional ‹V lp
α , defined in (5.7), and prove its continuous

differentiability under some additional assumptions.

Theorem 5.11. For the penalty-type or barrier-type functionals qi : Ui → [0,∞], i ∈ [N ],
we assume the following:

• qi is convex with qi(0) = 0 and continuously differentiable in int(dom(qi)).

• qi and q′i : Ui → U∗
i are completely continuous in int(dom(qi)).

Let A ⊆ U be nonempty, open and Ci ⊆ Ui, i ∈ [N ], be convex and closed sets with 0 ∈ Ci.
Moreover, we assume that there exist the radii r,R > 0 with

BUi
R (0) ∪ cl(Ci +BUi

r (0)) ⊆ int(dom(qi)),

Br(u) ⊆ A ∀u ∈ A,

Fi(u
−i) ∩BR(u

i) ⊆ “Fi(u) ⊆ Fi(u
−i) ∀u ∈ A.

(5.35)

The set A is chosen such that the solution map u 7→ vfi(u) to max
vi∈“Fi(u)

fi(u, v
i) with u ∈ A

is single-valued where fi : U × Ui → R is defined by

fi(u, v
i) = −θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui). (5.36)

If it holds vfi(u) ∈ ui + Ci for all u ∈ A, then the functional ‹V lp
α is differentiable on the set
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A with the derivative

d‹V lp
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ

〈
JUi(u

i), hi
〉
U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vfi(u), u−i)), ι‹Uj

(hj)
〉
Ũj

∗
,‹Uj

]
+
〈
q′i(vfi(u)− ui), hi

〉
U∗
i ,Ui

+ α
〈
JHi(ιHi(vfi(u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
,

(5.37)
which is continuous from the weak sequential topology of U to the norm topology of U∗.

Proof. Let i ∈ [N ] be arbitrary. The i-th summand of ‹V lp
α reads

sup
vi∈“Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui)

]
.

Since θi(u) is independent of v
i, we can pull it out of the supremum and consider the merit

functional ‹V lp
α (u) =

∑
i∈[N ]

θi(u) +
∑
i∈[N ]

sup
vi∈“Fi(u)

fi(u, v
i),

where we already inserted the definition of the functional fi : U ×Ui → R, see (5.36), in the
second sum. In the following, we investigate the differentiability of both sums separately.
The first sum is continuously differentiable with〈[ ∑

i∈[N ]

θi(u)
]
u
, h

〉
U∗,U

=
∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U ]

+ γ⟨JU (u), h⟩U∗,U

and its derivative is continuous from the weak sequential topology of U to the norm topology
of U∗. In the case of the second sum, we consider the i-th summand u 7→ max

vi∈“Fi(u)
fi(u, v

i)

for an arbitrary i ∈ [N ] and we will apply Danskin’s theorem, see Theorem 2.75, to achieve
its continuous differentiability.

Let û ∈ A be arbitrarily fixed. We define the parameter ρ = r
2 and we introduce the

convex, closed, and bounded set Yi = Xi ∩ cl(Ci + Bρ(û
i)). By assumption of the solution

mapping vfi , we obtain

vfi(u) ∈ ui + Ci ⊆ Bρ(û
i) + Ci ∀u ∈ Bρ(û).

Since it holds vfi(u) ∈ Xi anyway, we can conclude that vfi(u) ∈ Yi for all u ∈ Bρ(û). Hence,
we obtain the equality of the maximization problems

max
vi∈“Fi(u)

fi(u, v
i) = max

vi∈Yi

fi(u, v
i) ∀u ∈ Bρ(û),

with the unique, single-valued solution operator vfi : Br(û) → Yi.
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To achieve the continuous differentiability of u 7→ maxvi∈Yi
fi(u, v

i) on the set Bρ(û), we
are going to apply Danskin’s theorem, see Theorem 2.75, with the choices

X = U, W = Bρ(û), Z = ûi + dom(qi), Y = Yi, f = fi,

τX = weak sequential topology of U,

τZ = topology induced by weak sequential topology of Ui.

(5.38)

Let us check whether this choice does indeed fulfill the assumptions of Danskin’s theorem.
We note that ûi + dom(qi) ⊆ Ui inherits the weak sequential topology of Ui and Xi

is compact in Ui with respect to the weak sequential topology by the assumption that we
stated at the beginning of Section 5.4. Consequently, it yields that Yi ⊆ Xi is compact in Ui

regarding the weak sequential topology. Moreover, we note that it holds

Yi ⊆ cl(Ci +Bρ(û
i)) ⊆ cl(Ci +BUi

ρ (0) + ui),

and using the fact that it holds cl(Z1+Z2) = cl(Z1)+cl(Z2) for Z1 compact and Z2 arbitrary,
it yields

Yi ⊆ cl(Ci +BUi
ρ (0)) + ui.

However, this is just a subset of cl(Ci + BUi
ρ (0)) ∪ BUi

R (0) + ui and we see that we are in
the setting to apply assumption (5.35) on the radius R. Consequently, we obtain Yi ⊆
dom(qi) + ûi, which implies the compactness of Yi in Z = ûi + dom(qi) with respect to the
weak sequential topology.

For any (u, vi) ∈ Bρ(û) × Yi it holds vi − ui ∈ vi − ûi + BUi
ρ (0). Furthermore, we make

use of the definition of Yi to conclude vi ∈ cl(Ci +Bρ(û
i)), which implies

vi − ui ∈ cl(Ci +Bρ(û
i))− ûi +BUi

ρ (0).

Next, we employ the fact that cl(Z1)+ cl(Z2) ⊆ cl(Z1+Z2) for any two sets Z1 and Z2, and
conclude that vi − ui ∈ cl(Ci + BUi

r (0)) due to r = 2ρ. However, the set on the right-hand
side is a subset of the interior of the domain of qi, see (5.35), and consequently, we achieve

vi − ui ∈ int(dom(qi)) ∀ (u, vi) ∈ Bρ(û)× Yi. (5.39)

We split the functional fi, see (5.36), into the functionals f1
i and f2

i , which we define by

f1
i (u, v

i) = −θ̃i(ι‹U (vi, u−i))− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui),

f2
i (v

i) = −γ

2
∥vi∥2Ui

.

The functional f1
i is continuous with respect to the weak sequential topology in both its

arguments in Bρ(û)× Yi due to the assumption (B2c) on the functional θi : U → R and the
complete continuity of qi on int(dom(qi)), compare the second assumption of this theorem
and (5.39). Moreover, the norm operator is known to be lower semicontinuous regarding the
weak sequential topology and thus, we conclude the upper semicontinuity of the functional
f2
i on U with respect to the weak sequential topology. Consequently, it yields that the
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functional fi is upper semicontinuous with respect to the weak sequential topology in both
its variables on Bρ(û)× Yi and fi(·, vi) : U → R is continuous regarding the weak sequential
topology on Bρ(û) for any vi ∈ Yi. Lastly, the u-derivative of fi is completely continuous
on Bρ(û) × Yi due to the complete continuity of q′i on int(dom(qi)), compare the second
assumption in this theorem and (5.39).

Hence, we allowed to apply Danskin’s theorem, see Theorem 2.75, with the choice of the
spaces and topologies as stated in (5.38). Thus, we obtain the continuous differentiability of
u 7→ maxvi∈Yi

fi(u, v
i) on Bρ(û) with the derivative (fi)u(u, vfi(u)). Moreover, the functional

u 7→ maxvi∈Yi
fi(u, v

i) is continuously differentiable from the weak sequential topology of U
to the norm topology of U∗ on the whole set A since û ∈ A was chosen arbitrarily. This
implies that ‹V lp

α (u) =
∑
i∈[N ]

[
θi(u) + max

vi∈Yi

fi(u, v
i)
]

is continuously differentiable with the desired formula for its derivative, see (5.37), by recall-
ing Lemma 2.73 it holds

〈[
max
vi∈Yi

fi(u, v
i)
]
u
, h

〉
U∗,U

=
〈
(f1

i )u(u, vfi(u)), h
〉
U∗,U

∀u ∈ A, h ∈ U.

Next, we prove an analogous result for the differentiability of the merit functional V lp
α , see

(5.41). The proof is comparable to what we have just witnessed, and we will only highlight
key differences and steps.

Theorem 5.12. For the penalty-type or barrier-type functional q we assume the following:

• q : U → [0,∞] is convex with q(0) = 0 and continuously differentiable in int(dom(q)).

• q : U → [0,∞] and q′ : U → U∗ are completely continuous in int(dom(q)).

Let A ⊆ U be nonempty, open and C ⊆ U be a convex and closed set with 0 ∈ C. Moreover,
we assume that there exist the radii r,R > 0 with

BU
R(0) ∪ cl(C +BU

r (0)) ⊆ int(dom(q)),

Br(u) ⊆ A ∀u ∈ A,

X ∩BR(u) ⊆ “X (u) ∀u ∈ A.

The set A is chosen such that the solution map u 7→ vf (u) to max
v∈“X(u)

f(u, v) with u ∈ A

is single-valued where f : U × U → R is defined by

f(u, v) = −
∑
i∈[N ]

[
θi(v

i, u−i) +
α

2
∥ιHi(v

i) + ιHi(u
i)∥2Hi

]
− q(v − u). (5.40)

If the solution mapping satisfies vf (u) ∈ u + C for all u ∈ A, then the functional V lp
α is
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differentiable on the set A with the continuous derivative as follows:

dV lp
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ

〈
JUi(u

i), hi
〉
U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vif (u), u−i)), ι‹Uj

(hj)
〉
Ũj

∗
,‹Uj

]

+ α
〈
JHi(ιHi(v

i
f (u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
+
〈
q′(vf (u)− u), h

〉
U∗,U

.

(5.41)

Furthermore, the derivative is continuous from the weak sequential topology of U to the
norm topology of U∗.

Proof. As in the proof of Theorem 5.11, we first split the supremum in the definition of V lp
α .

We note that the sum of u 7→ θi(u) is independent of v and considering the definition of the
functional f : U × U → R, see (5.40), we investigate the mappings u 7→

∑
i∈[N ] θi(u) and

u 7→ max
v∈“X (u)

f(u, v) separately. The first mapping is continuously differentiable with the

derivative ∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U ]

+ γ⟨JU (u), h⟩U∗,U ,

which is continuous from the weak sequential topology of U to the norm topology of U∗. In
the case of the second mapping u 7→ max

v∈“X (u)
f(u, v), we will apply Danskin’s theorem, see

Theorem 2.75, after proving that the assumptions of the theorem are fulfilled.
Let û ∈ A be arbitrarily fixed. Furthermore, we define the parameter ρ = r

2 and the
convex, closed, and bounded set Y = X ∩ cl(C + Bρ(û)). Since it holds vf (u) ∈ Bρ(û) + C
for any u ∈ Bρ(û) and vf (u) ∈ X , we conclude vf (u) ∈ Y for u ∈ Bρ(û) and

max
v∈‹X (u)

f(u, v) = max
v∈Y

f(u, v)

with the unique, single-valued solution operator vf : Br(û) → Y . Moreover, the mapping
u 7→ maxv∈Y f(u, v) is continuously differentiable on the set Bρ(û) due to Danskin’s theorem,
see Theorem 2.75. Indeed, we are in the setting

X = U, W = Bρ(û), Z = û+ dom(q), Y = Y, f = f,

τX = weak sequential topology of U,

τZ = topology induced by weak sequential topology of U,

and using a similar line of reasoning as in the proof of Theorem 5.11, we can conclude the
compactness of Y in Z with respect to the weak sequential topology of U . We split the
functional f , see (5.40) again for its definition, into the functionals f1 and f2, which are
defined by

f1(u, v) = −
∑
i∈[N ]

[
θ̃i(ι‹U (vi, u−i)) +

α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− q(v − u),

f2(v) = −γ

2
∥v∥2U .
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We note that it holds v − u ∈ int(dom(q)) for any (u, v) ∈ Bρ(û) × Y . As in the preceding
proof, we obtain that f is upper semicontinuous with respect to the weak sequential topology
in both its variables on Bρ(û)×Y and f(·, v) : U → R is continuous with respect to the weak
sequential topology on Bρ(û) for any v ∈ Y . Moreover, the u-derivative of f is completely
continuous on Bρ(û)×Y due to the assumptions of q′. Hence, the assumptions of Danskin’s
theorem, see Assumption 2.66, are fulfilled and we obtain the continuous differentiability of
u 7→ maxv∈Y f(u, v) on Bρ(û) with the derivative (f1)u(u, vf (u)). Since û ∈ A was chosen
arbitrarily, we achieve the continuous differentiability of u 7→ maxv∈Y f(u, v) on the set A.

This implies the continuous differentiability of V lp
α as claimed in the theorem.

Remark 5.13. Another way to differentiate the merit functional ‹V lp
α and V lp

α is to apply
Danskin’s theorem directly. To this end, we have to consider the special case, where“Fi(u) = Xi ∩BR(u

i), “X (u) = X ∩BR(u), ∀u ∈ U,

with nonempty, convex, closed, and bounded sets Xi ⊆ Ui and X ⊆ U . Moreover, we
express the localization with the functionals qi : Ui → R and q : U → R. These functionals
are chosen such that they encode these u-dependent feasible sets by setting qi(z

i) = ∞ if

ui + zi ∈ Ui\“Xi(u) or q(z) = ∞ if u+ z ∈ U\“X (u), respectively. Then the merit functionals
read ‹V lp

α (u) =
∑
i∈[N ]

sup
vi∈Xi

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

− qi(v
i − ui)

]
,

V lp
α (u) = sup

v∈X

[ ∑
i∈[N ]

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
− q(v − u)

]
.

We are able to apply Danskin’s theorem to these two merit functionals by considering similar
assumptions as in the preceding theorems, e.g., see Theorem 5.9 and Theorem 5.10. Conse-
quently, we obtain their continuous differentiability from the weak sequential topology of U
to the norm topology of U∗ and their derivatives can be computed in the same manner.

Now, we move to the differentiability of the merit functional ‹V loc
α , see again (5.3) for its

definition.

Theorem 5.14. Let A ⊆ U be a nonempty and open set such that the solution map
u 7→ vfi(u) to max

vi∈‹Fi(u)
fi(u, v

i) is single-valued for all u ∈ A where the objective functional

fi : U × Ui → R is defined by

fi(u, v
i) = −θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

. (5.42)

Furthermore, let Ci ⊆ Ui, i ∈ [N ], be convex and closed sets with 0 ∈ Ci. Moreover, we
assume that there exists the radius r > 0 with Br(u) ∈ A for any u ∈ A. If it holds

vfi(u) ∈ ui+Ci for all u ∈ A, then the functional ‹V loc
α is differentiable on the set A with the
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derivative

d‹V loc
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ

〈
JUi(u

i), hi
〉
U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vfi(u), u−i)), ι‹Uj

(hj)
〉
Ũj

∗
,‹Uj

]

+ α
〈
JHi(ιHi(vfi(u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
,

(5.43)

which is continuous from the weak sequential topology of U to the norm topology of U∗.

Proof. Let i ∈ [N ] be arbitrary but fixed. The i-th summand of ‹V loc
α reads

sup
vi∈‹Fi(u)

[
θi(u)− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
.

Since θi(u) is independent of vi, we pull it out of the supremum and consider the merit
functional ‹V loc

α (u) =
∑
i∈[N ]

θi(u) +
∑
i∈[N ]

sup
vi∈‹Fi(u)

fi(u, v
i),

where we already inserted the definition of the functional fi : U ×Ui → R, see (5.42), in the
second sum. The first sum is continuously differentiable with〈[ ∑

i∈[N ]

θi(u)
]
u
, h

〉
U∗,U

=
∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U ]

+ γ⟨JU (u), h⟩U∗,U

and its derivative is continuous from the weak sequential topology of U to the norm topology
of U∗. In the case of the second sum, we consider the i-th summand u 7→ max

vi∈‹Fi(u)
fi(u, v

i)

for an arbitrary i ∈ [N ] and we apply Danskin’s theorem, see Theorem 2.75, to achieve its
continuous differentiability.

We proceed similar to the preceding proofs to show that the assumptions to Danskin’s
theorem are satisfied. Indeed, we define the parameter ρ = r

2 and the convex, closed, and
bounded set Yi = Xi ∩ cl(Ci+Bρ(û)) for an arbitrarily fixed û ∈ A. We conclude vfi(u) ∈ Yi
for all u ∈ Bρ(û) and obtain the equality of the maximization problems

max
vi∈‹Fi(u)

fi(u, v
i) = max

vi∈Yi

fi(u, v
i) ∀u ∈ Bρ(û),

with the unique, single-valued solution operator vfi : Br(û) → Yi. We will apply Danskin’s
theorem to achieve the continuous differentiability of u 7→ maxvi∈Yi

fi(u, v
i) on the set Bρ(û).

We are in the setting

X = U, W = Bρ(û), Z = ûi + Ui, Y = Yi, f = fi,

τX = weak sequential topology of U,

τZ = topology induced by weak sequential topology of Ui.

(5.44)
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Making use of similar arguments as in the preceding proofs, we conclude that Yi is compactly
embedded in Z = ûi + Ui with respect to the weak sequential topology. Furthermore, we
observe that the functional fi is upper semicontinuous regarding the weak sequential topology
on Bρ(û)×Yi and fi(·, vi) : Ui → R is continuous with respect to the weak sequential topology
on Bρ(û) for any vi ∈ Yi. Lastly, the u-derivative of fi is completely continuous on Bρ(û)×Yi.
Here, we used the assumption (B2c) of the functional θi : U → R.

Consequently, we are allowed to apply Danskin’s theorem, see Theorem 2.75, and ob-
tain the continuous differentiability of u 7→ maxvi∈Yi

fi(u, v
i) on Bρ(û) with the derivative

(fi)u(u, vfi(u)). Since û ∈ A was chosen arbitrarily, we can extend its continuous differen-
tiability from the weak sequential topology of U to the norm topology of U∗ to the whole
set A. This implies that ‹V loc

α (u) is continuously differentiable for all u ∈ A with the desired
formula for its derivative, see (5.43).

Now, we move on to the differentiability of the merit functional V loc
α , see again (5.4)

for its definition. In contrast to the preceding theorem, the sum over i ∈ [N ] is inside the

supremum over v ∈ ‹X(u).

Theorem 5.15. Let C ⊆ U be a convex and closed set with 0 ∈ C. The nonempty and
open set A ⊆ U is chosen such that the solution map u 7→ vf (u) to max

v∈‹X(u)
f(u, v) is

single-valued for any u ∈ A where the objective functional f : U × U → R is defined by

f(u, v) = −
∑
i∈[N ]

[
θi(v

i, u−i) +
α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
. (5.45)

Moreover, we assume the existence of a radius r > 0 such that Br(u) ∈ A for any u ∈ A. If
it holds vf (u) ∈ u+C for all u ∈ A, then the functional V loc

α is differentiable on A with the
derivative

dV loc
α (u)h =

∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U + γ

〈
JUi(u

i), hi
〉
U∗
i ,Ui

−
∑

j∈[N ]\{i}

[〈
(θ̃i)ũj (ι‹U (vif (u), u−i)), ι‹Uj

(hj)
〉
Ũj

∗
,‹Uj

]

+ α
〈
JHi(ιHi(v

i
f (u))− ιHi(u

i)), ιHi(h
i)
〉
H∗

i ,Hi

]
,

(5.46)

which is continuous from the weak sequential topology of U to the norm topology of U∗.

Proof. As in the proof of Theorem 5.14, we split the supremum in the definition of V loc
α .

We note that the sum of u 7→ θi(u) is independent of v and considering the definition of the
functional f : U × U → R, see (5.45), we investigate the mappings u 7→

∑
i∈[N ] θi(u) and

u 7→ max
v∈‹X (u)

f(u, v) separately. The first mapping is continuously differentiable with the

derivative ∑
i∈[N ]

[〈
(θ̃i)ũ(ι‹U (u)), ι‹U (h)〉‹U∗,‹U ]

+ γ⟨JU (u), h⟩U∗,U ,

which is continuous from the weak sequential topology of U to the norm topology of U∗.
In the case of the second mapping u 7→ max

v∈‹X (u)
f(u, v), we apply Danskin’s theorem, see

Theorem 2.75, after proving that the assumptions of the theorem are fulfilled.
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As in the preceding proofs, we define the parameter ρ = r
2 and the convex, closed, and

bounded set Y = X ∩ cl(C + Bρ(û)) for an arbitrarily fixed element û ∈ A. Since it holds
vf (u) ∈ Y for any u ∈ Bρ(û), it yields

max
v∈‹X (u)

f(u, v) = max
v∈Y

f(u, v)

with the unique, single-valued solution operator vf : Br(û) → Y . We prove the differentia-
bility u 7→ maxv∈Y f(u, v) on the set Bρ(û) by applying Danskin’s theorem to the setting

X = U, W = Bρ(û), Z = û+ U, Y = Y, f = f,

τX = weak sequential topology of U,

τZ = topology induced by weak sequential topology of U.

Analogously, we obtain the compactness of Y in Z with respect to τZ . Moreover, the
objective functional f is upper semicontinuous with respect to the weak sequential topology
in both variables on Bρ(û) × Y and f(·, v) : U → R is continuous with respect to the weak
sequential topology on Bρ(û) for any v ∈ Y . Furthermore, its u-derivative is completely
continuous on Bρ(û)× Y . Thus, the assumptions of Danskin’s theorem hold and we obtain
the continuous differentiability of u 7→ maxv∈Y f(u, v) on A with the derivative fu(u, vf (u)).
Here, we took advantage of the fact that û ∈ A was arbitrarily chosen to expand the domain
of differentiability. Finally, we conclude that V loc

α is continuously differentiable.
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Chapter 6

Algorithms and Methods for
Computing Equilibria

We have already various treatises on Mechanics, but the plan of this one is en-
tirely new. I intend to reduce the theory of this science, and the art of solving
problems relating to it, to general formulae, the simple development of which pro-
vides all the equations necessary for the solution of each problem. I hope that the
manner in which I have tried to attain this object will leave nothing to be desired.
The methods that I explain require neither geometrical, nor mechanical, construc-
tions or reasoning, but only algebraical operations in accordance with regular and
uniform procedure. Those who love Analysis will see with pleasure that Mechanics
has become a branch of it, and will be grateful to me for having thus extended its
domain. (Joseph-Louis Lagrange)

In this chapter, numerical methods for equilibria are discussed. We have demonstrated the
presence of fixed points of the solution map, which can be understood as normalized equilibria
and variational equilibria, and we have investigated the relationship between the regularized
and localized Nikaido–Isoda merit functional and various forms of equilibria. Using these
characterizations of equilibria, we then build numerical approaches employing the regularized
Nikaido–Isoda merit functional. This chapter is separated into three sections. Consider
a GNEP with convex constraints first. In this instance, we define a globally convergent
descent method for obtaining the roots of the regularized Nikaido–Isoda merit functional.
Under some situations, these roots can be read as normalized equilibria, see Subsection 5.2.2.
In Section 6.2, a nonconvex restriction is added to the GNEP. This type of nonconvex
constraint can be used to define constraints arising from a partial differential equation. This
nonconvex restriction is managed via a safeguarded augmented Lagrangian method. The
augmented Lagrangian method’s subproblems consist of appropriate VIs that embody first-
order optimality criteria.
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6.1 Descent Method for the Regularized Nikaido–Isoda Merit
Functional

We consider a GNEP with convex constraints in this section. We are looking for normalized
equilibria, so we employ the regularized Nikaido–Isoda merit functional, as described in
Section Subsection 5.2.2. In Theorem 5.4, we demonstrated that acceptable candidates for a
normalized equilibrium are the zeros of the regularized Nikaido–Isoda merit functional. The
following is an examination of the minimization problem

min
u∈X

Vα(u), (6.1)

whose solutions correspond to the zeros of the functional Vα. Here, we create a descent
method for the regularized Nikaido–Isoda merit functional Vα and use the projected gradient

p(w) = w − PX (w −∇Vα(w)) (6.2)

as a measure of criticality to demonstrate its convergence. In reality, the optimality con-
ditions of the first order for the minimization problem (6.1) is equivalent to the condition
p(u) = 0. This theory derives from [59]. In the following, assume that (A8) of Assump-

tion 3.1 is satisfied for the spaces U , H, and ‹U . Let X ⊆ U be a nonempty, convex, closed,
and bounded subset of U . Furthermore, let (B2c) of Assumption 3.3 be valid for the objec-
tive functional θi : U → R. Moreover, we suppose that the parameter α ≥ 0 is selected so
that the solution map

u 7→ sup
v∈X

∑
i∈[N ]

[
− θi(v

i, u−i)− α

2
∥ιHi(v

i)− ιHi(u
i)∥2Hi

]
is single-valued. The functional Vα : U → R is therefore continuously differentiable according
to Danskin’s theorem, see Theorem 2.75.

In this case, the descent method follows a projected gradient, as described in (6.2). The
formula

∇f(x) = R−1
U fx(x) ∈ U

with h ∈ U defines the gradient of a continuously differentiable functional f : U → R, where
RU specifies the Riesz operator from U to U∗ for a given Hilbert space U . We relate the
gradient to the Fréchet derivative via

(∇f(x), h)U =
〈
fx(x), h

〉
U∗,U

= df(x, h).

Using the projected gradient, which we defined in (6.2), we can now formulate the algo-
rithm as follows:

Algorithm 6.1.

0. Choose ũ0 ∈ U and set u0 = PX (ũ0).

For k = 0, 1, 2, 3, . . . :
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1. If uk satisfies stopping criterion: STOP

2. Set sk = −∇Vα(uk).

3. Choose σk ∈ {1, 12 ,
1
4 , . . . } maximally such that the projected Armijo rule

Vα(PX (uk + σksk))− Vα(uk) ≤ − µ

σk
∥PX (uk − σk∇Vα(uk))− uk∥2U (6.3)

with µ ∈ (0, 1) is satisfied.

4. Set uk+1 = PX (uk + σksk).

First, we note that the Armijo condition’s selection of the step size is well-defined, as the
next proposition states. Often, we say that {uk}k∈N is generated by Algorithm 6.1 and
indirectly include the corresponding parameter sequence with this phrase, i.e., {σk}k∈N is
simultaneously generated by the algorithm without mentioning it directly.

Proposition 6.2 (cf., [59, Lemma 2.5]). If the Nikaido–Isoda merit functional Vα : U → R
is continuously differentiable in some neighborhood of the convex, closed set X , then the
projected Armijo rule (6.3) terminates successfully for any sequence {uk}k∈N ⊆ X with
p(uk) ̸= 0.

Next, we demonstrate the algorithm’s convergence using the projected gradient as the
criticality measure. In this regard, we require the particular properties of the projection
operator PX , which are outlined in Lemma 2.51 of Chapter 2.

Theorem 6.3. It holds lim infk→∞ ∥p(uk)∥U = 0.

Proof. We argue by contradiction and assume that it holds lim infk→∞ ∥p(uk)∥U > 0. Con-
sequently, there exists the parameters ε > 0 and K ∈ N such that ∥p(uk)∥U ≥ ε for all
k ≥ K.

First, we introduce the auxiliary function Φ : R → R that we define by

Φ(σk) =
1

σk
∥PX (uk − σk∇Vα(uk))− uk∥U .

Since Φ is nonincreasing by Lemma 2.51, we trivially obtain Φ(σk) ≥ Φ(1). In other words,
we conclude

1

σk
∥PX (uk − σk∇Vα(uk))− uk∥U ≥ ∥PX (uk −∇Vα(uk))− uk∥U = ∥p(uk)∥U . (6.4)

We subtract Vα(ul) from Vα(uK) and use the technique of telescopic sums to achieve for all
l ≥ K

Vα(uK)− Vα(ul) =
l−1∑
k=K

[
Vα(uk)− Vα(uk+1)

]
.
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Then we can apply the projected Armijo rule (6.3) as follows

l−1∑
k=K

[
Vα(uk)− Vα(uk+1)

]
≥

l−1∑
k=K

µ

σk
∥PX (uk − σk∇Vα(uk))− uk∥2U

=
l−1∑
k=K

µ

σk
∥PX (uk − σk∇Vα(uk))− uk∥U∥uk+1 − uk∥U ,

and by the inequality (6.4) on the monotonicity of Φ we can directly obtain for all l ≥ K
the following estimates

Vα(uK)− Vα(ul) ≥
l−1∑
k=K

µ

σk
∥PX (uk − σk∇Vα(uk))− uk∥U∥uk+1 − uk∥U

≥ µ
l−1∑
k=K

∥PX (uk −∇Vα(uk))− uk∥U∥uk+1 − uk∥U .

By the assumption of the proof via contradiction, we know that it holds ∥p(uk)∥U ≥ ε. We
insert this lower bound of p into the last inequality to achieve

Vα(uK)− Vα(ul) ≥ µε
l−1∑
k=K

∥uk+1 − uk∥U ≥ 0,

for all l ≥ K. Hence, Vα(uk) is monotonically decreasing with respect to the sequence
index k and consequently, we know that the l-limit of Vα(ul) is bounded from below by the
infimum of Vα(u) over all u ∈ X . Moreover, Vα(uk) is bounded from below by 0 in X and
consequently, we obtain

µε
∞∑

k=K

∥uk+1 − uk∥U ≤ Vα(uK)− lim
l→∞

Vα(ul) ≤ Vα(uK)− inf
u∈X

Vα(u) < ∞

as l → ∞. In other words, ∥uk+1 − uk∥U is summable and for all m > l, we achieve

∥um − ul∥U ≤
m−1∑
k=l

∥uk+1 − uk∥U ≤
∞∑
k=l

∥uk+1 − uk∥U → 0

as l → ∞. We conclude that {uk}k∈N ⊆ X is a Cauchy sequence and since X ⊆ U is closed,
we obtain that its limit ū is an element in X .

Next up, we exploit again the inequality (6.4) on the nonincreasing character of Φ and
use the assumption of the contradiction proof to obtain

∥uk+1 − uk∥U = ∥PX (uk − σk∇Vα(uk))− uk∥U ≥ σk∥PX (uk −∇Vα(uk))− uk∥U ≥ σkε

for k > K. Since the left-hand side of the inequality converges to zero, we can conclude that
it has to hold both σk → 0 as k → ∞ and

lim
k→∞

∥PX (uk − σk∇Vα(uk))− uk∥U = 0. (6.5)

106



CHAPTER 6. ALGORITHMS AND METHODS 6.1. DESCENT METHOD

Thus, there exists some value ‹K ≥ K such that σk ≤ 1
2 is valid for all k ≥ ‹K. Together with

Lemma 2.51, we conclude

1

σk
∥PX (uk − σk∇Vα(uk))− uk∥U ≥ 1

2σk
∥PX (uk − 2σk∇Vα(uk))− uk∥U

≥ ∥PX (uk −∇Vα(uk))− uk∥U ,
(6.6)

and thus, we obtain as k → ∞

∥PX (uk − 2σk∇Vα(uk))− uk∥U ≤ 2∥PX (uk − σk∇Vα(uk))− uk∥U → 0.

Moreover, the value 2σk does not fulfill the Armijo condition (6.3) in the k-th step because
σk in the Armijo condition is already chosen maximal. The negation of (6.3) provides us
with the estimate

− µ

2σk
∥PX (uk − 2σk∇Vα(uk))− uk∥2U ≤ Vα(PX (uk − 2σk∇Vα(uk)))− Vα(uk). (6.7)

In the following, we derive an estimate for the right-hand side. We apply the mean value
theorem, see Theorem 2.21, and obtain the existence of some element wk in the set

{(1− t)uk + tPX (uk − 2σk∇Vα(uk)) : 0 ≤ t ≤ 1} (6.8)

such that it holds

Vα(PX (uk−2σk∇Vα(uk))−Vα(uk) = (∇Vα(wk), PX (uk−2σk∇Vα(uk))−uk)U .

Furthermore, we add and subtract a term on the right-hand side to create a difference term
∇Vα(wk)−∇Vα(uk) in the scalar product. Indeed, we achieve the equality

Vα(PX (uk−2σk∇Vα(uk))−Vα(uk) = (∇Vα(uk), PX (uk−2σk∇Vα(uk))− uk)U

+ (∇Vα(wk)−∇Vα(uk), PX (uk−2σk∇Vα(uk))−uk)U ,
(6.9)

and in the following, we further manipulate each of the present terms separately.

We multiply this equality by −2σk and note that we can manipulate the first scalar
product on the right-hand side of (6.9) by adding and subtracting PX (uk) = uk in the scalar
product. Following this procedure, we achieve

−2σk(∇Vα(uk), PX (uk − 2σk∇Vα(uk))− uk)U

=(uk − 2σk∇Vα(uk)− PX (uk), PX (uk − 2σk∇Vα(uk))− PX (uk))U

=(PX (uk − 2σk∇Vα(uk))− PX (uk), PX (uk − 2σk∇Vα(uk))− PX (uk))U

+(uk−2σk∇Vα(uk)−PX (uk−2σk∇Vα(uk)), PX (uk−2σk∇Vα(uk))−PX (uk))U .

We recall Lemma 2.51, which provides the nonnegativitiy of the last scalar product on the
right-hand side. Furthermore, we observe that the first scalar product on the right-hand side
has the same terms in each component of the scalar product and therefore, it can be written
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as a squared norm in U . Concluding these observations, we obtain an estimate for the first
term on the right-hand side of (6.9) in the form of

−2σk(∇Vα(uk), PX (uk − 2σk∇Vα(uk))− uk)U≥ ∥PX (uk − 2σk∇Vα(uk))− PX (uk)∥2U .

We divide this estimate by −2σk and insert it back into (6.9) to get the following result:

Vα(PX (uk−2σk∇Vα(uk))−Vα(uk)≤− 1

2σk
∥PX (uk−2σk∇Vα(uk))−uk∥2U

+∥∇Vα(wk)−∇Vα(uk)∥U∥PX (uk−2σk∇Vα(uk))−uk∥U .

We apply the lower bound (6.7) on the left-hand side of the inequality and add the negation
of the first term on the right-hand side on both sides of the inequality to obtain

1−µ

2σk
∥PX (uk−2σk∇Vα(uk))−uk∥2U ≤ ∥∇Vα(wk)−∇Vα(uk)∥U∥PX (uk−2σk∇Vα(uk))−uk∥U .

We already used the inequality (6.6) in this proof, and using it once more on the left-hand
side, it yields

(1− µ)∥pk∥U∥PX (uk − 2σk∇Vα(uk))− uk∥U

≤ 1− µ

2σk
∥PX (uk − 2σk∇Vα(uk))− uk∥U∥PX (uk − 2σk∇Vα(uk))− uk∥U

≤ ∥∇Vα(wk)−∇Vα(uk)∥U∥PX (uk − 2σk∇Vα(uk))− uk∥U .

We divide this inequality by the norm of PX (uk − 2σk∇Vα(uk))− uk and thus, we get

(1−µ)ε ≤ ∥∇Vα(wk)−∇Vα(uk)∥U ≤ ∥∇Vα(wk)−∇Vα(ū)∥U+∥∇Vα(ū)−∇Vα(uk)∥U . (6.10)

We recall that we have derived the convergences ∥PX(uk − 2σk∇Vα(uk)) − uk∥U → 0 and
uk → ū in X as k → ∞ in (6.5). Together with the definition of {wk}k∈N, see (6.8), we
conclude

∥wk − ū∥U ≤ ∥uk − ū∥U + ∥PX (uk − 2σk∇Vα(uk))− uk∥U → 0,

as k → ∞. Finally, taking the limit k → ∞ in (6.10) and using the continuity of ∇Vα, we
arrive at the contradiction

0 < (1− µ)ε ≤ 0.

The descent method can be formulated for any continuously differentiable functional
f : U → R. In addition, it is sufficient to assume that the feasible set is convex and closed.
Consequently, the boundedness of the feasible set is not needed for proving the convergence
theorem, see as well Theorem 6.3. However, the descent technique for the merit functional Vα

uses Danskin’s theorem, see Section 2.4, which requires the assumption of a convex, closed,
and bounded set.
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6.2 Augmented Lagrangian Method

In this section, we move on to GNEPs with nonconvex constraints. In the following, we
consider a N -players game where the i-th player’s optimization problem reads

min
vi∈Ui

θi(v
i, u−i) s.t. G(vi, u−i) ∈ K, (vi, u−i) ∈ X , (6.11)

and study GNEPs that consist of these minimization problems. In contrast to Section 6.1
from before, we additionally consider the nonconvex constraints G(vi, u−i) ∈ K. Regarding
the involved infinite-dimensional spaces, we assume that U and X are Banach spaces. In the
optimization problem, the objective function θi : U → R is considered to be differentiable
in its i-th component, and the constraints are assumed to be expressed by a completely
continuous operator G : U → X with a completely continuous derivative. Furthermore, let
K ⊆ X be a convex and closed set, and let X ⊆ U also be convex and closed. We note that
we make no assumptions about the convexity of the nonlinear constraints. Speaking from
an application point of view, such nonconvex constraints can arise from a solution operator
to a partial differential equation, for example.

In the section that follows, we propose an augmented Lagrangian approach and discuss
its convergence with respect to the constraints. As stated in Subsection 2.3.3, the augmented
Lagrangian technique necessitates a differentiable multiplier term. To obtain a differentiable
multiplier term, it is necessary to select a space in which the squared distance functional
for a convex and closed set is continuously differentiable. The canonical choice is a Hilbert
space, but in this section we expand it to a uniformly smooth and uniformly convex Banach
space Y . In this regard, we reformulate the problem by introducing an operator e that maps
the original function space X to Y . In the following, we will concentrate on the GNEP
corresponding to the reformed i-th player’s problem

min
vi∈Ui

θi(v
i, u−i) s.t. e(G(vi, u−i)) ∈ KY , (vi, u−i) ∈ X . (6.12)

Regarding the reformulated problem, let e : X → Y be a linear and bounded operator, and
let KY ⊆ Y be a convex and closed set such that x ∈ K is equivalent to e(x) ∈ KY . The
latter equivalence holds if and only if we are in the situation e−1(KY ) = K, see Lemma 3.2.
Assumption wise, we require (A9) for the underlying spaces and (B1) for the objective
functional.

We note that one could have also considered a GNEP with differing constraints Gi for
each i ∈ [N ] and in the same manner differing ei : Xi → Yi, Ki, KYi , and Xi. Then the
optimization problem for the i-th player reads

min
vi∈Ui

θi(v
i, u−i) s.t. Gi(v

i, u−i) ∈ Ki, vi ∈ Xi.
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We address the nonconvex constraints in (6.12) in a suitable subproblem of the augmented
Lagrangian method’s algorithm. Here, instead of minimization problems, we examine sub-
problems comprised of suitable VIs. To approximately solve the VIs, we could employ the
descent method presented in Section 6.1.

Due to the lack of convexity, convergence only occurs towards the respective GNEP’s
KKT points, i.e., quasi-Nash equilibria and variational equilibria. Consequently, the conver-
gence theory examines the convergence to KKT points. Specifically, we demonstrate that
the weak limit of the sequence created by the augmented Lagrangian method is a stationary
point of the squared distance functional of the relevant constraints and a KKT point, i.e., a
quasi-Nash equilibrium or a variational equilibrium for the corresponding optimization prob-
lems. Consequently, the demonstration of convergence consists of two phases: feasibility and
optimality. These considerations are grounded in the works [27,72].

For the proof of feasibility, we require an ERCQ assumption, see again Definition 2.62
for its definition. In general, we must be cautious about whatever problem is selected for the
ERCQ. In this regard, we typically assume that a point satisfies the ERCQ with respect to
the original problem (6.11) instead of the reformulated problem as stated in (6.12).

Before examining the augmented Lagrangian approach for quasi-Nash equilibria and
variational equilibria, we elaborate on the assumptions of the sets K and KY and on the
requirements of the duality mapping JY .

First, we note that K is a convex and closed set due to the condition K = e−1(KY ). In
fact, if we have x, y ∈ K and µ ∈ [0, 1], then we obtain by the linearity of e

e(µx+ (1− µ)y) = µe(x) + (1− µ)e(y) ∈ KY ,

and thus, it follows that µx+(1−µ)y ∈ K. If KY is closed, then its complement Kc
Y is open

and consequently, e−1(Kc
Y ) = (e−1(KY ))

c is again open by the continuity of the operator e.
Thus, we obtain that K = e−1(KY ) is closed. Overall, we have shown that K is a convex and
closed set. Hence, in order to ensure the existence of such an operator, we should assume
that K defines a convex and closed set. In any case, one has to assume that KY is a convex
and closed set. This cannot be inferred from possible properties of K, unless one interprets
e−1 : Y → X as an inverse operator.

In addition, the condition that KY is convex and closed is necessary for differentiating
the squared distance functional dist2(·,KY ) that we have examined in Proposition 2.58 with
respect to its differentiability. For the formulation of first-order optimality conditions using
the tangent cone, it is necessary for X to be convex and closed.

So far, we have assumed that Y is a uniformly smooth and uniformly convex Banach space
up to this point. We might easily simplify this assumption by demanding only some duality
map attributes. For the convergence theory, it is sufficient to suppose that Y is a Banach
space in which the duality map JY exists, is continuous, bijective, bounded on bounded
sets, and its inverse J−1

Y is also bounded on bounded sets. Additionally, we stipulate that
the projection is continuous. This is the case, for instance, for a Banach space Y that is
uniformly smooth and uniformly convex, see Lemma 2.52, Proposition 2.54, Proposition 2.56,
and Proposition 2.57.

110



CHAPTER 6. ALGORITHMS AND METHODS 6.2. AUGMENTED LAGRANGIAN

6.2.1 Augmented Lagrangian Method for Quasi-Nash Equilibria

In this subsection, we develop an augmented Lagrangian method and focus on its convergence
behavior to quasi-Nash equilibria. We assume that X ⊆ U admits the product structure
X =

∏
i∈[N ]Xi with given nonempty, convex, and closed sets Xi ⊆ Ui. Thus, the reformulated

GNEP consisting of the problems (6.12) reads

min
vi∈Ui

θi(v
i, u−i) s.t. vi ∈ Xi, e(G(vi, u−i)) ∈ KY , i ∈ [N ]. (6.13)

The assumption of the product structure X =
∏

i∈[N ]Xi will be shown to be crucial for
proving convergence results. In Remark 6.10, we specify in which steps this assumption is
critical.

In Subsection 2.3.2, we have studied the Lagrangian Li
Y : U × Y ∗ → R, which is defined

by
Li
Y (v

i, u−i, λ̃i) = θi(v
i, u−i) + ⟨λ̃i, e(G(vi, u−i))⟩Y ∗,Y . (6.14)

We introduce its augmented version Li
ρi

: U×Y ∗ → R corresponding to the i-th optimization

problem in (6.13) for each player i ∈ [N ] and for some parameter ρi > 0 by

Li
ρi(v

i, u−i, wi) = θi(v
i, u−i) +

ρi

2

∥∥e(G(vi, u−i)) +
J−1
Y (wi)

ρi
− PKY

(
e(G(vi, u−i)) +

J−1
Y (wi)

ρi

)∥∥2
Y

= θi(v
i, u−i) +

ρi

2
dist2

(
e(G(vi, u−i)) +

J−1
Y (wi)

ρi
,KY

)
.

Here, wi ∈ Y ∗ denotes a bounded and safeguarded version of the Lagrangian multiplier.
We note that one can view wi as a Lagrangian multiplier estimate for the constraint

e(G(u)) ∈ KY and one can interpret e∗wi ∈ X∗ as an estimate for the Lagrangian multiplier
λi for the original constraint G(u) ∈ K. Indeed, instead of G(v) ∈ K we consider the
augmented Lagrangian term for e(G(v)) ∈ KY . Formally, the Lagrangian term for G(v) ∈ K
would be ⟨λi, G(v)⟩X∗,X , while the Lagrangian term for e(G(v)) ∈ KY would correspond to

⟨λ̃i, e(G(v))⟩Y ∗,Y = ⟨e∗λ̃i, G(v)⟩X∗,X .

Thus, e∗λ̃i can indeed be viewed as an approximation of λi. Since e∗ is linear and bounded
from Y ∗ to X∗, we conclude that e∗(Y ∗) is a subspace of X∗. Hence, we consider wi to be
an approximation of λ̃i and e∗λ̃i to be an approximation of λi, resulting in e∗wi being an
approximation of λi.

In our setting, the norm ∥ · ∥Y is Fréchet differentiable on Y \{0} and its derivative is
uniformly continuous on bounded subsets that do not contain some neighborhood of 0, see
Proposition 2.57. Moreover, by Proposition 2.58 the squared distance functional dist2(·, A)
is differentiable for any convex, closed set A ⊆ Y and its derivative reads〈

dist2y(y,A), h
〉
Y ∗,Y

=
〈
(∥ · ∥2Y )′(y − PA(y)), h

〉
Y ∗,Y

= 2⟨JY (y − PA(y)), h⟩Y ∗,Y .

Here, the projection PA : Y → A is continuous on Y and uniformly continuous on any
bounded subset of Y , see Lemma 2.52.

Next, we state the algorithm of the augmented Lagrangian approach:
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Algorithm 6.4.

0. Choose a bounded set B ⊆ Y ∗ and the parameters ρ0 ∈ RN
>0, γ > 1 and τ ∈ (0, 1)

arbitrarily.

For k = 0, 1, 2, 3, . . . :

1. If uk satisfies stopping criterion: STOP

2. Choose wi
k ∈ B, i ∈ [N ], and compute an approximate solution uk+1 to the system of

VIs

uk+1 ∈ X ,
〈[(

Li
ρik

)
vi(v

i, u−i
k+1, w

i
k)
]
|
vi=ui

k+1

, zi − uik+1

〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Xi, i ∈ [N ].

(6.15)

3. Compute for any i ∈ [N ]

rik+1 =
∥∥∥e(G(uk+1))− PKY

(
e(G(uk+1)) +

J−1
Y (wi

k)

ρik

)∥∥∥
Y
.

4. If k = 0, or k ≥ 1 and rik+1 ≤ τrik, then set ρik+1 = ρik. Otherwise, set ρik+1 = γρik for
all i ∈ [N ].

In the second step of the algorithm, a typical selection for the bounded version of the La-
grangian multiplier is

wi
k = PB

Å
ρik−1JY

(
e(G(uk)) +

J−1
Y (wi

k−1)

ρik−1

− PKY

(
e(G(uk)) +

J−1
Y (wi

k−1)

ρik−1

))ã
, i ∈ [N ],

see [72]. This choice is equal to wi
k = PB(λ̃

i
k) for λ̃

i
k as defined in (2.27). We note that one

can simplify this selection by applying the same updates for all wi
k and using only a single

wk and a single ρk for all i ∈ [N ]. Furthermore, an approximate solution uk+1 ∈ X to the
VIs (6.15) is characterized by the representation〈[(

Li
ρik

)
vi(v

i, u−i
k+1, w

i
k)
]
|
vi=ui

k+1

, zi − uik+1

〉
U∗
i ,Ui

≥ ⟨εik, zi − uik+1⟩U∗
i ,Ui ∀ zi ∈ Xi, i ∈ [N ].

(6.16)
To demonstrate the convergence of the algorithm, we assume that a sequence {εik}k∈N ⊆ U∗

i

is chosen such that it holds εik → 0 as k → ∞ and assume that the computation of an
approximate solution in the second step is well-posed.

The solution uk+1 to the system (6.15) cannot be regarded as a quasi-Nash equilibrium of
the associated game consisting of (6.13) since the solution’s feasibility cannot be guaranteed
in general.

Often, we say that {uk}k∈N is generated by Algorithm 6.4 and indirectly include the cor-
responding parameter sequences with this phrase, i.e., {ρik}k∈N ⊆ RN

>0, {rik}k∈N ⊆ RN
≥0, and

{wi
k}k∈N ⊆ B, i ∈ [N ], are simultaneously generated by the algorithm without mentioning

them directly.
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Next, we examine the convergence of the augmented Lagrangian approach, as described
in Algorithm 6.4. Due to the nonconvexity of the constraints, we can only demonstrate the
first-order optimality conditions and not the convergence to a Nash equilibrium but merely a
quasi-Nash equilibrium. The convergence proof consists of two components: feasibility and
optimality.

Lemma 6.5. Let {uk}k∈N ⊆ X be generated by Algorithm 6.4 and let the i-th derivative of
θi be bounded on bounded sets. If {ukl}l∈N ⊆ X is a weakly convergent subsequence, then
its weak limit ū is a stationary point to

min
u∈U

dist2(e(G(u)),KY ),

i.e., the first-order optimality condition holds at ū.

Proof. Let i ∈ [N ] be arbitrary. Since X ⊆ U is closed with respect to the weak sequential
topology, it holds ū ∈ X . Moreover, by Proposition 2.58, we can rewrite the derivative of
the squared distance functional via the duality mapping JY as

dist2v(v,KY ) = 2JY
(
v − PKY

(v)
)

∀ v ∈ Y,

and thus, we obtain〈
dist2v

(
e(G(·)) + J−1

Y (wk−1)
ρk−1

,KY
)
(v), h

〉
U∗,U

= 2
〈
Gv(v)

∗e∗JY
(
e(G(v)) +

J−1
Y (wk−1)
ρk−1

− PKY

(
e(G(v)) +

J−1
Y (wk−1)
ρk−1

))
, h

〉
U∗,U

,

for all v ∈ Y and h ∈ U . Considering the corresponding subsequences in this equality, we
distinguish between two cases where the parameter sequence {ρikl−1}l∈N is either bounded
or unbounded.

In the case of a bounded subsequence {ρikl−1}l∈N, there exists some m ∈ N with ρikl−1 =

ρikm−1 for all l ≥ m. By the fourth step of Algorithm 6.4, we obtain

rikl−1 ≤ τkl−1−(kl−1−1)rikl−1−1 = τkl−kl−1rikl−1−1 for all l ≥ m.

Since it holds PKY

(
e
(
G(ukl+1

)
)
+

J−1
Y (wi

kl+1−1)

ρikl+1−1

)
∈ KY by the definition of the projection operator,

we can conclude the estimate

dist
(
e(G(ukl+1

)),KY
)
≤

∥∥e(G(ukl+1
))− PKY

(
e(G(ukl+1

)) +
J−1
Y (wi

kl+1−1)

ρikl+1−1

)∥∥
Y
= rikl+1

. (6.17)

Combining the last two inequalities that we have derived, we obtain

0 ≤ dist
(
e(G(ukl+1

)),KY
)
≤ rikl+1

≤ rikl+1−1 ≤ τkl+1−kmrikm−1 → 0,

as l → ∞. By the continuity of the functional

dist2(e(G(·)),KY ) =
∥∥e(G(·))− PKY

(
e(G(·))

)∥∥2
Y
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with respect to the weak sequential topology, we achieve that ū is a root of this functional,
i.e., it holds dist2(e(G(ū)),KY ) = 0. Hence, ū is a global minimizer and a stationary point
to the minimization problem over dist2(e(G(·)),KY ).

Next, we are in the case where the subsequence of parameters {ρikl−1}l∈N is unbounded,

i.e., it holds ρikl−1 → ∞ as l → ∞. We are going to show that it implies〈
dist2vi(e(G(·)),KY )(ū), h

i
〉
U∗
i ,Ui

≥ 0 ∀hi ∈ TXi(ū
i).

We argue by contradiction and assume that there exists an element yi ∈ Xi with the property〈
dist2vi(e(G(·)),KY )(ū), y

i − ūi
〉
U∗
i ,Ui

< 0. (6.18)

Since {wi
kl−1}l∈N ⊆ Y ∗ is bounded and ρikl−1 → ∞ as l → ∞ in the current case, it holds

lim
l→∞

[
e(G(ukl+1

)) +
J−1
Y (wi

kl+1−1)

ρikl+1−1

]
= e(G(ū)).

Thus, we obtain the convergence〈
dist2vi

(
e(G(·))+ J−1

Y (wi
kl+1−1)

ρikl+1−1

,KY
)
(ukl+1

), yi−uikl+1

〉
U∗
i ,Ui

→
〈
dist2vi(e(G(·)),KY )(ū), y

i−ūi
〉
U∗
i ,Ui

,

as l → ∞. Since the limit is negative by (6.18), it implies the existence of a positive constant
c1 > 0 with 〈

dist2vi
(
e(G(·)) + J−1

Y (wi
kl+1−1)

ρikl+1−1

,KY
)
(ukl+1

), yi − uikl+1

〉
U∗
i ,Ui

< −c1, (6.19)

for sufficiently large l. We recall the definition of an approximate solution and the introduc-
tion of the sequence {εk}k∈N in (6.16). Since ukl+1

is an approximate solution to the system
of VIs (6.15), we obtain

⟨εikl+1−1, y
i − uikl+1

⟩U∗
i ,Ui ≤

〈[(
Li
ρikl+1−1

)
vi(v, w

i
kl+1−1)

]
|v=ukl+1

, yi − uikl+1

〉
U∗
i ,Ui

=
〈
(θi)vi(ukl+1

), yi − uikl+1

〉
U∗
i ,Ui

+
ρikl+1−1

2

〈
dist2vi

(
e(G(·)) + J−1

Y (wi
kl+1−1)

ρikl+1−1

,KY
)
(ukl+1

), yi − uikl+1

〉
U∗
i ,Ui

,

and inserting the estimate (6.19) into this inequality, we achieve

⟨εikl+1−1, y
i − uikl+1

⟩U∗
i ,Ui <

〈
(θi)vi(ukl+1

), yi − uikl+1

〉
U∗
i ,Ui

−
ρikl+1−1

2
c1. (6.20)

Since the derivative (θi)vi is assumed to be bounded on bounded sets, it implies the existence
of a constant c2 ∈ R such that it holds〈

(θi)vi(ukl+1
), yi − uikl+1

〉
U∗
i ,Ui

≤ c2
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for sufficiently large l. Finally, we insert this bound into (6.20) and arrive at the conclusion

lim
l→∞

⟨εikl+1−1, y
i − uikl+1

⟩U∗
i ,Ui ≤ c2 − lim

l→∞

ρikl+1−1

2
c1 = −∞,

which contradicts εikl+1−1 → 0 in U∗
i as l → ∞. Altogether, we obtain

〈
dist2v(e(G(·)),KY )(ū), h

〉
U∗,U

=
∑
i∈[N ]

〈
dist2vi(e(G(·)),KY )(ū), h

i
〉
U∗
i ,Ui

≥ 0 ∀h ∈ TX (ū),

and thus, ū is a stationary point of minu∈U dist2(e(G(u)),KY ).

We have already assumed in the lemma that such a weakly convergent sequence of
{uk}k∈N exists. We note that the existence of a weakly convergent subsequence is estab-
lished if we assume that X ⊆ U is bounded and the Banach space U is reflexive. Indeed, if
X is bounded, then Algorithm 6.4 creates a sequence {uk}k∈N that is bounded. In the case
of a reflexive Banach space U , a combination of the Eberlein–Šmulian and Banach–Alaoglu
theorems, see Lemma 2.31, implies the existence of a weakly convergent subsequence. We
conclude that the weak limit point resides in X due to the closedness of X .

Next, we compare [27, Lemma 5.2] and [72, Lemma 7.3] to determine the assumptions
for the weak limit ū ∈ X to be a feasible point.

Proposition 6.6. Let e(X) be dense in Y . If u ∈ X is a stationary point to the optimization
problem minu∈U dist2(e(G(u)),KY ) and satisfies the ERCQ, then it holds e(G(u)) ∈ KY and
G(u) ∈ K.

Proof. Let i ∈ [N ] be arbitrary. We want to prove G(u) ∈ e−1(KY ) = K, i.e., e(G(u)) =
PKY

(
e(G(u))

)
∈ KY . In other words, we want to show

e(G(u))− PKY

(
e(G(u))

)
= 0. (6.21)

The ERCQ ensures by Definition 2.62 that there exists some radius R > 0 such that it holds

BX
R (0) ⊆ G(u) +Gvi(u)(Xi − ui)−K.

We conclude that for all x ∈ X with ∥x∥X ≤ R there exists elements y ∈ K and zi ∈ Xi

with

x = G(u) +Gvi(u)z
i − ui − y. (6.22)

We apply JY to the operator in (6.21). This results in a functional in Y ∗, to which we can
apply the element e(x) ∈ Y with x having the representation (6.22). This procedure yields〈

JY
(
e(G(u))− PKY

(
e(G(u))

))
, e(x)

〉
Y ∗,Y

=
〈
JY

(
e(G(u))− PKY

(
e(G(u))

))
, e
(
Gvi(u)(z

i − ui)
)〉

Y ∗,Y

+
〈
JY

(
e(G(u))− PKY

(
e(G(u))

))
, e(G(u)− y)

〉
Y ∗,Y

.

(6.23)
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First off, we investigate the first term in (6.23). The stationarity assumption of u, the
formula Proposition 2.58 for the derivative of the squared distance functional, and zi being
an element in Xi implies〈

JY
(
e(G(u))− PKY

(
e(G(u))

))
, e
(
Gvi(u)(z

i − ui)
)〉

Y ∗,Y

=
1

2

〈
dist2vi(e(G(·)),KY )(u), z

i − ui
〉
U∗
i ,Ui

≥ 0.

(6.24)

Next, we consider the case of the second term in the right-hand side of (6.23). For any
h1 ∈ Y and h2 ∈ KY we make use of the following trick by adding and subtracting PKY

(h1)
in the right side of the following dual product〈

JY
(
h1 − PKY

(h1)
)
, h1 − h2

〉
Y ∗,Y

=
〈
JY

(
h1 − PKY

(h1)
)
, h1 − PKY

(h1)
〉
Y ∗,Y

+
〈
JY

(
h1 − PKY

(h1)
)
, PKY

(h1)− h2
〉
Y ∗,Y

.
(6.25)

We can easily rewrite the first dual product on the right-hand side by Definition 2.53 of the
duality mapping JY . Consequently, we will investigate the second one. Note that the element
PKY

(h1) minimizes the functional h 7→ 1
2∥h − h1∥2Y on the set KY . Since the derivative of

this functional is equal to JY (h− h1), the first-order optimality condition for this minimizer
reads 〈

JY
(
PKY

(h1)− h1
)
, h2 − PKY

(h1)
〉
Y ∗,Y

≥ 0 ∀h2 ∈ KY .

We insert this estimate into (6.25) and make use of Definition 2.53 to conclude〈
JY

(
h1 − PKY

(h1)
)
, h1 − h2

〉
Y ∗,Y

≥ ∥h1 − PKY
(h1)∥2Y ≥ 0. (6.26)

Since e(y) is an element of KY because of y ∈ K, we obtain for the second term in (6.23)〈
JY

(
e(G(u))− PKY

(
e(G(u))

))
, e(G(u))− e(y)

〉
Y ∗,Y

≥ 0. (6.27)

Altogether, we insert (6.24) and (6.27) into (6.23) and get〈
JY

(
e(G(u))− PKY

(
e(G(u))

))
, e(x)

〉
Y ∗,Y

≥ 0 ∀x ∈ BX
R (0).

Moreover, by virtue of scaling and the operator’s linearity, this inequality holds for all x ∈ X.
By density of e(X) in Y and by continuity of e, it implies

JY
(
e(G(u))− PKY

(
e(G(u))

))
= 0.

This condition is equivalent to∥∥∥JY (e(G(u))− PKY

(
e(G(u))

))∥∥∥
Y ∗ = 0,

and since it holds ∥JY (h)∥Y ∗ = ∥h∥Y , see Definition 2.53, it yields the desired result (6.21).
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In the following, we demonstrate the boundedness of the corresponding Lagrangian mul-
tipliers {λi

k}k∈N ⊆ X∗, i ∈ [N ] and prove that the weak-∗ limit point forms a KKT point
with ū of the respective problems (6.11) under appropriate assumptions, see Proposition 6.7
and Proposition 6.8 below. Furthermore, if we assume that the ERCQ for the reformulated
problem (6.13), i ∈ [N ], holds true, then we are able to prove the convergence to a KKT point
(ū, λ̃) of the GNEP consisting of (6.13), i ∈ [N ], see Proposition 6.9 below. In this case, we
can extract a weakly convergent subsequence of the bounded sequence {λ̃i

k}k∈N ⊆ Y ∗ since
Y is reflexive due to the Milman–Pettis theorem, see Theorem 2.41 and Lemma 2.31.

Considering the proof’s strategy of the next result, we apply the generalized open map-
ping theorem, see Theorem 2.35, to a suitable functional. We follow the approach in [26, The-
orem 5.2] and use the generalized open mapping theorem on the functional

(x, y) 7→ G(ū) +Gui(ū)(x− ūi)− y

on the domain Xi ×K. However, we want to emphasize that this is not the only possibility
and in the works [27, Theorem 5.5] and [72, Theorem 7.4], the open mapping theorem is
applied to x 7→ G(ū) +Gui(ū)x−K on the domain Xi − ūi.

Proposition 6.7. Let {uk}k∈N ⊆ X be generated by Algorithm 6.4 and let the i-th deriva-
tive of θi be bounded on bounded sets. We assume that {uk}k∈N has a weakly convergent
subsequence {ukl}l∈N in U . If the ERCQ holds in the weak limit ū, then {λi

kl
}l∈N is bounded

in X∗.

Proof. We show the boundedness of the Lagrangian multiplier {λi
kl
}l∈N in X∗. To this end,

we use the ERCQ and apply the generalized open mapping theorem to a suitable operator.
During this procedure, we will also exploit the assumption that the operator G and its
derivative are completely continuous.

First, we note that it holds ū ∈ X because X ⊆ U is closed with respect to the weak
sequential topology. Since the ERCQ (2.6) holds in ū, we have by definition

0 ∈ int
(
G(ū) +Gvi(ū)(Xi − ūi)−K

)
. (6.28)

Next, we will apply the generalized open mapping theorem, see Theorem 2.35, to some
suitable operator in order to demonstrate the existence of some radius R > 0 with

BX
R (0) ⊆ G(ū) +Gvi(ū)

(
(Xi − ūi) ∩BUi

1 (0)
)
−K. (6.29)

To this end, we define the operator Ψ : Ui ×X → X by

Ψ(x, y) = Gvi(ū)(x− ūi)− y +G(ū),

for any x ∈ Xi and y ∈ K. The graph of Ψ is given by the following set

graph(Ψ)=
{
(x, y, z) ∈ Ui ×X ×X : x ∈ Xi, y ∈ K, z = Gvi(ū)(x− ūi)− y +G(ū)

}
.

However, this is the intersection of the convex, closed set Xi × K × X and the linear and
bounded operator’s null space (x, y, z) 7→ z −Gvi(ū)(x− ūi) + y −G(ū). Consequently, the
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graph is convex and closed. Furthermore, the ERCQ implies the property 0 ∈ int(rangeΨ)
and we note that the point (ūi, G(ū)) ∈ Xi×K is an element of Ψ−1(0) since Ψ(ūi, G(ū)) = 0
holds true. The generalized open mapping theorem, see Theorem 2.35, yields the following
result

0 ∈ intΨ
(
BUi

R1
(ūi)×BX

R2
(G(ū))

)
,

for some radii R1 > 0 and R2 > 0. Hence, there exists some radius R > 0 with

BX
R (0) ⊆ Gvi(ū)

(
Xi ∩BUi

R1
(ūi)− ūi

)
−K ∩BX

R2
(G(ū)) +G(ū).

For y ∈ (Xi∩BUi
R (ūi)− ūi), we get that y has the form y = z− ūi with some z ∈ Xi∩BUi

R (ūi).

Moreover, we obtain y ∈ BUi
R1

(0) and y ∈ (Xi− ūi), thus, we arrive at y ∈ (Xi− ūi)∩BUi
R1

(0).

For the second part, let y ∈ (K ∩ BX
R2

(G(ū)) − G(ū). Then there exists an element

z ∈ K ∩ BX
R2

(G(ū)) such that y = z − G(ū). Furthermore, it holds z ∈ K and by the
representation of y, that means y ∈ K −G(ū). Specifically, we choose the value R1 = 1, and
the generalized open mapping theorem yields the existence of some radius R > 0 with

BX
R (0) ⊆ G(ū) +Gvi(ū)

(
(Xi − ūi) ∩BUi

1 (0)
)
−K,

as we have claimed in (6.29).
By the definition of the dual norm, we are able to choose a sequence {bikl}l∈N ⊆ BX

R (0)

that satisfies the properties
∥∥bikl∥∥X = 1 and

〈
λi
kl
, bikl

〉
X∗,X

≥ 1
2∥λ

i
kl
∥X∗ .

Consequently, there are elements yikl ∈ K and zikl ∈ Xi with ∥zikl − ūi∥Ui ≤ 1 and

−Rbikl = G(ū) +Gvi(ū)(z
i
kl
− ūi)− yikl .

Moreover, we obtain the estimate∥∥∥G(ukl) +Gvi(ukl)(z
i
kl
− uikl)−

(
G(ū)) +Gvi(ū)(z

i
kl
− ūi)

)∥∥∥
X

≤ ∥G(ukl)−G(ū)∥X +
∥∥Gvi(ukl)−Gvi(ū)

∥∥
L (Ui;X)

∥zikl − uikl∥Ui

+
∥∥Gvi(ū)(ū

i − uikl)
∥∥
X
.

(6.30)

The first term on the right-hand side of (6.30) converges to zero since G is assumed to
be completely continuous, i.e., it follows G(ukl) → G(ū) in X as l → ∞ due to the weak
convergence ukl ⇀ ū in U as l → ∞. Furthermore, Theorem 2.49 yields that the Fréchet
derivative Gvi(ū) of G(·) at ū is again completely continuous and therefore, it holds

Gvi(ū)u
i
kl
→ Gvi(ū)ū

i,

as l → ∞. Thus, the third term in (6.30) converges to zero. Moreover, by assumption we
know that Gvi : U → L (Ui;X) is completely continuous and thus, we obtain the strong
convergence Gvi(ukl) → Gvi(ū) in L (Ui;X) as l → ∞. In case of the second term in (6.30),
we apply the boundedness of ∥zikl − uikl∥Ui , which follows from

∥zikl − uikl∥Ui ≤ ∥zikl − ūi∥Ui + ∥ūi − uikl∥Ui ≤ 1 + ∥ūi − uikl∥Ui
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and the weak convergence of {ukl}l∈N. This shows the convergence of the second term
towards zero. All together, we have as l → ∞

δikl =
∥∥Rbikl +G(ukl) +Gvi(ukl)(z

i
kl
− uikl)− yikl

∥∥
X

→ 0.

Furthermore, note that ukl is an approximate solution to the VIs (6.15). Then it holds

⟨εikl−1, z
i − uikl⟩U∗

i ,Ui ≤
〈
(θi)vi(ukl), z

i − uikl
〉
U∗
i ,Ui

+ ρikl−1

〈
e∗JY

(
e(G(ukl)) +

J−1
Y (wi

kl−1)

ρikl−1

− PKY

(
e(G(ukl)) +

J−1
Y (wi

kl−1)

ρikl−1

))
,

Gvi(ukl)(z
i − uikl)

〉
X∗,X

=
〈
(θi)vi(ukl), z

i − uikl
〉
U∗
i ,Ui

+
〈
λi
kl
, Gvi(ukl)(z

i − uikl)
〉
X∗,X

(6.31)
for all zi ∈ Xi by definition of λi

kl
via λi

kl
= e∗λ̃i

kl
, see (2.27). Adding a zero we obtain

R

2
∥λi

kl
∥X∗ ≤ ⟨λi

kl
, Rbikl⟩X∗,X

=
〈
λi
kl
, Rbikl +G(ukl) +Gvi(ukl)(z

i
kl
− uikl)− yikl

〉
X∗,X

+
〈
λi
kl
, yikl −G(ukl)−Gvi(ukl)(z

i
kl
− uikl)

〉
X∗,X

,

and inserting zi = zikl in (6.31), we can estimate

R

2
∥λi

kl
∥X∗ ≤ δikl∥λ

i
kl
∥X∗ + ⟨λi

kl
, yikl −G(ukl)⟩X∗,X +

〈
(θi)vi(ukl), z

i
kl
− uikl

〉
U∗
i ,Ui

− ⟨εikl−1, z
i
kl
− uikl⟩U∗

i ,Ui .

We apply Lemma 2.65 to arrive at the inequality

R

2
∥λi

kl
∥X∗ ≤ δikl∥λ

i
kl
∥X∗ + ζikl +

〈
(θi)vi(ukl)− εikl−1, z

i
kl
− uikl

〉
U∗
i ,Ui

(6.32)

We derive the following estimate for the last term in (6.32)〈
(θi)vi(ukl)− εikl−1, z

i
kl
− uikl

〉
U∗
i ,Ui

≤
∥∥(θi)vi(ukl)− εikl−1

∥∥
U∗
i
∥zikl − uikl∥Ui ≤ C,

where we used that the i-th derivative of θi is bounded on bounded sets and weakly convergent
sequences are bounded. Here, C > 0 denotes some constant. We note that the sequences
{δikl}l∈N and {ζikl}l∈N in the right-hand side of (6.32) converge to zero as l → ∞ and we select

l large enough so that it holds |δikl | ≤
R
4 and |ζikl | ≤ C. Altogether, we obtain R

4 ∥λ
i
kl
∥X∗ ≤ 2C

by inserting the bounds into (6.32) and we conclude that {λi
kl
}l∈N is bounded in X∗.

In the next result, we are in the same situation of the previous proposition. Again,
we assume that {uk}k∈N has a weakly convergent subsequence and the ERCQ holds in the
weak limit. By the result from above, we know that the sequence of Lagrangian multipliers
is bounded in X∗. In the next result, we further assume that the sequence of Lagrangian
multipliers converges weakly-∗ in X∗ (e.g. if X is reflexive or separable) and e(X) is dense
in Y . We prove that the weak limit ū is a quasi-Nash equilibrium.
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Proposition 6.8. Let {uk}k∈N ⊆ X be generated by Algorithm 6.4 and the i-th derivative
of θi be bounded on bounded sets and pseudomonotone. We assume that {uk}k∈N admits
a weakly convergent subsequence in U , i.e., ukl ⇀ ū in U as l → ∞, and the weak limit ū
fulfills the ERCQ. If there exist weakly-∗ convergent subsequences of the bounded multipliers
{λi

kl
}l∈N ⊆ X∗ with the limit point λi ∈ X∗ for all i ∈ [N ], then it holds

〈[(
Li
X

)
vi(v

i, ū−i, λi)
]
|vi=ūi

, zi − ūi
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Xi,

⟨λi, y −G(ū)⟩X∗,X ≤ 0 ∀ y ∈ K.
(6.33)

If e(X) is additionally dense in Y , then it yields G(ū) ∈ K and (ū, λ) ∈ U × (X∗)N satisfies
the KKT conditions, i.e., ū is a quasi-Nash equilibrium.

Proof. Let {λi
klm

}m∈N ⊆ X∗ be a weakly-∗ convergent subsequence with λi
klm

∗
⇀ λi in X∗ as

m → ∞. By Lemma 2.65, it holds for all y ∈ X

⟨λi, y −G(ū)⟩X∗,X = lim
m→∞

[
⟨λi

klm
, y −G(uklm )⟩X∗,X − ζiklm

]
≤ 0.

Thus, the second inequality of the KKT conditions is satisfied. In order to prove the first
KKT condition, we show the convergence of both terms of the Lagrangian’s derivative. Let
zi ∈ Xi be arbitrarily fixed. As in equation (6.30) we have as m → ∞∥∥Gvi(uklm )(zi − uiklm )−Gvi(ū)(z

i − ūi)
∥∥
X

→ 0.

Since uklm is an approximate solution to the VIs (6.15), it holds

⟨εiklm−1, z
i − uiklm ⟩U∗

i ,Ui ≤
〈
(θi)vi(uklm ), zi − uiklm

〉
U∗
i ,Ui

+
〈
λi
klm

, Gvi(uklm )(zi − uiklm )
〉
X∗,X

(6.34)

for all zi ∈ Xi. Thus, applying lim supm→∞ in (6.34) and using εiklm−1 → 0 in U∗
i as m → ∞,

it yields

0 = lim sup
m→∞

⟨εiklm−1, z
i − uiklm ⟩U∗

i ,Ui ≤ lim sup
m→∞

〈
(θi)vi(uklm ), zi − uiklm

〉
U∗
i ,Ui

+
〈
λi, Gvi(ū)(z

i − ūi)
〉
X∗,X

.
(6.35)

For the first term on the right-hand side of (6.35), we exploit the pseudomonotonicity of
(θi)vi for all i ∈ [N ]. Similarly, considering zi = ūi and applying the limit inferior as m → ∞
in (6.34) gives

0 ≤ lim inf
m→∞

〈
(θi)vi(uklm ), ūi − uiklm

〉
U∗
i ,Ui

. (6.36)

The pseudomonotonicity of (θi)vi for any i ∈ [N ] and (6.36) yields

lim sup
m→∞

〈
(θi)vi(uklm ), zi − uiklm

〉
U∗
i ,Ui

≤
〈
(θi)vi(ū), z

i − ūi
〉
U∗
i ,Ui
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for all zi ∈ Xi. Then we arrive at

0 ≤
〈
(θi)vi(ū), z

i − ūi
〉
U∗
i ,Ui

+
〈
λi, Gvi(ū)(z

i − ūi)
〉
X∗,X

=
〈[(

Li
X

)
vi(v

i, ū−i, λi)
]
|vi=ūi

, zi − ūi
〉
U∗
i ,Ui

.

The feasibility follows from Lemma 6.5 and Proposition 6.6 and thus, (ū, λ) ∈ U × (X∗)N is
a KKT pair.

Next, we state an example for which the pseudomonotonicity of the i-th derivative of θi
is satisfied as we have assumed in Proposition 6.8. Indeed, it is fulfilled if θi : U → R is of the
form θi(u) = θ̃i(ι‹U (u))+ γ

2∥u
i∥2Ui

for a given reflexive Banach space U that admits a uniformly
convex dual space U∗. Since (θi)ui is the sum of a completely continuous operator and a
monotone, hemicontinuous operator, it is pseudomonotone by Proposition 2.48. Indeed, it
holds 〈

(θi)ui(u), zi
〉
U∗
i ,Ui

= ⟨ι∗‹Ui
(θ̃i)ũi(ι‹U (u)), zi⟩U∗

i ,Ui + γ⟨JUi(u
i), zi⟩U∗

i ,Ui . (6.37)

The first operator is completely continuous because ι‹U : U → ‹U is assumed to be com-
pletely continuous. Furthermore, by definition of the duality mapping JUi : Ui → U∗

i , see
Definition 2.53, we obtain the nonnegativity of the following term

γ⟨JUi(u
i)− JUi(v

i), ui − vi⟩U∗
i ,Ui = γ∥ui − vi∥2Ui

≥ 0,

which yields the monotonicity of the second term of (6.37). Moreover, the duality mapping
JUi : Ui → U∗

i is hemicontinuous by Proposition 2.54. Hence, the operator (θi)ui is indeed
pseudomonotone, conferring Proposition 2.48.

Next, we formulate a similar result to Proposition 6.7 and Proposition 6.8, but this
time we investigate the Lagrangian Li

Y instead of Li
X , see again (6.14) and (2.18) for their

respective definitions. In this case, we require that the ERCQ holds for the reformulated
problems (6.13), i ∈ [N ], and we are able to show the boundedness of the Lagrangian
multipliers in Y ∗ and not only in X∗. Therefore, we obtain the existence of a weakly
convergent subsequence of {λ̃i

k}k∈N ⊆ Y ∗ since Y is reflexive by the Milman–Pettis theorem.
Moreover, we prove its weak convergence to the Lagrangian multipliers λ̃i ∈ Y ∗.

Proposition 6.9. Let {uk}k∈N ⊆ X be generated by Algorithm 6.4 and let the i-th derivative
of θi be bounded on bounded sets and pseudomonotone. Furthermore, we assume that
{λ̃i

k}k∈N is defined as in (2.27) and the sequence {uk}k∈N contains a weakly convergent
subsequence {ukl}l∈N in U . If the ERCQ holds in the weak limit ū with respect to the
reformulated problem (6.13) for all i ∈ [N ], then {λ̃i

kl
}l∈N is bounded in Y ∗ and it contains a

further subsequence that converges weakly to an element λ̃i ∈ Y ∗ for all i ∈ [N ] that fulfills〈[(
Li
Y

)
vi(v

i, ū−i, λ̃i)
]
|vi=ūi

, zi − ūi
〉
U∗
i ,Ui

≥ 0 ∀ zi ∈ Xi,

⟨λ̃i, y − e(G(ū))⟩Y ∗,Y ≤ 0 ∀ y ∈ KY .
(6.38)

Additionally, if ū is feasible, then the tuple (ū, λ̃) ∈ U × (Y ∗)N satisfies the KKT conditions
of the GNEP consisting of (6.13), i.e., ū is a quasi-Nash equilibrium.
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Proof. We follow the steps in the proofs of Proposition 6.7 and Proposition 6.8. Namely, we
separate the proof into two parts and begin by showing the boundedness of the Lagrangian
multiplier {λ̃i

kl
}l∈N in Y ∗. To this end, we use the ERCQ and apply the generalized open

mapping theorem. Afterwards, we show in the proof’s second step that the KKT conditions
are satisfied for a feasible limit point ū.

Since the ERCQ holds in ū ∈ X with respect to the reformulated problems (6.13) for all
i ∈ [N ], we have by definition

0 ∈ int
(
e
(
G(ū)

)
+ e

(
Gvi(ū)(Xi − ūi)

)
−KY

)
.

Next, we apply the generalized open mapping theorem, see Theorem 2.35, to the operator
Ψ : Ui × Y → Y that is defined by

Ψ(x, y) = e
(
Gvi(ū)(x− ūi)

)
− y + e

(
G(ū)

)
,

for any x ∈ Xi and y ∈ KY . The generalized open mapping theorem implies the existence of
some radius R > 0 with

BY
R(0) ⊆ e

(
G(ū)

)
+ e

(
Gvi(ū)

(
(Xi − ūi) ∩BUi

1 (0)
))

−KY .

By the definition of the dual norm, we are able to choose a sequence {bikl}l∈N ⊆ Y

that satisfies ∥bikl∥Y = 1 and
〈
λ̃i
kl
, bikl

〉
Y ∗,Y ≥ 1

2∥λ̃
i
kl
∥Y ∗ . Consequently, there are elements

yikl ∈ KY and zikl ∈ Xi with ∥zikl − ūi∥Ui ≤ 1 and

−Rbikl = e(G(ū)) + e
(
Gvi(ū)(z

i
kl
− ūi)

)
− yikl .

Moreover, passing the limit l → ∞ yields

δikl =
∥∥∥Rbikl + e(G(ukl)) + e

(
Gvi(ukl)(z

i
kl
− uikl)

)
− yikl

∥∥∥
Y
→ 0.

This fact follows by an analogous estimate as in (6.30) and the same reasoning as in the
proof of Proposition 6.7.

Since ukl is an approximate solution to the VIs (6.15), it holds

⟨εikl−1, z
i − uikl⟩U∗

i ,Ui ≤
〈
(θi)vi(ukl), z

i − uikl
〉
U∗
i ,Ui

+
〈
λ̃i
kl
, e
(
Gvi(ukl)(z

i − uikl)
)〉

Y ∗,Y
(6.39)

for all zi ∈ Xi. Adding a zero and inserting zi = zikl in (6.39), we can estimate

R

2
∥λ̃i

kl
∥Y ∗ ≤ δikl∥λ̃

i
kl
∥Y ∗ + ⟨λ̃i

kl
, yikl − e(G(ukl))⟩Y ∗,Y +

〈
(θi)vi(ukl), z

i
kl
− uikl

〉
U∗
i ,Ui

− ⟨εikl−1, z
i
kl
− uikl⟩U∗

i ,Ui .

We apply Lemma 2.65 to arrive at the inequality

R

2
∥λ̃i

kl
∥Y ∗ ≤ δikl∥λ̃

i
kl
∥Y ∗ + ζikl +

〈
(θi)vi(ukl)− εikl−1, z

i
kl
− uikl

〉
U∗
i ,Ui

. (6.40)
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In this inequality, we exploit that the sequences {δikl}l∈N and {ζikl}l∈N on the right-hand side
converge to zero as l → ∞ and that the i-th derivative of θi is bounded on bounded sets.
Therefore, we are able to select l large enough such that it holds R

4 ∥λ̃
i
kl
∥Y ∗ ≤ 2C for some

constant C > 0 and we conclude that {λ̃i
kl
}l∈N is bounded in Y ∗.

By the Milman–Pettis theorem, see Theorem 2.41, we know that Y ∗ is reflexive and we
conclude by Lemma 2.31 that there exists a weakly convergent subsequence λ̃i

klm
⇀ λ̃i in

Y ∗ as m → ∞. Moreover, {λ̃i
klm

}m∈N also converges in the weak-∗ topology of Y ∗ to λ̃i as
m → ∞, see Remark 2.32. By Lemma 2.65, we get for all y ∈ Y

⟨λ̃i, y − e(G(ū))⟩Y ∗,Y = lim
m→∞

[
⟨λ̃i

klm
, y − e(G(uklm ))⟩Y ∗,Y − ζiklm

]
≤ 0,

which shows the second inequality of the KKT conditions.
Next, we choose an arbitrarily fixed element zi ∈ Xi and apply the limit superior in

(6.39), which yields

0 ≤ lim sup
m→∞

〈
(θi)vi(uklm ), zi − uiklm

〉
U∗
i ,Ui

+
〈
λ̃i, e

(
Gvi(ū)(z

i − ūi)
)〉

Y ∗,Y
, (6.41)

where we used εiklm−1 → 0 in U∗
i as m → ∞. Similarly, we consider zi = ūi and apply the

limit inferior as m → ∞ in (6.39) to obtain

0 ≤ lim inf
m→∞

〈
(θi)vi(uklm ), ūi − uiklm

〉
U∗
i ,Ui

. (6.42)

Then exploiting the pseudomonotonicity of (θi)vi for any i ∈ [N ] and (6.42) yields

0 ≤
〈
(θi)vi(ū), z

i − ūi
〉
U∗
i ,Ui

+
〈
λ̃i, e

(
Gvi(ū)(z

i − ūi)
)〉

Y ∗,Y

=
〈[(

Li
Y

)
vi(v

i, ū−i, λ̃i)
]
|vi=ūi

, zi − ūi
〉
U∗
i ,Ui

.

for all zi ∈ Xi. In the case of a feasible point ū, we follow that ū is a quasi-Nash equilibrium.

Up to now, we have shown in this section that the weak limit ū ∈ X is admissible under
the ERCQ assumption with respect to the original problem. If we assume that {λi

kl
}l∈N ⊆ X∗

has a weakly-∗ convergent subsequence with limit λi and that the ERCQ holds for the GNEP
consisting of (6.13), i ∈ [N ], then it holds λi = e∗λ̃i. Indeed, for any x ∈ X we can make
the following limit computation

⟨λi, x⟩X∗,X = lim
l→∞

⟨λi
kl
, x⟩X∗,X = lim

l→∞
⟨λ̃i

kl
, ex⟩Y ∗,Y = ⟨λ̃i, ex⟩Y ∗,Y = ⟨e∗λ̃i, x⟩X∗,X .

Remark 6.10. In the proof of convergence, we required the assumption X =
∏

i∈[N ]Xi.
This assumption is indispensable in the following steps of the proof:

• First, the tangent cone TXi(u
i) is only defined if and only if Xi itself exists. If we do

not have a product structure, then the tangent cone cannot be calculated in a point
ui ∈ Ui but only in u ∈ X ⊆ U .
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• By definition of the tangent cone, see Definition 2.59, given an arbitrary convex, closed
set X , the first-order optimality condition to the problem minu∈U dist2(e(G(u)),KY )
in u ∈ X reads 〈

dist2v
(
e(G(·)),KY

)
(u), h

〉
U∗,U

≥ 0 ∀h ∈ TX (u), (6.43)

which is equivalent to〈
dist2v

(
e(G(·)),KY

)
(u), z − u

〉
U∗,U

≥ 0 ∀ z ∈ X .

Then it yields〈
dist2v(e(G(·)),KY )(u), z − u

〉
U∗,U

=
∑
i∈[N ]

〈
dist2vi(e(G(·)),KY )(u), z

i − ui
〉
U∗
i ,Ui

(6.44)
for all z ∈ X . However, we only have zi ∈ Ui and the terms in the sum of the right-hand
side do not express the first-order optimality condition. In the case of X =

∏
i∈[N ]Xi,

we claim that we obtain the equivalence of (6.43) and〈
dist2vi(e(G(·)),KY )(u), h

i
〉
U∗
i ,Ui

≥ 0 ∀hi ∈ TXi(u
i). (6.45)

In fact, if (6.45) holds, then we can make use of (6.44) and conclude that u ∈ X is a
stationary point of minv∈X dist2(e(G(v)),KY ). In the case of the other direction of the
equivalency, we assume that (6.43) is valid for all h ∈ TX (u) = TX1(u

1)×· · ·×TXN
(uN ).

Since 0 ∈ TXi(u
i) holds true for any i ∈ [N ], we obtain for h = (hi, 0, . . . , 0) ∈ TX (u)

the following result〈
dist2vi(e(G(·)),KY )(u), h

i
〉
U∗
i ,Ui

=
〈
dist2v(e(G(·)),KY )(u), h

〉
U∗,U

≥ 0.

• We cannot infer (zi, u−i) ∈ X for u ∈ X by z ∈ X and vice versa. For example, one
can consider X = B1(0), u = (0, 1) ∈ X , and z = (1, 0) ∈ X . In this example, it holds
(z1, u−1) = (1, 1) /∈ X .

• For proving the boundedness of the Lagrangian multiplier in the proof of the KKT
conditions, an appropriate ERCQ assumption is essential. In fact, the ERCQ provides a
representation of elements in X . If it holds X ̸=

∏
i∈[N ]Xi, however, the representation

cannot be reconnected with an Xi element.

6.2.2 Augmented Lagrangian Method for Variational Equilibria

In the following subsection, we will discuss an augmented Lagrangian method for finding
variational equilibria to the GNEP consisting of (6.13). Due to the nonconvex nature of the
constraints, we can only expect variational equilibria and not normalized equilibria. Recall
that normalized equilibria of the problem are characterized by a solution to

min
v∈U

∑
i∈[N ]

θi(v
i, u−i) s.t. v ∈ X , e(G(v)) ∈ KY , (6.46)
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but variational equilibria satisfy this problem’s first-order optimality conditions. In this
context, the convergence behavior is of interest. Specifically, we demonstrate that the weak
limit of the augmented Lagrangian method is a KKT point of the associated optimization
problem.

We introduce the augmented Lagrangian functional Lρ : U × Y ∗ → R for some given
positive parameter ρ > 0 and an element u ∈ U by

Lρ(v, w;u) =
∑
i∈[N ]

[
θi(v

i, u−i)
]
+

ρ

2

∥∥e(G(v)) +
J−1
Y (w)
ρ − PKY

(
e(G(v)) +

J−1
Y (w)
ρ

)∥∥2
Y
.

Recalling the derivative of the distance functional, see Proposition 2.58, the derivative of Lρ

with respect to its first component can be computed as follows〈
Lρ(v,w; u)v, h

〉
U∗,U

=
〈[ ∑

i∈[N ]

[
θi(v

i, u−i)
]
+

ρ

2

∥∥e(G(v)) +
J−1
Y (w)
ρ − PKY

(
e(G(v)) +

J−1
Y (w)
ρ

)∥∥2
Y

]
v
, h

〉
U∗,U

=
∑
i∈[N ]

[〈
(θi)vi(v

i, u−i), hi
〉
U∗
i ,Ui

]
+ ρ

〈
JY

(
e(G(v)) +

J−1
Y (w)
ρ − PKY

(
e(G(v)) +

J−1
Y (w)
ρ

))
,
(
e(G(·))

)
v(v)h

〉
Y ∗,Y

,

(6.47)
for all h ∈ U . Next, we state the augmented Lagrangian method for the optimization problem
(6.46) with a subproblem that utilizes first-order stationary points.

Algorithm 6.11.

0. Choose a bounded set B ⊆ Y ∗ and the parameters ρ0 > 0, γ > 1, τ ∈ (0, 1).

For k = 0, 1, 2, 3, . . . :

1. If uk satisfies a given stopping criterion: STOP

2. Choose wk ∈ B and compute an approximate solution uk+1 to the VI

uk+1 ∈ X ,
〈[(

Lρk

)
v(v, wk;uk+1)

]
|v=uk+1

, z − uk+1

〉
U∗,U

≥ 0 ∀ z ∈ X . (6.48)

3. Compute

rk+1 =
∥∥e(G(uk+1))− PKY

(
e(G(uk+1)) +

J−1
Y (wk)
ρk

)∥∥
Y
.

4. If k = 0, or k ≥ 1 and rk+1 ≤ τrk, then set ρk+1 = ρk. Otherwise, set ρk+1 = γρk.

A typical choice for the element wk ∈ B in the second step of Algorithm 6.11 is given in [72]
and reads as follows

wk = PB

(
ρk−1JY

(
e(G(uk)) +

J−1
Y (wk−1)
ρk−1

− PKY

(
e(G(uk)) +

J−1
Y (wk−1)
ρk−1

)))
.
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As discussed previously, w ∈ Y ∗ can be viewed as a Lagrangian multiplier estimate for the
constraint e(G(u)) ∈ KY and can be regarded as a safeguarded version of the Lagrangian
multiplier λ̃. Looking at the VI (6.48) in the second step of the algorithm, one can interpret
an exact solution uk+1 to the VI (6.48) as a variational equilibrium to the game that is
connected with the minimization problem

min
v∈U

Lρk(v, wk;uk+1) s.t. v ∈ X . (6.49)

In fact, we consider a game where player i’s problem is given by

min
vi∈Ui

[
θi(v

i, u−i
k+1) +

ρk
2N

dist2
(
e(G(v)) +

J−1
Y (wk)
ρk ,KY

)]
s.t. (vi, u−i

k+1) ∈ X . (6.50)

Comparing this minimization problem with the original i-th players problem in the beginning
of the section, see (6.11), we observe that we have a different cost functional, u is replaced by
uk+1 and in (6.50) we have no constraints involving G and K. If we write the counterpart to
the problem (2.13) whose solutions are normalized equilibria for the game formed by (6.50),
we must add up all cost functionals, which yields

min
v∈U

∑
i∈[N ]

[
θi(v

i, u−i
k+1) +

ρk
2N

dist2
(
e(G(v)) +

J−1
Y (wk)
ρk ,KY

)]
s.t. v ∈ X .

Simplifying the cost functional demonstrates that this problem is equivalent to the one
presented in (6.49). Transferring the notion of a variational equilibrium from game consisting
of (6.11) to the game connected to (6.50) reveals that solving (6.48) is the exact condition
for a variational equilibrium uk+1 to the game formed by (6.50).

We only need to solve the VI (6.48) approximately for the algorithm, implying that we
are interested in searching for a solution uk+1 ∈ X to the VI〈[(

Lρk

)
v(v, wk;uk+1)

]
|v=uk+1

, z − uk+1

〉
U∗,U

≥ ⟨εk, z⟩U∗,U ∀ z ∈ X . (6.51)

In order to prove that Algorithm 6.11 converges, we consider a sequence {εk}k∈N ⊆ U∗ with
εk → 0 in U∗ as k → ∞. We can compute an approximate solution in the second step
of Algorithm 6.11 by applying the descent method for continuously differentiable objective
functionals to a suitable minimization problem, see Section 6.1 where we considered a similar
procedure.

The remaining part of this subsection is dedicated to the convergence analysis of Algo-
rithm 6.11. Regarding this topic, we investigate the weak limit of the proposed sequence for
feasibility, stationarity, and optimality requirements. Since the minimization problem (6.46)
in this section involves nonconvex constraints, we cannot prove that the limit is a normalized
equilibrium.

However, we are able to compute KKT points of the problem (6.46) and we will verify
that the first-order optimality criterion hold. The latter is discussed in the following lemma
that provides similar results as stated in [27, Lemma 5.2], [72, Lemma 7.3], and [101, Lemma
6.20]. Moreover, the proof strategy is outlined in [66, Lemma 4.3] and we will adapt the
same procedure to our problem. For proving the following statements we need some kind
of ERCQ, see Definition 2.62. If nothing is mentioned the ERCQ is taken with respect to
(6.52) below.
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Lemma 6.12. Let the sequence {uk}k∈N ⊆ X be generated by Algorithm 6.11 and let
{ukl}l∈N ⊆ X be a weakly convergent subsequence with the weak limit ū. Furthermore, let
the derivative

(∑
i∈[N ] θi(v

i, u−i)
)
v : U → U∗ be bounded on bounded sets. Then ū ∈ X

is a stationary point of minv∈X dist2(e(G(v)),KY ), i.e., the first-order optimality condition
holds at ū.

Proof. This proof follows the lines of the proof of Lemma 6.5 from above. We split the proof
in two different cases. Either, the parameter subsequence {ρkl−1}l∈N in the fourth step of
Algorithm 6.11 is bounded or unbounded.

In the case of a bounded subsequence {ρkl−1}l∈N, there exists some m ∈ N with ρkl−1 =
ρkm−1 for all l ≥ m and therefore, it has to hold rkl−1 ≤ τkl−kl−1rkl−1−1 for all l ≥ m by
the update rule of ρkl−1, see the fourth step in Algorithm 6.11. We estimate the distance
functional by the value rkl+1

, see (6.17), and obtain as l → ∞

0 ≤ dist(e(G(ukl+1
)),KY ) ≤ rkl+1

≤ rkl+1−1 ≤ τkl+1−kmrkm−1 → 0.

By the continuity of the functional dist2(e(G(·)),KY ) with respect to the weak sequential
topology, we conclude dist2(e(G(ū)),KY ) = 0, implying that ū is a stationary point.

In the case of an unbounded subsequence {ρkl−1}l∈N, we argue by contradiction and
assume that there are constants c1 > 0, c2 ∈ R, and an element y ∈ X with〈[

(dist2
(
e(G(v)) +

J−1
Y (wkl+1−1)
ρkl+1−1

,KY
)]

v
)|v=ukl+1

, y − ukl+1

〉
U∗,U

< −c1,

and ∑
i∈[N ]

〈
(θi)vi(ukl+1

), yi − uikl+1

〉
U∗
i ,Ui

≤ c2,

for an index l being sufficiently large. Since ukl+1
is an approximate solution to (6.48), it

fulfills the VI (6.51) and plugging the derivative of the Lagrangian (6.47) into the VI, we
arrive at the contradiction

lim
l→∞

⟨εkl+1−1, y − ukl+1
⟩U∗,U ≤ c2 − c1 lim

l→∞

ρkl+1−1

2
= −∞.

Next, we examine the conditions under which the weak limit ū ∈ X is a feasible point.
We refer to the works [27, Lemma 5.2] and [72, Lemma 7.3] for similar results.

Proposition 6.13. Let e(X) be dense in Y . If u ∈ X is a stationary point of
minv∈X dist2(e(G(v)),KY ) and satisfies the ERCQ, then it follows e(G(u)) ∈ KY and
G(u) ∈ K, i.e., u is feasible.

Proof. The proof proceeds in the same manner as the proof of Proposition 6.6. However,
this time the ERCQ holds in terms of the problem

min
v∈U

∑
i∈[N ]

θi(v
i, u−i) s.t. v ∈ X , G(v) ∈ K, (6.52)
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whereas in Proposition 6.6 we studied the ERCQ for the i-th minimization problem (6.11).
Consequently, for any x ∈ BX

R (0), we obtain the existence of elements y ∈ K and z ∈ X such
that it holds

x = G(u) +Gv(u)(z − u)− y.

Using an analogous equation as (6.23), we get

〈
e∗JY

(
e(G(u))−PKY

(
e(G(u))

))
, x

〉
X∗,X

=
〈
Gv(u)

∗e∗JY
(
e(G(u))−PKY

(
e(G(u))

))
, z−u

〉
U∗,U

+
〈
e∗JY

(
e(G(u))−PKY

(
e(G(u))

))
, G(u)−y

〉
X∗,X

.

The first term corresponds to the derivative of 1
2dist

2(e(G(·)),KY ), see Proposition 2.58, and
since u ∈ X is stationary, this term is nonnegative. The nonnegativity of the second term
follows from the estimate (6.26) that we have already derived in the proof of Proposition 6.6.
Altogether, using the density of e(X) in Y , it yields e(G(u)) ∈ KY and G(u) ∈ K.

In the following propositions, we show that the approximate solutions to the games (6.46)
and (6.52) converge to KKT points under given assumptions. In other words, they converge
to variational equilibria of the corresponding GNEP. We refer to [27, Theorem 5.4] and
[72, Theorem 7.4] for similar statements and we follow their proof strategy. As the main
tool, we apply again the generalized open mapping theorem, see Theorem 2.35, to a suitable
functional.

In particular, we prove in Proposition 6.14 the boundedness of {λkl}l∈N in the space X∗

under given assumptions. If there exists a weakly-∗ convergent subsequence, its limit fulfills
the KKT conditions, see Proposition 6.15. For example, this assumption is fulfilled if X is a
separable or reflexive space. Afterwards, we prove in Proposition 6.16 the boundedness of the
subsequence {λ̃kl}l∈N in the reflexive space Y ∗. To this end, we need the ERCQ assumption
for the reformulated problem (6.46). In this setting, we are allowed to extract a weakly
converging subsequence and show that the limit point is a KKT point of the corresponding
GNEP.

Proposition 6.14. Let {uk}k∈N ⊆ X be generated by Algorithm 6.11 and let the derivative(∑
i∈[N ] θi(v

i, u−i)
)
v : U → U∗ of the objective functional be bounded on bounded sets.

Furthermore, we assume that there is a subsequence of {uk}k∈N with ukl ⇀ ū in U as
l → ∞. If the ERCQ holds in the weak limit ū, then the sequence {λkl}l∈N is bounded in
X∗.

Proof. We follow the procedure of Proposition 6.7. However, we work with problem (6.52)
instead of the i-th problem (6.11). Consequently, we use the ERCQ with respect to the
optimization issue (6.52) and the derivative of G with respect to v.

As in the referred proof, we make use of the generalized open mapping theorem, see
Theorem 2.35. We conclude the existence of some radius R > 0, an element zkl ∈ X with
∥zkl − ū∥U ≤ 1, and an element ykl ∈ KY with

−Rbkl = G(ū) +Gv(ū)(zkl − ū)− ykl ,
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where bkl ∈ X is chosen with ∥bkl∥X = 1 and ⟨λkl , bkl⟩X∗,X ≥ 1
2∥λkl∥X∗ . We have assumed

that G and its derivative are completely continuous and therefore, it yields as l → ∞

δkl =
∥∥∥Rbkl +G(ukl) +Gv(ukl)(zkl − ukl)− ykl

∥∥∥
X

→ 0.

Furthermore, we exploit that ukl is an approximate solution to the VI (6.48) and fulfills
(6.51), from which we conclude

R

2
∥λkl∥X∗ ≤ δkl∥λkl∥X∗ + ζkl +

∑
i∈[N ]

〈
(θi)vi(ukl)− εkl−1, z

i
kl
− uikl

〉
U∗
i ,Ui

,

where the sequence {ζkl}l∈N appeared on the right-hand side due to Lemma 2.65. Conse-
quently, the subsequence {λkl}l∈N is bounded in X∗.

Proposition 6.15. Let {uk}k∈N ⊆ X be generated by Algorithm 6.11 and let the derivative(∑
i∈[N ] θi(v

i, u−i)
)
v : U → U∗ of the objective functional be bounded on bounded sets

and pseudomonotone. Furthermore, we assume that there is a subsequence of {uk}k∈N with
ukl ⇀ ū in U as l → ∞. If there exists a weakly-∗ convergent subsequence of {λkl}l∈N with
weak-∗ limit point λ, then it holds〈[(

LX
)
v(v, λ; ū)

]
|v=ū

, z − ū
〉
U∗,U

≥ 0 ∀ z ∈ X ,

⟨λ, y −G(ū)⟩X∗,X ≤ 0 ∀ y ∈ K.

Moreover, if e(X) is dense in Y , then (ū, λ) ∈ U × X∗ is a KKT pair, i.e., a variational
equilibrium to the game consisting of (6.11).

Proof. This proof is based on the proof of Proposition 6.8. Let {λklm
}m∈N ⊆ X∗ be a

weakly-∗ convergent subsequence with λklm

∗
⇀ λ in X∗ as m → ∞. Since G is completely

continuous and ζklm converges to zero due to Lemma 2.65, we obtain

⟨λ, y −G(ū)⟩X∗,X = lim
m→∞

[
⟨λklm

, y −G(uklm )⟩X∗,X − ζklm
]
≤ 0 ∀ y ∈ X.

Let z ∈ X be arbitrarily fixed. Then the pseuomonotonicity of
(∑

i∈[N ] θi(v
i, u−i)

)
v yields

0 ≤
∑
i∈[N ]

[〈
(θi)vi(ū), z

i − ūi
〉
U∗
i ,Ui

]
+
〈
λ,Gv(ū)(z − ū)

〉
X∗,X

=
〈[(

LX
)
v(v, λ; ū)

]
|v=ū

, z − ū
〉
U∗,U

.

Together with Lemma 6.12 and Proposition 6.13, we conclude that ū is feasible. Thus, the
tuple (ū, λ) ∈ U ×X∗ is a KKT pair.

The next proposition is similar to Proposition 6.16. Its proof follows the lines of the
proof of Proposition 6.16, but uses the ERCQ with respect to the reformulated problem
(6.46) instead of the reformulated i-th problems (6.13). We emphasize that we derive the
boundedness of the Lagrangian multiplier in Y ∗ in this result and not only the boundedness
of the corresponding multiplier in X∗ as in the results Proposition 6.14 and Proposition 6.15.
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Proposition 6.16. Let {uk}k∈N be generated by Algorithm 6.11 and let the derivative(∑
i∈[N ] θi(v

i, u−i)
)
v : U → U∗ be bounded on bounded sets and pseudomonotone. Further-

more, we assume that ukl ⇀ ū in U as l → ∞. If the ERCQ for the reformulated problem
(6.46) holds in ū, then the sequence {λ̃kl}l∈N is bounded in Y ∗ and it possesses a subsequence
that converges weakly to λ̃ ∈ Y ∗ such that〈[(

LY
)
v(v, λ̃; ū)

]
|v=ū

, z − ū
〉
U∗,U

≥ 0 ∀ z ∈ X ,

⟨λ̃, y − e(G(ū))⟩Y ∗,Y ≤ 0 ∀ y ∈ KY .

Furthermore, if ū is feasible, then (ū, λ̃) ∈ U×Y ∗ is a KKT pair, i.e., a variational equilibrium.

Overall, we have shown that the ERCQ assumption with respect to (6.46) implies that
there exists a subsequence such that it holds λ̃klm

⇀ λ̃ in Y ∗ as m → ∞. This fact follows
from the reflexivity of Y . Furthermore, if there exists a weakly-∗ convergent subsequence
{λklm

}m∈N in X∗, then we have proved that the limit λ satisfies λ = e∗λ̃.
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Chapter 7

Conclusion and Outlook

We have not succeeded in answering all our problems. The answers we have found
only serve to raise a whole set of new questions. In some ways we feel we are as
confused as ever, but we believe we are confused on a higher level and about more
important things. (Bernt Øksendal)

In this thesis, we have discussed GNEPs in infinite-dimensional spaces in the sense that
we have investigated the existence of equilibria, characterized those points using the regu-
larized Nikaido–Isoda merit functional, and studied algorithms and methods for computing
them. More precisely, we considered GNEPs without the assumption of convexity on the
problem’s objective functional. We applied a generalized version of the Kakutani theorem
to a solution mapping, which is based on the regularized Nikaido–Isoda functional and the
first-order optimality conditions. This allowed us to prove the existence of a fixed point of
the corresponding solution map. Furthermore, we characterize different types of equilibria
using regularized and localized Nikaido–Isoda functionals. Thus, we were able to prove that
these fixed points are related to the variational and normalized equilibria of the GNEP.
Based on a generalized version of Danskin’s theorem, which is a classic result on the dif-
ferentiability of min-max problems, we developed a derivative-based framework for deriving
continuity and differentiability results for the regularized and localized Nikaido–Isoda merit
functionals. Moreover, we presented an augmented Lagrangian method for approximating a
GNEP with nonconvex constraints and proved several statements regarding the convergence
to KKT points that characterize first-order equilibria.

One open task in the study of GNEPs with nonconvex constraints and objective func-
tionals is the application of the derived methods with an example from the real world. In
such a scenario, one can consider for the nonconvex constraint a solution operator to a par-
tial differential equation such as a hyperbolic equation describing traffic flow. Typically, one
cannot expect that a solution operator to a possibly ill-behaving partial differential equation
admits very convenient properties for the analysis of the problem such as smoothness or
convexity.
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Acronyms

CQ constraint qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ERCQ extended Robinson constraint qualification . . . . . . . . . . . . . . . . . . . 24

GNEP generalized Nash equilibrium problem . . . . . . . . . . . . . . . . . . . . . . 1

KKT Karush–Kuhn–Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

NEP Nash equilibrium problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

QVI quasi-variational inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

(Q)VI (quasi-)variational inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

RCQ Robinson constraint qualification . . . . . . . . . . . . . . . . . . . . . . . . . 24

VI variational inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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