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Abstract 
To limit the anthropogenic greenhouse gas effect, a variety of adjustments are required in 
the final energy sectors in addition to transforming the energy sector toward a climate-
neutral energy supply. For example, the integration of electric vehicles (EVs) enables the 
displacement of fossil fuels in the transport sector and leads to a stronger coupling of the 
transport and supply sectors. EVs can potentially provide flexibility as storage in this process 
through the new technology of bidirectional charging and discharging. Therefore, the 
objective of this cumulative dissertation is to quantify the added value of bidirectional EVs 
for both the user and the energy system. The developed modeling of bidirectional EVs has 
specificities depending on the point of view (system or user view) and the use case. 
To evaluate the added value of bidirectional EVs from the user perspective, the optimization 
model eFlame is further developed to evaluate the use cases of photovoltaic (PV) self-
consumption optimization and arbitrage trading via the spot markets. Due to the small 
power flows in the household, there is a requirement to model PV self-consumption 
optimization with variable charging and discharging efficiencies of the EV. Without this, 
revenue potentials are overestimated by 30%. For optimized trading in the spot market, 
consecutive trading in the day-ahead and intraday markets is modeled so that 
countertrading between the markets is possible. The modeled use cases show a high 
variability of revenue potentials depending on EV characteristics, user behavior, level and 
volatility of electricity prices, PV feed-in tariff, and numerous other influencing factors. Even 
taking into account the additional costs of bidirectional charging, however, both use cases 
become economical for an average user when investing in 2025. 
For the evaluation of the added value of bidirectional charging from an energy system 
perspective, the energy system model ISAaR is further developed in order to be able to 
analyze two systemically oriented vehicle-to-grid use cases: Arbitrage trading via the spot 
markets, and congestion management provision. For this purpose, bidirectional EVs are 
modeled via aggregated profiles per market area or per grid node in the transmission grid 
in order to keep the complexity as low as possible. Despite the additional investment costs, 
numerous bidirectional EVs are integrated in the modeled, cost-optimal future energy 
system. These, in turn, lead to improved integration of PV energy and reduce the necessary 
capacities of both stationary storage and thermal power plants, significantly lowering the 
overall costs of the energy system in turn. The provision of congestion management in the 
transmission grid can also be partially provided by bidirectional EVs, reducing energy 
system costs and greenhouse gas emissions by displacing thermal power plants. 
The use case of arbitrage trading via the spot markets can lead to added economic value 
for both the user and the energy system. Therefore, the regulatory framework should 
enable this use case. The other use cases considered can also be economical for either the 
users or the energy system, leading to the conclusion that the technology of bidirectional 
charging can be classified as an important part in the energy system of the future.
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Kurzfassung 
Zur Einschränkung des anthropogenen Treibhausgaseffekts bedarf es zusätzlich zur 
Transformation des Energiesektors hin zu einer klimaneutralen Energieversorgung auch in 
den Endenergiesektoren vielfältiger Anpassungen. So ermöglicht die Integration von 
Elektrofahrzeugen (EVs) die Verdrängung von fossilen Brennstoffen im Verkehrssektor und 
führt zu einer stärkeren Kopplung zwischen Verkehrs- und Bereitstellungssektor. EVs 
können durch die neue Technologie des bidirektionalen Ladens und Entladens dabei 
potenziell als Speicher Flexibilität bereitstellen. Ziel dieser kumulativen Dissertation ist daher 
die Quantifizierung des Mehrwerts bidirektionaler EVs sowohl für den Nutzer als auch das 
Energiesystem. Die entwickelten Modellierungen bidirektionaler EVs weisen Spezifika in 
Abhängigkeit der Betrachtungsweise (System oder Akteurssicht) und des Use Cases auf. 
Zur Bewertung des Mehrwerts bidirektionaler EVs aus Nutzersicht wird das 
Optimierungsmodell eFlame weiterentwickelt, um die Use Cases der Photovoltaik (PV)-
Eigenverbrauchsoptimierung und des zeitlichen Arbitrage-Handels am Spotmarkt 
bewerten zu können. Aufgrund der kleinen Leistungsflüsse im Haushalt ergibt sich die 
Anforderung, die PV-Eigenverbrauchsoptimierung mit variablen Lade- und 
Entladewirkungsgrad des EVs zu modellieren, da sich ansonsten um 30 % überschätzte 
Erlöspotenziale ergeben. Für den optimierten Handel am Spotmarkt wird das konsekutive 
Handeln am Day-Ahead- und am Intraday-Markt modelliert, so dass ein Countertrading 
zwischen den Märkten möglich ist. Die modellierten Use Cases weisen eine hohe Variabilität 
der Erlöspotenziale in Abhängigkeit der EV-Charakteristik, des Nutzerverhaltens, des 
Niveaus und der Volatilität der Strompreise, der PV-Einspeisevergütung, sowie zahlreicher 
weiterer Einflussfaktoren auf. Auch unter Beachtung der zusätzlichen Kosten durch das 
bidirektionale Laden werden beide Use Cases aber für einen durchschnittlichen Nutzer bei 
einer Investition im Jahr 2025 wirtschaftlich. 
Für die Bewertung des systemischen Mehrwerts des bidirektionalen Ladens wird das 
Energiesystemmodell ISAaR weiterentwickelt, um die Vehicle-to-Grid Use Cases zeitliche 
Arbitrage durch den Handel am Spotmarkt und Engpassmanagement- Bereitstellung aus 
Energiesystemsicht analysieren zu können. Bidirektionale EVs werden dafür über 
aggregierte Profile je Marktgebiet bzw. je Netzknoten im Übertragungsnetz modelliert, um 
die Komplexität möglichst gering zu halten. Trotz der zusätzlichen Investitionskosten 
werden im modellierten, kostenoptimalen zukünftigen Energiesystem zahlreiche 
bidirektionale EVs integriert. Diese führen wiederum zu einer verbesserten Integration der 
PV-Energie und zu verringerten notwendigen Kapazitäten von stationären Speichern sowie 
thermischen Kraftwerken, so dass die Gesamtkosten des Energiesystems signifikant sinken. 
Auch die Bereitstellung des Engpassmanagements im Übertragungsnetz kann teilweise 
durch bidirektionale EVs erbracht werden, wodurch Kosten und Treibhausgasemissionen 
des Energiesystems durch Verdrängung von thermischen Kraftwerken verringert werden. 
Der Use Case zeitliche Arbitrage durch Handel am Spotmarkt kann sowohl auf Nutzer- als 
auch auf Energiesystemseite zu einem ökonomischen Mehrwert führen, so dass der 
regulatorische Rahmen diesen Use Case ermöglichen sollte. Aber auch die anderen 
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betrachteten Use Cases können für die Nutzer oder das Energiesystem wirtschaftlich sein, 
so dass die Technologie des bidirektionalen Ladens als ein wichtiger Baustein im 
Energiesystem der Zukunft einzustufen ist.
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Validation, Data curation, Writing – original draft, Writing – review & editing, Supervision. 
Citation: Kern, T., Wendlinger, C. (2022). Added Value of Providing Transmission Grid 
Congestion Management via Bidirectionally Chargeable Electric Vehicles. 2022 18th 
International Conference on the European Energy Market (EEM), 2022. (Accepted, not yet 
published) 
This publication can be found in the Appendix. 
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1 Introduction 
To minimize the anthropogenic greenhouse effect and thus mitigate climate change, the 
EU and Germany have set themselves ambitious climate targets. At the European level, the 
energy system is to be completely climate-neutral by 2050 [1]; in Germany, the aim is to 
decarbonize the energy system by 2045 [2]. The turnaround in energy policy that has been 
initiated is leading to challenges at a wide variety of levels. In the final energy sectors of 
private households, the tertiary sector, industry and transport, applications and processes 
are being adapted through efficiency measures, fuel substitutions, flexibilization and 
electrification [3]. The transport sector in particular has been slow to reduce greenhouse 
gases in recent years. In Germany, in 2021 the emissions of just under 150 million t CO2 
increased compared to in 2020 and were above the emissions permitted by the Climate 
Action Law [4]. However, with various subsidies for electric vehicles (EVs) [5] and the 
increase in fuel and CO2 prices as a result of the Covid-19 crisis [6], 2020 and 2021 saw a 
dynamic increase in EV registrations [7].  
In the energy sector, the massive expansion of variable renewable energies and the 
associated substitution of conventional nuclear, coal and gas-fired power plants will lead to 
a completely new characteristic of electricity supply. Due to the volatility of the supply from 
wind and sun, electricity from these renewable energies will not be generated in line with 
the static demand from the final energy sectors in the future. Flexibilities in the energy 
system are therefore needed to ensure that the balance between electricity generation and 
consumption is maintained [3]. 
Currently, almost all EVs in Germany are charged unmanaged, although there are numerous 
projects working on smart charging of EVs based on grid status, electricity prices or 
electricity generation of renewable energies [8]. Bidirectionally chargeable electric 
vehicles (bidirectional EVs) represent a new technology that can address major challenges 
in the transportation final energy sector and the energy sector alike by a stronger coupling 
of these sectors. Bidirectional EVs can not only charge electricity, but also discharge via 
bidirectional electric vehicle supply equipment (EVSE) [9]. This enables a variety of use cases 
that can bring potential added value for the user and the energy system. If the user receives 
an ecological or economic added value, this also promotes the integration of EVs, as these 
then become more profitable in terms of overall costs. 
This cumulative dissertation therefore evaluates the added value of bidirectional EVs for the 
user and the energy system. In this introduction, Section 1.1 first identifies the current state 
of research and existing research gaps. From this, the research questions of this dissertation 
are derived in Section 1.2. Based on this, Section 1.3 presents the methodology to answer 
these research questions. Finally, the structure of this cumulative dissertation and 
classification of the publications is added in Section 1.4. 
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1.1 Literature Review and Research Gaps 

Bidirectional EVs can execute a wide variety of energy-related use cases, leading to 
increased coupling of the transportation sector with the energy sector [10]. In 
the ‘Bidirectional Charging Management’ (BCM) project, numerous use cases of 
bidirectional EVs were defined, which were divided into the groups Vehicle-to-Home (V2H), 
Vehicle-to-Grid (V2G) and Vehicle-to-Business (V2B) [11]. V2H includes the 
photovoltaic (PV) self-consumption optimization and the electricity tariff optimized 
charging and discharging. V2G implies arbitrage trading in the day-ahead and intraday 
market, CO2-optimized charging and discharging as well as different distribution and 
transmission grid-oriented use cases. V2B mainly deals with peak load shaving in companies 
in order to save grid fees. This dissertation focuses on the use cases PV self-consumption 
optimization, arbitrage trading and the provision of the ancillary service congestion 
management as a transmission grid-oriented use case. These selected use cases are 
prioritized in the BCM project, implemented in the field test, and show promising values 
from a user and system perspective. The main region of analysis from the user perspective 
is Germany, whereas the systemic analysis focuses on the European coupled energy system. 
However, the developed models can also be applied to other regions worldwide by 
adapting the parameters. In this section, this dissertation is classified within the existing 
research based on relevant studies, upon which the research questions are posed in the 
following section. 
The economic and ecological added values from the user's perspective on bidirectional EVs 
are of great relevance because ultimately the user makes the investment decision in a 
bidirectional EV and EVSE. Numerous studies model smart unidirectional charging 
EVs (smart EVs) and bidirectional EVs dealing with their revenue potentials for arbitrage 
trading. While investigations in studies of Illing et al. [12] and Shafiullah et al. [13] are still 
limited to unidirectional smart charging, the work of Bessa et al. [14], Rominger et al. [15], 
Schmidt et al. [16], Peterson et al. [17], and Pelzer et al. [18] model bidirectional EVs 
participating in the electricity spot markets. These studies show revenue potentials for 
bidirectional EVs in different spot markets worldwide, but do not focus on the modeling of 
a realistic user behavior and its impact on the revenues, and furthermore only model the 
trading on single electricity markets in a simplified way without the possibility of consecutive 
trading in different spot markets. PV self-consumption optimization has also been the 
subject of numerous studies. Publications of Salpakari et al. [19], Chen et al. [20], 
Erdinc et al. [21], Kataoka et al. [22], Wickert et al. [23] and Keiner et al. [24] model V2H with 
bidirectional EVs in a household and examine their revenue potentials in the countries 
Sweden, China, Portugal, Japan, and Germany. When comparing the studies, it becomes 
clear that the regulatory framework, such as the composition of the household electricity 
price, is a key influencing factor. Again, in these studies, user behavior is only inaccurately 
modeled, so that the effects of different parameterizations cannot be highlighted. In 
addition, a fixed charging and discharging efficiency of the EV is always assumed in order 
to keep the optimization problem linear. Englberger et al. [25] also already deal with a 
combination of different use cases for bidirectional EVs by segmenting the battery for front-
of-the-meter and behind-the-meter applications. Behind-the-meter applications refer to 
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use cases that happen on the energy user's side of the meter. Front-of-the-meter 
applications represent use cases that interact with the electricity grid off the energy user's 
side of the meter. However, this interesting modeling approach of Englberger et al. seems 
hardly feasible in terms of measurement technology, so that the need for more practice-
oriented modeling arises here. 
While V2B and V2H optimize energy flows behind the meter to enable, for example, savings 
in electricity costs, V2G applications are designed to meet the needs of the energy system. 
By integrating bidirectional EVs into the electricity market, studies of Hanemann et al. [26], 
Rodríguez et al. [27], and Huang et al. [28] describe a smoothing effect on electricity 
demand that also smoothes resulting electricity prices [26]. The publication of Wie et al. [10] 
also shows a positive ecological and economic effect of bidirectional EVs on integrated 
multi-energy systems. However, these demonstrated positive effects of bidirectional EVs 
refer to small- and medium-scale energy systems and are shown with a highly simplified 
modeling of the EVs. Furthermore, hardly any effects on other flexibilities, such as stationary 
battery storages and sector-coupling elements, are investigated. The work of 
Child et al. [29] analyzes this feedback of bidirectional EVs on the energy system, by 
indicating that reduced capacities of generation and storage are needed, but again only for 
a small-scale energy system, the Åland Islands near Finland. The integration of bidirectional 
EVs into a large European energy system model implies the challenge of no longer 
modeling each EV discretely, but rather performing such simplifications as clustering or 
aggregation of EV profiles. 
This challenge of realistic simplifications arises even more when modeling the provision of 
congestion management (curtailment of renewable energies and redispatch services). 
Redispatch services refer to short-term adjustments of the schedule of generation or 
consumption assets to lower congestions in the transmission grid [30]. The integration of 
bidirectional EVs or other storage assets leads to much more complex simulations of the 
European transmission grid. For example, the work of Böing [31] excludes storages in the 
congestion management run because of their time-coupled constraints, which introduces 
great complexity and considerable modeling challenges. Kotzur et. al analyze possibilities 
to handle the complexity of time coupling in energy system models, like temporal 
decomposition of the optimization problem, but point out that these possibilities are usually 
associated with complex implementations and numerous assumptions [66]. However, in the 
literature, some studies already deal with the integration of storages in the provision of 
ancillary services. The publications of Meyer-Huebner et al. [32], Xiong et al. [33], 
Eickmann et al. [34], Müller et al. [35] and Gutermuth et al. [36] model stationary storages 
or other time-coupling elements, such as power-to-gas units with virtual gas storages, 
providing redispatch services. These studies focus only on stationary and not mobile 
storages and limit the optimization to small-scale test systems, only few timesteps or to 
very simplified EV modeling. The integration of bidirectional EVs into the redispatch process 
is modeled in the work of Staudt et al. [37] and Thormann et al. [38] but with simplified 
heuristic modeling or without considering the operation of EVs and the system needs of 
redispatch services. None of the existing approaches in the literature explore the 
transferability of their modeling approaches to a large-scale European energy system, 
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which causes a very different complexity. Thus, the added values of bidirectional EVs can 
only be determined inadequately from a system perspective. 
In general, none of the studies mentioned in the previous two paragraphs address the 
question of how high the share of bidirectional EVs in the total EVs is optimal in a future 
multi energy system. This requires the more complex modeling of bidirectional EVs as an 
element that can be added endogenously optimized by the energy system model. However, 
answering this question is of great importance so that stakeholders in the field of energy 
can design their business models, policy makers their support mechanisms, and scientists 
their energy system models accordingly. Furthermore, the question arises to what extent 
bidirectional EVs can bring a combined added value from the user and energy system 
perspective, which this dissertation aims to answer. 

1.2 Research Questions 

The previously analyzed research gaps are transferred into the research questions of this 
dissertation. The definition of the research questions (RQ) is divided into three sections as 
shown in Figure 1-1.  
The first section of the research questions refers to the added value of bidirectional EVs for 
the user: 
1. What modeling specifications are required for the evaluation of revenue potentials of 

vehicle-to-home and vehicle-to-grid use cases? 
 

2. What are the revenue potentials and their most important influencing factors for 
vehicle-to-home and vehicle-to-grid use cases? 
 

3. What is the economic profitability of vehicle-to-home and vehicle-to-grid use cases 
considering the additional investment costs?  

The second section of the research questions deals with the added value of bidirectional 
EVs for the energy system: 
4. How do modeling specifications of bidirectional EVs need to be adapted to evaluate 

the European energy system perspective compared to modeling discrete EVs? 
 

5. How high is the optimal share of bidirectional EVs in the total EVs from a system cost 
perspective? 
 

6. What is the added value of bidirectional EVs integrated in the electricity markets and in 
congestion management in the transmission grid from an energy system perspective? 

The third section of the research questions brings together the previous sections and 
discusses the possibility of a combined added value for the user and the energy system. 
7. How can use cases of bidirectional EVs create combined added value from the user 

and the energy system perspective? 
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Figure 1-1 depicts the relationships between the research questions in the three sections 
and shows the sequential structure of this dissertation. It can be observed that the research 
questions within the sections are not considered completely separately but build on each 
other. The analysis of the revenue potentials and profitability of vehicle-to-grid and vehicle-
to-home use cases from the user perspective in RQ2 and RQ3 depend on the approach to 
modeling bidirectional EVs in RQ1. The assessment of the systemic cost-optimal share of 
bidirectional EVs in total EVs and its impact on the energy system in RQ5 and RQ6 depend 
on the developed modeling in RQ4. RQ7, in turn, builds on all the previously named RQs. 
There are also interdependencies between the analyses from the user perspective and from 
the system perspective. The detailed modeling to answer the research questions is 
described in the following section. 

 
Figure 1-1: Research questions (RQ) at user, energy system and combined perspective 

1.3 Methodology 

Based on the research questions established in the previous section, Figure 1-2 presents the 
methodology of this dissertation. The methodology is divided into the sub-areas of 
bidirectional charging from the user's point of view and from the energy system's point of 
view.  
First, the eFlame model (electric Flexibility Assessment Modeling Environment) with the 
optimization module ResOpt (Residential Optimizer) [Pub2] is further developed by a 
methodology for modeling V2H PV self-consumption optimization and V2G arbitrage 
trading from the user's perspective. For V2H, minimization of household electricity costs is 
modeled to allow evaluation of the revenue potentials of bidirectional EVs. The charging 
and discharging efficiencies are modeled to be variable, so that the revenue potentials of 
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bidirectional EVs are not overestimated. For V2G arbitrage trading, minimizing the charging 
costs while maximizing the revenue from discharging an EV is implemented. For this 
purpose, a rolling optimization is developed that allows trading in all consecutive spot 
markets. Countertrades can be used to take advantage of price differences in the 
consecutive spot markets. The next step merges V2H and V2G modeling to evaluate a 
combination option. Based on various sensitivity calculations, the revenue potentials and 
their most important influencing factors of the use cases are then analyzed. By evaluating 
the additional investment costs of bidirectional charging, the economic profitability of the 
different use cases can be assessed in a final step. 
Second, the energy system model ISAaR (Integrated Simulation Model for Unit Dispatch 
and Expansion with Regionalization) [39] is further developed by a methodology for 
modeling bidirectional EVs in the energy system and in congestion management provision 
in the transmission grid. To evaluate V2G arbitrage trading from an energy system 
perspective, a minimization of the total economic costs of the European energy system is 
performed. Different approaches to model bidirectional EVs are investigated in order to 
keep the complexity of the model as low as possible while representing bidirectional EVs 
realistically. Based on a scenario for the future European energy system, cost-optimal shares 
of bidirectional EVs in the total EVs are then determined for future years in the different 
European countries. For the evaluation of V2G congestion management provision, a 
minimization of congestion management costs in the European energy system is performed 
considering bidirectional EVs. For this purpose, different time slice lengths of the rolling 
optimization are analyzed, since the optimization problem has a very high complexity due 
to the time coupling constraints of bidirectional EVs. Finally, the impact of bidirectional EVs 
on the future energy system and the provision of congestion management in the 
transmission grid is assessed. This includes, for example, the impact of bidirectional EVs on 
the capacities of thermal power plants, renewable energies, and stationary battery storages 
as well as the impact on the total system costs. 
The methodology considers the interdependencies between the user and the energy 
system side through user behavior constraints for discrete EVs, mean investment costs for 
bidirectional charging, and future electricity prices. User behavior constraints are first 
analyzed for discrete EVs in use case arbitrage trading and then, in a simplified way, also 
modeled in the system perspective. The future mean investment costs of bidirectional EVs 
are passed to the energy system model ISAaR. ISAaR decides endogenously within the 
optimization, considering the additional costs of bidirectional charging, how high the cost-
optimal share of bidirectional EVs is for the future European energy system. Future 
electricity prices are in turn fed back to eFlame from the ISAaR energy system model to 
determine future revenue potentials for various users. 
In a consolidating step, the modeling approaches of bidirectional EVs from the user and 
energy system perspective are compared and evaluated. Finally, the highlighted added 
values of bidirectional EVs are summarized and a combination of added values from user 
and energy system perspectives is discussed. 
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Figure 1-2: Methodology for assessing the added value of bidirectional EVs for the user and 

the energy system 

1.4 Dissertation and Publication Structure 

The structure of this dissertation builds on the previous sections. Chapter 2 evaluates 
bidirectional charging from the user's perspective with regard to various influencing factors. 
Section 2.1 starts with the modeling developed for V2H and V2G use cases. Based on this, 
revenue potentials are determined for different user types in Section 2.2 with the 
highlighting of the revenues’ most important influencing factors. Section 2.3 compares the 
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the costs and characteristics of the future energy system. 
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the differences in modeling the user and system views. Section 4.2 analyzes which use cases 
combine well and when to obtain added value for the EV user and the energy system. 
Finally, Chapter 5 concludes by answering the research questions raised, discussing the key 
findings, and summarizing them. Based on this, an Outlook identifies the need for further 
research. 
Figure 1-3 summarizes the structure of this dissertation and assigns the research questions 
to the publications carried out. Each publication addresses several research questions. 
Publications 1 and 2 investigate bidirectional EVs from the user's perspective and answer 
the research questions RQ1 and RQ2 on modeling, economic efficiency, and the most 
important influencing factors for V2H and V2G use cases, respectively. The main part of this 
dissertation, considering the investment costs of bidirectional charging, complements these 
analyses by evaluating the profitability of bidirectional EVs today and in the future. 
Publications 3 and 4 evaluate the energy system view on bidirectional EVs, answering RQ4 
to RQ6. Publication 3 evaluates the effect of bidirectional EVs on the electricity market and 
other components in the future energy system. Publication 4 identifies the potential of 
bidirectional EVs to provide congestion management in the transmission grid and thus 
prevent renewable energy curtailment and reduce the operation of thermal power plants. 
The main part of this dissertation complements these publications by examining two 
sensitivities with greatly reduced investment costs of smart EVs to draw conclusions about 
the robustness of the results. Furthermore, additional investigations on the impact of 
bidirectional EVs on the regional residual load (load minus electricity generation of variable 
renewable energies) show indications for the grid loads in the electricity grid. 
Further, the main part of this dissertation addresses and answers RQ7 by summarizing and 
comparing the findings of the Chapters 2 and 3. 
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Figure 1-3: Structure and publications of this dissertation assigned to research questions at 
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2 Bidirectionally Chargeable Electric 
Vehicles from the User Perspective 
Based on the publications [Pub1] and [Pub2] and further research, this chapter analyzes the 
profitability of PV self-consumption optimization (V2H) and arbitrage trading (V2G) by 
bidirectional EVs. For this purpose, Section 2.1 first addresses the use case dependent 
requirements of the modeling, upon which the revenue potentials and most important 
influencing factors of the use cases are determined in Section 2.2. Section 2.3 then presents 
the economic profitability of bidirectional EVs by including the additional costs of 
bidirectional charging. 

2.1 Methods 

For the detailed evaluation of bidirectional EVs from the user's point of view, the model 
environment eFlame with the optimization module ResOpt has been further developed. 
The model environment eFlame allows a variable scenario creation for different use cases 
of bidirectional EVs or other energy assets, like stationary battery storages (SBS). In ResOpt, 
the mathematical optimization problem is formulated depending on the parameterization 
made in eFlame. The optimization problem can be formulated as linear programming (LP) 
or mixed integer linear programming (MILP). ResOpt is a module that is also integrated into 
other models, such as the distribution grid model GridSim of FfE Munich [40]. 
Figure 2-1 represents the structure of eFlame including ResOpt with the main decision and 
input variables. The model environment eFlame formulates scenarios in the database, which 
are read into Matlab and passed to ResOpt. The variable scenario definition in eFlame 
allows the calculation of numerous sensitivities, whereby the most important influencing 
factors of use cases can be determined. For each scenario created, the EV is modeled with 
three different charging strategies: 

- unmanaged charging: the EV charges directly after arriving at a charging location. 
- smart charging: the EV can postpone charging at a charging location within its 

flexibility limits. 
- bidirectional charging: the EV can charge and discharge at a charging location at 

any time within its flexibility limits. 
The differential electricity costs of the charging strategies can be used to determine 
revenues of a bidirectional or smart EV versus an unmanaged charging EV. 
Depending on the energy assets modeled in a use case, ResOpt introduces different 
decision variables: EV charging 𝑃ா௏,௖ , EV discharging 𝑃ா௏,ௗ and potentially standby losses 
of the EV and EVSE 𝑃ா௏,௟,௦, SBS charging 𝑃ௌ஻ௌ,௖ and discharging 𝑃ௌ஻ௌ,ௗ , PV 
curtailment 𝑃௉௏,௖௨௥௧ , heat pump (HP) demand 𝑃ு௉,௘௟ , as well as power from grid 𝑃 ஼௉,௜௡ and 
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power to grid 𝑃 ஼௉,௢௨௧ . In addition, public charging energy 𝐸ா௏,௣௨௕,௖ and driving 
energy 𝐸ா௏,ௗ௥௜௩௘ of the EV are considered as fixed input. For the combined modeling of 
V2H and V2G use cases, the decision variables 𝑃 ஼௉,௜௡,௩ଶ௚ and 𝑃 ஼௉,௢௨௧,௩ଶ௚ are integrated. A 
fixed thermal 𝑃ுு,௧௛ and electrical 𝑃ுு,௘௟ household demand, an electrical industry demand 
𝑃ூ௡ௗ,௘௟ as well as a fixed PV generation 𝑃௉௏ can also be provided, whereas industrial demand 
is not used in this dissertation. For the modeling of trading in consecutive spot markets, the 
decision variables 𝑃ா௏,௖௢௨,௕௨௬ and 𝑃ா௏,௖௢௨,௦௘௟௟ that represent countertrades are integrated. 
𝑃௦௖௛௘ௗ,஺஼ represents scheduled powers from previous optimization runs. A more detailed 
description of eFlame and integrated model ResOpt can be found in [Pub1] and [Pub2].  

 
Figure 2-1: Schematic representation of eFlame and ResOpt for evaluation of use cases of 

bidirectional EVs based on [Pub2] 

The use cases PV self-consumption optimization and arbitrage trading and a combined 
modeling of these use cases have different modeling requirements due to their 
fundamentally different functionality. Sections 2.1.1 and 2.1.2 address specifics in the 
modeling of the use cases, after which the basic mathematical formulation is derived in 
Section 2.1.3. 

2.1.1 Modeling of Charging and Discharging Efficiencies 
A very important aspect is the different modeling of the charging and discharging efficiency 
since this significantly influences the complexity of the optimization. [Pub2] shows that 
power losses of an inverter consist of a constant self-consumption, voltage losses at diodes 
and transistors that are proportional to the output power, and quadratic power-dependent 
losses caused by ohmic loss resistances. Figure 2-2 (a) shows the comparison of the real 
charging efficiency and different modeled charging efficiencies in a linear programming. 
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Modeling a fixed charging efficiency (line ‘fix’, red) leads to proportionally increasing 
charging losses to the AC charging power. A comparison with the real losses (yellow line) 
shows that the losses are greatly underestimated, especially for small charging powers. 
Modeling charging losses as a linear function (‘Interval 1’, light blue) or a piecewise linear 
function (‘Interval 2’, dark blue) results in a much better representation of the real losses. 
The modeling results in a mixed-integer linear programming with higher complexity, 
because in both cases constant losses depending on the Boolean operation variable 
(operating or not operating) are included [Pub2]. 
Since real losses during charging and discharging differ from modeled losses with a fixed 
efficiency, especially at low powers, the typical charging and discharging power of a use 
case is important for choosing the modeling approach. For this purpose, Figure 2-2 (b) 
classifies the EV charging and discharging powers for the PV self-consumption optimization 
use case by showing the annual duration curve of the residual load of five different medium 
households from [Pub2] with an annual electrical demand of 3,800 kWh and a 5.5 kWp PV 
system. The residual load for the household in this case is calculated by the load subtracted 
by the PV generation. For these exemplary medium households, the absolute residual load 
is less than 2 kW in 85% of the time. Due to these numerous time points with low power at 
the household connection point, a linear modeling would lead to a strong underestimation 
of the losses. Accordingly, [Pub2] reports revenues for V2H for linear modeling that 
are 30% higher than revenues with mixed-integer linear modeling. 

 
Figure 2-2: (a): Comparison of real and modeled charging losses depending on the AC 

charging power; (b): Annual duration curve of residual load of five households 
(hh1 to hh5)  

In contrast, for exclusively marketing of EVs in the electricity market in [Pub1], the charging 
and discharging powers are usually high. Provided that the price spreads between sold and 
purchased electricity are adequate, the EV will discharge and charge at full power if it has 
sufficient flexibility to maximize revenues. Further, the marketing in the electricity market 
will be done through a pool of EVs in which the EVs can be intelligently managed so that 
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only high charging and discharging powers are called for a single EV. For this reason, the 
modeling of the use case arbitrage trading with fixed charging and discharging efficiencies 
is valid and yields reliable results. 

2.1.2 Modeled Optimization Horizons 
Participating in European electricity markets can include consecutive day-ahead trading, 
trading in the intraday auction followed by continuous intraday trading. In Germany, bids 
for the day-ahead trading have to be submitted by 12 noon [41]. For the German intraday 
auction, bids must be submitted by 3 pm [41]. Thereupon, continuous intraday trading 
starts. The modeling of consecutive marketing on spot markets with real trading hours leads 
to the requirement to formulate the model as a rolling optimization model. 
In [Pub1], the developed rolling optimization model is introduced. With each optimization 
step, the starting point of the optimization period is set three hours forward. A limited 
forecast of two to three days is modeled. Figure 2-3 illustrates that depending on the start 
time for the optimization period, different prices are set from the day-ahead and intraday 
market. For the start time 12 noon, for example, prices from continuous intraday trading are 
set for the first 12 hours, prices from the day-ahead market for the following day (d+1) and 
a day-ahead price forecast for one more following day (d+2). 
Consecutive optimization runs lead to the possibility of countertrades for a considered 
period. Purchased or sold energy in the day-ahead market can be countertraded in the 
intraday auction or in the continuous intraday trading. A more detailed description of the 
consecutive rolling optimization can be found in [Pub1]. 

 
Figure 2-3: Schematic representation of the rolling optimization runs with limited foresight 

of different market prices based on [Pub1] 

For the modeling of the PV self-consumption optimization, a perfect forecast for a whole 
year is set. Since there are no consecutive actions for a period, like countertrading in 
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different electricity markets, and there is generally a good foresight for PV feed-in, this 
simplified perfect foresight is acceptable here [Pub2]. 

2.1.3 Use Case Dependent Mathematic Formulation 
In publications [Pub1] and [Pub2], the mathematic formulation for arbitrage trading with 
consecutive spot markets [Pub1] and for PV self-consumption optimization [Pub2] is 
presented. Further, in [Pub2] the modeling of combined PV self-consumption optimization 
and arbitrage trading is shown. In this section, the most important constraints, as well as 
the objective function of the different use cases are compared. For a more detailed 
derivation of the equations, [Pub1] and [Pub2] can be consulted. 
First, Equations (2-1), (2-2), and (2-3) show the different objective functions of the use case 
dependent optimization problem. Variables 𝑝௘௟,௕௨௬, 𝑝௘௟,௕௨௬,௩ଶ௚, 𝑝௘௟,ୱୣ୪୪, and 𝑝௘௟,ୱୣ୪୪,௩ଶ௚ refer 
to electricity market prices, household prices or feed-in tariffs. These prices are multiplied 
by the power at the grid connection point 𝑃 ஼௉,௜௡, 𝑃 ஼௉,௢௨௧ , 𝑃 ஼௉,௜௡,௩ଶ௚, and 𝑃 ஼௉,௢௨௧,௩ଶ௚ or, 
in the case of V2G, by the powers of the EVs 𝑃ா௏,௖, 𝑃ா௏,ௗ, 𝑃ா௏,௖௢௨,௕௨௬, and 𝑃ா௏,௖௢௨,௦௘௟௟ . 
Minimization is performed over all time steps t of a period T. Equation (2-1) focuses on 
minimizing the household electricity costs 𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡ሺ𝑡ሻ ∙ ∆𝑡 minus the feed-in 
revenues from PV electricity 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ∙ ∆𝑡 for the PV self-consumption 
optimization (V2H). Equation (2-2) minimizes the costs of purchasing electricity for the 
EV 𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ ൫𝑃ா௏,௖ሺ𝑡ሻ ൅ 𝑃ா௏,௖௢௨,௕௨௬൯ ∙ ∆𝑡, while maximizing revenues of sold 
electricity 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ ሺ𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௖௢௨,௦௘௟௟ሻ ∙ ∆𝑡 in consideration of countertrades for 
purchasing 𝑃ா௏,௖௢௨,௕௨௬ and selling 𝑃ா௏,௖௢௨,௦௘௟௟ electricity in consecutive spot markets (V2G) 
independently of household electricity demand. For the combination of V2H and V2G 
(Comb), Equation (2-3) merges these optimizations without considering countertrades for 
complexity reasons. In Equation (2-3), V2G prices 𝑝௘௟,௕௨௬ and 𝑝௘௟,௦௘௟௟ are transferred 
to 𝑝௘௟,௕௨௬,௩ଶ௚ and 𝑝௘௟,ୱୣ୪୪,௩ଶ௚ to allow different pricing for arbitrage trading compared to 
household pricing. The charging and discharging powers of V2G 𝑃ா௏,௖ and 𝑃ா௏,ௗ are 
transferred to 𝑃 ஼௉,௜௡,௩ଶ௚ and 𝑃 ஼௉,௢௨௧,௩ଶ௚ to separate the power flows for V2G from the 
household power flows. Since the prices in Equations (2-1) to (2-3) refer to energies, all 
power variables are multiplied by the corresponding timeframe ∆𝑡. 

Objective 
functions 

V2H 𝑚𝑖𝑛 ൭ ෍ൣ𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡ሺ𝑡ሻ ∙ ∆𝑡 െ 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ∙ ∆𝑡൧

்

௧ୀଵ

 ൱ (2-1)

V2G 
𝑚𝑖𝑛 ൭ ෍ൣ𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ ൫𝑃ா௏,௖ሺ𝑡ሻ ൅ 𝑃ா௏,௖௢௨,௕௨௬൯ ∙ ∆𝑡                        

்

௧ୀଵ

െ 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ ሺ𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௖௢௨,௦௘௟௟ሻ ∙ ∆𝑡൧ ൱ 
(2-2)

Comb 

𝑚𝑖𝑛 ൭ ෍ൣ𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡ሺ𝑡ሻ ∙ ∆𝑡 െ 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ∙ ∆𝑡      

்

௧ୀଵ

൅ 𝑝௘௟,௕௨௬,௩ଶ௚ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ ∙ ∆𝑡                       

െ 𝑝௘௟,ୱୣ୪୪,௩ଶ௚ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ ∙ ∆𝑡൧ ൱ 

(2-3)
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Second, Equations (2-4), (2-5), and (2-6) constrain the power flows at the grid connection 
point (GCP). Equation (2-4) includes the power flows of all modeled assets of a household 
for V2H. Equation (2-5) referring to the arbitrage trading constrains the power flows of the 
EV equal to the power flows of the GCP. Standby losses of the EV and EVSE 𝑃ா௏,௟,௦ are 
neglected in [Pub1] for V2G, as the operating hours are significantly higher than for V2H. 
𝑃௦௖௛௘ௗ,஺஼ represents scheduled powers from previous optimization runs. 𝑃ா௏,௖௢௨,௕௨௬ and 
𝑃ா௏,௖௢௨,௦௘௟௟ describe countertraded powers in current optimization run. For regulatory 
reasons, a separate grid connection point for the EV has initially been modeled here [Pub1]. 
Equation (2-6) combines V2H and V2G by adding to Equation (2-4) a separate modeled 
power consumption 𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ  and supply 𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ for the V2G use case. 

Power 
constraints 
GCP 

V2H 𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ൌ 𝑃ுு,௘௟ሺ𝑡ሻ ൅ 𝑃ு௉,௘௟ሺ𝑡ሻ െ 𝑃௉௏ሺ𝑡ሻ 
൅𝑃௉௏,௖௨௥௧ሺ𝑡ሻ ൅ 𝑃ௌ஻ௌ,௖ሺ𝑡ሻ െ 𝑃ௌ஻ௌ,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௟,௦ሺ𝑡ሻ (2-4)

V2G 𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ൌ 𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,ௗሺ𝑡ሻ 
൅𝑃ா௏,௖௢௨,௕௨௬ሺ𝑡ሻ െ 𝑃ா௏,௖௢௨,௦௘௟௟ሺ𝑡ሻ ൅ 𝑃௦௖௛௘ௗ,஺஼ሺ𝑡ሻ (2-5)

Comb 
𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ൅ 𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ   

ൌ 𝑃ுு,௘௟ሺ𝑡ሻ ൅ 𝑃ு௉,௘௟ሺ𝑡ሻ െ 𝑃௉௏ሺ𝑡ሻ ൅ 𝑃௉௏,௖௨௥௧ሺ𝑡ሻ
൅ 𝑃ௌ஻ௌ,௖ሺ𝑡ሻ െ 𝑃ௌ஻ௌ,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௟,௦ሺ𝑡ሻ 

(2-6)

Another elementary constraint of the use cases is the energy conservation of the EV storage 
level 𝐸ா௏ . Equation (2-7) formulates this constraint for V2H and Comb under consideration 
of constant charging and discharging losses of the EV 𝑃ா௏,௟,௖௢௡௦௧,௖/ௗ depending on the 
charging and discharging decision 𝑏ா௏,௖/ௗ and linear charging and discharging losses of the 
EV and EVSE 𝑃ா௏,௟,௖/ௗ depending on the charging and discharging power. Equation (2-8) 
constrains the EV storage energy conservation under consideration of 
countertrades 𝑃ா௏,௖௢௨,௦௘௟௟ and 𝑃ா௏,௖௢௨,௕௨௬ , while modeling losses by a fixed charging and 
discharging efficiency µா௏,௖/ௗ for V2G. The schedule of the previous marketed power 
including charging and discharging losses is stored in the variable 𝑃௦௖௛௘ௗ . Public 
charging 𝐸ா௏,௣௨௕,௖ and driving energy 𝐸ா௏,ௗ௥௜௩௘ also affect the storage level. 

Storage 
energy 
conser-
vation  
EV 

V2H/ 
Comb 

𝐸ா௏ሺ𝑡ሻ ൌ 𝐸ா௏ሺ𝑡 െ 1ሻ ൅ ൣ𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,௟,௖ሺ𝑡ሻ൧ ∙ ∆𝑡 
െൣ𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௟,ௗሺ𝑡ሻ൧ ∙ ∆𝑡 െ 𝑃ா௏,௟,௖௢௡௦௧,௖/ௗ ∙ ሾ𝑏ா௏,௖ሺ𝑡ሻ ൅ 𝑏ா௏,ௗሺ𝑡ሻሿ ∙ ∆𝑡 

൅𝐸ா௏,௣௨௕,௖ሺ𝑡ሻ െ 𝐸ா௏,ௗ௥௜௩௘ሺ𝑡ሻ 
(2-7)

 
 

V2G 
𝐸ா௏ሺ𝑡ሻ ൌ 𝐸ா௏ሺ𝑡 െ 1ሻ ൅ 𝑃ா௏,௖ሺ𝑡ሻ ∙ µா௏,௖ ∙ ∆𝑡

െ𝑃ா௏,௖௢௨,௦௘௟௟ሺ𝑡ሻ ∙ µா௏,௖ ∙ ∆𝑡 െ
𝑃ா௏,ௗሺ𝑡ሻ

µா௏,ௗ
∙ ∆𝑡 ൅

𝑃ா௏,௖௢௨,௕௨௬ሺ𝑡ሻ

µா௏,ௗ
∙ ∆𝑡 

൅𝑃௦௖௛௘ௗ ∙ ∆𝑡 ൅ 𝐸ா௏,௣௨௕,௖ሺ𝑡ሻ െ 𝐸ா௏,ௗ௥௜௩௘ሺ𝑡ሻ 

(2-8)

For all use cases considered, Equations (2-9), and (2-10) further constrain the EV's battery 
storage level. Equation (2-9) sets the minimum battery storage level in dependance of the 
maximum EV battery capacity 𝐸ா௏,௠௔௫ , and a parameterized safety state of 
charge (SoC) 𝑆𝑜𝐶௦௔௙௘ for all time steps 𝑐ா௏,௖௢௡௡௘௖௧௘ௗ , in which the EV is connected to the 
EVSE. This limitation on storage capacity is introduced so that the user can make at least 
one trip to the hospital with the EV at any time for safety reasons. Equation (2-10) further 
constrains the minimum battery storage level depending on the user 
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parameterization 𝑆𝑜𝐶ௗ௘௣ and the EV battery capacity 𝐸ா௏,௠௔௫ for all time steps 𝑐ா௏,ௗ௘௣, in 
which the EV is scheduled to depart. This is again due to realistic modeling of the user, who 
can specify a desired minimum SoC when the EV departs. 
Safety  
SoC V2H/ 

V2G/ 
Comb 

𝐸ா௏ሺ𝑡ሻ ൒ 𝑆𝑜𝐶௦௔௙௘ ∙ 𝐸ா௏,௠௔௫ ∙ 𝑐ா௏,௖௢௡௡௘௖௧௘ௗሺtሻ (2-9)

Departure 
SoC 𝐸ா௏ሺ𝑡ሻ ൒ 𝑆𝑜𝐶ௗ௘௣ ∙ 𝐸ா௏,௠௔௫ ∙ 𝑐ா௏,ௗ௘௣ሺ𝑡ሻ (2-10)

The mathematical formulation of the use cases shown here reveals fundamental differences 
in modeling. In [Pub1] and [Pub2], numerous other constraints are introduced to model a 
realistic design of the use cases. For example, the simultaneous combination of V2G and 
V2H is restricted for regulatory reasons, and the modeling of countertrades is described in 
more detail for V2G. More details of the modeling can therefore be taken from the 
publications. 

2.2 Revenue Potentials and Their Most Important Influencing Factors 

In the following, Section 2.2.1 presents revenue potentials for PV self-consumption 
optimization as a V2H use case based on [Pub2]. Section 2.2.2 shows revenue potentials for 
arbitrage trading as a V2G use case on the basis of [Pub1]. Then, Section 2.2.3 combines 
these use cases for an evaluation of added revenues by a use case combination based 
on [Pub2]. More detailed descriptions of parameter assumptions and revenue assessments 
can be found in [Pub1] and [Pub2]. 

2.2.1 Photovoltaic Self-Consumption Optimization 
For the evaluation of revenue potentials from PV self-consumption optimization, a medium 
household (average annual electricity demand of 3,800 kWh) and user type (not regularly 
commuting to work) is defined, for which 20 different instances are modeled. The average 
revenues for such a medium household are around 210 €/a for a smart EV compared to an 
unmanaged charging EV and around 310 €/a for a bidirectional EV compared to an 
unmanaged charging EV. 
Based on this medium household and user, Figure 2-4 (a) analyzes numerous sensitivities 
to this basic configuration (scenario Base). First, as already mentioned in Section 2.1.1, linear 
programming with fixed charging and discharging efficiencies (Base linear) results 
in 30% overestimated revenues for a bidirectional EV. From this, it was concluded in [Pub2] 
that modeling of fixed charging and discharging efficiencies is not valid for V2H. Second, a 
user who regularly commutes to work (COM) has 30% decreased revenues for a 
bidirectional EV, but only 5% decreased revenues for a smart EV. Since commuting EVs on 
average have a higher annual consumption and thus greater potential for smart charging, 
this compensates for lower availability. Integrating other smart components into the home, 
such as heat pumps (HP), stationary battery storage (SBS), or a combination of 
those (HP SBS), reduces the revenues of a smart or bidirectional EV significantly. These 
other smart components also use the cheaper PV energy and thus compete with the EV. 
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The correlation of revenues to PV self-consumption is evident in Figure 2-4 (b). In the 
scenarios, where the PV self-consumption can be increased more, the revenues also 
increase more. 

 
Figure 2-4: (a): Revenues through PV self-consumption optimization of smart and 

bidirectional EVs depending on household configuration and user type as 
presented in [Pub2]; (b): PV self-consumption depending on EV charging 
strategy, household configuration, and user type as presented in [Pub2] 

There are numerous other quantitative influencing factors that affect the revenue potentials 
of smart and bidirectional EVs, as shown in Figure 2-5. Starting from the household and 
user scenario Base (represented by the central point in the chart), the figure shows how an 
increase or decrease of the influencing factors affect the revenues. The steeper the curve in 
the chart, the greater is the impact of the influencing factor. The PV parameters peak power 
and feed-in tariff affect the revenues significantly. A lower feed-in tariff leads to greater 
revenues since the spread between household electricity price and feed-in tariff increases 
and thus the self-consumption of PV energy becomes more profitable. In contrast, the 
parameters of the EV have only a minor impact on revenues. Since the power flows in a 
household are small, a smaller or larger power of the EVSE as well as a smaller or larger EV 
battery capacity has little impact on revenues. In the course of the fuel crisis and the strong 
increase of electricity prices in Europe since the end of 2021 [63], there was a sharp rise in 
electricity stock exchange prices in Europe and consequently also in household electricity 
prices. Therefore, the household electricity price was added to the influencing factors 
analyzed in [Pub2]. It is evident that the revenue changes for changes in the household 
electricity price show an even higher absolute gradient than for the PV feed-in tariff. This is 
because the absolute difference between the household electricity price and the PV feed-
in tariff is decisive for the revenue potentials. A relative increase of the feed-in tariff by 70% 
and a relative reduction of the household electricity price by one third equally lead to a 

(a) (b)



Revenue Potentials and Their Most Important Influencing Factors 

19 

reduced spread between household electricity price and PV feed-in tariff of 10 ct/kWh. 
Revenues are reduced by 65% in both cases. In a Max scenario with the most attractive 
characteristics of the influencing factors in Figure 2-5, the revenues go up to 1,300 €/a for 
the bidirectional EV and 750 €/a for the smart EV, which shows the high revenue potential 
of the use case. 

 
Figure 2-5: Impact of most important influencing factors on revenues of PV self-

consumption optimization for smart EVs (left) and bidirectional EVs (right) based 
on [Pub2] 

Overall, the use case of PV self-consumption optimization through smart or bidirectional 
EVs is very sensitive. To estimate revenues, it is necessary to know the exact configuration 
of the household and user. The most important factor influencing revenue potentials is the 
spread between household electricity prices and PV feed-in tariff. The higher is the spread, 
the higher are the revenue potentials. 

2.2.2 Arbitrage Trading 
For the evaluation of arbitrage trading in the German electricity markets in 2019, Figure 2-6 
presents the revenues of smart and bidirectional EVs dependent on the EV and EVSE 
configuration, the user type, and the considered electricity market. Revenues again refer to 
the differential revenues of smart and bidirectional EVs compared to unmanaged charging 
EVs. For this initial revenue analysis, an exemption from taxes, levies and surcharges is 
assumed for charged electricity that is temporarily stored and thus discharged later. 
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Various influencing factors can be identified that have a strong impact on revenues of 
bidirectional EVs. Marketing in the intraday market can generate 50% to 100% higher 
revenues than marketing in the day-ahead market due to the higher price volatility in the 
intraday trading. Consecutive marketing on the day-ahead and intraday market can 
increase the revenue potential by another 10% compared to intraday trading. Furthermore, 
a higher battery capacity of the EV and a higher charging and discharging power of the 
EVSE have a strong revenue increasing effect. Non-commuters can generate on average 
about 15% higher revenues than commuters by participating in the electricity market. Smart 
charging leads to revenues that are only 5% to 25% of bidirectional EVs. These revenues 
depend only slightly on the EV and EVSE configuration, but more on the considered 
electricity market. However, revenue potentials of smart EVs are comparably low so that 
smart charging is far less relevant for the use case arbitrage trading than for the use case 
of PV self-consumption optimization. 

 
Figure 2-6: Revenue potentials of arbitrage trading in different electricity markets for 

different EV and user types in the year 2019 in Germany as presented in [Pub1] 

Two other very important factors influencing revenue potentials are the regulation and thus 
the taxes, levies and surcharges that must be paid on charged electricity, and the electricity 
price volatility, as shown in Figure 2-7. For these studies, a non-commuting EV with battery 
capacity of 100 kWh and a charging and discharging power of 11 kW has been assumed. 
Figure 2-7 (a) shows that the revenues (here exemplified in the intraday market) decrease 
sharply with increasing taxes, levies, and charges to be paid on charged electricity. In 
Germany, storage facilities are eligible for exemption from taxes, levies, and surcharges on 
charged electricity that is later discharged. The BCM project has published a policy paper 
on this subject that details the possibilities for exemption from taxes, levies, and 
surcharges [42]. In the case of a regulatory classification of bidirectional EVs as storage 
systems, reduced taxes, levies, and surcharges on temporarily stored electricity will be 
incurred. There is currently no exemption option for the ‘StromNEV’ levy (depending on the 
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annual energy throughput in the storage facility) and the ‘AbLaV’ levy. A home storage 
system must also pay a concession fee to the city or municipality on charged electricity, 
which does not necessarily apply to a large battery storage system or a pumped storage 
system [42]. The exemptions from taxes, levies, and surcharges result in the reduced 
revenues shown in Figure 2-7 (a) for a regulatory classification as pumped storage 
hydropower, large-scale stationary battery storage, or home storage system. Since even 
with the intuitive regulatory classification of a bidirectional EV as a home storage system, 
the revenue potentials drop by almost 70%, further exemptions from taxes, levies, and 
surcharges should be created to make arbitrage trading economically more feasible. 
Figure 2-7 (b) shows the dependence of the revenue potentials of bidirectional EVs on the 
characteristics of electricity prices, which changes significantly in the years 2020 to 2050. 
The underlying electricity prices are modeled prices using the energy system model 
ISAaR [39], which is described in more detail in Chapter 3, without taxes, levies, and 
surcharges. Electricity price volatility, shown in the figure by the average daily standard 
deviation of electricity prices over one year, increases sharply in the considered scenario in 
future years. Due to the strong expansion of variable renewable energies that have a high 
simultaneity in electricity generation, there are numerous times with very low electricity 
prices. Additionally, there are increasingly times with high electricity prices due to higher 
fuel costs and CO2-prices, which increase the marginal costs of thermal power plants. 
Overall, this leads to a strongly increasing mean daily standard deviation of the electricity 
price. Revenue potentials correlate very strongly with the daily standard deviation of the 
electricity price, as bidirectional EVs often act as daily storage. The influence of the electricity 
price volatility is also shown in [Pub1] by modeling the revenue potentials of bidirectional 
EVs in 28 different European countries for the year 2019. Revenues for modeled non-
commuting EVs trading in the day-ahead market vary from 50 €/EV/a in Norway 
to 700 €/EV/a in Hungary. In the course of the energy crisis in 2021, the electricity price 
volatility has increased a lot, so that in 2021 the average daily standard deviation of the day-
ahead price of 24.5 €/MWh was almost 3 times as high as in 2019 [63]. Accordingly, the 
revenue potentials have also increased by about three times. 
In summary, the revenue potentials of the arbitrage trading use case are also very sensitive, 
like those of the PV self-consumption optimization. In contrast to the PV self-consumption 
optimization, the influencing factors of electricity price volatility, regulatory framework, as 
well as the EV and EVSE characteristics are of great importance. Other influencing factors, 
including, for example, user behavior and liquidity of the electricity spot markets, are 
discussed in [Pub1]. 
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Figure 2-7: Revenue potentials depending on the regulatory framework (a) and on the 

electricity price volatility (b) based on [Pub1] 

2.2.3 Combined Photovoltaic Self-Consumption Optimization and Arbitrage 
Trading 

In the combined modeling of PV self-consumption optimization and arbitrage trading, 
arbitrage trading is limited to the day-ahead market for reasons of complexity. From a 
regulatory point of view, a simultaneous implementation of V2H and V2G is challenging, 
since the PV electricity could then be fed into the grid via the EV and thus possibly pay 
reduced taxes, levies and surcharges for electricity purchased later. Therefore, daily usage 
is limited to either V2H or V2G so that seasonal characteristics can also be analyzed. For 
trading in the electricity market, an exemption from taxes, levies and surcharges is assumed 
for this study. 
Figure 2-8 shows in the upper diagram first the weekly standard deviation of electricity 
prices and the weekly PV generation of the medium household (see Section 2.2.1). In the 
lower part of Figure 2-8 the share of V2G and V2H used by the 20 modeled households is 
shown. It is evident that V2H PV self-consumption optimization is clearly preferred in the 
summer months from April to September. When comparing the diagrams, a correlation 
with the PV feed-in can be identified. In contrast, V2G is used more in the winter months, 
when there are slightly higher spreads of electricity prices in the spot market, expressed by 
the higher standard deviation. It can be deduced from this that V2H and V2G can in 
principle be combined very well due to their seasonally different revenue potentials. 
From a revenue perspective, the combination of the use cases PV self-consumption 
optimization and arbitrage trading brings significant added value. Thus, the revenues of the 
medium household can be increased by 70% from 310 €/a to 530 €/a. Interestingly, the 
actual V2H revenues are only slightly reduced, since V2H is hardly carried out in the winter 
months due to small PV feed-in quantities. Even with a modeled limitation of the operating 
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hours (OHs) and the equivalent full cycles of the battery (EFCs) to 5 OHs/d and 130 EFCs/a, 
respectively, significant additional revenues of 100 €/a can still be generated by this use 
case combination. 

 
Figure 2-8: Daily share of households using V2H and V2G (bottom figure) depending on 

weekly standard deviation of electricity prices and weekly PV generation (upper 
figure) based on [Pub2] 

2.3 Profitability of Bidirectional Charging 

To evaluate the economic profitability of bidirectional EVs performing the PV self-
consumption optimization or arbitrage trading use cases, the additional costs of 
bidirectional charging must be considered in addition to the revenues highlighted in 
Section 2.2. 

2.3.1 Additional Costs of Bidirectional Charging 
Based on research and discussions with experts in the BCM project, the following additional 
cost components for bidirectional charging of EVs were identified: 

 purchase of bidirectional EVSE 
 installation of bidirectional EVSE 
 operation of bidirectional EVSE 
 installation and operation of additional metering equipment 
 additional hardware/software  
 purchase of bidirectional EV 
 operation of bidirectional EV 
 additional processes of registration, permits and contracts 
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Detailed information on the additional costs can be found in [43]. For the purchase and 
installation of the bidirectional EVSE, the installation and operation of additional metering 
equipment and additional hardware, costs and cost predictions were determined within the 
BCM project. The operation costs of the bidirectional EVSE through additional losses are 
included in the revenue modeling. The additional purchase and operation costs of the 
bidirectional EV could not be determined. Since Volkswagen, as an example of an EV 
manufacturer, sees bidirectional charging as a standard in the future [44], there could also 
be no additional investment costs for a bidirectional EV, at least for upper-class models. 
The costs for additional processes of registration, permits and contracts are set to zero since 
it is uncertain whether there will be additional costs for it. 
Table 2-1 shows the projected development of additional investment costs of bidirectional 
charging compared to unmanaged charging. It can be noticed that especially in 2020 the 
additional investment costs are driven by the purchase of the bidirectional EVSE, which will 
show a significant cost degression in the future. The bidirectional EVSE installation is more 
expensive than the installation of an unmanaged EVSE due to higher working time costs 
and potential laid empty conduits with wall openings for network connection. Additional 
hardware includes either an optocoupler or an additional smart energy meter. In future 
years, an existing smart energy meter might be sufficient, such that additional hardware 
costs could be reduced to zero.” 
Table 2-1: Additional investment cost range for V2H, and V2G in €2021/EV compared to 

unmanaged charging based on [43] 

 2020 2025 2030 2035 2040 
EVSE purchase 5,300-5,700 2,000-2,100 1,400-1,500 1,100-1,200 800-900 
EVSE installation 830-880 60-350 60-350 60-350 60-350 
Additional 
hardware 

100-450 100-450 0-450 0-450 0-450 

Total 6,230-7,030 2,160-2,900 1,460-2,300 1,160-2,000 860-1,700 
 

Table 2-2 shows the additional yearly costs due to additional modern measuring devices 
and smart meter gateways (SMGWs). SMGWs are mandatory in Germany under certain 
circumstances, e.g., for consumers with an electricity consumption of more than 6,000 kWh 
per year [45]. Since the modeled medium household with the EV electricity demand has a 
higher electricity consumption, the SMGW is mandatory regardless of whether it is an 
unmanaged charging EV or a bidirectional EV. Therefore, only one additional modern 
measuring device with costs of 20 €2021/a is needed. These costs are assumed to be constant 
in real terms. 
Table 2-2: Additional yearly cost range for V2H, and V2G in €2021/EV/a compared to 

unmanaged charging based on [43] 

 2020 2025 2030 2035 2040 
Metering equipment 20 20 20 20 20 
Total 20 20 20 20 20 
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2.3.2 Evaluation of Profitability 
For final evaluation of the economic profitability, the findings on the revenue potentials of 
bidirectional EVs from Section 2.2 and the additional costs of bidirectional EVs versus 
unmanaged charging EVs from Section 2.3.1 are brought together in this section. The three 
investment dates 2020, 2025 and 2030 for a bidirectional EV are considered. The one-time 
and yearly additional costs for bidirectional charging compared to unmanaged charging 
are obtained from Table 2-1 and Table 2-2.  
The revenues for the use case PV self-consumption optimization are calculated based on 
sensitivity analyses for a differing PV feed-in tariff for a medium household. Table 2-3 
presents the revenues as well as the underlying parametrization for the years 2020 to 2030. 
The feed-in tariff of the PV electricity generation for 2020 is taken from [67] for a PV plant 
with a peak power smaller 10 kW constructed in July 2020. For the years 2025 (5.5 ct/kWh) 
and 2030 (4 ct/kWh) a further reduction of the fixed PV feed-in tariff has been assumed 
according to the trend of the last years. In April 2022, for example, the feed-in tariff had 
already been reduced to 6.5 ct/kWh [67]. All other parameters, such as PV peak 
power (5.5 kW), household electricity price (29.9 ct/kWh) and EV characteristics are left 
constant according to the baseline household scenario described in Section 2.2.1. The 
household electricity price is kept constant in nominal terms, which corresponds to a 
reduction in real terms. The actual future development of household electricity prices shows 
great uncertainties here, especially in the context of the current energy crisis. Increasing 
household electricity prices would mean increasing revenue potentials from PV self-
consumption optimization, as shown in Section 2.2.1. 
Table 2-3: V2H Revenues based on household type and PV feed-in tariff for the years 2020, 

2025 and 2030 

 2020 2025 2030 
Household type medium medium medium 
PV feed-in tariff 9.0 ct/kWh 5.5 ct/kWh 4 ct/kWh 
EV/EVSE 
parameterization 

60 kWh battery capacity, 11 kW charging/discharging 
power, non-commuting user 

Revenues 380 €/a 470 €/a 530 €/a 
 

For future years after the investment year, the revenues are generally assumed to be 
constant. The parameters of the household do not change, the fixed feed-in tariff is 
guaranteed to be paid for a period of 20 years [68], and the household electricity price is 
assumed to be constant. Since the reference year for costs is 2021, all revenues must 
consequently still be discounted. For this purpose, an average future inflation rate of 1.4% 
is used based on the average inflation rate in Germany from 2012 to 2021 [46]. In addition, 
a real interest rate of 1.6%, reflecting risk premium rate, is used, resulting in a nominal 
interest rate of 3%. This nominal interest rate 𝑖௡ of 3% is used for discounting the 
revenues 𝑅𝑒𝑣௧ of a time step t to the discounted revenues 𝑅𝑒𝑣଴ by following Equation (2-11). 
The discounting formula is based on [69]. 
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𝑅𝑒𝑣଴ ൌ
𝑅𝑒𝑣௧

ሺ1 ൅ 𝑖௡ሻ௧ (2-11)

The net present value NPV is thus calculated as the sum of all revenues less the initial 
investment costs 𝑐𝑜𝑠𝑡𝑠௜௡௜௧௜௔௟ and the sum of the annual costs 𝑐𝑜𝑠𝑡𝑠௬௘௔௥௟௬ in real terms based 
on [70] in Equation (2-12). 

𝑁𝑃𝑉 ൌ  ෍
𝑅𝑒𝑣௧

ሺ1 ൅ 𝑖௡ሻ௧

௧

଴

െ 𝑐𝑜𝑠𝑡𝑠௜௡௜௧௜௔௟ െ ෍ 𝑐𝑜𝑠𝑡𝑠௬௘௔௥௟௬

௧

଴

 (2-12)

The yearly cash flows as well as the NPV for the three scenarios with a V2H investment 
in 2020, 2025 and 2030 are shown in Figure 2-9. Due to the high investment costs of a 
bidirectional EVSE, an investment in V2H is not economical in 2020. However, with an 
investment in V2H in 2025, a positive NPV can already be achieved after seven years, which 
is 2,300 €2021 at the end of the EVSE’s lifetime of 15 years. An investment in 2030 achieves a 
positive NPV after a little more than five years, which rises to 2,800 €2021 at the end of the 
EVSE’s lifetime. 

 
Figure 2-9: Profitability of V2H PV self-consumption optimization depending on the 

investment year of bidirectional EV and EVSE 

The revenues for the profitability calculation of the arbitrage trading use case are 
determined using the parameterization of Table 2-4. For better comparability, the same EV 
and EVSE parameterization (including the same EV profiles) is assumed as in the profitability 
evaluation of the V2H use case, but with a fixed charging and discharging efficiency. For 
future years, a gradual exemption of the charged, temporarily stored electricity from taxes, 
levies and surcharges is assumed. In 2025, the bidirectional EV is classified as a home 
storage system (see Section 2.2.2), and from 2030 there is a complete exemption from 
taxes, levies, and surcharges. 
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Marketing is limited to trading in the day-ahead market. For the year 2020, historical day-
ahead electricity prices are used [47]. For future years, modeled electricity prices are 
provided from the energy system model ISAaR based on simulations of the future European 
energy system in Section 3.4.2 with bidirectional EVs already integrated (BCM scenario). The 
electricity price time series have the mean daily standard deviations shown in Table 2-4. 
[Pub3] explains the future electricity price characteristics in more detail. 
Table 2-4: V2G revenues based on regulatory framework, electricity price characteristic, as 

well as EV and EVSE parameterization for the years 2020 to 2040 

 2020 2025 2030 2035 2040 

Regulatory 
framework 

All taxes, 
levies, and 
surcharges 

must be 
paid 

Classification 
as home 
storage 
system: 

2,1 ct/kWh 

full 
exemption 
from taxes, 
levies, and 
surcharges 

full 
exemption 
from taxes, 
levies, and 
surcharges 

full 
exemption 
from taxes, 
levies, and 
surcharges 

Daily standard 
deviation of 
electricity prices 
in €/MWh 

9.4 15.8 18.0 17.6 16.8 

EV/EVSE 
parameterization

60 kWh battery capacity, 11 kW charging/discharging power,  
86% roundtrip efficiency, non-commuting user 

Revenues in €/a 60 120 360 340 280 
 

Unlike V2H revenues, V2G revenues are not left constant after the investment decision of a 
bidirectional EV but are adjusted based on Table 2-4, since a regulatory change and a 
change of the electricity price characteristics also apply to earlier investments. The revenues 
are deliberately not interpolated here since the adjustment of the regulatory framework is 
a discrete decision. V2G revenues are only discounted by the risk premium rate of 1.6% 
since prices in the energy system model ISAaR are modeled in real terms (inflation-adjusted) 
and further related to the base year 2021. 
Figure 2-10 shows the resulting profitability of V2G arbitrage trading depending on the 
investment year. For an investment in a bidirectional EV and EVSE in 2020, the NPV is 
strongly negative since revenues in the years 2020 to 2030 are low mainly due to regulatory 
issues. Investing in a bidirectional EV and EVSE in 2025 leads to a positive NPV 
after 12 years. Only a later investment in 2030 results in a short amortization period of 
around 7 years. Thus, with an investment in a bidirectional EV and EVSE in 2030, an NPV of 
around 1,650 €2021 can be achieved after 15 years. 
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Figure 2-10: Profitability of V2G arbitrage trading depending on the investment year of 

bidirectional EV and EVSE 

In summary, for the investigated parameterization of household, EV and EVSE, user 
behavior, regulatory framework, and electricity price characteristics, both use cases can 
become profitable in future years. V2H PV self-consumption optimization is the more 
secure economic use case, which depends less on the regulatory framework. However, the 
basic requirement for this use case is the ownership of a PV system, so that not all users 
can rely on it. In contrast, V2G arbitrage trading through, for example, participation in the 
intraday market, has similarly diverse opportunities to improve revenue potential. Finally, it 
is important to note that both use cases are extremely sensitive, as explained in Section 2.2, 
so that the final economic analysis must always be carried out with the real parameterization 
of a considered scenario. 
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3 Bidirectionally Chargeable Electric 
Vehicles from the Energy System 
Perspective 
Due to ambitious European and national climate targets, the European energy system is 
facing major structural changes. Based on [Pub3] and [Pub4] and further research, this 
chapter analyzes the added value of bidirectional EVs for the European energy system. For 
this purpose, the focus is on systemically oriented V2G use cases. Section 3.1 analyzes the 
different modeling types of bidirectional EVs in a large-scale energy system model for the 
integration of EVs into the electricity market (use case arbitrage trading) and for the 
provision of system services by bidirectional EVs (use case congestion management). To 
evaluate the impact of bidirectional EVs on the energy system, Section 3.2 first defines 
scenarios. Based on the scenario definition and the modeling approaches, Section 3.3 
analyzes the cost-optimal penetration rates of bidirectional EVs and their influencing 
factors. Finally, Section 3.4 examines the quantitative impact of bidirectional EVs on the 
European energy system. 

3.1 Methods 

For the consideration of the added value of bidirectional EVs from a system perspective, 
the energy system model ISAaR is further developed. Detailed information on ISAaR can be 
found in [31] and [39]. Section 3.1.1 focuses on modeling the integration of bidirectional EVs 
in the electricity market. Section 3.1.2 builds on the market integration and extends the 
subsequent transmission grid run by bidirectional EVs that can provide congestion 
management. In addition to the mathematical formulation in this section, the underlying 
data model, which contains a detailed description of the techno-economic parameters of 
all components of the European energy system, is also of great significance. The 
parameterization of the components is described in the following Section 3.2. 

3.1.1 Modeling of Electricity Market Integration 
The energy system model ISAaR forms a linear optimization problem with the objective 
function to minimize the European energy system costs. The linearized equations describe 
techno-economic relations within an energy system. The objective function is formulated 
in Equation (3-1). The costs C result from operation and investment costs. The operation 
costs are formed by specific costs ft,n,i and the utilization of the optimization variables xt,n,i 
for all time steps t, nodes n and instances i. Variables xt,n,i include generation, consumption, 
import and exports of all modeled energy carriers. Investment costs and other not time-
dependent costs are calculated using specific costs fn,i and the utilization of the optimization 
variables xn,i for all nodes n and instances i. The utilization of the optimization variables xn,i 
include various kind of assets, e.g. storages, renewable energies or hydrogen-fired power 
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plants. In the market optimization run, nodes n refer to market areas in the European 
energy system. 

𝐶 ൌ min ሺ෍ ෍ ෍ሺ𝑓௧,௡,௜ ∙ 𝑥௧,௡,௜ሻ
௜஫ூ௡஫ே௧஫்

൅ ෍ ෍൫𝑓௡,௜ ∙ 𝑥௡,௜൯ሻ
୧஫୍୬஫୒

  (3-1)

From the perspective of the ISAaR energy system model, bidirectional EVs represent an 
expansion option that replace unmanaged charging EVs. This expansion option is 
accompanied by investment costs that depend on necessary additional infrastructure and 
software as well as additional operational costs. These costs are included in the objective 
function of ISAaR. In addition to bidirectional EVs, the model can also replace unmanaged 
charging EVs with smart EVs that only charge unidirectionally and have lower investment 
costs. 
The charging and discharging powers of bidirectional EVs are included in the power 
balances. According to Equation (3-2), the final energy demand 𝑃ௗ௘௠௔௡ௗ is equal to 
generation 𝑃௚௘௡ and imports 𝑃௜௠௣௢௥௧ minus consumption 𝑃௖௢௡௦ and exports 𝑃௘௫௣௢௥௧ for every 
timestep t, nodes n and energy carrier c over all instances i. The charging of an EV is 
included in the system power balance as consumption and the discharging as generation. 

𝑃ௗ௘௠௔௡ௗሺ𝑡, 𝑛, 𝑐ሻ ൌ ෍ 𝑃௚௘௡ሺ𝑡, 𝑛, 𝑐ሻ
௜

െ ෍ 𝑃௖௢௡௦ሺ𝑡, 𝑛, 𝑐ሻ
௜

൅

෍ 𝑃௜௠௣௢௥௧ሺ𝑡, 𝑛, 𝑐ሻ
௜

െ ෍ 𝑃௘௫௣௢௥௧ሺ𝑡, 𝑛, 𝑐ሻ
௜

 
(3-2)

The modeling of bidirectional EVs integrated into the European electricity market and thus 
of an energy system-optimized use of the vehicles corresponds to the use case of arbitrage 
trading from the user's perspective. In a system-optimal operation, bidirectional EVs are 
charged at times of low electricity prices and discharged at times of expensive electricity 
prices. In this way, they can displace the use of thermal power plants, which produce at 
expensive marginal costs when fuel and CO2 prices are high. Compared to the modeling of 
the use case of arbitrage trading from the user perspective discussed in Chapter 2, however, 
the focus is now on the integration of the EVs in the day-ahead markets, since large energy 
system models do not typically model the short-term intraday markets. Price formation on 
intraday markets is based primarily on shorter product duration (in Germany quarter-hourly, 
half-hourly and hourly products), lower market liquidity and short-term forecast errors [48], 
neither of which is represented in large energy system models. Further, through cost-
optimal integration of bidirectional EVs, the impact on electricity day-ahead prices is 
endogenously included in ISAaR. 
Based on Equation (2-8), the storage energy conservation equation of EVs is simplified so 
that no counter trades are represented in the intraday market in Equation (3-3). The EV’s 
storage level 𝐸ா௏ in a timestep t is equal to the storage level of the previous time step 
added by the charged energy 𝑃ா௏,௖ሺ𝑡ሻ ∙ µா௏,௖ ∙ ∆𝑡 and the charged energy in 
public 𝐸ா௏,௣௨௕,௖ሺ𝑡ሻ subtracted by the discharged energy ௉ಶೇ,೏ሺ௧ሻ

µಶೇ,೏
∙ ∆𝑡 and the consumed 

energy by driving 𝐸ா௏,ௗ௥௜௩௘ሺ𝑡ሻ. The charging and discharging efficiencies µா௏,௖ and µா௏,ௗ 
again are modeled constant due to predominantly high charging and discharging powers 
(compare Section  2.1.1). 
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𝐸ா௏ሺ𝑡ሻ ൌ 𝐸ா௏ሺ𝑡 െ 1ሻ ൅ 𝑃ா௏,௖ሺ𝑡ሻ ∙ µா௏,௖ ∙ ∆𝑡 െ
𝑃ா௏,ௗሺ𝑡ሻ

µா௏,ௗ
∙ ∆𝑡

൅ 𝐸ா௏,௣௨௕,௖ሺ𝑡ሻ െ 𝐸ா௏,ௗ௥௜௩௘ሺ𝑡ሻ 
(3-3)

By using Equations (2-9) and (2-10) for the modeling of a safety SoC and a departure SoC 
that constrain the battery storage level, a realistic user behavior is also provided. 
Discrete modeling of all individual EVs in the European energy system would lead to a great 
number of modeled storage instances, which would introduce an enormous complexity. 
In [Pub3] three approaches for modeling bidirectional EVs in large-scale energy system 
models are presented to solve this problem. All approaches have the goal of modeling 
entire vehicle fleets in countries while keeping the complexity of the model as low as 
possible. Table 3-1 sums up the approaches and their advantages and disadvantages. 
Table 3-1: Modeling approaches of bidirectional EVs in a large-scale energy system model 

and their advantages and disadvantages 

 1,000 Discrete EV 
Profiles per Market Area

Clustered, Discrete EV 
Profiles per Market Area

Aggregated EV Profile 
per Market Area 

Modeling 
Approach 

 Modeling of 1,000 
discrete EV instances 
to represent EV fleet 

 Modeling of clusters 
with 5 to 50 discrete 
EV instances to 
represent EV fleet 

 Modeling of one 
aggregated EV 
instance to 
represent EV fleet 

Advantages 

 Best representation 
of EV fleet and its 
impact on energy 
system 

 Exact representation 
of EV constraints 

 Good representation 
of EV fleet and its 
impact on energy 
system 

 Lowest modeling 
complexity  

 Good representation 
of EV fleet and its 
impact on energy 
system 

Dis-
advantages 

 High complexity 
 Not computable for 

optimized expansion 
of bidirectional EVs 

 High complexity  No exact 
representation of EV 
constraints 

 

The modeling approach via aggregation of all EV profiles softens the EV constraints that 
restrict the SoC. Figure 3-1 shows the aggregated availability of EVs at the location at home 
compared to a single EV’s availability for an exemplary week. Discrete EV profiles have time 
dependencies that are neglected when modeling an aggregated EV profile. A single EV 
departing with a SoC resulting from the system-optimal operation of the vehicle will return 
with a SoC that depends on the SoC at departure. Modeling an aggregated EV profile 
neglects this dependency, but still accounts for the overall SoC constraints of the EV pool 
due to the aggregated minimum availability. Since the modeling approach via aggregation 
of all EV profiles still leads to a good representation of the EV fleet and its impact on the 
European energy system, while exhibiting the lowest modeling complexity, it is chosen for 
further investigation. A more detailed description of the comparison of the modeling 
approaches can be found in [Pub3]. Further, smart EVs that only charge unidirectional can 
also be modelled by the same method. The only difference is their discharge power that is 
set to zero [Pub3]. 
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Figure 3-1: Different availability of aggregated and discrete EV profiles for an exemplary 

week as presented in [Pub3] 

3.1.2 Modeling of Congestion Management Provision 
Modeling of congestion management in ISAaR is based on a two-stage optimization: 

 First run: multi-energy market optimization (described in Section 3.1.1) 
 Second run: transmission grid optimization (described in this section) 

The transmission grid optimization run fixes the investment in new assets based on the 
results of the multi-energy market optimization. Further, the dispatch of assets in the multi-
energy market optimization represents the baseline for their operation in the transmission 
grid optimization, which can only deviate from the baseline with additional costs. For these 
reasons, the objective function of the transmission grid optimization differs from the market 
run according to Equation (3-4). It is limited to operation costs and costs incurred by the 
provision of congestion management for all time steps t, nodes n and instances i 
dependent on specific costs ft,n,i and the utilization of the optimization variables xt,n,i. In the 
transmission grid optimization run, nodes n refer to transmission grid nodes in the 
European energy system. Generators, loads and flexibilities in the distribution grid are 
aggregated for complexity reasons and assigned to the nodes of the transmission grid. 

𝐶 ൌ min ሺ෍ ෍ ෍൫𝑓௧,௡,௜ ∙ 𝑥௧,௡,௜൯
௜஫ூ௡஫ே௧஫்

ሻ  (3-4)

Congestion management costs (increase of dispatch) and revenues (decrease of dispatch) 
of thermal power plants are set dependent on their operational costs. Revenues for 
curtailment of renewable energies are set to zero to ensure their curtailment as a last option. 
Costs and revenues for storages that provide congestion management are set low. Their 
main costs arise from the subsequent compensation of schedule deviations. This energy 
compensation results in costs that are dependent on congestion management costs of 
other assets that provide the compensation. 
The power balance in the transmission grid run is formulated per transmission grid node 
and thus has a significantly higher regional resolution than the market run. For the line flow, 
a DC (direct current) load flow based on PTDF (Power Transfer Distribution Factors) that 
represents a linearized approximation of the non-linear alternating current (AC) load flow 
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is applied. This simplified modeling of the load flow is permissible under the assumption 
that there are no voltage drops (voltage amplitude is equal for all nodes), reactive power is 
neglected, line losses are neglected, and the voltage angle differences are small [49]. 
Modeling the DC load flow based on PTDF, the load flow of AC lines 𝑃௟௜௡௘,஺஼ is determined 
by the PTDF matrix multiplied by the injections and withdrawals in a grid node 𝑃௡௢ௗ௘ 
according to Equation (3-5). The load flow of DC lines 𝑃௟௜௡௘,஽஼ can be fully controlled due 
to converter stations at the end and at the beginning of a DC line and are therefore 
modeled via a transport model from node x to y according to Equation (3-6). 

𝑃௟௜௡௘,஺஼ ൌ 𝑃𝑇𝐷𝐹 ∙ 𝑃௡௢ௗ௘  (3-5)

𝑃௟௜௡௘,஽஼ ൌ 𝑃௫→௬  (3-6)

A detailed derivation of the PTDF equations has already been described numerous times 
and can be found for example in [50], [49], [31] as well as in [Pub4]. 
Injections and withdrawals in a grid node are the result of generation and consumption of 
all assets in the market run as well as their congestion management optimized in the 
transmission grid run. The output of power plants and renewable energies 𝑃௢ is equal to 
the market result 𝑃ெ added by the increased dispatch 𝑃௣ and subtracted by the decreased 
dispatch 𝑃௡ for all timesteps t according to Equation (3-7). Increasing dispatch represents 
positive congestion management and decreasing dispatch means negative congestion 
management. Variable renewable energies operate at their maximum output in the market 
run, considering a possible market-related curtailment. Therefore, their variable 𝑃௣ is set to 
zero. Storages and thus also bidirectional EVs have the possibility to consume electricity 𝑃௜ 
in addition to the possibility to generate electricity 𝑃௢ from the system’s perspective. For 
this reason, Equation (3-7) is expanded to Equation (3-8). 

𝑃௢ሺ𝑡ሻ ൌ 𝑃ெሺ𝑡ሻ ൅ 𝑃௣ሺ𝑡ሻ െ 𝑃௡ሺ𝑡ሻ  (3-7)

𝑃௢ሺ𝑡ሻ െ 𝑃௜ሺ𝑡ሻ ൌ 𝑃ெሺ𝑡ሻ ൅ 𝑃௣ሺ𝑡ሻ െ 𝑃௡ሺ𝑡ሻ  (3-8)

Modeling of storages providing congestion management is more complex due to their 
time-coupling energy conservation constraint formulated in Equation (3-3) for bidirectional 
EVs. The temporal coupling further leads to the fact that time steps cannot be arbitrarily 
decomposed and parallelized in order to reduce complexity of the simulations. Figure 3-2 
schematically illustrates the time-dependence of storages that compensate their adjusted 
schedule in the transmission grid run. Positive and negative congestion management is 
compensated by the opposite congestion management in a different time step. The storage 
level at the end of a time slice is fixed to the market run output and passed to the next time 
slice. Thus, the time slices are coupled only by the market run and can be simulated in 
parallel. The length of the self-contained optimized time slices can be selected variably. On 
the one hand, a longer time slice leads to greater flexibility to compensate for an adjusted 
schedule of a storage facility. On the other hand, it leads to a greater complexity of the 
optimization problem. [Pub4] analyzes the effect of different time slice lengths in detail. The 
results presented in Section 3.4.3 are based on a time slice length of one week. 
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Figure 3-2: Schematic modeling of the restricted storage state of charge at the start and the 

end of a time slice as presented in [Pub4] 

3.2 Scenario Definition 

For an evaluation of the cost-optimal integration of bidirectional EVs into the future energy 
system, a scenario is set up that forms the framework for this study. This is based on the 
climate protection scenario solidEU from the eXtremOS project, which aims a 95% reduction 
in greenhouse gas emissions in Europe by 2050 with a strong electrification of the final 
energy sectors. Detailed information on the scenario and the techno-economic parameters 
can be found in [3]. For Germany, this scenario was updated to include targeted capacities 
for renewable energies and power plants in the year 2030 planned by the German 
government [51]: 

 Installed capacity of PV plants: 200 GW 
 Installed capacity of wind onshore plants: 100 GW 
 Installed capacity of wind offshore plants: 30 GW 
 Coal phase-out by 2030 

The solidEU scenario did not provide the opportunity to integrate smart or bidirectional EVs 
in the future energy system. Therefore, the solidEU scenario with previously addressed 
adjustments serves as a reference scenario Ref to highlight the added value of an energy 
system with bidirectional EVs compared to a system without bidirectional EVs. 
Based on the modeling with an aggregated EV profile per country (see Section 3.1.1), the 
model is endogenously allowed to integrate smart or bidirectional EVs into the system. For 
this purpose, Table 3-1 defines the parameterization of the EVs (including their EVSEs). The 
EVs are parameterized by a medium passenger car battery capacity of 50 kWh [52]. The 
other parameters are based on discussions within the research project BCM [Pub3]. 
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Table 3-2: Technical parameters of bidirectional and smart EVs 

Battery 
capacity 

Charging/ 
discharging  

power 

Charging/ 
discharging 
efficiency 

Minimum 
safety 
SoC 

Minimum 
SoC at 

departure

Location of 
bidirectional 

EVSE 
50 kWh 11 kW 94% 30% 70% At home 

 

In addition to the technical parameters of the EVs shown in Table 3-2, the economic 
parameters are also relevant. Table 3-3 shows the additional investment costs for 
bidirectional and smart EVs compared to unmanaged charging EVs. The investment costs 
are based on the costs presented in Section 2.3.1 and are also discussed in [Pub3]. They 
include additional costs for hardware, software, and installation of EV and EVSE. In addition, 
sensitivities for lower costs of smart EVs (Sen1 and Sen2) were added to assess the impact 
of smart EVs on bidirectional EVs more precisely. Investment costs are annualized by an 
expected lifetime of EV and EVSE of 15 years [53] and an interest rate from the energy 
system’s perspective of 3.5% [54]. 
Table 3-3: Additional investment costs of bidirectional and smart EVs compared to 

unmanaged charging EVs for base and sensitivity (SenX) scenarios  

  2025 2030 2035 2040 2045 2050 

Additional 
investment 
costs for 
EV and 
EVSE in € 

Bidirectional EVs 2840 2190 1890 1590 1590 1590 
Smart EVs Base 960 760 760 760 760 760 
Smart EVs Sen1 480 380 380 380 380 380 
Smart EVs Sen2 200 160 160 160 160 160 

 

Since smart and bidirectional EVs are integrated as independent elements in the lSAaR 
energy system model, the maximum share of the absolute number of EVs is set to 50% in 
each case. This ensures that the number of smart and bidirectional EVs does not exceed 
the absolute number of EVs. Overall, the following study scenarios result: 

- Ref: Reference scenario with no smart and bidirectional EVs 
- BCM: Based on reference scenario with option to integrate bidirectional EVs and 

smart EVs with base investment costs in Table 3-3 
- Sen1: Based on reference scenario with option to integrate bidirectional EVs and 

smart EVs with Sen1 investment costs in Table 3-3 
- Sen2: Based on reference scenario with option to integrate bidirectional EVs and 

smart EVs with Sen2 investment costs in Table 3-3 

3.3 Future Cost-Optimal Penetration Rates 

Building on the scenarios established in Section 3.2, a cost optimization of the future 
European energy system is performed for the BCM scenario and the sensitivities Sen1 
and Sen2 with reduced investment costs for smart EVs. An important finding in [Pub3] was 
that, given the investment costs in the BCM scenario, the option of smart EVs is hardly 
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added endogenously by the model. The number of bidirectional EVs in the BCM scenario 
in Europe goes up from 19 million EVs in 2030 to 62 million EVs in 2050. This corresponds 
to a share of bidirectional EVs in total EVs of 25% in 2030 and of 30% in 2050. The share of 
bidirectional EVs in the total number of EVs is highest in 2040, at around 35%. The added 
value of bidirectional EVs for the European energy system compared to smart EVs is so 
much higher that their higher investment costs are compensated. On the one hand, this is 
due to the high availability of the EVs at home, so that the higher flexibility of bidirectional 
EVs through charging and discharging leads to added values for the energy system. On the 
other hand, smart EVs can only adapt their charging process, which limits their energy 
flexibility potential to their driving consumption. 
With a reduction in investment costs for smart EVs in the Sen1 and Sen2 scenarios, 
significantly more smart EVs are endogenously integrated by the energy system model, as 
shown in Figure 3-3. Especially in scenario Sen2, the share of smart EVs in the absolute 
number of EVs is close to the maximum of 50% in 2030 and 2040. Consequently, the option 
of smart EVs leads to a sufficiently large added value for the energy system so that the 
additional investment costs can be compensated. However, compared to the BCM scenario, 
these additional smart EVs are used less to replace bidirectional EVs than previously 
unmanaged charging EVs. This shows that the flexibility option of smart EVs only slightly 
influences the integration of bidirectional EVs. Even in scenario Sen2 with lowest costs for 
smart EVs, the number of bidirectional EV increases still robust, predicted to rise 
from 14 million EVs in 2030 to 54 million in 2050. 

 
Figure 3-3: Number of EVs per charging strategy for scenarios BCM, Sen1 and Sen2 based 

on [Pub3] and on further evaluations 

In addition to the absolute number of EVs per charging strategy, an analysis of the regional 
distribution of EVs is also informative in order to obtain indicators for factors influencing a 
high share of bidirectional EVs. For this purpose, Figure 3-4 presents the dependance of 
shares and numbers of EVs per charging strategy and country for the BCM and Sen2 
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scenarios in 2050 on the full load hours of PV generation. This complements the analysis 
in [Pub3], which compares 2030 and 2050 for the BCM scenario. Various characteristics are 
recognizable. In Scandinavia, no bidirectional EVs are integrated in either scenario and only 
a quarter of smart EVs are integrated in the Sen2 scenario. The shares of bidirectional EVs 
are higher in Southern Europe, especially in the BCM scenario, for example in Greece, Italy, 
Spain and Bulgaria. In the Sen2 scenario, smart EVs displace a little part of the bidirectional 
EVs in almost all countries. Only France and Portugal stand out with a higher share of 
bidirectional EVs, although a large number of smart EVs are also integrated. This is due to 
a further significant increase in PV capacity. The European countries on the map are each 
colored based on the full load hours of PV systems. Here, a correlation can already be 
determined visually. A higher number of full load hours of PV plants tends to lead to a 
higher share of bidirectional EVs in total EVs. 

 
Figure 3-4: Dependance of shares and numbers of EVs per charging strategy and country 

for the BCM (a) and Sen2 (b) scenarios in 2050 on the full load hours of PV 
generation based on [Pub3] and on further evaluations 

To further investigate the influencing factor of PV energy and other influencing factors, 
Figure 3-5 presents dependencies of the share of bidirectional EVs on various influencing 
factors for all countries with a total of more than one million EVs. This evaluation refers to 
the BCM scenario in 2050. Each point in the diagram represents one country. In addition, a 
linear regression curve and the coefficient of determination R² of the linear regression were 
determined. The coefficient of determination, which always lies in the interval 
between 0 and 1, indicates the quality of the regression. The closer the coefficient of 
determination is to 1, the better the fit of the determined regression line. With a coefficient 
of determination of 1, all residuals are 0 [55]. 
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The upper left plot in Figure 3-5 shows the dependence of the share of bidirectional EVs 
on the average full load hours of PV systems in a country to reinforce or refute the visual 
indication from Figure 3-4. A coefficient of determination R² of 0.518 is obtained, which 
indicates a certain linear correlation of the share of bidirectional EVs with the average full 
load hours of PV plants. Since bidirectional EVs act as storage in the energy system, they 
will often use the PV peaks that are above the load peaks to integrate this otherwise 
curtailed energy into the system. Therefore, the upper right diagram in Figure 3-5 shows 
the dependance of the share of bidirectional EVs to the ratio of PV peak power to peak 
load. This results in a coefficient of determination R² of 0.718, which indicates a good linear 
relationship. Another possible assumption is that bidirectional EVs tend to be more 
integrated when peak wind power in a country is significantly above peak load. Therefore, 
the diagram in the lower left of Figure 3-5 shows the relationship between the share of 
bidirectional EVs and the ratio of peak wind power to peak load. Here, however, the 
coefficient of determination R² is close to 0, which means no linear correlation. The bottom 
right diagram in Figure 3-5 brings together wind energy and PV energy in a final study and 
plots the relationship of the share of bidirectional EVs to the ratio of the peak of the 
summed wind and PV power to the peak load. The coefficient of determination R² of 0.237 
indicates only a slight linear correlation. It is also significantly lower here than when 
considering the ratio of peak PV power to peak load in the second plot. 

 
Figure 3-5: Dependance of shares of bidirectional EVs in total EVs on various influencing 

factors 

Wind turbines have a less regular feed-in characteristic than PV systems, which always have 
their daily peak feed-in times around noon. This regular feed-in characteristic is well suited 
for daytime storages, which can charge during the day, store the energy and discharge at 
night. Even if the availability of bidirectional EVs is more limited during the day [56], at 
least 50% of all vehicles in a country are always at home. Bidirectional EVs therefore often 
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act as daytime storage and are thus a very good complement to PV energy. This and other 
added values will be taken up and discussed in the following Section 3.4. 

3.4 Impact on the Future Energy System 

In the previous section, it was already shown that bidirectional EVs with underlying 
investment and operating costs are integrated in a cost-optimal future energy system. In 
this section, the added values and their impact on the energy system are evaluated more 
concretely based on [Pub3], [Pub4] and further evaluations. 

3.4.1 Other Assets in the Energy System 
The evaluations listed below complement the evaluations in [Pub3] by comparing the 
reference scenario Ref without smart and bidirectional EVs with the BCM scenario and the 
Sen2 scenario defined in Section 3.2. In this way, the influences of smart and bidirectional 
EVs on the energy system and other elements in the energy system can be quantified. 
Figure 3-6 shows the installed capacities of variable renewable energies and thermal power 
plants for the scenarios Ref, BCM and Sen2 for the years 2030, 2040 and 2050 in Europe. As 
already pointed out in [Pub3], the installed capacity of PV increases significantly in the BCM 
scenario compared to the Ref scenario, whereas the capacities of onshore wind and offshore 
wind decrease. A comparison of the BCM and Sen2 scenarios reveals only minor differences. 
The Sen2 scenario tends to integrate slightly less PV and wind offshore capacity, while the 
installed capacity of wind onshore increases slightly. The relative curtailment of PV energy 
decreases by 2 to 3 percentage points from 9% to 6% in 2030 and 10% to 8% in 2050 in 
the BCM scenario compared to the Ref scenario. The relative wind energy curtailment, on 
the contrary, remains at a similar level at 2% in 2030 and 4% in 2050 in both scenarios. 
The differences in the installed capacity of thermal power plants in the BCM and Sen2 
scenarios are similarly small. In Sen2, slightly lower capacities of gas-fired and hydrogen-
fired power plants are required compared to BCM. Therefore, in both scenarios, the 
bidirectional EVs in particular lead to significantly lower capacities of gas- and hydrogen-
fired power plants than in the Ref scenario. 
The significant cost reduction of smart EVs and the associated high integration of these 
therefore only has a minor impact on the expansion of variable renewable energies and 
thermal power plants. As already discussed in Section 3.3, the share of bidirectional EVs in 
the Sen2 scenario is similar to the BCM scenario resulting in the same characteristics of the 
energy system. Very cheap smart EVs cause slightly reduced required capacities of thermal 
power plants, but the impact compared to bidirectional EVs is small. 
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Figure 3-6: Installed capacities of variable renewable energies (a) and thermal power 

plants (b) for the scenarios Ref, BCM and Sen2 for the years 2030, 2040 and 2050 
in Europe based on [Pub3] and on further evaluations 

Going further, Figure 3-7 shows the installed capacities of mobile and stationary storages 
for the scenarios Ref, BCM and Sen2 for the years 2030, 2040 and 2050 in Europe. The 
storage capacities of the smart and bidirectional EVs result directly from the number of EVs 
multiplied by a storage capacity of 50 kWh. Since the storage capacity cannot be fully 
utilized due to unavailability of the vehicles and limitations of the SoC, it represents a 
theoretical storage capacity. The storage capacities of stationary battery storages and 
pumped storage hydropower plants do not differ in the BCM and Sen2 scenarios. Pumped 
storage hydropower plants are fixed and not modeled as endogenous expansion assets. 
Stationary battery storages are decreased to a minimum, exogenously specified capacity in 
both the BCM and Sen2 scenarios. Therefore, the integration of very low-cost smart EVs in 
the Sen2 scenario does not lead to any changes beyond the reduction of stationary battery 
storages in the BCM scenario. 

 
Figure 3-7: Installed capacities of mobile (a) and stationary (b) storages for the scenarios 

Ref, BCM and Sen2 for the years 2030, 2040 and 2050 in Europe based on [Pub3] 
and on further evaluations 
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3.4.2 Total System Costs and Electricity Prices 
The structural changes in the energy system in the BCM and Sen2 scenarios also result in 
different total system costs and mean European electricity prices, which are summarized 
in Table 3-4 for the years 2025 to 2050. The Sen2 scenario is only modeled for the 
years 2030, 2040 and 2050. In the BCM scenario, total system costs decrease by €8 billion/a 
in 2050 compared to the Ref scenario, although the integration of bidirectional EVs is 
modeled by additional investment costs. In the Sen2 scenario, total system costs can be 
reduced by a further €3 billion/a in 2050 compared with the BCM scenario, resulting in a 
total cost saving of €11 billion/a compared with the Ref scenario. More than €1 billion/a of 
the €3 billion/a cost reduction in the Sen2 scenario compared to the BCM scenario can be 
attributed to the 8 million EVs reduction in bidirectional EVs. The average, consumption-
weighted European electricity price on the wholesale market is 2-5 €/MWh lower in both 
scenarios BCM and Sen2 than in the Ref scenario. The Sen2 scenario does not cause any 
significant change in electricity prices compared to the BCM scenario. Since the total system 
costs consist of the infrastructure costs and the supply costs across all energy carriers, there 
is no direct correlation to the electricity prices. 
As a complementary evaluation to the price analysis in [Pub3], Table 3-4 also presents the 
mean European daily standard deviation of the electricity prices in the three scenarios. It is 
calculated by the mean daily standard deviation of the electricity prices per country, which 
is then used to determine the consumption-weighted European mean. The impact of 
bidirectional EVs on the electricity price characteristics is evident. In the BCM scenario, the 
electricity price is significantly smoother, resulting in a daily standard deviation reduced 
by 6-11 €/MWh compared to the Ref scenario. In the Sen2 scenario, the daily standard 
deviation of electricity prices no more changes significantly compared to the BCM scenario. 
In Section 2.3.2, electricity prices for the German market area from the BCM scenario are 
used as simulated future electricity prices to estimate revenue potentials of specific users of 
bidirectional EVs. For Germany in the BCM scenario, a slightly higher price volatility with a 
mean daily standard deviation of 15.8 €/MWh in 2025, 18 €/MWh in 2030, 17.6 €/MWh 
in 2035, and 16.8 €/MWh in 2040 is observed. 
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Table 3-4: Total energy system costs and mean European electricity price for the years 2025 
to 2050 for scenarios Ref, BCM and Sen2 

Year 

Overall energy system 
costs in billion €/a 

Mean European 
electricity price in 

€/MWh 

Mean European daily 
standard deviation of 

electricity prices in 
€/MWh 

Ref BCM Sen2 Ref BCM Sen2 Ref BCM Sen2 
2025 432.4 431.7 - 44.6 42.6 - 21.2 15.3 - 
2030 414.6 412.4 411.4 42.5 39.4 39.7 23.4 15.4 15 
2035 354.9 350.1 - 43.1 39.1 - 26.8 16 - 
2040 332.2 325.7 324.1 44.6 39.4 39.3 25.2 15.3 15.3 
2045 323.5 314.4 - 44.4 41.1 - 25.5 17.7 - 
2050 353.1 345.0 342.0 41.6 38.8 38.9 22.4 15.3 15.9 

 

3.4.3 Regional Residual Load Characteristics 
A much-discussed topic in the scientific community is the question of to what extent 
bidirectional EVs bring an additional load to the power grids, i.e., transmission grids and 
distribution grids [71], [57]. For the grid dimensioning of distribution grids in low voltage 
and medium voltage [58] as well as transmission grids in high and ultra-high voltage [72], 
both the peak load at low generation and the peak generation at low load can be relevant. 
Since the future energy system will be strongly characterized by variable renewable 
energies on the generation side, the maximum and minimum regional residual load, 
meaning the regional load minus the regional feed-in from renewable energies, is a 
meaningful indicator for the load of electricity grids in addition to detailed grid simulations. 
An increase of the maximum residual load peaks (peak load) or a decrease of the minimum 
negative residual loads (generation surpluses) thus signals a required higher grid utilization. 
This is only to be taken as an indicator, as the actual grid situation must be analyzed in each 
individual case. Nonetheless, smoothing the regional residual load and thus reducing load 
and generation peaks represents a reduction in the maximum loads and generation for 
which a grid must be designed. For this reason, this section supplements the evaluations 
in [Pub3] by an analysis of the impact of bidirectional EVs on regional residual load. 
Figure 3-8 takes up the question of whether the residual load is smoothed by bidirectional 
EVs and first analyzes the Europe-wide residual load for the modeled years 2030, 2040, and 
2050 for both scenarios Ref and BCM and the scenario BCM without EVs. The BCM scenario 
adds charging power and subtracts discharging power of bidirectional EVs to the residual 
load, which are excluded in the BCM without EVs scenario. The residual load is calculated 
by the static electricity load of the final energy sectors subtracted by the variable renewable 
energies generation. The European residual load is shown as an annual duration curve to 
better analyze the scenarios. 
Over the years 2030 to 2050, the maximum residual load increases significantly, and the 
minimum residual load decreases considerably. On the one hand, this is due to increasing 
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electrification in the final energy sectors, which increases the electrical load. On the other 
hand, variable renewable energies are increasingly being integrated on the generation side, 
which in some cases cause large generation surpluses due to high simultaneities. When 
comparing the Ref scenario with BCM without EVs, it becomes apparent that significantly 
higher generation surpluses occur in the BCM without EVs scenario. The bidirectional EVs 
bring more flexibility into the system, which means that in the BCM without EVs scenario, 
more PV power with a high feed-in simultaneity is integrated, so that the peaks of the 
generation surpluses increase. This effect is not only compensated by bidirectional EVs, but 
the residual load is also even smoother in the BCM scenario than in the Ref scenario. Cost-
optimally operated bidirectional EVs charge at favorable electricity prices (often during 
generation surpluses) and discharge at high electricity prices (often during peak loads) and 
thus have a smoothing effect on the residual load. 

 
Figure 3-8: Annual hourly duration curves of European residual load for the years 2030, 2040 

and 2050 for both scenarios Ref and BCM and the scenario BCM without 
bidirectional EVs 

At the European level, the smoothing of the residual load is a fundamentally positive effect, 
as less flexibility is needed to keep load and generation in balance. However, analyzing the 
European residual load does not allow any conclusions on grid loads. To show the change 
of the regional residual load, all European market areas are regionalized into NUTS 3 
(Nomenclature of territorial units for statistics) regions [59]. NUTS regions are a 
classification of territorial units for statistics. The regionalization of the final energy demand 
as well as the PV and wind power plants is based on research project eXtremOS. The 
regionalization of bidirectional EVs is consistently based on the distribution of passenger 
cars in the final energy sector of transport. Detailed information on the regionalization can 
be found in [60] and [3]. This regionalization into NUTS 3 regions divides Germany, for 
example, into about 400 regions. As of 2022, there are 569 substations in Germany for 
transforming electricity from the transmission grid level (380/220 kV) to the high voltage 
level (110 kV) based on data from 50Hertz (62 substations [73]), Amprion (234 sub-
stations [74]), TenneT (189 substations [75]), and TransnetBW (84 substations [76]). This 
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means that a NUTS 3 region contains on average 1 to 1.5 substations. The analysis of the 
regional residual load under the implemented regionalization thus only allows for grid 
dimensioning indications on the transmission grid and partly on the high-voltage grid level 
since the high voltage grid is used for distribution as well as transmission [77]. Therefore, 
an indication for an evaluation of dimensioning lower voltage levels is not possible. 
For each NUTS 3 region, the annual hourly residual load duration curve is created for both 
scenarios Ref and BCM. For an analysis of the change in peak load, the 100 hours with the 
maximum residual load of a region are extracted and the average of these values is 
calculated. In the same way, for an evaluation of the generation surpluses based on 
the 100 hours with the lowest residual load, the average value is calculated. Since the 
residual load can be negative or positive, but a grid load exists in both directions, the 
absolute value is taken in each case. To compare the peak load of both BCM and Ref 
scenarios, Equation (3-9) calculates a factor 𝑓𝑎𝑐𝑡𝑜𝑟௣௘௔௞_௟௢௔ௗ by taking the average of the 
absolute maximum residual loads in the BCM scenario ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑஻஼ெ,௠௔௫ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതതതത minus the 
absolute maximum residual loads in the Ref scenario ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑ோ௘௙,௠௔௫ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതതത. In the same way, 
in Equation (3-10), a factor 𝑓𝑎𝑐𝑡𝑜𝑟௚௘௡_௦௨௥௣௟௨௦ is formed to evaluate the change in generation 
surpluses. It is important to note that there are also regions that have only positive residual 
loads throughout the year, e.g., urban regions. Consequently, these regions have no 
generation surpluses. In these cases, the minimum residual load refers to the minimum grid 
loads. However, due to the difference in the absolute values of the residual loads of the two 
scenarios, positive and negative minimum residual loads can also be compared. 
Consequently, if the factors are negative, it implies a reduction in grid loads due to peak 
loads or generation surpluses in the BCM scenario compared to the Ref scenario. If the 
factors are positive, the loads are lower in the Ref scenario. 

ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑஻஼ெ,௠௔௫ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതതത  െ ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑ோ௘௙,௠௔௫ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതത ൌ 𝑓𝑎𝑐𝑡𝑜𝑟௣௘௔௞_௟௢௔ௗ   (3-9)

ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑஻஼ெ,௠ప௡ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതതത  െ ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑ோ௘௙,௠ప௡ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതത ൌ 𝑓𝑎𝑐𝑡𝑜𝑟௚௘௡_௦௨௥௣௟௨௦   (3-10)

The factors per NUTS 3 region are visualized in Figure 3-9. The left map plots the change 
in peak load per NUTS 3 region. Green tones indicate a decrease and red tones an increase 
of the peak load in the BCM scenario. It can be observed that the regional peak load in 
many regions in Europe is reduced by the integration of bidirectional EVs. However, 
especially in urban regions such as Madrid, Paris or Berlin, the peak load increases. This is 
because a high number of bidirectional EVs are integrated there due to the high population, 
which overlays the load characteristics of the regions in times of high charging power. The 
right map of Figure 3-9 shows the change in generation surpluses. Here, a much more 
heterogeneous picture emerges, which in some regions is exactly opposite to the evaluation 
of the peak loads. For urban regions, this can be explained by the fact that the residual load 
is often positive throughout the year. Bidirectional EVs overlay this load characteristic and 
cause a reduction of the absolute residual load in times with high discharge powers. In 
many other regions, e.g., in Spain and France, higher negative residual loads and thus 
generation surpluses occur. These are often regions where significantly more PV is 
integrated in the BCM scenario compared to the Ref Scenario, so that PV peak generation 
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increases. In contrast, relatively few bidirectional EVs are integrated in these often-rural 
regions, so that a compensation of the higher PV generation by charging the bidirectional 
EVs cannot take place. In other regions, however, such as southern Germany, the highest 
generation surpluses correlate with high charging powers of bidirectional EVs, reducing 
generation surpluses. In Germany, it should also be noted that the PV expansion for the Ref 
and BCM scenarios in 2030 was fixed based on the targets of the German government. 

 
Figure 3-9: Factors indicating change in peak load (a) and generation surpluses (b) per 

NUTS 3 region in Europe in 2030 in scenario BCM compared to Ref 

Since both generation peaks and load peaks are relevant for the design of electricity grids, 
the two factors are combined in Equation (3-11). The factor 𝑓𝑎𝑐𝑡𝑜𝑟௚௥௜ௗ_ௗ௜௠ is calculated by the 
maximum of the absolute maximum and minimum residual loads in the BCM scenario 
minus the maximum of the absolute maximum and minimum residual loads in the Ref 
scenario. Consequently, the factor reflects the load on the distribution grids, regardless of 
whether they are generation or load peaks. 

𝑓𝑎𝑐𝑡𝑜𝑟௚௥௜ௗ_ௗ௜௠ ൌ max ቀห𝑟𝑒𝑠𝑙𝑜𝑎𝑑஻஼ெ,௠௔௫ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതതത , ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑஻஼ெ,௠ప௡ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതതത ቁ

െ max ቀห𝑟𝑒𝑠𝑙𝑜𝑎𝑑ோ௘௙,௠௔௫ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതത , ห𝑟𝑒𝑠𝑙𝑜𝑎𝑑ோ௘௙,௠ప௡ଵ଴଴௛หതതതതതതതതതതതതതതതതതതതതതതതതതത ቁ 
(3-11)

Figure 3-10 shows these factors indicating a change in grid dimensioning per NUTS 3 
region in Europe in 2030 and 2050. When comparing the changes in generation surpluses 
and peak loads with the grid dimensioning factor for the year 2030, it is noticeable that in 
Southern Europe the change in generation surpluses accounts for the grid dimensioning in 
most regions. In Central and Northern Europe, the picture is heterogeneous with regions 
showing a reduced grid dimensioning factor and regions with higher grid loads. 
Overall, 770 regions have a negative grid dimensioning factor, and 610 regions have a 
positive grid dimensioning factor in 2030. It can be concluded that bidirectional EVs 
basically have a very different impact on regional residual load maxima and minima 
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depending on regional conditions. There is no clear direction on whether integrating 
bidirectional EVs will increase or decrease the grid load in transmission and high voltage 
grids. 

 
Figure 3-10: Factors indicating change in grid dimensioning per NUTS 3 region in Europe in 

2030 (a) and 2050 (b) in scenario BCM compared to Ref 

The comparison of the grid dimensioning factor for the years 2030 and 2050 also shows 
interesting changes. In most regions in Southern Europe, the grid dimensioning factor 
changes from positive values to negative values. This means that the integration of 
bidirectional EVs has a relieving effect on grid utilization there. This is due to the PV 
expansion there, which is at the maximum potential limit in both scenarios BCM and Ref. 
Since no additional PV capacity is added in the BCM scenario compared to the Ref scenario, 
the bidirectional EVs have a mostly positive smoothing effect on the residual load. This is 
different in Poland, the Czech Republic and France, for example. In France, the PV capacity 
in the BCM scenario in 2050 is 420 GW compared to 290 GW in the Ref scenario. The PV 
peaks are not completely smoothed by the bidirectional EVs, so that in most regions the 
generation surpluses are significantly higher regionally and thus the grid load increases. In 
Germany and Benelux, the level of grid dimensioning factors varies a lot. There, very high 
installed capacities of wind offshore and wind onshore have been integrated by 2050, which 
also leads to generation surpluses in the market areas in many hours. Since this stimulates 
the charging of bidirectional EVs in exactly these hours, the bidirectional EVs in northern 
Germany and Benelux often have a grid-relieving effect. In other regions, where PV and 
load are more relevant to grid dimensioning, the impact of bidirectional EVs is more 
heterogeneous. Overall, 590 regions have a negative grid dimensioning factor, 
and 780 regions have a positive grid dimensioning factor in 2050. Consequently, even 
in 2050, no clear statement can be made as to whether bidirectional EVs will reduce or 
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increase grid loads when integrated into electricity markets. In individual cases, the regional 
load and generation conditions must be analyzed for each region or grid area. 

3.4.4 Congestion Management 
After the investigations of regional residual load described in the previous section indicate 
that bidirectional EVs have partly positive and partly negative impacts on the electricity 
grids, the extent to which they can provide congestion management in the transmission 
grid is now investigated in more detail. Since the grid simulations with optimization of 
congestion management as described in Section 3.1.2 are very complex, the study area is 
restricted to the year 2030. The studies presented here are based on [Pub4], which also 
describes the scenario framework of the European transmission grid in more detail. A 
comparison of two transmission grid simulations is performed: 

- Ref grid run: Transmission grid run with optimization of congestion management 
without bidirectional EVs 

- BCM grid run: Transmission grid run with optimization of congestion management 
with bidirectional EVs 

Both transmission grid optimizations are based on the market run of the BCM scenario. 
Congestion management volumes in both runs increase sharply from today's volumes. In 
the Ref grid run, the volumes of positive congestion management in Europe for the 
year 2030 are 600 TWh compared to a total electricity production of 5,000 TWh. The 
German positive congestion management volume of 160 TWh in the Ref grid run indicates 
high amounts of congestion management that do not fit to the volumes simulated in the 
German transmission grid expansion plan of around 7 TWh in 2035 in the base scenario. 
Reasons for this are discussed in [Pub4]. They include the lack of modeling of overhead line 
monitoring, uncertain regionalization of added assets, and simplified modeling of a 
linearized load flow. Furthermore, the endogenously cost-optimized scenario as well as the 
parameterization of the assets in the energy system is also not the same as the scenario 
used in grid expansion plans. 
Nevertheless, by comparing the BCM grid run and Ref grid run, conclusions can be drawn 
about the added value of bidirectional EVs in congestion management. The use of 
bidirectional EVs in congestion management reduces 26 TWh positive redispatch of 
thermal power plants, 9 TWh negative redispatch of thermal power plants 
and 23 TWh curtailment of renewable energies. This results in 17 TWh less electricity 
generated by thermal power plants, saving 12 million tons of CO2. Compared to total 
modeled emissions in the energy sector in 2030 of just under 500 million tons of CO2, this 
is a 2.5% reduction in emissions. 
Even though the absolute reduced numbers of congestion management by power plants 
and renewable energies are favored by the high total volumes of congestion management, 
the positive effect of bidirectional EVs is evident. Figure 3-11 shows the regional distribution 
of positive and negative congestion management per technology per transmission grid 
node. The decentralized distribution of bidirectional EVs proves to be an advantage. 
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Bidirectional EVs near nodes with high curtailments of renewable energies (for example in 
northern Germany) can reduce curtailments through negative congestion management. 
Positive congestion management then re-establishes their initial schedule within the time 
slice. In southern Germany, on the other hand, positive congestion management is often 
used first, thus displacing the use of thermal power plants. Here, the schedule must then 
be re-established at other times through negative congestion management. 
In [Pub4], the regional distribution of congestion management per technology for the 
Ref grid run as well as the mean line usage of both runs are also shown and analyzed. 
Overall, many transmission grid lines have a very high utilization. However, especially in the 
case of wind offshore plants, the curtailment often takes place immediately after the grid 
connection point. 

 
Figure 3-11: Negative (a) and positive (b) congestion management per grid node split up in 

different technologies for the BCM grid run 

Overall, in addition to the added values of bidirectional EVs shown in the previous sections 
regarding the design of the future energy system, a potential added value for the provision 
of congestion management can also be shown. Ultimately, however, more in-depth 
analyses with a parameterization of the transmission grid that is suitable for the underlying 
market scenario are required. 
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4 Combining the User and the Energy 
System Perspective on Bidirectionally 
Chargeable Electric Vehicles 
In a final step, the user and energy system views on bidirectional EVs are brought together. 
Section 4.1 compares the modeling approaches of bidirectional EVs developed in this 
dissertation. Section 4.2 discusses a common added value of bidirectional EVs from the user 
and the energy system perspective. 

4.1 Comparison of Modeling Approaches Depending on Use Case and 
Perspective 

As shown in the previous chapters, the modeling approaches of bidirectional EVs differ 
depending on the focus of investigation. For this purpose, Table 4-1 provides a clear 
comparison of the modeling approaches of bidirectional EVs presented in this dissertation. 
All four presented types of modeling bidirectional EVs formulate an optimization problem. 
Depending on the perspective, the objective function focuses on minimizing the electricity 
costs of a user or the total systemic costs for energy provision or congestion management. 
For the user perspective, minimizing electricity costs could also be reformulated as 
maximizing revenues. The objective function values can become negative values and thus 
mean real revenues. 
The basic modeling does not differ in all approaches. A bidirectional EV is modeled as a 
storage with limited availability and electrical consumption, which has typical storage 
constraints such as energy conservation, and EV user-specific constraints such as 
maintaining a minimum safety SoC and a departure SoC.  
In addition, all modeling approaches presented have special features that are only relevant 
in the focus of investigation under consideration and thus lead to advantages and 
disadvantages of the respective approach: 

 For the modeling of PV self-consumption optimization, variable charge and 
discharge efficiencies are modeled for a wide range of household types, since power 
flows in the household are small and losses would otherwise be greatly 
underestimated. The modeling approach leads to more realistic results but adds a 
higher complexity to the optimization problem, since it is no longer linear but 
mixed-integer linear. 

 For the modeling of arbitrage trading from the user perspective, a rolling-horizon 
optimization with consideration of real trading hours is implemented to allow 
consecutive spot market trading in day-ahead and intraday markets. This 
consecutive market trading results in higher revenue potentials than single market 
trading and thus shows the potential revenues of the use case arbitrage trading. 
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The complexity of the optimization problem can be kept small by rolling 
optimization. However, no feedback effects on electricity prices are modeled, so 
that e.g., low liquidity of the intraday market indicates less robust revenue 
potentials. 

 For the modeling of arbitrage trading from the energy system perspective, the 
aggregation of EV profiles and thus a non-discrete modeling of the constraints 
enables investigations on cost-optimal integration of bidirectional EVs with only a 
slight increase in the complexity of the optimization problem. The impact of the 
bidirectional EVs integrated into the electricity market on the day-ahead market 
prices result endogenously from the optimized operation of the EVs. The cost-
optimal future penetration rates of bidirectional EVs can be used for policy 
recommendations. 

 For the modeling of the provision of congestion management via bidirectional EVs, 
a rolling parallelized grid optimization run with simplified time-coupling of storage 
is performed based on a market run. In both runs, bidirectional EVs are modeled by 
aggregated EV profiles. Although the optimization problem of the transmission grid 
calculation is very complex, it is computable for a time slice length of one week by 
modeling of one aggregated instance per transmission grid node. This allows 
realistic potentials of congestion management to be determined. 

Table 4-1 further shows the publications and sections associated with the modeling 
approaches in this cumulative dissertation. Overall, the various approaches to modeling 
bidirectional EVs have fundamental similarities, but also necessary differences. The specifics 
per use case and perspective can be transferred well to other use cases of bidirectional 
charging. Consequently, other modelers can benefit from the overview of the different 
approaches to modeling bidirectional EVs to adapt their modeling according to the use 
cases and perspective. 
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Table 4-1: Comparison of modeling approaches of bidirectional EVs presented in this 
dissertation 

Use Case Vehicle-to-
Home: 
PV self-
consumption 
optimization 

Vehicle-to-Grid:
Arbitrage 
trading 

Vehicle-to-Grid: 
Arbitrage trading 

Vehicle-to-Grid: 
Provision of 
congestion 
management 

Perspective User User Energy system Energy system 
Objective 
function 

Minimization of 
household 
electricity costs 

Minimization of 
EV’s electricity 
costs 

Minimization of total 
energy system costs 

Minimization of 
congestion 
management costs

Base 
modeling 
approach of 
bidirectional 
EVs 

 Modeling of bidirectional EVs as a storage with energy consumption and 
limited availability 

 Time-coupling via equation for storage energy conservation 
 Modeling of minimum safety SoC and minimum SoC at departure for 

realistic user behavior 
 Basic constraints, like maximum charging/discharging power and maximum 

absolute SoC 
 EV profiles of EV consumption and EV location 

Modeling 
specifics 

 Modeling of 
varying 
charging and 
discharging 
efficiencies 

 Modeling of 
various 
household 
configurations 

 Modeling of 
consecutive 
spot market 
trading 

 Rolling 
optimization 
with modeling 
of real trading 
hours 

 Modeling of cost-
optimized 
integration of 
bidirectional EVs 

 Aggregation of 
discrete EV 
profiles 

 Aggregation of 
discrete EV 
profiles  

 Rolling grid 
optimization 
with simplified 
time-coupling of 
storage 

Advantages of 
modeling 
specifics 

 Realistic 
modeling of EV 
and EVSE 
losses leads to 
realistic 
estimation of 
revenue 
potentials 

 Revenue 
optimization 
by multiple 
market trading 

 Limited 
complexity via 
rolling 
optimization 

 Only slight 
increase of model 
complexity 

 Cost-optimal 
penetration rates 
of bidirectional 
EVs for policy 
recommendations

 Optimization 
problem still 
computable 
despite high 
complexity 

 Determination 
of realistic 
potentials of 
congestion 
management 

Disadvantages 
of modeling 
specifics 

 Increased 
complexity due 
to variable 
charging and 
discharging 
efficiencies 

 No feedback  
of arbitrage 
trading on 
electricity 
prices modeled

 No exact 
representation of 
EV constraints 

 Limited on day-
ahead market 

 No exact 
representation 
of EV constraints

 Highly complex 
optimization 
problem 

Sections in 
Dissertation 

2.1.1 
2.1.3 

2.1.2 
2.1.3 

3.1.1 3.1.2 

Publication [Pub1] [Pub2] [Pub3] [Pub4] 
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4.2 Possibility of a Common Added Value 

After multiple added values of bidirectional charging have been shown in this dissertation, 
the question arises as to what extent the added values for the user and the energy system 
can be combined.  
The use case V2G arbitrage trading has been analyzed from a user and energy system 
perspective and shows promising added values for both perspectives. The user can 
generate significant revenues by participating in the day-ahead and intraday markets. These 
revenue potentials are above 1000 €/EV/a, but strongly depend on the EV and EVSE 
configuration, the user behavior and especially on the regulatory framework with regard to 
taxes, levies and grid charges to be paid. The energy system benefits from the integration 
of bidirectional EVs into the electricity markets on many levels. On the one hand, the 
flexibility of bidirectional EVs increases the market value of PV energy, allowing it to be 
better integrated. On the other hand, less capacity of thermal power plants and other 
storage technologies is needed. This ultimately decreases the total costs of the energy 
system even when considering the additional investment costs of bidirectional EVs. The 
energy system thus becomes more efficient. The significant systemic benefit also generates 
the added value for the user of contributing to a cost-optimal energy system based on 
renewable energies. This is only an indirect, qualitative added value, but it can be relevant 
for the acceptance of the use case V2G arbitrage trading. 
The added value from both the energy system and the user perspective is not directly 
evident for the V2H PV self-consumption optimization use case. The economic added value 
for the user was shown in Sections 2.2.1 and 2.3.2. Further, Section 2.2.1 also points out that 
the self-consumption of renewable PV generation and thus the household self-sufficiency 
increases. The profitability of the use case gives users the incentive to invest in a 
bidirectional EV and EVSE. The added value from the system perspective is open to question 
since PV self-consumption optimization is a local optimization without considering the 
effects on the German or European energy system. Modeling of local prosumer cells in the 
energy system performing PV self-consumption optimization by bidirectional EVs poses 
another research need here. Nevertheless, analysis of renewable energy curtailment can 
provide conclusions about a systemic effect of PV self-consumption optimization. In total, 
by the market integration of bidirectional EVs in the energy system in 2030, the relative PV 
curtailment in Europe reduces by 2 to 3 percentage points. Since PV self-consumption 
optimization also incentivizes charging of EVs at daytime, on the one hand, a reduction in 
PV curtailment and thus a positive systemic effect can be expected in summer. In winter, on 
the contrary, when there is an increased curtailment of wind energy instead of PV energy, 
PV self-consumption optimization may even have a negative effect. 
The provision of congestion management primarily has a systemic benefit: thermal power 
plants can be operated less and renewable energies less curtailed. The additional revenues 
for the user through participation in congestion management are very difficult to quantify 
under the current design in Germany, as there is a cost-based remuneration [42]. The costs 
of bidirectional EVs to participate in congestion management consist of battery aging costs, 
aggregator costs, and other cost components, while the user’s behavior may be restricted. 
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In addition, cost-based remuneration does not result in any real added value for the user. 
The introduction of market-based congestion management, which is being discussed in 
various ways [61], would open up new revenue opportunities for the use case. Without such 
market-based revenue opportunities, it is very unlikely that EV users would voluntarily 
participate in congestion management. 
Table 4-2 ultimately summarizes these pointed out added values of bidirectional charging 
from the user and energy system perspectives. Overall, V2G arbitrage trading in particular 
can generate a wide range of systemic and user-related added value. 
Table 4-2: Main added values for the user and the energy system by considered use cases 

in this dissertation 

Use Case Added Value User Added Value Energy System 

V2H 
PV self-
consumption 
optimization 

 

 Revenues 
 Increase in household 

self-sufficiency 
 Increase in self-

consumption of 
renewable PV 
generation 

(?) 

 Indirect positive effects 
by decreasing PV 
curtailment in summer 
possible 

 Unknown effect on 
renewable energy 
curtailment in winter 

V2G  
arbitrage 
trading 

 

 Revenues 
 Contribution to cost-

optimal energy system 
 

 Reduced capacities of 
power plants and 
battery storages  

 Reduced energy 
system costs 

 Improved market 
integration of PV 

V2G 
congestion 
management 
provision 

( ) 

 In Germany only cost-
based remuneration 

 Contribution to cost-
optimal ancillary 
service provision 

 

 Less electricity 
generation of power 
plants needed 

 Less curtailment of 
renewable energies 

 
The combination of different use cases of bidirectional EVs can also add combined value 
from the user and system perspective. The possibility of combining V2H PV self-
consumption optimization and V2G arbitrage trading has already been discussed in [Pub2] 
and in Section 2.2.3. PV self-consumption optimization exhibits strong seasonality. In the 
summer months from April to September, the user can expect significantly higher revenue 
potentials than in the winter months. Here, a simple seasonal switch of the use cases 
suggests operating V2G arbitrage trading in the winter months and V2H PV self-
consumption optimization in the summer months. In the long term, a highly dynamic 
change of use cases every minute or hour will also be of interest in order to optimize the 
revenue potentials for the user and the added values for the energy system. In [Pub2], 
however, the high requirements for metering data for use case switching are already 
discussed. 
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In Germany, the ‘Law on Immediate Measures for Accelerated Expansion of Renewable 
Energies and Further Measures in the Electricity Sector’ was passed in the summer 
of 2022 [62]. Here, a balancing of the charging and discharging via a charging point is 
specified to enable V2G. The volumes of electricity drawn from the grid and simultaneously 
charged by an EV via the charging point are considered as consumption at the charging 
point. The volumes of electricity discharged by EVs via the charging point and 
simultaneously fed into the grid are regarded as generation at the charging point. This 
generation and consumption from the point of view of the charging point are netted out 
on a calendar year basis. The levies and surcharges are reduced on the balanced charged 
electricity. Consequently, measured values must be collected both at the grid connection 
point and at the charging point. This robust approach of annual netting the input and 
output volumes at the charging point would mean that even the simultaneous 
implementation of V2H and V2G would be possible. However, this would still allow the 
potential misuse addressed in [Pub2]. During the summer months, a user could initially 
charge PV energy into the EV and later discharge this electricity from the EV into the grid. 
In the winter months, the user could charge electricity from the grid into the EV. Netting 
would exempt this charged energy from levies and surcharges. This could result in higher 
revenues than PV energy fed directly into the grid during the summer months. This example 
shows that there are still open regulatory questions for a V2H and V2G use case 
combination regarding the interaction between the household with its various components 
and the bidirectional EV. 
Since provision of congestion management for the transmission grid is a short-term 
application that takes place after day-ahead market and intraday auction trading, the use 
cases arbitrage trading and provision of congestion management could be combined very 
well. However, compared to continuous intraday trading, which is also short-term, a 
competitive situation arises that can prevent simultaneous participation in both use cases. 
This must also be considered when combining V2H PV self-consumption optimization and 
V2G congestion management provision. A change in the operation of bidirectional EVs 
through the provision of congestion management directly affects the PV self-consumption 
of a household and thus the associated revenues. 
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5 Conclusion, Discussion and Outlook 
In this cumulative dissertation, different approaches for modeling bidirectional EVs in 
different use cases and perspectives were developed and their advantages and 
disadvantages were discussed. Based on this, the added values for the user and the energy 
system were shown. This chapter is divided into two parts: Section 5.1 answers the research 
questions raised in the introduction. Section 5.2 then reflects on the modeling and results, 
provides concluding remarks, and identifies further research needs. 

5.1 Answers to Research Questions 

The following are concise answers to the research questions of this dissertation. Research 
questions 1 to 3 refer to the user perspective, whereas research questions 4 to 6 address 
the energy system perspective. Research question 7 deals with the combined perspective 
of the user and the energy system. 

1. What modeling specifications are required for the evaluation of revenue 
potentials of vehicle-to-home and vehicle-to-grid use cases? 

The modeling of the analyzed V2H and V2G use cases shows fundamental 
similarities but also significant differences in order to realistically evaluate the 
revenue potentials. All developed modeling approaches are based on a modeling 
of the bidirectional EV as a storage element with electrical consumption and limited 
availability. By comparing the objective function values with the objective function 
values of an unmanaged charging EV, the revenues for a user can be quantified. 
For V2H PV self-consumption optimization, the condition of low-power load flows 
results in the requirement to set up the optimization problem as a MILP with 
variable charging and discharging efficiencies of the bidirectional EV. This leads to 
higher complexity but much more realistic revenues, which are otherwise 
overestimated by over 30%. Furthermore, the household is modeled with a wide 
variety of components, which leads to a large number of sensitivities. The modeling 
of V2G arbitrage trading is limited to the bidirectional EV and EVSE and their 
interaction with the electricity grid. Here, rolling optimization enables modeling of 
consecutive trading in the day-ahead and intraday markets with respect to real 
trading times. 

2. What are the revenue potentials and their most important influencing factors 
for vehicle-to-home and vehicle-to-grid use cases? 

The revenue potentials of V2H and V2G use cases are very sensitive depending on 
a variety of influencing factors. For V2H PV self-consumption optimization, typical 
revenues for a bidirectional EV compared to an unmanaged charging EV are 
around 300 €/a for a medium household. Two thirds of this revenue can already be 
generated by smart charging. The most important influencing factor is the 
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difference between the household electricity price and the PV feed-in tariff. The 
higher the spread, the higher the revenue potential. In a scenario with a 
parameterization for maximum revenues, the revenues go up to 1,300 €/a. Other 
important influencing factors on revenues include PV system size and electrical 
household demand characteristic and level. 
The revenues from V2G arbitrage trading are highly dependent on the levies and 
charges on charged, temporarily stored electricity. Typical revenue potentials with 
today's regulation in Germany and participation in the day-ahead market are 
around 200 €/year for a bidirectional EV compared to an unmanaged charging EV. 
However, increased price volatilities as a consequence of the energy crisis [63], a 
consecutive marketing on the day-ahead and intraday market, as well as a change 
of the EV and EVSE characteristics can lead to much higher revenues. 

3. What is the economic profitability of vehicle-to-home and vehicle-to-grid use 
cases considering the additional investment costs?  

The additional investment costs for bidirectional charging will see a strong cost 
degression in the coming years. Only then, V2H and V2G use cases can become 
profitable from the user's perspective. As with other new technologies, government 
subsidies may be necessary to support the ramp-up of the technology. 
V2H PV self-consumption optimization turns out to be the more robust use case, 
which in a medium base scenario with an investment in 2025 has already amortized 
after seven years. V2G arbitrage trading achieves payback only after 12 years for an 
investment in 2025. Both use cases become more profitable in later years, as costs 
fall and revenues tend to rise, so that later investments pay off more quickly. With 
an investment in 2030, V2H amortizes after 5 years with a net present value 
after 15 years of 2,800 €, whereas V2G amortizes after 7 years with a net present 
value after 15 years of 1,650 €. 

4. How do modeling specifications of bidirectional EVs need to be adapted to 
evaluate the European energy system perspective compared to modeling 
discrete EVs? 

Complex European energy systems lead to the requirement of strongly clustering 
or aggregating bidirectional EVs rather than modeling them via discrete instances. 
The aggregation of all bidirectional EVs per country leads to a good representation 
of the vehicle fleet per country and its feedback on the energy system, while keeping 
complexity as low as possible. Here, the European market simulation with the 
objective function of minimizing the total costs leads to a similar operation of the 
bidirectional EVs, as in the V2G day-ahead market arbitrage trading use case from 
the user perspective. 
Congestion management modeling in the European transmission grid requires even 
more the aggregation of all bidirectional EVs per transmission grid node. The 
combination of the time-coupled constraints of bidirectional EVs and the complex 
load flow calculations in the transmission grid strongly increases the complexity of 
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the optimization problem compared to the European market simulation. A partition 
of the hourly annual calculation into weekly time slices leads to a sufficiently large 
flexibility of the bidirectional EVs while ensuring computability. 

5. How high is the optimal share of bidirectional EVs in the total EVs from a 
system cost perspective? 

Modeling the future energy system considering the additional investment costs of 
bidirectional EVs compared to unmanaged charging EVs results in system-cost-
optimal penetration rates. The number of bidirectional EVs increases from just 
under 20 million EVs in 2030 to over 60 million EVs in 2050 in a baseline scenario. 
This corresponds to a share of bidirectional EVs in total EVs of 25% in 2030 and 
of 30% in 2050.  
Provided that the additional investment costs of smart EVs compared to 
unmanaged charging EVs fall very sharply, smart EVs will also be integrated into the 
energy system in high numbers. However, this additional flexibility in the energy 
system has only a minor impact on the number of bidirectional EVs. Through these 
sensitivity considerations, it was found that bidirectional EVs are very robustly 
integrated into the cost-optimal future energy system. 

6. What is the added value of bidirectional EVs integrated in the electricity 
markets and in congestion management in the transmission grid from an 
energy system perspective? 

The integration of bidirectional EVs into the future energy system creates multiple 
added values: 

 The energy system requires less capacities of thermal power plants 
(especially gas-fired and hydrogen-fired power plants) and other storage 
technologies. Bidirectional EVs provide a contribution to cover the electrical 
peak loads in the system. 

 Bidirectional EVs often act as daytime storage, charging during the day and 
discharging at night. This increases the market value of PV and promotes 
PV integration. Since PV energy is more widely accepted and cheaper than 
wind energy in many countries, this encourages renewable energy 
expansion. 

 The previous points result in significantly lower European energy system 
costs, by up to €9 billion/a. 

 The provision of congestion management in the European transmission grid 
by bidirectional EVs leads to reduced use of thermal power plants and 
reduced curtailment of renewable energies. As a result, less CO2 is emitted. 
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7. How can use cases of bidirectional EVs create combined added value from the 
user and the energy system perspective? 

Use cases of bidirectional charging can generate simultaneous added value for the 
user and the energy system. By investigating the use case arbitrage trading from 
the user's and the system's point of view, this dissertation was able to show that the 
added value here is given for the user and the energy system in the future. PV self-
consumption optimization primarily gives monetary and environmental added 
value to the user. The impact of this use case on the energy system can be positive 
and negative. The provision of congestion management in the transmission grid, 
on the contrary, currently generates hardly any added value for the user in Germany, 
as remuneration is cost-based. Here, the focus is on the systemic added value of 
reducing costs and CO2 emissions. 
Further, the combination of use cases can generate a combined added value for the 
user and the energy system. Especially V2H PV self-consumption optimization is 
very suitable for a combination with V2G use cases since it generates the revenues 
mainly in summer times and can be switched to other use cases in winter.  

5.2 Critical Reflection, Concluding Comments and Further Research 

The technology of bidirectional charging of EVs is still a new technology that is yet to 
experience its market take-off. Currently in 2022, for example, there is still only one 
bidirectional EVSE available on the German market, which has very high investment 
costs [78]. Few automotive manufacturers currently offer bidirectional EVs, even though 
many have clearly positioned themselves positively toward the technology [44]. In addition 
to the technological side of EVSE and EV manufacturers, the regulatory side also plays an 
important role. Although regulation in Germany has taken important steps, many regulatory 
issues are still open and will need to be addressed by policymakers in the coming years. 
Consequently, bidirectional charging technology is still in its early stages. The analyses of 
this work thus offer an important piece to support the ramp-up of the technology and thus 
to create added value for the user and system. 
Over a time period of four years, this dissertation has been created. During this period, 
many energy-economic changes and regulatory adjustments have occurred that have been 
directly referred to or referenced in this dissertation. These changes and adjustments in 
Germany have a direct impact on bidirectional charging of EVs: 

 The first to be mentioned is the energy crisis, which has caused fuel and electricity 
prices to rise sharply worldwide. Since the end of 2021, fuel prices and subsequently 
also electricity prices have risen very sharply in the wake of Covid-19. This effect was 
further intensified by the Ukraine invasion in February 2022. The energy crisis has 
multiple implications for bidirectional EVs. In addition to potentially higher 
investment costs for users for bidirectional EVs and EVSEs due to increases in a wide 
range of commodity prices, there may also be multiple impacts on the use cases of 
bidirectional charging. 
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The high electricity price level causes a sharp increase in household electricity prices. 
This effect was directly addressed in Section 2.2.1, highlighting that this has a very 
positive impact on the revenue potentials of the PV self-consumption optimization 
use case. In addition to the electricity price level, the volatility of electricity prices 
has also risen very sharply. This was also directly addressed in Section 2.2.2. The 
increase in electricity price volatility results in significantly higher revenue potentials 
for the arbitrage trading use case. The current energy crisis has thus significantly 
increased the attractiveness of these two use cases. 

 As a result of the energy crisis, the medium-term climate targets for the year 2030 
were tightened in Europe and Germany. For example, Germany has set targets 
of 215 GW of PV energy and 115 GW of onshore wind energy for the addition of 
variable renewable energies [62]. As a result, the systemic need for flexibilities such 
as bidirectional EVs is increasing as electricity generation becomes more fluctuating. 
Furthermore, this transformation of the energy system leads to further increased 
electricity price volatility, which is also attractive for the use case arbitrage trading 
from a user perspective. 

 The regulatory framework regarding bidirectional EVs has also evolved in recent 
years. The highlighting of dependencies of the added values of bidirectional 
charging for the user on the regulatory framework in [Pub1] and [Pub2] has given 
important impulses for regulatory adjustments. The German 'Law on Immediate 
Measures for an Accelerated Expansion of Renewable Energies and Further 
Measures in the Electricity Sector' defines the bidirectional charging point of EVs as 
a storage facility to allow an exemption from levies and charges as for a stationary 
storage facility. This first step does not include the power losses during the charging 
and discharging process, nor does it include all levies, surcharges, and taxes. Further 
regulatory steps must therefore be taken here to make the use case of arbitrage 
trading more attractive from the user's point of view. 

Due to the transformation process of the energy system towards a climate-neutral system 
as well as the current Ukraine crisis, there are various short-term adjustments of 
fundamental energy-economic conditions. For example, the sharp rise in fuel prices and, in 
particular, the price of gas led to higher electricity prices and higher electricity price 
volatility [63]. Therefore, some of the scenarios presented in this dissertation are no longer 
valid. However, the fundamental assessments of bidirectional EVs still hold through the 
numerous sensitivity calculations. 
From a scientific point of view, this dissertation shows further need for research regarding 
the technology of bidirectional charging. In the BCM project, a total of 14 use cases were 
defined that could have revenue potentials from the user's perspective. The approaches 
developed in this dissertation for modeling bidirectional EVs can be transferred for 
modeling other use cases, although the specifics may have to be adapted. Only by 
modeling and combining all these use cases, bidirectional EVs can be evaluated 
comprehensively from the user's point of view. Furthermore, a comparison of current 
control strategies in field tests with the mode of operation in the developed optimization 
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models can show to what extent the revenue potentials can be achieved. In addition, 
modeling the user-optimized behind-the-meter use cases endogenously in an energy 
system model could directly quantify the impact of these use cases on the energy system. 
However, this step may involve a high level of complexity. Finally, the studies of congestion 
management provision by bidirectional EVs have shown initial positive potential but should 
be detailed by further scenarios. In this way, recommendations for action in the direction 
of market-based congestion management can ultimately be supported in order to better 
integrate decentralized technologies into congestion management. 
The added values of bidirectional charging of EVs, which were investigated by models in 
this dissertation, have also been tested in pilot operation since 2021 as part of the BCM 
research project. For this purpose, 50 BMW i3 were equipped with the technology of 
bidirectional charging [64]. A comparison of the realized revenues for the user with the 
simulated revenue potentials at the end of the project can show here the extent to which 
there is still potential for improvement in, for example, the control system or user behavior. 
In summary, this dissertation has demonstrated added values of bidirectional charging of 
EVs from a user and system perspective and developed different approaches to modeling 
for this purpose. Some of the results have already been integrated into a policy paper [65]. 
This shows recommendations for policymakers, users of EVs, and energy entrepreneurs to 
make well-informed decisions regarding the technology of bidirectional charging of EVs. 
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Abstract: Replacing traditional internal combustion engine vehicles with electric vehicles 
(EVs) proves to be challenging for the transport sector, particularly due to the higher initial 
investment. As EVs could be more profitable by participating in the electricity markets, the 
aim of this paper is to investigate revenue potentials when marketing bidirectionally 
chargeable electric vehicles in the spot market. To simulate a realistic marketing behavior 
of electric vehicles, a mixed integer linear, rolling horizon optimization model is formulated 
considering real trading times in the day-ahead and intraday market. Results suggest that 
revenue potentials are strongly dependent on the EV pool, the user behavior and the 
regulatory framework. Modeled potential revenues of EVs of current average size marketed 
with 2019 German day-ahead prices are found to be at around 200 €/EV/a, which is 
comparable to other findings in literature, and go up to 500 €/EV/a for consecutive trading 
in German day-ahead and intraday markets. For future EVs with larger batteries and higher 
efficiencies, potential revenues for current market prices can reach up to 1300 €/EV/a. This 
study finds that revenues differ widely for different European countries and future 
perspectives. The identified revenues give EV owners a clear incentive to participate in 
vehicle-to-grid use cases, thereby increasing much needed flexibility for the energy system 
of the future. 
Keywords: V2G; bidirectionally chargeable electric vehicles; smart charging; unmanaged 
charging; spot markets; day-ahead market; intraday auction; continuous intraday trading; 
mixed integer linear optimization; revenues potentials of EVs 
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1. Introduction 
The energy system transformation entails structural changes in all sectors. While the 
electricity supply sector in Germany has already been subjected to massive adjustments 
due to the expansion of renewable energies, the final energy sectors of private households, 
industry, transport, as well as small and medium enterprises have been very slow to switch 
to more climate-friendly technologies. 
Emissions from the transport sector in Germany even increased since 1990 [1] and will, 
therefore, be unable to contribute to achieving the climate targets for 2020. Switching to 
electric vehicles (EVs) is one possible solution for lowering emissions. When comparing the 
carbon footprint of an EV to an internal combustion engine vehicle (ICEV), both the 
production of the battery as well as tailpipe emissions of the EV depend on the underlying 
energy system [2]. Due to a targeted reduction of CO2-emission of the European energy 
sector by up to 95% [3], at least operational emissions of EVs resulting mainly from charging 
electricity will decrease. Consequently, EVs are promising for lowering CO2-emissions. 
However, due to higher initial investment costs compared to ICEVs, the integration of EVs 
proves to be challenging. Investment in EVs could become more profitable by participating 
in the electricity markets by smart or bidirectional charging. In this respect, the “Bidirectional 
Charge Management” (BCM) project, which was launched in May 2019, focuses on the 
analysis of revenue potentials of bidirectionally chargeable EVs in the different electricity 
markets [4]. The main region of our investigations is Germany since it is the largest electricity 
market in Europe that is characterized by a heterogenic generation portfolio of renewable 
energy sources as well as conventional power plants [5]. Due to the German energy 
transition, volatility in electricity generation will continue to increase thereby enhancing the 
potential benefits of bidirectional chargeable EVs. German spot markets include the day-
ahead market (auction at 12 noon one day before delivery), the intraday auction (at 3 pm 
one day before delivery) and the continuous intraday trading (starting at 3 pm one day 
before delivery) [6]. In addition, the results compare revenue potentials of bidirectionally 
chargeable EVs in 28 European countries, where findings of the parameter analysis can be 
generalized to other regions. 
The BCM project defined 13 different use cases for bidirectional charging management 
separated into the three revenue creation groups: “Vehicle-to-Grid” (V2G), “Vehicle-to-
Business” (V2B) and “Vehicle-to-Home” (V2H) [4]. Two use cases of the V2G use cases group 
are examined in this paper, which refer to arbitrage trading in the day-ahead market and 
the intraday market. Since bidirectionally chargeable EVs that participate in the spot 
markets increase the flexibility of the markets and energy system, these two use cases can 
have an impact on a cost-effective integration of renewable energies while providing 
revenues to the EV owners. The aim of this paper is to show these revenue potentials for 
the marketing of EVs in an aggregated pool in the spot markets at the same time ensuring 
faster integration of e-mobility into the energy system of the future. 
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Several scientific publications have discussed the revenue potentials by participation of EVs 
in the spot markets [7]. Using smart (but unidirectional) charging, an aggregator can 
considerably reduce the costs of charging electric vehicles [8,9]. Such costs can be further 
reduced and revenues can be generated by bidirectional charging according to [10]. The 
studies mentioned above are limited to marketing in the day-ahead and reserve market. 
Rominger et al. [11] point out revenues for intraday trading, but only restricted on flexibilities 
with constant availability such as stationery storage. Schmidt et al. [12] consider prices in 
the day-ahead market and the intraday auction for EV charging, but is limited to a smart 
charging process without discharging to the grid. We are thus extending existing research 
with a more detailed representation of bidirectionally chargeable EVs participating in the 
spot markets by considering day-ahead and intraday trading in a rolling optimization with 
a limited time horizon. Another limitation of most studies mentioned is the focus on 
revenues of EVs by a fixed EV parameterization. As revenue potentials of bidirectionally 
chargeable EVs are strongly dependent on many influencing parameters, this paper points 
out how a variation of user parameters like the minimum safety state of charge (SoC), 
minimum SoCs at departure, plug-in probabilities and location of charging infrastructure 
change revenue potentials. 
Peterson et al. deal with profits of bidirectionally chargeable EVs using arbitrage trading in 
three different US local markets [13]. Pelzer et al. find out that revenue potentials of 
bidirectionally chargeable EVs in the US and Singapore markets are highly dependent on 
spatial and temporal resolution of market prices [14]. These studies regard battery 
degradation costs, but are limited to an EV participation in only one electricity market and 
modeling without consideration of user behavior parameters. 
Furthermore, several studies investigate the effects of V2G on the electricity markets. The 
participation of bidirectional vehicles in the spot market has a smoothing effect on 
electricity prices. In times of surplus feed-in by renewable energies, V2G is able to reduce 
price drops resulting in higher market values of renewable energies [15]. Rodríguez et al. 
[16] show a flattening impact of V2G applications on the demand curve that results in a 
higher load factor. These findings showing promising effects on the energy system are 
expanded by our study to determine whether the vehicle owner can also benefit by 
participating in the electricity market. Since the regulatory framework is of significant 
importance for the evaluation of revenues, the influence of additional charges on purchased 
energy is pointed out. 

2. Methods 
To determine V2G revenue potentials, we developed an aggregated storage optimization 
model that covers the use cases of arbitrage trading in the spot markets. The holistic 
implementation of all V2G use cases facilitates the applicability and avoids building several 
parallel models. 
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A simplified representation of the modeling process is displayed in Figure 1, where the 
model consists of four different parts. Based on a model of the EV’s battery, optimized 
charging strategies can be developed for different scenarios depending on charging and 
discharging restrictions. An uncoupled aggregated EV pool can be modeled to participate 
in different markets, where marketing strategies are optimized with a rolling forecast of 
market prices. The optimized strategy depends on electricity prices of the respective energy 
markets and is based on historical and simulated future market prices. In addition to 
bidirectionally chargeable EVs, two reference scenarios are considered that cover smart, 
unidirectionally chargeable EVs and simple, directly chargeable EVs. The entire model is 
implemented in Matlab, where a CPLEX solver (optimization software package) is used for 
optimization. 

 
Figure 1.  Schematic representation of the developed optimization model for Vehicle-to-

Grid (V2G) use cases of bidirectional charging. 

2.1. Modeling of Bidirectionally Chargeable Electric Vehicles 

Modeling a bidirectionally chargeable EV consists mainly of a model of the electric battery 
of the vehicle similar to stationary electricity storage. The EV battery is modeled by the 
storage equation displayed below, which relates the state of charge (SoC) of the battery to 
the different amounts of electricity charged into or discharged out of the battery: 

𝑆𝑜𝐶ሺ𝑡ሻ ൌ 𝑆𝑜𝐶ሺ𝑡 െ 1ሻ ൅ 𝑃௖௛௔௥௚௘ሺ𝑡ሻ ∙ 𝜂௖௛௔௥௚௘ ∙ ∆𝑡 െ
𝑃ௗ௜௦௖௛௔௥௚௘ሺ𝑡ሻ

𝜂ௗ௜௦௖௛௔௥௚௘
∙ ∆𝑡 

                   ൅
𝑃௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ሺ𝑡ሻ

𝜂ௗ௜௦௖௛௔௥௚௘
∙ ∆𝑡 െ 𝑃௖௢௨௡௧௘௥ି௦௔௟௘ሺ𝑡ሻ ∙ 𝜂௖௛௔௥௚௘ ∙ ∆𝑡  

                  ൅𝑃௦௖௛௘ௗ௨௟௘ሺ𝑡ሻ ∙ ∆𝑡 ൅ 𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ ∙ ∆𝑡 ∙ 𝜂௖௛௔௥௚௘ െ 𝐸௖௢௡௦௨௠௣௧௜௢௡ሺ𝑡ሻ 

(1) 

here, t stands for the modeled point in time, ∆𝑡 is the difference between two points in time 
and 𝜂 represents efficiency, which differs for the charging and discharging process. 
𝑃௖௛௔௥௚௘ሺ𝑡ሻ is the charging power and 𝑃ௗ௜௦௖௛௔௥௚௘ሺ𝑡ሻ the discharging power at the modeled 
time t. The variables are considered on the alternating current side of the charging station 
and thus correspond to the amounts of energy traded in the market. 𝑃௦௖௛௘ௗ௨௟௘ is the sum 
of purchases and sales already made at the modeled time t. Accordingly, 
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𝑃௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ሺ𝑡ሻ and 𝑃௖௢௨௡௧௘௥ି௦௔௟௘ሺ𝑡ሻ represent the power which can be purchased or 
sold in the market to counteract transactions that have already taken place (countertrading). 
For example, purchased energy in the day-ahead market could be sold in the intraday 
markets resulting in a countertrade 𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ is the power, that can be used to rapidly 
charge the vehicle if necessary and 𝐸௖௢௡௦௨௠௣௧௜௢௡ሺ𝑡ሻ is the EV’s energy consumption by 
driving at time t. The limit values of all time-dependent variables are explained in the 
following section. Table A1 in the Appendix A provides an overview of all these variables 
and their limit values. 

2.1.1. State of Charge 
𝑆𝑜𝐶ሺ𝑡 െ 1ሻ represents the battery’s storage level at the point in time prior to the modeled 
point in time. The change in capacity of the battery storage corresponds to the difference 
from 𝑆𝑜𝐶ሺ𝑡ሻ to 𝑆𝑜𝐶ሺ𝑡 െ 1ሻ. Due to the limited storage capacity of the electric vehicle and 
user requirements for a minimum storage level, the variable 𝑆𝑜𝐶ሺ𝑡ሻ can assume a limited 
range of values. 
The maximum storage level of the battery storage is limited by 𝑆𝑜𝐶௠௔௫ . If a value of 100% 
is set for this parameter, the entire storage capacity is available for the charging process. 
The minimum value 𝑆𝑜𝐶௠௜௡ varies depending on the vehicle’s location status, which is 
known for each point in time. Equation (2) summarizes the values that 𝑆𝑜𝐶௠௜௡ can assume: 

              𝑆𝑜𝐶௠௜௡,௦௔௙௘ for status ൌ connected

𝑆𝑜𝐶௠௜௡ሺtሻ ൌ     S𝑜𝐶௠௜௡,ௗ௘௣ for status ൌ departure  
S𝑜𝐶௠௜௡,ௗ௜௦௖௢௡௡௘௖௧௘ௗ for status ൌ not connected 

(2) 

If the vehicle is connected to the electric grid, 𝑆𝑜𝐶௠௜௡ equals 𝑆𝑜𝐶௠௜௡,௦௔௙௘ . The storage level 
must not fall below this value or must load onto it as quickly as possible. If the vehicle is 
connected to a charging station and is at the point of departure, 𝑆𝑜𝐶௠௜௡ assumes the value 
𝑆𝑜𝐶௠௜௡,ௗ௘௣. Before departure, the charging strategy is thus optimized in a manner such that 
the SoC at the time of departure at least corresponds to 𝑆𝑜𝐶௠௜௡,ௗ௘௣. If the vehicle is not 
connected to the electric grid, the value S𝑜𝐶௠௜௡,ௗ௜௦௖௢௡௡௘௖௧௘ௗ results in the minimum SoC. 
To ensure that 𝑆𝑜𝐶ሺ𝑡ሻ lies between the minimum and maximum possible storage level, 
Equation (3) is implemented: 

𝑆𝑜𝐶௠௜௡ሺ𝑡ሻ ൉  𝐶 ൑  𝑆𝑜𝐶ሺ𝑡ሻ ൅ 𝑃௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ ∙ ∆𝑡 ൑ 𝑆𝑜𝐶௠௔௫ሺ𝑡ሻ ൉ 𝐶, (3) 

where C describes the storage capacity of the electric vehicle and 𝑃௦௨௣௣௟௘௠௘௡௧ stands for 
additional, theoretical electric power to be charged. 𝑃௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ is incorporated to meet 
the storage level restriction in Equation (2) at any time. The possibility that the value of the 
storage level is below 𝑆𝑜𝐶௠௜௡ exists even if the EV is connected to the electric grid. This 
might occur if the storage level is lower than the minimum SoC when the vehicle arrives at 
a charging station or if it is not possible to charge to the minimum SoC before departure 
because the vehicle has not been connected for long enough. In the case that the minimum 
storage level cannot be reached with the charging strategy, 𝑃௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ takes on a value 
greater than 0 to simulate a hypothetical charging process. The variable thus can be 
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interpreted as penalty costs that arise from the driving behavior of a user who disregards 
the requirements for a minimal SoC. By introducing 𝑃௦௨௣௣௟௘௠௘௡௧(t), the model can optimize 
all driving profiles regardless of driving behavior or consumption, so that a selection of 
unsuitable driving profiles does not have to be made in advance. 𝑃௦௨௣௣௟௘௠௘௡௧(t) is not taken 
into account in the storage equation and does not change the actual storage level. 

2.1.2. Charging/ Discharging Power and Already Traded Energy 
In the storage Equation (1), 𝑃௖௛௔௥௚௘ሺ𝑡ሻ and 𝑃ௗ௜௦௖௛௔௥௚௘ሺ𝑡ሻ describe the purchase and sale of 
power and determine the change in storage capacity for each time step. Due to the limited 
power of any EV charging station, the variables are limited to the maximum charging and 
discharging power 𝑃௖௛௔௥௚௘,௠௔௫ሺ𝑡ሻ and 𝑃ௗ௜௦௖௛௔௥௚௘,௠௔௫ሺ𝑡ሻ and to the minimum charging and 
discharging power 𝑃௖௛௔௥௚௘,௠௜௡ሺ𝑡ሻ and 𝑃ௗ௜௦௖௛௔௥௚௘,௠௜௡ሺ𝑡ሻ. If the vehicle is connected to a 
charging station, the EV battery can be charged with 𝑃௖௛௔௥௚௘,௠௔௫ሺ𝑡ሻ or discharged with 
𝑃ௗ௜௦௖௛௔௥௚௘,௠௔௫ሺ𝑡ሻ. If the vehicle is not connected to the electric grid, both maximum and 
minimum charging and discharging power become 0. 
The boolean variables 𝑏௖௛௔௥௚௘ and 𝑏ௗ௜௦௖௛௔௥௚௘ describe the state of the battery during 
charging and discharging processes. If a charging process takes place, 𝑏௖௛௔௥௚௘ is true. 
Analogously, the variable 𝑏ௗ௜௦௖௛௔௥௚௘ becomes true during discharging. Due to the fact that 
it is not possible to purchase and feed electricity into the electric grid at the same time, only 
one of the boolean variables can assume the value 1 (= true) at the modeled point in time 
Equation (4). A simultaneous purchase and sale in the market is, therefore, excluded. 

𝑏௖௛௔௥௚௘ሺtሻ ൅ 𝑏ௗ௜௦௖௛௔௥௚௘ሺtሻ ൑ 1 (4) 

The resulting constraints regarding these variables are shown in Equations (5) and (6): 
𝑃௖௛௔௥௚௘,௠௜௡ሺ𝑡ሻ ൉ 𝑏௖௛௔௥௚௘ሺtሻ  ൑  𝑃௖௛௔௥௚௘ሺ𝑡ሻ ൑ ቀ𝑃௖௛௔௥௚௘,௠௔௫ሺ𝑡ሻ െ 𝑃௦௖௛௘ௗ௨௟௘,௣௨௥௖௛௔௦௘ሺ𝑡ሻቁ  ൉ 𝑏௖௛௔௥௚௘ሺtሻ, (5)

𝑃ௗ௜௦௖௛௔௥௚௘,௠௜௡ሺ𝑡ሻ ൉ 𝑏ௗ௜௦௖௛௔௥௚௘ሺtሻ ൑ 𝑃ௗ௜௦௖௛௔௥௚௘ሺ𝑡ሻ

                                                    ൑  ൫𝑃ௗ௜௦௖௛௔௥௚௘,௠௔௫ሺ𝑡ሻ െ P௦௖௛௘ௗ௨௟௘,௦௔௟௘ሺtሻ൯ ൉ 𝑏ௗ௜௦௖௛௔௥௚௘ሺtሻ. (6)

There is a possibility that the storage capacity of the electric vehicle has already been 
marketed through previous trading on the electricity markets, for example through 
consecutive trading on different spot markets. Such traded power must be taken into 
account in subsequent storage optimizations. In Equations (5) and (6), 𝑃௦௖௛௘ௗ௨௟௘,௣௨௥௖௛௔௦௘ and 
𝑃௦௖௛௘ௗ௨௟௘,௦௔௟௘ correspond to already made purchases or sales at the modeled time t. These 
amounts of electricity reduce the maximum charging or discharging power in such a way 
that only the capacity that has not yet been traded can be marketed. 𝑃௦௖௛௘ௗ௨௟௘ can be 
defined as the difference between 𝑃௦௖௛௘ௗ௨௟௘,௣௨௥௖௛௔௦௘ and 𝑃௦௖௛௘ௗ௨௟௘,௦௔௟௘ Equation (7) and is 
included in the storage Equation (1). 

𝑃௦௖௛௘ௗ௨௟௘ሺtሻ ൌ  𝑃௦௖௛௘ௗ௨௟௘,௣௨௥௖௛௔௦௘ሺ𝑡ሻ ∙ 𝜂௖௛௔௥௚௘ െ
𝑃௦௖௛௘ௗ௨௟௘,௦௔௟௘ሺ𝑡ሻ

𝜂ௗ௜௦௖௛௔௥௚௘
 (7) 
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2.1.3. Countertrades 
Electricity spot markets in Germany include consecutive day-ahead and intraday trading 
resulting in the opportunity to countertrade day-ahead purchases or sells in the intraday 
market. The model not only accounts for already marketed storage capacities, it also 
includes the possibility of compensation transactions (countertrades) that compensate for 
the previous trade in the opposite direction. In this regard, the variable 𝑃௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ሺ𝑡ሻ 
corresponds to a buyback (counter purchase), the variable 𝑃௖௢௨௡௧௘௥ି௦௔௟௘ሺ𝑡ሻ to a sellback 
(counter sale) of already traded storage capacities. The volume of a countertrade can at 
most assume the previously inversely traded amount of energy. Countertrades do not 
describe a physical loading or unloading process. The resulting constraints are shown in 
Equations (8) and (9): 
𝑃௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ሺ𝑡ሻ  ൑ P௦௖௛௘ௗ௨௟௘,௦௔௟௘ሺtሻ ൉ 𝑏௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘, (8)
𝑃௖௢௨௡௧௘௥ି௦௔௟௘ሺ𝑡ሻ  ൑  𝑃௦௖௛௘ௗ௨௟௘,௣௨௥௖௛௔௦௘ሺtሻ ൉ 𝑏௖௢௨௡௧௘௥ି௦௔௟௘. (9)

Similar to the charging and discharging processes, the boolean variables 𝑏௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ 
and 𝑏௖௢௨௡௧௘௥ି௦௔௟௘ describe the state of countertrades. If a counter-purchase takes place at 
time t (𝑏௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ ൌ 1), the EV battery cannot be discharged at the same time. 
Conversely, no charging process can be conducted during a counter-sale  
(𝑏௖௢௨௡௧௘௥ି௦௔௟௘ ൌ 1). Equations (10) and (11) show these constraints: 
𝑏௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ሺtሻ  ൅ 𝑏ௗ௜௦௖௛௔௥௚௘ሺtሻ   ൑ 1, (10)
𝑏௖௢௨௡௧௘௥ି௦௔௟௘ሺtሻ  ൅ 𝑏௖௛௔௥௚௘ሺtሻ  ൑  1. (11)

2.1.4. Electricity Consumption and Fast Charging 
The battery of a vehicle has an electric energy consumption 𝐸௖௢௡௦௨௠௣௧௜௢௡ሺ𝑡ሻ at the modeled 
time t, which is considered in the storage equation. Due to the foresight of the driving 
profiles (explained in Section 2.4), EV consumption is known at all times. Each driving phase 
of the vehicle results in a capacity reduction. 
Depending on the user’s driving behavior, it might occur that the electricity consumption 
of an EV is so high at one point in time that the current storage level is not sufficient to 
meet the energy demand, for example if the EV has not been connected to a charging 
station for too long. In this case, the fast charging power 𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ is utilized to comply 
with the restrictions of 𝑆𝑜𝐶௠௜௡ሺ𝑡ሻ and to avoid a supposed negative storage level. The 
employment of the fast charging process is accompanied by an increase in storage capacity. 
𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ represents the charging power at a public charging station rather than at a 
bidirectional charging station. The vehicle user is thus given the opportunity to charge the 
vehicle on the road. 

2.2. Formulation of Optimization Model 

The developed model of a bidirectionally chargeable EVs allows for the implementation of 
different optimized charging and discharging strategies, which differ in particular in the 



Publications of the Author 

77 

structure of the objective function. For the assessment of the use cases of arbitrage trading 
on the day-ahead market as well as on the intraday market, three different charging 
strategies are implemented: a strategy for bidirectional charging, a strategy for smart 
charging, and a strategy for unmanaged charging. 
First, the bidirectional charging strategy, which allows for charging and discharging of the 
EV, is restricted to the storage equation and its aforementioned constraints. The objective 
of this charging strategy is to charge at minimum costs while discharging at maximum 
revenue. To do so, the objective function of the optimization model aims at minimizing all 
costs considered: 

𝑚𝑖𝑛 ൭ ෍ 𝑝௠௔௥௞௘௧,௕௨௬ሺ𝑡ሻ ⋅ ൣ𝑃௖௛௔௥௚௘ሺ𝑡ሻ ൅ 𝑃௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ሺ𝑡ሻ൧

்

௧ୀଵ

െ ෍ 𝑝௠௔௥௞௘௧,௦௘௟௟ሺ𝑡ሻ ⋅ ൣ𝑃ௗ௜௦௖௛௔௥௚௘ሺ𝑡ሻ ൅ 𝑃௖௢௨௡௧௘௥ି௦௔௟௘ሺ𝑡ሻ൧

்

௧ୀଵ

 

൅ ෍ 𝑝௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ ⋅ 𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ
்

௧ୀଵ

൅ ෍ 𝑝௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ ⋅ 𝑃௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ
்

௧ୀଵ

 ൱ 

(12) 

where T corresponds to the number of time steps of the optimization. Depending on the 
respective market, traded energy quantities per time step as well as corresponding market 
prices 𝑝௠௔௥௞௘௧,௜ሺ𝑡ሻ are considered. In this regard, 𝑝௠௔௥௞௘௧,௕௨௬ is the price at which electricity 
is bought and 𝑝௠௔௥௞௘௧,௦௘௟௟ is the price at which electricity is sold, where both prices can 
include respective transaction costs and possibly additional electricity price components. 
Charged power corresponds to a purchase transaction and is associated with costs as is 
each counter purchase of power. In contrast, discharged power and counter sales are 
traded with corresponding revenues, which is why 𝑃ௗ௜௦௖௛௔௥௚௘ and 𝑃௖௢௨௡௧௘௥ି௦௔௟௘ are 
subtracted. 
Fast charging power and supplement power are also included in the objective function. 
Both fast charging costs 𝑝௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ and penalty costs 𝑝௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ are fixed to be a 
relatively high value, so that only the minimum necessary power is charged to meet the 
requirements for minimum storage level. As 𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ should only be utilized to the 
extent that a negative SoC is avoided, 𝑝௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ should be selected sufficiently larger 
than 𝑝௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ. Thus, the following condition must also be fulfilled to guarantee a 
functioning bidirectional charging strategy: 

𝑝௠௔௥௞௘௧,௜ሺ𝑡ሻ  ≪ 𝑝௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ ≪ 𝑝௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ. (13)

Second, the smart charging strategy is implemented as a reference scenario to simulate 
already existing smart charging stations. The objective is to minimize electricity purchase 
costs by intelligent charging of the EV. Since discharging the EV battery is impossible in this 
scenario, Equation (14) is implemented. By eliminating the discharge power, the objective 
function already defined via Equation (12) for the bidirectional charging strategy can also 
be used for the smart charging strategy. 

0 ൌ  𝑃ௗ௜௦௖௛௔௥௚௘,௠௜௡ ൑ 𝑃ௗ௜௦௖௛௔௥௚௘ ൑ 𝑃ௗ௜௦௖௛௔௥௚௘,௠௔௫ ൌ 0 (14)



Publications of the Author 

78 

Third, the unmanaged charging strategy accounts for today’s most commonly installed 
simple charging stations as a second reference scenario, where the EV battery is charged 
as soon as the vehicle is connected without an optimized charging control. As with the 
smart charging strategy, discharging is not possible Equation (14). The aim of the 
unmanaged charging strategy is, therefore, to maximize the storage level that is equal to 
minimizing the negative value of SoCሺtሻ at all times. The battery is accordingly charged at 
maximum charging power until the battery’s storage level corresponds to 𝑆𝑜𝐶௠௔௫ሺ𝑡ሻ or 
until the EV leaves the location. In addition, as for the previously explained strategies, fast 
charging costs and penalty costs for an insufficient SoC with regard to the location-based 
limit values are included. The resulting objective function is expressed as follows: 

𝑚𝑖𝑛 ൭ ෍ 𝑝௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ ⋅ 𝑃௙௔௦௧௖௛௔௥௚௘ሺ𝑡ሻ
்

௧ୀଵ

൅ ෍ 𝑝௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ ⋅ 𝑃௦௨௣௣௟௘௠௘௡௧ሺ𝑡ሻ
்

௧ୀଵ

െ ෍ SoCሺtሻ
்

௧ୀଵ

 ൱ (15) 

2.3. Optimization with Limited Forecast in Consecutive Spot Markets 

To investigate the influence of different characteristics and requirements of the considered 
markets on revenue potentials of bidirectional charging, optimized trading strategies based 
on price forecasts are simulated by a rolling optimization model, where realistic trading 
behavior results from a limited foresight of market prices. 
Acting in the market under uncertainty is modeled in the same manner as described in [17], 
where each day is divided into 8 time slices of three hours each. The model regards real 
trading times in the spot markets. Figure 2 illustrates the methodical procedure of 
consecutive trading in the day-ahead and intraday markets with rolling price forecast 
horizons, where each horizontal bar displays the prices known in the respective 
optimization run of three hours. At 12 noon of day 𝑑, for instance, a market participant sees 
averaged continuous intraday prices of the following 12 quarter-hourly products. At the 
same time, less precise quarter-hourly prices of the continuous intraday are assumed for 
the interval from 3 pm to midnight. For day 𝑑 ൅ 1, day-ahead market prices are known and 
for 𝑑 ൅ 2 a forecast of the day-ahead market prices is presented. The participant’s trading 
decision, which is the optimized marketing strategy, is based on this limited foresight. 
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Figure 2.  Schematic representation of the optimization steps with limited foresight of 

market prices. 

As described by the example, foresight of market prices varies for the individual markets. 
Since the auction on the day-ahead market takes place daily at 12 noon for the respective 
following day 𝑑 ൅ 1, precise prices forecasts for 𝑑 ൅ 1 are known shortly before 12 noon on 
day 𝑑. To prevent unrealistic trading behavior at the end of day 𝑑 ൅ 1, such as discharging 
all batteries to maximize revenues, estimated prices for day 𝑑 ൅ 2 are included in the 
forecast horizon, where prices are also presented at 12 noon of day 𝑑. The forecast 
period 𝑑 ൅ 2 can be one or more days representing a worse or better foresight and is 
evaluated in Appendix B. The length of the optimization time steps for day-ahead trading 
is 1h. 
For the intraday auction, precise price forecasts of day 𝑑 ൅ 1 are known shortly before 3 pm 
of day 𝑑, since the auction takes place at 3 pm. The length of the optimization time steps 
is 0.25 h. 
Following the intraday auction, continuous intraday trading starts at 4 pm with quarter-
hourly products, which defines the length of the optimization time steps. Here, a first 
forecast horizon of relatively precise prices is set to three hours covering the following 12 
quarter-hourly products, where prices are based on trading transactions of these three 
hours. For the period following the three-hour time window, all continuous intraday 
transactions of this interval are used to calculate a second forecast price, thereby reflecting 
the uncertainty of market prices. 
Hence, optimization runs before noon include market price information of the remaining 
day 𝑑 and the following day 𝑑 ൅ 1. The optimization runs from 12 noon on the trading day 
also include day 𝑑 ൅ 2. The total revenue of the marketed EV battery corresponds to the 
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summed costs and revenues of all traded products (filled areas). The cross-hatched areas 
in Figure 2 are not regarded as revenues, since these are only price forecasts serving as 
reference points for the trading strategy. 
If consecutive trading takes place in several markets, storage capacities already marketed 
must be taken into account in subsequent optimization runs and can be countertraded as 
described before. The storage level at the end of real continuous intraday trading (filled 
blue area) of each optimization run determines the actual charging and discharging 
behavior of the vehicle. This storage level is applied as the starting value for the subsequent 
optimization run. 

2.4. Input Data and Parameterization of Electric Vehicle (EV) Pool Scenarios 

In the model, parameters related to the EV are the battery’s storage capacity 𝐶, charging 
and discharging power 𝑃௖௛௔௥௚௘/ௗ௜௦௖௛௔௥௚௘ , and different efficiency parameters. To investigate 
the range of revenue potentials in detail, three different sets of EV parameters are 
implemented: First, a currently common-sized EV is modeled (EV1), comparable to a 2018 
BMW i3 [18] and a 2018 Renault Zoe [19], using realistic values regarding storage capacity, 
charging and discharging power and efficiencies. Second, a relatively large EV and a highly 
efficient charging station are defined representing a future EV (EV2). Third, a set of 
ambitious, yet plausible future values is selected to model maximum revenue potentials 
(EV3). These parameter sets were discussed and agreed upon within the research project 
BCM. Table 1 summarizes the chosen parameter values for the three sets of EV models. 
Table 1. List of relevant electric vehicle (EV) parameters and chosen set of parameter values. 

Parameter EV1 EV2 EV 3 
Storage capacity  𝐶 38 kWh 100 kWh 100 kWh 
Charging power 𝑃௖௛௔௥௚௘ 11 kW 11 kW 22 kW 

Discharging power 𝑃ௗ௜௦௖௛௔௥௚௘ 10 kW 11 kW 22 kW 
Charging efficiency (AC-DC) 𝜂௖௛௔௥௚௘ 92.5% 94.5% 95.0% 

Discharging efficiency (DC-AC) 𝜂ௗ௜௦௖௛௔௥௚௘ 92.0% 94.5% 95.0% 
Roundtrip efficiency (AC-AC) 𝜂௥௢௨௡ௗ௧௥௜௣ 85.1% 89.3% 90.3% 

All losses and efficiencies considered in the model are based on discussions and on the 
consultation with experts from the BCM project. Other studies assume roundtrip efficiencies 
that are similar to EV1 [13] or slightly lower [14]. Constant values are set for the efficiencies 
in order to allow for a linear optimization problem, which results in much faster optimization 
times and thus enables many more optimization runs, i.e., more results. In real operation, 
however, efficiencies follow a declining, non-linear course for decreasing charging power. 
Hence, resulting revenue potentials of the presented model overestimate real revenues of 
bidirectional charging. 
The user parameters result from characteristics, requirements and behavior of the vehicle 
user. In contrast to a large-scale stationary storage system, the battery of an EV is not 
continuously connected to the grid. The availability of an EV battery for V2G use cases 
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largely depends on the individual driving profile of the user, the location of an appropriate 
charging station and the probability that the user has connected the vehicle to this charging 
station. 
As a detailed representation of the driving behavior of the user, vehicle-specific driving 
profiles describe the EV’s whereabouts as well as its energy consumption while driving in a 
chronological sequence. Based on data regarding household and route information as well 
as individual user logbooks from the “Mobility in Germany 2017” study [20] and a 
methodology first developed in the MOS 2030 [21] project, annual driving profiles of various 
EVs are created that are available as supplementary material (see Section 6). Each profile 
meets the following standards: 

 A change of location is always accompanied by a driving phase. 
 During each driving phase, the EV has discrete consumption, which leads to a 

reduction of the storage level. 
 The EV can be located and connected either at the place of residence, the place of 

work or the public space 
The temporal resolution of the driving profiles is quarter-hourly intervals. For each profile, 
the energy consumption is calculated based on information regarding driving speed, 
outside temperature and vehicle type. 
The basic data is additionally used to cluster these driving profiles into user groups to 
further analyze the influence of user behavior on revenue potentials resulting in a set of 
commuter groups which display typical commuter behavior, and a set of non-commuter 
groups with homogeneous behavior different to commuter behavior. The commuter set 
consists of 12 commuter groups. These are defined by the time of arrival of the vehicle at 
the place of work and the distance traveled from the place of residence to the place of 
work. The non-commuter set is made up of three user groups, which are determined by 
age and number of persons in a household. The number of created commuter and non-
commuter profiles per group reflects the real distribution within the German vehicle fleet 
[22]. Since revenue potentials are strongly related to driving behavior, these two different 
pools of driving profiles are defined as input for the model: 

 a commuter pool consisting of representatives of all 12 commuter groups; 
 a non-commuter pool consisting of representatives of all 3 non-commuter groups. 

Table 2 summarizes the characteristics of the two pools of driving profiles including the 
probability of the EVs’ whereabouts, which is the averaged probability of the EV’s location 
at any given point in time. The sum of probability of all three locations apart from the 
driving phase is 94.5% for the commuter pool and 96.8% for the non-commuter pool, which 
represents the theoretical availability for bidirectional charging management if an 
appropriate charging station is installed at their location. To analyze the influence of 
possible charging station locations on revenue potentials of the discussed V2G use cases, 
the charging point location parameter can be flexibly selected in the model for each 
individual EV, where the distinguished three locations can be individually defined as 
available for bidirectional charging or not available. 
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Table 2.  Characteristics of user pools. 

Pools of Driving 
Profiles 

Probability of Whereabouts Averaged 
Consumption 
(kWh/100km) 

Averaged 
Driving 

Distance 
(km/a)  

Place of 
Residence 

Place of 
Work 

Public 
Space 

Driving 
Phase 

Commuter  
Pool 68.8% 22.1% 3.6% 5.5% 17.4 13,600 

Non-commuter 
Pool 87.5% 1.4% 7.9%  3.2% 17.4 8300 

The probability of each individual EV user to plug the vehicle into an available bidirectional 
charging station upon arrival determines the plug-in probability, where the expected value 
of a normally distributed probability is defined as a parameter. A higher plug-in probability 
results in a greater availability of the EV for V2G use cases. The parameter can be set flexibly 
to any value between 0% and 100%. As users will most likely be rewarded in some way for 
plugging in their EV, the plug-in probability is expected to be very high, up to a 100% 
certainty. 
The parameter 𝑆𝑜𝐶௠௜௡,ୱୟ୤ୣ states the minimum storage level not to be undercut when the 
EV is connected to the electric grid, which guarantees a certain safety range in the event of 
an unscheduled departure. This parameter can be set flexibly to meet the requirements of 
users. The storage level that must be reached at the time of a scheduled departure, 
𝑆𝑜𝐶௠௜௡,ௗ௘௣, should be adjustable by the user according to his/her preferences in a real 
implementation. In the model, the parameter can be set between 0% and 100%. 
The charging and discharging behavior model is determined in particular by the time series 
of market prices. For the use cases of arbitrage trading, actual price time series of day-
ahead and intraday markets from 2019 are used to represent price forecasts of a maximum 
of two and a half days [23,24]. For trading in the day-ahead and the intraday markets, 
corresponding auction prices of 2019 are used. Regarding the continuous intraday market, 
real prices are bilaterally determined for each transaction, where buy and sell orders are 
constantly matched. Thus, two representative forecast prices are determined. For the 
relatively precise forecast of the next three hours after modeling time t, ID3 is calculated, 
which is the volume-weighted quarter-hourly price of all transactions in the market for the 
last three hours, where market liquidity is sufficient to determine a representative market 
price. For the more uncertain time beyond three hours after modeling time, IDAvg is used, 
which is the volume-weighted quarter-hourly price of all transactions for this forecasted 
time horizon. 
The regulatory framework for bidirectional charging applications is not yet fully defined to 
the point that simulated revenue potentials might determine what kind of regulatory 
incentive or obstacle enables or respectively prevents the considered V2G use cases. A 
market design with a reduction of different electricity price components such as grid fees 
and taxes would decrease the marginal costs of the EV accordingly and thus lead to an 
increased discharging behavior. To incorporate this highly important role of the market 
design in the model, various values are assigned to the additional charges on purchased 
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energy parameter and resulting differences in revenues are assessed. The applied additional 
charges on purchased energy range from 0 €/MWh, which corresponds to a complete 
exemption from all additional electricity price components, to 234 €/MWh, which reflects 
the amount of all electricity price components for households in Germany in 2019, excluding 
electricity purchase prices [25]. 

3. Results 
For the following investigations, user and EV parameters that are introduced in Section 2.4 
are combined to form six EV pool scenarios (EV1, EV2, EV3 each for commuters and non-
commuters). Displayed revenues of bidirectional or smart charging EVs always refer to the 
difference of these revenues to revenues of the unmanaged charging scenario. As long as 
there is no presentation explicitly showing single profile revenues, displayed revenues 
always refer to mean revenues of the considered EV pool scenario. User, modeling and 
regulatory parameters are set to the values shown in Table 3. The process of determining 
suitable parameters is further discussed in Section 3.3 as well as Appendixes B and C. 
Table 3. Fixed user, modeling and regulatory parameters for the investigation of revenue potentials. 

Parameter Value Type Further Discussion of Parameters’ 
Influence on Revenue Potentials 

Minimum SoC at departure 70% User Section 3.3.1 

Minimum safety SoC 20% (EV1 and EV2) 
30% (EV3) User Section 3.3.1 

Plug-in probability 100% User Section 3.3.1 
Charging point location At place of residence User Section 3.3.1 
Additional charges of 

purchased energy 0 €/MWh Regulatory Section 3.3.2 

Forecast period 1 day Model Appendix B 

EV pool size Commuter: 50 
Non-commuter: 75 Model Appendix C 

3.1. Revenue Potentials for Vehicle-to-Grid (V2G) Use Cases 

All resulting datasets in Section 3.1, individual revenue potentials depending on EV pool 
scenario, and driving profiles, have been made freely available (see Section 6). The following 
analysis shows average revenue potentials and thus represents an aggregated extract of 
the provided result data. 

3.1.1. Revenue Potential in the German Spot Market 
The German spot market is divided into the day-ahead auction with hourly products, the 
intraday auction with quarter-hourly products, and the continuous intraday trading offering 
quarter-hourly and hourly products. Figure 3 shows the revenue potentials for the EV pool 
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scenarios considered in the different markets with a separate participation in the markets 
compared to consecutive marketing. In comparison, the revenue potential of smart 
charging is shown in red bars. For commuters, smart charging is more attractive than for 
non-commuters because of the higher annual driving and thus the higher need for 
charging. However, for both commuters and non-commuters arbitrage trading with 
bidirectional charging leads to much higher revenues compared to smart charging. 
Revenues of non-commuters are slightly higher than revenues of commuters due to the 
higher availability at the place of residence. 
For trading in the day-ahead market, revenues range from almost 200 €/EV/a (EV1) 
to 600 €/EV/a (EV3). Quarter-hourly intraday trading leads to higher revenues due to the 
higher volatility in prices. Consecutive trading in the day-ahead market, the intraday auction 
and continuous intraday trading results in best-case revenues of 400 €/EV/a (EV1) 
to 1300 €/EV/a (EV3). Comparing the EV1 to EV2 pool, the 2.6 times higher capacity of EV2 
implicates higher flexibility for charging and discharging times. Therefore, revenues of EV2 
are 200 €/EV/a higher than the revenues of EV1. EV3 almost doubles the revenues of EV2 
due to doubled charging and discharging power. The increase of charging and discharging 
power is, thus, even more relevant for revenue potentials than the increase of battery 
capacity. 

 
Figure 3.  Revenues for bidirectionally chargeable and smart charging EVs participating in 

different spot markets in Germany. 

3.1.2. Revenue Potential in European Markets 
Since the energy systems change to a volatile and renewable production in most European 
countries, flexibility will be needed to cover the demand at any particular time. Therefore, 
bidirectionally chargeable EVs are a possible flexibility option in all European countries. To 
quantify revenue potentials in European countries other than Germany, we use entso-e data 
(European Network of Transmission System Operators for Electricity) of electricity day-
ahead prices for 2019 as an input for the developed optimization model [24]. 
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Figure 4 shows the resulting revenues for bidirectionally chargeable EVs compared to 
unmanaged charging for 28 European countries for commuters and non-commuters. 
Revenues are the highest in Ireland, Romania, Bulgaria and Hungary. These countries had 
scarcity prices of more than 100 €/MWh during approximately 200 hours to go along with 
a high standard deviation of electricity prices in 2019, giving bidirectionally chargeable EVs 
an opportunity to use arbitrage trading more profitably. On the other hand, the revenues 
are the lowest for Norway and Sweden. High capacities of hydropower and some nuclear 
power plants in Sweden characterize the energy system in those countries [26] with almost 
constant marginal costs, resulting in barely volatile electricity prices. 
In other countries, like Germany, Austria and France, bidirectionally chargeable EVs 
generate medium revenues in arbitrage trading. These energy systems are more 
heterogenic with some volatile renewable production as well as gas-fired, coal-fired or 
nuclear electricity production. Revenues in this group of countries are still varying. For 
example, nuclear power plants with almost constant marginal costs dominate electricity 
production in France [27] resulting in narrow price spreads. As another example, Austria’s 
energy system shows high capacities of pump storage facilities [26] resulting in flattened 
electricity prices. These structural characteristics lead to slightly lower revenues for 
bidirectionally chargeable EVs for the year 2019. On the other hand, Germany has a 
heterogenic production portfolio of volatile wind and solar generation as well as 
conventional power plants with widely varying marginal costs. Price spreads and the 
resulting revenues for bidirectionally chargeable EVs are thus higher there. 

 
Figure 4.  Revenues for bidirectionally chargeable EVs in different European day-ahead 

markets for market prices of 2019. 

The structure of the energy system is consequently crucial for revenue potentials for 
bidirectionally chargeable EVs. In European countries, structural characteristics of electricity 
production differ a lot. In regard to energy transition in Europe accompanied by a shift to 
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different volatile renewable production technologies, revenue potentials could vary even 
more in the future. For this reason, future revenue potentials in Germany are quantified and 
discussed in the following section. 

3.1.3. Revenue Potential for Future Day-Ahead Market Prices 
In addition to an assessment of current revenue potentials, future revenue potentials are 
also important for an investment in a bidirectionally chargeable EV and corresponding EV 
supply equipment (EVSE). For an estimation of the changed revenues, price time series for 
future years from the DYNAMIS project are used [28] (see Section 6). The DYNAMIS project 
performs a dynamic and intersectoral evaluation of measures for the cost-efficient 
decarbonization of the energy system. The multi-energy system model ISAaR (Integrated 
simulation model for unit dispatch and expansion with regionalization) determines the 
design of the future energy system in a model-based way to be able to evaluate the 
measures [29]. 
Based on the multi-stage, exploratory assessment of measures and packages of measures, 
a climate protection scenario has been developed that aims to reduce greenhouse gas 
emissions by 95% by 2050. This scenario is characterized on the supply side by a cost-
optimized provision of energy sources and on the application side takes into account the 
technology- and sector-specific boundary conditions and restrictions. The expansion of 
renewable energies is the most important measure. Green fuels (including all solid, liquid 
and gaseous fuels produced from biomass, renewable electricity or a combination of both) 
will increasingly be used from 2040 onwards in applications that can only be electrified at 
considerable expense. Domestic power-to-x technologies increase the available flexibility 
in the electricity system due to the good storage capacity of green fuels. Bidirectionally 
chargeable electric vehicles are not yet modeled in this scenario path and, therefore, their 
effects on the energy system could not be investigated there either. 
One output of the model are hourly marginal costs representing day-ahead electricity 
prices for the years 2020 to 2050. The mean annual day-ahead price and its daily standard 
deviation are shown in Table 4. It can be seen that the level and in particular the standard 
deviation of the electricity price increases sharply. This is mainly due to the severely changed 
energy system that includes high capacities of renewable energies resulting in production 
surpluses. This results in increasing times with electricity prices of 0 €/MWh. On the other 
hand, rising fuel and carbon prices many times lead to very high electricity prices due to 
the unavoidable use of power plants with expensive marginal costs. 
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Table 4.  Modeled mean day-ahead prices and standard deviation of day-ahead prices 
for the years 2020 to 2050 in Germany [28] compared to empirical prices in 2019 
[23]. 

Year 2020 
(Modeled) 

2030 
(Modeled) 

2040 
(Modeled) 

2050 
(Modeled) 

2019  
(Real 

Prices) 
Mean day-ahead price  

in €/MWh 46.3 61.2 63.8 80.4 37.7 

Daily standard deviation of 
day-ahead price in €/MWh 5.0 8.7 15.8 25.9 9.0 

 
The hourly price time series are transferred as input into the optimization model for 
bidirectionally chargeable EVs to estimate future revenue potentials in the day-ahead 
market. Figure 5 shows the revenues from 2020 to 2050 as a box plot. The black cross shows 
the mean revenues for the EVs considered. The top and bottom edges of the blue boxes 
indicate the 25th and 75th percentiles. The whiskers show the lowest and highest revenues, 
excluding outliers. Outliers that represent values that are 1.5 times bigger than the 
interquartile range are illustrated as red plus signs. Comparing the revenues of 2020 to 
those pointed out in Section 3.1.1 for 2019, mean revenues for the modeled prices are much 
lower than the mean revenues for the empirical data. Modeled electricity prices of energy 
system models often tend to be less volatile than real prices [30]. Consequently, lower price 
spreads lead to lower revenues. 
Regarding modeled electricity prices for future years, mean revenues of bidirectionally 
chargeable EVs compared to unmanaged charging EVs increase by a factor of 5 to 6. This 
is mainly due to the future structural change of production units to renewable volatile 
production in combination with high carbon and fuel prices leading to many low electricity 
prices around 0 €/MWh and many high electricity prices. Bidirectionally chargeable EVs can 
harvest the resulting high price spreads to generate revenues. Another interesting aspect is 
the range of revenues within a user group that increases considerably in future years, 
showing higher uncertainty of revenue potentials. For non-commuters in particular, there 
is a heterogenic distribution of revenues. 
The results for future electricity prices show a much higher revenue potential than for 
current electricity prices. Regarding these results, one has to keep in mind that there are 
many uncertainties about the design of the future energy system and the resulting 
electricity prices. Furthermore, bidirectionally chargeable EVs will have a retroactive effect 
on electricity prices, reducing price spreads and revenue potentials. Nevertheless, the use 
case of arbitrage trading for bidirectional EVs will most certainly get more attractive in 
future years. 
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Figure 5.  Revenues of bidirectionally chargeable EVs compared in accordance with future 

hourly day-ahead market prices. 

3.2. Effect of V2G Use Cases on Full Cycles and Operating Hours  
 

3.2.1. Effect of Unrestricted Trading in the Electricity Markets 
The V2G use case of arbitrage trading leads to higher usage of the battery of the EVs and 
relevant supplying equipment as well as information and communication technology. 
Relevant parameters that show the additional charge of EVs are full battery cycles and total 
operating hours. High yearly full cycles and operating hours in particular mean a faster 
ageing of the battery. For the revenue modeling in Section 3.1, we deliberately applied no 
restrictions on cycles or operation hours. In the BCM project, a separate model will be used 
for evaluation of the impact of V2G use cases on EV components. 
Table 5 shows the impact of the EV operation in Section 3.1.1 on the EV parameter full cycles, 
revenues per full cycle and operating hours. For arbitrage trading, a strong increase in full 
cycles by 100–500 full cycles/a and in operating hours by 1500–5000 hours/a is determined. 
Revenues per full cycle are around 1 to 3 €/full cycle for arbitrage trading. 
If one sets the highlighted parameter values in relation to currently warrantied lifetime 
values of lithium-ion batteries (e.g., 5000 to 6000 full cycles for residential storage systems 
[31,32] and a typical 10,000 operating hours in automotive applications [33]), it becomes 
clear that strong, relevant, additional loads of the battery arise for the use cases of arbitrage 
trading. These additional loads are significant, yet the use cases can still become economic 
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without overloading the battery. Since large battery systems (as in EV2 and EV3) do not 
have many full cycles from driving, an alternative usage of the battery is a logical addition. 
Table 5.  Impact of V2G use cases on EV’s full cycles, revenues per full cycle and operating 

hours. 

Market 
Modeling 

Affected  
EV Parameter 

Commuters Non-Commuters 
EV1 EV2 EV3 EV1 EV2 EV3 

Reference 
Unmanaged 

charge 

Full cycles 60 25 25 35 15 15 

Operating Hours 400 400 340 250 250 190 

Arbitrage: 
Day-ahead 

market 

Full cycles 230 210 300 320 270 400 
Revenues/ 
Full cycle 0.8 1.7 1.7 0.6 1.5 1.5 

Operating Hours 1860 3900 2920 2710 5070 3930

Arbitrage: 
Intraday 
auction 

Full cycles 490 270 490 640 340 630 
Revenues/ 
Full cycle 0.7 2.0 1.9 0.7 1.9 1.7 

Operating Hours 3760 4880 4660 4890 6180 5970

Arbitrage: 
Continuous 

intraday 
trading 

Full cycles 450 250 470 590 320 600 
Revenues/ 
Full cycle 0.8 2.2 2.0 0.7 2.0 1.9 

Operating Hours 3450 4670 4450 4490 5950 5680

Arbitrage: 
Consecutive 

trading  

Full cycles 440 240 450 570 300 570 
Revenues/ 
Full cycle 1.0 2.6 2.5 0.9 2.4 2.3 

Operating Hours 3280 4350 4110 4340 5590 5310 

3.2.2. Effect of Restricted Trading in the Electricity Markets 
Since modeled full cycles and operating hours in the previous section could critically 
decrease the lifetime of the EV’s battery and power electronics, a minimum spread of 
electricity prices as a limit value for arbitrage trading could lower the EV’s operation while 
still generating high profits. The minimum spread refers to the spread of sold to purchased 
energy. Consequently, the selling price for these simulations has to be lowered by the 
minimum, modeled price spread divided by the roundtrip efficiency. 
Figure 6 illustrates the effect of a minimum price spread of 0 to 50 €/MWh on full cycles 
and operating hours compared to revenues of EV2. Revenues refer to the difference of 
revenues of bidirectionally chargeable EVs to the revenues of smart charging EVs to show 
only the added benefit by bidirectional charging. The decrease of full cycles and operating 
hours is displayed in percentage referring to the simulation with no minimum price spread. 
The maximum decrease of full cycles and operating hours arises when increasing the 
minimum price spread from 0 to 5 €/MWh, whereas revenues do not decrease significantly 
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for this change. For a minimum price spread of 10 €/MWh, additional full cycles for 
bidirectional charging of EV2 decrease by more than 50% to 95 full cycles per year for 
commuters and to 125 full cycles per year for non-commuters. For the same restriction, 
additional operating hours for bidirectional charging of EV2 also decrease by more 
than 50% to 1800 operating hours per year for commuters and to 2400 operating hours 
per year for non-commuters. For a minimum price spread of 10 €/MWh, revenues for both 
commuters and non-commuters decrease by only 20% to 240 €/EV/a and to 310 €/EV/a, 
respectively. By applying higher minimum price spreads, full cycles and operating hours 
further decrease and both the revenue per full cycle rate and revenue per operating hour 
rate increase. Full data for full cycles and operating hours of all EV scenarios is attached in 
Appendix D. 
As a result, applying a minimum price spread is an effective method of limiting full cycles 
and operating hours while maintaining adequate profits. Even though revenues are 
generally decreased, this approach leads to an increase of the revenue per full cycle rate 
and revenue per operating hour rate and might thus represent a practicable approach for 
a future operation of bidirectionally chargeable EVs. 

(a) (b) 
Figure 6.  Effect of restricted minimum price spread on revenues, full cycles and operating 

hours of EV2 for commuters (a) and non-commuters (b). 

3.3. Analysis of User Parameters and Regulatory Framework on Revenue 
Potentials of V2G Use Cases 

The revenues of bidirectional charging are determined by a multitude of input parameters. 
We use German day-ahead prices in 2019 (Section 3.3.1 and Section 3.3.2) as well as German 
intraday auction prices in 2019 (Section 3.3.2) to show the influence of user and regulatory 
parameters on the revenue potentials of bidirectionally chargeable EVs. 
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3.3.1. Influence of User Parameters 
Minimum SoC at Departure 
The user parameter 𝑆𝑜𝐶௠௜௡,ௗ௘௣ describes the minimum battery storage level that has to be 
reached at a scheduled departure. Considering this restriction, a higher minimum SoC at 
departure leads to a reduction of flexibility regarding the bidirectional charging strategy 
due to the smaller range between 𝑆𝑜𝐶௠௔௫ and 𝑆𝑜𝐶௠௜௡,ௗ௘௣ in which the storage level can 
vary. This reduces the extent to which profitable price spreads and thus a revenue-
maximizing discharge behavior can be used. The effects of different parameterization of 
𝑆𝑜𝐶௠௜௡,ௗ௘௣ on the revenue potential in the day-ahead market are shown for the six different 
EV pool scenarios in Figure 7a. Potential revenues with 𝑆𝑜𝐶௠௜௡,ௗ௘௣ of 10% to 100% are 
compared to a reference of no minimum SoC at departure (𝑆𝑜𝐶௠௜௡,ௗ௘௣ ൌ 0%). 
All scenarios show an exponential decrease in revenues with an increasing 𝑆𝑜𝐶௠௜௡,ௗ௘௣. If 
flexibility is gradually increased starting from a 𝑆𝑜𝐶௠௜௡,ௗ௘௣ of 100% up to a 𝑆𝑜𝐶௠௜௡,ௗ௘௣ of 0%, 
the impact on revenues is highest at the first adjustment from 100% to 90%. This is because 
with this first increase in flexibility, the highest electricity prices present at the considered 
time can be used to discharge at great profit. As low prices are used for charging, a great 
specific profit can be made. As flexibility is further increased due to a lower minimum SoC 
on departure, lower spot prices are also increasingly used for discharging. The price spread 
between charging and discharging decreases, which means that specific profits are reduced 
and revenues change less. Consequently, if an EV user can define the parameter himself, 
he/she should choose the lowest possible minimum SoC on departure to maximize 
revenues. In particular, users should avoid selecting an unnecessarily high 𝑆𝑜𝐶௠௜௡,ௗ௘௣. For 
investigations in this paper, a realistic minimum SoC of 70% at departure is assumed after 
consultation with the project BCM. 
Minimum Safety SoC  
The user parameter 𝑆𝑜𝐶௠௜௡,௦௔௙௘ describes the minimum battery storage level that an EV 
always should have when connected in order to guarantee a drive to the hospital or other 
relevant short-distance routes at any time. If an EV arrives at a charging station with a lower 
SoC than 𝑆𝑜𝐶௠௜௡,௦௔௙௘ , it will start charging immediately until it reaches the minimum 
parameterized SoC. A higher minimum safety SoC alike a higher minimum SoC at departure 
leads to a reduction of flexibility, since the useable capacity for marketing in the spot 
markets of 𝑆𝑜𝐶௠௔௫ െ 𝑆𝑜𝐶௠௜௡,௦௔௙௘ decreases as the minimum safety SoC is increased. To 
quantify the impact of a minimum safety SoC, revenues with varied parameterization of 
𝑆𝑜𝐶௠௜௡,௦௔௙௘ are compared in Figure 7b showing the relative decrease of revenues compared 
to a reference with no safety SoC. 
There is an exponential decrease of revenues for all EV pool scenarios depending on the 
minimum safety SoC. EV1 and EV3 have similar functions, while EV2 has a much smaller 
gradient for low safety SoCs and a steeper gradient for higher safety SoCs. This is due to 
the large battery capacity of EV2 and the fact, that the capacity of the charging/discharging 
power ratio (E/P) is much higher for EV2 at around 9, compared to the ratios of EV1 and 
EV3 at 3.5 and 4.5, respectively. A large battery capacity of the EV in combination with a 
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fixed SoC on departure makes it less likely that the vehicle comes back with a low SoC on 
arrival and thus it is less limited by a low safety SoC than an EV with a low capacity. A low 
E/P ratio, on the other hand, means that EV batteries can be charged and discharged quickly 
with a great cycle depth, which is limited even with a low safety SOC. EV2 rarely gets these 
low SoCs, so a low safety SoC has little effect. 
Consequently, users with EVs that have a low E/P ratio should care more about a 
parameterization of a very low safety SoC than users that own an EV with a higher E/P ratio. 
In the investigations in this paper, a minimum safety SoC of 30% for EV1 representing the 
status quo for BMW electric vehicles and a lower safety SoC of 20% for EV2 and EV3 
representing future electric vehicles are assumed. 

(a)  (b) 

Figure 7.  (a) Influence of a minimum SoC at departure on revenue potentials of 
bidirectionally chargeable EVs using arbitrage trading; (b) influence of a 
minimum SoC at the place of residence on revenue potentials of bidirectionally 
chargeable EVs using arbitrage trading. 

Plug-in Probability 
An EV user has the possibility to connect his vehicle to a charging station upon arrival at a 
location where a charging station is available. The probability that the user connects his 
vehicle to the charging station is called plug-in probability. There are several factors 
influencing plug-in probability. First, there is the incentive for a user to plug in his/her EV. 
Most importantly, the user is motivated to charge his EV for the next driving phase, where 
the desire could be to charge the EV directly or the possibility of smart or bidirectional 
charging. Since the incentives for EVs using bidirectional charging have hardly been 
investigated yet, there are no data on the plug-in probability of those EVs. Therefore, 
Figure 8a shows the influence of a changed plug-in probability on revenue potentials. 
In all EV pool scenarios, there is a positive, approximately linear relationship between the 
plug-in probability and the revenues. If the EV is connected to a bidirectional charging 
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station more frequently, a discharge process that maximizes revenues can be carried out 
more often. The gradient of the curves differs in the various scenarios. The increase in 
revenues in this investigation varies between 2 € for EV1 and 5 € to 6 € for EV3 with 
a 1% increase in the plug-in probability. Hence, for bidirectionally chargeable EVs 
participating in the spot markets, a higher plug-in probability means equally higher 
revenues. For investigations in this paper, a plug-in probability of 100% is assumed under 
the assumption that using bidirectional charging for arbitrage trading is profitable and users 
are incentivized to plug-in their EVs. 
Charging Point Location 
A bidirectional charging management system can only be operated if a bidirectional 
charging station is available at the EV’s location. In accordance with the driving profiles from 
Section 2.4, possible locations for the EV are the place of residence, the place of work and 
the public space. An extensive expansion of bidirectional charging stations in public spaces 
is unlikely since the main reason for using public charging stations is the fast charging of 
the EV. Further analysis, therefore, concentrates on charging points at the place of residence 
and the place of work. 
Figure 8b shows the revenue potentials of bidirectionally chargeable EVs depending on the 
charging point location. Comparing mean revenues at the place of residence and the place 
of work, there is a much higher incentive even for commuters to use bidirectional charging 
at the place of residence for the use case of arbitrage trading. This is due to the shorter 
period of time spent at the place of work while restrictions for minimum safety and 
departure SoC still have to be regarded. EVs can be discharged profitably less frequently 
than at the place of residence. In the non-commuter pool, 55% of the driving profiles are 
never located at a place of work, which is why an evaluation is not appropriate for these 
vehicle pools. If charging points are located both at the place of residence and at the place 
of work, revenues are slightly higher than if a charging point is only available at the place 
of residence. Compared to total revenues, the increase is quite low. 
Consequently, the revenue potential of bidirectional charging at the place of work as 
opposed to the place of residence is low. Bidirectional charging should, therefore, be 
prioritized for EV users who are ready to install a bidirectional charging station at the place 
of residence. In the investigations within the framework of this paper, a charging station 
located at or near the place of residence is assumed. 
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(a) (b) 
Figure 8.  (a) Influence of plug-in probability on revenue potentials of bidirectionally 

chargeable EVs using arbitrage trading; (b) influence of charging point location 
on revenue potentials of bidirectionally chargeable EVs using arbitrage trading. 

3.3.2. Impact of Regulatory Framework on Revenue Potentials 
Bidirectionally chargeable EVs are a new technology whose regulatory framework 
conditions have not yet been developed at the European Union (EU) level [34]. An essential 
question is whether bidirectionally chargeable EVs are classified as storage devices and, 
consequently, what additional charges they have to pay for charged electricity that is 
discharged later. 
In Germany, the wholesale market price of electricity accounts for just around 15% 
(around 40 to 50 €/MWh) of the price of electricity for households. The other 85% 
(around 260 €/MWh) of the price is accounted for by additional charges such as the EEG 
surcharge (surcharge of electricity for remuneration of renewables) and grid fees as well as 
distribution [25]. Pumped storage facilities on the other hand are exempted from most of 
the EEG surcharge, grid fees and other levies, so that only additional charges of 
around 18 €/MWh have to be paid on electricity purchases [35],which can lead to a 
profitable arbitrage trading for storage facilities. As most of the exemptions refer to 
electricity purchases, storage losses are included [36]. 
For the use case of arbitrage trading, Figure 9 shows the influence of additional charges for 
purchased energy in the day-ahead or intraday market on revenue potentials of 
bidirectionally chargeable EVs for commuters and non-commuters. The solid lines 
represent revenues of bidirectionally chargeable EVs compared to unmanaged charging 
EVs and the dashed lines show revenues of smart charging EVs compared to the 
unmanaged charging ones. The diagram makes clear that possible revenues are strongly 
dependent on the regulatory framework. Starting from mean revenues with no additional 
charges at around 550 to 600 €/MWh for intraday auction trading, the revenues decrease 
by over 40% for additional charges of only 10 €/MWh. Non-commuters have an even 
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sharper decrease since the starting revenues are a bit higher and the minimum revenues 
representing smart charging are lower. Revenue potential of smart charging is higher 
because of the increased annual driving the associated increase in the annual charging 
demand. If a bidirectionally chargeable EV is regulatory-equal to a pumped storage facility 
with additional charges of 18 €/MWh on purchased electricity, mean revenue of non-
commuters will decrease by over 60%, and commuters will have less than 50% revenue. For 
additional charges of more than 50 €/MWh, the added revenue of bidirectionally 
chargeable EVs compared to smart charging EVs is less than 20 €/EV/a. 
Consequently, the future regulatory framework will decide if there is a chance for profitable 
arbitrage trading for bidirectional EVs. In investigations in this paper, additional costs are 
set to zero €/MWh to show the potential revenues for bidirectionally chargeable EVs. 

(a) (b) 
Figure 9.  Influence of additional charges for purchased energy on revenue potentials of 

bidirectionally chargeable EVs compared to revenues of smart charging in the 
day-ahead market and intraday auction for commuters (a) and non-
commuters (b). 

4. Discussion 
Bidirectionally chargeable EVs can use arbitrage trading to generate revenues for a 
potential improvement of their economic efficiency. Section 3.1 pointed out that revenues 
differ widely depending not only on the EV pool scenarios but also on the considered 
markets and the years under review. For an evaluation based on empirical prices of 2019 in 
Germany, revenues by bidirectional arbitrage trading range from 200 to 1300 €/EV/a 
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depending on EV pool and market participation. Profits on other European day-ahead 
markets compared to the German day-ahead market vary between +70% and –90% and 
are, therefore, highly dependent on the structure of the considered energy system. For 
future electricity prices, there is high revenue potential for bidirectionally chargeable EVs, 
which is pointed out by revenues for arbitrage trading in 2050 up to six times as high as 
the revenue potentials determined for 2020. 
Most V2G related studies in literature refer to profits in reserve markets [37–39]. However, 
some studies deal with V2G profits of arbitrage trading. Peterson et al. point out revenues 
of 140 to 250 US$/EV/a (120 to 210 €/EV/a) for 16 kWh EV batteries in local markets in three 
US cities [13]. Pelzer et al. determine 60 to 300 US$/EV/a (50 to 250 €/EV/a) depending on 
spatial and temporal variation in US and Singapore markets under consideration of battery 
degradation costs [14]. These revenues have a similar level as our calculated EV1 revenues 
for day-ahead trading in Germany in 2019. We do not consider battery degradation costs 
but show the maximization of revenues by consecutive trading in day-ahead and intraday 
markets and the crucial influence of user parameters and regulatory framework on revenue 
potentials. 
Concerning analyzed user parameters, our results confirm those of Szinai et al., who found 
that smart charging value at residential locations is much higher than at work or public 
locations [40]. In addition, we found this to also be true for bidirectionally chargeable EVs. 
Geske et al. indicate that the minimum range and range anxiety are the most important 
determinants for users participating in V2G use cases [41]. In this regard, we show the 
quantitative effect of the parameters ‘minimum SOC at departure’ and ‘safety minimum 
SOC’ on the revenue potentials of bidirectionally chargeable EVs, thereby addressing the 
minimum range and range anxiety. Increasing these parameters leads to an exponential 
decrease of revenues depending on the EV type. Hence, a tradeoff exists between the users’ 
range anxiety and potential revenues. 
With regard to the indicated high future revenues for arbitrage trading, one has to consider 
the retroactive effects that bidirectional EVs participating in the considered markets will 
have on market prices. As for arbitrage trading, where EVs charge when spot prices are low 
and discharge when spot prices are high, a flattening impact on spot prices is foreseeable. 
From a spot market perspective, offers of electric energy increase during times of high spot 
prices, and the demand for electricity increases during times of low prices, leading to higher 
prices when prices are low and lower prices when prices are high. These retroactive effects 
will lower revenue potentials if significant quantities of bidirectionally chargeable EVs 
participate in the markets. For quantitative evaluation of these retroactive effects, an energy 
system model is needed that models the supply and demand curves and thus can model 
price changes attributable to bidirectionally chargeable EVs. This additional research will be 
addressed by the BCM project in a following publication. 
For an assessment of the impact of bidirectionally chargeable EVs in the markets, Table 6 
shows the market volumes of considered and relevant markets and fitting EV quantities 
with 10 kW bidirectional charging station that would cover the market completely. 
Regarding the table and considering Germany’s aim of 10 million EVs by 2030, the probable 
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retroactive effect in the markets can be derived. If a significant quantity of those EVs will 
have a bidirectional charging station and use V2G, there will be a high impact on prices in 
the intraday auction, and the quarter-hourly and the hourly continuous intraday trading 
market. A lower retroactive effect will occur for day-ahead prices in the German spot 
market. 
Table 6.  Average market volumes and fitting EV quantities for complete covering of 

considered and relevant German markets. 

Market Average Market Volume  
in Germany 2019 

EVs with 10 kW Charging Station 
to Completely Cover the Market 

Day-ahead market 26,000 MW (EPEX Spot) 1 
58,000 MW (German demand) 2 

2.6 mil (EPEX Spot) 
5.8 mil (German demand)  

Quarter hourly  
intraday auction 800 MW 1 80,000 

Hourly continuous intraday 
trading 4500 MW1 450,000 

Quarter hourly continuous 
intraday trading 800 MW1 80,000 

1 Average power trading based on data of EPEX Spot [23].  
2 Average demand calculated by net consumption in 2019 of 512 TWh [42] divided by 8760 hours. 

Besides restrictions of market volumes, Section 3.2 points out the effect of V2G use cases 
on full cycles and operating hours of the EV’s battery storage. For the use case of arbitrage 
trading, there is a high increase in battery usage resulting in an accelerated ageing of the 
battery. Although warranties for the full cycle lifetime of battery systems increase, the 
additional charge on the battery will reduce the use case’s economic efficiency. However, 
in Section 3.2.2, we point out that both full cycles and operating hours can be decreased 
significantly, while revenues are still high by implementing a minimum price spread for 
arbitrage trading. In the BCM project, a detailed battery-ageing model is used for evaluating 
the impact of V2G on the battery and power electronics of the EV. 
Another important restriction is the regulatory framework. Section 3.3.2 has shown the 
immense effect of additional charges on the profitability of the use case of arbitrage trading. 
It will be decisive if bidirectionally chargeable EVs are regulatory classified as a storage and 
if so, which additional charges will arise. 
Regarding model limitations, constant values are set for the efficiencies of charging and 
discharging in order to achieve much faster optimization times. For arbitrage trading, 
charging and discharging processes usually use the highest possible power as price signals 
express either purchasing, selling or doing nothing. In a following publication in the BCM 
project, revenues of vehicle-to-home (V2H) use cases are compared by using constant and 
non-constant efficiencies, in which it is pointed out that modeling a non-constant efficiency 
for V2H use cases is necessary. 
For the use case of arbitrage trading, we model revenues without perfect foresight for a 
rolling horizon of two to three days. The implemented market prices are real and not 
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forecasted prices, which are used for real trading. On the other hand, it can be assumed 
that price forecasts over- and underestimated actual market prices to the same extent and 
on an average alignment with real market prices resulting in a realistic modeling of revenues 
for bidirectionally chargeable EVs. 
Finally, for the evaluation of the economy of V2G use cases, additional costs have to be 
considered. The main additional hardware costs result from a bidirectional charging station. 
Currently, the cost for the only bidirectional charging station soon available in the German 
market is around 6000 € [43]. Medium-term cost projections in the project BCM for a 
bidirectional charging station is around 2000 €. In regard to the current stage of the BCM 
project, cost projections for additional hardware and operating costs are not defined, and 
the economic efficiency of the use cases can, therefore, not yet be evaluated. 

5. Conclusions 
Based on the developed aggregated storage optimization model, revenues of 
bidirectionally chargeable EVs have been calculated for the V2G use case arbitrage trading. 
As a detailed description of optimization constraints and input data are provided, readers 
are able to reconstruct the indicated revenues of bidirectionally chargeable EVs. The major 
findings of this research are: 

 We developed a rolling optimization model that regards real trading times of 
European spot markets and allows countertrading in consecutive traded markets 
while considering user behavior parameters leading to a realistic representation of 
revenue potentials of bidirectionally chargeable EVs using arbitrage trading. 

 Revenues of bidirectionally chargeable EVs are dependent on user parameters. An 
increase of the safety minimum SoC at the place of residence or the minimum SoC 
at departure leads to an exponential decrease of revenues for bidirectionally 
chargeable EVs. 

 For a participation of bidirectionally chargeable EVs in the German spot markets in 
2019, potential revenues range from 200 to 1300 €/EV/a depending on the modeled 
EV pool scenario under the assumption of no additional charges for purchased 
electricity. 

 Revenues of currently available EV models participating in the day-ahead market 
are comparable to findings of other literature, while our research shows a significant 
increase in revenues for consecutive trading in all spot markets. 

 The regulatory framework concerning additional charges of purchased energy is the 
most decisive parameter for the potential revenues of bidirectionally chargeable 
EVs. 

 Considering additional charges amounting for example to the payments of a 
pumped storage facility for bidirectionally chargeable EVs results in a decrease of 
revenues by 50% to 60%. Thus, if V2G arbitrage trading is supposed to give flexibility 



Publications of the Author 

99 

to the future energy system, the market regulator will have to exempt bidirectionally 
chargeable EVs from the major part of additional charges. 

 Unrestricted arbitrage trading of bidirectionally chargeable EVs results in a sharp 
increase of full cycles and operating hours by 200 to 600 full cycles/a, respectively, 
by 2000 to 6000 h/a resulting in much faster battery degradation. Restricted 
arbitrage trading with a minimum price spread can lower this additional load for EV 
and EVSE. For a minimum price spread of 10 €/MWh, operating hours and full cycles 
decrease by 50% while revenues only decrease by 20%. 

 Revenues of bidirectionally chargeable EVs differ widely depending on the 
electricity production structure of the energy system. European day-ahead market 
revenues for EV2 in 2019 range from 50 €/EV/a in Norway to 700 €/EV/a in Ireland. 
Modeled potential future revenues are 2 times higher in 2030 and 5 to 6 times 
higher in 2050 than modeled revenues in 2020. 

In general, potentially high revenue opportunities are identified for bidirectionally 
chargeable EVs in the electricity markets. Thus, participating in V2G use cases could 
promote electric mobility and, thereby, provide the flexibility needed for the energy system 
of the future. For future profitable usage of V2G use cases, the design of the regulatory 
framework and battery lifetime are decisive. For further investigations, especially retroactive 
effects of bidirectionally chargeable EVs on market prices and resulting decrease of revenue 
opportunities is of interest. 

6. Data Availability 
The driving profile data are available in supplementary material ´input and results 
data\driving profiles´. The modelled future electricity prices are available in 
´https://openenergy-
platform.org/dataedit/view/scenario/ffe_dynamis_emission_factors_marginal_cost´. 
In Section 3.1 which analyzed revenue potentials of individual EVs for German spot market 
prices, European day-ahead market prices and future day-ahead market prices are available 
in supplementary material ´input and results data\revenues_Section_3_1´. 
Supplementary Materials: The following are available online at http://www.mdpi.com/1996-
1073/13/21/5812/s1, 
Driving Profiles data: 50 commuter and 75 non-commuter driving profiles including quarter-hourly 
resolved time series for location and consumption of individual EVs: http://opendata.ffe.de/dynamis-
emission-factors, Revenues Section 3.1: Individual user revenues depending on driving profiles as 
additional data for shown aggregated revenues in Section 3.1. 
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read and agreed to the published version of the manuscript. 
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Appendix A 
Table A1.  List of time-dependent variables of the storage equation and their respective 

limit values. 

Time-dependent Variables  Minimum 
Value 

Maximum 
Value 

State of charge  𝑆𝑜𝐶 𝑆𝑜𝐶௠௜௡ 𝑆𝑜𝐶௠௔௫ 
Charging power 𝑃௖௛௔௥௚௘ 𝑃௖௛௔௥௚௘,௠௜௡ 𝑃ௗ௜௦௖௛௔௥௚௘,௠௔௫ 

Discharging power 𝑃ௗ௜௦௖௛௔௥௚௘ 𝑃ௗ௜௦௖௛௔௥௚௘,௠௜௡ 𝑃ௗ௜௦௖௛௔௥௚௘,௠௔௫ 
Discharging boolean 𝑏௖௛௔௥௚௘ 0 1 

Charging boolean 𝑏ௗ௜௦௖௛௔௥௚௘ 0 1 
Counter purchase power 𝑃௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ 0 P௦௖௛௘ௗ௨௟௘,௦௔௟௘ 

Counter sale power 𝑃௖௢௨௡௧௘௥ି௦௔௟௘ 0 P௦௖௛௘ௗ௨௟௘,௣௨௥௖௛௔௦௘ 
Counter purchase boolean 𝑏௖௢௨௡௧௘௥ି௣௨௥௖௛௔௦௘ 0 1 

Counter sale boolean 𝑏௖௢௨௡௧௘௥ି௦௔௟௘ 0 1 
Supplementary power 𝑃௦௨௣௣௟௘௠௘௡௧ 0 ∞ 
Fast charging power 𝑃௙௔௦௧௖௛௔௥௚௘ 0 ∞ 

Appendix B 
Influence of Forecast Period 
For modeling realistic revenues of bidirectionally chargeable EVs, a rolling, limited time 
horizon is implemented. The selected limited time horizon is important for two reasons. 
Firstly, market prices are perfectly forecasted, which leads to a perfect EV charging strategy 
for the considered time horizon. As an example, if there are very low prices 10 days ahead 
of the starting point, the EV may shift its charging in the future. In reality, the low prices 
may depend on renewable energies that cannot be forecast 10 days in advance accurately. 
Secondly, EV driving behavior is perfectly forecast. In reality, regular driving (e.g., 
commuting to work) can be predicted most of the time, whereas more spontaneous driving 
(e.g., for free time activities) is much more uncertain. In this regard, it is hard to declare a 
realistic horizon for forecasting in the model. 



Publications of the Author 

101 

The upper diagram in Figure A1 illustrates the effect of an adapted forecasting period on 
revenue potentials of bidirectionally chargeable EVs with no additional charges on 
purchased energy. Starting from a forecast horizon of ten days going down to four days, 
there is no change in revenues. A shorter forecast period results in slightly decreased 
revenues, but the impact of the forecast period on revenues is very low. This is mainly due 
to daily characteristics of the electricity price. Price spreads are used to charge with low 
prices and discharge with high prices with just a slight dependence on future departures or 
future electricity prices. Depending on the regulatory framework, additional charges can 
arise for purchased energy. The bottom diagram shows the effect of a varied forecast 
horizon on the revenues with additional charges of 100 €/MWh on purchased energy. There 
is huge decrease of revenues even resulting in negative revenues for short forecast periods, 
since EVs often do not know a future departure and consequently discharge although the 
future charging price is much higher. Only for forecast periods of 7 days and longer are 
revenues relatively stable compared to a horizon of 10 days. 
The forecast horizon is mainly applied to prevent unrealistic future trading after the 
optimized period that is remunerated. For simulations with no additional charges, the 
rolling optimization is still necessary as it allows consideration of real sequential market 
trading. Consequently, for investigations in this paper a short forecast period of one day is 
defined. For an evaluation of the regulatory framework in Section 3.3.2, a longer forecast 
period of seven days is applied to prevent unrealistic discharging although charging prices 
are higher. 

 
Figure A1.  Influence of forecasting horizon on revenue potentials of bidirectionally 

chargeable EVs for the use cases of arbitrage trading with no additional charges 
(top) and additional charges of 100 €/MWh (bottom) on purchased energy. 
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Appendix C 
Determination of a Realistic Pool Size 
The modeling of a realistic vehicle pool is characterized by the EV pool size. The revenue 
potential of bidirectional charging of a single vehicle depends strongly on the individual 
driving profile of the user. In order to show a meaningful average revenue potential for 
different EV pool groups, a relevant number of vehicles must be determined for the model 
calculations. As computational time is linearly dependent on the number of profiles 
considered, a trade-off has to be faced. The aim of the investigations is to identify a pool 
size at which the addition of further vehicles has a low influence on revenues compared to 
the higher computational time. For all evaluated EV pool scenarios, the revenue potential 
on the German day-ahead market in 2019 was investigated for different pool sizes. For 5 to 
150 profiles, a random drawing of 50,000 profile groups leads to a statistically significant 
analysis. Figure A2 shows the maximum revenue deviation for different numbers of profiles 
compared to the best case of 150 profiles. The maximum number of individual profiles is 
150 in order to limit computational time. If all 150 profiles are drawn, there will be no revenue 
deviation to the best case of 150 profiles. 

 

(a) 

 

(b) 
Figure A2.  Maximum revenue deviation for a varying number of profiles compared to the 

best case of 150 profiles for a drawing of 50,000 EV profile groups for commuters 
(a) and non-commuters (b). 

The more vehicles that are modeled, the less is the maximum revenue deviation. A relevant 
pool size for the EV pool scenarios can be determined by the revenue difference falling 
below a defined threshold value. A maximum deviation of less than 5% per vehicle per year 
is assumed to be sufficiently accurate while limiting computational time. This results in a 
relevant pool size of 50 vehicles for a commuter EV pool. A representative non-commuter 
EV pool needs a number of 75 vehicles. Revenues of non-commuters are more heterogenic 
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than revenues of commuters because commuters have a more regular driving profile during 
weekdays. 

Appendix D 

Table A2.  Revenues, full cycles and operating hours for all EV scenarios (difference of 
bidirectional charging to smart charging) with restricted minimum price spread. 

EV1—Commuter 
Minimum 

Price spread 
in €/MWh 

Revenues 
in €/EV/a 

Full 
Cycles 

per Year 

Operating 
Hours per 

Year 

Average 
Price Spread 
in €/MWh 

Revenue/ 
Full Cycle in 
€/Full Cycle 

Revenue/ 
Operating Hour in 
€/Operating Hour 

0 125.1 231.0 1898 14.2 0.54 0.07 
5 117.7 166.7 1363 18.6 0.71 0.09 
10 97.8 102.9 841 25.0 0.95 0.12 
15 75.5 60.4 494 32.9 1.25 0.15 
20 59.7 38.7 319 40.6 1.54 0.19 
25 46.2 25.6 210 47.4 1.80 0.22 
30 37.1 18.6 153 52.6 2.00 0.24 
35 27.7 13.1 109 55.7 2.12 0.25 
40 17.2 8.0 67 56.8 2.16 0.26 
45 6.6 2.8 24 62.9 2.39 0.27 
50 2.7 0.9 7 77.2 2.93 0.35 

 

      

EV1—Non-Commuter 
Minimum 

Price Spread 
in €/MWh 

Revenues 
in €/EV/a 

Full 
Cycles 

per Year 

Operating 
Hours per 

Year 

Average 
Price Spread 
in €/MWh 

Revenue/ 
Full Cycle in 
€/Full Cycle 

Revenue/ 
Operating Hour in 
€/Operating Hour 

0 173.3 324.2 2737 14.1 0.53 0.06 
5 162.5 226.7 1911 18.9 0.72 0.08 
10 135.6 139.5 1173 25.6 0.97 0.12 
15 107.1 85.0 712 33.2 1.26 0.15 
20 86.1 56.1 472 40.4 1.54 0.18 
25 68.7 38.8 327 46.6 1.77 0.21 
30 56.5 29.0 245 51.3 1.95 0.23 
35 44.2 22.1 189 52.7 2.00 0.23 
40 33.7 16.5 140 53.9 2.05 0.24 
45 19.9 10.1 87 51.9 1.97 0.23 
50 10.8 5.5 48 51.4 1.95 0.23 
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EV2—Commuter 
Minimum 

Price Spread 
in €/MWh 

Revenues 
in €/EV/a 

Full 
Cycles 

per Year 

Operating 
Hours per 

Year 

Average 
Price Spread 
in €/MWh 

Revenue/ 
Full Cycle in 
€/Full Cycle 

Revenue/ 
Operating Hour in 
€/Operating Hour 

0 296.1 211.4 3963 14.0 1.40 0.07 
5 278.2 150.5 2819 18.5 1.85 0.10 
10 236.1 96.8 1815 24.4 2.44 0.13 
15 187.3 59.9 1123 31.3 3.13 0.17 
20 152.5 41.3 766 37.0 3.70 0.20 
25 125.0 30.3 561 41.3 4.13 0.22 
30 102.1 23.5 434 43.4 4.34 0.24 
35 77.2 17.5 322 44.0 4.40 0.24 
40 50.3 11.9 216 42.3 4.23 0.23 
45 22.9 5.2 93 44.3 4.43 0.25 
50 8.6 1.6 30 52.9 5.29 0.29 
       

EV2—Non-Commuter 
Minimum 

Price Spread 
in €/MWh 

Revenues 
in €/EV/a 

Full 
Cycles 

per Year 

Operating 
Hours per 

Year 

Average 
Price Spread 
in €/MWh 

Revenue/ 
Full Cycle in 
€/Full Cycle 

Revenue/ 
Operating Hour in 
€/Operating Hour 

0 383.4 270.7 5113 14.2 1.42 0.07 
5 361.0 192.5 3645 18.8 1.88 0.10 
10 307.0 125.4 2383 24.5 2.45 0.13 
15 245.0 78.7 1498 31.1 3.11 0.16 
20 200.7 55.2 1045 36.4 3.64 0.19 
25 167.5 41.9 795 40.0 4.00 0.21 
30 142.8 34.5 654 41.5 4.15 0.22 
35 117.1 28.5 541 41.0 4.10 0.22 
40 88.6 22.8 429 38.9 3.89 0.21 
45 58.5 15.9 299 36.8 3.68 0.20 
50 34.7 9.3 174 37.3 3.73 0.20 
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EV3—Commuter 
Minimum 

Price Spread 
in €/MWh 

Revenues 
in €/EV/a 

Full 
Cycles 

per Year 

Operating 
Hours per 

Year 

Average 
Price Spread 
in €/MWh 

Revenue/ 
Full Cycle in 
€/Full Cycle 

Revenue/ 
Operating Hour in 
€/Operating Hour 

0 451.2 301.4 2994 15.0 1.50 0.15 
5 430.6 227.5 2243 18.9 1.89 0.19 
10 369.2 151.5 1487 24.4 2.44 0.25 
15 290.4 92.4 898 31.4 3.14 0.32 
20 231.8 60.6 582 38.3 3.83 0.40 
25 187.6 42.6 402 44.0 4.40 0.47 
30 152.0 31.9 297 47.7 4.77 0.51 
35 123.6 24.5 227 50.4 5.04 0.54 
40 85.1 17.1 156 49.8 4.98 0.55 
45 41.7 8.5 75 49.2 4.92 0.55 
50 16.7 2.8 25 59.1 5.91 0.66 
       

EV3—Non-Commuter 
Minimum 

Price Spread 
in €/MWh 

Revenues 
in €/EV/a 

Full 
Cycles 

per Year 

Operating 
Hours per 

Year 

Average 
Price Spread 
in €/MWh 

Revenue/ 
Full Cycle in 
€/Full Cycle 

Revenue/ 
Operating Hour in 
€/Operating Hour 

0 574.6 397.5 3979 14.5 1.45 0.14 
5 545.8 291.1 2913 18.8 1.88 0.19 
10 466.9 191.4 1916 24.4 2.44 0.24 
15 370.3 118.3 1188 31.3 3.13 0.31 
20 298.4 79.2 795 37.7 3.77 0.38 
25 243.9 56.8 568 42.9 4.29 0.43 
30 202.6 44.2 444 45.9 4.59 0.46 
35 171.8 36.2 365 47.5 4.75 0.47 
40 132.8 28.4 287 46.7 4.67 0.46 
45 92.3 20.7 211 44.6 4.46 0.44 
50 56.0 12.7 128 44.1 4.41 0.44 
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Abstract: A smart integration of electric vehicles (EVs) in the future energy system will be 
crucial in decarbonizing the energy sector. Bidirectional EVs can provide flexibility for the 
system and generate revenues for the user through multiple use cases. We model both 
exclusive photovoltaic (PV) self-consumption optimization and the combined usage of PV 
self-consumption optimization and arbitrage trading for a household with an unmanaged, 
smart, and bidirectional charging EV in a linear (LP) and mixed-integer linear programming 
(MILP). Since power flows in a typical household are low, varying non-linear charging and 
discharging efficiencies of the bidirectional EV in the MILP result in more realistic revenues 
that are 30% lower than in the LP with fixed efficiencies. For a typical German household 
using a bidirectional EV for optimizing PV self-consumption, these revenues are 
about 310 €/a, mostly generated during the summer. Arbitrage trading well complements 
this vehicle-to-home use case in the winter months, resulting in revenues up to 530 €/a. 
These significant revenue potentials can lead to more profitable and interactive EVs 
incentivizing users to change from internal combustion vehicles to electric mobility. 
Keywords: PV self-consumption optimization; arbitrage trading; bidirectional electric 
vehicles; V2G; V2H 

Nomenclature 
Abbreviations 𝒑𝒆𝒍,𝐬𝐞𝐥𝐥,𝒗𝟐𝒈 electricity selling prices for V2G 
BCM bidirectional charge management 𝑷𝑬𝑽,𝒍,𝒄𝒐𝒏𝒔𝒕,𝒄/𝒅 constant charging/discharging losses
BCM Bidirectional Charging Management 

(project) 
𝑷𝑬𝑽,𝒍,𝒄𝒐𝒏𝒔𝒕,𝒔𝒕 constant standby losses of EV and 

EVSE
COM commuter 𝑷𝑯𝑯,𝒆𝒍 electrical household demand 
EFC equivalent full cycle 𝑷𝑯𝑯,𝒕𝒉 thermal household demand 
EV electric vehicle 𝑷𝑷𝑽 PV generation 
EVSE electric vehicle supply equipment 𝑺𝒐𝑪𝒅𝒆𝒑 minimum SOC at departure 
GCP grid connection point 𝑺𝒐𝑪𝒔𝒂𝒇𝒆 minimum SOC when connected 
HP heat pump 𝒕 timestep
LP linear programming 𝑻 total timesteps 
MILP mixed-integer linear programming x start timestep of V2G interval 
OH operating hour y end timestep of V2G interval 
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SBS stationary battery storage
SoC state of charge Variables
V2B 
PV 

vehicle-to-business
photovoltaic 

𝒃𝑬𝑽,𝒄 boolean variable if EV is charging

V2G vehicle-to-grid 𝒃𝑬𝑽,𝒅 boolean variable if EV is discharging
V2H vehicle-to-home 𝑬𝑬𝑽 charge level of EV battery 
 𝑬𝑬𝑽,𝒑𝒖𝒃,𝒄 public charging energy  
Parameters 𝑷𝑬𝑽,𝒄 charging power of EV 
𝒃𝑬𝑽,𝒅𝒆𝒑  timeseries if EV is departing 𝑷𝑬𝑽,𝒅 discharging power of EV 
𝑪𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅 timeseries if EV is connected to the 

EVSE 
𝑷𝑬𝑽,𝒍,𝒄 charging losses of EV 

𝑬𝑬𝑽,𝒅𝒓𝒊𝒗𝒆 EV consumption while driving 𝑷𝑬𝑽,𝒍,𝒅 discharging losses of EV 
𝒎𝒄 gradient of charging losses 𝑷𝑬𝑽,𝒍,𝒔 standby losses of EV and EVSE 
𝒎𝒅 gradient of discharging losses 𝑷𝑮𝑪𝑷,𝒊𝒏 power from grid 
𝒏𝒄 minimum charging losses 𝑷𝑮𝑪𝑷,𝒊𝒏,𝒗𝟐𝒈 power from grid as V2G process 
𝒏𝒅 minimum discharging losses 𝑷𝑮𝑪𝑷,𝒐𝒖𝒕 power to grid 
𝜼𝑬𝑽,𝒓𝒐𝒖𝒏𝒅𝒕𝒓𝒊𝒑,𝒎𝒂𝒙 maximum roundtrip efficiency of EV 𝑷𝑮𝑪𝑷,𝒐𝒖𝒕,𝒗𝟐𝒈 power to grid as V2G process 
𝜼𝑺𝑩𝑺,𝒓𝒐𝒖𝒏𝒅𝒕𝒓𝒊𝒑 roundtrip efficiency of SBS 𝑷𝑯𝑷,𝒆𝒍 power consumption of heat pump
𝒑𝒆𝒍,𝒃𝒖𝒚 electricity purchase prices for 

household 
𝑷𝑷𝑽,𝒄𝒖𝒓𝒕 curtailment of PV generation 

𝒑𝒆𝒍,𝒃𝒖𝒚,𝒗𝟐𝒈 electricity purchase prices for V2G 𝑷𝑺𝑩𝑺,𝒄 charging power of SBS 
𝒑𝒆𝒍,𝐬𝐞𝐥𝐥 feed-in tariff  𝑷𝑺𝑩𝑺,𝒅 discharging power of SBS 

1. Introduction 
The electrification of mobility is often considered an essential component in combatting 
climate change. While CO2 emissions in the German energy sector have decreased sharply, 
because of the strong expansion of renewable energies, emissions in the transport sector 
have remained roughly the same as they were in 1990 [1]. Coupling of the energy and 
mobility sectors is seen as a major opportunity for reducing emissions in the transport 
sector, with electric mobility playing a key role [2]. The German government has introduced 
some subsidies, e.g. for private individuals purchasing electric cars, to increase the share of 
electric vehicles (EVs) on German roads [3]. Nevertheless, the target of one million 
registered electric vehicles in Germany by 2020 was missed. A survey by the German 
Association of Energy and Water Industries found that the high investment costs for an EV 
are the main argument against switching to electromobility [4]. If the economic viability of 
EVs could be increased, it would provide an additional incentive for citizens to purchase an 
electric vehicle. 
Here, one possibility is use of bidirectional charging technology. In contrast to unidirectional 
charging systems, bidirectional charging systems not only allow energy to be drawn from 
the grid or a generation plant to charge the electric vehicle, but they also allow the energy 
from the vehicle to be fed back in a smart form. Therefore, during periods of inactivity, the 
vehicles can also be used in a manner analogous to a stationary battery storage (SBS) [5]. 
In vehicle-to-grid (V2G) applications, bidirectionally chargeable EVs can contribute to grid 
stability in a system-serving manner [6] while offering economic benefits for EV owners [7]. 
Similarly, vehicle-to-home (V2H) use cases offer the benefit of optimized use of locally 
generated renewable energy while also providing revenue opportunities; here some studies 
have already addressed the profitability of bidirectional charging. Salpakari et al. show that 
smart and bidirectional charging can save 8-33% of annual electricity costs compared to an 
unmanaged charging strategy in a household fitted with a photovoltaic (PV) system in 
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Sweden. The additional cost savings from vehicle-to-microgrid are small if battery 
degradation costs are taken in consideration [8]. Chen et al. study energy use optimization 
strategies without and with V2H for a household with a PV system in Shanghai, taking into 
consideration time-varying electricity tariffs with high and low tariff time windows. They 
show that economic benefits can be achieved for the household in all use cases. PV tariff, 
weather, and EV driving behavior are the key influencing factors here [9]. Erdinc et al. 
compare bidirectional charging and unmanaged charging for both V2H and V2G use cases 
for a household with a small PV system in Portugal, again using time-varying tariffs. In their 
calculations, they obtain a cost reduction potential of up to 48% by limiting power at peak 
times and up to 63% for time-variable tariffs by bidirectional charging compared to 
unmanaged charging [10]. Kataoka et al. evaluate the effect of V2H applications on the 
economic and environmental performance of a typical household in Japan. They find that 
V2H can be economically and environmentally more beneficial than SBSs, but results differ 
between commuters and non-commuters. For future work, they suggest further sensitivity 
analysis, e.g. regarding the size of EV battery or EV charge and discharge power [11]. The 
cost-effectiveness of a V2H system in Germany is investigated by Cacilo et al.. Yet, no 
economic evaluation of the vehicle's bidirectional capability, only smart charging, is 
performed [12]. Keiner et al. analyze smart homes for an average German single-family 
household including heat pumps (HPs), thermal energy storage systems, SBSs and EVs and 
find that V2H can assume the role of an SBS [13]. However, they largely focus on different 
thermal energy storages scenarios and not different EV charging strategies. The above-
mentioned studies model fixed charging and discharging efficiencies and thus neglect 
energy losses resulting from low-powered, ineffective charging and discharging processes 
in V2H use cases [14]. Further, there is a lack of in-depth research in the literature 
investigating the influence of different household component set-ups on cost reduction 
potentials through the use of smart or bidirectional charging EVs. 
Regarding V2G use cases, there are numerous papers that deal with the revenue potentials 
of EVs participating in the spot market [15]. Smart charging optimized by electricity prices 
can reduce charging costs [16], [17] and bidirectional charging can further reduce these 
costs or even generate revenues [18]. None of the studies mentioned deal with V2H use 
cases complementing arbitrage trading in spot markets. Since arbitrage trading often 
results in lots of operating hours (OHs) and equivalent full cycles (EFCs) of the battery [19], 
the temporary replacement by V2H use cases could reduce the battery ageing effect. 
In this paper, we address the aforementioned research gaps by modeling V2H use cases 
exclusively with and without varying charging and discharging efficiencies. This novel 
evaluation of more realistic modeling of V2H as mixed-integer linear programming (MILP) 
with varying efficiencies versus modeling of V2H as linear programming (LP) with fixed 
efficiencies is necessary to assess whether MILP with varying efficiencies is beneficial or even 
necessary for V2H analyses. For this purpose, an optimization model is developed that 
optimizes the electric power flows of a household with the objective of minimizing 
electricity costs while taking technical restrictions into account. Three different charging 
strategies are compared regarding household energy flows: an unmanaged charging 
strategy, a smart charging strategy and a bidirectional charging strategy. The V2H revenue 
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potentials are shown based on the influencing factors of PV size and PV feed-in tariff, 
household size, household components, EV size, maximum charging power and maximum 
operating hours. Finally, we model a combined application of V2H and V2G arbitrage 
trading to show differences and benefits on the electricity costs of a household. This 
combined, novel modeling of V2H and V2G can realistically combine the seasonally 
different revenue opportunities of the use cases and shows that a separate modeling of a 
V2H or V2G use case can underestimate the revenue opportunities. The investigations are 
embedded in the project ‘Bidirectional charging management’ (BCM) that analyzes the 
technical, economic, and regulatory issues of bidirectional charging [5]. 

2. Methodology 
The methodological approach for investigating V2H use cases of bidirectional EVs is divided 
into two parts: first, we present the optimization model for considering V2H cases 
exclusively. Then, the combined modeling of V2H and V2G is outlined. 
We developed an optimization model in order to assess revenue potential efficiently and 
accurately in the area of V2H applications. The model determines the best possible charging 
strategy for one or multiple EVs connected via a grid connection point (GCP) with multiple 
optional other components. This approach allows a wide range of different analyses, 
including V2H, V2G and V2B use cases. Figure 1 shows a schematic of the model structure. 
As displayed, the model structure eFlame (electric Flexibility assessment modeling 
environment) itself consists of two sub-models. Firstly, the household profile generator, 
where the electrical and thermal consumption of a specific household are modeled based 
on parameterization of the household and user behavior, modeling as well appropriate EV 
driving profiles [20]. Secondly, the optimization model ResOpt (Residential Optimizer) 
formulates the objective function and constraints of variable defined components. 
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Figure 1:  Schematic representation of the developed optimization model for use cases of 

bidirectional charging 

The model ResOpt comprises several decision variables, the values of which are set for each 
time step in the course of the optimization: SBS charging 𝑃ௌ஻ௌ,௖ and discharging 𝑃ௌ஻ௌ,ௗ, PV 
curtailment 𝑃௉௏,௖௨௥௧ , HP demand 𝑃ு௉,௘௟ , EV charging 𝑃ா௏,௖ , discharging 𝑃ா௏,ௗ and standby 
losses 𝑃ா௏,௟,௦ as well as power from grid 𝑃 ஼௉,௜௡ and power to grid 𝑃 ஼௉,௢௨௧ . For the combined 
modeling of V2H and V2G use cases (Section 2.2), we integrate the decision 
variables 𝑃 ஼௉,௜௡,௩ଶ௚ and 𝑃 ஼௉,௢௨௧,௩ଶ௚ that represent power from and to the grid that is 
additionally constrained. A fixed thermal 𝑃ுு,௧௛ and electrical 𝑃ுு,௘௟ household demand is 
provided as well as the fixed PV generation 𝑃௉௏ . 

2.1. Modelling of V2H applications with fixed and varying efficiencies 

The objective of V2H optimization is to minimize the household’s electricity costs, which is 
expressed in the objective function in Equation 1. The German household’s electricity costs 
to be minimized consist of the purchase costs 𝑝௘௟,௕௨௬ multiplied by the purchased 
power 𝑃 ஼௉,௜௡ minus the feed-in tariff 𝑝௘௟,ୱୣ୪୪ multiplied by the power 𝑃 ஼௉,௢௨௧ , which is fed 
into the grid if an electricity generator is present, over all time steps t. 

𝑚𝑖𝑛 ൭ ෍ൣ𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ൧

்

௧ୀଵ

൱ (1)

Relevant constrains are implemented for the household’s grid connection point, the EV and 
other optional components. We refrain from a detailed description of the constraints for 
optional components such as SBS or HP at this point. Most importantly, the power fed into 
the grid or supplied from the grid must equal the sum of power generated and consumed 
within the boundaries of the system at any time:  



Publications of the Author 

113 

𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ൌ 𝑃ுு,௘௟ሺ𝑡ሻ ൅ 𝑃ு௉,௘௟ሺ𝑡ሻ െ 𝑃௉௏ሺ𝑡ሻ ൅ 𝑃௉௏,௖௨௥௧ሺ𝑡ሻ 
൅𝑃ௌ஻ௌ,௖ሺ𝑡ሻ െ 𝑃ௌ஻ௌ,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௟,௦௧ሺ𝑡ሻ (2)

Standby losses 𝑃ா௏,௟,௦௧ሺ𝑡ሻ represent constant losses of the inverter and EV 𝑃ா௏,௟,௖௢௡௦௧,௦௧, which 
occur when the EV is connected 𝐶௖௢௡௡௘௖௧௘ௗሺ𝑡ሻ at the household’s charging point (electric 
vehicle supply equipment, EVSE) and is neither charging 𝑏ா௏,௖ሺ𝑡ሻ nor discharging 𝑏ா௏,ௗሺ𝑡ሻ.  

𝑃ா௏,௟,௦௧ሺ𝑡ሻ ൌ 𝑃ா௏,௟,௖௢௡௦௧,௦௧ ∙ ሾ𝐶௖௢௡௡௘௖௧௘ௗሺ𝑡ሻ െ 𝑏ா௏,௖ሺ𝑡ሻ െ 𝑏ா௏,ௗሺ𝑡ሻሿ (3)

To account for such losses, the connection status 𝐶௖௢௡௡௘௖௧௘ௗ(t) (a time series which is 1 if the 
EV is connected and 0 if it is not connected) and the discrete boolean variables 𝑏ா௏,௖ (1 if 
charging, otherwise 0) and 𝑏ா௏,ௗ (equals 1 if discharging, else 0) are used. Thus, standby 
losses can only be included for MILP.  
Another relevant constraint concerns the electric energy stored in an EV at time 𝑡, which is 
determined by Equation 4.  

      𝐸ா௏ሺ𝑡ሻ ൌ  𝐸ா௏ሺ𝑡 െ 1ሻ ൅ ሾ𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,௟,௖ሺ𝑡ሻሿ ∙ ∆𝑡 ൅ 𝐸ா௏,௣௨௕,௖ሺ𝑡ሻ 
െ𝐸ா௏,ௗ௥௜௩௘ሺ𝑡ሻ െ ሾ𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௟,ௗሺ𝑡ሻሿ ∙ ∆𝑡 െ 𝑃ா௏,௟,௖௢௡௦௧,௖/ௗ ∙ ሾ𝑏ா௏,௖ሺ𝑡ሻ ൅ 𝑏ா௏,ௗሺ𝑡ሻሿ ∙ ∆𝑡

(4)

Here, energy losses affecting the EV’s state of charge (SoC) occur during charging and 
discharging. Again, to maintain linear programming (LP) optimization, constant 
losses 𝑃ா௏,௟,௖௢௡௦௧,௖/ௗ would have to be neglected and charging 𝑃ா௏,௟,௖ and discharging 𝑃ா௏,௟,ௗ 
losses modeled in proportion to charging and discharging power. As the EVSE in the case 
of bidirectional charging contains an additional inverter converting alternating current (AC) 
into direct current (DC) if charging and DC to AC if discharging, EVSE losses for bidirectional 
charging are modeled as variable over time in our work.  
For this purpose, we draw on mathematical descriptions of the inverter efficiency deduced 
in [21], where inverter power losses are expressed as a quadratic function of the 
corresponding output power. By rearranging the respective equations as described in 
Appendix A, the inverter losses can be stated as functions of the AC-side power for both 
charging and discharging processes. As implementation of these non-linear loss functions 
directly resulted in unacceptably long computation times, we adopted a linear 
approximation approach. We linearized the power losses equations for charging and 
discharging by linear regression (method of least squares) as suggested by [22] in a similar 
context, which results in a linear system of equations:   

     𝑃ா௏,௟,௖ሺ𝑡ሻ ൌ 𝑚௖ ∙ 𝑃ா௏,௖ሺ𝑡ሻ ൅ 𝑛௖ ∙ 𝑏ா௏,௖ሺ𝑡ሻ (5)
      𝑃ா௏,௟,ௗሺ𝑡ሻ ൌ 𝑚ௗ ∙ 𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑛ௗ ∙ 𝑏ா௏,ௗሺ𝑡ሻ (6)

Here, 𝑚௖/ௗ is the gradient of the function and 𝑛௖/ௗ represents the minimum losses at zero 
power.  
By dividing the possible range of charging and discharging power into a number of equally 
large intervals and applying the method of least squares to each interval individually, the 
residual sum of squares can be reduced to improve accuracy. Hence, we conducted 
preliminary simulations to determine a suitable number of intervals for sufficiently high 
accuracy with acceptable computation time. The resulting deviations obtained when 
linearizing power losses for zero, one, or two intervals are presented in Table 1 (sum of 
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constant EV losses and varying inverter losses), where zero losses correspond to constant 
losses. Since respective variations of efficiency are small in any case apart from the 
simulations with zero intervals, we implemented linearized functions of inverter power 
losses for both charging and discharging for a single interval ൣ0; 𝑃ா௏,௖/ௗ,௠௔௫൧ based on real 
inverter data to limit the complexity of the optimization problem. 
Table 1:  Deviation between real and linearized losses and efficiencies for a 11 kW EVSE  

 Charging process Discharging process 
Number of 

intervals  0 (LP) 1 2 0 (LP) 1 2 

Maximum 
deviation of 

power 
losses 

250 W 42 W 10 W 250 W 55 W 14 W 

Additional constraints are related to the EV’s SOC. If an EV is connected at the household’s 
EVSE, the minimum amount of energy, represented by 𝑆𝑜𝐶௦௔௙௘ , must be reached at all 
times, which is ensured by Equation 7. Here, 𝐸ா௏,௠௔௫ is the maximum amount of energy to 
be stored in the EV (i.e. the battery’s capacity). Equation 8 guarantees that at the time of 
departure, which must be set when arriving at the household, a fixed minimum amount of 
energy, represented by 𝑆𝑜𝐶ௗ௘௣, is stored in the EV’s battery. To do so, 𝑏ா௏,ௗ௘௣ is introduced, 
which is 1 if 𝑡 is the time of departure. Otherwise, 𝑏ா௏,ௗ௘௣ equals 0.  

     𝐸ா௏ሺ𝑡ሻ ൒ 𝑆𝑜𝐶௦௔௙௘ ∙ 𝐸ா௏,௠௔௫ ∙ 𝐶௖௢௡௡௘௖௧௘ௗሺtሻ (7)
     𝐸ா௏ሺ𝑡ሻ ൒ 𝑆𝑜𝐶ௗ௘௣ ∙ 𝐸ா௏,௠௔௫ ∙ 𝑏ா௏,ௗ௘௣ሺ𝑡ሻ (8)

Optional features of the model are the limitation of the EV battery’s number of EFCs or the 
EV’s OHs per day, which can be used to reduce battery aging or respectively the wear of 
the EV’s power electronics. Equation 9 limits the maximum EFCs (𝐸𝐹𝐶௠௔௫) and Equation 10 
the average maximum OHs per day (OH௠௔௫,ௗ௔௬). Since OHs are related to the boolean 
variables 𝑏ா௏,௖ and 𝑏ா௏,ௗ , Equation 10 can only be used for MILP. 

𝐸𝐹𝐶௠௔௫ ൒
∑ ሺሾ𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,௟,௖ሺ𝑡ሻሿ ∙ ∆𝑡 ൅ 𝐸ா௏,௣௨௕,௖ሺ𝑡ሻሻ்

௧ୀଵ

𝐸ா௏,௠௔௫
 (9)

OH௠௔௫,ௗ௔௬ ൒
∑ ൣ௕ಶೇ,೎ሺ௧ሻା௕ಶೇ,೏ሺ௧ሻ൧೅

೟సభ

்
∙ 24 (10)

2.2. Modelling of combined V2H and V2G applications 

Adding V2G arbitrage trading to the model leads to several adaptions in the objective 
functions and constraints of the optimization problem. The regulatory framework for 
arbitrage trading is not yet defined for bidirectionally chargeable EVs at the European Union 
level [23]. Since power purchased and sold through arbitrage trading by SBS is exempted 
from multiple duties and taxes [24], we assumed this exemption for V2G such that modeled 
V2G prices differ from the normal household prices for purchased and feed-in energy. 
Therefore, the objective function is expanded in Equation 10 by the costs and revenues of 
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the V2G component, considering V2G prices 𝑝௘௟,௕௨௬,௏ଶீሺ𝑡ሻ and 𝑝௘௟,ୱୣ୪୪,௏ଶீሺ𝑡ሻ, and V2G 
power 𝑃 ஼௉,𝑖𝑛,𝑣2𝑔ሺ𝑡ሻ and 𝑃 ஼௉,𝑜𝑢𝑡,𝑣2𝑔ሺ𝑡ሻ. 

𝑚𝑖𝑛 ൭ ෍ ቈ
𝑝௘௟,௕௨௬ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑝௘௟,ୱୣ୪୪ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ ൅

𝑝௘௟,௕௨௬,௩ଶ௚ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ െ 𝑝௘௟,ୱୣ୪୪,௩ଶ௚ሺ𝑡ሻ ⋅ 𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ቉

்

௧ୀଵ

 ൱ (10)

The energy purchased 𝑃௏ଶீ,௜௡ሺ𝑡ሻ and feed-in 𝑃௏ଶீ,௢௨௧ሺ𝑡ሻ is added to the power balance of the 
household grid connection point in Equation 11. 

𝑃 ஼௉,௜௡ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧ሺ𝑡ሻ  ൅ 𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ െ 𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ ൌ 𝑃ுு,௘௟ሺ𝑡ሻ ൅ 𝑃ு௉,௘௟ሺ𝑡ሻ െ 𝑃௉௏ሺ𝑡ሻ 
൅𝑃௉௏,௖௨௥௧ሺ𝑡ሻ ൅ 𝑃ௌ௏ௌ,௖ሺ𝑡ሻ െ 𝑃ௌ஻ௌ,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௖ሺ𝑡ሻ െ 𝑃ா௏,ௗሺ𝑡ሻ ൅ 𝑃ா௏,௟,௦௧ሺ𝑡ሻ  (11)

In contrast to a SBS, bidirectionally chargeable EVs consume electricity by driving and thus 
charging and discharging energy do not balance. Since V2G electricity prices will only be 
exempted from multiple duties and taxes if the same amount of purchased energy is fed 
back into the grid at a different time, we add constraints to the V2G powers in Equation 12. 
The purchased energy 𝑠𝑢𝑚൫ ∑ ൣ𝑃𝐺𝐶𝑃,𝑖𝑛,𝑣2𝑔ሺ𝑡ሻ൧்

௧ୀଵ ൯ equals the fed-in 
energy 𝑠𝑢𝑚൫ ∑ ൣ𝑃𝐺𝐶𝑃,𝑜𝑢𝑡,𝑣2𝑔ሺ𝑡ሻ൧்

௧ୀଵ ൯ divided by the maximum V2G roundtrip 
efficiency 𝜂ா௏,௥௢௨௡ௗ௧௥௜௣,௠௔௫ , because losses of a V2G roundtrip are included in the 
exemption from additional electricity charges [24]. The roundtrip efficiency refers to the 
charging and discharging efficiency of the bidirectionally chargeable electric vehicle (from 
AC to AC). The timeframe of the power equation t=x to y can be set variable depending on 
the regulatory framework of the considered household. 

൫ ∑ ൣ𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ൧௬
௧ୀ୶ ൯ = ൫ ∑ ൣ𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ ൧௬

௧ୀ୶ ൯/𝜂ா௏,௥௢௨௡ௗ௧௥௜௣,௠௔௫ (12)

To ensure that the purchased and fed-in energy is associated with the EV and not a different 
component of the household, we add Equations 13 and 14. Purchased energy 𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ 
has to be lower than charged electricity 𝑃ா௏,௖ሺ𝑡ሻ. In addition, fed-in energy 𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ 
must be lower than discharging of the EV 𝑃ா௏,ௗሺ𝑡ሻ. 

𝑃 ஼௉,௜௡,௩ଶ௚ሺ𝑡ሻ <= 𝑃ா௏,௖ሺ𝑡ሻ (13)
𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ <= 𝑃ா௏,ௗሺ𝑡ሻ (14)

Finally, considering a household with PV generation leads to possibilities of misuse when 
V2G energy is exempted from duties and taxes. In such a case, PV energy could first be 
charged into the EV and later be discharged into the grid as a V2G process (duties and 
taxes exemptions). As the EV is allowed to purchase the corresponding amount of energy 
described in Equation 12 as a V2G process, such an EV could purchase energy at a different 
time which would replace purchases of energy at household electricity prices. In this way, 
as much PV energy as desired can be fed through the EV into the grid in order to purchase 
the corresponding amount of energy at much lower prices at a different time. To prevent 
this effect, only V2H or V2G may be performed within a set period. Equations 15 and 16 
constrain the optimization problem for a V2G time frame. If boolean variable 𝑏௏ଶீ is set 
to 0 for a time interval t = x to y, V2G is not allowed. If 𝑏௏ଶீ is set to 1, discharged energy 
of the EV must be fed to the grid and is not allowed to be fed to the household. Thus, V2H 
self-consumption optimization is not allowed for the respective time interval. 

𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ <= 𝑏ா௏,௩ଶ௚ ∙ 𝑃ா௏,ௗ,௠௔௫ (15)
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𝑃ா௏,ௗሺ𝑡ሻ ൑  𝑃 ஼௉,௢௨௧,௩ଶ௚ሺ𝑡ሻ ൅ ሺ1 െ 𝑏ா௏,௩ଶ௚) ∙ 𝑃ா௏,ௗ,௠௔௫ (16)
with 𝑏ா௏,௩ଶ௚ ൌ ሾ0,1ሿ for time interval t = x to y  

3. Results 
Every scenario study includes three EV operation strategies: unmanaged charging, smart 
charging, and bidirectional charging. Revenues of a bidirectional or smart charging strategy 
are always compared to the reference of unmanaged charging. 

3.1. Input data and set-up of average household scenario 

To evaluate the economic viability of the use case ‘self-consumption optimization’ by 
bidirectional electric vehicles, a medium-sized single-family house (150 m² living space) is 
defined, which is subsequently referred to as the base scenario. Table 1 shows the main 
characteristics of the household and potential additional components. These optional 
components include a PV system, an EV, a SBS and a HP. Table 2 shows the 
parameterization of these components, additional input for their modeling, and the 
associated references. Prices and profiles are based on data from the year 2018. 
Concerning the household profiles, Appendix B shows that 20 discrete profiles are sufficient 
to represent average revenues of a household class. Therefore, 20 profiles are used below, 
having on average the characteristics shown in Table 2. We focus on EVs that are used by 
non-commuters, since approximately 75% of EVs in Germany are non-commuting EVs [25], 
but show the revenues for a commuting EV as a sensitivity in chapter 3.2. 
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Table 2:  Relevant parameterization of elements connected to the household 

Element Parameter Value Additional Input 
    

Household 
∑ 𝑃ுு,௘௟  
∑ 𝑃ுு,௧௛  

3800 kWh (yearly)* 
9000 kWh (yearly)* 

Load profile* 
Load profile* 

Grid 𝑝௘௟,௕௨௬ 29.9 ct/kWh [26]  

PV system 
𝑃௉௏,௠௔௫ 

∑ 𝑃௉௏  
𝑝௘௟,ୱୣ୪୪ 

5.5 kWp*** 
6200 kWh (yearly) 
11.6 ct/kWh [27] 

Generation 
profile**** based on 

[28] 

EV 

𝑃ா௏,௖,௠௔௫ 
𝑃ா௏,ௗ,௠௔௫ 
𝐸ா௏,௠௔௫ 
𝜂ா௏,௥௢௨௡ௗ௧௥௜௣,௠௔௫  
Annual mileage 
EV consumption  
(including charge losses) 

11 kW** 
11 kW** 

60 kWh***** 
85%** 

10,000 km* 
22 kWh/100 km** 

 

Driving profile* 

EV user 
User type 

𝑆𝑜𝐶௦௔௙௘ 
𝑆𝑜𝐶ௗ௘௣ 

Non-Commuter 
20%** 
70%** 

 

SBS 

𝑃ௌ஻ௌ,௖,௠௔௫ 
𝑃ௌ஻ௌ,ௗ,௠௔௫ 
𝐸ௌ஻ௌ,௠௔௫ 
𝜂ௌ஻ௌ,௥௢௨௡ௗ௧௥௜௣ 

2.8 kW 
2.8 kW 

5.5 kWh****** 
88% 

 

*Average load value, annual driving, load profile and driving profile are output from 
household profile generator [20] and provided in supplementary material 
**Based on specifications of BCM project [5] 
***Calculated by usable roof space multiplied by specific energy 0.15 kWp/m² [31] 
****Provided in supplementary material 
*****E.g. Volkswagen ID.3 Pro [32] / Opel Ampera-e [33] 
****** Capacity and power of SBS based on PV power [34] 

3.2. Revenues for V2H operation 

Various sensitivity calculations are evaluated to assess the benefits of bidirectionally 
chargeable EVs for household owners. Figure 2 compares the revenues and PV self-
consumption of smart and bidirectional charging strategies for the base scenario to the 
linear base scenario (LP optimization with constant efficiencies), the commuter EV scenario 
‘COM’ and scenarios with the additional components HP and SBS. 
Additional revenues for the base scenario are around 210 €/a for a smart charging EV and 
around 310 €/a for a bidirectionally chargeable EV. These revenues represent cost 
reductions of 25% to 36% compared to a household with an unmanaged charging EV. Self-
consumption of electricity from the PV system increases on average from 23% for 
unmanaged charging to 45% for smart charging and 65% for a bidirectionally chargeable 
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EV. This improved use of cheaper PV energy rather than energy from the grid leads to 
higher revenues and a higher degree of autarky. 
The ‘Base linear’ scenario shows a similar PV self-consumption increase, but significantly 
higher revenues for both smart and bidirectional charging compared to the base scenario. 
Since the household power demand and the PV power are both below 1 kW in 90% 
respectively 73% of all timesteps, where a varying inverter efficiency would drop 
significantly, the fixed efficiency of the EV’s charging and discharging leads to a higher 
utilization with much lower losses. A more detailed description of the resulting differences 
in charging and discharging behaviour between fixed and varying efficiency is provided in 
Appendix C. PV self-consumption in the linear base scenario is slightly lower than in the 
non-linear base scenario due to lower charging and discharging losses. The diverging 
revenues of around 100 €/a for a bidirectionally chargeable EV compared to the base 
scenario (divergence of 32%) show that for our considered use case, it is not valid to model 
a LP with fixed efficiencies. Therefore, all of the following results are based on a MILP 
optimization with a varying efficiency for charging and discharging of the EV. 
In the commuter EV scenario ‘COM’, we model a commuter EV instead of a non-commuter 
EV in the household. The average annual mileage increases from 10,000 km/a 
to 20,000 km/a and the average availability of the EVs at the charging point decreases 
from 91% to 67%. For smart charging EVs, the average commuter EV generates only slightly 
lower revenues compared to the revenues of the smart charging EV in the base scenario. 
The lower availability of the commuter EV is compensated by the higher EV consumption 
that leads to more possibilities of smart charging. In contrast, the bidirectionally chargeable, 
commuting EV generates revenues that are about 100 €/a lower than the non-commuting 
EV’s revenues. The lower availability of the commuting EV during the day leads to fewer 
opportunities of charging PV electricity. Therefore, the PV electricity is used for 
consumption of the EV, but not for discharging to the household. 
Adding additional smart components to the household leads to lower revenues for 
managed EV operation strategies, since these components also use the cheaper PV energy 
to optimize the household’s electricity costs. In these scenarios, the reference case of 
unmanaged EV charging is already much more efficient than in the base scenario leading 
to a lower revenue potential of bidirectionally chargeable EVs. In scenario HP, the heat 
pump can be operated flexibly such that part of the low-cost PV electricity is used for heat 
generation. In particular, the battery storage in the SBS scenario acts similarly to the 
bidirectional electric vehicle, such that the revenue potential there is even more limited. The 
combination of these additional smart components in the household then provides the 
lowest revenue potentials. The impact on revenue potential is in turn linked to the level of 
self-consumption of the solar energy for the different EV operating strategies. With 
additional smart components in the household, a higher self-consumption is already 
apparent with unmanaged charging of the EV, such that the possible increase is limited. 
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Figure 2:  Revenues and PV self-consumption for base MILP scenario in comparison to 

base linear scenario, commuter scenario COM and added components scenarios 
HP, SBS, and HP SBS 

Other relevant factors potentially influencing revenue potential include: 
 EV battery capacity 
 Maximum power of EVSE 
 PV peak power  
 PV feed-in tariff 
 Household size 
 Maximum OHs of EV and EVSE 

Figure 3 shows the effect of parameter variation on the revenue potential for smartly and 
bidirectionally chargeable EVs. The use case of self-consumption optimization is highly 
sensitive. In particular, the design of the PV system has a strong impact on the revenues. A 
large PV system with a low feed-in tariff generates significantly higher revenues through 
both smart and bidirectional charging of an electric vehicle. The parameterization of the EV 
and the EVSE has much less effect. In this case, larger designs cause no or only small 
increases in revenue. As for the EV, the selected capacity in the base scenario is sufficient 
to exploit the major part of revenue potentials for the fixed household and PV configuration. 
The small effects of the EVSE are related to the configuration of the household in the base 
configuration (maximum PV feed-in 4.5 kW, maximum demand household 7.7 kW). An EVSE 
of 22 kW instead of 11 kW has no effect on revenues. In contrast, the household size has a 
large impact on the revenue potential for bidirectionally chargeable EVs, since a larger 
household with higher demand power enables more efficient discharging of the EV.  
Additionally, we evaluate a limitation of the resulting OHs of the bidirectionally chargeable 
EV reducing the impact on battery ageing and the additional load on power electronics. 
OHs of the bidirectionally chargeable EV in the base scenario without limitation are 
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around 6.9 h/d compared to 0.7 h/d for the unmanaged charging EV. EFCs are less affected 
and increase only by 18 EFC/a from 34 to 52 EFC/a for the bidirectionally chargeable EV. 
Since OHs are much more affected than EFC, we present constrained OHs per day to show 
the effect of limited usage on revenues. A reduction of OHs by 64% to 2.5 h/d results in a 
moderate revenue reduction of 19%. EFCs of the battery then reduce from 52 EFC/a 
to 41 EFC/a. 

 
Figure 3:  Parameters influencing revenues of V2H use cases for smart and bidirectional 

charging EVs 

Lastly, for a maximum revenue estimate, we examine a household that has the best suited 
configuration of each of the analyzed parameters. An average annual household demand 
of 5900 kWh is combined with a 9.5 kWp PV system, which receives a feed-in tariff 
of 3.6 ct/kWh, and an EV with a battery capacity of 100 kWh. This household set-up receives 
revenues of 835 €/a for a bidirectionally chargeable EV and revenues of 390 €/a for a smart 
charging EV, showing the maximum potential revenues for the use case self-consumption 
optimization. 

3.3. Revenues for combined V2H and V2G operation 

Since self-consumption optimization achieves more profits when more PV energy is 
generated, V2H is more useful in summer times than in winter times. To benefit from the 
bidirectionally chargeable EV in the best possible way, we model a combined use of V2H 
and V2G arbitrage trading. For explained regulatory reasons, the EV is not allowed to 
optimize self-consumption and arbitrage trading at the same time. Instead, the optimizer 
can switch the use case of the bidirectionally chargeable EV daily. 
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For arbitrage trading, we use German day-ahead market prices from 2018 [35] matching 
the parameterization of the other components. Duties and taxes for purchased energy are 
not added to the electricity prices, because the regulatory framework for bidirectionally 
chargeable EVs is not yet fully defined. The revenues shown are thus an upper estimation. 
Table 3 compares potential revenue of a combined optimization of V2H and V2G with and 
without restricted OHs to the revenues of the base V2H scenario. Revenue potentials of 
unrestricted, combined V2H and V2G increase by 220 €/a (plus 71%) compared to the base 
scenario, while EFCs increase by 270 EFCs/a and OHs by 5.5 OHs/d, meaning a significant 
additional load for the EV’s battery. Limiting the maximum OHs to 10 h/d barely reduces 
revenues. In this case, EFCs are reduced by 70 EFCs/a relative to the unconstrained scenario, 
which is still an increase of 200 EFCs/a compared to the base V2H scenario. Limiting the 
maximum OHs to 5 h/d leads to revenues, which are 100 €/a higher than for the base 
scenario, yet 120 € lower than for the unrestricted combined scenario. Here, the EV usage 
is reduced significantly (only 70 EFCs/a more than the base scenario). 
Table 3:  Revenues, operation hours and EFCs for bidirectional operating strategy of the 

EV 

Scenario V2H base V2H base 
+ V2G 

V2H base + 
V2G 

max. 10 
OHs/day 

V2H base + 
V2G 

max. 5 
OHs/day 

Average 
revenues  

in €/a  

Total 
V2H 
V2G 

310 
310 
- 

530 
300 
230 

510 
300 
210 

410 
270 
140 

EFCs/a  50 320 250 130 
OHs/d  6.9 12.5 10 5 

The generally increased revenues show that V2G arbitrage trading represents a very good 
complement to V2H use cases. To further analyze the combination of these use cases, 
Figure 4 shows the share of daily usage of V2H and V2G for the evaluated 20 households 
in the restricted optimization by 5 OHs/day as well as the weekly standard deviation of 
electricity prices and the weekly PV generation. The usage of V2H correlates to the PV 
generation that is the highest from April to September. In contrast, the daily standard 
deviation of day-ahead prices does not vary on a seasonal basis, meaning that daily 
arbitrage trading is on average equally profitable in summer and winter times. Therefore, 
V2G complements V2H in winter times. Since Figure 4 shows the OHs restricted 
optimization, there are days on which no V2G and V2H is used, which are days of low 
revenue potential. 
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Figure 4:  Daily share of households using V2H and V2G correlated to weekly standard 

deviation of electricity prices and weekly PV generation 

4. Discussion on results and limitations 
Our results show that smartly and bidirectionally chargeable EVs can reduce a household’s 
electricity costs significantly by optimizing the self-consumption of PV energy. Profits of the 
V2H use case are highly sensitive to components of the household and their parameter 
variations. While the design of the EV and EVSE has a small impact on the revenues of the 
use case, the higher the maximum PV power and the lower the PV feed-in tariff, the more 
profitable V2H is. Our simulations show revenues of about 300 €/a for a typical German 
household with varying efficiencies (MILP). Potential cost reductions for households with 
bidirectionally chargeable EVs in a scenario best fitted for maximum revenues go up 
to 830 €/a, while households with smart charging EVs reach a maximum cost reduction 
of 390 €/a. Furthermore, we show that commuting EVs are not well suited for bidirectional 
self-consumption optimization but should rather only use smart charging. The average 
revenues indicated in this paper are slightly higher than revenues in the literature relating 
to V2H [8], [11], [13]. However, we show that revenues related to smart and bidirectional 
charging EVs are strongly sensitive to parameterization of household components. 
By comparing results modeled as MILP with varying efficiencies to modeling with fixed 
efficiencies (LP), we found that it is highly important to model V2H use cases for 
bidirectional charging as MILP with varying charging and discharging efficiencies. Since for 
V2H applications only low charging and discharging powers are needed due to low 
household power demand and low PV system generation power, in reality low charging 
and discharging efficiencies occur at many times. Thus, modeling with a fixed efficiency (LP) 
led to revenues that are over 30% higher than the more realistic results of MILP, which is 
why we recommend to model V2H use cases exclusively with varying efficiencies. 
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All revenues presented are based on the German regulatory framework. However, through 
the sensitivity analyses, detailed conclusions can be drawn about V2H revenue potentials in 
other countries. The sensitivity analyses show that the difference between household 
electricity price and feed-in tariff is the most important influencing factor. According to 
Figure 3, a higher feed-in tariff of almost 20 ct/kWh results in 60% lower revenues, i.e. 
approx. 120 €/a for an average household. In a country with a price spread between 
household electricity price and feed-in tariff of 10 ct/kWh, these strongly reduced revenues 
can be expected. Similar conclusions can be drawn with regard to the country-specific 
revenues for V2G applications, which we discuss in detail in [19]. In this way, the detailed 
findings of the sensitivity analyses can be transferred very well to the conditions in other 
countries. 
With the novel combined modeling of the use cases self-consumption optimization (V2H) 
and arbitrage trading (V2G), we show that the two use cases are highly complementary in 
terms of potential revenues. Since the V2H use case is strongly dependent on the PV 
generation, cost reduction options are high during the summer months. V2G arbitrage 
trading, where revenues do not alter significantly over the course of a year, can thus make 
greater use of the bidirectionally chargeable EV in the wintertime, resulting in an increased 
utilization of the vehicle. Dependent on the permitted usage of the EV, revenues of the base 
scenario increase from a maximum of 220 €/a to 530 €/a. As this increase shows, our more 
complex yet more realistic modeling highlights the great economic potential of combined 
V2H and V2G. As implementing multiple use cases at a time is likely to become common 
for EV users in the near future, our results show the future perspective of such multi-use-
implementation for greater flexibility and higher revenues. 
OHs and EFCs of the EV’s battery increase for V2H use cases, but far less than for arbitrage 
trading [19]. We show that limited use of the EV of 2.5 h/d still generates high V2H revenues, 
which are only 19% below the unconstrained revenues. Comparing these limited OHs of 
around 900 h/a and EFCs of 41 EFC/a to currently warrantied lifetime values for battery and 
power electronics in automotive applications, which are around 10,000 OHs [36] and up 
to 5,000 EFCs [37], [38], additional OHs are more critical than additional EFCs, but V2H is 
still suitable as a use case for EVs. In this context, we want to emphasize the trade-off that 
although V2G arbitrage trading can generate significant additional revenues, it also leads 
to significant additional OHs and EFCs. 
For the arbitrage trading, modeled electricity prices for selling and purchasing energy are 
equal. Depending on the regulatory framework there might be some additional duties and 
taxes for purchased energy, making the use case less profitable. Therefore, the presented 
revenues for arbitrage trading in the day-ahead market are to be interpreted as an upper 
bound of revenues. For a more detailed revenue estimation of arbitrage trading in 
European electricity markets, we refer to Kern et al. [19]. 
Finally, an economic evaluation of V2H and V2G use cases must include the additional 
investment costs of a bidirectional EVSE. To bring the presented revenue potentials into 
perspective for both present and future circumstances, we roughly estimate the economic 
viability of V2H by including additional annual costs via the annuity method [39]. Currently, 



Publications of the Author 

124 

there are only few offers for bidirectional EVSEs suitable for on low-volume production, 
resulting in high investment costs of around €6,000 [40]. The medium-term cost projections 
of experts in the BCM project for such an EVSE are around €2,000 [5]. Assuming an EVSE 
lifetime of 15 years [41], an interest rate of 3.5% [42] and unmanaged charging EVSE costs 
of €599 [43] leads to additional annual costs of the bidirectional EVSE of currently 469 €/a 
and medium term 122 €/a. A comparison with the V2H revenues of the typical German 
household of 310 €/a shows that V2H will most probably not be economical for this 
household at current costs but is likely to become profitable in the medium term. However, 
this is only a rough estimate and other additional costs should also be quantified for a more 
solid prediction, such as the installation costs of the bidirectional EVSE and potential 
additional costs for the bidirectional vehicle. 

5. Conclusions 
Vehicle-to-home (V2H) use cases and a combination of V2H and vehicle-to-grid (V2G) use 
cases can be highly beneficial for electric vehicle (EV) users. We provide a detailed 
description of the modeling and input data, that allows readers to reconstruct the revenues 
for these use cases. The major findings of our study are: 

 Indicated revenues for an average German household are around 310 €/a for 
bidirectional charging and 210 €/a for smart charging compared to an unmanaged 
charging EV, increased to 830 €/a and 390 €/a respectively for a maximum revenue 
estimation. 

 Revenues of V2H use cases should consider varying charging and discharging 
efficiencies in a mixed-integer linear programming, since modeled fixed efficiencies 
in a linear programming led to 30 % higher revenues and an unrealistic 
charging/discharging behavior. 

 Revenues of bidirectionally chargeable EVs are highly case-sensitive depending on 
the composition of a household. The dimensioning of the photovoltaic system and 
the household size are more decisive than the size of the EV.  

 Smart additional components in a household, such as heat pumps and stationary 
battery storages, significantly limit the revenues of a smartly chargeable or 
bidirectionally chargeable EV.  

 V2G arbitrage trading works well with V2H self-consumption optimization because 
arbitrage trading revenues do not depend on the time of the year, while V2H 
primarily generates revenues during the summer. 

 Combined use of V2H and V2G leads to maximum additional revenues of 220 €/a, 
but increases operating hours of the EV by more than 5 h/d and equivalent full 
cycles (EFCs) by as much as 270 EFCs/a. 
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Appendix A 
A key element of the presented model development is the varying efficiency of the charging 
and discharging process depending on the respective power. In the case of bidirectional 
charging, losses are neither constant nor directly proportional to the charging or 
discharging power due to the additional inverter at the charging point. Thus, we describe 
the derivation of the relevant equations for the MILP in detail. According to [21], power 
losses of an inverter 𝑃௟ consist of a constant self-consumption 𝑣௖௢௡௦௧ , voltage losses at 
diodes and transistors 𝑣௟ that are proportional to the output power, and quadratic power-
dependent losses caused by ohmic loss resistances 𝑣௤. As the efficiency of the inverter 𝜂 is 
the ratio of output power 𝑃௢௨௧ to input power 𝑃௜௡, we formulate the following equation: 

𝜂 ൌ  
𝑃௢௨௧

𝑃௜௡
ൌ  

𝑃௢௨௧

𝑃௢௨௧  ൅  𝑃௟
ൌ

𝑃௢௨௧

𝑃௢௨௧ ൅ 𝑣௖௢௡௦௧ ൅ 𝑣௟ ⋅ 𝑃௢௨௧ ൅ 𝑣௤ ⋅ 𝑃௢௨௧
ଶ  (A.1)

We express the efficiency for charging 𝜂௖ and discharging 𝜂ௗ as a function of the AC-side 
power. For charging, AC-power before the inverter is converted into DC-power. Thus, 𝑃௜௡ 
equals 𝑃஺஼,௖ and 𝑃௢௨௧ equals 𝑃஽஼,௖ . We express 𝑃஽஼,௖ as a function of 𝑃஺஼,௖ (Equation A.2) to 
derive Equation A.4. For discharging, directions are reversed, such that 𝑃௜௡ equals 𝑃஽஼,ௗ 
and 𝑃௢௨௧ equals 𝑃஺஼,ௗ resulting in Equation A.3 and A.5. 

𝑃஽஼,௖ ൌ  P஺஼,௖ െ P௟,௖ ൌ  𝑃஺஼,௖ െ ൫ 𝑣௖௢௡௦௧,௖ ൅ 𝑣௟,௖ ⋅ 𝑃஽஼,௖ ൅ 𝑣௤,௖ ⋅ 𝑃஽஼,௖
ଶ ൯ 

 ൌ
െ ൫v୪,ୡ ൅  1൯  ൅ ට൫𝑣௟,௖ ൅ 1൯

ଶ
െ  4 ⋅  𝑣௤,௖  ⋅ ሺ𝑣௖௢௡௦௧,௖  െ  𝑃஺஼,௖ሻ

2 ⋅ 𝑣௤,௖
 

(A.2)

𝑃஽஼,ௗ ൌ  P஺஼,ௗ ൅ P௟,ௗ ൌ  𝑃஺஼,ௗ ൅ ൫ 𝑣௖௢௡௦௧,ௗ ൅ 𝑣௟,ௗ ⋅ 𝑃஽஼,ௗ ൅ 𝑣௤,ௗ ⋅ 𝑃஽஼,ௗ
ଶ ൯ 

ൌ
െ ൫v୪,ୢ െ  1൯  ൅ ට൫𝑣௟,ௗ െ 1൯

ଶ
െ  4 ⋅  𝑣௤,ௗ  ⋅ ሺ𝑣௖௢௡௦௧,ௗ ൅ 𝑃஺஼,ௗሻ

2 ⋅ 𝑣௤,ௗ
 

(A.3)
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𝜂௖ ൌ  
𝑃஽஼,௖

𝑃஺஼,௖
ൌ

െ ൫v୪,ୡ ൅  1൯  ൅ ට൫𝑣௟,௖ ൅ 1൯
ଶ

െ 4 ⋅ 𝑣௤,௖ ⋅ ሺ𝑣௖௢௡௦௧,௖ െ 𝑃஺஼,௖ሻ

2 ⋅ 𝑣௤,௖ ⋅ P஺஼,௖
 (A.4)

𝜂ௗ ൌ  
𝑃஺஼,ௗ

𝑃஽஼,ௗ
ൌ

2 ⋅ 𝑣௤,ௗ ⋅ P஺஼,ௗ

െ ൫v୪,ୢ െ  1൯  ൅ ට൫𝑣௟,ௗ െ 1൯
ଶ

െ 4 ⋅ 𝑣௤,ௗ ⋅ ሺ𝑣௖௢௡௦௧,ௗ ൅ 𝑃஺஼,ௗሻ

 (A.5)

Based on these equations, we express the inverter power losses of charging and discharging 
as a function of the respective AC-power (Equation A.6 and A.7). These equations constitute 
the basis for the linearization described for implementation in this work. 

𝑃௟,௖ ൌ  P஺஼,௖ െ P஽஼,௖ ൌ  𝑃஺஼,௖ െ
െ ൫v୪,ୡ ൅ 1൯ ൅ ට൫𝑣௟,௖ ൅ 1൯

ଶ
െ 4 ⋅ 𝑣௤,௖ ⋅ ሺ𝑣௖௢௡௦௧,௖  െ  𝑃஺஼,௖ሻ

2 ⋅ 𝑣௤,௖
 (A.6)

𝑃௟,ௗ ൌ  P஽஼,ௗ െ P஺஼,ௗ ൌ  
െ ൫v୪,ୢ െ  1൯  ൅ ට൫𝑣௟,ௗ െ 1൯

ଶ
െ 4 ⋅ 𝑣௤,ௗ ⋅ ൫𝑣௖௢௡௦௧,ௗ ൅ 𝑃஺஼,ௗ൯

2 ⋅ 𝑣௤,ௗ
െ P஺஼,ௗ (A.7)

Appendix B 
To determine the number of profiles for a representative mapping of a household group, 
a number of profiles is randomly drawn from a maximum of 150 profiles. This is done 10,000 
times per number of profiles. The calculated mean values of these 10,000 draws are 
compared to the mean value of the 150 profiles and the maximum deviation of these mean 
values is displayed in Figure B1. The deviations of the mean revenues are a maximum of 5% 
for 20 profiles, which is tolerated as a maximum deviation. Therefore, in the following, all 
studies are based on 20 randomly drawn, discrete household profiles. 

 
Figure B1:  Relative maximum deviation of mean revenues in dependance on number of 

modeled profiles 
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Appendix C 
Figure C1 shows the power flows at the GCP for a typical summer day. Power in the direction 
of the GCP is shown as positive. This includes EV discharging, PV generation and grid 
supply. Power flowing away from the GCP is shown as negative. This includes EV charging, 
household demand and grid feed-in (electricity supplied to the grid). For LP with fixed 
efficiency, household demand is balanced by EV discharging at night. For MILP with varying 
efficiencies, household demand is mainly balanced by grid supply, because the discharging 
efficiency of the EV is too low for these small power demands.  

 
Figure C1:  Power flows at the GCP for a typical summer day 
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Abstract: In addition to a massive expansion of renewable energies, a successful change 
towards a decarbonized energy system requires the flexibilization of consumers and the 
integration of storage and sector coupling technologies. Bidirectionally chargeable electric 
vehicles (EVs) represent such a consumer flexibility. They are able to charge when there is 
an electricity generation surplus and to discharge when there is a shortage in electricity 
generation. Therefore, they can act as a storage from the perspective of the energy system. 
This paper analyzes different modeling approaches of bidirectionally chargeable EVs in 
large-scale energy systems and evaluates the impact of bidirectionally chargeable EVs on 
the future European energy system design. We compare the modeling of discrete EV 
profiles, clustered EV profiles as well as an aggregated EV profile with simplified constraints. 
Aggregation of EV profiles per country leads to significantly lower computation times, while 
still achieving results close to the reference case. The number of bidirectionally chargeable 
EVs in a cost optimal future European energy system increases from 6 million EVs in 2025 
to over 60 million EVs in 2050. We show that bidirectionally chargeable EVs lead to a better 
integration of PV generation, to lower installed capacities of gas- and hydrogen-fired power 
plants as well as stationary battery storages. They also lead to decreasing electricity prices 
and total European energy system costs. 
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1. Introduction 
In order to achieve the European climate protection targets, the future European energy 
system will be strongly characterized by volatile renewable energies [1]. Numerous studies 
analyze a future decarbonized energy system at the national level [2]. Due to the increase 
in renewable energies, additional flexibility is necessary to balance electricity generation 
and consumption in the energy system. Electric vehicles (EVs) represent a possible large 
demand-side flexibility. Smart charging allows EVs to charge when there is a surplus of 
electricity generation. Bidirectional charging allows to charge smartly, and even feed 
electricity back into the system when there is a shortage of electricity generation [3]. There 
are multiple use cases for bidirectionally chargeable EVs [4]. In vehicle-to-home (V2H) 
applications, energy from the EV is fed back into the household (on the energy user's side 
of the meter). Vehicle-to-grid (V2G) applications feed-back energy into the grid. The added 
value of bidirectionally chargeable EVs for the future energy system has not yet been 
sufficiently investigated. Therefore, in this paper we investigate modeling approaches of 
bidirectionally chargeable EVs in energy system models and resulting system-optimal 
penetration rates of smart and bidirectionally chargeable EVs in the future European energy 
system. 
Numerous papers discuss the modeling of bidirectionally chargeable EVs from the user’s 
perspective [5]. In V2H applications they must be modeled with varying charging and 
discharging efficiencies, since low power flows in a household lead to low efficiencies that 
cannot be modeled by one fixed efficiency [6]. Kern et al. show that revenue potentials vary 
strongly depending on user behavior, electricity prices and feed-in tariffs as well as other 
household components and usually range from 200 to 500 €/EV/a. Salpakari et al. model 
V2H applications in a household with a photovoltaic (PV) system in Sweden, quantify the 
annual electricity cost savings to 8% to 33% and show the impact on battery 
degradation [7]. Charging and discharging powers in V2G applications, like arbitrage 
trading, are usually at maximum charging and discharging power. Therefore, modeling a 
fixed charging and discharging efficiency is sufficient here [8]. Bidirectionally chargeable 
EVs can significantly reduce charging costs and even generate revenues to the owner of 
the EV [9]. Revenue potentials vary strongly depending on the EV and electric vehicle supply 
equipment (EVSE) characteristics, the regulatory framework, user behavior, and electricity 
market prices and usually range from 100 to 1,000 €/EV/a [8]. Since all aforementioned 
studies focus on the modeling of individual bidirectionally chargeable EVs, the impacts of 
bidirectionally chargeable EVs on the energy system are not evaluated. For example, 
neglected repercussions of EVs participating in the spot markets on electricity market prices 
potentially lead to overestimated revenues. Therefore, we model smart and bidirectionally 
chargeable EVs with a cost-optimal penetration rate in the energy system and estimate 
their revenues in future electricity markets. 
There are some studies that discuss the impact of bidirectionally chargeable EVs on the 
electricity markets. Hanemann et al. discuss the flattening effect of EVs on electricity 
demand and electricity prices depending on the smart or bidirectional charging strategy of 
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the EVs [10]. However, they model bidirectionally chargeable EVs highly simplified regarding 
the EV profiles and EV constraints and limit the observation area to Germany. Rodríguez et 
al. also show the smoothing effect of bidirectionally chargeable EVs on the electricity 
demand of Bogotá D.C. in Colombia, South America, resulting in a higher load factor [11]. 
However, once again the observation area is small and the modeling of the EVs is highly 
simplified. Huang et al. model the large-scale penetration of electric vehicles by a simplified 
charging behavior that is only according to statistic customers’ travel needs [12]. They show 
that bidirectionally chargeable EVs can ensure the safe operation of distribution systems, 
but do not discuss repercussions on the energy system. Wei et al. optimize energy system 
planning with V2G applications and show the positive economic and environmental effect 
of V2G on the energy system [13]. However, the modeled EV fleet is simplified by stochastic 
features and the observation area is limited to cities, which leads to different requirements 
for the modeling approach compared to large energy systems. Child et al. show the 
decreasing impact of bidirectionally chargeable EVs on the need for storage and generation 
capacity for the Åland Islands near Finland [14]. In this paper, we also evaluate the impact 
of bidirectionally chargeable EVs on energy system components, such as electric storages 
and generation capacities. However, we will focus on the modeling approaches of 
bidirectionally chargeable EVs in more detail. Additionally, we evaluate their impact on total 
energy system costs and electricity prices in the European energy system.  
None of the aforementioned studies model cost-optimal penetration rates of bidirectionally 
chargeable EVs in a highly coupled, large-scale multi-energy carrier system, since the 
optimization problem quickly becomes very complex. In this paper, we address this research 
gap. We formulate and analyze different modeling approaches of bidirectionally chargeable 
EVs and publish resulting EV profiles. In our results section, we use the best fitting modeling 
approach to evaluate cost-optimal penetration rates of bidirectionally and smart 
chargeable EVs in the future European energy system from 2025 to 2050. Therefore, this 
paper provides policy recommendations for action, i.e., where and when to promote the 
new technology of bidirectionally chargeable EVs in Europe. Furthermore, stakeholders in 
the field of energy can align business models with the cost-optimal expansion of this new 
technology. Ultimately however, scientists can also use the modeling approaches and the 
EV profiles for their own energy system analyses. 

2. Methodology 
2.1 Modeling approaches of V2G applications in energy system models 

Bidirectionally chargeable EVs are modeled like stationary storage systems with additional 
constraints on availability and driving consumption. Therefore, the absolute battery state of 
charge (SoC) 𝑆𝑜𝐶ሺ𝑡ሻ in a timestep t is determined by the absolute battery SoC of the 
previous timestep 𝑆𝑜𝐶ሺ𝑡-1ሻ added to the charged energy 𝑃௖ሺ𝑡ሻ ∙ 𝜂௖ ∙ ∆𝑡 and subtracted by 
the discharged energy ௉೏ሺ௧ሻ

ఎ೏
∙ ∆𝑡 and the driving consumption 𝑃௖௢௡ሺ𝑡ሻ ∙ ∆𝑡, where ∆𝑡 is the 
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time step length. 𝑃௖ and 𝑃ௗ refer to charging and discharging powers, while 𝜂௖ and 𝜂ௗ 
describe charging and discharging efficiencies. 

𝑆𝑜𝐶ሺ𝑡ሻ ൌ 𝑆𝑜𝐶ሺ𝑡-1ሻ ൅ 𝑃௖ሺ𝑡ሻ ∙ 𝜂௖ ∙ ∆𝑡 െ
𝑃ௗሺ𝑡ሻ

𝜂ௗ
∙ ∆𝑡 െ 𝑃௖௢௡ሺ𝑡ሻ ∙ ∆𝑡 (1)

To model realistic user behavior, we introduce Equations 2 and 3 that further constrain the 
SoC. The minimum percentage safety SoC 𝑚𝑖𝑛 ௦௔௙௘ in Equation 2 represents the 
requirement to perform a safety-related drive, like a drive to the hospital, at any time when 
the EV is connected. The minimum percentage SoC at departure 𝑚𝑖𝑛 ௗ௘௣ respects the user's 
desire of a minimum SoC of the EV battery when departing. The relative 
parameters 𝑚𝑖𝑛 ௦௔௙௘ and 𝑚𝑖𝑛 ௗ௘௣ are multiplied by the maximum absolute SoC 𝑆𝑜𝐶௠௔௫ to 
compare it to the absolute state of charge 𝑆𝑜𝐶ሺ𝑡ሻ. If the EV is not connected to an EVSE, 
𝑚𝑖𝑛 ௦௔௙௘ and 𝑚𝑖𝑛 ௗ௘௣ are set to zero, since there is no minimum SoC desired by the user. 

𝑆𝑜𝐶ሺ𝑡ሻ ൒  𝑆𝑜𝐶௠௔௫ ∙ 𝑚𝑖𝑛 ௦௔௙௘     for all timesteps t with connected EV (2)
𝑆𝑜𝐶ሺ𝑡ሻ ൒  𝑆𝑜𝐶௠௔௫ ∙ 𝑚𝑖𝑛 ௗ௘௣     for all timesteps t with departing EV (3)

Furthermore, usual constraints restrict the charging and discharging power by maximum 
values 𝑃௖,௠௔௫ and 𝑃ௗ,௠௔௫ as well as the battery SoC by a parameterized maximum 𝑆𝑜𝐶௠௔௫ 
in Equations (4-6) for all considered timesteps t. If the EV is not connected, 𝑃௖,௠௔௫ 
and 𝑃ௗ,௠௔௫ are set to zero, since charging and discharging is not possible. 

𝑃௖ሺ𝑡ሻ ൑ 𝑃௖,௠௔௫     for all timesteps t with connected EV (4)
𝑃ௗሺ𝑡ሻ ൑ 𝑃ௗ,௠௔௫     for all timesteps t with connected EV (5)

𝑆𝑜𝐶ሺ𝑡ሻ ൑ 𝑆𝑜𝐶௠௔௫     for all timesteps t (6)

Since the modeling of the European energy system is a highly complex optimization 
problem, the integration of every single EV as a discrete element in the energy system 
model would lead to unacceptable computing times. For this reason, we further discuss 
three modeling approaches of bidirectionally chargeable EVs in energy system models. The 
described modeling of bidirectionally chargeable EVs can be equally applied for smart 
chargeable EVs with the restriction that the discharging power of the EVs is set to zero. 
Modeling of bidirectionally chargeable EVs with discrete EV profiles 
In the first approach, we model EVs by discrete driving and location profiles. The EV 
consumption profile sets the variable 𝑃௖௢௡ሺ𝑡ሻ ∙ ∆𝑡 in Equation 1. The EV location profile is 
transferred to an EV connection profile. Depending on the modeled location of the EV 
supply equipment (at home, at work or in a public space), the EV status is connected or not 
connected. The connection status of the EV sets the variables in Equations 2-5. 
Since the number of EVs in the future European energy system will increase to multiple 
millions, there is still a need to lower the number of discrete profiles. In an evaluation of 
synthetic EV profiles based on a mobility study in Germany in 2017 [15], Fattler shows 
that 10,000 discrete EV profiles are statistically viable to represent the average German 
mobility behavior [16]. Randomly drawing 1,000 EV profiles from this pool of 10,000 EV 
profiles leads to a deviation of indicators, such as equivalent full cycles or daily charging 
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hours of below 3%. Therefore, in this approach, we integrate the bidirectionally chargeable 
EVs in the energy system model by 1,000 synthetic EV consumption and location profiles.  
Since 1,000 modeled EV elements differ from the number of bidirectionally chargeable EVs 
integrated into the energy system in reality, a scaling factor is introduced to set the 
constraining variables in Equations 1-6. In Equation 7, we calculate the scaling 
factor 𝑓௡௨௠,ா௏௦ by the number of bidirectionally chargeable EVs 𝑛ா௏௦ divided by 1,000, which 
represents the 1,000 equally weighted EV elements. 

𝑓௡௨௠,ா௏௦ ൌ
𝑛ா௏௦

1,000
 (7)

The scaling factor is used to set the constraining variables according to Equations 8-11. The 
parameters of a single EV 𝐸௖௢௡,ଵா௏ሺ𝑡ሻ, 𝑃௖,௠௔௫,ଵா௏, 𝑃ௗ,௠௔௫,ଵா௏ and 𝑆𝑜𝐶௠௔௫,ଵா௏ are multiplied 
by the scaling factor. As a result, one EV element represents 𝑓௡௨௠,ா௏௦ EVs with the same 
features. One million integrated bidirectionally chargeable EVs, for example, would 
consequently result in one discrete EV element representing 1,000 EVs. 

𝐸௖௢௡ሺ𝑡ሻ ൌ 𝐸௖௢௡,ଵா௏ሺ𝑡ሻ ∙ 𝑓௡௨௠,ா௏௦ (8)
𝑃௖,௠௔௫ ൌ 𝑃௖,௠௔௫,ଵா௏ ∙ 𝑓௡௨௠,ா௏௦ (9)
𝑃ௗ,௠௔௫ ൌ 𝑃ௗ,௠௔௫,ଵா௏ ∙ 𝑓௡௨௠,ா௏௦ (10)

𝑆𝑜𝐶௠௔௫ ൌ 𝑆𝑜𝐶௠௔௫,ଵா௏ ∙ 𝑓௡௨௠,ா௏௦ (11)

Modeling of bidirectionally chargeable EVs with clustered, discrete EV profiles 
Since 1,000 discrete bidirectionally chargeable EV elements integrated in an energy system 
model might still lead to high computing times, we further reduce the number of EV 
elements by using clustering algorithms. We use a k-means algorithm for the clustering of 
EV profiles based on an approach shown by Schmidt-Achert et al. [17] to best represent the 
mobility behavior of EVs. 
We define representative driving and location profiles for each cluster by a three-step 
approach. First, features for the clustering algorithm are defined. Since the location, and 
thus the availability, of the EVs is most important for the value of smart or bidirectional 
charging [8], the availability at home and at work for 6-hour time frames per weekday 
results in 56 features for the clustering, e.g., Monday from 0am to 6am is one feature. 
Second, a k-means clustering algorithm is applied to find a predefined number of clusters 
to represent the population best. Third, the best representative of a cluster is chosen. Like 
Schmidt-Achert et al., we also define representatives by minimizing the sum of maximum 
and mean error compared to the reference, instead of using the traditional selection of the 
closest representative to the centroid. This approach leads to an economically viable choice 
of representatives, e.g., avoiding unrealistic low availabilities. 
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Fig. 1. Location of EVs in each feature for reference of 1,000 EV profiles compared to 5 

discrete clustered EV profiles. 

In this paper, we develop clustered EV profiles by using the described approach for 5, 10, 20 
and 50 clusters. Figure 1 shows a comparison of defined features for the reference case 
of 1000 EV profiles (a) and a representation of EV profiles by 5 clusters (b). The fundamental 
characteristic of the reference can be represented well by the 5-cluster approach. The 
lowest availability of EVs at home is just below 60%, the availability of EVs at work from 
Monday to Friday from 6am to 6pm is around 20% and the availability of EVs elsewhere 
(meaning at public spaces or driving) mostly varies from 10% to 20%. However, one can 
recognize concise differences. The availability of EVs at home during the weekend is much 
higher for the clustered profiles, leading to lower availabilities at work and elsewhere in this 
time frame. The same EV profile differences can be recognized during the weeknights. 
In Table 1, we further analyze the different statistical behavior of clustered EV profiles (CluX 
for X discrete EV profiles) in comparison to the reference case of 1,000 EV profiles (Ref). The 
overall mean availability of EVs at home, at work and elsewhere is represented quite well 
by the clustered profiles. However, one can observe that the deviation of all characteristics 
from the reference increases with a decreasing number of clusters. The availability of EVs 
at home is increasingly overestimated with a decreasing number of clusters and the 
availability of EVs at work and elsewhere is increasingly underestimated with a decreasing 
number of clusters. Taking a closer look at the maximum and mean absolute deviation of 
the availability of EVs in each defined feature, the deviation of the characteristics from the 
reference increases for all clustered EV profiles. The extent of the influence of these 
deviating characteristics on other elements in the energy system is analyzed in Chapter 3.1 
to further evaluate the clustered EV profiles.  
Table 1.  Availability at home, at work or elsewhere for clusters Clu50, Clu20, Clu10 and 

Clu5 in comparison to reference scenario Ref. 

 Mean availability  Max deviation 
from Ref  

 Mean deviation 
from Ref 

 

 Ref Clu50 Clu20 Clu10 Clu5 Clu50 Clu20 Clu10 Clu5 Clu50 Clu20 Clu10 Clu5
Home 77.6% 79.5% 80.9% 81.0% 81.4% 6.5% 9.6% 10.7% 12.6% 2.1% 3.4% 3.6% 4.4%
Work 8.6% 8.5% 7.6% 8.1% 8.3% 3.4% 7.0% 7.0% 7.5% 0.9% 1.3% 1.8% 2.2%

Elsewhere 13.8% 12.0% 11.5% 10.9% 10.2% 6.3% 6.1% 7.7% 14.6% 1.9% 2.4% 3.3% 4.4%
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The clustered EV profiles include discrete EV location and consumption profiles and a share 
for each EV representative of the total EV number. Consequently, the number of EVs for 
each discrete EV profile is calculated by multiplying the total number of EVs 𝑛ா௏௦ with the 
share of each EV profile: 

𝑓௡௨௠,ா௏௦ ൌ 𝑛ா௏௦ ∙ 𝑠ℎ𝑎𝑟𝑒ா௏ (12)

Taking into account the scaling factor 𝑓௡௨௠,ா௏௦, the constraining variables and parameters 
are set by Equations 8-11. The clustered, discrete EV profiles are published in [18]. 
Modeling of bidirectionally chargeable EVs with aggregated EV profile 
To further reduce the complexity of the optimization problem, we aggregate all initial 1,000 
EV profiles into one EV location and consumption profile that represents the total EV fleet. 
The aggregated profile contains shares of EV locations and average consumptions of EVs. 
This leads to a simplified modeling of bidirectional chargeable EVs, since discrete 
correlations cannot be mapped. 
Figure 2 illustrates the different modeling of aggregated and discrete EV profiles by 
showing the minimum and maximum availability of a single EV at home compared to the 
aggregated EV profiles for an exemplary week. The maximum availability of the discrete EV 
profile is either one or zero, while the maximum availability of the aggregated EV profile 
varies between 50% and 95%. The minimum availability is determined by the minimum 
state of charge at departure (example set to 70%) and the minimum safety state of charge 
(example set to 30%). For the discrete EV profile, it is either 0%, 30% or 70%, while the 
aggregated minimum availability varies between 15% and 35%. Modeling discrete EV 
profiles leads to time-dependent correlations that are neglected by the modeling of 
aggregated EV profiles. A discrete EV that departs with an SoC over 70% comes back with 
an SoC depending on the SoC at departure. Using the aggregated EV profiles neglects this 
correlation, but still considers the overall SoC restrictions for the EV pool by the aggregated 
minimum availability. 
Since the aggregated profile is normed to one EV, the scaling factor 𝑓௡௨௠,ா௏௦ is equal to the 
number of EVs 𝑛ா௏௦ as shown in Equation 13. Again, the constraining variables and 
parameters are set by Equations 8-11. The aggregated EV profiles are published in [18]. 

𝑓௡௨௠,ா௏௦ ൌ 𝑛ா௏௦ (13)

 
Fig. 2.  Different availability of aggregated and discrete EV profiles for an exemplary 

week. 
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2.2 Integration of V2G applications in the energy system model ISAaR 

We use the linear optimization model ISAaR (Integrated simulation model for unit dispatch 
and expansion with regionalization) that provides a cost-optimal expansion and dispatch 
of units to model the future European energy system. Figure 3 illustrates the elements and 
energy carriers that are modeled in ISAaR. There are multiple elements that couple different 
energy carriers. Examples are gas-fired power plants or power-to-x technologies that 
produce other energy carriers from electricity. In addition, storage elements for electricity, 
heat, hydrogen, and methane provide additional flexibility to the energy system. Energy 
carriers from outside the geographical scope of ISAaR can be integrated from the model 
via import. Final energy consumption models provide the energy demand as input data for 
the optimization. A detailed description of the final energy consumption models Smind EU 
for the industry sector, TerM EU for the tertiary sector, TRAM EU for the transport sector 
and PriHM EU for the building sector can be found in [19].  
ISAaR minimized the total energy system costs, while balancing consumption and 
generation per energy carrier for every timestep and every region. Equation 14 shows these 
system constraints. The demand of the final energy consumption sectors for every energy 
carrier c, every timestep t and every region r 𝑃ௗ௘௠௔௡ௗ is equal to the generation 𝑃௚௘௡ of all 
elements added to the imports of the energy carrier 𝑃௜௠௣௢௥௧ subtracted by the consumption 
of all elements 𝑃௖௢௡௦ and the exports of the energy carrier 𝑃௘௫௣௢௥௧ . A storage element, such 
as a bidirectionally chargeable EV, that discharges results in a generation 𝑃௚௘௡ from the 
energy system’s perspective. A storage element that charges represents a consumption 
from the energy system’s perspective. A more detailed description of the ISAaR energy 
system model can be found in [20]. 

𝑃ௗ௘௠௔௡ௗሺ𝑡, 𝑟, 𝑐ሻ ൌ ෍ 𝑃௚௘௡ሺ𝑡, 𝑟, 𝑐ሻ
௘௟௘௠௘௡௧௦

െ ෍ 𝑃௖௢௡௦ሺ𝑡, 𝑟, 𝑐ሻ
௘௟௘௠௘௡௧௦

൅𝑃௜௠௣௢௥௧ሺ𝑡, 𝑟, 𝑐ሻ െ 𝑃௘௫௣௢௥௧ሺ𝑡, 𝑟, 𝑐ሻ 

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡, 𝑟𝑒𝑔𝑖𝑜𝑛 𝑟 𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑐 
(14)

The final energy demand of the transport sector modeled in TRAM includes the electricity 
demand of passenger cars for every European country. Since the demand is transmitted to 
ISAaR statically, TRAM models all passenger cars as unmanaged charging electric vehicles. 
The integration of bidirectionally chargeable EVs (`BCM-EVs`) leads to a decrease in 
unmanaged charging EVs. Since TRAM provides a static input of electricity demand, the 
decreasing number of unmanaged charging EVs is modeled by a negative demand 
`-Unman EVs` reflecting the electrical load of the integrated bidirectionally chargeable EVs. 
This approach allows a dynamic, model endogenous increase of bidirectionally chargeable 
EVs in ISAaR. If ISAaR decides to integrate a bidirectionally chargeable EV, this will result in 
a decrease of the static demand of the transport sector representing a removal of an 
unmanaged charging EV. 
There are two options to integrate bidirectionally chargeable EVs into the energy system 
model. First, the number of bidirectionally chargeable EVs 𝑛ா௏௦ can be fixed for future years, 
meaning a stock element from the model’s perspective. Second, bidirectionally chargeable 
EVs can be modeled as an expansion element with expansion costs. In this case, their 
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number 𝑛ா௏௦ is endogenously determined by ISAaR. The expansion costs reflect the 
differential costs of a bidirectionally chargeable EV including EVSE versus an unmanaged 
charging EV including EVSE. 
The described approach for the integration of bidirectionally chargeable EVs in the energy 
system model can be applied equally for smart chargeable EVs. 

 
Fig. 3.  Illustration of technologies in the multi-energy system model ISAaR and added 

elements for modeling bidirectionally chargeable EVs. 

3. Results 
In the results section we discuss the advantages and disadvantages of the presented 
modeling approaches of bidirectionally chargeable EVs for an exemplary integration of the 
EVs in Germany. This is followed by a scenario evaluation of the European energy system 
with smart and bidirectionally chargeable EVs for the timeframe 2025 to 2050. 

3.1 Evaluation of modeling approaches of bidirectionally chargeable EVs  

For the evaluation of the different presented modeling approaches, we model the European 
energy system for the year 2030 with the ISAaR energy system model and integrate 
bidirectionally chargeable EVs into the German energy system. The parameterization of all 
modeled elements in the energy system, e.g., generation, consumption, or storage units, is 
based on the solidEU scenario of the eXtremOS research project. A detailed scenario 
description of solidEU is published in a summary report [1]. Table 2 shows the 
parametrization of the bidirectionally chargeable EVs. The EVs are parameterized by a 
medium passenger car battery capacity of 50 kWh [21]. 
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Table 2.  Parametrization of bidirectionally chargeable EVs. 

Battery 
capacity 

𝑆𝑜𝐶௠௔௫,ଵா௏ 

Charging/ 
discharging 

power 
𝑃௖,௠௔௫,ଵா௏ and 

𝑃ௗ,௠௔௫,ଵா௏ 

Charging/
discharging 
efficiency 
𝜂௖ and 𝜂ௗ 

Minimum 
safety 
SoC 

𝑚𝑖𝑛 ௦௔௙௘ 

Minimum 
SoC at 

departure 
𝑚𝑖𝑛 ௗ௘௣ 

Location of 
bidirectional 

EVSE 

Number of 
bidirectionally 

chargeable 
EVs 𝑛ா௏௦ 

50 kWh 11 kW 94% 30% 70% At home 13 million EVs 
 

The maximum charging and discharging power are set to 11 kW, based on the technical 
design of the EVSE in the BCM project [4]. The charging and discharging efficiencies of 94% 
(losses in EV and EVSE included) are the future efficiencies expected by experts from the 
BCM project [4]. The safety minimum SoC and the minimum SoC at departure are set 
to 30% and 70%, respectively, and the location of the bidirectional EVSE is at home. The 
fixed EV number of 13 million EVs is oriented to the underlying solidEU scenario [1].  
We evaluate the three different modeling approaches presented in Chapter 2 in regard to 
differences in simulation results and computing time. The first presented modeling 
approach of a discrete EV modeling is the most detailed and thus serves as a reference for 
the other modeling approaches. Table 3 summarizes the impact of the different EV 
modeling approaches with respect to computation time, EV behavior and repercussions on 
the energy system. 
The discrete EV modeling leads to a computation time of 410 million ticks for the one-year 
energy system optimization, which corresponds to a computation time of 3 days on the 
computing servers1 used. The discrete clustered EV modeling results in much lower 
computation times of 155 million ticks for 5 EV profiles to 175 million ticks for 50 EV profiles. 
The aggregated EV profile modeling also has a computation time in this range 
with 172 million ticks. Although in this approach the EVs are modeled with only one profile, 
the computation time is slightly higher than for the approaches with 5, 10 and 20 discrete 
clustered EV profiles. This may be due to the more complex aggregated EV profile, but also 
to the feedback effects of the EV profile on the energy system. 
As a second evaluation of the EV modeling approaches, Table 3 shows the EV behavior of 
the 13 million EVs modeled in the German energy system. The minimum, maximum and 
mean availability refers to the availability of the EVs at home over all simulated 8760 hours 
of the year. For the EV fleet in Germany, represented by the 1,000 discrete EV profiles, the 
minimum availability is 48%, the maximum availability is 95% and the mean availability 
is 78%. These characteristics are matched perfectly by the aggregated EV profile. The 
discrete clustered EV profiles lead to a large error for the minimum availability, especially 
for 5 to 20 EV profiles. This can lead to unrealistic scarcity situations, where hardly any EVs 
can interact with the energy system. The charged and discharged energy varies between 
the modeling approaches, but only by a maximum of 5%. The aggregated EV profile 
matches the reference very well. The revenues per EV are calculated by the EV energy sold 
minus the EV energy purchased, times the electricity prices and also vary by a maximum 

 
1Hardware: 2xAMD EPYC 7F52 – 16 Core, 1008 GB RAM 
Software: Matlab [22], Gurobi Optimization [23] 
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of 5%. Again, the aggregated EV modeling approach matches the reference and thus 
reflects the EV behavior very well. 
Table 3.  Impact of different EV modeling approaches on computation time, EV behavior 

and repercussions in the energy system. 

Modeling 
approach 

Specifi-
cation 

Compu-
tation 
time 
(ticks) 

EV behavior Repercussions on the energy 
system 

European 
modeling 

as 
expansion 
element 

min 
avail-
ability 

 

max 
avail-
ability 

 

mean
avail-
ability

 

charge 
in 

TWh 

dis-
charge 

in 
TWh 

revenues 
per EV 

Overall 
costs 

in 
bn€/a

Wind 
onshore 
in TWh 
in DE 

Wind 
offshore 
in TWh 
in DE 

PV 
in 

TWh 
in DE 

Discrete EV 
profiles 

1000 EV 
profiles 

410 
million 0.49 0.95 0.78 124.4 91.9 158.25 410.40 261.6 185.8 219.3 no 

Discrete 
clustered 

EV profiles 

50 EV 
profiles 

175 
million 0.38 1.00 0.80 124.2 95.4 165.51 410.25 261.9 188.5 219.5 no 

20 EV 
profiles 

162 
million 0.19 1.00 0.81 124.4 96.2 161.42 410.39 261.8 180.2 227.6 no 

10 EV 
profiles 

157 
million 0.11 1.00 0.81 123.1 96.6 163.53 410.37 262.0 178.9 229.0 no 

5 EV 
profiles 

155 
million 0 1.00 0.82 120.2 96.0 164.08 410.42 261.8 195.4 227.2 no 

Aggregated 
EV profile 

1 EV 
profile 

172 
million 0.49 0.95 0.78 125.9 91.7 158.33 410.38 262.2 191.3 231.8 yes 

 

Finally, Table 3 shows the repercussions of the modeling approaches on the energy system. 
The overall costs represent all costs in the European energy system, with a large part of the 
costs being in the electricity sector. The overall costs in the different modeling approaches 
vary only slightly, with the aggregated EV profile matching the reference case very well. 
Furthermore, we evaluate the expansion of volatile renewable energies in Germany (DE). 
The electricity generated by wind turbines or PV plants varies by maximum 6%. In general, 
the expansion and generation of wind onshore, wind offshore and PV is well represented 
by the discrete clustered and aggregated modeling approach. 
For a final evaluation of the modeling approaches, one must consider that the modeling 
will be applied to all European countries in the ISAaR energy system model. Furthermore, 
we will also evaluate an optimized expansion of bidirectionally chargeable EVs, which brings 
even more complexity. The modeling approach with 1,000 discrete EV profiles already has 
strong computational time disadvantages when modeling German bidirectionally 
chargeable EVs and is therefore excluded. The aggregated profile shows slight performance 
advantages compared to the discrete clustered EV profiles, especially for the EV behavior. 
A European modeling includes 30 European countries and results in 30 times more EV 
profiles than in our test simulations. In an optimized integration of bidirectionally 
chargeable EVs for all modeled European countries, the modeling of an aggregated EV 
profile resulted in a computation time similar to the test scenario, while the modeling of 5 
discrete clustered EV profiles per country already led to 4 times higher computation times. 
For these reasons, we recommend modeling bidirectionally chargeable EVs with an 
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aggregated EV profile per country to significantly reduce computation time, while still 
providing a good realistic representation of bidirectionally chargeable EVs. 

3.2 Future European Energy System with and without V2G applications 

To evaluate the integration of smart and bidirectionally chargeable EVs in Europe, we set 
up a European reference scenario for the years 2025 to 2050 based on the solidEU scenario 
of the research project eXtremOS. A detailed scenario description of solidEU is published 
in a summary report [1]. This reference scenario ‘Ref’ is characterized by a harmonized 
decarbonization of the European energy system until 2050. It does not integrate smart and 
bidirectionally chargeable EVs. For evaluating the value of smart and bidirectionally 
chargeable EVs, we set up a second scenario ‘BCM’ that enables the integration of these 
EVs. The number of smart and bidirectionally chargeable EVs can be expanded 
endogenously in every European country using the energy system model. Since there are 
no European country-specific data for EV profiles publicly available, we use the aggregated 
German EV profile for every European country. This approach neglects country-specific 
driving behavior, but considers the weekly and seasonal driving characteristics, which in 
other European countries do not differ fundamentally from the German characteristics, 
since working days and working hours are similar in all European countries. 
The smart and bidirectionally chargeable EVs are parameterized by the characteristics of a 
mid-size passenger car described in Table 2. The number of the EVs is endogenously 
optimized and not fixed by parameters. For this optimized integration, Table 4 shows the 
additional investment costs of smart and bidirectionally chargeable EVs compared to 
unmanaged charging EVs. These additional investment costs include additional investments 
and installation costs for the EVSE and for additional required measuring equipment. The 
costs do not include additional investment costs for the EV itself. The assumptions for the 
additional investment costs were made within the BCM research project in consultation with 
various experts [24]. Currently, only a few offers for bidirectional EVs and EVSEs are available 
that are consequently high-priced. The only available offer for a bidirectional EVSE in 
Germany is around 6,000 € [25] compared to around 500 € for an unmanaged EVSE [26] 
resulting in difference costs of 5,500 € only for the purchase of the EVSE. Table 4 shows 
that experts in the BCM research project expect a high cost degression for bidirectional 
EVSEs in the timeframe up to 2040, when unit numbers in production go up. The lifetime 
of the smart and bidirectionally chargeable EVs, including their EVSE, is set to 15 years [27] 
and the interest rate from the energy system’s perspective is 3.5% [28]. Both values are 
needed for the calculation of annual investment costs in the energy system model. 
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Table 4.  Additional investment costs of smart and bidirectionally chargeable EVs 
compared to unmanaged charging EVs. 

 Year 2025 2030 2035 2040 2045 2050
Additional investment 
costs for EV in €/EV 

Smart chargeable EVs 960 760 760 760 760 760 
Bidirectionally 

chargeable EVs 
2840 2190 1890 1590 1590 1590 

 

Figure 4 analyzes the EV numbers from 2025 to 2050 in a cost-optimized future European 
energy system in the BCM scenario. Supplementary Appendix A presents the exact numbers 
of EVs per charging strategy per country from 2025 to 2050. In Figure 4 (a), one can see 
the number of smart and bidirectionally chargeable EVs compared to unmanaged charging 
EVs. The first thing that stands out is that almost no smart chargeable EVs are added 
endogenously by the energy system model. This means that the added value of 
bidirectionally chargeable EVs to the energy system significantly exceeds the additional 
costs of these EVs, when costs are considered as shown in Table 4. The number of 
integrated bidirectionally chargeable EVs goes up from 7 million EVs in 2025 to 62 million 
EVs in 2050 and has the highest share in 2045 of 37%. This significant increase indicates 
that the future European energy system becomes more efficient with the provided flexibility 
through bidirectionally chargeable EVs. 
Figure 4 (b) shows the integration of bidirectionally chargeable EVs in the six countries 
Germany (DE), Spain (ES), France (FR), Italy (IT), Poland (PL) and United Kingdom (UK) 
representing the European countries with the highest number of integrated EVs. The 
increase in bidirectionally chargeable EVs is not occurring equally in different countries, but 
rather has characteristic differences. In Spain and Italy, the energy system model already 
integrates around 2 million bidirectionally chargeable EVs in 2025, significantly more than 
in the other countries displayed. As of the year 2035, the countries Germany, France and 
Italy have the most bidirectionally chargeable EVs. In 2050 in Germany there is a sharp 
decrease in bidirectionally chargeable EVs, meaning that some of the previous 
bidirectionally chargeable EVs that reached their lifetime are replaced by unmanaged 
charging EVs. In 2050 in Germany, expanded hydrogen-fired power plants provide flexibility 
leading to a lower flexibility needed on the demand-side. 
If unmanaged charging EVs are replaced by bidirectionally chargeable EVs, the EV loads 
due to additional equivalent full cycles (EFCs) of the battery will be increased. The EFCs of 
bidirectionally chargeable EVs are highest in 2025 at 280 EFCs/a, going down to 200 EFCs/a 
in 2035 and 185 EFCs/a in 2050 compared to approximately 60 EFCs/a for an unmanaged 
charging EV with 50 kWh battery capacity. 
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Fig. 4.  Analysis of future EV numbers from 2025 to 2050 in a cost-optimized European 

energy system: (a) total EV number per charging strategy; (b) integrated 
bidirectionally chargeable EVs per country. 

For a more detailed European evaluation of the integration of bidirectionally chargeable 
EVs, Figure 5 analyzes the shares and numbers of EVs per charging strategy per country 
in 2030 and 2050. As additional information, the coloring of the countries is related to the 
full load hours of PV generation. In 2050, there are both higher numbers of EVs and higher 
shares of bidirectionally chargeable EVs in most countries compared to 2030. The 
integrated shares of bidirectionally chargeable EVs are much higher in most southern 
European countries compared to the northern European countries. It is noticeable that the 
share of bidirectionally chargeable EVs is higher in the countries that have higher full load 
hours of PV generation. This dependance can be explained by the fact that bidirectionally 
chargeable EVs often act as daytime storages. The parameterized EVs have an 
energy/power ratio of 50kWh/11kW. This means they can charge or discharge for a 
maximum of four and a half consecutive hours. The PV generation represents a regular 
daily generation profile with only seasonal differences. Therefore, bidirectionally chargeable 
EVs can provide the necessary flexibility to more evenly feed-in the PV generation into the 
energy system. Higher full load hours of PV generation indicate a more cost-effective 
expansion of PV generation and thus indicate a more attractive location for bidirectionally 
chargeable EVs. 
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Fig. 5.  Dependance of shares and numbers of EVs per charging strategy per country in 

2030 and 2050 on the full load hours of PV generation. 

As a detailed scenario comparison, Figure 6 shows the capacities of conventional power 
plants, volatile renewable energies, and storage technologies for the scenarios Ref and BCM 
for the years 2030, 2040 and 2050 in Europe. The analysis points out structural differences, 
but also similarities, in the future European energy system. There is a high increase in all 
volatile renewable technologies in future years due to the ongoing decarbonization of the 
energy system. However, there are some differences between the installed capacities of 
renewable energies in the scenarios Ref and BCM. In general, the BCM scenario prefers an 
expansion of PV generation compared to an expansion of wind onshore and wind offshore 
generation. Bidirectionally chargeable EVs act as a daytime storage increasing the 
consumption at the time of peak PV generation and thus raise the market value of PV 
generation. Therefore, bidirectionally chargeable EVs are an incentive to the integration of 
PV generation that is the volatile renewable energy source with the lowest levelized cost of 
electricity in ISAaR. 
The installed capacities of conventional power plants increase from 2030 to 2050, although 
the full load hours and thus the electricity output decreases by over 50%. PV plants and 
wind turbines are characterized by a fluctuating electricity generation that leads to a higher 
demand of conventional power plants as back-up capacities. The gas-fired power plants 
in 2050 generate electricity with synthetic methane produced by renewable energies. When 
comparing the two scenarios Ref and BCM, it is noticeable that less gas-fired and hydrogen-
fired power plant capacity is expanded in the BCM scenario. Bidirectionally chargeable EVs 
discharge and thus feed-in electricity into the energy system when there is a high need for 
electricity generation due to a high consumption or a low generation or both. 
Consequently, gas- or hydrogen-fired power plants can lower their electricity generation in 
these situations. Therefore, from the energy system’s perspective, bidirectionally chargeable 
EVs lead to a decreased need for flexible gas- and hydrogen-fired power plants. 
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The installed capacity of storage technologies increases significantly from 2030 to 2050 in 
both considered scenarios. In the reference scenario Ref, the only storage expansion option 
for the energy system model is the increase of stationary battery storages. The BCM 
scenario has the expansion options of stationary battery storages and bidirectionally 
chargeable EVs. Pumped storage hydropower is set fixed for future years and cannot be 
endogenously expanded. The BCM scenario clearly favors the integration of bidirectionally 
chargeable EVs over the expansion of stationary battery storages. The lower investment 
costs of bidirectionally chargeable EVs compared to stationary battery storages outweighs 
the disadvantage of limited availability of EVs. In terms of one MWh of storage capacity, 
bidirectionally chargeable EVs have investment costs of 31,800 € in 2050 compared to 
stationary battery storages that cost around 123,000 € in 2050 based on eXtremOS 
project [29]. These cost advantages outweigh the limited availability of the EV’s storage 
capacity due to the connection status of the EV to the EVSE and minimum SoC constraints 
because of the user behavior. These results show that bidirectionally chargeable EVs 
significantly lower the need for other storage technologies in a cost-optimal future 
European energy system. 

 
Fig. 6.  Installed capacities of conventional power plants, volatile renewable energies, 

and storage technologies for the scenarios Ref and BCM for the years 2030, 2040 
and 2050 in Europe. 

For the analysis of electricity prices, Figure 7 shows the annual hourly duration curve of 
electricity prices in Italy (IT) and the United Kingdom (UK) as exemplary countries with a 
high and a low share of bidirectionally chargeable EVs for the years 2030 and 2050 for both 
scenarios Ref and BCM. In general, the Ref scenario results in a slightly higher annual 
electricity price duration curve. Bidirectionally chargeable EVs in the BCM scenario charge 
when electricity prices are low, resulting in a partly electricity price increase of the low prices. 
On the other hand, they discharge when electricity prices are high, leading to a partly 
decrease of the highest electricity prices. These effects result in an overall smoothing of the 
electricity prices. Italy has a much higher share and number of bidirectionally chargeable 
EVs than the United Kingdom. Consequently, the impact of the bidirectionally chargeable 
EVs on the electricity price is also higher in Italy compared to the UK. But while the share of 
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bidirectionally chargeable EVs in the UK, at 6% in 2030 and 12% in 2050, is comparably low, 
the impact on electricity prices is nevertheless strongly recognizable. 

 
Fig. 7.  Annual hourly duration curve of electricity prices in Italy (IT) and the United 

Kingdom (UK) for the years 2030 and 2050 for both scenarios Ref and BCM. 

The difference in the design of the energy system between the scenarios Ref and BCM leads 
to a difference in overall energy system costs and mean electricity prices. Table 5 
summarizes these key indicators for both scenarios for the years 2025 to 2050. The mean 
European electricity price is calculated by the demand-weighted electricity price over all 
modeled European countries and timesteps. Bidirectionally chargeable EVs cause a 
decrease in electricity prices by up to 12% in 2040. Renewable energies are better and more 
cost-effectively integrated into the energy system, thus the use of expensive thermal power 
plants is reduced. The overall energy system costs are also reduced. While total energy 
system costs are only slightly lower in BCM than in Ref in 2025, costs decrease by over 9 
billion €/a in 2045. Reduced costs on the power supply side clearly outweigh the additional 
investment costs of bidirectionally chargeable EVs. 
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Table 5.  Overall energy system costs and mean European electricity price for the years 
2025 to 2050 for scenarios Ref and BCM. 

Year Overall energy system costs in 
billion €/a 

Mean European electricity price 
€/MWh 

 Ref BCM Ref BCM 

2025 432.4 431.7 44.6 42.6 
2030 414.6 412.4 42.5 39.4 
2035 354.9 350.1 43.1 39.1 
2040 332.2 325.7 44.6 39.4 
2045 323.5 314.4 44.4 41.1 
2050 353.1 345.0 41.6 38.8 

4. Discussion 
Bidirectionally chargeable EVs represent an essential component of the future energy 
system. In this study, we analyze different modeling approaches of bidirectionally 
chargeable EVs in a complex multi-energy system model and evaluate their integration as 
well as their impact on the European energy system in future years. For complex energy 
system models, we recommend the modeling of one aggregated EV profile to limit 
computation time, while modeling a realistic representation of the EV composition of a 
country. We show numerous positive effects of bidirectionally chargeable EVs: 

 Bidirectionally chargeable EVs support the integration of PV generation. This is of 
great importance for the future energy system, since wind generation, especially 
onshore wind generation, deals with various acceptance issues across Europe [30]. 

 Bidirectionally chargeable EVs lower the required installed capacities of 
conventional power plants, such as gas- or hydrogen-fired power plants. Replacing 
the need for power plant capacities that operate with very few full load hours 
through bidirectionally chargeable EVs means contributing to the security of supply 
of the energy system. 

 Bidirectionally chargeable EVs lower the required installed capacities of other 
storage technologies, such as stationary battery storages, and thus cause a lower 
demand of battery capacities. 

 Overall energy system costs and electricity prices decrease with an integration of 
bidirectionally chargeable EVs, which makes the European energy system more 
cost-efficient and results in lower costs for the end user of electricity. 

Therefore, our results support studies from Hanemann et al. [10], Rodríguez et al. [11], 
Wie et al. [13], Child et al. [14] that already showed positive impacts of smart or 
bidirectionally chargeable EVs on local energy systems. We further show interrelated effects 
in the coupled European energy system, discuss different detailed modeling approaches of 
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bidirectionally chargeable EVs in a large-scale energy system model and finally output cost-
optimal penetration rates of bidirectionally chargeable EVs in the future European energy 
system. 
However, there are some limitations of the modeling and the results that show the need 
for further research. The aggregated EV profile is based on German mobility data of 
passenger cars. More detailed mobility data of other European countries could have an 
influence on repercussions in the energy system. However, the basic findings should not be 
affected. The effect of the parametrization of the EVs, including investment costs for smart 
and bidirectionally chargeable EVs, should be investigated further. Possible larger EV 
battery capacities in the future could even increase the added values of bidirectionally 
chargeable EVs.  
The additional load on EVs through bidirectional charging is high. 200 EFCs per year in 2035 
with a lifetime of 15 years result in a total of 3,000 EFCs for the EV battery capacity. However, 
comparing these EV loads to current EFC lifetime values for station battery storage systems 
that are around 5,000 EFCs ([31], [32]) suggests that these EV loads will be sustainable in 
the future. 
The ISAaR energy system model optimizes the European energy system in an hourly annual 
simulation. Each European country represents one node. The European transmission grid is 
only modeled by cross border transfer capacities between countries, while the distribution 
grid is not modeled. Therefore, the impact of bidirectionally chargeable EVs on grid 
utilization is not addressed by this study and should be further investigated. Due to the 
high simultaneity of EV charging or discharging operations with market-driven use of EVs, 
there is a risk of grid overloading. Müller et al. [33] already deal with the impact of smart 
and bidirectionally chargeable EVs on the distribution grid utilization and show decreasing 
and increasing grid overloads dependent on the use case and the charging strategy. 
Finally, the results of the future cost-optimized energy system shown in Chapter 3.2 are 
from the perspective of the energy system and not from the perspective of the users. 
Consequently, there are no fees and taxes on electricity prices modeled that could change 
the dispatch of storage units, like bidirectionally chargeable EVs. 

5. Conclusion 
To evaluate the impact of electric vehicles (EVs) on the future European energy system, we 
analyze modeling approaches of smart and bidirectionally chargeable EVs in a large-scale 
multi-energy system model and model the future European energy system with and without 
the option of integrating these EVs. We show that aggregated EV profiles per country are 
sufficient to realistically model the EV behavior and the repercussions on the energy system. 
We find future cost-optimized penetration rates of bidirectionally chargeable EVs per 
country from the energy system’s perspective, and thus support stakeholders in the industry 
in planning their future business models. Furthermore, we encourage policy makers to 
enable bidirectional charging of EVs through regulatory measures in order to realize the 
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presented positive impacts on the energy system. Finally, the paper is intended to support 
scientists by providing detailed descriptions of modeling approaches of bidirectionally 
chargeable EVs and data of EV profiles. 
Funding: The described work is conducted within the project BCM by Forschungsgesellschaft für 
Energiewirtschaft mbH and funded by Bundesminsterium für Wirtschaft und Energie (BMWi) under 
the funding code 01MV18004C. 
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Appendix A. 
Table A1.  Number of EVs per country in million EVs (Unma = Unmanaged charging EVs; 

Bidi = Bidirectionally chargeable EVs). 
Country 2025 2030 2035 2040 2045  2050 

Unma Bidi Unma Bidi Unma Bidi Unma Bidi Unma Bidi Unma Bidi
AT 0.74 0 1.5 0 2.08 0.12 1.63 0.96 2.13 1.12 2.97 1.12
BE 0.46 0.12 0.71 0.63 1.47 1.34 1.71 1.55 2.35 1.9 3.9 1.39
BG 0.31 0 0.52 0 0.99 0.02 1.04 0.06 0.72 0.65 0.98 0.89
CH 0.95 0.02 1.42 0.3 1.44 1.31 1.77 1.6 2.3 2.06 3.57 1.78
CZ 1.38 0 1.57 0.11 1.2 1.09 1.8 1.09 1.86 1.69 2.45 2
DE 7.59 0.2 8.45 4.64 15.15 4.89 19.46 5.88 18.16 14.02 30.14 9.57
DK 0.34 0.01 0.47 0.18 0.96 0.3 1.13 0.3 1.06 0.75 1.76 0.58
ES 3.91 1.52 3.67 3.33 5.35 4.86 6.45 5.86 8.89 5.18 11.04 6.56
FI 0.7 0 0.92 0 1.4 0 1.68 0 1.99 0 2.53 0
FR 4.58 0.69 6.72 3.27 7.93 7.21 9.13 8.29 13.44 10.89 17.94 11.37
GR 0.91 0.19 1.29 0.19 1.2 0.75 1.19 0.94 1.41 0.92 1.51 1.37
HU 0.52 0.22 0.71 0.22 0.72 0.65 0.84 0.77 1.19 0.66 1.28 1.16
IE 0.35 0.02 0.63 0.02 1.17 0.03 1.18 0.3 1.1 0.71 1.43 0.71
IT 3.52 2.41 6.39 2.41 7.29 6.62 9.91 8.4 13.17 7.36 15.38 10.96
LT 0.37 0 0.35 0.01 0.51 0.03 0.63 0.03 0.62 0.04 0.82 0.03
NL 0.97 0.32 1.22 1.08 2.36 1.08 2.96 1.08 4 1.12 5.78 0.71
NO 0.66 0 1.01 0 1.4 0 1.67 0 2 0 2.49 0
PL 5.1 0.5 5.09 0.75 4.96 2.39 4.45 3.56 5.08 3.65 6.39 4.07
PT 0.93 0.09 0.6 0.55 0.94 0.85 1.16 1.06 1.51 1.2 2.18 1.11
RO 1.13 0 1.18 0 1.69 0.03 2.03 0.12 1.27 1.16 1.65 1.5
SE 0.89 0 1.56 0 2.5 0 2.98 0 3.8 0 4.73 0
SI 0.11 0.1 0.21 0.1 0.24 0.22 0.28 0.25 0.48 0.25 0.66 0.25
SK 0.3 0 0.38 0.08 0.42 0.38 0.51 0.46 0.64 0.58 0.87 0.65
UK 4.75 0.24 8.14 0.56 13.14 1.88 15.88 2.14 20.45 3.85 26.46 3.64
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Abstract: Congestion management in the European transmission grid is currently mostly 
provided by conventional power plants. As electricity generation in the future will be 
increasingly characterized by volatile renewable energies, new technologies need to be 
integrated into congestion management. This paper develops a methodology for modeling 
storages in congestion management and investigates the potential for bidirectional electric 
vehicles (EVs) in 2030. A direct current load flow via Power Transfer Distribution 
Factors (PTDF) is used to model the load flow in the transmission grid. Since the modeling 
involves great complexity due to time-coupling constraints of storages, different modeling 
approaches are investigated. The results show that bidirectional EVs can take over a 
significant part of the congestion management due to their decentralized distribution. A 
total of 26 TWh of positive redispatch of conventional power plants in 2030 can be replaced 
by the optimized use of bidirectional EVs. 
Index Terms: congestion management; bidirectionally chargeable electric vehicles; 
European energy system; redispatch; vehicle-to-grid. 
_____________________________________________________________________________________________ 
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I. Introduction 
To achieve the European climate protection targets, the future European energy system will 
be strongly characterized by volatile renewable energies [1]. Since wind turbines and solar 
plants are placed on revenue-maximizing locations and not near the highest electricity 
demand like power plants usually are, the stress on the transmission grid increases. 
Consequently, the volumes of congestion management will most likely increase in the 
future. In Germany, congestion management initially included the curtailment of renewable 
energies and separately the provision of redispatch via conventional power plants. 
Redispatch refers to a short-term adjustment of a scheduled generation or consumption of 
an asset to lower congestions in the transmission grid. In 2019, NABEG 2.0 integrated 
combined heat and power plants and the curtailment of renewable energies into a uniform 
regulatory regime, so that the most effective and cost-efficient plants can be called upon 
for redispatch [2]. The 'Redispatch 2.0' introduced in 2021 standardizes this even more and 
also integrates smaller, remotely controllable assets and electricity storages of a 
power  100 kW or more [3] into congestion management. Bidirectionally chargeable electric 
vehicles (bidirectional EVs) represent an alternative option to provide redispatch by 
adjusting their scheduled charging and discharging power and could thus be integrated 
into the redispatch process as well. In Germany, the goal has been set to integrate 15 million 
electric vehicles by 2030 [4]. Increasingly, these electric vehicles will be equipped with 
bidirectional charging management technology [5]. Consequently, bidirectional electric 
vehicles can potentially have a large impact on the provision of ancillary services. Therefore, 
this paper analyzes the impact of bidirectional EVs integrated in the European redispatch 
process on the dispatch and thus emissions of conventional power plants. 
Storages, and thus bidirectional EVs, reduce inter-temporal price volatility leading to 
smoothed electricity prices, while inter-regional price volatility may increase [6]. Regarding 
the provision of redispatch services, there are numerous papers that deal with stationary 
and mobile storages. Meyer-Huebner et al. show that preventive generator redispatch can 
be reduced by reserving positive or negative storage capacity by modeling a 5-bus test 
system with 192 timesteps [7]. However, they do not include bidirectional EVs and limit their 
investigations on a small-scale test system. Xiong et al. develop a two-stage model 
incorporating the day-head spot market and subsequent redispatch and find out that 
Power-to-Gas (PtG) assets providing redispatch services reduce the curtailment of 
renewable energies by 12% [8]. They model PtG assets like storages with time-depending 
constraints, but do not include mobile storages. Eickmann et al. also develop a two-stage 
model with a day-ahead market simulation followed by a redispatch evaluation [9]. They 
point out that pumped hydroelectric energy storages participating in the redispatch process 
reduce congestion management energy and costs. Müller et al. model time variant 
redispatch provided by virtual power plants that include biogas-combined heat and power 
plants, controllable loads and storage systems [10]. However, they do not include mobile 
storages and limit their optimization on Germany for 8h in 15 min time steps. Gutermuth et 
al. analyze the benefit of grid operator owned stationary storages by an hourly simulation 
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of the German transmission grid in 2030 showing a simplified iterative modeling approach 
to reduce complexity [11]. All aforementioned studies focus on stationary storages and limit 
the optimization to small-scale test systems, to only few timesteps or to simplified 
modeling. Since we want to evaluate the benefits of bidirectional EVs providing redispatch 
services in the large-scale European energy system, we set up a modeling of mobile 
storages, and analyze the complexity of the optimization with different parameterizations. 
There are also few studies that investigate bidirectional EVs integrated in the redispatch 
process. Staudt et al. model bidirectional EVs providing redispatch services in Germany but 
simplify the EV behavior and redispatch provision by a heuristic approach [12]. Thormann 
et al. model bidirectional EVs that provide redispatch focusing on the medium-voltage grid 
but simplify modeling by only comparing charging and discharging patterns with redispatch 
system needs [13]. We model the optimal operation of bidirectional EVs by realistic profiles 
and user behavior to show the influence of bidirectional EVs on the energy system. 

II. Modeling 
A. Two-stage market and transmission grid optimization in energy system 
model ISAaR 

Congestion management in the energy system model ISAaR (Integrated Simulation Model 
for Unit Dispatch and Expansion with Regionalization) is modeled in a two-step approach. 
First, a multi-energy market optimization run is conducted. One market area is represented 
by one node. Energy transfers between market areas are allowed up to maximum net 
transfer capacities (NTCs). In the following step, the resulting dispatch of generation, load 
and storage instances is taken as a base for the transmission grid optimization run, in which 
the costs of congestion management (curtailment of renewable energies and provision of 
redispatch services) are minimized. Here, a node represents a transmission grid node. For 
a more detailed description of the multi-energy market optimization, we refer 
to Kigle et al. [14]. The transmission grid optimization run is previously described in [15] 
and [16]. In this publication, we extend the transmission grid optimization by integrating 
mobile and stationary storages with a focus on bidirectional EVs. 

B. Time-dependent modeling of bidirectional EVs in multi-energy system 
model ISAaR 

Bidirectional EVs in the multi-energy system model ISAaR are modeled according to [17]. 
The most important constraint of a bidirectional EV is its time-coupled energy conservation 
as shown in (1). The state of the battery energy E at a time t is equal to the energy of the 
previous time step added by the charged energy 𝑃௜ሺ𝑡ሻ ∙ 𝜂௜ ∙ ∆t and subtracted by the 
discharged energy ௉೚ሺ௧ሻ∙∆୲

ఎ೚
 as well as the driving consumption 𝐸௖௢௡, where 𝜂௜ and 𝜂௢ refer to 

the fixed charging and discharging efficiency. 



Publications of the Author 

155 

𝐸ሺ𝑡ሻ ൌ 𝐸ሺ𝑡-1ሻ ൅ 𝑃௜ሺ𝑡ሻ ∙ 𝜂௜ ∙ ∆t െ
𝑃௢ሺ𝑡ሻ ∙ ∆t

𝜂௢
െ 𝐸௖௢௡ሺ𝑡ሻ (1)

The charge and discharge power of the EV supply equipment (EVSE) 𝑃௜ and 𝑃௢ are 
constrained by a maximum power 𝑃௜,௠௔௫ and 𝑃௢,௠௔௫ . The battery energy is further 
constrained by a minimum state of charge (SoC) at a connection of the EV to the EVSE and 
a minimum SoC at the departure of the EV. These constraints are included in the profile of 
the minimum energy 𝐸௠௜௡, which is applied in addition to the constraining maximum 
energy 𝐸௠௔௫ in (2). 

𝐸௠௜௡ ൑ 𝐸ሺ𝑡ሻ ൑ 𝐸௠௔௫ (2)

C. Modeling of the transmission grid optimization run 

The transmission grid is modeled at a regional resolution, with the highest level of detail 
for Germany and higher aggregation of transmission grid nodes for more distant countries. 
Figure 1 shows the mapping of the transmission network. For example, in Spain and 
Portugal, all nodes are aggregated into one, Great Britain has 10 nodes and Germany is 
mapped with 460 nodes. In total, this results in 1,580 nodes, which leads to a high 
complexity of the optimization problem. The transmission grid data is provided by the static 
grid models described in [16] and extended by the German [18] and European [19] grid 
development plants. Highly aggregated parallel transmission lines are modeled as direct 
current (DC) lines, since the reactance of the lines would otherwise become very small [20], 
resulting in an unrealistic load flow. 

 
Figure 1:  European transmission grid modeled in energy system model ISAaR 

Böing [15] describes the applied, linearized approximation of the non-linear alternating 
current (AC) load flow by applying a DC load flow based on PTDF (Power Transfer 
Distribution Factors). Assuming that there are no voltage drops (voltage amplitude is equal 
for all nodes), reactive power is neglected, line losses are neglected, and the voltage angle 
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differences are small, the simplification of a DC load flow is justified [21]. Since the reactive 
power consumption of the AC lines increases quadratically, modeling the AC load flow via 
a DC load flow is no longer permissible for high loads [22]. In addition, since line outages 
must be considered, the AC lines are limited to a maximum load of 70%, which represents 
the single outage contingency operational criterion (n-1) well [23]. The load flow of AC 
lines 𝑃௟௜௡௘,஺஼ is determined by the injections and withdrawals of grid nodes 𝑃௡௢ௗ௘ multiplied 
by the PTDF matrix according to (3). The PTDF matrix is formed by the incidence matrix A 
describing the grid topology and the diagonal matrix with line susceptances B according 
to (4). A detailed derivation of the equations can be found for example in [24], and [21]. 

𝑃௟௜௡௘,஺஼ ൌ 𝑃𝑇𝐷𝐹 ∙ 𝑃௡௢ௗ௘ (3)
𝑃𝑇𝐷𝐹 ൌ ሺ𝐵 ∙ 𝐴ሻ ∙ ሺ𝐴் ∙ 𝐵 ∙ 𝐴ሻିଵ (4)

The converters at the end and at the beginning of a DC line can fully control its power 
flow [24]. Therefore, line flow from a node x to a node y can be modeled via a transport 
model according to (5): 

𝑃௟௜௡௘,஽஼ ൌ 𝑃௫→௬ (5)

D. Modeling of congestion management via power plants and renewable 
energies 

To model congestion management, a few constraints are introduced. Equation (6) shows 
the power balance based on electrical output of the market run, the optimized output, and 
the redispatch provisions of conventional power plants. The result of the marked 
optimization run PM,pp for each power plant pp is set as a fixed bound. The electrical 
output (Po,pp) is optimized under consideration of positive (Pp,pp) and negative (Pn,pp) 
redispatch services. The lower and upper bounds of the redispatch services are shown in (7) 
and (8). 

𝑃௢,௣௣ሺ𝑡ሻ െ 𝑃௣,௣௣ሺ𝑡ሻ ൅ 𝑃௡,௣௣ሺ𝑡ሻ ൌ 𝑃ெ,௣௣ሺ𝑡ሻ (6)
0 ൑ 𝑃௡,௣௣ሺ𝑡ሻ ൑ 𝑃ெ,௣௣ሺ𝑡ሻ (7)

0 ൑ 𝑃௣,௣௣ሺ𝑡ሻ ൑ 𝑃௢,௠௔௫,௣௣ሺ𝑡ሻ െ 𝑃ெ,௣௣ሺ𝑡ሻ (8)

Variable renewable energy sources (vRES) are modeled without variable operational cost. 
Therefore, all vRES operate at maximum output in the market optimization run and no 
positive redispatch is possible through vRES. Thus, Equation (6) is shortened to (9), 
where 𝑃௖,௩ோாௌ represents the curtailment of vRES, 𝑃ெ,௩ோாௌ the output of the market run 
and 𝑃௢,௩ோாௌ the electrical output of the transmission grid run. Equation (10) restricts the 
curtailment of vRES.  

𝑃௢,௩ோாௌሺ𝑡ሻ ൅ 𝑃௖,௩ோாௌሺ𝑡ሻ ൌ 𝑃ெ,௩ோாௌሺ𝑡ሻ (9)
0 ൑ 𝑃௖,௩ோாௌሺ𝑡ሻ ൑ 𝑃ெ,௩ோாௌሺ𝑡ሻ (10)



Publications of the Author 

157 

E. Modeling of congestion management via stationary and mobile 
storages 

The modeling of congestion management with electricity storage systems is challenging 
due to their time-coupling constraints [15]. Modeled storage systems in ISAaR include 
pumped hydroelectric energy storages, stationary battery storages and bidirectional EVs. 
The transmission grid optimization run is conducted parallel with several subproblems to 
save time and to keep the problem solvable. The whole optimization period of 8760 h for 
an annual simulation is therefore divided into equal time slices. At the first timestep of a 
time slice, the preceding storage level is unknown because there is no link between the 
parallel optimized time slices. Therefore, the storage level at the end of a time slice is fixed 
to the result of the market optimization run and the same value is handed over to the next 
time slice to maintain a coupling (of the time slices) as shown in Figure 2.  

 

Figure 2:  Schematic modeling of the restricted storage fill level at the start and the end of 
a time slice  

By changing the length of the time slice, the flexibility of the storage operation while 
providing congestion management is affected. Due to the fixed storage level at the end of 
each time slice, every change of operation from the market schedule is limited. Therefore, 
shorter time slices lead to a bigger limitation of flexibility of the storages. Thus, long time 
slices are recommended to avoid unrealistic restrictions on modeling. 
To calculate the redispatch services of storage systems st, (6) is extended by the input 
power 𝑃௜,௦௧, resulting in (11). The power balance of storage systems providing redispatch 
services differs from normal power plants, because of the bidirectional power flow. A 
reduction in charging power as well as an increase in discharging power causes positive 
redispatch. On the other hand, a reduction in discharging power as well as an increase in 
charging power causes negative redispatch. The upper bounds of the redispatch variables 
are shown in (12) and (13): Appendix A visualizes the flexibility limits of congestion 
management provision by storages. 

െ 𝑃௜,௦௧ሺ𝑡ሻ ൅ 𝑃௢,௦௧ሺ𝑡ሻ െ 𝑃௣,௦௧ሺ𝑡ሻ ൅ 𝑃௡,௦௧ሺ𝑡ሻ ൌ 𝑃ெ,௦௧ሺ𝑡ሻ (11)
0 ൑ 𝑃௡,௦௧ሺ𝑡ሻ ൑ 𝑃௜,௠௔௫,௦௧ ൅ 𝑃ெ,௦௧ሺ𝑡ሻ (12)
0 ൑ 𝑃௣,௦௧ሺ𝑡ሻ ൑ 𝑃௢,௠௔௫,௦௧ െ 𝑃ெ,௦௧ሺ𝑡ሻ (13)
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F. Cost optimization of congestion management 

The transmission grid run minimizes the total system costs C under consideration of 
congestion management. These costs C shown in (14) result from the specific costs ft,n,i and 
the utilization of the optimization variables xt,n,i for all time steps t, nodes n and instances i. 
Variable xt,n,i include generation, consumption and import of all modeled energy carriers. 
Investment decisions in instances of any elements of the energy system model are fixed for 
the transmission grid run and thus not included in the system costs. 

𝐶 ൌ 𝑚𝑖𝑛 ෍ ෍ ෍ሺ𝑓௧,௡,௜ ∙ 𝑥௧,௡,௜ሻ
௜஫ூ೙௡஫ே௧஫்

 (14)

Costs of congestion management are also included in (14). Appendix B visualizes the 
applied order of instances providing congestion management. Costs for positive redispatch 
and revenues for negative redispatch services of power plants are set dependent on the 
specific operational costs of every individual plant. The operational costs get a surcharge 
to avoid unnecessary redispatch provisions. The revenues of curtailing vRES are set to zero. 
Due to this, it is ensured, that the power plant with the highest operational costs reduces 
its output first, while vRES is curtailed last. Costs of storages for positive redispatch are 
assumed to be low at 5 €/MWh; revenues of storages for negative redispatch are slightly 
lower. 

III. Results 
A. Market run results 

Our evaluation scenario for the year 2030 is based on the ‘SolidEU’ scenario of the 
eXtremOS research project [1]. The scenario is characterized by a joint European 
decarbonization strategy reaching a reduction in greenhouse gas (GHG) emissions of 55% 
by 2030 with respect to 1990 levels. For an updated modeling of the German climate targets, 
the German targeted high installed capacities of vRES in 2030 according to the coalition 
agreement are taken into account [25]. The scenario does not exogenously quantify the 
share of smart and bidirectional EVs. These shares are optimized endogenously as 
described in [17]. The optimization of the energy markets in 2030 leads to the generation 
and storage capacities for the EU in 2030 shown in Table 1 compared to the capacities 
in 2020. The installed generation capacities show a sharp increase in vRES capacities, while 
many coal-fired and nuclear power plants are shut down. Further, Table 1 shows the 
integrated mobile and stationary storage capacities. Mobile storages refer to bidirectional 
EVs and stationary storages include large-scale battery system and pumped hydroelectric 
energy storages participating in the electricity day-ahead market. Storage capacities 
increase significantly by 2030 to balance volatile generation from vRES. Installed power 
plant, renewable energies, and storage capacities per country and per transmission grid 
node are shown in Appendix C. 
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Table 1:  Generation and storage capacities resulting from the market run for the EU in 
2030 compared to 2020 

 Wind PV Nuclear Coal Gas Mobile 
storage 

Stat.  
storage 

EU 2020 200 
GW 

140 
GW 

120 
GW 

130 
GW 

250 
GW 

0 
GWh 

530 
GWh 

Scenario EU 
2030 

520 
GW 

910 
GW 

90 
GW 

50 
GW 

260 
GW 

790 
GWh 

710 
GWh 

B. Computation time analysis of transmission grid run 

The computation time of the grid optimization run in the model ISAaR depends on many 
different parameters. The optimization problem of the computation time analysis is limited 
to a horizon of 672 hours and is based on the scenario described in 0. The varied parameters 
include the length of the time slices and the number of threads for each parallel run. In an 
additional evaluation case, ‘no ST’, the influence of storage systems is investigated by 
excluding storage systems from the congestion management. Table 2 shows the work units, 
optimization time and RAM usage for the considered evaluation scenarios. The hardware 
of the system and an explanation of the evaluation values is described in Appendix D. 
The results in Table 2 indicate the following: As the size of the time slice increases, there is 
generally an increase in complexity accompanied by an increase in optimization time and 
in RAM usage per run. Excluding storages from the congestion management run slightly 
lowers complexity. An increased number of threads per run with fewer parallel runs 
decreases the work units for the time slice of 168 hours. Time slices of 336 and 672 hours 
are not computable on the specified hardware (Appendix D). 
Table 2: Computation time analysis of different parameter sets and their impact on the 

optimization time 

No. of 
analysis 

Parameter variation: 
work units optimization time 

(h) 
RAM usage per run 

(GB) time 
slice 

parallel 
runs 

threads per 
run 

1 6 4 6 31,430 2 14 
2 48 4 6 154,010 6.75 40 
3 168 4 6 191,190 7.75 110 
4 168* 4 6 178,050 6.75 110 
5 168 2 12 114,600 7.75 110 
6 336 2 12 -** - 265 
7 62 1 24 -*** - - 

* No storages  
** No results, since the optimization cannot be performed parallel due to a lack of random-access 
memory (RAM)  
*** No results, since the model is too big to solve 
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Appendix D also discusses the differences in the results of the first 3 investigation scenarios. 
Since the flexibility of bidirectional EVs is very much limited for smaller time slices and the 
computation time for the 168h time slice is not significantly higher, we use a time slice 
length of 168 hours with two parallel runs for the simulations in the following. 

C. Added value of bidirectionally chargeable EVs providing redispatch 
services 

In the following, the effects of bidirectional EVs on the congestion management process 
are shown based on two different transmission grid runs. In scenario Ref, we perform an 
optimization of the provision of congestion management services without bidirectional EVs. 
In the BCM scenario, bidirectional EVs (but no other storage units) are included in the 
congestion management process. Figure 3 shows the volumes of congestion management 
measures per country and for different technologies for the BCM run, Figure E1 (Appendix E) 
shows in comparison the congestion management of the run Ref. Displayed are those nine 
countries with the highest volumes of congestion management. In scenario Ref, there is a 
total volume of positive congestion management of 600 TWh compared to a total electricity 
production of just under 5,000 TWh. This indicates an overall congested grid situation due 
to the strong electrification and expansion of vRES. The results show that bidirectional EVs 
provide congestion management in many countries. Overall, 26 TWh or 4% less positive 
redispatch is provided by conventional power plants in the BCM scenario. Positive 
redispatch of backup capacities (‘Slack’) is even reduced by 13.5 TWh (16%). The curtailment 
of vRES decreases by 23 TWh or 5% and the provision of negative redispatch from 
conventional power plants decreases by 9 TWh in the BCM scenario, mainly by nuclear 
power plants. Thus, a total of 17 TWh less electricity is generated from conventional power 
plants leading to a reduction of emissions of 12 mio. t CO2. 

  
Figure 3:  Congestion management per country split up in different technologies for the 

BCM optimization run 

The maps in Figures F1 and F2 (Appendix) show the location of the negative and positive 
congestion management, respectively. Additionally, the medium line usage of the modeled 
AC and DC lines is shown. The share of negative redispatch compared to the amount of 
curtailment is quite small. It is noticeable that curtailed vRES are mainly located in coastal 
areas in the north of Europe beside the aggregated grid nodes in the south of Italy. Positive 
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redispatch must be provided on the other side of the congestions, especially in areas with 
high demand. 
The maps in Figure 4 and Appendix G show the positive and negative congestion 
management per grid node split up into different technologies for the Ref and the BCM 
scenario. The negative congestion management in the coastal areas of Europe is mainly 
caused by wind turbines. Bidirectional EVs provide more than the half of the negative 
redispatch, 120 TWh of 230 TWh in total. The positive redispatch of bidirectional EVs is 
slightly lower due to losses of additional charging and discharging. As bidirectional electric 
vehicles are decentralized distributed, they can contribute greatly to both negative and 
positive congestion management. 

 

Figure 4: Positive congestion management per grid node split up in different 
technologies, run BCM 

IV. Discussion 
Our results indicate that bidirectional EVs can play a large part in congestion management 
in the future energy system, leading to added value on many levels: Due to the 
decentralized distribution of bidirectional EVs, they can provide congestion management 
at numerous nodes in the transmission grid. This reduces the positive redispatch of 
conventional power plants by 4%. The use of backup power plants is even reduced by 16% 
leading to saved costs and CO2 emissions. 
Our modeling of congestion management by bidirectional EVs has several limitations that 
must be considered. The length of the integrated optimized time slice was set to one week, 
in whose last time step the storage level is fixed. This limits the flexibility of bidirectional 
EVs. However, since perfect foresight does not exist in reality either, this is an acceptable 
limitation. Regarding the load flow calculation and the mapping of the electricity grid, 
several simplifications have been made. Voltage levels below the extra-high voltage level 
are not modeled and loads and generations are aggregated to the transmission grid nodes. 
The calculated load flow is a linearization of the AC load flow, resulting in deviations from 
the real load flow. However, since the grid optimization run already leads to a very high 
complexity due to the time coupling of the bidirectional EVs, these simplifications are 
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necessary to ensure computability. Furthermore, the correct regionalization of elements is 
associated with uncertainties. For example, the negative redispatch of a few nuclear power 
plants in France revealed their incorrect regionalization. Due to a too-low grid connection, 
their full power could not be fed into the system. The future grid connection points of wind 
offshore plants have also not yet been determined in some cases, so that problems arose 
here in feeding their energy into the system. 
Overall, due to high congestion management, the modeled transmission grid does not 
appear to be designed for the installed capacities of wind and PV energy resulting from the 
market run, although planned grid expansion projects have been considered. Resulting 
congestion management volumes in Germany around 330 TWh are more than 10 times as 
much as real volumes in 2020 of around 23 TWh [26]. One possible explanation is the lack 
of modeled overhead line monitoring and high-temperature transmission lines, which 
underestimates the thermal capacities of the transmission grid [27]. Nonetheless, the 2030 
grid simulations reveal major challenges in integrating renewables into the system. Here, 
bidirectional EVs can demonstrably support the provision of congestion management to 
reduce the curtailment of renewable energies and thus ultimately also bring about a 
reduction in CO2 emissions. 

V. Conclusion 
Due to the increasingly reduced capacities of conventional power plants, a future alternative 
provision of congestion management is of great importance. In this paper, we developed 
an approach that allows modeling of European congestion management with storage 
despite the high complexity of time-coupled conditions. Our results show that bidirectional 
electric vehicles (EVs) can take over a significant share of congestion management in the 
future energy system and thus save costs and CO2 emissions. This gives stakeholders in the 
energy industry and politics the task of creating regulatory framework conditions to enable 
an integration of bidirectional (EVs) into the process of congestion management. 
Funding: The described work is conducted within the project BCM by Forschungsgesellschaft für 
Energiewirtschaft mbH and funded by Bundesministerium für Wirtschaft und Klimaschutz (BMWK) 
under the funding code 01MV18004C. 
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Appendix 
A. Flexibility limits of congestion management provision by storages 

 
Figure A1:  Flexibility limits of congestion management provision by storages 

B. Applied order of congestion management provision 

 
Figure B1:  Applied order of congestion management provision 
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C. Installed capacities 

 
Figure C1:  Installed capacities of different technologies per grid node 

 
Figure C2:  Installed capacities for different technologies, countries with higher capacities 

than 25 GW 

D. Computation time analysis 

The used computation server has the following specifications: 
 operating system: Linux 
 Solver: Gurobi Optimization [28] 
 2x AMD EPYC 7F52 – 16 Core 
 1008 GB RAM  

The ‘work unit’ value in Table 2 is a unit that measures the work spent on an optimization 
problem. It is a deterministic unit thus the same amount of work is needed when optimizing 
the same problem with the same set of parameters and the same hardware. The 
optimization time is not deterministic, meaning it will take probably a different time to solve 
the same problem with the same set of parameters and the same hardware. But the 
optimization time is the point of interest for the modelers, since this time indicates how 
long it takes to obtain results. We do this analysis without any parallel running process on 
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the server, so all capacities can be used for solving the problem trying to reduce other 
influences on the optimization time. The shown optimization time displays the time from 
the start of an optimization till its end and is not the totaled time of every (partly) parallel 
conducted run.  
The following Figure D1 shows the storage fill level of runs 1 to 3 in Table 2 in comparison 
with the market run, for one exemplary week at an exemplary grid node. It can be seen that 
the light blue line always has to reach the market result after every sixth hour and thus is 
not as flexible as the dark blue and red line, respectively. It is noticeable that the second 
and third transmission grid runs (time slices: 48 h, 168 h) are quite similar during the mid-
hours of a 48 h time slice but differ in the hours around the end of one slice and the start 
of another (marked by dashed lines). This shows that long time slices enable more flexibility 
to the system to reach a cost optimal solution.  

 
Figure D1: Comparison of storage fill levels from different parametrized optimization runs 

for an exemplary week at an exemplary grid node 

E. Congestion management per country split up in different technologies 
for the Ref run  

 

Figure E1:  Congestion management per country split up in different technologies for the 
Ref run 
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F. Congestion management and mean line usage for the BCM 
optimization run 

 
Figure F1:  Negative congestion management and mean line usage for the BCM 

optimization run 

 
Figure F2: Positive congestion management and mean line usage for the BCM optimization 

run 
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G. Congestion management per type for the BCM and Ref optimization 
run 

 
Figure G1:  Negative congestion management per grid node split up in different 

technologies, run BCM 

 
Figure G2:  Negative congestion management per grid node split up in different 

technologies, run Ref 

 
Figure G3:  Positive congestion management per grid node split up in different 

technologies, run Ref 
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