
TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Engineering and Design

Perception of vehicles and place recognition in urban
environment based on MLS point clouds

Yan Xia

Dissertation

2022

1

TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Engineering and Design

Perception of vehicles and place recognition in urban
environment based on MLS point clouds

Yan Xia

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Marco Körner

Prüfer*innen der Dissertation: 1. Prof. Dr.-Ing. Uwe Stilla

2. Prof. Dr. Daniel Cremers

3. Prof. Dr.-Ing. habil. Yusheng Xu

Tongji Universität / Shanghai / China

Die Dissertation wurde am 14.10.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Engineering and Design am 14.03.2023 angenommen.

3

Abstract

As a cornerstone of achieving autonomous driving, recognition of urban street environments has

drawn attention increasingly in the fields of photogrammetry, computer vision, and robotics.

Point clouds, acquired via mobile laser scanning, can provide detailed 3D information during

driving for recognizing the 3D urban street environments.

In this thesis, point cloud based place recognition, 3D vehicle detection and tracking, and 3D

shape completion methods are developed to achieve localization of the current scene within

an existing 3D map and status analysis of the dynamic vehicles during the driving. Hereby,

the thesis provides contributions on the following three core aspects: (i) global descriptors for

localizing the current scene, (ii) a vehicle detection and tracking method for avoiding obstacles,

and (iii) shape completion for visualizing the complete shape of the object.

To design robust and discriminative global descriptors of point clouds, the local orientations

among the raw 3D points and the long-range context information are encoded. The point-

wise features and voxel-wise features are also fused via a transformer network to enhance the

representation ability of global descriptors. In the 3D vehicle detection and tracking method,

both a detector and a lightweight tracker are proposed. The spatial-temporal correlations are

explicitly leveraged via a voting unit for improving tracking speed and accuracy. To complete 3D

partial point clouds robustly and accurately, improving the global features, refining the coarse

results, and learning prior information are investigated. The global features can be enhanced

by fusing both low-level and high-level feature information. A refinement unit is introduced

to retain the information of incomplete inputs. In addition, learning prior information can be

achieved by designing an asymmetrical Siamese auto-encoder network.

All proposed methods were evaluated by extensive experiments with different benchmark

datasets, like the Oxford RobotCar and TUM City Campus datasets. For the point cloud

based place recognition, the performance on the Oxford RobotCar and TUM datasets reaches

a recall of 95% and 86%, respectively. For vehicle detection and tracking, an overall detection

precision of about 68% can finally be achieved on the TUM dataset and a tracking precision

can be achieved up to 93% on the KITTI dataset. Notably, the tracking performance on the

NuScenes dataset reaches ∼10% improvement on average compared with previous state-of-the-

art methods. As for the 3D shape completion, an average Chamfer Distance of only 6.68× 10−4

on the Completion3D benchmark is achieved.

5

Kurzfassung

Als Eckpfeiler für das autonome Fahren hat die Erkennung von städtischen Straßenumgebungen

in den Bereichen Photogrammetrie, Computer Vision und Robotik zunehmend an Bedeutung

gewonnen. Punktwolken, die durch mobiles Laserscanning erfasst werden, können während des

Fahrens detaillierte 3D-Informationen für die Erkennung der 3D-Umgebung städtischer Straßen

liefern.

In dieser Arbeit werden Methoden zur punktwolkenbasierten Ortserkennung, 3D-

Fahrzeugerkennung und -verfolgung sowie zur 3D-Formvervollständigung entwickelt, um

eine Lokalisierung der aktuellen Szene innerhalb einer bestehenden 3D-Karte und eine Status-

analyse der dynamischen Fahrzeuge während der Fahrt zu erreichen. Dabei liefert die Arbeit

Beiträge zu den folgenden drei Kernaspekten: (i) globale Deskriptoren zur Lokalisierung der

aktuellen Szene, (ii) ein Fahrzeugerkennungs- und -verfolgungsverfahren zur Vermeidung von

Hindernissen und (iii) Formvervollständigung zur Visualisierung der vollständigen Form des

Objekts.

Um robuste und aussagekräftige globale Deskriptoren für Punktwolken zu entwickeln, werden

die lokalen Orientierungen zwischen den rohen 3D-Punkten und die weitreichenden Kontextin-

formationen erfasst. Die punktweisen Merkmale und voxelweisen Merkmale werden auch Ã¼ber

ein Transformatorennetzwerk fusioniert, um die Darstellungsfähigkeit der globalen Deskriptoren

zu verbessern. Für die 3D-Fahrzeugerkennung und -verfolgung werden sowohl ein Detektor als

auch ein Tracker vorgeschlagen. Die räumlichen und zeitlichen Korrelationen werden über einer

expliziten Zustimmeinheit, um die Verfolgungsgeschwindigkeit und -genauigkeit zu verbessern.

Um 3D-Teilpunktwolken robust und genau zu vervollständigen, werden die Verbesserung der

globalen Merkmale, die Verfeinerung der groben Ergebnisse und das Lernen von Vorinformatio-

nen untersucht. Die globalen Merkmale können verbessert werden, indem sowohl Low-Level- als

auch High-Level-Merkmalsinformationen zusammengeführt werden. Eine Verfeinerungseinheit

wird eingeführt, um Informationen aus unvollständigen Eingaben zu erhalten. Darüber hinaus

kann das Erlernen von Vorwissen durch die Entwicklung eines asymmetrischen siamesischen

Autoencodernetzwerks erreicht werden.

Alle vorgeschlagenen Methoden wurden durch umfangreiche Experimente mit verschiedenen

Benchmark-Datensätzen, wie Oxford RobotCar und TUM City Campus Dataset, evaluiert.

Bei der punktwolkenbasierten Ortserkennung erreicht die Leistung auf dem Oxford RobotCar-

und dem TUM-Datensatz einen Recall von 95% bzw. 86%. Für die Erkennung und Verfol-

gung von Fahrzeugen kann schließlich eine Erkennungsgenauigkeit von etwa 68% im TUM-

Datensatz und für die Verfolgung eine Genauigkeit bis zu 93% im KITTI-Datensatz erreicht

werden. Insbesondere die Verfolgungsleistung auf den NuScenes-Datensatz erreicht eine durch-

schnittliche Verbesserung von 10% im Vergleich zu früheren State-of-the-Art-Methoden. Bei

der Vervollständigung von 3D-Formen wird eine durchschnittliche Chamfer Distance von nur

6.68× 10−4 im Completion3D-Benchmark erreicht.

7

Contents

Abstract 3

Kurzfassung 5

Contents 7

List of Abbreviations 11

List of Figures 13

List of Tables 15

1 Introduction 15

1.1 Motivation . 15

1.2 Related work . 18

1.2.1 Point cloud based place recognition . 19

1.2.2 3D vehicle detection and tracking . 22

1.2.3 3D shape completion . 24

1.3 Objectives and contributions . 26

1.3.1 Point cloud based place recognition . 27

1.3.2 3D vehicle detection and tracking . 27

1.3.3 3D shape completion . 27

1.4 Structure and organization . 28

2 Basics 29

2.1 Point-based learning methods . 29

2.1.1 PointNet . 29

2.1.2 PointNet++ . 30

2.2 Deep metric learning . 30

2.2.1 Distance metric . 31

2.2.2 Siamese network . 33

2.2.3 Loss functions . 33

2.3 Transformer . 36

2.3.1 Attention . 37

2.3.2 Position-wise FFN . 37

2.3.3 Residual connection and normalization . 38

2.3.4 Positional encoding . 39

3 Point Cloud based Place Recognition 41

3.1 Problem statement . 41

3.2 Self-Attention and Orientation Encoding Network (SOE-Net) 41

3.2.1 Local descriptor extraction . 42

3.2.2 Feature aggregation . 43

3.2.3 Loss function . 44

3.2.4 Implementation details . 46

8 Contents

3.3 Cross Attention Single Scan Place Recognition (CASSPR) 46

3.3.1 Spherical representation and point-voxel fusion 47

3.3.2 Hierarchical cross-attention transformer . 47

3.3.3 Lightweight self-attention unit . 49

3.3.4 Loss function . 51

4 3D Vehicle Detection and Tracking 53

4.1 Problem statement . 53

4.2 3D vehicle detection . 54

4.2.1 Pre-processing . 54

4.2.2 PointPillars . 55

4.2.3 Post-processing . 57

4.3 Detector-free Motion prediction based 3D Tracking network (DMT) 57

4.3.1 Backbone . 58

4.3.2 Motion prediction module . 59

4.3.3 Explicit voting module . 60

4.3.4 Loss function . 61

4.3.5 Implementation details . 62

5 3D Shape Completion 65

5.1 Problem statement . 65

5.2 Vehicle Point Completion Network (VPC-Net) . 65

5.2.1 Encoder . 67

5.2.2 Decoder . 69

5.2.3 Refiner . 70

5.2.4 Loss function . 70

5.2.5 Implementation details and training process . 71

5.3 Asymmetrical Siamese Feature Matching Network (ASFM-Net) 72

5.3.1 Asymmetrical Siamese auto-encoder . 72

5.3.2 Refinement unit . 75

5.3.3 Loss function . 75

6 Experiments 77

6.1 Experimental design . 77

6.2 Experimental datasets . 78

6.2.1 Oxford RobotCar and In-house datasets . 78

6.2.2 TUM City Campus dataset . 78

6.2.3 USyd Campus dataset . 81

6.2.4 3D vehicle dataset . 81

6.2.5 PCN dataset and Completion3D benchmark . 84

6.2.6 KITTI 3D object detection dataset . 85

6.2.7 NuScenes dataset . 86

6.3 Evaluation metrics . 86

6.3.1 Evaluation metric of point cloud based place recognition 86

6.3.2 Evaluation metric of 3D object detection and tracking 87

6.3.3 Evaluation metric of 3D shape completion . 88

7 Results and Analysis 89

7.1 Point cloud based place recognition results . 89

7.1.1 SOE-Net . 89

7.1.2 CASSPR . 92

7.2 Detection and tracking results . 95

7.2.1 Vehicle detection . 95

7.2.2 DMT . 98

Contents 9

7.3 Shape completion results . 101

7.3.1 VPC-Net . 101

7.3.2 ASFM-Net . 103

8 Discussion 109

8.1 Discussion on place recognition . 109

8.1.1 SOE-Net . 109

8.1.2 CASSPR . 111

8.2 Discussion on detection and tracking . 113

8.2.1 Ablation studies . 113

8.2.2 The choice of motion prediction module . 114

8.2.3 Template generation strategy . 114

8.2.4 Sampling distance for training EVM . 114

8.2.5 Number of sampled training points . 115

8.2.6 Robustness test for object motion patterns . 116

8.3 Discussion on 3D shape completion . 116

8.3.1 VPC-Net . 116

8.3.2 ASFM-Net . 121

8.3.3 Application . 123

9 Conclusion and Outlook 127

9.1 Conclusion . 127

9.2 Outlook . 128

Bibliography 131

Acknowledgment 145

11

List of Abbreviations

Abbreviation Description Page

RADAR Radio Detection and Ranging 15
LiDAR Light Detection and Ranging 15
MLS Mobile Laser Scanning 15
GPS Global Positioning System 16
SLAM Simultaneous Localization and Mapping 16
DTMO Detection and Tracking of Moving Objects 17
BEV Bird’s Eye View 22
VFE Voxel Feature Encoder 22
RPN Region Proposal Network 22
MLP Multilayer Perceptions 27
SOT Single Object Tracking 27
STN Spatial Transform Network 27
PFE Point Feature Enhancement 28
FPS farthest point sampling 30
FFN Feed-Forward Network 37
MHSA Multi-Head Self-Attention 39
PointOE Point Orientation Encoding 41
UTM Universal Transverse Mercator 41
FC Fully Connected 42
OE Orientation Encoding 42
S8N Stacked 8-neighborhood Search 43
HPHN Hard Positive Hard Negative 42
HCAT Hierarchical Cross-Attention Transformer 46
LSA Lightweight Self-Attention 50
GeM Generalized Mean 11
FPN Feature Pyramid Network 46
TConv Transposed Convolution 46
CAT Cross Attention Transformer 47
DPSA Dot-Product Self-Attention 49
NMS Non Maximum Suppression 54
IoU Intersection over Union 87
BAFF Box-aware Feature Fusion 58
MPM Motion Prediction Module 59
LSTM Long Short-Term Memory 60
EVM Explicit Voting Module 60
CD Chamfer Distance 70
EMD Earth Mover’s Distance 70
PN PointNet 73
INS Inertial Navigation System 79
RTK Real-time Kinematic 79
ECEF Earth-centered, Earth-fixed 80
LLA Latitude, Longitude and Altitude 80
AP Average Precision 87
AUC Area Under the Curve 87

12 List of Abbreviations

Abbreviation Description Page

OPE One Pass Evaluation 88
IOU Intersection Over Union 88
FLOP floating point operations 99
FD Fidelity Distance 105
MMD Minimal Matching Distance 105
ICP Iterative Closest Point 119

13

List of Figures

1.1 Illustration of general tasks for navigating an autonomous vehicle 16
1.2 Three-step workflow for recognition of 3D urban street environment from MLS point clouds . 17
1.3 Challenges for recognition of 3D urban street environment from MLS point clouds 18

2.1 The network architecture of PointNet . 30
2.2 The hierarchical architecture of PointNet++. 30
2.3 The network architecture of a Siamese network. 34
2.4 An example of a pairwise ranking loss setup . 35
2.5 An example of a triplet ranking loss setup . 36
2.6 Three types of triplets . 36
2.7 Overview of the Transformer architecture . 38

3.1 Overview of SOE-Net architecture . 42
3.2 The architecture of PointOE module . 42
3.3 The workflow of OE unit . 43
3.4 The workflow of the self-attention unit . 44
3.5 The overall network architecture of CASSPR . 46
3.6 Visualization of the points difference between the original and after quantization 48
3.7 The architecture of one Cross-Attention Transformer . 49
3.8 Decomposition of positional encoding . 50

4.1 The pipeline of the vehicle detector . 54
4.2 The network architecture of the pillar feature encoding . 55
4.3 The network architecture of the 2D backbone . 56
4.4 The overview of DMT . 58
4.5 The workflow of box-aware feature fusion (BAFF) module 59
4.6 The overall pipeline of an explicit voting module (EVM) 60

5.1 Visualization of the incomplete and completed point clouds of vehicles in raw scans 66
5.2 Workflow of the proposed VPC-Net. 67
5.3 The network architecture of VPC-Net. 67
5.4 The architecture of T-Net in the encoder of VPC-Net. 68
5.5 The detailed concatenating operation in the decoder of VPC-Net. 69
5.6 Visualization of the VPC-Net training process . 71
5.7 Illustration of the feature matching strategy in ASFM-Net 73
5.8 The overall architecture of ASFM-Net . 73
5.9 The network architecture of PCN . 74
5.10 The network architecture of asymmetrical Siamese auto-encoder in ASFM-Net 74

6.1 Examples of the downsampled point clouds from Oxford RobotCar, U.S., R.A., and B.D. . . . 79
6.2 Point clouds of Arcisstrasse from the TUM City Campus dataset. 80
6.3 TUM City Campus dataset . 80
6.4 TUM City Campus dataset preprocessing . 81
6.5 Visualization of the trajectory that repeatedly drives through TUM city campus 82
6.6 The downsampled point clouds from the TUM dataset . 83
6.7 Visualization of the trajectory on the USyd dataset . 84

14 List of Figures

6.8 The downsampled point clouds from the USyd dataset . 85
6.9 Examples of CAD models and sampled point clouds of vehicle instances from the ShapeNet

dataset . 86
6.10 The pipeline of partial input generation. 86
6.11 Example frames of the ’City’ category from the KITTI dataset 87

7.1 Average recall of SOE-Net tested on Oxford RobotCar . 89
7.2 Visualizations of example retrieval results of SOE-Net on benchmark datasets 91
7.3 Average recall of CASSPR tested on the TUM dataset. 92
7.4 Visualizations of example retrieval results of CASSPR on the TUM dataset 94
7.5 Visualizations of vehicle detection results on the KITTI benchmark 97
7.6 Visualizations of vehicle detection results on the TUM dataset 97
7.7 Comparisons of tracking accuracy and speed of different trackers 98
7.8 Visualizations of example results of DMT compared with BAT on the KITTI dataset 100
7.9 Visualizations of vehicle tracking results of DMT compared with BAT on the TUM dataset . . 101
7.10 Completed 3D point clouds using real-scan data from the KITTI dataset 103
7.11 Completed 3D point clouds using real-scan data from the TUM dataset 104
7.12 Qualitative comparison on known categories on the Completion3D benchmark and the PCN

dataset . 106
7.13 Qualitative comparison on the KITTI dataset . 107

8.1 Average recall of CASSPR tested on USyd with different maximum distance of points 112
8.2 Comparison of using various regression or prediction models 114
8.3 Robustness test for object motion patterns . 116
8.4 Visualizing point distances between the completed point clouds with ground truth 117
8.5 Completeness on the tested datasets . 118
8.6 Qualitative results on the inputs with different amounts of missing content 118
8.7 Qualitative comparison of point cloud registration task with different inputs 120
8.8 Qualitative comparison on inputs with different visible ratios 122
8.9 Qualitative point cloud completion result on the novel categories 123
8.10 Application to 3D traffic monitoring . 124

15

List of Tables

6.1 Number of training and testing submaps on different datasets 78

7.1 The average recall for different networks . 90
7.2 Average recall for different networks trained on Oxford RobotCar, U.S. and R.A. 90
7.3 Average recall for different models trained on the TUM dataset 92
7.4 Average recall for each of the models trained on the USyd dataset 93
7.5 Average recall for each of the models trained on the Oxford RobotCar, U.S. and R.A. 95
7.6 The definition of difficulties in the KITTI benchmark. 96
7.7 Average precision for the proposed detector tested on the KITTI and TUM datasets 96
7.8 Results of the Success and Precision of different 3D trackers 99
7.9 Computational cost requirements of different 3D single object trackers 100
7.10 Vehicle tracking results compared with BAT on the TUM dataset 101
7.11 Completion results of the ShapeNet dataset . 102
7.12 Quantitative comparison on known categories on the PCN dataset 104
7.13 Quantitative comparison on known categories on the Completion3D benchmark 105
7.14 Fidelity distance and consistency comparison on the KITTI dataset 105

8.1 Ablation studies of self-attetnion unit and PointOE module on Oxford RobotCar 109
8.2 Results of the average recall of SOE-Net trained with different losses 110
8.3 Results of the average recall of different global descriptor dimensions on Oxford RobotCar . . 110
8.4 Margin analysis in the HPHN quadruplet loss . 111
8.5 Ablation studies of HCAT and LSA on the TUM dataset 111
8.6 Results of the average recall for CASSPR with different number of LSA units 112
8.7 Computational cost requirements of different 3D global descriptors on the TUM dataset . . . 113
8.8 Ablation studies of MPM and EVM on KITTI-Car . 113
8.9 Different strategies for template generation. 3D trackers are evaluated on KITTI-Car. 115
8.10 Sampling distance analysis for DMT . 115
8.11 Sampling point number analysis for DMT . 115
8.12 Performance comparison of the proposed VPC-Net with different components 117
8.13 Quantitative results on inputs with different amounts of missing content 119
8.14 Averaged rotation and translation errors of point cloud registration using different inputs. . . 120
8.15 Quantitative comparison of point cloud registration task with different inputs. 120
8.16 Ablation studies of asymmetrical Siamese auto-encoder and refinement unit in ASFM-Net . . 121
8.17 Quantitative comparison on known categories under different visible ratios 122
8.18 Quantitative comparison on novel categories . 123

15

1 Introduction

1.1 Motivation

Traffic accidents are a leading source of disability and mortality worldwide. Every year, 1.2 million

people are killed and up to 50 million people are injured [Stavens, 2011]. Designing autonomous or

highly aware vehicles have the potential to reduce these numbers dramatically. In the past decades,

working on autonomous driving has drawn many researchers and engineers. Dickmanns et al.

[1994] designed a passenger car Mercedes 500 SEL equipped with a vision system for detecting

and tracking obstacles. Pomerleau & Jochem [1996] explored a Ralph vision system to help

automobile drivers steer. Broggi et al. [1999] developed an active safety system and an automatic

pilot for a standard road vehicle. Recently, many companies (e.g. Tesla, Waymo, Mercedes-Benz,

Baidu) possessed permits to test autonomous vehicles on the roads in different counties, including

Germany, America, and China. However, there are still gaps between the current development

of autonomous driving and the final goal of a self-driving car that outperforms human driving

performance.

Typically, an autonomous system consists of a series of complicated modules: sensing, high-

definition (HD) map creation, localization, perception, prediction, motion planning, and con-

trol [Chen et al., 2020]. Firstly, an HD map is created offline. At run-time, the autonomous

online system will localize itself to the HD map, perceive the surrounding environment and pre-

dict the corresponding motion. Next, the motion planner makes a safe route for this self-driving

car. Finally, the controller executes this route to the destination. Therefore, for navigating a self-

driving car in an urban street environment, it is essential to recognize the location of the current

scene and achieve object recognition in the 3D urban street environment for a moving vehicle, as

shown in Fig. 1.1. To accomplish this mission, a series of sensors, such as optical cameras, radio

detection and ranging (RADAR), light detection and ranging (LiDAR), and ultrasonic sensors,

are commonly equipped with a mobile laser scanning (MLS) system for various recognition tasks,

including the place recognition, obstacle detection, and tracking, and shape completion. All of

them can be very useful for a self-driving car in order to understand its surroundings. Each of the

sensors has its own pros and cons, given by physical law. To exemplify, many researchers have

studied various recognition techniques via optical cameras, such as 2D image-based place recog-

nition, 2D object detection, tracking, and image completion. The reason is those optical cameras

can obtain objects’ texture information and are cheap. However, when the light is poor, such

as at night, cameras struggle to function because they rely on light from their surroundings. In

addition, illumination and seasonal changes bring more challenges to achieving visual recognition

tasks based on images.

Thus, LiDAR mounted on MLS has been considered an important technique to perceive

the 3D environment. A point cloud acquired from MLS delivers detailed 3D information of road

scenes during driving with a high measuring frequency, including scattered 3D point compositions,

and accurate (millimeter-level) 3D positions. Moreover, geometric information of point clouds is

16 1. Introduction

invariant to drastic illumination changes, making it more robust for different seasons and times

of the day compared with images.

Where am I

What are they

Who is around me

Figure 1.1: Illustration of general tasks for navigating an autonomous vehicle in an urban area [Boric et al.,
2021].

’Where am I?’ is the first important question for autonomous navigation. Localization is a

critical capability for self-driving vehicles, allowing them to pinpoint their location on a map.

Accurate localization allows a self-driving car to understand its surroundings and form a sense of

the road and lane structures. The well-known technique for localization is to use positioning sys-

tems, such as the global positioning system (GPS), which is one of the most popular and powerful

sensors. However, the signal of satellites can be very poor in a cluttered environment, like city

canyons. Besides, due to the error sources such as receiver noise, atmospheric delays, multi-path,

and satellite clock timing, the GPS solution is limited in accuracy and reliability. The positioning-

based system reduces the degrees of autonomy since it requires information about the external

infrastructure. As a result, sensors with greater degrees of independence from infrastructure are

preferred [Panphattarasap, 2019]. The scene information processed by sensor-based solutions

can be decisive in improving the localization of the features that characterize a location through

place recognition techniques. Place recognition can be complementary to GPS-based proposals,

or even supplementary in environments where GPS signal is not completely available or denied

[Arroyo Contera et al., 2017]. Another popular localization technique is based on simultaneous

localization and mapping (SLAM) [Durrant-Whyte & Bailey, 2006; Bailey & Durrant-Whyte,

2006]. However, accumulated drift error over time is inevitably introduced in SLAM systems

because they are unable to rely on an external reference such as a previously provided map or

explicitly known sensor poses. To address this issue, the place recognition technique assists the

SLAM system in recognizing that it is currently located at a previously visited location, which

corrects the drift in the map and thus improves sensor localization. In addition, place recognition

techniques can be used to provide an accurate initial position for better convergence in map-based

localization methods [Schlichting & Brenner, 2014].

1.1. Motivation 17

’Who is around me?’ is the next general question for autonomous navigation. Knowing where

the objects lie in the currently scanned scene and how to keep track of the trajectories of these

objects is helpful to avoid obstacles for self-driving vehicles. Detection and Tracking of Moving

Objects (DTMO) [Moosmann & Stiller, 2013] is a typical solution, which has been widely explored

to avoid collisions and traffic accidents in autonomous driving. Imaging that a self-driving car

is trying to cross an intersection in heavy traffic, the car should first detect individual moving

objects in its vicinity, and then predict the individual movement of the objects over time for

navigating through the intersection efficiently and safely [Söderlund, 2019]. Vehicles are the most

concerned investigation objects.

’What are they?’ is the third general question for autonomous navigation. Although MLS

point clouds provide detailed 3D information of urban scenes with high accuracy and precision,

they are usually partial due to occlusion and self-occlusion. To exemplify, an object may only be

visible from one side while driving. As a result, real-world 3D scans often contain large missing

regions, resulting in a significant loss in geometric and semantic information. Knowing the com-

plete shape of the object is beneficial in the case of autonomous driving: A closed surface mesh of

an obstacle provides more information about its nature, allowing a self-driving car to better de-

cide which action to take next. Many researchers have demonstrated that the complete geometric

shapes of objects can provide more robust features for many 3D perceptual tasks, including the

above-mentioned 3D object detection and tracking. Giancola et al. [2019] demonstrates the shape

completion improves the 3D tracking performance [Geiger et al., 2013]. Xu et al. [2022] estimates

the complete object shapes to help a 3D object detection model.

From the aforementioned research, three major tasks should be addressed in the recognition

process using MLS point clouds (see Fig. 1.2): (1) point cloud based place recognition, (2) 3D

object detection and tracking, and (3) 3D shape completion. To be specific, the location of a

given 3D scan in a GPS-denied environment should be determined by querying the locations of

scans belonging to the same location in a large geo-tagged database. Meanwhile, 3D detection and

tracking should be conducted to recognize the locations of moving objects (e.g. vehicles) in the

surrounding scenes and keep track of these objects in successive frames. Furthermore, obtaining

the full shapes of the detected objects should be implemented by 3D shape completion methods.

Point cloud based place recognition

3D vehicle detection and tracking

3D shape completion

Recognize the location of the
current scene

Detect the vehicles in the
surrounding scene and keep track

Obtain the complete shapes of
objects

Where am I?

Who is around me?

What are they?

Figure 1.2: Three-step workflow for recognition of 3D urban street environment from MLS point clouds.

However, achieving the above three tasks is non-trivial (see Fig. 1.3). First, designing a

robust and discriminative global descriptor for a scene point cloud in 3D urban environments

is challenging since the temporal changes and incompleteness are caused by occlusions or self-

occlusions. Furthermore, some locations are extremely similar, making it difficult to locate the

correct location via a feature-based retrieve strategy. Second, the density of 3D point clouds

in urban scenes collected by LiDAR is uneven, where the area closer to the scanner location

has a much greater density than the farther-away region. That makes the extracted features

18 1. Introduction

ineffectual and leads to difficulties in recognizing and tracking objects in the complex 3D scene.

Besides, the sparsity of point clouds and the outliers in point clouds burden feature extraction.

For example, the point cloud of a vehicle in a single scan could only have 12 points [Xia et al.,

2021b]. Third, MLS point clouds are always partial due to occlusions and self-occlusions. Last

but not least, completing the proper topology of missing shapes and keeping the fine-grained

details is challenging only based on incomplete geometric information.

Trajectory

Detected and tracked vehicles in a single LiDAR scan

Vehicle tracked
in successive scans

One vehicle in
successive scans

Point clouds acquired at same location but different times

Point cloud
acquired at 2016

Point cloud
acquired at 2018

• Time changes • Incompetence of data

• Data with uneven densities • Noise and outliers

Detected and completed vehicles in a single LiDAR scan

Vehicles detected
in real-scan data

Vehicles completed
in real-scan data

• Invisible areas and occlusions • Sparse density, missing details

Figure 1.3: Challenges for recognition of 3D urban street environment from MLS point clouds.

Before introducing the objectives and contributions of this thesis, a detailed survey and reviews

of related work in the following section are provided in order to find answers to the aforementioned

tasks.

1.2 Related work

Recently, many researchers have studied the recognition of 3D urban street environments using

MLS point clouds. According to the three-step workflow mentioned in the last section, detailed

1.2. Related work 19

reviews relating to point cloud based place recognition, vehicle detection and tracking, and 3D

shape completion are provided in the following section.

1.2.1 Point cloud based place recognition

The implementation of 3D point cloud based place recognition is usually converted to a 3D

retrieval task. The community has proposed numerous methods to tackle this task, which can be

primarily classified into two categories: based on 3D local descriptors and 3D global descriptors.

In addition, some methods based on planes or objects are proposed.

Based on 3D local descriptors

Various attempts have been made to encode robust local geometric structures and then perform

matching on the basis of these features. Constructing local descriptors can be achieved via

heuristically handcrafted features. With the recent advent of deep learning, a number of works

also focus on leveraging data-driven methods to learn local descriptors from large-scale datasets.

Handcrafted local descriptors. In the early years, histograms are representative of ex-

tracting local structural information. Johnson & Hebert [1999] propose to deploy the spin image

generation for matching 3D points. They create a reference axis in a 2D image by using the

normal of the keypoint and then rotate the image around the reference axis. Finally, a spin image

is generated by counting the number of neighboring points that fall into each image bin. Yamany

& Farag [2002] design surface signatures, which encode the relationships of curvature, normal,

and distance between a keypoint and its neighboring points into a 2D image. Frome et al. [2004]

explore a novel regional shape context descriptor called Geometry Histogram, which divides the

spherical support region into bins and then counted the number of points that fell within each bin

to create a histogram. This work improves the 3D object recognition rate on noisy data. Later,

Point Feature Histogram (PFH) [Rusu et al., 2008] is proposed to record the normal deviations

and distance between any two pairs of points on the local surface. However, PFH is extremely

time-consuming. Therefore, the following work Fast Point Feature Histogram (FPFH) [Rusu

et al., 2009] is introduced to fast calculate the angular features and surface normals to represent

the relationship between a 3D point and its neighbors. To extend the 2D shape context informa-

tion to 3D meshes, Kokkinos et al. [2012] propose an intrinsic shape context (ISC) by replacing

the Euclidean distance with the geodesic distance. Another type of 3D handcrafted descriptor is

to incorporate external local reference frames (LRF) into the pipeline, which reduces the effect of

rotation variance by performing covariance analysis or searching for salient regions on the local

surface. Sun & Abidi [2001] project geodesic circles onto the tangent plane to create a set of 2D

contours. These 2D contours and normals are used to create the fingerprint representation of the

point. Mian et al. [2006] first define a local reference frame for each pair of vertices that satisfies

certain geometrical constraints and then build a 3D grid on this basis. A 3D tensor is created by

recording the surface area intersecting each cube of the 3D grid. Malassiotis & Strintzis [2007]

adopt a virtual pin-hole camera oriented perpendicularly to the surface. They explore snapshot

features by projecting each point onto the XY-plane of the LRF and then calculating the distance

on a 2D image. This method is robust to self-occlusions and very efficient. The following work

MeshHOG [Zaharescu et al., 2009] first calculates gradient vectors for neighboring vertices and

then projects them to the three orthogonal planes of LRF, where each plane is divided into four

polar slices and each spatial slice had orientation histograms with eight bins. All histogram values

are concatenated to obtain a compact global descriptor. Zhong [2009] propose a novel shape de-

scriptor Intrinsic Shape Signatures (ISS), which performs covariance analysis on the local surface

based on LRFs and matches shape patches from different views directly. Signature of Histogram

of Orientations (SHOT) [Tombari et al., 2010] introduces a unique and unambiguous LRF for the

20 1. Introduction

keypoint and the keypoint’s neighboring points in the local support region are aligned with the

LRF. Then, the local support region is divided into multiple spherical volumes. For each volume,

a local histogram is generated according to the normal deviations between the keypoint and its

neighboring points. Finally, all the local histograms are concatenated to form a SHOT descriptor.

However, SHOT is sensitive to mesh resolution variation. [Petrelli & Di Stefano, 2011] propose

a novel LRF which aimed to predict a repeatable LRF at the border of a range image. Overall,

these handcrafted descriptors are typically tailored to specific tasks and are sensitive to noise and

mesh resolution, making them insufficiently descriptive and robust for complex and new scenarios.

Learning-based local descriptors. Recently, learning-based methods for 3D local descrip-

tor extraction have gained significant developments boosted by large-scale 3D datasets. 3DMatch

[Zeng et al., 2017] converts 3D points to the volumetric representation and then leverages 3D

convolutional neural networks (CNNs) for segment matching. However, this method is not robust

to rotation transformation. To alleviate this problem, some researchers are devoted to designing

rotation-invariant local descriptors. Khoury et al. [2017] parameterize the input using a spher-

ical histogram centered at each point and mapped the high-dimensional representation into a

low-dimensional Euclidean space using a fully-connected network. PPFNet [Deng et al., 2018b]

directly uses the raw 3D points as input and learns point pair features from points and normals of

local patches. In the follow-up work, they propose PPF-FoldNet [Deng et al., 2018a], which is an

unsupervised local descriptor. 3DFeatNet [Yew & Lee, 2018] design a weakly supervised network

to learn both the 3D feature detector and descriptor. Zhou et al. [2018] introduce a multi-view

local descriptor for the registration of point clouds. They first integrate multiple feature maps

from the local patch of each view into a single representation and then adopt the MatchNet [Han

et al., 2015] to learn a discriminative 3D descriptor. Spezialetti et al. [2019] convert the un-

oriented input data into a 3D spherical signals, which is a rotation-equivariant representation.

Then, they feed the signals into the Spherical CNNs [Cohen et al., 2018] to learn an invariant

descriptor without supervision. RSKDD-Net [Lu et al., 2020] introduces the random sampling

concept to efficiently learn the keypoint detector and descriptor from a set of point clusters simul-

taneously. Although these methods can learn rotation-invariant features from the local surface,

they rely on classical handcrafted features or external LRFs at first, which severely limits their

effectiveness. Furthermore, new methods for learning dense local descriptors in a single forward

pass have recently emerged. Fully Convolutional Geometric Features (FCGF) [Choy et al., 2019b]

introduces a compact geometric feature computed by a 3D fully-convolutional network, which is

the pioneering work of dense feature description for point cloud registration. Bai et al. [2020]

propose to jointly learn both 3D feature detectors and descriptors based on KPConv [Thomas

et al., 2019]. The following work, ASLFeat [Luo et al., 2020] focuses on mitigating limitations

in the joint learning of 3D feature detectors and descriptors. 3DSmoothNet [Gojcic et al., 2019]

and DeepVCP [Lu et al., 2019] learn compact and rotation invariant 3D descriptors relying on

3D CNNs. However, all these methods are not robust to rigid transformation in Euclidian space

[Ao et al., 2022]. Some methods explore to compress the dimensions of handcrafted 3D local

descriptors utilizing deep learning, such as Compact Geometric Features (CGF) [Khoury et al.,

2017] and LORAX [Elbaz et al., 2017].

Based on 3D global descriptors

Different from the place recognition methods based on local descriptors, 3D global descriptors

encapsulate comprehensive and global information about the entire scene. A robust and discrim-

inative global descriptor is designed or learned to obtain the unique signature for retrieval.

Handcrafted global descriptors. Most handcrafted global descriptors describe places using

LIDAR scan global statistics, which have the advantage of not requiring re-training to adapt to

1.2. Related work 21

different environments and sensor types. Magnusson et al. [2009] split the point cloud into

overlapping cells and computed shape properties such as spherical, linear, and several types

of planar of each cell. Granström et al. [2011] explore the rotation invariant features (e.g.

volume, nominal range, and range histogram) to describe 3D point clouds. They first compute

the distances between scalar features and cross-correlation for histogram features and then train

an AdaBoost classifier to match places. Röhling et al. [2015] propose a fast method of describing

places through histograms of point elevation, assuming the sensor had a constant height above

the ground plane. M2dp [He et al., 2016b] first projects the source point cloud to multiple 2D

planes. The density signature for each of the 2D planes is then used to construct the global

descriptor. SegMatch [Dubé et al., 2017] introduces a real-time place recognition method based

on 3D segments. It first extracted segments from an input point cloud and then uses a geometric-

verification step for recognizing place candidates. Scan-Context [Kim & Kim, 2018] exploits the

bird view of the point cloud and encodes the height information of the surrounding objects for

place recognition. Recently, Wang et al. [2020c] propose LiDAR Iris, which generates a binary

signature image for each point cloud. It firstly expands the bird-eye view of the input scan

into an image strip for generating the iris images. Then, the Fourier transform is applied to

these iris images by exploiting several filtering and thresholding operations. Finally, spatial place

recognition is achieved in the frequency domain by calculating their similarities. However, the

discriminative and robust power of such handcrafted global descriptors remains limited.

learning-based global descriptors. With breakthroughs in learning-based image retrieval

methods, deep learning on 3D global descriptors for retrieval tasks has drawn growing attention.

PointNetVlad [Angelina Uy & Hee Lee, 2018] first tackles 3D place recognition in an end-to-end

way, which first uses PointNet [Qi et al., 2017a] to extract local descriptors and then aggregates

these descriptors to obtain a global descriptor with NetVlad [Arandjelovic et al., 2016] pool-

ing layer from 3D points. Following this, PCAN [Zhang & Xiao, 2019] proposes an attention

mechanism for local features aggregation, discriminating local features that contribute positively.

However, both two methods employ PointNet architecture for extracting local features, which

does not particularly concern the local geometry. LPD-Net [Liu et al., 2019] enhances the lo-

cal contextual relationships using graph neural networks but relied on handcrafted features, like

changes of curvature and 2D scattering. DH3D [Du et al., 2020] designs a deep hierarchical

network to produce more discriminative descriptors, recognizing the places and refining the 3D

pose estimation simultaneously. DAGC [Sun et al., 2020] introduces a graph convolution module

to encode local neighborhood information. However, they do not consider the spatial relation-

ship between local descriptors. SOE-Net [Xia et al., 2021a] introduces a PointOE module in-

troducing the orientation-encoding into PointNet for generating point-wise local descriptors, and

then adopts a self-attention module to encode the spatial relationship of these descriptors. Min-

kloc3D [Komorowski, 2021] utilizes Feature Pyramid Network [Lin et al., 2017a] (FPN) based on

MinkowskiEngine with generalized-mean (GeM) pooling [Radenović et al., 2018] layer to compute

a compact global descriptor. Following work Minkloc3D-SI [Żywanowski et al., 2021] explores the

place recognition task based on a single 3D LiDAR scan, using non-Cartesian point representation

and intensity information.

Based on planes or objects

The approaches based on local descriptors frequently lack descriptive power, and invariance can

be a problem for global descriptors. Therefore, some works have proposed using 3D shapes or

objects for the 3D place recognition task. Fernández-Moral et al. [2013] propose to detect planes

in 3D environments and then accumulate them into a graph. A final geometric consistency test is

conducted over the planes in the matched sub-graphs using an interpretation tree. The following

work [Fernández-Moral et al., 2016] proposes to utilize the covariance of the plane parameters

22 1. Introduction

instead of the number of points in planes for matching. Finman et al. [2015] present an object-

based place recognition in indoor environments based on RGB-D cameras. However, this strategy

is only suitable for small, indoor environments.

1.2.2 3D vehicle detection and tracking

3D vehicle detection and tracking are two different but very closely related tasks. The goal of

detecting 3D vehicles from point clouds is to recognize the vehicles by drawing an oriented 3D

bounding box and assigning a label given a single LiDAR scan, while the goal of 3D vehicle tracking

is to locate the vehicle in successive frames given the initial position in the first frame. Thus,

numerous object detection methods and object tracking methods are introduced respectively in

this section.

3D object detection

With deep neural networks that have been widely applied in computer vision for their capability

of exploiting spatially-local correlations, learning-based 3D object detectors have evolved rapidly

now. In general, they can be divided into three categories based on different representation

learning strategies, voxel-based, point-based, and point-voxel-based detectors.

3D voxel-based detectors first partition the point clouds into discrete voxels by voxelization.

Then, the detectors use convolutional neural networks or 3D sparse neural networks to extract

features from the voxels. Finally, 3D objects can be detected from the Bird’s Eye View (BEV) grid

cells. VoxelNet [Zhou & Tuzel, 2018a] is a pioneering network. It first samples a limited number

of sparse voxel grids. Then, the stacked voxel feature encoder (VFE) is used to extract features

from the points inside a voxel cell. Finally, the 3D region proposal network (RPN) [Ren et al.,

2015] is utilized to generate the classification score maps and the 3D bounding boxes. However,

the computation overheads and memory footprints in VoxelNet grow cubically. The following

work SECOND [Yan et al., 2018] leverages sparse convolutional layers after stacked VFE to get

rid of unnecessary computation. PointPillars [Lang et al., 2019] further improves computational

efficiency by thoroughly removing the heavy 3D CNNs layers. Specifically, it elongates voxels

into pillars in a BEV perspective for creating a 2D pseudo image. However, this way is not good

for the learning-based representation since the resolution in the vertical axis is lost. For proposal

refinement, Voxel R-CNN aggregates voxel-wise features from 3D convolutional volumes. SE-SSD

[Zheng et al., 2021b] jointly supervises a student network under the guidance of its teacher’s

distilled knowledge. Shi et al. [2020b] incorporates multi-scale voxelization strategies into feature

aggregation. Mao et al. [2021] inserts a Transformer architecture to exploit long-range contextual

dependencies among voxels. Xu et al. [2022] proposes a shape-learning strategy to solve the

occlusion and signal miss problems when detecting objects.

3D point-based detectors implicitly extract local features and fine-grained patterns without

any voxelization, which directly operate on raw point clouds. PointRCNN [?] is a pioneering

work that employs PointNet-like blocks to learn semantic cues and generate 3D proposals from

the downsampled point cloud via Furthest Point Sampling (FPS) method. However, the FPS is

intrinsically a sequential algorithm and can not become highly parallel [Mao et al., 2022]. The

following work 3DSSD [Yang et al., 2020] revisits the sampling strategy and proposes a new

sampling method with feature distance. Considering the semantic cues from the neighboring

points, Point-GNN designs local neighborhood graphs constructed from point clouds to enhance

local and global features. Point-based detectors are generally time-consuming with a ball query

complexity.

1.2. Related work 23

3D point-voxel-based detectors trend to integrate the merits of both voxel-based and point-

based detectors together: Although voxel-based methods benefit from bird-view representation,

the loss of fine-grained patterns limits further refinement, whereas point-based methods have

relatively higher latency but fully preserve irregularity and locality. STD [Yang et al., 2019]

designs a two-stage detector that first applies PointNet++ to obtain spherical anchors from

sparse points, then voxelizes and refines them to generate accurate proposals. PV-RCNN [Shi

et al., 2020a] proposes a voxel set abstraction layer that deeply integrates both the multi-scale

3D voxel CNN features and the PointNet-based features to capture much richer semantic cues.

SA-SSD [He et al., 2020] explores an auxiliary network using two point-level supervisions to guide

the features learned in the 3D sparse convolutional network.

3D object tracking

Numerous methods for tracking objects in 3D spaces have been developed, which are divided into

two categories based on the number of tracked objects: single object tracking (SOT) and multiple

object tracking (MOT).

Early 3D SOT methods [Asvadi et al., 2016; Bibi et al., 2016; Kart et al., 2018, 2019] gener-

ally rely on the RGB-D information and employ the 2D siamese tracking architecture. Though

these methods are effective in certain situations, they do not fully explore 3D geometric clues.

SC3D [Giancola et al., 2019] is a pioneering work for point cloud based tracking, which regularizes

the latent spaces of template point cloud and search candidates using a shape completion net-

work. However, this method is time-consuming since it uses Kalman filtering for target proposal

generation. Moreover, it ignores the local geometric information of each target proposal. PSN

[Cui et al., 2020] leverages a 3D Siamese network for single-person tracking. However, it cannot

predict the orientation and size of the target. F-Siamese tracker Zou et al. [2020] explores RGB

images to produce 2D region proposals for reducing 3D point cloud searching space. However,

its performance depends more on the 2D tracker. 3DSiamRPN [Fang et al., 2020] combines a

3D Siamese network and 3D RPN architecture to track a single object, but the one-stage RPN

network limits its performance. Recently, P2B [Qi et al., 2020] fuses the target object informa-

tion into 3D search space and then adopts a state-of-the-art object detection network (VoteNet)

to detect the target. Following this, BAT [Zheng et al., 2021a] proposes to add the bounding

box information provided in the first frame as an additional cue. MLVSNet [Wang et al., 2021]

performs Hough voting on multi-level features for getting more vote centers. PTT [Shan et al.,

2021] introduces the transformer architecture to enhance the target-specific feature extracted in

P2B. However, these methods all use the RPN to regress the bounding box of the target, which

is inspired by their 2D SOT counterparts [Li et al., 2018; Zhang & Peng, 2019; Li et al., 2019].

Different from SOT where the initial position is given in the first frame, 3D MOT trackers

adopt a detector to determine the number of objects in a sequence. The goal of 3D MOT is to

associate these detected objects in all frames. Scheidegger et al. [2018] detects and estimates the

distance to objects using a single image, and then uses a Poisson multi-Bernoulli mixture tracking

filter to achieve 3D tracking. Patil et al. [2019]; Osep et al. [2017]; Weng et al. [2020a] utilize

Kalman filter to obtain the 3D motion cue for simplicity and efficiency. With breakthroughs in

learning-based 2D MOT methods, deep learning on 3D MOT tasks has drawn growing attention.

Weng et al. [2020b]; Zhang et al. [2019b] explore 3D network to learn the 3D geometric char-

acteristics and motion cues. Recently, Wu et al. [2021] adopts feature consistency of objects in

consecutive frames to improve tracking accuracy.

24 1. Introduction

1.2.3 3D shape completion

3D shape completion is to recover complete geometric information from partial point clouds,

which has long been an attractive research topic in robotics and computer vision for many years

[Anguelov et al., 2005; Han et al., 2017]. Generally, the shape completion methods can be primarily

classified into three major categories: (i) geometry-based methods, (ii) template-based methods,

and (iii) learning-based methods. In the following subsection, these three types of methods will

be briefly reviewed.

Geometry-based shape completion

The geometry-based completion methods depend highly on geometric attributes, such as the

continuity of local surfaces or volumetric smoothness, which have been applied to retouch small

holes on incomplete point clouds successfully [Kazhdan et al., 2006; Tagliasacchi et al., 2011;

Wu et al., 2015]. However, these methods are not applicable for completing missing points of

larger regions. Thus, some approaches using hand-designed heuristics are proposed to reconstruct

surfaces of 3D objects with a large percentage of missing areas. For example, Schnabel et al. [2009]

complete 3D shapes with merely partial inputs by combining a series of planes and cylinders.

Furthermore, Li et al. [2011] improve the completion performance by learning relations among

geometric shapes such as planes and cylinders. For objects with arterial surfaces, Li et al. [2010]

propose a novel deformable model named Arterial Snake, which successfully captures the topology

and geometry simultaneously from arterial objects with noise and large parts missing.

Additionally, Thrun & Wegbreit [2005]; Zheng et al. [2010]; Pauly et al. [2008]; Tevs et al.

[2014]; Harary et al. [2014] find the human-made objects usually have structural regularity, like

symmetry. Thus, Thrun & Wegbreit [2005] identify the probable symmetries and apply them to

extend the partial 3D model to the occluded space. Pauly et al. [2008] leverage regular structures

that form a lattice with discrete rotational, translational, and scaling symmetries to fill missing

regions. Zheng et al. [2010] automatically consolidate real-scan data by detecting repeating struc-

tures in input 3D models. Tevs et al. [2014] seek to quantify the relationship between shapes

based on the regularities of symmetric parts. The shape of objects is firstly decomposed into a set

of regions, and a graph is then applied to represent the relations between the regions in terms of

symmetric transformations. Harary et al. [2014] utilize context information to synthesize geom-

etry that is similar to the remainder of the input objects. Although these methods are efficient

under particular circumstances, they are helpless when the missing area is large or there is no

significant symmetry of the object.

Template-based Shape Completion

In addition to the geometry-based methods, some template-based methods are proposed by re-

searchers. They complete 3D surfaces by deforming or reconstructing point clouds according to

the most similar templates retrieved from a prepared 3D shape database. Thus, they are also

known as retrieval-based methods. As a precondition for the retrieval, Pauly et al. [2005] cre-

ate a 3D shape database to extract geometric clues for completing missing regions. However,

the database retrieval process is time-consuming and labor-intensive since manual interaction is

mandatory to constrain the categories of 3D objects in this method. Similarly, Rock et al. [2015]

propose to complete any categories of objects automatically. However, this method is based on

the usage of additional depth images as auxiliary data. An adequate auxiliary database with

sufficient depth images plays a key role in the performance of this method.

To avoid the high dependency on large-scale 3D shape databases, [Schnabel et al., 2009; Nan

et al., 2010; Chauve et al., 2010; Li et al., 2011; Shen et al., 2012; Sung et al., 2015] propose to apply

1.2. Related work 25

geometric primitives replacing a shape database. Schnabel et al. [2009] reconstruct missing parts

with the guidance of a set of detected primitive shapes (e.g. planes and cylinders). Nan et al. [2010]

present a novel interactive tool called SmartBoxes to reconstruct structures that are partially

missing from inputs. This allows the users to fit polyhedral primitives interactively, avoiding an

exhaustive search. Chauve et al. [2010] plausibly complete missing scene parts by decomposing 3D

space based on planar primitives. Li et al. [2011] seek to simultaneously recover the local missing

parts while using structural relations from man-made objects, but the fundamental primitives

must be preserved. Shen et al. [2012] present an assembly method for recovering 3D structures

from a small-scale shape dataset using predefined geometric primitives. Sung et al. [2015] use

a global optimization method to reconstruct entire surfaces from partial inputs using inference

from given geometric information.

However, such methods exhibit several limitations. Firstly, they are not suitable for online

operations due to the voluminous computational overhead. Secondly, it is labor-intensive for

preparing a 3D shape database since each shape should be labeled and segmented manually.

Finally, noise or disturbances (e.g., dynamic changes) affects their performance significantly.

Learning-based shape completion

Compared with geometry-based and template-based methods, completion approaches using learned

features can automatically find the feature clues needed for the completion from partial inputs,

requiring less prior knowledge and avoiding time-consuming preprocessing. Dictionary learning

or deep learning are the typical ways to achieve feature learning. Recently, learning-based meth-

ods for 3D shape completion are obtaining significant developments with the help of large-scale

3D synthetic CAD model datasets. And these state-of-the-art methods provide end-to-end so-

lutions that decrease the efforts in feature design and show excellent performance on various

representing formats of 3D models. Generally, learning-based methods for 3D shape completion

can be categorized into three types: voxel-based methods, mesh-based methods, and point-based

methods.

The core idea of voxel-based methods is to structure the 3D space into regular voxel grids

and then project these unordered 3D points into these ordered voxels. Thus, 3D convolution

and distance field formats can be well suited for processing this kind of discrete and rasterized

data. Dai et al. [2017b] propose typical examples of voxel-based methods, which adopt a 3D

convolutional network to achieve the excellent performance of completing shapes. Stutz & Geiger

[2018] propose a weakly supervised learning-based method to complete a 3D shape, and this

method is easier to achieve. However, voxel-based methods are time-consuming and memory-

consuming to predict volumes of high spatial resolution. To alleviate this problem, Vo et al.

[2015]; Wang & Tseng [2011] propose to adopt the octree structure for increasing the resolution.

Following work GRNet [Xie et al., 2020a] propose a gridding network for dense point cloud

completion. However, the voxelization representation still has a series of issues. For instance,

since grid occupancy is predicted independently, the completion results often miss thin structures

or contain flying voxels. Moreover, the volumetric representation obscures natural invariance

when it comes to geometric transformations and manipulations.

Recent works [Groueix et al., 2018; Wang et al., 2018; Litany et al., 2018] are proposed to

focus on mesh-based reconstruction. Groueix et al. [2018] propose a novel shape reconstruction

network called AtlasNet, which regards a 3D shape as a collection of parametric surface elements.

Pix2Mesh Wang et al. [2018] introduces a graph-based network to generate 3D manifold shapes.

Litany et al. [2018] explore a variational autoencoder using graph convolutional operations to

deform meshes. This method focuses on non-rigid deformations of objects such as faces or human

26 1. Introduction

bodies. These methods can reconstruct shape information, however, by deforming a reference

mesh to a target mesh. As a result, they are not adaptable to all typologies.

In comparison to 3D mesh, or voxel representations, the point cloud is more suitable during

training because of its simple structure. Besides, new points can easily be added or interpolated to

a point cloud since all the points are independent and the connectivity information is not needed

to update. Thus, more and more works are proposed to process discrete points directly without

transferring them into voxels or meshes. PCN [Yuan et al., 2018] is the pioneering work to directly

operate on raw point clouds, which is an encoder-decoder network to reconstruct a complete and

dense point cloud from a partial point cloud. The folding operation [Yang et al., 2018] is adopted

to generate high-resolution outputs. Following that, TopNet [Tchapmi et al., 2019] introduces a

hierarchical tree-structure decoder for the point cloud generation. However, they are unable to

produce evenly distributed point clouds and reconstruct fine-grained details of objects. In view

of this, MSN [Liu et al., 2020] explores preserving the details from partial inputs and refining

the geometric information for the missing regions. Another work [Gurumurthy & Agrawal, 2019]

adopts a GAN network to implement a denoising optimization algorithm for enhancing the global

features extracted from incomplete inputs. PF-Net [Huang et al., 2020] introduces a multi-

stage strategy to reconstruct the missing structures of 3D objects. SoftPoolNet [Wang et al.,

2020d] designs a soft pooling layer to replace the max-pooling layer, which can keep more feature

information when completing the partial inputs. SA-Net [Wen et al., 2020] adopts a self-attention

mechanism [Xia et al., 2021a] to effectively exploit the local structure details. Zhang et al. [2020b]

propose a feature aggregation strategy for preserving the primitive details of partial inputs. Wang

et al. [2020a] design a cascaded module to refine the fine-grained details. However, all these

methods only extract global features from partial inputs, resulting in information loss during the

encoding process.

Compared with geometry-based and template-based 3D shape completion methods, learning-

based methods show their advances in learning high-level feature representation. And they im-

prove the effectiveness of completion using an end-to-end way. Point-based approaches stand out

among learning-based methods due to their ability to deal directly with the geometric nature

of point clouds. Although many cutting-edge learning-based methods have achieved remarkable

performance, there are still some aspects that could be improved. First, how to better utilize

the local geometric characteristic of points can be further explored. Second, how to avoid the

information loss of global features is worth exploring. Third, the generalization of networks for

completing unseen categories of objects could be exploited.

1.3 Objectives and contributions

The top-level goal of this work is to develop a framework for the robust and accurate recognition

of 3D urban street environments using mobile laser scanning point clouds, achieving localization

of the current scene within an existing 3D map and status analysis of the dynamic objects (e.g.

Vehicles). The following research questions should be considered and answered:

q Which accuracy of place recognition can be achieved by MLS point clouds in an urban area

collected at different times?

q Which success and precision rate of object detection and tracking (e.g. vehicles) in an urban

street environment can be achieved using features learned from 3D sparse point clouds?

q Which completeness and robustness can be achieved for completing point clouds of objects

which are only partially scanned?

1.3. Objectives and contributions 27

Based on the analysis of the point cloud based place recognition, vehicle detection and tracking

as well as 3D shape completion presented in the previous section, the research questions will be

answered by developing the following specific algorithms and methods in this thesis.

1.3.1 Point cloud based place recognition

For point cloud based place recognition tasks, two novel methods are proposed for large-scale

point cloud based retrieval. One is an end-to-end network that explores the relationship among

the raw 3D points and the different importance of local descriptors for large-scale point cloud based

retrieval. Specifically, a novel point orientation encoding module is proposed to effectively extract

local descriptors from a given point cloud, considering the relationship between each point and

its neighboring points. Besides, a self-attention unit is designed to differentiate the importance

of different local descriptors. Furthermore, a new loss function is presented, that is more effective

for large-scale point cloud based retrieval. Compared with previous loss functions, the proposed

loss function can achieve more versatile global descriptors by relying on the maximum distance

of positive pairs and the minimum distance of negative pairs.

Another is a novel Point-Voxel Transformer network, aiming to compensate for quantization

loss and introduce long-range spatial relationships. More specifically, a fusion strategy is de-

signed by using points as middle hosts, fusing point-wise features into sparse voxel-wise features.

Compared to the previous point-voxel naive fusion strategies, a hierarchical cross-attention trans-

former is proposed to enhance sparse voxel-wise features in a more flexible and efficient way.

The efficiency includes two aspects: Firstly, only simple multilayer perceptions (MLPs) are used

on point branches to eliminate inefficient local neighbor searching. Secondly, a lower quantiza-

tion resolution and sparse convolutions are utilized in the voxel branch. Moreover, the attention

mechanisms used in [Zhang & Xiao, 2019; Xia et al., 2021a] are extremely memory-consuming and

time-consuming, which limits their employment in large-scale point clouds. Thus a lightweight

self-attention unit is introduced to alleviate the low-efficiency problem.

1.3.2 3D vehicle detection and tracking

For achieving object detection and tracking (e.g. vehicles) in an urban street environment, a

real-time and effective pipeline is proposed. For vehicle detection, a 3D vehicle detector including

data pre-processing, detection network, and post-processing modules is introduced. Furthermore,

a novel lightweight and detector-free 3D single object tracking (SOT) network is designed. Specif-

ically, a motion prediction module is first developed to estimate the 3D coordinates of a potential

target center in the current frame using previous frames. Although the estimated center is coarse,

it can provide strong prior information as guidance. Thus, an explicit voting layer only consisting

of several MLPs is further designed to refine the target center with the desired position and rota-

tion. To the best of my knowledge, the usage of complicated 3D detectors or proposal generation

in 3D single object trackers is the first to be completely removed. And the proposed 3D tracker

can be served as a simple yet strong baseline in the 3D SOT community.

1.3.3 3D shape completion

For completing point clouds of objects which are only partially scanned, two novel 3D shape com-

pletion methods are explored. First, a novel end-to-end network for completing point clouds of 3D

vehicle shapes, directly operating on partial and sparse point clouds, is proposed. The proposed

network can produce uniform, dense, and complete point clouds from partially scanned vehicles

in MLS datasets by endorsing an architecture with the encoder, decoder, and refiner. Specifically,

a novel encoder module that includes a spatial transformer network (STN) and a point feature

28 1. Introduction

enhancement (PFE) layer are designed to better extract global features from the instance. The

STN ensures that the extracted features are not affected by geometric transformations from input

point clouds of varying resolutions. To improve feature representation, the PFE layer combines

low-level and high-level information. In addition, a refiner module is proposed to preserve the

vehicle details from inputs and refine the outputs with fine-grained details. To fully retain the

details of the input point cloud, the partial input point cloud and the output generated by the

decoder are combined uniformly. A point feature residual network is designed to predict per-wise

offsets for every point.

Furthermore, a more general 3D completion neural network is proposed, which can be applied

to multiple categories, including unseen categories. It investigates the importance of the shape

prior information via a feature-matching strategy. More specifically, an asymmetrical Siamese

auto-encoder network is designed to learn shape prior information, which can produce a more

informative global feature for incomplete objects. With the guidance of shape priors, an iterative

refinement unit is introduced to retain the information of the incomplete inputs and reasonably

infer the missing geometric details of the object.

1.4 Structure and organization

This thesis is organized as follows: Chapter 2 presents the theoretical basics of point-based deep

learning operations, deep metric learning, and Transformer. Chapters 3-5 describe the core parts

of this thesis, namely the methods for answering the aforementioned research questions. Chapter 6

presents the experiments, along with the datasets and the evaluation metrics. Chapter 7 presents

the experimental results and analysis. Chapter 8 presents the discussion on the three main tasks

involved in the recognition of 3D urban street environment using MLS point clouds. Chapter 9

finalizes this thesis by presenting the conclusions and providing outlooks for future works.

Parts of the thesis have been published or submitted in the following journal articles and

conference papers:

(i) Xia Y, Xu Y, Li S, Wang R, Du J, Cremers D, and Stilla U (2021a). Soe-net: A self-attention

and orientation encoding network for point cloud based place recognition. In Proceedings

of the IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pages

11348-11357.

(ii) Xia Y, Xia Y, Li W, Song R, Cao K, and Stilla U (2021b). Asfm-net: Asymmetrical

siamese feature matching network for point completion. In Proceedings of the 29th ACM

International Conference on Multimedia (ACM MM), pages 1938-1947.

(iii) Xia Y, Xu Y, Wang C, and Stilla U (2021c). VPC-Net: Completion of 3D vehicles from

MLS point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 174:166-181.

(iv) Xia Y, Liu W, Luo Z, Xu Y, and Stilla U (2020). Completion of sparse and partial point

clouds of vehicles using a novel end-to-end network. ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 2, 933-940.

(v) Xia Y, Wu Q, Li W, Chan AB, Stilla U (2023). A Lightweight and Detector-free 3D Single

Object Tracker on Point Clouds. IEEE Transactions on Intelligent Transportation Systems.

(vi) Xia Y, Gladkova M, Wang R, Q Li, Stilla U, Henriques JF, and Cremers D (2023). CASSPR:

Cross Attention Single Scan Place Recognition. In review.

29

2 Basics

This chapter briefly outlines the basic concepts and specific techniques of point-based deep learn-

ing methods, deep metric learning, and Transformers. The proposed methods in this thesis are

developed based on similar principles of these techniques. Specifically, for the task of point cloud

based place recognition, the proposed methods are developed based on the extension of point-

based learning, deep metric learning, and Transformers. The novel solutions are explored for

generating robust and discriminative global descriptors considering long-range spatial relations

and involving a modified attention mechanism. As for object detection and tracking, point-based

learning methods are introduced as the basic architecture of feature extraction. As for the 3D

shape completion task, point-based learning methods and the Siamese network provide a solu-

tion to close between the partial point cloud feature and the complete point cloud feature. The

proposed completion methods make an improvement on global feature extraction based on the

closed features.

2.1 Point-based learning methods

In this section, two point-based learning methods which directly apply to 3D point clouds are

introduced. The first one is PointNet [Qi et al., 2017a], and another one is PointNet++ [Qi et al.,

2017b]. Both of them are utilized as the typical backbone networks for point feature extraction.

2.1.1 PointNet

PointNet is a pioneering work that extracts features directly from 3D point clouds. Qi et al.

[2017a] highlights the point feature extraction network should meet three key properties: (1) The

network consuming a point set with N points should be insensitive to N ! permutations of the

point order since the points in the point set are spatially unordered; (2) The network should be

able to capture global structures since the points are combined to represent an object surface; (3)

The network should be transformation-invariant. This means the global feature of a point cloud

should not be changed even though a specific rotation or translation is applied to the point set.

Fig. 2.1 shows the network architecture of PointNet. Given an unordered point cloud with

N points Pinput = {(xi, yi, zi)}Ni=1, a spatial transformation network is first used to transform

the input, which is represented by the T-Net in this figure. The aim is to learn the 3 × 3 affine

matrix that enables PointNet to be invariant to the rigid transformation. Then, several multilayer

perceptrons are utilized to extract high-dimensional features. Considering the point cloud is a

set of points without a specific order, PointNet introduces a symmetric function Max-pooling

to obtain a global feature G independent of the order. The reason is the max values are fixed

whatever the order changes. The whole process can be formulated as:

G = MAX(MLP (xi, yi, zi)) (2.1)

Compared to other previous learning-based methods, PointNet is easy to implement and enables

the processing of 3D points in a direct manner. However, it regards each point as an independent

30 2. Basics

individual, ignoring the relationships between points so that it cannot capture the local structure

information.

N
×
3

T-Net

max
pool

shared

MLP(64,64)

T-Net shared

MLP(64,128,1024)Input points

Global feature

Figure 2.1: The network architecture of PointNet [Qi et al., 2017a]. PointNet takes N points as input,
applies T-Net to the input and feature transformations, and then obtains a global feature by aggregating
point features. Numbers in brackets are layer sizes.

2.1.2 PointNet++

To tackle the existing problems in PointNet, PointNet++ [Qi et al., 2017b] introduces to add

hierarchical structure to extract local features by capturing fine geometric structures from neigh-

borhoods. PointNet++ can be viewed as an extension of PointNet, via building a hierarchical

grouping of points and progressively encoding larger and larger local regions along the hierarchy.

The network architecture is illustrated in Fig. 2.2.

PointNet++ is made up of three layers: a sampling layer, a grouping layer, and a feature

extraction layer. It first employs the farthest point sampling (FPS) algorithm to uniformly sample

the key points from the input point cloud. The point cloud is then divided into several spherical

spaces of a given radius using a grouping layer that treats the key points as the center point. Each

spherical space is considered a subset. Finally, PointNet is used to extract local features from

each small subset as a feature extractor. Considering the spatial relations between points in the

local area, PointNet++ with the hierarchical propagation strategy extracts a more informative

global feature than PointNet.

Sampling

Grouping

PointNet Sampling

Grouping

PointNet

max
pool

Global feature

Figure 2.2: The hierarchical architecture of PointNet++.

2.2 Deep metric learning

Metric learning is a method of measuring sample similarity that is directly based on a distance

metric, which attempts to reduce the distance between similar samples while increasing the dis-

tance between dissimilar samples. A variety of metric learning methods have been proposed and

applied in many visual recognition tasks such as one-shot learning [Cai et al., 2018; Fei-Fei et al.,

2.2. Deep metric learning 31

2006], image retrieval [Huang et al., 2015; Oh Song et al., 2016], person re-identification [Li et al.,

2014; Yi et al., 2014], and face recognition [Schroff et al., 2015; Sun et al., 2014].

Metric learning can be divided into two categories: unsupervised and supervised [Kulis et al.,

2013]. Unsupervised metric learning seeks to learn a low-dimensional subspace in order to preserve

useful geometrical information from samples. Supervised metric learning is the mainstream metric

learning technique, which seeks an appropriate metric by formulating an optimization objective

function to exploit supervised information from training samples, where the objective functions

are designed for different specific tasks.

Most conventional metric learning methods project samples into a new feature space by learn-

ing linear mapping. However, it is not efficient when the data points exist the nonlinear relation-

ships. Although some methods explore the kernel trick to tackle this issue, it still suffers from

scalability issues since choosing a suitable kernel is typically difficult and empirical. Besides, the

expression power of kernel functions is frequently insufficient to capture non-linearity in data.

With the popularity of deep learning methods for the non-linearity of samples, deep metric learn-

ing methods [Hu et al., 2014; Sun et al., 2014; Wu et al., 2013; Wang et al., 2014] have been

proposed.

In deep metric learning, the goal of network optimization is to make the network achieve two

distinct goals: (1) minimizing the same class of samples, such as the images/LiDAR scans captured

at the same locations but at different times under different postures, lighting, and decoration,

where the measured feature distance should be as small as possible; and (2) minimizing non-

identical samples, such as the images/LiDAR scans captured at different locations, where the

metric distance of their features should be as large as possible, even if they are very similar. The

main challenge of deep metric learning is how to learn an efficient function f(x). It maps the

samples x to a D-dimensional feature space RD in order to obtain more discriminative features,

resulting in optimal classifier performance.

In this section, some basic concepts and strategies of deep metric learning, including distance

metrics, Siamese networks, and loss functions, are introduced. The common distance metrics

(Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, Mahalanobis

distance, and Cosine similarity) are first presented in Section 2.2.1. Then, the typical network

architecture of Siamese networks used in deep metric learning is introduced in Section 2.2.2.

Finally, the training strategy with common loss functions is presented in Section 2.2.3.

2.2.1 Distance metric

To measure similarities among samples, a distance metric must be introduced that determines

whether a pair of samples are more similar than another pair of samples. However, there are

many different distance metrics, and not all of them can be properly adapted to the samples in

special tasks. As a result, choosing the suitable distance metric for metric learning is critical.

In mathematics, a metric space can be defined as a vector set X = x1, x2, · · · , xN together

with a distance metric d on the set. d satisfies the following properties:

d(xi, xj) = 0⇔ i = j, (identity)

d(xi, xj) ≥ 0, (non-negativity)

d(xi, xj) = d(xj , xi), (symmetry)

d(xi, xj) + d(xj , xp) ≥ d(xi, xp), (triangle inequality)

(2.2)

where xi, xj , xp ∈ X. Following [Nebel et al., 2017], d is a pseudometric if it only satisfies the

first three properties.

32 2. Basics

There is no negative distance, no sample is separated from itself, and no two samples can

occupy the same position. The distance traveling from xi to xj is same as traveling from xj to

xi. The shortest path between two points is always preferred over a detour.

The commonly used distance metrics include Euclidean distance, Manhattan distance, Cheby-

shev distance, Minkowski distance, Cosine similarity, and Mahalanobis distance.

Definition 2.1 (Euclidean distance) For any (xi, xj) ∈ R, the Euclidean distance is defined

as:

d(xi, xj) =
√

(xi − xj)2(xi − xj) (2.3)

The Euclidean distance between two samples in Euclidean space is the length of a line segment

connecting the two samples in mathematics. It is one of the simplest and most widely used metrics

for measuring dissimilarity (large distance) and similarity (small distance) between samples.

Definition 2.2 (Manhattan distance) For any (xi, xj) ∈ R, the Manhattan distance is

defined as:

d(xi, xj) = ‖xi − xj‖ =

n∑
p=1

|xip − xjp| (2.4)

where (xi, xj) are n-dimensional vectors xi = (xi1, xi2, · · · , xin) and xj = (xj1, xj2, · · · , xjn),

respectively. The Manhattan distance between two samples is the sum of the absolute differences

of their Cartesian coordinates. The distance is determined by the rotation of the coordinate

system, but not by its reflection about a coordinate axis or translation.

Definition 2.3 (Chebyshev distance) For any (xi, xj) ∈ R, the Chebyshev distance is

defined as:

d(xi, xj) = Max
p

(|xip − xjp|) (2.5)

where (xi, xj) are n-dimensional vectors xi = (xi1, xi2, · · · , xin) and xj = (xj1, xj2, · · · , xjn),

respectively. The Chebyshev distance between the two samples is the greatest of their differences

along the coordinate dimension.

Definition 2.4 (Minkowski distance) For any (xi, xj) ∈ R, the Minkowski distance is

defined as:

d(xi, xj) = (
n∑
p=1

|xip − xjp|q)1/q (2.6)

where (xi, xj) are n-dimensional vectors xi = (xi1, xi2, · · · , xin) and xj = (xj1, xj2, · · · , xjn),

respectively. q is an integer. The Minkowski distance can be considered a generalization of

both the Euclidean distance and the Manhattan distance. When q = 1, it equals to Manhattan

distance; when q = 2, it equals to Euclidean distance; when q →∝, it equals Chebyshev distance.

However, the above four distances cannot account for data coupling since they treat differences

between different attributes of the sample (i.e., each characteristic variable) equally.

Definition 2.5 (Mahalanobis distance) For any (xi, xj) ∈ R, the Mahalanobis distance is

defined as:

d(xi, xj) =
√

(xi − xj)TM(xi − xj) (2.7)

where M ∈ Z+, denoting the cone of symmetric positive semi-definite real-valued matrices.

Mahalanobis distance is an effective multivariate distance metric that measures the distance

between a sample and a distribution. Since M is positive semi-definite, it can be decomposed

2.2. Deep metric learning 33

as M = LTL. L is the matrix of all eigenvectors. Thus, the Mahalanobis distance can be

reformulated as:

d(xi, xj) =
√

(xi − xj)TM(xi − xj)

=
√

(xi − xj)TLTL(xi − xj)

=
√

(Lxi − Lxj)T (Lxi − Lxj)

(2.8)

Compared to Eq. 2.3 and Eq. 2.8, computing the Mahalanobis distance is the same as computing

the Euclidean distance after linearly mapping the data from the original space to transformed

space by the transformation matrix L. Both learning the distance matrix M and learning the

linear transformation matrix L achieve metric learning, according to the equivalence.

Definition 2.6 (Cosine similarity) For any (xi, xj) ∈ R, the Cosine similarity is defined

as:

d(xi, xj) =
xTi xj
|xi| |xj |

. (2.9)

Cosine similarity calculates similarity by taking the cosine of the angle between two samples’

vectors. A cosine value of 0 indicates that the two vectors are orthogonal to each other and have

no match. The smaller the angle and the greater the match between vectors, the closer the cosine

value to 1.

2.2.2 Siamese network

Bromley et al. [1993] first propose a Siamese neural network in the early 1990s to solve the

signature verification problem. A Siamese neural network is made up of two neural networks that

accept different inputs but are linked by an energy function. This function computes a distance

metric between the highest level feature representation [Koch et al., 2015]. Notably, a key feature

of Siamese networks is that the twin networks share the same architectures and same weights.

Fig. 2.3 shows a general Siamese network that contains two identical neural networks Gw. Given a

pair data (X1, X2) as inputs, the twin neural networks outputs Gw(X1) and Gw(X2), respectively.

Then, the distance between Gw(X1) and Gw(X2) is computed by an energy function Ew:

Ew(X1, X2) = ‖Gw(X1)−Gw(X2)‖ . (2.10)

2.2.3 Loss functions

Unlike other loss functions in traditional metric learning methods, which aim to learn to predict

labels, values, or one or more values of a given input directly, the typical loss function in deep

metric learning is ranking loss, predicting the relative distance between the inputs. In terms

of training data, the ranking loss can be used as long as data points are similar. The outputs

could be binary (similar/dissimilar). Assuming an image-based place recognition dataset exists,

and it is required to know which images belong to the same location (similar) and which do

not (dissimilar). CNNs can be trained using the ranking loss function to determine whether two

images belong to the same location.

The goal of ranking loss is to learn a representation of features with a distance between them

that is less than the marginal value for positive sample pairs and greater than the marginal value

for negative sample pairs. A typical ranking loss function pipeline consists of three steps: (1) the

features from two (or three) inputs are extracted and then the embedding representations for each

feature are computed. (2) A distance metric, such as the Euclidean distance, is defined to measure

34 2. Basics

𝑤
𝐺!(𝑋")

Neural Network

𝐺!(𝑋#)

Neural Network

𝐺! 𝑋" − 𝐺!(𝑋#)

Input 𝑋" Input 𝑋#

E!

Figure 2.3: The network architecture of a Siamese network.

the similarity of these representations. (3) Finally, if two inputs are similar, the feature extractor

generates similar representations for them; otherwise, it will generate different representations for

them.

The ranking loss can be divided into two types: Pairwise Ranking loss and Triplet Ranking

loss, based on the usage of pairs of training data samples or triplets of training data samples,

respectively. Fig 2.4 illustrates an example of the network architecture based on a pairwise

ranking loss.

In Fig 2.4, the positive pairs and negative pairs are constructed, respectively. A positive pair

is composed of an anchor sample and a positive sample. The network is hoped to close the feature

embeddings between the anchor and the positive in the distance metric. In addition, a negative

pair consists of an anchor sample and a negative sample. The network aims to push away the

feature embeddings between the anchor and the negative. Pairwise ranking loss hopes that the

distance of positive pairs is 0 and the distance of negative pairs is greater than the marginal value

m. The loss function can be formulated as:

L =

{
dist(fa, fp), if positive pair

max(0,m− dist(fa, fn)), if negative pair
(2.11)

where fa, fp, fn are the feature embeddings of anchor, positives, and negatives, respectively.

For positive pairs, the pairwise ranking loss is 0 only when the network generates features for

both elements in the pair with no distance between them. For negative pairs, the loss is 0 when

the distance between the representations of the two pair elements is greater than the margin m.

The aim of m is to focus on more difficult pairs during the network training stage because no effort

is wasted on enlarging that distance when the representations of a negative pair are sufficiently

distant.

The triplet ranking loss explores the triplets of training data instead of pairs. Fig 2.5 shows

an example of a network pipeline based on a triplet ranking loss. A triplet consists of an anchor,

2.2. Deep metric learning 35

PointNet++

PointNet++

Feature embedding

Feature embedding

Positive

Anchor
Close

PointNet++

PointNet++

Feature embedding

Feature embedding

Negative

Anchor
Push away

(a)

(b)

Figure 2.4: An example of a pairwise ranking loss set up to train a net for point cloud based place
recognition. a) shows the network should close the feature embeddings between the anchor and the positive,
b) shows the network should push away the feature embeddings between the anchor and the negative. A
pairwise ranking loss can be used in other tasks or other networks.

a positive, and a negative sample. The objective is the distance dist(fa, fp between the anchor

and the negative is greater (bigger than the margin m) than the distance dist(fa, fn between the

anchor and the positive. The triplet ranking loss can be formulated as:

L = max(0,m+ dist(fa, fp)− dist(fa, fn)) (2.12)

According to Eq. 2.12, the triplets can be divided into three types: Easy Triplets, Hard

Triplets, and Semi-Hard Triplets. The visualization of them is vividly illustrated in Fig .

Easy Triplets: dist(fa, fn) > dist(fa, fp + m). In the embedding space, an Easy Triplet is

defined as the negative sample being sufficiently distant from the anchor in comparison to the

positive sample. The loss will be zero, so the network will regard them as easy training data and

there will be no effort to update the network parameters.

Hard Triplets: dist(fa, fn) < dist(fa, fp). In the embedding space, a Hard Triplet is defined

as the negative sample being closer to the anchor than the positive. Because the loss is positive,

it is a difficult case for network training, and the network should focus on these cases.

Semi-Hard Triplets: dist(fa, fp) < dist(fa, fn) < dist(fa, fn) + m. In the embedding

space, a Hard Triplet is defined as the negative sample being more distant to the anchor than the

positive, but the distance is not greater than the margin. The loss is also positive.

36 2. Basics

PointNet++

PointNet++

Feature embedding

Feature embedding

Positive

Anchor Close

PointNet++

Feature embedding

Negative

Push
away

Figure 2.5: An example of a triplet ranking loss set up to train a net for point cloud based place recognition.
A triplet ranking loss can be used in other tasks or other networks.

𝑓!
𝑓"∗

𝑓!

𝑓!"

Semi-hard

Hard

Easy

𝑚

𝑓!#

Figure 2.6: Three types of triplets: Easy Triplets, Hard Triplets, Semi-Hard Triplets. fa is an anchor
example, and fp is a positive example. f1n, f2n, and f∗n are the easy, semi-hard, and hard negative examples,
respectively.

2.3 Transformer

Transformer [Vaswani et al., 2017] is originally proposed as a sequence-to-sequence model archi-

tecture for machine translation, which relies entirely on an attention strategy to obtain global

context dependencies between input and output. Owing to its high performance, Transformer

has been an off-the-shelf architecture in natural language processing, computer vision [Dosovitskiy

et al., 2020], and even other disciplines, like chemistry [Schwaller et al., 2019].

2.3. Transformer 37

A Transformer is made up of an encoder and a decoder, which are both stacks of identical

blocks. Each encoder block consists primarily of a multi-head self-attention module and a position-

wise feed-forward network (FFN). A residual connection is used around each module to build

a deeper model, followed by layer normalization. In decoder blocks, an additional multi-head

attention module over the output of the encoder stack can be inserted between the multi-head

self-attention modules and the FFNs. In addition, the self-attention sub-layer in the decoder

stack is modified to prevent positions from attending to subsequent positions. Fig. 2.7 shows

the overall architecture of the Transformer. The main modules in a Transformer are multi-head

attention, position-wise FFN, residual connection and normalization, and positional encoding.

A key challenge of applying a Transformer is its inefficiency in processing long data mainly

due to the computation and memory complexity of the self-attention module. Thus, adapting the

Transformer to 3D point clouds is a challenging task.

2.3.1 Attention

The input of an attention module includes three vectors: Query, Key, and Value. The output is

computed as a weighted sum of the values, with the weight assigned to each value determined by

the query’s compatibility function with the corresponding key.

The attention mechanism explored in a Transformer is called ’Scaled Dot-Product Attention’.

Given the queries Q and keys K of dimension dk, and values V of dimension dv, the scaled

dot-product attention can be calculated by:

Attention(Q,K,V) = Softmax

(
QK>√
dk

)
V. (2.13)

1√
dk

is used to alleviate the gradient vanishing problem of the Softmax function because the

magnitude of the dot products increases when dk is a large value. Softmax
(
QK>√
dk

)
is often called

’Attention Map’.

Instead of utilizing a single attention function with dm-dimensional queries, keys, and values,

Transformer explores a multi-head attention mechanism, where the queries, keys, and values are

linearly projected h times with dk, dk, dv dimensions, respectively. Then, the attention function is

performed in parallel on each of these projected versions of queries, keys, and values according to

Eq. 2.13, yielding dv -dimensional output values. The final values are obtained by concatenating

all the outputs and projecting them back to the original dm-dimensional representation. Formally,

multi-head attention can be formulated as:

MultiHeadAttn(Q,K,V) = Concat (head1, · · · , head H) WO,

head i = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
,

(2.14)

where WQ
i ∈ Rdm×dk , WK

i ∈ Rdm×dk , WV
i ∈ Rdm×dv and WO ∈ Rhdv×dm .

In Transformer, the self-attention strategy is used for the multi-head attention module. In a

self-attention layer, all of the queries, keys, and values come from the same place.

2.3.2 Position-wise FFN

In addition to attention modules, Transformer has a fully connected feed-forward network that is

applied to each position independently and identically. FFN consists of two linear transformations

separated by a ReLU activation, which is formulated as follows:

38 2. Basics

Inputs

Multi-head
Attention

Add & Norm

FFN

Feature
Embedding

Positional
encoding

Add & Norm

+

Feature
Embedding

Outputs

Multi-head
Attention

Positional
encoding+

Add & Norm

Multi-head
Attention

FFN

Add & Norm

Linear &
Softmax

Output Probabilities

𝐿×

𝐿×

Add & Norm

Figure 2.7: Overview of the Transformer architecture.

FFN (H) = ReLU (HW1 + b1) W2 + b2, (2.15)

where H is the output vector of the previous layer, W1, W2, b1, and b2 are trainable parameters

in linear layers.

2.3.3 Residual connection and normalization

Inspired by the residual connection design [He et al., 2016a] for building a deeper network, Trans-

former also employs a residual connection around each module and adds the layer normalization

2.3. Transformer 39

layers. Thus, each encoder in Transformer, including a multi-head self-attention (MHSA) module

and position-wise FFN, can be formulated as follows:

H = LayerNorm(MHSA(X) + X),

H′ = LayerNorm (FFN (H) + H) ,
(2.16)

where LayerNorm is the layer normalization layer.

2.3.4 Positional encoding

When modeling text sequences, word ordering is important, and it is thus critical to properly

encode word positions. Thus, the information about the position of the tokens in the sequence

should be injected to fully explore the ordering of the sequence. However, there is no recurrence

or convolution (especially for the encoder) in Transformer. To address this problem, Transformer

adopts an absolute sinusoidal positional encoding. For each position pos, the positional encoding

is a sin/cos function of the pos with a pre-defined frequency.

PE(pos)i =

{
sin (ωipos) , if i is even

cos (ωipos) , if i is odd
(2.17)

where ωi is the pre-defined frequency for each dimension. The positional encoding of each position

in the sequence is then added to the feature embeddings and fed to Transformer, as shown in

Fig 2.7.

41

3 Point Cloud based Place
Recognition

Place recognition and scene localization in large-scale and complex environments is a fundamental

challenge with applications ranging from autonomous driving [Häne et al., 2017; Hee Lee et al.,

2013] and robot navigation [Fu et al., 2018; Mur-Artal et al., 2015] to augmented reality [Liu

et al., 2016a]. In this chapter, two point cloud based place recognition methods are reported.

To be specific, the first method is a novel learning-based approach for identifying sub-maps from

aggregated point clouds, which includes a point orientation encoding (PointOE) module, a self-

attention unit, and a simple yet efficient loss function. The second one is designed for recognizing

single raw LiDAR scans.

3.1 Problem statement

Let Mref be a pre-built reference map of 3D point clouds defined with respect to a fixed reference

frame, which is divided into a set of submaps/LiDAR scans such that Mref = {mi : i = 1, ...,M}.
Notably, the submaps pre-built by aggregating multiple LiDAR scans are always covering the

same length and include a fixed number of points (e.g. 4096), while the single scan has a larger

area and a greater number of points. Each submap/LiDAR scan is tagged with a Universal

Transverse Mercator (UTM) coordinates at its centroid/scanning position using GPS/INS. Let Q

be a query point cloud with the same coverage with respect to a submap/LiDAR scan in Mref .

The point cloud based place recognition problem is defined as retrieving a submap/LiDAR scans

m∗ from Mref that is structurally closest to Q. Note that under this formulation, Q is not a

subset of Mref , since they are independently scanned at different times.

To tackle this problem, a neural network is designed to learn a function f(·) that embeds a

local point cloud to a 3D global descriptor of pre-defined size. The goal is to find a submap/LiDAR

scan m∗ ∈Mref such that the distance between global descriptors f(m∗) and f(Q) is minimized:

m∗ = argmin
mi∈Mref

d(f(Q), f(mi)), (3.1)

where d(·) is a distance metric (e.g., Euclidean distance). In practical implementation, a global

descriptor dictionary is built offline for all 3D submaps/LiDAR scans. When a query submap/scan

appears, the nearest submap/scan is obtained efficiently by comparing the global descriptor ex-

tracted online from the query scan with stored global descriptors.

3.2 Self-Attention and Orientation Encoding Network (SOE-Net)

The SOE-Net consists of three essential steps: the extraction of 3D local descriptors via a PointOE

module, the aggregation of local descriptors via a self-attention unit and a NetVlad layer, and

42 3. Point Cloud based Place Recognition

PointOE
Module

Self-attenion
Unit

C
on

v
(w

,b
)

1×
1×
#×

$

S
of

tm
ax

%&'()*+,())

In
tr

a-
no

rm
al

iz
at

io
n

L
2

no
rm

al
iz

at
io

n

F
C

 1
02

4

L
2

no
rm

al
iz

at
io

n

G
lo

ba
ld

es
cr

ip
to

r

/×3

12 123

Local features extractionQuery scan Features aggregation

Figure 3.1: Overview of SOE-Net architecture. The network takes a query scan with N points as input and
employs the PointOE module to extract point-wise local descriptors FL. During descriptor aggregation, a
self-attention unit is applied to the local descriptors and followed by the NetVLAD layer. Finally, a fully
connected (FC) layer is adapted to compress the output descriptor vector, follow by the L2 normalization
to produce a global descriptor.

the loss functions for training. Fig. 3.1 shows the overall network architecture of the proposed

SOE-Net, where the local descriptor extraction part produces local descriptors from the 3D query

scan, and the descriptor aggregation part aims to generate a distinct global descriptor. A detailed

explanation of each step will be given in the following.

Given the input as a query point cloud with coordinates denoted as Q = {p1, · · · , pN} ∈ RN×3,
the designed PointOE module is first used to extract point-wise local descriptors. Unlike previous

studies, it extracts relevant local information from eight directions to enhance point-wise feature

representation, with details described in Section 3.2.1. Then, a self-attention unit in the descriptor

aggregation part is proposed to encode the spatial relationship among point-wise local descriptors,

which is explained in Section 3.2.2. Afterward, the NetVLAD layer is adopted to fuse enhanced

local descriptors in Section 3.2.2. The training strategy with the proposed “Hard Positive Hard

Negative quadruplet” (HPHN quadruplet) loss is presented in Section 4.3.4.

3.2.1 Local descriptor extraction

PointOE Module

Query
scan O

E
U

ni
t

M
LP

 6
4

O
E

U
ni

t

M
LP

 1
28

O
E

U
ni

t

M
LP

 2
56

O
E

U
ni

t

M
LP

 1
02

4

!"

#×3 #×1024
Figure 3.2: The architecture of PointOE module. The input point cloud passes through a series of OE
units and MLPs, and local descriptors FL are generated as output.

The successes of many non-learning-based image retrieval methods are owing to the design

of great local image descriptors (e.g., SIFT [Lowe, 2004]). Orientation Encoding (OE) is one

of SIFT’s most shining highlights, which is also considered to benefit 3D feature description.

Inspired by PointSIFT [Jiang et al., 2018], the OE unit is introduced to the proposed SOE-Net.

Specifically, it is integrated into PointNet to improve the point-wise feature representation ability.

Fig. 3.2 shows the detailed architecture of the PointOE module. To the best of our knowledge,

no prior work has explored it for large-scale place recognition and its effectiveness for retrieval

has not been verified.

3.2. Self-Attention and Orientation Encoding Network (SOE-Net) 43

x
y

z z

x

y

Input S8N Three-stage convolutions

P

Figure 3.3: The workflow of OE unit.

The inputs to the PointOE module are the 3D coordinates of N points. Following [Qi et al.,

2017a], multilayer perceptrons (MLP) are adapted to encode the input 3D coordinates into fea-

tures of [64, 128, 256, 1024] dimensions. The OE unit is inserted in front of each MLP to improve

the representation ability. Local descriptors FL are generated from this module.

Orientation-encoding Unit. Consider a N × C matrix as an input that describes a point

cloud of size N with a C-dimensional feature for each point, the OE unit will output a feature

map with the same dimension N × C. Every point is assigned to a new C-dimensional feature,

which integrates the local information from eight orientations. As shown in Fig. 3.3, the OE unit

first adopts the Stacked 8-neighborhood Search (S8N) to find the nearest neighbors for a point

P in each of the eight octants [Jiang et al., 2018]. Furthermore, the features are extracted using

three-stage convolutions from those neighbors, which lie in a 2× 2× 2 cube along the x−, y−, z−
axis. Formally, these three-stage convolutions are defined as:

OEx = ReLU(Conv(wx, V, bx)),

OExy = ReLU(Conv(wy, OEx, by)),

OExyz = ReLU(Conv(wz, OExy, bz)),

(3.2)

where V ∈ R2×2×2×C are the feature vectors of neighboring points. wx ∈ R2×1×1×C , wy ∈
R1×2×1×C and wz ∈ R1×1×2×C are weights of the three-stage convolutions, bx, by, bz are the biases

of convolution operators. In this way, the OE unit captures the local geometric structure from

eight spatial orientations.

3.2.2 Feature aggregation

Self-attention Unit

To introduce long-range context dependencies after extracting local descriptors, a self-attention

unit [Zhang et al., 2019a] is designed before fusing them into the NetVLAD layer. The self-

attention unit can encode meaningful spatial relationships between local descriptors. Fig. 3.4

presents its architecture. Given local descriptors FL ∈ RN×C , where N is the number of points

and C is the number of channels, FL is fed into two MLPs respectively and generate the new

feature maps X ∈ RN×C , Y ∈ RN×C . Then, the attention map W is calculated, defined as

follows:

Wj,i =
exp(Yj ·XT

i)∑N
i,j=1 exp(Yj ·XT

i)
, (3.3)

where Wj,i indicates that the ith local descriptor impacts on jth local descriptor, with the shape

of N ×N . Here, it deems as the component that learns the long-range dependency relationship

among point-wise local descriptors. More important local descriptors will contribute more to the

representation of the target global descriptor. On the other hand, FL is fed into another MLP

to output a new feature map Z ∈ RN×C . Afterward, it is multiplied with the transpose of W to

44 3. Point Cloud based Place Recognition

!" MLP

MLP

MLP #

$

%

×

Transpose

×

Softmax
!"&+

'

Figure 3.4: The workflow of the self-attention unit.

generate the result AP ∈ RN×C . Finally, a scale parameter α is added on it and added back FL,

which can be defined as follows:

F
′
L = µAp + FL = µW TZ + FL, (3.4)

where µ is initialized as zero and gradually assigned more weights with the progress of learning.

The final output has a global context view compared with the original local descriptors. This

enhances feature integration by combining geometrical and contextual information.

NetVLAD Layer

In this module, the aim is to aggregate the local descriptors into a discriminative and com-

pact global one. Following the configuration in [Angelina Uy & Hee Lee, 2018], a NetVLAD

layer is adopted to fuse features. The NetVLAD layer learns K visual words, denoted as{
v1, · · · , vK |vk ∈ RC

}
, and generates a (C × K)-dimensional VLAD descriptor. However, the

VLAD descriptor is time-consuming for nearest neighbor search, thus a fully connected layer is

applied to generate a more compact global descriptor with an L2 normalization.

3.2.3 Loss function

Before going into the details of the proposed HPHN-quadruplet loss, a short review of the

quadruplet loss [Chen et al., 2017] and its improvement are given. To compute the quadru-

plet loss, each batch of the training data includes T quadruplets. Each quadruplet is denoted as

Γq = (δa, δp, δn, δ
∗
n), where δa is an anchor point cloud, δp a positive point cloud (structurally sim-

ilar to the query), δn a negative point cloud (structurally dissimilar to the query), δ∗n a randomly

sampled point cloud that is different with δa, δp, δn. The quadruplet loss is formulated as:

Lq=
1

T

T∑[
||f(δa)−f(δp)||22−||f(δa)−f(δn)||22+α

]
+

+
1

T

T∑[
||f(δa)−f(δp)||22−||f(δ∗n)−f(δn)||22+β

]
+
,

(3.5)

where [· · ·]+ denotes the hinge loss, α and β are the constant margins. The first term is a triplet

loss which focuses on maximizing the feature distance between the anchor point cloud and the

negative point cloud. The second term focuses on maximizing the feature distance between the

negative point cloud and the additional point cloud δ∗n.

3.2. Self-Attention and Orientation Encoding Network (SOE-Net) 45

To make the positive and negative samples in the quadruplet more effective, the quadruplet

loss is extended to the lazy quadruplet loss [Angelina Uy & Hee Lee, 2018] by introducing hard

sample mining. The quadruplets now become Γlq = (δa, {δp} , {δn} , δ∗n), where {δp} is a collection

of φ positive point clouds and {δn} is a collection of ϕ negative point clouds. The loss is modified

accordingly to

Llq= max
i = 1...φ
j = 1...ϕ

(
[
||f(δa)−f(δip)||22−||f(δa)−f(δjn)||22+α

]
+

)

+ max
i = 1...φ
j = 1...ϕ

(
[
||f(δa)−f(δip)||22−||f(δ∗n)−f(δjn)||22+β

]
+

).
(3.6)

In practice, a common strategy is to set β to be smaller than α (e.g., α = 0.5, β = 0.2) to make

the second term in Eq. 3.6 a relatively weaker constraint. However, this practice is less justified,

especially in the scenario of metric learning for large-scale place recognition. In this work, a Hard

Positive Hard Negative quadruplet loss (HPHN quadruplet) is proposed, which unifies the margin

selection for δa and δ∗n, and meanwhile relies on the hardest positive and the hardest negative

samples in the batch to compute the learning signal. In this case, the hardest positive point cloud

δhp is the least structurally similar to the anchor point cloud, which is defined as:

δhp = argmax
δip∈{δp}

||f(δa)− f(δip)||22, (3.7)

The hardest negative point cloud is the most structurally dissimilar to the anchor point cloud.

Here, the first finding is the hard negative point cloud δhn in {δn}, which is defined as:

δhn = argmin
δjn∈{δn}

||f(δa)− f(δjn)||22. (3.8)

Additionally, the feature distance is considered from δ∗n to δn:

δ
′
hn = argmin

δjn∈{δn}
||f(δ∗n)− f(δjn)||22. (3.9)

Finally, one of them is selected as the hardest negative training data, which has the minimum

distance dhn:

dhn = min(||f(δa)− f(δhn)||22, ||f(δ∗n)− f(δ
′
hn)||22). (3.10)

In conclusion, the HPHN quadruplet loss can be formulated as:

LHPHN =
[
||f(δa)− f(δhp)||22 − dhn + γ

]
+
, (3.11)

where γ is the unified margin. The first term in Eq. 3.11 is the upper bound of the feature distance

of all the positive point cloud pairs, and the second term is the lower bound of the feature distance

of all the negative point cloud pairs in a batch.

Although having a form similar to the triplet loss, the loss is still a quadruplet loss that is

computed from the sampled quadruplet. Compared with the lazy quadruplet loss, the proposed

HPHN quadruplet loss picks the harder term between Eq. 3.8 and Eq. 3.9, instead of using both in

the loss computation. Moreover, the same margin is used when either of both is selected. Despite

this simple modification, the experimental results in Chapter 7 demonstrate that the proposed

HPHN quadruplet loss significantly outperforms the lazy quadruplet loss.

46 3. Point Cloud based Place Recognition

3.2.4 Implementation details

The proposed SOE-Net is implemented in the TensorFlow framework and trained on a single

Nvidia Titan Xp GPU with 12G memory. The size of the input points is 4096. The margins γ for

the HPHN quadruplet loss are set to 0.5. Similar to all previous methods, the number of clusters

K in the NetVLAD layer is set to 64. In the training stage, the batch size is set to 1 in each

training iteration. Adam optimizer is used in the models for epoch 20. Same as PCAN [Zhang &

Xiao, 2019], two positive point clouds and nine negative point clouds (including one other negative

point cloud) are chosen in calculating loss functions. The initial learning rate is set to 0.0005. It

decays by 0.7 after every 200K steps.

3.3 Cross Attention Single Scan Place Recognition (CASSPR)

Although previous methods [Angelina Uy & Hee Lee, 2018; Zhang & Xiao, 2019; Xia et al., 2021a]

achieve excellent performance on large-scale point cloud based place recognition task, they are

trained and evaluated on the 3D reference submaps, which was pre-built by aggregating multiple

LiDAR scans. The submaps are always covering 20m in length and include a fixed number of

points (e.g. 4096). In practice, the real stored data is actually a combination of single LiDAR

scans that cover a 160-200 meter size area and have up to 260k points for Ouster OS1-128.

The larger area and greater number of points bring a bigger challenge for achieving point cloud

based place recognition. Recently, MinkLoc-SI is a pioneering network for place recognition tasks

based on a single LiDAR scan. However, it is only an extension of MinkLoc3D [Komorowski,

2021], a 3D voxel-based learning model using Minkowski Engine [Choy et al., 2019a]. Thus, it

still can not solve the two problems: 1) The global descriptors generated by 3D voxelization and

3D convolution networks must suffer the geometric loss due to quantization. 2) The long-range

contextual dependencies are ignored by 3D full convolution networks.

Fig. 3.5 shows the overall network architecture of the CASSPR. It is a two-branch network in-

cluding a Hierarchical Cross-Attention Transformer(HCAT) module and lightweight self-attention

(LSA) units. The point-based branch (Top in Fig. 3.5) preserves the fine-grained geometrical

features via running simple per-point MLPs. The voxel-based branch is based on Minkloc3D-

SI [Żywanowski et al., 2021], including a local feature extraction network and generalized-mean

(GeM) pooling layer. The local feature extraction network is first built with a spherical repre-

sentation, as explained in Section 3.3.1. Then, a Feature Pyramid Network (FPN) is designed

as a pattern to extract high-resolution local descriptors with a large receptive field, including

six convolutional layers and one transposed convolution layer (TConv). Point-voxel feature fu-

sion happens due to the HCAT module, with details described in Section 3.3.2. In addition, a

lightweight self-attention unit in the local feature extraction part is introduced to encode the

spatial relationship among local descriptors, as explained in Section 3.3.3. The training strategy

with the loss function is presented in Section 3.3.4.

SR Sparse
tensor

Conv0

MLPs
Point-wise features

Conv1 Conv2

Conv3 Conv4 TConv

Conv5

LSA

G
lo
ba
ld
es
cr
ip
to
r

+

G
eM

po
ol
in
g

q
k,v

q

k,v

CAT
q

k,v
CAT

CAT

HCAT

Figure 3.5: The overall network architecture of CASSPR.

3.3. Cross Attention Single Scan Place Recognition (CASSPR) 47

3.3.1 Spherical representation and point-voxel fusion

A natural alternative to extracting geometric features from point clouds is to utilize the 3D

voxelization on Cartesian coordinate systems and 3D convolution networks. This solution is

suitable for indoor scenes with dense and uniform-density points. However, the density of 3D

point clouds in urban scenes collected by LiDAR sensors is uneven, where the area closer to

the scanner location has much greater density than a far-away region. Consequently, previous

3D voxelization methods based on Cartesian coordinates have had difficulty extracting fruitful

features by treating the point cloud as a uniform one and splitting it via the uniform voxel [Zhu

et al., 2021].

Motivated by this, a spherical-voxelization method introduced in Minkloc3D [Żywanowski

et al., 2021] is used in this work. Each 3D point (x, y, z) on Cartesian coordinate system is

transformed to a spherical representation (γ, θ, ϕ) on the spherical coordinate system:

γ =
√
x2 + y2 + z2,

θ = atan2(y, x),

ϕ = atan2(z,
√
x2 + y2),

(3.12)

where γ is the distance between the point and the sensor location, θ is the horizontal scanning

angle and ϕ is the vertical scanning angle. With the spherical representation, the grid size would

be increased to cover the farther-away area, thus more evenly distributing the points across

different regions and giving a more balanced picture against the varying density. Next, the point

cloud with coordinates (γi, θi, ϕi) is quantized into a finite number of voxels. The quantization

loss is introduced since each cuboid only has one point. A single sparse tensor is then created by

the quantized points and an associated feature via Minkowski Engine [Choy et al., 2019a]. The

values of the associated feature are initialized to one for non-empty voxels.

Although the above spherical-voxelization operation can effectively maintain the geometric

structure from LiDAR scans, the quantization loss cannot be ignored since many points are lost.

In order to quantify the information loss, an experiment is conducted on how the number of points

changes in the process. As shown in Fig. 3.6, the difference between the original point cloud and

its quantization version is visualized. About 2000 out of 4096 points are removed on average for

being too close to other points with a quantization size of (γi, θi, ϕi) = (2.5, 2.0, 1.875) proposed

in [Żywanowski et al., 2021].

Observed this, an efficient primitive is proposed to extract more informative high-level features

from raw single scans, which compensates for the information loss in the voxel-based branch. As

illustrated in Fig. 3.5, the upper point-based branch extracts the point-wise features for each

individual point via MLPs. The lower voxel-based branch first generates a sparse tensor using

the above spherical-voxelization method. Then one 3D convolutional block is used to aggregate

the neighboring points, producing sparse feature maps with increasing receptive fields. However,

how to fuse the features from different branches is still a challenge.

3.3.2 Hierarchical cross-attention transformer

To efficiently explore the inter-view relationship, the relationship between volumetric view and

point view, a Hierarchical Cross-Attention Transformer (HCAT) is proposed to fuse the two

features from different views in a unified model. As shown in Fig. 3.7, the HCAT consists of

three Cross Attention Transformers (CAT). Each CAT has different roles. The first CAT takes

the sparse-voxel feature maps as the query and the point-wise features as the key and value.

It extracts point-wise features with reference to sparse feature maps and outputs new enhanced

48 3. Point Cloud based Place Recognition

Origin points Lost points

Figure 3.6: Visualization of the points difference between the original and after quantization.

sparse tensors. Oppositely, another CAT produces new enhanced point-wise features by taking the

point-wise features as the query and the sparse-voxel features as the key and value. Finally, the

aim of the third CAT is to fuse the enhanced sparse tensors and the enhanced point-wise features.

The CAT is a residual module, consisting of two sub-layers: Multi-Head Cross-Attention (MHCA)

and Feed-Forward Network (FFN). The feed-forward network includes two linear transformation

layers with a ReLU activation function in between. Formally, each CAT can be formulated as:

FCA = CAT(Q,K,V),

FCA = F̃CA + FFN
(
F̃CA

)
,

F̃CA = Q + MHCA (Q,K,V) ,

(3.13)

where Q = Fs ∈ RNs×d is the query, K = V = Fp ∈ RNp×d are the key and value.

In the MHCA layer, the cross-attention is achieved by projecting the Q, K, and Vwith h

times. Specially, the weight matrix with ’Scaled Dot-Product Attention’ [Vaswani et al., 2017] is

calculated for the query, key, and value, which can be formulated as

Attention (Q,K,V) = softmax

(
Q + KT

√
dk

)
V. (3.14)

Next, the values for h heads are calculated and concatenated together:

Multi-Head(Q,K,V) = [head1, . . . ,headh] WO, (3.15)

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
, (3.16)

where W is the weight of the attention. WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv , and

WO ∈ Rhdv×dk .

With the above HCAT, the point-wise features from the point-based branch can attend to the

sparse tensors from the voxel-based branch. Hence, the quantization loss can be compensated

and more accurate features will be got via the HCAT module.

3.3. Cross Attention Single Scan Place Recognition (CASSPR) 49

Multi-head
Cross Attention

Add & Norm

Linear & Relu

Linear & Relu

Add & Norm

𝑁!

C= 32C= 32

+KV Q

Sparse vectors
Point-wise features

C= 32

𝑁"

𝑁!

Fusion vectors

Figure 3.7: The architecture of one Cross-Attention Transformer (CAT). It takes the sparse-voxel vectors
as a query and the point-wise features as key and value.

3.3.3 Lightweight self-attention unit

Before going to the details of the proposed lightweight self-attention unit, a short review of the

previous self-attention used is given in 3D place recognition or point Transformers [Zhao et al.,

2021; Guo et al., 2021]. Given a point-wise local descriptor Dlocal = {(pi, fi)}Ni=1, where pi is

the i-th point coordinate and fi is the feature of pi. N is the number of points. A dot-product

self-attention (DPSA) unit can be formulated as follows:

DPSA (Dlocal) =
∑

fj∈Dlocal

Softmax[δ(pi − pj))

+ fiW
Q
i (fjW

K
j)T]fjW

V
j ,

(3.17)

where WQ
i ,W

K
j ,W

V
j are learned matrices, and δ is the positional encoding for point coordinates.

50 3. Point Cloud based Place Recognition

However, computing DPSA directly by multiplying two N × C matrices is expensive, with

O(N2) space complexity and O(N2.34) time complexity [Alman & Williams, 2021]. This quadratic

dependency on the number of points has brought a challenge for large-scale 3D place recognition

based on a single scan since N is much greater in this work. Additionally, in order to compute

the point-based positional encoding one needs to search for K-nearest neighbors, which can be

achieved with O(N logN) space complexity [Park et al., 2022]. This has also become a bottleneck

for processing large-scale point clouds.

To make self-attention more effective, a lightweight self-attention (LSA) unit is introduced to

reduce both the training and inference time/memory consumption inspired by [Park et al., 2022].

In specially, a memory-efficient positional encoding is introduced to reduce space complexity.

Positional encoding. The input point cloud is voxelized to a set of M triplets V =

{(vi, gi, ci)}Mi=1, including the i-th voxel coordinate vi, the corresponding voxel feature gi, and

the centroid coordinate ci of this voxel. Note that M < N since the voxelization step will lose

some points. This fact would also imply lower space and time complexity. The lightweight

self-attention on ci can be formulated based on Eq. 3.20:

LSA (ci) =
∑

gj∈Dlocal

softmax
[
giW

Q
i (gjW

K
j)T + δ(ci − cj))

]
gjW

V
j , (3.18)

where δ(ci − cj) ∈ RM×D. D is the dimensions of the positional encoding layers.

Finding neighbor K voxels via voxel hashing will be quick since it only has O(M) time

complexity. However, implementing δ(ci, cj) directly using MLP in requires O(MKD) space

complexity. To alleviate this problem, a coordinate decomposition approach is inspired by [Park

et al., 2022]. Given a query voxel (vi, gi, ci) and a nearest neighbor voxel (vj , gj , cj), the relative

position encoding between ci and cj can be decomposed as following:

δ(ci − cj) = δ [(ci − vi) + (vi − vj)− (cj − vj)] . (3.19)

Seen in Eq. 3.19, the memory-consuming δ(ci−cj) is decomposed to three parts δ(ci−vj), δ(vi−vj),
and δ(cj−cj). It can analyze that: (1) The space complexity of δ(ci−vj) will be O(MD) because

of the continuity of c; (2) The positional encoding δ(vi−vj) is more memory-efficient, whose space

complexity is O(KD). Note that K << M , there can be only K different discretized relative

positions of (vi−vj). (3) the additional space complexity for δ(cj− cj) does not need to be added

since the δ(ci − vj) has been computed before. In conclude, the space complexity of δ(ci, cj) is

reduced from O(MKD) to O(MD + KD). The detailed decomposition is visualized vividly in

Fig. 3.8.

Decomp.
+

Bird-view

Voxels 𝛿(𝑐! − 𝑐") 𝛿(𝑐! − 𝑣!) 𝛿(𝑣! − 𝑣")

Figure 3.8: Decomposition of positional encoding. The continuous positional encoding δ(ci− cj) is decom-
posed to δ(ci− vi) and δ(vi− vj). This decomposition can reduce the space complexity from O(MKD) to
O(MD +KD).

3.3. Cross Attention Single Scan Place Recognition (CASSPR) 51

Same as the local self-attention layer in [Park et al., 2022], the cosine similarity is used instead

of the Softmax function in Eq. 3.18. Thus, the Eq. 3.18 can be rewritten as:

LSA (ci) =
∑

gj∈Dlocal

cosine
[
giW

Q
i (gjW

K
j)T + δ(ci − cj))

]
gjW

V
j . (3.20)

3.3.4 Loss function

Same as in Minkloc3D [Żywanowski et al., 2021], a triplet margin loss based on the batch hard

negative mining approach is introduced. Hash-based indexing is first utilized to quickly determine

whether two scans are structurally similar, or dissimilar, or if the similarity is indefinite. A batch

of scans with size n is built by sampling n/2 structurally similar scans. Then, the batch is fed into

CASSPR to compute global descriptors. Notably, two n × n boolean masks are computed, one

indicating structurally similar pairs and the other structurally dissimilar pairs. The informative

training triplets are constructed based on the boolean masks. Besides, only the hardest positive

and the hardest negative scans are mined in one batch. The hard mining triples loss can be

formulated as:

L = MAX (m+ d (ψa, ψp)− d (ψa, ψn) , 0) , (3.21)

where ψa is an anchor point cloud, ψp a hardest positive point cloud (structurally similar to

the anchor), ψn a hardest negative point cloud (structurally dissimilar to the anchor). m is a

pre-defined margin parameter.

53

4 3D Vehicle Detection and
Tracking

In this chapter, the methods for vehicle detection and tracking of moving objects (DTMO) using

MLS point clouds are presented. The aim is to detect vehicles and estimate the location of moving

objects by identifying the trajectory across all frames. The DTMO framework follows a two-step

strategy. In the first step, the locations of vehicles are detected using a PointPillars [Lang et al.,

2019] method. In the second step, given an initial bounding box of a template object in the first

frame from LiDAR scans, a novel lightweight and detector-free 3D single object tracking method

named DMT (Detector-free Motion prediction based 3D Tracking) is proposed.

4.1 Problem statement

In this thesis, DTMO can be split into two sub-tasks: object detection and single object tracking.

Given a LiDAR scan P = {P1, P2, ..., PN |Pi = (x, y, z)}, where N is the number of points, the ob-

ject detection task is defined as locating and classifying the object (e.g. vehicle) in this scan, which

aims to predict the 3D bounding box of the object B = {xc, yc, zc, h, w, l, θ}. (xc, yc, zc) is the

center coordinates of the 3D bounding box, (h,w, l) is the height, width, and length respectively,

and θ is the orientation of the bounding box.

Then, the predicted B can be regarded as an initial 3D bounding box Binit of the object in

the first frame, and let Q = {Qi}Mi=1 be a query point cloud created by cropping and centering

the object in the first frame with Binit. The single object tracking task is defined as locating the

same object in the search point cloud P = {Pi}N
∗

i=1 given the Binit frame by frame. M and N∗ are

the numbers of points in the query point cloud and search point cloud, respectively. Formally,

previous state-of-the-art 3D single object trackers [Qi et al., 2020; Zheng et al., 2021a] can be

formulated as:

Tracker (Q,P,Binit)→ (x̂, ŷ, ẑ, θ̂), (4.1)

where Q ∈ RM×3, P ∈ RN×3 and Binit ∈ R7. Notably, only the center coordinates and orientation

(x̂, haty, ẑ, θ̂) of the target are predicted since the height, width, and length of the object is

assumed to be the same in other frames.

The previous trackers employ off-the-shelf detectors on scanned point clouds for target detec-

tion. They may easily drift when the point clouds are relatively sparse or incomplete. In this

thesis, the potential target center is proposed to predict in a free point-cloud way, which fully

explicitly leverages motion cues from previous target states Sprev = {S1, S2, · · · , St−1}, where the

state St is the predicted center coordinates in the t-th frame. The whole process is formulated as:

Tracker (Q,P,Binit,M(Sprev))→ (x̂, ŷ, ẑ, θ̂), (4.2)

whereM(·) is a motion prediction function that estimates a potential target center in the current

frame based on previous target states.

54 4. 3D Vehicle Detection and Tracking

4.2 3D vehicle detection

Fig. 4.1 shows the pipeline of the vehicle detector, which includes data pre-processing, detection

network, and post-processing modules. The input point clouds are first filtered by removing points

that are not in the front view in the pre-processing module. The filtering strategy reduces many

points and improves the computing efficiency of the detection network. Then, a data augmentation

method is used to add many training samples in case of over-fitting. Next, an efficient one-stage

3D object detector PointPillars [Lang et al., 2019] to predict the bounding boxes of vehicles.

PointPillars consists of a Pillar feature network, a 2D CNN backbone, and a 3D detection head.

Finally, the post-processing operations, including score filtering and Non-Maximum Suppression

(NMS), are utilized to improve the detection performance in the inference stage.

Data
filtering

Data
augmentatio

n

Backbone

3D detection
head

Pillar feature
encoding

Pre-processing PointPillars Post-processing

Score
filtering

NMS

Input point cloud Predictions

Figure 4.1: Pipeline of the vehicle detector. The pre-processing filters the points outside the front view and
augments the training data with additional samples. Next, the PointPillars network is used to estimate 3D
bounding boxes for the vehicles. Finally, the score-filtering and NMS methods are introduced to improve
detection results.

4.2.1 Pre-processing

The data pre-processing step consists of data filtering and data augmentation operations. The

data is first filtered using viewing-frustum culling, which involves constructing the front viewing

frustum and removing LiDAR points that are outside of it. Specifically, six surfaces and their

corresponding normal vectors are first created based on the calculated eight corners of the field

of view. The relative position (inside or outside) between a point and the surface of the apparent

cone can be determined by the angle between the vector formed by the point and the surface and

the surface normal vector. The point is inside if the angle is obtuse; otherwise, it is outside.

Following SECOND [Yan et al., 2018], the data augmentation includes three strategies: sam-

pling ground truths from the database, global rotation and scaling, and object noise. Because

there are too few ground truths during training, the goal of sampling ground truths from the

database is to increase the number of ground truths and simulate objects that exist in various

environments. A database containing labeled point clouds within the ground truth 3D bounding

box is first generated from the training dataset. Then, several labeled point clouds randomly

selected from this database are introduced into the current training scans via concatenation.

Notably, a collision test is conducted to avoid physically impossible cases. In addition, global

rotation and scaling are applied to all ground-truth 3D bounding boxes and scans. The scaling

rate is randomly drawn from a uniform distribution [0.95, 1.05], and the global rotation angle

is from [-π/4, π/4]. Furthermore, the noise is also introduced into each ground-truth box and

its corresponding point clouds independently and randomly, instead of adding noise on all point

clouds. The rotations are randomly sampled from a uniform distribution [-π/2, π/2]. The linear

translations are drawn from a Gaussian distribution (0, 0.25).

4.2. 3D vehicle detection 55

4.2.2 PointPillars

Pillar feature encoding

The input point cloud is first discretized into a set of pillars Np with the grid size H ×W , and

each pillar has a fixed number of points, denoted as Pn. One raw point in pillars is augmented

with xp, yp, zp, xoff , yoff , where xp, yp, zp is the 3D coordinates of the pillar center, and xoff , yoff
is the offset from the pillar x, y center. Notably, due to the sparsity of the point cloud, the set of

pillars will be mostly empty, and the non-empty pillars will have few points in general.

The augmented points are first passed through a simplified version of PointNet [Qi et al.,

2017a] to create a tensor with the size of (Np, Pn, C), where C is the feature channels. Then a

max-pooling layer is used to generate an output feature of size (Np, C). Finally, the feature is

scattered back to the original pillar locations to create a pseudo-image of size (H,W,C). Fig. 4.2

shows the architecture of the pillar feature encoding network.

H

W C

P!

Input point cloud Pillars Feature encoding Pseudo Image

C

H

W

Figure 4.2: Network architecture of the pillar feature encoding. The raw point cloud is first discretized
into evenly stacked pillars. Then, the pillars are encoded and scattered back to a 2D pseudo-image.

2D backbone

The 2D CNN backbone has a similar architecture to VoxelNet [Zhou & Tuzel, 2018b], including

a top-down sub-network and a down-top sub-network. Fig 4.3 shows the detailed network archi-

tecture. The top-down network consists of a series of downsampling blocks. Each block has 2D

convolutional layers with the kernel size of 3 × 3, each followed by Batch Normalization and a

ReLu layer. The size of the feature map after each downsampling block is cut in half, but the

number of output channels is doubled.

In the down-top network, the transposed 2D convolutional layers are used to upsample the

feature maps from the top-down sub-network. Batch Normalization and ReLu layers are also

applied to the upsampled features. The final output features are a concatenation of all multi-

stage features derived from various strides.

3D detection head

Same as Single Shot Detector (SSD) [Liu et al., 2016b], the pre-defined anchors are used to

match the ground-truth boxes using 2D Intersection over Union (IoU). The height and elevation

of bounding boxes are not used for matching; instead, in a two-dimensional match, the height

and elevation become additional regression targets.

56 4. 3D Vehicle Detection and Tracking

H/2
W/2

Conv Conv

Pseudo Image

C

H

W

Conv Conv

TConv

TConv

H/2
W/2

6C

Output feature

Figure 4.3: Network architecture of the 2D backbone. ’TConv’ is a transposed 2D convolutional layer.

Loss function

The training loss includes three components: localization loss, angle loss, and classification loss.

The aim of localization loss is to supervise the predicted 3D bounding box. However, the local-

ization loss cannot solve the issue of flipped boxes: Radians 0 and π correspond to the same box

but result in a large loss when one is misidentified as the other. An angle loss [Yan et al., 2018]

is introduced to address this problem. The object classification loss is to distinguish the labels of

objects.

Localization loss. The Huber (smooth-L1 loss) is used to supervise the regression resid-

uals δb between ground-truth 3D bounding boxes (xgt, ygt, zgt, wgt, hgt, lgt, θgt) and predictions

(xpt, ypt, zpt, wpt), hpt, lpt, θpt).

Lloc =
∑

smoothL1(∆b),

∆b = {∆x,∆y,∆z,∆w,∆h,∆l,∆θ} ,

∆x =
xgt − xpt
dpt

, ∆y =
ygt − ypt
dpt

, ∆z =
zgt − zpt
hpt

,

∆w = log
wgt
wpt

, ∆l = log
lgt
lpt
, ∆h = log

hgt
hpt

,

∆θ = θgt − θpt,

(4.3)

where dpt =
√

(wpt)
2 + (lpt)

2 is the diagonal of the base of the predicted bounding box.

Angel loss. The sin-error loss is used to supervise the angle regression, instead of directly

predicting the angle offset ∆θ.

Lθ = smoothL1 (sin (θgt− θpt)) . (4.4)

Softmax classification loss is finally utilized to distinguish the flipped boxes.

Classification loss. Due to the extreme imbalance between a few ground truths and the

generated anchors, the focal loss [Lin et al., 2017b] is introduced to guide the object classification.

Lcls = −α (1− Ppt)γ logPpt, (4.5)

4.3. Detector-free Motion prediction based 3D Tracking network (DMT) 57

where Ppt is the class probability of a predicted box. In this thesis, α and γ are set to 0.25 and

2, respectively.

Above all, the combined loss is used to train the detection network:

Ldec =
1

Npos
(β1Lloc + β2Lcls + β3Lθ) , (4.6)

where Npos is the number of positive anchors and β1, β2, β3 are set to 2, 1, and 0.2, respectively.

4.2.3 Post-processing

In this study, the score-filtering and NMS methods are used to decrease the number of false

positives after the inference of detection. The score-filtering strategy simply excludes predicted

bounding boxes with extremely low confidence scores via a pre-defined threshold. The NMS

method suppresses predictions by removing overlapped bounding boxes since there are no two

vehicles with an overlap region in the real world. Notably, the NMS method is performed followed

by the score-filtering.

Let B = {b1, ..., bNb} is a list of 3D detection boxes with scores S = {s1, .., sNb}, NMS removes

the detection box with the maximum score M from the list B and adds it to the list final

detections D. In addition, NMS removes any box which has an overlap greater than a certain

threshold T with the maximum scoreM in B. This operation is repeated for the remaining boxes

B. Algorithm 1 shows the detailed flow of NMS.

Algorithm 1 The workflow of NMS.

Input: 3D detection boxes B, corresponding detection scores S = {s1, .., sNb}, pre-defined thresh-
old T .

1: Initialization. D ← {}
2: repeat
3: m← argmaxS
4: M← bm
5: D ← D

⋃
M;B ← B −M

6: while bi ∈ B do
7: if IOU (M, bi) ≥ Nt then
8: B ← B − bi;S ← S − si
9: end if

10: end while
11: until B = empty
Output: D,S .

4.3 Detector-free Motion prediction based 3D Tracking network

(DMT)

The overall network architecture of the proposed DMT is shown in Fig. 5.3. Given the query

and search point cloud with coordinates denoted as Q and P , and an initial bounding box Binit,

the backbone is first used to extract target-specific features following [Zheng et al., 2021a], as

introduced in Section 4.3.1. Unlike previous studies, a motion prediction module is proposed

to estimate a potential target center in the current frame based on the previous target states

Sprev, with details described in Section 4.3.2. Afterward, an explicit voting module is adapted to

modify the coordinates of the coarse predicted center and predict the orientation in Section 4.3.3.

58 4. 3D Vehicle Detection and Tracking

Algorithm 2 The workflow of DMT.

Input: Points Q in query, points P in search area, an initial bounding box Binit, previous target
states Sprev and target-specific search feature f .

1: Potential target center generation. Given Sprev, predict a coarse target center Ccoarse in
the current frame using a motion prediction module.

2: Explicit voting. Feed f and Ccoarse into an explicit voting module to estimate a target-
specific point feature f̂ of the target center.

3: Final box regression. Regress the 3D bounding box of the target based on f̂ using a
prediction head.

Output: The 3D bounding box of the target.

The loss function is presented in Section 4.3.4. The training strategy and implementation details

are explained in Section 4.3.5. For highlighting the simplicity of DMT, the detailed flow is also

sketched in Algorithm 2.

PointNet++

Template

Search area

PointNet++

Target-specific
search feature

Motion
prediction
module

M
LP256

M
LP256

M
LP256

M
axpooling

Previous frames

Explicit voting module

Final 3D Box

3D
 B

box
regression

Concat

S S T S

T

𝐶!

ℎ!"#

𝑚!"#

ℎ!

𝑚!Forget gate
Input gate Output gate

LSTM cellPotential target center

Backbone
𝐹!

𝐹"
"𝐹"

Figure 4.4: Overview of DMT. The backbone network first extracts the target-specific features from the
template and search area points following [Zheng et al., 2021a]. Then, the motion prediction module
(MPM) estimates the 3D coordinates of a potential target center. Next, the explicit voting module refines
the target-specific search feature extracted by the backbone at the coarse predicted center. Finally, a 3D
bounding box prediction head regresses the target location. One example of the MPM is an LSTM (lower
right corner).

4.3.1 Backbone

The aim of the backbone network is to generate an enhanced target-specific search feature by

fusing the template’s target information into the search area points. The box-aware feature fusion

(BAFF) module in [Zheng et al., 2021a] is adopted as the backbone∗, as shown in Fig. 4.5. The

template and search area are first feed respectively into PointNet++ [Qi et al., 2017b] for obtaining

their features. Then, the BAFF module help augment the search area with target-specific features,

which includes BoxCloud [Zheng et al., 2021a] comparison and feature aggregation sub-modules.

BoxCloud comparison. Given the feature of a search area Fs = {fsi }
M1
i=1 obtained by Point-

Net++, the 9D BoxCloud coordinates Csbc = {csi}
M1
i=1 are predicted for each point feature fsi via

MLP, where M1 is the number of the points in Csbc. The prediction is supervised by a BoxCloud

loss, presented in Sec. 4.3.4. Then, the pairwise distance between the predicted Csbc and the Box-

Cloud Ctbc = {cti}
M2
i=1 of the template is compared, as shown in Fig. 4.5, where M2 is the number

of the points in Ctbc. Following [Zheng et al., 2021a], the simple l2 distance is adopted as the

∗The framework is not restricted to BAFF, and any suitable backbone could be used.

4.3. Detector-free Motion prediction based 3D Tracking network (DMT) 59

𝐶!"# Pairwise
distance

𝐶!"$

Sorting and top k

Distance map
i-th column

indexing k indices

𝑓!" 𝑓#$ 𝑝#$ 𝑐#$

𝑓!" 𝑓%$ 𝑝%$ 𝑐%$

𝑓!" 𝑓&$ 𝑝&$ 𝑐&$

Mini PointNet

Enhanced i-th fused feature

𝐶!"#

𝑃# 𝐹#

𝐹$

$𝑓%$

Figure 4.5: The workflow of box-aware feature fusion (BAFF) module. Csbc is predicted from each search
point feature fsi via MLP. Ctbc, Ft, Pt are the 9D BoxCloud coordinate, the feature and the spatial 3D
coordinates of a template. The module first generates the distance map between BoxCloud Csbc and Ctbc for
retrieving the top-k nearest neighbors with respect to each point in the search area. Then, a mini PointNet
is adopted to generate f̂si by aggregating the neighbors’ features.

distance metric. After obtaining the distance map, the top k most similar template points for

each point in the search area are sorted and selected. The i-th column of the distance map in

Fig. 4.5 represents the indices of the k nearest neighbors of the i-th search point.

Feature aggregation. After getting the top k template features, it is hopeful to fuse them

into the search area. As illustrated in Fig. 4.5, the k nearest template points for the i-th point

psi in the search area are selected according to the i-th column in the distance map. Besides,

considering the feature of a template Ft extracted from PointNet++, the corresponding spatial

3D coordinates Pt and 9D BoxCloud coordinate Ctbc of the template points, more informative k

tuples
{[
f tj , p

t
j , c

t
j , f

s
i

]
,∀j = 1, · · · , k

}
are constructed. Finally, a mini-PointNet is used to obtain

the aggregated feature of the search point from these pairs, which can be formulated as follows:

f̂si = G�
{
MLP (

[
f tj , p

t
j , c

t
j , f

s
i

)}k
j=1

), (4.7)

where G� is a max-pooling operation. Finally, the effective target-specific search feature F̂s =

{f̂ si }
M2
i=1 is obtained.

4.3.2 Motion prediction module

The previous end-to-end 3D SOT methods [Qi et al., 2020; Zheng et al., 2021a; Shan et al., 2021]

heavily rely on point cloud features for target object detection. However, erroneous detection may

occur when the point cloud of the target is incomplete [Giancola et al., 2019]. To alleviate this,

explicitly leveraging spatial-temporal information is proposed for 3D SOT. Specifically, a motion

prediction module (MPM) M is introduced based on previous target states (i.e., predicted 3D

target center coordinates in the previous frames) to predict a coarse target center in the current

frame. Suppose that a tracklet {(xi, yi, zi)}ti=1 is known in the previous t frames, the prediction

of the target center location in the next (t+ 1)-th frame is formulated as:

(x̂t+1, ŷt+1, ẑt+1) =M({(xi, yi, zi)}ti=1). (4.8)

In the general design, common regression or prediction models can be employed as the MPMs for

effective target center prediction. Here, several simple yet effective MPMs are introduced.

60 4. 3D Vehicle Detection and Tracking

Constant velocity model. The constant velocity model assumes that the target acceleration

in the current frame is 0 and that the velocity of the target in the current frame should be equal

to the velocity in the last frame. Given the target locations in the (t − 1) and t-th frames

{(xi, yi, zi)}ti=t−1, the predicted target center coordinate in the (t + 1)-th frame is calculated as

(2xt − xt−1, 2yt − yt−1, 2zt − zt−1). Despite the simplicity of this model, this simple model can

also work very well in the proposed DMT.

Sequence-to-sequence prediction model. The goal of the proposed MPM is to predict a

3D coordinate based on previous estimated t target coordinates, which is actually a sequence-to-

sequence prediction task. Long Short-Term Memory (LSTM) network [Hochreiter & Schmidhu-

ber, 1997] is a typical sequence-to-sequence prediction model that has been widely used in various

sequence prediction tasks. In this work, a multi-layer LSTM is chosen since this naive LSTM

model can better validate the effectiveness of the proposed tracking method. The conventional

LSTM cell is shown in Fig. 4.4 (bottom right). More details can be found in [Hochreiter &

Schmidhuber, 1997]. In the implementation, the center coordinates of the 10 consecutive frames

from the times t−10 to t are selected to predict potential target center coordinates in the (t+1)-th

frame. In the training stage, multiple training tracklets generated from the KITTI and NuScenes

datasets are prepared to train the LSTM respectively. In online tracking, the offline learned

LSTM network is directly used for motion prediction without further updating.

Regression model. Traditional learning-based regression models can also be employed as

MPMs. In this work, several basic regression models are tried including linear regression, ridge

regression, Gaussian processor regression, and Ransac regression. The training for the above

models is similar to the LSTM-based MPM, i.e., using the generated tracklet training data for

training in an offline manner.

The above basic MPMs can roughly predict the potential target center coordinate based on

the previous states. The prediction is not always reliable since the previous target states may be

noisy (i.e., the predicted target center does not match the ground truth), or the target changes

position in an unexpected way. To alleviate this problem, a lightweight explicit voting module is

proposed to further refine the MPM prediction.

…
… …
…

MLP

+
+
+

+

…
…

Pool

MaxPool on channelcoord. offsets search features

coarse target
center point

search points

target-specific feature

Figure 4.6: The overall pipeline of an explicit voting module (EVM). The proposed EVM first calculates
the coordinate offsets between each search point and the coarse predicted target center. Then, the offsets
are jointly concatenated with the search features for feature modeling via an MLP. Finally, a permutation-
invariant max pooling layer is applied to obtain the target-specific feature of the predicted target center
point for the final 3D box prediction.

4.3.3 Explicit voting module

Before going to the details of the proposed explicit voting module (EVM), a short review on the

RPN module (VoteNet) used by previous trackers [Qi et al., 2020; Zheng et al., 2021a; Wang et al.,

2021; Shan et al., 2021] is given. The architecture of VoteNet includes two aspects: 1) Hough

4.3. Detector-free Motion prediction based 3D Tracking network (DMT) 61

voting to convert the search area seeds into possible target centers; and 2) clustering neighboring

potential target centers to obtain the final target center. For generating the potential target

centers, VoteNet estimates the coordinate offsets between each search seed and ground-truth

target center, which aims to push the predicted possible target centers and ground-truth target

center to be as close as possible. In the proposed DMT, the above two steps can be removed since

the coarse target center location in the current frame is provided by the proposed MPM, which

makes DMT simpler and lighter.

The overall pipeline of the proposed explicit voting module is shown in Fig. 4.6. As can be

seen, after obtaining the coarse target center coordinate (x̂t+1, ŷt+1, ẑt+1) estimated by MPM and

the target-specific search feature, the goal of the proposed EVM is to estimate effective features

on (x̂t+1, ŷt+1, ẑt+1). In the design of EVM, coordinate offsets are used as explicit voting signals

for estimating the target center feature. Specifically, the coordinate offset between the estimated

target center and each search point is first calculated. Then, the coordinate offset with the search

point feature is concatenated to obtain a candidate voting feature f ∈ RC+3, where C denotes

the feature dimension. Suppose there are N search points with N corresponding candidate voting

features {fi}Ni=1. The explicit target coordinate voting is formulated as:

f̄i = MLP(fi), f̂ = MaxPool({f̄i}Ni=1), (4.9)

where f̄i ∈ RC , and f̂ ∈ RC is the final estimated target-specific feature at the estimated target

center, which is obtained by applying the max pooling operation on the channel dimension of

each feature vector in {f̄i}Ni=1. The estimated feature f̂ is finally fed into a prediction head (i.e.,

MLP) for regressing the bounding box of the target.

In the training stage, given a ground-truth target center location in a frame, the diverse

points around the ground-truth center are randomly sampled. For stable training, the maximum

distance between the sampled points and the ground-truth center should not be too large, and

here it is set to 0.75 meters. During training, the proposed EVM learns to estimate target-specific

features of the sampled points that are effective for predicting the final bounding box. Note that

the diverse sampled points can effectively mimic the noisy predictions of MPM, which makes the

proposed DMT more robust to noise in the predicted target track.

4.3.4 Loss function

Following [Zheng et al., 2021a], the training loss includes three components: classification loss,

box-cloud loss, and regression box loss. The former two losses enhance the target-specific fea-

ture extracted by the backbone, while the latter supervises the estimated 3D bounding box. In

addition, a velocity loss is added for training the MPM (except for the constant velocity model).

Point-wise classification loss. Following [Qi et al., 2020], only search points located on the

surface of a ground-truth target are useful in the EVM, and thus labeled as positives, while all

others are negatives. Therefore, a standard binary cross entropy loss Lcla is adopted to classify

the search points.

BoxCloud loss. The BoxCloud features [Zheng et al., 2021a] in the search area are unknown

in the inference stage, so it is needed to predict the 9D BoxCloud coordinate Cbc in the search

area, which is supervised by a smooth-L1 regression loss.

Lbc =
1∑
iE i

N∑
i=1

∥∥∥Cibc − Ĉibc∥∥∥ ·Ei, (4.10)

where Ĉbc are ground-truth BoxCloud coordinates pre-calculated before training. Ei is a binary

mask, which indicates whether the i-th point is inside an object BBox or not.

62 4. 3D Vehicle Detection and Tracking

3D box regression loss. The final result of DMT is to predict the 3D box parameters

Cbbox = {x̂, ŷ, ẑ, θ̂}. Following previous work, the Huber (smooth-L1 loss) is adopted to supervise

the regression.

Lbbox =
∥∥∥Cbbox − Ĉbbox∥∥∥ , (4.11)

where Ĉbbox is ground-truth bounding box of the target.

Velocity loss. For training a MPM, the distance between the predicted center coordinates

of the target and the ground truth is hoped as small as possible. In this work, the mean squared

error loss Lv is used for supervision:

Lv =
∥∥Ct+1

cen − Ĉt+1
cen

∥∥
2
, (4.12)

where Ct+1
cen = (x̂t+1, ŷt+1, ẑt+1) (see Eq. (4.8)) is the predicted target center coordinate at the

(t+1)-th frame and Ĉt+1
cen is the corresponding ground-truth coordinate. Note that the MPM with

Lv is first trained, and then the following combined loss is used to train the backbone network,

EVM, and the prediction head:

L = αLcla + βLbc + γLbbox, (4.13)

where α, β, and γ are hyperparameters to balance their relationship. Here, α = 0.2, β = 1.0,

γ = 0.2.

4.3.5 Implementation details

Following previous 3D trackers [Qi et al., 2020; Zheng et al., 2021a], the template and search

point clouds are generated in both the training and testing stages. To fairly compare with recent

trackers equipped with online detectors, the same target-specific search feature generation method

in BAT [Zheng et al., 2021a] is used, which makes the predictions of BAT and the proposed DMT

both based on the same augmented search features.

Search area generation. In practice, the object movement between two consecutive frames

is relatively small, so searching the entire frame for the target is unnecessary. Following [Zheng

et al., 2021a], the target near the previous object location is looked for to generate search areas

for training and testing. During both training and testing, templates and their BBoxes are

transformed into the object coordinate system before being sent to the model.

Network architecture. In the proposed MPM, one LSTM layer with 50 hidden units is

used as the motion predictor. The input tracklet length is set to 10, meaning that the target

states in the previous 10 frames are used for prediction. The model size of this LSTM model is

about 50K, which is extremely light. The EVM is implemented as a three-layer MLP with 256

hidden units, where the first two layers are followed by a 1-D batch normalization layer and a

ReLU activation layer. The same backbone and the box prediction head as P2B [Qi et al., 2020]

and BAT [Zheng et al., 2021a] are used.

Training. In the training stage, the tracklet training data (i.e., each tracklet contains the

target center coordinates in every 10 frames and the corresponding ground-truth target center

coordinates in the next frame) is first generated to train the LSTM network. The batch size

is set to the overall dataset size, and the learning rate and training epochs are respectively set

to 1e-3 and 8000. The whole training takes only 28 seconds on the car category of the KITTI

dataset, which is efficient. After training the LSTM network in an offline manner, it is used for

online testing without further modifications. The proposed DMT is trained for 60 epochs using

the Adam optimizer with a batch size of 100. The learning rate is initialized as 1e-3 and decayed

with 0.5 in every 5 epochs.

4.3. Detector-free Motion prediction based 3D Tracking network (DMT) 63

Testing. During testing, the trained DMT is applied to infer 3D bounding boxes of a given

target within tracklets frame by frame. For the current frame, the template is updated by fusing

the point clouds in the first given BBox and in the previous estimated BBox. To obtain the search

area, the previously estimated BBox is enlarged by 2 meters in the current frame and collected

the points within the enlarged BBox.

65

5 3D Shape Completion

The scanned data from LiDAR is often incomplete and noisy owing to the occlusion. Point cloud

completion is an essential and challenging task in the fields of photogrammetry and computer

vision, which infers the complete structure from partial point clouds. In this chapter, two point

cloud completion methods are introduced. To be specific, the first method is an end-to-end

network for completing point clouds of 3D vehicle shapes, operating on the partial and sparse

point clouds directly. While, more categories (e.g. Car, Airplane, Chair) are extended to complete

in the second method, which is a point cloud completion network based on a feature-matching

strategy.

5.1 Problem statement

The point cloud completion task can be regarded as a set problem. Let X = {Pi : i = 1, ..., N} be

a set of the partial points, which are lied on the observed surfaces of a single object as a result of a

single observation or a series of observations from a 3D sensor. Further, let Y = {Pj : i = 1, ...,M}
be a complete set of 3D points uniformly sampled from the object’s observed and unobserved

surfaces. The 3D shape completion task is defined as predicting Y given X. M and N are the

numbers of points in the ground-truth point cloud and partial point cloud, respectively. Formally,

the 3D point cloud completion methods can be formulated as:

Y = F (X) = F (Pi : i = 1, ..., N) (5.1)

where X ∈ RN×3, Y ∈ RM×3 and F is a prediction function. Notably, X is not necessarily a

subset of Y and there is no explicit correspondence between points in X and points in Y since

they can be obtained from the object surface independently.

In this chapter, supervised learning is used to solve this problem. A deep neural network is

trained to predict Y directly from X. A 3D large-scale synthetic CAD model dataset is used to

easily obtain training samples of X and Y for supervised learning. The network can be generic

across multiple object categories and it makes no assumptions about the underlying object’s

structure, such as symmetry or planarity.

5.2 Vehicle Point Completion Network (VPC-Net)

Vehicles are the most concerned investigation targets in this research because they are a dynamic

and essential component in the 3D urban road environment. An accurate and instant mea-

surement of the vehicles is critical for monitoring their behaviors and extracting their geometric

characteristics. MLS systems have been chosen as a key sensor by many autonomous driving com-

panies and research institutes, particularly for vehicle extraction, because they can provide highly

accurate geometric information (e.g., 3D coordinates of vehicle points) and reliable ratiometric

attributes (e.g., reflectivities of various surface materials) of multiple instances simultaneously.

66 5. 3D Shape Completion

Figure 5.1: Visualization of the incomplete and completed point clouds of vehicles in raw scans. a) A
single-frame raw real-scan data from KITTI [Geiger et al., 2013]. b) Completed scan generated by the
proposed Vehicle Points Completion-Net (VPC-Net).

However, acquired 3D point clouds of vehicles from MLS systems are inevitably incomplete

due to object occlusion or self-occlusion. For instance, in Fig. 5.1a, a few typical point clouds of

vehicles on urban roads from the KITTI dataset [Geiger et al., 2013] are illustrated. The missing

parts in the scanned point clouds of the vehicles are clearly visible in this figure. Because it has

changed the dimension of shapes, biased the volume of objects, and destroyed the topology of

the surfaces. This incompleteness significantly limits the potential uses of vehicle point clouds.

The complete geometric shapes of vehicles provide solid foundations for 3D perceptual tasks such

as instance extraction, type classification, and track estimation in generic applications such as

3D traffic monitoring [Wen et al., 2019]. Recently, Zhang et al. [2020a] proposed an alternative

strategy that estimates the vehicle poses first, and then retrieves a similar CAD model of this

vehicle from large-scale CAD model datasets to replace the raw point clouds. This method,

however, cannot deal with occluded vehicles and cannot preserve the true knowledge of raw point

clouds. Furthermore, for specific applications such as measuring vehicle-induced aerodynamic

loads in bridge engineering, the entire surface as well as the shape of the measured vehicles is

critical to estimating wind pressure caused by vehicles driving close to the sound barrier, which

has a significant impact on the design of urban highway viaducts [Pan et al., 2018].

In this section, a new neural network is proposed, named Vehicle Points Completion network

(VPC-Net), to synthesize complete, dense, and uniform point clouds for vehicles from MLS data.

Given the sparse and partial point clouds of vehicles, the proposed network can generate complete

and realistic structures and keep the fine-grained details from the partial inputs, as shown in

Fig. 5.1b.

The critical architecture of VPC-Net is shown in Fig. 5.2, which includes an encoder module,

a decoder module, and a refiner module. The encoder is to extract the global features from

partial and sparse point clouds. Second, the decoder is divided into two parts: (i) it uses the

generated global features as input to generate a coarse but complete point cloud, and (ii) it

combines the coarse point cloud and global features to produce dense point clouds. Finally, to

5.2. Vehicle Point Completion Network (VPC-Net) 67

Figure 5.2: Workflow of the proposed VPC-Net.

M
ax

 p
oo

lin
g

T-Net

Sh
ar

ed
 M

LP F1

Sh
ar

ed
 M

LP F2

M
ax

 p
oo

lin
g

F3Fp

FC
 3

07
2

FC
 1

02
4

FC
 1

02
4

Sh
ar

ed
 M

LP

Tile

M
LP

 6
4

M
LP

 5
12

M
LP

 2
56

M
LP

 1
28

M
LP

 3

M
LP

 1
28

M
LP

 1
02

4

PcoarsePdense

Prefined

Pinput

Input point cloud

Output point cloud

Encoder module

Decoder module

Refinement module
Concatenate

N
×
3

r2D
 g

rid
P1

Farthest
point

sampling

Pdense’ Tile

!!"

Global feature extraction module

Figure 5.3: The network architecture of VPC-Net.

preserve the original details, the skip connections are used to concatenate the partial inputs with

the previous dense point cloud. The refiner refines the fused 3D point clouds further to produce

the final completion result. The point clouds generated by the proposed VPC-Net perform three

outstanding functions: (i) complete the missing surface with fine-grained structures; (ii) preserve

the original details of the inputs; and (iii) produce uniform point clouds.

5.2.1 Encoder

The aim of the encoder is to provide a set of features F for the decoder. As a result, the encoder’s

feature extraction capability is critical throughout the network. It is significantly beneficial for 3D

coordinates regression of the dense point cloud generation if the encoder can effectively combine

the local and global features from the partial inputs. The encoder is made up of two modules: a

spatial transform network and a global feature extraction module. Formally, it can be formulated

by the combination of two functions, defined as follows:

F = Q(Pinput|wQ), Q = Q1 ◦Q2 (5.2)

68 5. 3D Shape Completion

M
LP

64

M
LP

12
8

M
LP

10
24

M
ax
-p
oo
lin
g

FC
51

2

FC
25

6

3×3N×3

Matrix multiply

Input points Transformation
matrix

N×3

Figure 5.4: The architecture of T-Net in the encoder of VPC-Net.

where Q1 and Q2 are the spatial transform network and the global feature extraction module,

respectively. wQ denotes the weight parameters of Q, and Pinput is the partial point clouds as

inputs.

Since the input point clouds of the vehicle are spatially disordered and their poses are diverse,

accessing the unified features for neural networks will be difficult. As a result, the input point

cloud is hoped to have a neat pose to help with feature extraction. In other words, learned

features from input point sets should be geometrically invariant.

A natural solution is to align all point sets to a canonical space. In [Jaderberg et al., 2015],

the authors used a spatial transformer for learning feature invariance to translation and rotation

in 2D images. Inspired by this, a 3D spatial transform network T-Net [Qi et al., 2017a] is

adopted to predict a 3× 3 transformation matrix for the original point clouds. Furthermore, this

transformation matrix is multiplied by the coordinates of the input points directly. Therefore,

the inputs are aligned to a canonical space, allowing the following network to learn a unified and

standardized feature attentively.

T-Net is similar to a mini-PointNet [Qi et al., 2017a], with a shared Multiple Layer Perception

(MLP) network, a max-pooling layer, and two fully connected layers. The detailed architecture

operation is shown in 5.4. It takes raw point clouds as input and produces a 3 × 3 matrix. In

detail, the MLP network first encodes each point to multiple dimensions [64, 128, 1024]. A max-

pooling layer is used, followed by two fully connected layers with [512, 256] sizes. The regressed

matrix is initialized as an identity matrix. All layers, with the exception of the last, are followed

by a ReLU activation and a batch normalization layer.

In addition, another important part of the encoder is a global feature extraction module.

Generally, it is based on the recently advanced feature extraction network PointNet, which directly

operates on point clouds. Inspired by this, the encoder, as illustrated in Fig. 5.3, adopts two

stacked PointNet layers to extract the geometric information for the input point cloud. Each

PointNet layer comprises one shared MLP and one max-pooling layer as a basic module. In the

first PointNet layer, a point-wise feature P1 is learned from the points of Ninput × 3 transformed

by the STN, where Ninput is the number of points and 3 is the x,y,z coordinates of each point.

Afterwards, a max-pooling layer is employed on P1 to output a 256-dimensional local feature vector

F1. In the second PointNet layer, the local latent space is concatenated with every independent

point feature by feeding F1 back to the point-wise feature P1. The global latent vector F2 is then

extracted from the aggregated point features Fp through the second PointNet layer, with the size

F2 := 1024.

However, it always loses the fine details of the inputs since the latent space extracted by the

last max-pooling layer only represents the rough global shape. Inspired by the skip connection

5.2. Vehicle Point Completion Network (VPC-Net) 69

𝑀
𝑟𝑁×2

𝑃!"#$%&'

𝑟𝑁×3
𝐹('

𝑟𝑁×1280

𝐹(

TileTile

𝑃!"#$%&

Shared MLP

2D grid

𝑢

𝑢

𝑀'

Figure 5.5: The detailed concatenating operation in the decoder of VPC-Net.

from U-Net [Ronneberger et al., 2015], a point feature enhancement (PFE) layer is designed to

concatenate the global feature F2 with the local feature F1 to synthesize the final feature space F3.

Size F3 := 1280, and it includes both low-level and high-level feature information. Experimental

results in Section 8.3.1 show that this design improves the feature extraction ability of the encoder

for partial inputs.

5.2.2 Decoder

The decoder is responsible for converting the final global latent vector F3 into dense, evenly,

and complete 3D point clouds. In this stage, a coarse-to-fine completion strategy is applied for

generating the 3D coordinates of point clouds. Inspired by the 3D single object reconstruction

network RealPoint3D [Xia et al., 2019], three fully connected layers are explored to generate a

sparse point cloud with a complete geometric surface. Lastly, it outputs the final vector with 3N

units, and it is reshaped into an N × 3 coarse point cloud Pcoarse.

However, the fully connected layer is not suitable for generating dense points. Some points

will be over-concentrated when regressing a large number of points since the fully connected

layers are not restrictive on the local density. To alleviate the problem, in the second stage, the

points in Pcoarse are first tiled to produce a dense point set P
′
coarse := rN × 3, where r is the

up-sampling rate. Then, a folding-based operation [Yang et al., 2018] is applied to deform a

unique 2D grid vector and concatenate with each point of the coarse point cloud to obtain new

patches. This operation has the potential to increase the difference between duplicated points.

In other words, each coarse point cloud point can be considered a spatial keypoint and used it

as the center point to generate a series of surrounding points. To make full use of the features of

input point clouds, the points in P
′
coarse, the tiled global feature space F

′
3, and the deformed 2D

grids are concatenated to obtain a new aggregated feature. The detailed concatenating operation

is shown in Fig. 5.5. The coordinates of points on a zero-centered u × u grid (u2 = rN × 3) are

first deformed into a rN × 2 matrix M [Yang et al., 2018]. Then, M is concatenated with the

coordinates of the tiled coarse point cloud P
′
coarse and the duplicated global feature vector F

′
3.

Furthermore, the aggregated feature is passed through a shared MLP with sizes [512, 512, 3] to

generate a new rN × 3 matrix M
′
. This shared MLP can be regarded as a non-linear mapping

that transforms the 2D grid into a smooth 2D manifold in 3D space [Yuan et al., 2018]. Finally,

the dense point cloud Pdense := rN × 3 is generated by adding the coordinates of each point in

P
′
coarse to the matrix M

′
.

70 5. 3D Shape Completion

5.2.3 Refiner

Although the decoder produces impressive results, the fine-grained details of the inputs are always

lost, and the points are unevenly distributed. To address these problems, the partial input Pinput
is combined with the decoder outputs Pdense. The details of the input point cloud can be fully

retained by this operation. The linear combination, however, will result in non-uniform merged

points because the two point clouds have different densities and may overlap. Thus, a uniformly

distributed subset point cloud P
′
dense is sampled with a size of rN×3 using farthest point sampling

(FPS). The hyperparameter r is the same in the decoder and the refiner. In this work, r = 16.

The refiner can be regarded as a point feature residual network. The refiner is hoped to

predict per-wise offsets ox, oy, oz for every point in P
′
dense. Therefore, the points P

′
dense are passed

through a series of MLPs to predict point feature residuals since neural networks are better at

residuals [Wang et al., 2018]. Specifically, a bottom-up and top-down strategy is used to refine the

point coordinates, inspired by the structure of an encoder-decoder network. The refiner consists

of seven MLPs. It first encodes each point into multiple dimensions [64, 128, 1024]. It is then

decoded to generate the offsets of each point with dimensions of [512, 256, 128, 3]. Except for

the final layer, which is followed by a batch normalization layer and a Tanh activation, all other

MLPs are preceded by a batch normalization layer. Furthermore, the local feature is expected

to be preserved in the subsequent layers. As shown in Fig. 5.3, the feature with dimensions of

64 is combined with the bottleneck layer with a size of 1024. Overall, the generated point clouds

P
′
dense in this refiner can be formulated as

Prefined = R(P
′
dense) + P

′
dense (5.3)

where R {.} predicts point-wise displacements by the refiner.

5.2.4 Loss function

In this work, the topological distance between the completed object by the proposed VPC-Net

and the ground truth is defined as the loss function. Inspired by [Fan et al., 2017], the Chamfer

Distance (CD) and Earth Mover’s Distance (EMD) are used to optimize the network. Distance

metric functions are highly efficient and invariant to permutations of the relative ordering of

points. The CD between the completed point cloud Pc and the ground truth Pgt is defined as

dchamfer(Pc, Pgt) =
∑
x∈Pc

min
y∈Pgt

‖ x− y ‖22 +
∑
x∈Pgt

min
y∈Pc

‖ x− y ‖22 (5.4)

where Pc, Pgt ⊆ R3. Intuitively, it aims to find the nearest neighbor between the two point

sets in two directions. Each point of Pc is mapped to the closest point in Pgt, and vice versa.

Thus, the sizes of Pc and Pgt are not required to be the same. For the nearest neighbor search,

it is a computationally light function with O(nlogn) complexity. However, it cannot guarantee

the consistency of predicted points [Mandikal & Radhakrishnan, 2019], and it is sensitive to the

detailed geometry of outliers [Tatarchenko et al., 2019]. To alleviate these problems, the EMD

between Pc and Pgt is proposed by

dEMD(Pc, Pgt) = min
φ:Pc→Pgt

∑
p∈Pc

‖ p− φ(p) ‖2 (5.5)

where Pc, Pgt ⊆ R3, φ : Pc → Pgt is a bijection. Unlike CD, the sizes of Pc and Pgt must be the

same since it is a point-to-point mapping function. However, its computing complexity O(n2) is

too expensive. This makes it not suitable for generating dense point sets in the training.

5.2. Vehicle Point Completion Network (VPC-Net) 71

As a result, a training strategy is proposed to make use of both distance functions. The EMD

loss for Pc predicted by the encoder is used to ensure that the generated coarse point cloud is

even and has general geometry. The CD loss is used to optimize the predicted dense point clouds

Pdense and P
′
dense. In more formal terms, the total loss is defined as

L(Pcoarse, Pdense, P
′
dense, Pgt) = dEMD(Pcoarse, P̃gt)

+ γdchamfer(Pdense, Pgt) + βdchamfer(P
′
dense, Pgt)

(5.6)

where P̃gt is the subsampled ground truth with the same size as Pcoarse. γ and β are hyperpa-

rameters to balance their relationship.

5.2.5 Implementation details and training process

The proposed VPC-Net was implemented in the TensorFlow framework and trained on a single

NVIDIA Titan Xp GPU with 12 GB of memory. In the training stage, the batch size was set

to eight. The Adam optimizer was used in the models for 100 K steps. The size of the coarse

output generated by the encoder was 1024. The initial learning rate was set to 0.0001. The

learning rate was decayed by 0.7 after every 50 K steps and clipped by 10−6. γand β were made

equal. They gradually increased from 0.01 to 1 in the first 50 K steps. Notably, the resolutions

of the inputs were various, from a few hundred points to thousands of points. Additionally, to

Figure 5.6: Visualization of the VPC-Net training process. EMD errors for coarse point cloud generated by
the decoder in a) the training stage and b) the validation stage. CD errors for dense point cloud produced
by the refiner in c) the training stage and d) the validation stage.

demonstrate the training process more vividly, the learning curve of the proposed VPC-Net is

plotted (see Fig. 5.6 for illustration). The training losses and validation losses both consisted of

two different types of losses. One is the CD for generated coarse point clouds, while the other is

the EMD for the produced dense point clouds. As shown in Figs. 5.6a and 5.6b, the training losses

gradually decreased as the number of training steps increased and converged until 100 K steps.

The validation losses are shown in Figs. 5.6c and 5.6d, which also prove the proposed VPC-Net

converges at 100 K training steps.

72 5. 3D Shape Completion

5.3 Asymmetrical Siamese Feature Matching Network (ASFM-

Net)

Although VPC-Net performs well in completing 3D vehicles in an urban street environment, a

more general 3D completion neural network is expected to be applied to multiple categories,

including unseen categories. Thus, the second work is a novel neural network focusing on the

completion of multiple object categories, which investigates the importance of shaping prior infor-

mation via a feature-matching strategy and is termed an Asymmetrical Siamese Feature Matching

Network (ASFM-Net).

Before going to the details of the proposed ASFM-Net, a short review of previous multiple-

category completion methods [Yuan et al., 2018; Tchapmi et al., 2019; Sarmad et al., 2019;

Wang et al., 2020d; Wen et al., 2020; Zhang et al., 2020b] and analysis of their shortcomings are

given. PCN [Yuan et al., 2018] firstly proposed a learning-based completion method that operates

on the point clouds directly. Afterward, TopNet [Tchapmi et al., 2019] designed a hierarchical-

structured decoder based on a rooted tree for point cloud generation. Furthermore, RL-GAN-

Net [Sarmad et al., 2019] introduced a reinforcement learning agent to control the generative

adversarial network to generate a high-fidelity completed shape. SoftPoolNet [Wang et al., 2020d]

analyzed the max-pooling operation causes some information loss when extracting global features,

they proposed a soft pooling approach that selects multiple high-scoring activations. To preserve

local structures, SA-Net [Wen et al., 2020] explored a skip-attention mechanism to transfer local

features to the decoder. However, they all explored an encoder-decoder way to complete point

clouds, relying on the global feature extracted by the encoder. Recently, RFA [Zhang et al., 2020b]

realized this problem and employed a feature aggregation strategy to enhance the representation

of global features. However, it still can not solve the fundamental problem: The global features

only extracted from the partial inputs must be incomplete and lose the geometric details.

In the proposed ASFM-Net, this problem is transferred to how to make up for the loss of

incomplete global features. A natural solution is to reduce the distribution gap between the

partial global feature and the complete global feature. Thus, an asymmetrical Siamese auto-

encoder network [Pham et al., 2020] is proposed to push the latent spaces extracted from the

partial and complete point clouds to be as close as possible, as shown in Fig. 5.7.

In this way, the incomplete global feature is actually enhanced by the shape priors, includ-

ing the class labels and the complete object geometric information. Compared with previous

completion methods, the global feature extracted by encoders will be more fruitful after passing

through the asymmetrical Siamese auto-encoder network. Then, the complete point clouds with

more fine-grained details can be reconstructed using this global feature. In order to generate the

final point clouds with the desired resolution, an iterative refinement unit is introduced in the

last stage.

The overall network architecture of the proposed ASFM-Net is shown in Fig. 5.8. Given a

partial input point cloud, an asymmetrical Siamese auto-encoder is first adopted to reconstruct the

coarse point cloud Ycoarse in an unsupervised learning way. It maps the partial and complete point

clouds in a pre-built database into a shared latent space, with details described in Section 5.3.1.

Then, a refinement unit is proposed to refine Ycoarse for producing fine-grained details, which is

explained in Section 5.3.2.

5.3.1 Asymmetrical Siamese auto-encoder

To make the global features extracted from partial point clouds have more shape prior information,

an asymmetrical Siamese auto-encoder network is explored in an unsupervised learning way, as

5.3. Asymmetrical Siamese Feature Matching Network (ASFM-Net) 73

Encoder Decoder

G3

G2

G1

Inputs Outputs

Decoder

DecoderEncoder

Matching

G1

G3

G1

G3

Figure 5.7: Illustration of the feature matching strategy in the proposed ASFM-Net. The first and the
third row show the auto-encoders for the complete and partial point clouds, respectively. G1 and G3

represent the global features encoded from complete and partial point clouds, respectively. It is clearly
seen the spatial distribution between G1 and G3 becomes consistent (G3 evolved into G2) after feature
matching. The matched features G2 can be used to generate the complete outputs.

Output

Global Feature

2D Grid

Pre-trained

Auto-encoder

FPS

FPS&Mirror

Input

Tile

...

...

M
L

P
s

M
L

P
s

M
L

P
s

Asymmetrical Siamese auto-encoder

Refinement unit

Pcoarse

Psynthetic

F1 F2

Pfine

[128,64] [64,128,64] [512,512,3]

Offset

Figure 5.8: The overall architecture of ASFM-Net. ASFM-Net adopts a coarse-to-fine fashion to generate
a dense and complete output: the asymmetrical Siamese auto-encoder module (blue) aims to provide a
coarse point cloud and a global feature with shape prior; the refinement unit aims to preserve the details
in the input and reconstruct the complete output with fine-grained geometry.

shown in Fig. 5.10. It consists of two AutoEncoder modules and a metric learning mechanism.

The two AutoEncoder modules have identical architecture, and PCN [Yuan et al., 2018] is chosen

as the backbone network. Note that any off-the-shelf point cloud feature extraction networks,

e.g., PointNet [Qi et al., 2017a], FoldingNet [Yang et al., 2018], etc., can replace PCN serving as

the backbone seamlessly. However, it is experimentally found PCN in the proposed ASFM-Net

achieves the best performance.

Backbone network PCN. The encoder in PCN consists of two stacked PointNet (PN)

layers. A shared MLP consumes N × 3 input point cloud into a point-wise feature vector F1.

Then, a max-pooling operation is used to obtain a global feature g1. Secondly, another PN layer

takes F1 and g1 as inputs. It first concatenates g1 to each point feature in F1 and then passes the

augmented feature through a shared MLP and a max-pooling layer for getting the final global

feature g2. The decoder in PCN adapts a multistage point generation strategy, which includes a

74 5. 3D Shape Completion

fully-connected decoder [Achlioptas et al., 2018] and a folding-based decoder [Yang et al., 2018]. In

the first stage, the fully-connected decoder generates a coarse point cloud by passing g2 through

three fully-connected layers. In the second stage, the folding-based decoder refines the coarse

output to a dense point cloud with fine-grained details.

shared

MLP 𝐹!
M
ax

po
ol
in
g

shared

MLPN×3 𝑔!

+

𝑔"

Folding-based
decoder

Fine point cloud coarse point cloud

𝐹"

M
ax

po
ol
in
g

FCFCFC

CD

Ground truth

Encoder

Decoder

Input

Figure 5.9: The network architecture of PCN [Yuan et al., 2018]. The encoder extracts a global feature
vector g2 from the input point cloud. The decoder adopts g2 to first produce a coarse point cloud followed
by a fine output. The Chamfer Distance (CD) is used to measure the difference between the outputs and
the ground truth.

Feature Matching

MLPs & Maxpool

M
LPs

Intermediate
Output

Folding

M
LPs

Intermediate
Output

Folding

Pre-train & Freeze

Encoder

Encoder Decoder

Decoder

Same

C1

C2

Partial
Point cloud

Complete
Point cloud

Reconstructed
Point cloud

MLPs & Maxpool

Reconstructed
Point cloud Inference Stage

AE1

AE2

Figure 5.10: The network architecture of asymmetrical Siamese auto-encoder. An AutoEncoder AE1 (the
upper part) is first trained and freezes the weights to produce a codeword C1 from a complete point cloud.
Then, the encoder of another AutoEncoder AE2 is trained to map the partial point codeword C2 to be
consistent with C1. In the inference stage, the decoder of AE1 is applied to transform the C2 to a new and
complete reconstructed point cloud.

5.3. Asymmetrical Siamese Feature Matching Network (ASFM-Net) 75

Network details. Inspired by FoldingNet [Yang et al., 2018], an AutoEncoder AE1 (the

upper part in Fig. 5.10) is first trained for complete point clouds. The encoder takes each complete

point cloud in the pre-built database as input and maps it to a high-dimensional codeword C1.

A decoder reconstructs point clouds to the original shape using this codeword. Note that a

point cloud does not match a ground truth label, it thus is in a self-supervised learning way. In

the experiments, the codeword length is set as 1024. Once the training process is finished, all

weights of the AutoEncoder AE1 will be frozen. Then, the second AutoEncoder AE2 (the lower

part in Fig. 5.10) is designed for partial point clouds. The encoder also maps the partial point

cloud into a 1024-dimensional codeword C2. The distribution of C1 and C2 is expected to be

consistent by optimizing the feature matching distance. In the inference stage, the decoder of

AE1 with fixed weights will transform the C2 to a new and complete reconstructed point cloud.

Notably, the weights of the encoder in AE2 are only updated using a feature-matching loss in

the training stage. Experiments in Section 8.3.2 demonstrate the codeword obtained using the

proposed feature matching strategy is more effective than the global features directly extracted

from the partial inputs.

5.3.2 Refinement unit

Although the asymmetrical Siamese auto-encoder can extract a more effective global feature

and generate a coarse point cloud Pcoarse, the fine details of the input are inevitably lost. To

preserve the detailed information of the input point cloud, following [Wang et al., 2020a], the

partial inputs with the Pcoarse are concatenated to form a synthetic point cloud Psynthetic using

the farthest points sampling algorithm and mirror operations. Various symmetry operations are

explored, including plane symmetry, projective symmetry, and affine transformation operations.

Experiments confirm that the XY-plane symmetry achieves the best performance. Inspired by

FoldingNet [Yang et al., 2018], a 2D grid generator is utilized and concatenates these 2D grids with

each point coordinate to increase the variability of each point. In order to narrow the distribution

difference between the partial and the complete point cloud, the refinement unit concatenates

the global feature with the coordinate of each point in Psynthetic. Due to the superiority of

neural networks in residuals prediction [Wang et al., 2018], the refinement unit predicts the

coordinate offset for every point between the point set Psynthetic and the ground truth point

cloud. Specifically, the Psynthetic is passed through a series of bottom-up and top-down structural

styles of MLPs. Overall, the final completed point cloud Pfine after the refinement unit can be

expressed as:

Pfine = R (Psynthetic) + Psynthetic, (5.7)

where R(·) denotes the function of predicting the coordinate residuals for the Psynthetic. Besides,

Pfine is regarded as the synthetic point cloud Psynthetic for a new loop when a higher point

resolution is required. The point resolution will be doubled by iterating the refinement operation

continuously.

5.3.3 Loss function

The training loss consists of two components, a feature-matching loss, and a reconstruction loss.

The former requires a more similar distribution of partial and complete point clouds and the

latter expects the topological distance between the completed point clouds and the ground truth

as small as possible.

Feature matching loss. Various metrics for feature matching have been experimented with,

such as cosine similarity [Nguyen & Bai, 2010] and Euclidean distance [Danielsson, 1980]. Finally,

76 5. 3D Shape Completion

the Euclidean distance is chosen due to its best performance on this work. The similarity between

two high-dimensional feature vectors can be calculated as the following equation:

Lfeat(X,Y) =
n∑
i=0

‖Fpi − Fci‖2, (5.8)

whereX and Y represent the partial and complete point clouds, respectively. Fp = (x1, x2, · · · , xn)T

and Fc = (y1, y2, · · · , yn)T denote the features encoded from X and Y .

Reconstruction loss. Following the previous work VPC-Net, Chamfer Distance (CD) is

used to evaluate the similarity between two sets of point clouds. There are two forms of CD:

CD-T and CD-P. The definitions of CD-T and CD-P between two point clouds P and Q are as

follows:

LP,Q =
1

NP

∑
p∈P

min
q∈Q
‖p− q‖22,

LQ,P =
1

NQ

∑
q∈Q

min
p∈P
‖p− q‖22,

LCD−T (P,Q) = LP,Q + LQ,P ,
LCD−P (P,Q) = (

√
LP,Q +

√
LQ,P)/2,

(5.9)

where NP and NQ are the amounts of points in P and Q, respectively. Notably, CD-P is used in

all experiments during the training stage.

Overall loss. The overall loss function is the weighted sum of the feature-matching loss and

the reconstruction loss. Both the predicted coarse point clouds Pcoarse and final results Pfinal are

optimized via the CD loss. More formally, the overall loss is defined as:

Lsum = αLfeat(X,Y) + γLCD(Pfinal, Pgt)

+β(LCD(Pcoarse, Pgt),
(5.10)

where Pgt is the ground truth point cloud. α, β, and γ are all hyperparameters to balance their

relationship, which are changed with the training steps synchronously.

77

6 Experiments

In this chapter, the experimental setup is explained in detail, including experimental datasets, as

well as the evaluation metrics for experimental results analysis.

6.1 Experimental design

Extensive experiments on various datasets were conducted to evaluate the performance of the

methods proposed in Sections 3-5. These experiments are classified into three major groups.

The first group is the test of point cloud based place recognition methods. Since point cloud

based place recognition methods were divided into 3D submap-based place recognition and single-

scan-based place recognition, these proposed methods were tested using different benchmark

datasets. Specifically, SOE-Net is a 3D submap-based place recognition method, the experiments

are conducted on the Oxford RobotCar [Maddern et al., 2017] and three in-house datasets pro-

posed in [Angelina Uy & Hee Lee, 2018]. To showcase the performance of the proposed CASSPR

on single scans, the TUM City Campus [Zhu et al., 2020] and USyd Campus [Zhou et al., 2020]

datasets are also used for training and evaluation. Both of them were collected from LiDAR

sensors mounted on a moving vehicle in multiple dynamic urban environments at different times.

Note that the data are collected from different LiDAR sensors (Two Velodyne HDL-64E LiDAR

sensors in the TUM City Campus, one Velodyne VLP-16 in USyd Campus), and in different

cities and countries (Germany, Australia). The methods were implemented in the framework of

Tensorflow and PyTorch and performed on four NVIDIA V100 (Pascal) 32 GB GPUs.

The second group is the test of the performance of the 3D object detection and tracking

methods using the TUM City Campus dataset [Zhu et al., 2020] and two public benchmark

datasets, including KITTI [Geiger et al., 2013] and NuScenes [Caesar et al., 2020] datasets. The

proposed 3D detector was tested on the TUM City Campus dataset, while it was trained on

KITTI. The proposed single object tracker DMT was trained and tested on KITTI and NuScenes

datasets, respectively. The experiments were implemented using Pytorch and conducted on a

computer with four NVIDIA V100 (Pascal) 32 GB GPUs.

The third group is the test of the performance of the proposed 3D shape completion methods

using several public benchmark datasets, including the 3D synthetic datasets and raw LiDAR

datasets. To test the generalization ability of shape completion methods, the real-scanned LiDAR

datasets were used to test while the proposed methods were trained on the 3D synthetic datasets.

Specifically, the VPC-Net was tested on ShapeNet [Chang et al., 2015], KITTI [Geiger et al., 2013],

and TUM [Zhu et al., 2020] datasets. The ASFM-Net was tested on two synthetic benchmark

datasets, including PCN [Yuan et al., 2018] and Completion3D datasets, both created from the

ShapeNet dataset. The generalization test is conducted on the KITTI dataset. The experiments

were implemented using TensorFlow and conducted on a computer with an NVIDIA TITAN X

(Pascal) 12 GB GPU.

78 6. Experiments

The details of experimental datasets and the prepossessing will be provided in the following

sections.

6.2 Experimental datasets

Three groups of experimental datasets are designed in this work. The first one is for the test of

point cloud based place recognition methods. The second one is the test of the 3D object detection

and tracking methods. The third one is for the test of the 3D shape completion methods.

6.2.1 Oxford RobotCar and In-house datasets

The Oxford RobotCar [Maddern et al., 2017] dataset is published by University of Oxford, which

consists of data recorded over a year-long and over 1000 km. It is collected by a SICK LMS-151

2D LiDAR scanner mounted on a car that travels around the region of Oxford repeatedly at

different times. 44 sets of full and partial runs are used in the place recognition work. For each

run, the collected 2D scans are accumulated to build a unique environment map. The map is

then used to construct a database of submaps that represent unique local areas of the region

for each run. Each submap is built with respect to the UTM coordinate frame using GPS/INS

readings [Angelina Uy & Hee Lee, 2018].

The training and testing submaps are split into 70% and 30% for each run, respectively. And

the training and testing submaps have fixed regular intervals of 10m and 20m, respectively. 3D

points that are within a 20m trajectory are included in each submap. Thus, in total, 21,711

training submaps are used for training and 3030 testing submaps.

Different from Oxford RobotCar dataset, the three in-house datasets of a university sector

(U.S.), a residential area (R.A.), and a business district (B.D.) are created from five different

runs using a Velodyne-64 LiDAR sensor. For testing the generalization ability of the proposed

methods trained only on Oxford RobotCar, all of them are used as testing maps. Henceforth, this

is referred to as Baseline Network. Furthermore, each run of the U.S. and R.A. is geographically

divided into training and testing reference maps, which are added to Refinement Network.

To better learn geometric features, the non-informative ground planes of all reference submaps

are removed. The size of each submap is downsampled to 4096 points. In training, point clouds

are regarded as correct matches if they are at a maximum of 10 m apart and wrong matches if

they are at least 50 m apart. In testing, the retrieved point cloud is regarded as a correct match if

the distance is within 25m between the retrieved point cloud and the query scan. Fig. 6.1 shows

examples of downsampled point clouds from Oxford RobotCar, U.S., R.A., and B.D., respectively.

The numbers of training and testing submaps used in the Baseline and Refinement networks are

presented in Table. 6.1.

Table 6.1: Number of training and testing submaps for Baseline and Refinement networks on Oxford
RobotCar dataset and in-house datasets.

Datasets
Training Test

Baseline Network Refinement Network Baseline Network Refinement Network

Oxford RobotCar 21711 21711 3030 3030
In-house datasets 6671 4542 1766

6.2.2 TUM City Campus dataset

TUM City Campus dataset [Zhu et al., 2020] contains two recording runs at the city campus

of Technical University of Munich, which has been acquired by Fraunhofer IOSB with their

6.2. Experimental datasets 79

Oxford
Robotcar

U.S.

U.S.

B.S.

R.A.

(a) (b)

Figure 6.1: The downsampled point clouds from Oxford RobotCar, U.S., R.A., and B.D., respectively. a)
shows the query submap, and b) shows the corresponding point cloud with the same location in another
run.

MODISSA (Mobile Distributed Situation Awareness) sensor platform in April 2016 and December

2018 respectively. Two Velodyne HDL-64E LiDAR sensors are mounted on MODISSA, where each

one has a 10 Hz rotational frequency. The entire point cloud covers an urban area of approximately

0.2 km2, with around 1 km along roadways. The acquisition resulted in more than 10500 scans for

each run. A single scan includes 130K points per rotation and covers a large area of 120 meters in

diameter. In addition, the scans are recorded synchronously with position and orientation using

an Applanix POS LV 520 inertial navigation system (INS), which was augmented by real-time

kinematic (RTK) correction data of the German SAPOS network. Thus, each reference scan can

be built with respect to the UTM coordinate frame using accurate GPS/INS readings. The data

acquisition and the examples of single reference scan are shown in 6.3.

80 6. Experiments

Figure 6.2: Point clouds of Arcisstrasse from the TUM City Campus dataset. The vehicle points and
background points are shown in blue and gray colors, respectively.

（a） （b）

Figure 6.3: TUM City Campus dataset. a) Collected by MODISSA platform from Fraunhofer
IOSB .[Borgmann et al., 2018] b) Examples of data acquired by the two obliquely mounted laser scanners.

In addition, the TUM City Campus dataset provides an aggregated point cloud of the whole

obtained sequence. It includes more than 40 million annotated points with labels for eight classes

of objects. In Fig. 6.2, an illustration of scanned vehicles on the Arcisstrasse of this dataset is

given. As shown in Fig 6.2, the point clouds of vehicles in the TUM dataset are denser than those

in the KITTI dataset. They are also incomplete, although the missing content is less severe.

Reference scan preprocessing. The pre-processing of the reference scan includes three

main steps: coordinates transformation of the LiDAR sensor location, ground removal, and point

cloud downsampling. The coordinates of one LiDAR location are first transformed from a lo-

cal Euclidean coordinate system East-North-Up to the geocentric Earth-centered, Earth-fixed

(ECEF) coordinate system using an affine transformation matrix. The transformed ECEF co-

ordinates are then converted to Latitude, Longitude and Altitude coordinate system (LLA) for

generating a visualization of the vehicle trajectory (The red line in Fig. 6.5). Finally, they are

converted to UTM coordinates as the ground-truth locations. The LiDAR frames are split at

fixed regular intervals of 5 meters without overlapping based on the sensor position of each point

cloud frame. The ground planes are removed in the collected point cloud frames. Besides, the

point clouds are downsampled to 4096 points using a voxel grid filter. Each frame is shifted to

6.2. Experimental datasets 81

(a) Full route (b) Aggregated point clouds (c) Single raw scan (d) Ground removal
and downsampled

Figure 6.4: TUM City Campus dataset preprocessing: a) A full trajectory from the TUM dataset. b) An
aggregated point cloud of the whole obtained sequence in the red line shown in a). c) An example of a
single raw LiDAR scan. d) A downsampled scan that is removed the ground plane and all points within
[-1,1] m.

zero mean and normalized within the range of [-1, 1]. Fig. 6.4 illustrates the pipeline of a single

scan pre-processing, including a reference map, a raw LiDAR scan, and the downsampled scan.

Data splitting and evaluation The LiDAR scans collected at each run of the TUM datasets

are split into two disjoint reference maps used for training and testing. Fig. 6.5 shows the training

area and test area. Each run is geographically split into 80% and 20% for training and testing

without intersection. This resulted in 675 scans to train and 162 scans to test. During training,

the point clouds are defined at most 5m apart as structurally similar and at least 12.5m apart

as structurally dissimilar. In the inference stage, a single scan from one testing reference map is

used as a query to find matches from the other testing reference map in a different year that is

within the range of 5m. Fig. 6.6 shows examples of downsampled point clouds from the TUM

dataset.

6.2.3 USyd Campus dataset

The USyd Campus (USyd) Dataset [Zhou et al., 2020] contains LiDAR scans collected from a

buggy-like car when driving the same route around University of Sydney over 50 weeks in varying

weather conditions. An array of sensors include a Velodyne VLP-16 LiDAR, six cameras, and

GPS/IMU. The locations recorded from GPS are served as ground truth in the place recognition

task. Fig 6.7 shows the trajectory of the car and training/test areas. Following [Żywanowski

et al., 2021], the consecutive LiDAR scans are split with the 5 meters distance, resulting in about

735 scans per every 40 runs. And each scan includes up to 25,000 3D points and covers a 100

meters size area. The distributions are kept as same as the raw scans and the point clouds are

downsampled to 4096 points using a voxel grid filter. Notably, the ground planes of every single

scan are not removed.

The vehicle trajectory and training/test areas are shown in Fig. 6.7. The four test sections

include 100× 100m2 areas. In total, 19,138 training and 8797 test 3D LiDAR scans are obtained.

Fig. 6.8 shows examples of downsampled point clouds from the USyd dataset.

6.2.4 3D vehicle dataset

In this work, the synthetic CAD models on the category of cars from ShapeNet[Chang et al.,

2015] are used to create a 3D vehicle dataset containing pairs of partial and complete point

clouds, in order to train the proposed VPC-Net. Specifically, the 3D vehicle dataset includes a

82 6. Experiments

Figure 6.5: Visualization of the trajectory of the vehicle that repeatedly drives through TUM city campus
in 2016 and 2018. The red lines in the magenta box are the test area, and the others are the training area.

total of 5677 different instances of vehicles, which are split into training, validation, and test data.

Among them, 100 instances are used for validation, and 150 instances are utilized for testing. The

remaining instances are reserved for training. For creating complete point clouds as ground truth,

for each CAD model of a vehicle instance, 16,384 points are sampled uniformly on the surface of

each CAD model of a vehicle as the synthetic point cloud. Fig. 6.9 shows examples of complete

point clouds of vehicle instances from CAD models in ShapeNet. Instead of using subsets of

complete point clouds as partial inputs, the CAD models of vehicle instances are rendered to a

set of depth images from a variety of view angles and then back-projected to different view planes

to generate partial point clouds. This operation can make the incomplete distribution of partial

point clouds closer to real-scan data.

Following the data generation in PCN [Yuan et al., 2018], the pipeline of generating partial

inputs from the ShapeNet dataset is illustrated in Fig. 6.10. The depth images are generated by

placing a virtual RGB-D camera at different view angles. The camera is designed to be oriented

toward the center of the 3D model. A series of viewpoints are randomly selected to generate

6.2. Experimental datasets 83

U.S.

(a) (b)

Figure 6.6: The downsampled point clouds from the TUM dataset. a) shows the query single scan, and b)
shows the corresponding point cloud with the same location in another run.

incomplete shape scans through limited view access. Lastly, the resulting depth maps are back-

projected to form partial point clouds. In this work, eight randomly distributed viewpoints are

chosen to generate eight partial point clouds for each training 3D CAD model of a vehicle. Notably,

the resolution of these partial scans can be different. The reason for generating training point

clouds from a synthetic 3D dataset is that it consists of a wide variety of complete and detailed 3D

84 6. Experiments

Figure 6.7: Visualization of the trajectory repeatedly driving through the University of Sydney campus.
The red lines in the magenta box are the test area, and the others are the training area.

vehicle models, while they are not available in real-scanned LiDAR datasets. Moreover, scanning

thousands of vehicles using LiDAR systems for acquiring complete point clouds as the ground

truth is quite time-consuming and labor-intensive, which is not a practical solution. Recently,

some high-quality 3D reconstruction datasets have emerged such as ScanNet [Dai et al., 2017a]

and S3DIS [Armeni et al., 2017], which can also provide training data with high quality. However,

they are mainly focused on indoor scenes, not including any objects in outdoor scenarios.

6.2.5 PCN dataset and Completion3D benchmark

PCN dataset [Yuan et al., 2018] is created from the ShapeNet dataset [Chang et al., 2015], con-

taining pairs of complete and partial point clouds. Notably, each complete model includes 16,384

points and is corresponding to eight partial point clouds. The dataset covers 30974 CAD models

from 8 categories: airplane, cabinet, car, chair, lamp, sofa, table, and watercraft. Following [Yuan

et al., 2018], the number of models for validation and testing are 100 and 150, respectively. The

remaining models are used for training. In the experiments, the complete shapes are uniformly

downsampled from 16,384 points to 4096. The performance is evaluated on the resolution con-

taining 4096 points.

Completion3D benchmark∗ is released by TopNet [Tchapmi et al., 2019], which is a subset

of the ShapeNet dataset derived from the PCN dataset. Different from the PCN dataset, the

resolution of both partial and complete point clouds is 2048 points. Moreover, each complete

model is only corresponding to one partial point cloud. The train/test split is the same as the

PCN dataset.

∗https://completion3d.stanford.edu/.

https://completion3d.stanford.edu/

6.2. Experimental datasets 85

(a) (b)

Figure 6.8: The downsampled point clouds from the USyd dataset. a) shows the query single scan, and b)
shows the corresponding point cloud with the same location in another run.

6.2.6 KITTI 3D object detection dataset

The KITTI 3D object detection dataset [Geiger et al., 2013] provides raw point clouds collected

by the Velodyne HDL-64E rotating 3D laser scanner and annotations for vehicle instances in the

form of 3D bounding boxes. It records six hours of traffic scenarios, which are diverse and capture

real-world traffic situations with many static and dynamic vehicles. The raw dataset includes five

86 6. Experiments

Figure 6.9: Examples of CAD models and sampled point clouds of vehicle instances from the ShapeNet
dataset. a) CAD models of vehicle instances stored in ShapeNet. b) Generated complete point clouds
sampled uniformly from these CAD models.

Figure 6.10: The pipeline of partial input generation.

categories, namely ’Road’, ’City’, ’Residential’, ’Campus’, and ’Person’. The data category ’City’

is composed of about 28 sequences (i.e., 8477 frames). In each sequence of the raw data, apart

from objects annotated with 3D bounding boxes, tracklets, and calibration are also provided.

Three example frames in ’City’ are shown in Fig. 6.11. The point clouds of vehicles are very

sparse and exhibit a significant loss of content, while another is that target vehicles appear in an

arbitrary location with variable sizes.

6.2.7 NuScenes dataset

The NuScenes dataset [Caesar et al., 2020] consists of 1000 scenes collected in Boston (Seaport and

South Boston) and Singapore (One North, Holland Village, and Queenstown) from a 32 beams

LiDAR scan, six cameras, and five radars, with a total length of 242 km. NuScenes annotated 23

object categories with accurate 3D bounding boxes across the entire dataset to facilitate object

detection and tracking tasks, including various vehicles, types of pedestrians, mobility devices, and

other objects. In total, NuScenes contains 1.4 million camera images, 400,000 Lidar sweeps, 1.3

million RADAR sweeps, and 1.1 million object bounding boxes in 40,000 keyframes. Specifically,

the NuScenes dataset contains 32,302 frames in the car category, which is five times larger than

the KITTI dataset. Following [Zheng et al., 2021a], the training set of NuScenes is used for

training, and the validation set is used for testing. Tracklets with no points in the first bounding

boxes are ignored during the evaluation.

6.3 Evaluation metrics

6.3.1 Evaluation metric of point cloud based place recognition

In order to evaluate the performance of place recognition, the location of each submap/scan is

tagged with a UTM coordinate based on GPS/INS units. The evaluation is performed by selecting

a single query submap/scan from the testing map while matching the nearest submaps/scans

6.3. Evaluation metrics 87

Figure 6.11: Example frames of the ’City’ category from the KITTI dataset. The vehicle points, background
points, and bounding boxes are shown in blue, gray, and green colors, respectively.

within d meters from another collection of reference submaps/scans at a different time. Note that

the testing map is in a never-before-seen area. The Euclidean distance of the global descriptors

is calculated and then nearest neighbors are performed for matching. Average Recall at Top N

is used as an evaluation metric, which means the location is correctly recognized if the N most

similar scans matched from the database contain at least one location within the distance d from

the query. Top 1 counts the number of times the first match from the database matches the

query location, which is actually important for robotic applications. The Top 1% results are also

presented for comparing the state-of-the-art solutions following [Angelina Uy & Hee Lee, 2018].

In the TUM and USyd datasets, the retrieved scan is regarded as a correct match if the

distance is within d = 5m between the retrieved point cloud and the query scan. For Oxford

RobotCar and in-house datasets, the threshold is set d = 25m.

6.3.2 Evaluation metric of 3D object detection and tracking

In this thesis, the performance of 3D object detection and tracking is evaluated by three widely

used metrics: ’Average Precision (AP)’, ’Success’, and ’Precision’. AP is defined as the area under

the curve (AUC) of precision-recall for object detection. The precision measures the percentage

of correct predictions among all predictions and the recall measures the percentage of correct

predictions among all ground truths. When the Intersection-over-Union (IoU) is greater than a

predefined threshold, the prediction is correct. The 3D IoU is formulated as:

φt =
BG
t ∩BD

t

BG
t ∪BD

t

, (6.1)

88 6. Experiments

where BG
t and BD

t are the ground-truth bounding box and the bounding box predicted by the

detector, respectively.

For single object tracking, One Pass Evaluation (OPE) [Wu et al., 2013] is applied to measure

the Success and Precision of different trackers. For a predicted bounding box and a ground-truth

bounding box, ’Success’ is defined as the IoU between them. ’Precision’ is defined as the AUC for

the distance error curve from 0 to 2m, which is measured between the centers of the two boxes.

The success and precision metrics respectively measure the box overlap and center distance error

between the predicted bounding box and the ground-truth bounding box.

6.3.3 Evaluation metric of 3D shape completion

The performance of the 3D shape completion method is evaluated by two commonly applied

metrics: CD (see Eq. 5.4) and EMD (see Eq. 5.5), between the completed point cloud and the

ground truth. The definitions of CD and EMD have been given in Section 5.2.4, where CD-T and

CD-P are also defined by Eq. 5.9. For computing the metrics with a lower computational cost,

the dimensions of both the ground truth and completed point clouds are normalized by regarding

the length of the bounding box of length as one unit. For the Completion3D benchmark, the

online leaderboard adopts CD-T. Thus, CD-T is adopted for experiments in Section 7.3.2 and

CD-P for the other experiments.

89

7 Results and Analysis

In this chapter, the qualitative and quantitative experimental results of the proposed methods

introduced in Chapters 3-5 are provided.

7.1 Point cloud based place recognition results

7.1.1 SOE-Net

Baseline network

The baseline network is compared with PointNetVLAD (PN VLAD) [Angelina Uy & Hee Lee,

2018] as a baseline and the state-of-the-art methods PCAN [Zhang & Xiao, 2019], LPD-Net [Liu

et al., 2019], DH3D [Du et al., 2020], and DAGC [Sun et al., 2020]. For a fair comparison, the

same evaluation metrics are used, including the Average Recall at Top N and Average Recall at

Top 1%. The final global descriptors of all networks are 256-dim. Table 7.1 shows the top 1%

recall of each network on the four datasets. The recall values of DH3D for U.S., R.A. and B.D.

are not reported in [Du et al., 2020].

0 5 10 15 20 25
60

70

80

90

100

0 5 10 15 20 25
60

70

80

90

100

N – Number of top retrievals

Av
er
ag
e
R
ec
al
l@
N
(%
)

N – Number of top retrievals
(a) (b)

Av
er
ag
e
R
ec
al
l@
N
(%
)

PN_VLAD
PCAN
DH3D
DAGC
SOE-Net

PN_VLAD
PCAN
DAGC
SOE-Net

Figure 7.1: Average recall of SOE-Net tested on Oxford RobotCar. a) Baseline: shows the average recall
when SOE-Net is only trained on Oxford RobotCar. b) Refinement: shows the average recall when SOE-
Net is trained on Oxford RobotCar, U.S. and R.A. DH3D is not trained on this dataset in [Du et al.,
2020].

The results show that the proposed baseline network outperforms others significantly on the

Oxford RobotCar dataset. The best performance on Oxford RobotCar reaches the recall of 96.40

% at top 1%, exceeding the recall of the current state-of-the-art method LPD-Net by 1.52 %.

Furthermore, SOE-Net achieves the recall of 93.17%, 91.47%, 88.45% on the unseen datasets

90 7. Results and Analysis

Table 7.1: The average recall (%) at top 1% for each network.

SOE-Net (Proposed) DAGC DH3D LPD PCAN PN VLAD

Oxford 96.40 87.49 84.26 94.92 83.81 80.31
U.S. 93.17 83.49 - 96.00 79.05 72.63
R.A. 91.47 75.68 - 90.46 71.18 69.75
B.D. 88.45 71.21 - 89.14 66.82 65.30

Table 7.2: Average recall (%) at top 1% (@1%) and top 1 (@1) for each of the models trained on Oxford
RobotCar, U.S. and R.A..

Ave recall @1% Ave recall @1
SOE-Net(Proposed) DAGC PCAN SOE-Net(Proposed) DAGC PCAN

Oxford 96.43 87.78 86.40 89.28 71.39 70.72
U.S. 97.67 94.29 94.07 91.75 86.34 83.69
R.A. 95.90 93.36 92.27 90.19 82.78 82.26
B.D. 92.59 88.51 87.00 88.96 81.29 80.11

respectively, which is similar or slightly weaker than LPD-Net. However, both of them improve

the performance by a large margin compared with other methods. Notably, LPD-Net relies on

ten handcrafted features, which has complex network architecture and high computational cost.

Fig. 7.1 (a) shows the recall curves of PointNetVLAD, PCAN, DAGC, and SOE-Net for the top

25 retrieval results. Notably, the recall at top 1 of SOE-Net reaches a recall of 89.37%, indicating

the proposed network effectively captures the task-relevant local information and generate more

discriminative global descriptors.

Refinement network

To improve the generalizability of the network on the unseen scenarios, [Zhang & Xiao, 2019;

Angelina Uy & Hee Lee, 2018; Sun et al., 2020] further add U.S. and R.A. to the training data.

The proposed refinement work is trained following the same training sets. As illustrated in Table

7.2, SOE-Net still significantly outperforms the state-of-the-art method DAGC on all datasets.

By comparing Table 7.1 and Table 7.2, it becomes clear that adding more data from different

scenarios improves the performance of SOE-Net on the unseen dataset B.D.. In other words,

given more publicly accessible datasets of real scans, SOE-Net has huge potential for LiDAR

based localization. In Fig. 7.1 (b) the recall curves of the refinement network of PointNetVLAD,

PCAN, DAGC, and SOE-Net are plotted for the top 25 retrieval results. It demonstrates that

the global descriptors generated by SOE-Net are more discriminative and generalizable than all

previously tested state-of-the-art methods.

Results visualization

In addition to quantitative results, the selected qualitative results of some correctly retrieved

matches are shown in Fig. 7.2. A full traversal is chosen randomly as the reference map on

four benchmark datasets, respectively. Four query point clouds are chosen from other randomly

selected traversals on their respective datasets, with each representing one sample submap from

individual testing areas. For each instance, the query point cloud and the top 3 retrieved matches

are shown on the left. It becomes clear that the best match has a very similar scene as the query

point cloud. Besides, the location of each point cloud is displayed in the reference map on the

right. For each query, the location of the top 1 result (indicated by the blue circle) is correctly

overlapped with the query location (represented by the red cross). It shows that the proposed

SOE-Net indeed has the ability to recognize places.

7.1. Point cloud based place recognition results 91

query

top 2

Oxford

0 1

top 1

data1
data2query

top 2
top 3

top 3

top 1

query

top 2

U.S.

top 1

data1
data2query

top 2
top 3

top 3

top 1

query

top 2

R.A.

top 1

data1
data2query

top 2
top 3

top 3

top 1

query

top 2

B.D.

top 1

data1
data2query

top 2
top 3

top 3

top 1

Figure 7.2: Visualizations of example retrieval results of SOE-Net on four benchmark datasets. For each
retrieval, the query point cloud and the top 3 retrieved results are displayed. Locations of these point
cloud are also indicated in the associated reference map. Colors in these point clouds represent heights
above the ground.

92 7. Results and Analysis

Table 7.3: Average recall at top 1% (@1% and top 1 (@1) for each of the models trained on the TUM
dataset.

TUM dataset Ave recall @1% Ave recall @1

PointNetVlad [Angelina Uy & Hee Lee, 2018] 76.3 61.9
PCAN [Zhang & Xiao, 2019] 87.8 71.2
SOE-Net [Xia et al., 2021a] 83.5 66.9

MinkLoc3D [Komorowski, 2021] 82.7 66.9

MinkLoc3D-S [Żywanowski et al., 2021] 85.7 69.1
CASSPR (Proposed) 97.1 85.6

7.1.2 CASSPR

Comparisons on TUM City Campus Dataset

The proposed CASSPR is compared with the state-of-the-art: PointNetVlad [Angelina Uy &

Hee Lee, 2018], PCAN [Zhang & Xiao, 2019], SOE-Net [Xia et al., 2021a], MinkLoc3D [Ko-

morowski, 2021], and MinkLoc3D-S [Żywanowski et al., 2021]. Besides, the same evaluation

metrics are used and the dimensions of all global descriptors are set to 256-dim. Table 7.3 shows

the top 1% and top 1 recall of each network on the TUM City Campus dataset.

The results show that the proposed CASSPR outperforms others significantly on the TUM

dataset. The best performance on the TUM dataset reaches the recall of 97.1 % at top 1%,

exceeding the recall of the current state-of-the-art method by 9.3 %. Furthermore, CASSPR

achieves the recall of 85.6% at top 1, which has a significant advantage (16.6%) over MinkLoc3D-S.

Fig. 7.3 shows the recall curves of PointNetVLAD, PCAN, SOE-Net, Minkloc3D, MinkLoc3D-S,

and CASSPR for the top 25 retrieval results. Notably, the recall at top 1 reaches a recall of

86.4%, indicating the proposed CASSPR effectively captures the task-relevant local information

and generates more discriminative global descriptors.

0 5 10 15 20 25
60

70

80

90

100

Av
er
ag
e
R
ec
al
l@
N
(%
)

N – Number of top retrievals

PN_VLAD
PCAN
SOE-Net
MinkLoc3D
MinkLoc3D-S
CASSPR

Figure 7.3: Average recall of CASSPR tested on the TUM dataset.

Results visualization on the TUM dataset

In addition to quantitative results, the selected qualitative results of some correctly retrieved

matches and one failed case are shown in Fig. 7.4. A full traversal is made as the reference map

on the TUM city campus dataset. Three query point clouds are chosen from the 2016 traversal,

with each representing one single scan from the testing areas. For each scan, the query point

cloud and the top 3 retrieved matches are shown on the left. It becomes clear that the best

match has a very similar scene to the query point cloud. Besides, the location of each point cloud

in the reference map is displayed on the right. For each query, the location of the top 1 result

7.1. Point cloud based place recognition results 93

USyd dataset AR @1% AR @1

PointNetVlad [Angelina Uy & Hee Lee, 2018] 81.7 60.7
PCAN [Zhang & Xiao, 2019] 86.4 68.7
SOE-Net [Xia et al., 2021a] 78.9 52.8

MinkLoc3D [Komorowski, 2021] 98.1 91.7

MinkLoc3D-S [Żywanowski et al., 2021] 98.8 93.9
CASSPR (Proposed) 98.9 97.6

Table 7.4: Average recall (%) at top 1% (@1%) and top 1 (@1) for each of the models trained on the USyd
dataset.

(indicated by the blue circle) is correctly overlapped with the query location (represented by the

red cross). Fig 7.4(a) illustrates the successful cases, which demonstrate CASSPR indeed has

excellent recognition ability.

Fig 7.4(b) shows a failed retrieval case, in which the top 1 retrieved match has a similar scene

to the query scan. It is seen that the highly similar scenes with different locations still confuse

CASSPR. This is reasonable since CASSPR achieves recognition via fully mining the geometric

information.

Comparisons on the USyd dataset.

Due to the small size of the TUM dataset, further experiments are conducted on a larger USyd

Campus (USyd) Dataset in order to better demonstrate the superiority of CASSPR. As the

references, the previous SOTA are trained and tested based on their published codes, includ-

ing PointNetVlad [Angelina Uy & Hee Lee, 2018], PCAN [Zhang & Xiao, 2019], SOE-Net [Xia

et al., 2021a], MinkLoc3D [Komorowski, 2021], and MinkLoc3D-S [Żywanowski et al., 2021]. The

evaluation results are shown in Table. 7.4.

CASSPR achieves the best performance of 98.9% / 97.6% at AR@1% / AR@1, exceeding

the performance of the previous SOTA MinkLoc3D-S by 3.9% on AR@1. It demonstrates that

CASSPR can generate more discriminative global descriptors compared with point-based or voxel-

based baselines.

Comparisons on the Oxford RobotCar and in-house datasets.

To further demonstrate the capability of CASSPR, the experiments are conducted on benchmark

datasets introduced in [Angelina Uy & Hee Lee, 2018], which include the Oxford RobotCar dataset

and three in-house datasets: University Sector (U.S.), Residential Area (R.A.), Business District

(B.D.). Following the baseline networks proposed in [Angelina Uy & Hee Lee, 2018; Zhang &

Xiao, 2019; Liu et al., 2019; Hui et al., 2022; Xia et al., 2021a; Komorowski, 2021; Zhou et al.,

2021; Hui et al., 2021,?; Fan et al., 2022; Żywanowski et al., 2021], CASSPR is trained and tested

on Oxford RobotCar dataset. U.S., R.A., and B.D. datasets are used to verify the generalization

ability of models on unseen scenarios. Notably, the submaps in the Oxford RobotCar dataset

are created by concatenating consecutive 2D scans from SICK LMS151 2D LiDAR during the

20m. The spherical representation is thus not suitable for this type of data, as demonstrated

in [Żywanowski et al., 2021]. The same settings are set in Minkloc3D, except that the LSA

unit is added, and followed by each 3D convolution layer. The HCAT is removed because the

94 7. Results and Analysis

query

top 2

TUM city campus dataset

0 1

top 1

data1
data2query

top 2
top 3

top 3

top 1

query

top 2

top 1

data1
data2query

top 2
top 3

top 3

top 1

query

top 2

top 1

data1
data2query

top 2
top 3

top 3

top 1

(a)

(b)

Figure 7.4: Visualizations of example retrieval results of CASSPR on the TUM dataset. a) shows the
successful retrieval cases. b) show one failed case.

7.2. Detection and tracking results 95

Table 7.5: Average recall (%) at top 1% (@1%) and top 1 (@1) for each of the models trained on the
Oxford RobotCar, U.S. and R.A..

Oxford U.S. R.A. B.D.
AR @1 AR @1% AR @1 AR @1% AR @1 AR @1% AR @1 AR @1%

PointNetVLAD [Angelina Uy & Hee Lee, 2018] 62.8 80.3 63.2 72.6 56.1 60.3 57.2 65.3
PCAN [Zhang & Xiao, 2019] 69.1 83.8 62.4 79.1 56.9 71.2 58.1 66.8
LPD-Net [Liu et al., 2019] 86.3 94.9 87.0 96.0 83.1 90.5 82.5 89.1
EPC-Net [Hui et al., 2022] 86.2 94.7 - 96.5 - 88.6 - 84.9
SOE-Net [Xia et al., 2021a] 89.4 96.4 82.5 93.2 82.9 91.5 83.3 88.5

MinkLoc3D [Komorowski, 2021] 93.0 97.9 86.7 95.0 80.4 91.2 81.5 88.5
NDT-Transformer [Zhou et al., 2021] 93.8 97.7 - - - - - -

PPT-Net [Hui et al., 2021] 93.5 98.1 90.1 97.5 84.1 93.3 84.6 90.0
SVT-Net [Fan et al., 2022] 93.7 97.8 90.1 96.5 84.3 92.7 85.5 90.7

MinkLoc3D-S [Żywanowski et al., 2021] 92.8 81.7 83.1 67.7 72.6 57.1 70.4 62.2
CASSPR 95.6 98.5 92.9 97.9 89.5 94.8 87.9 92.1

quantization loss can be ignored when using extremely small voxel sizes, as demonstrated in [Xu

et al., 2021].

CASSPR is compared with the state-of-the-art methods, including PointNetVLAD [Angelina Uy

& Hee Lee, 2018], PCAN [Zhang & Xiao, 2019], LPD-Net [Liu et al., 2019], EPC-Net [Hui et al.,

2022], SOE-Net [Xia et al., 2021a], Minkloc3D [Komorowski, 2021], NDT-Transformer [Zhou et al.,

2021], PPT-Net [Hui et al., 2021], SVT-Net [Fan et al., 2022], and MinkLoc3D-S [Żywanowski

et al., 2021]. The dimensions of all global descriptors are set to 256-dim. The evaluation results

are shown in Table. 7.5. The results of previous methods are reported in their papers following

the same evaluation protocol. It is clearly seen that CASSPR achieves state-of-the-art results

on the Oxford RobotCar, with 1.7% improvements at recall @1 than the baseline method, Min-

kLoc3D. Compared with NDT-Transformer which is also based on a Transformer architecture,

CASSPR introduces a fast and lightweight self-attention unit and achieves a remarkable improve-

ment. Compared with PCAN and SOE-Net, the proposed CASSPR exceeds the recall of PCAN

and SOE-Net by 25.6% and 5.5% at recall @1, respectively. This indicates the proposed LSA is

more effective than the attention strategy used in PCAN and SOE-Net, effectively capturing the

long-range spatial relationships. In addition, CASSPR still surpasses other methods significantly

on all in-house datasets, although there exist huge differences in data distribution between Ox-

ford Robotcar and in-house datasets. It demonstrates that the global descriptors generated by

CASSPR have better generalization ability than all previously state-of-the-art methods.

7.2 Detection and tracking results

7.2.1 Vehicle detection

In this section, the proposed 3D vehicle detection method is trained on the KITTI 3D object

detection benchmark and then tested on the TUM city campus dataset. TUM dataset is extremely

small and only has point cloud data without image data, the 3D ground-truth bounding boxes of

the vehicles are manually annotated in each LiDAR scan. Gabelsbergerstrasse is chosen as the

test area due to the high complexity of the street environment and the large number of vehicles

passing by.

Detection results

The annotated vehicles in the KITTI benchmark are classified into Simple, Moderate, and Hard

difficulties based on their bounding box height in the image plane, occlusion level, and truncation

level. Table 7.6 shows the definition of difficulties in the KITTI benchmark. As the TUM data

has no image data, the difficulties cannot be distinguished based on the definition. All objects

96 7. Results and Analysis

are thus considered in the evaluation since they cannot be filtered based on their bounding box

height in the image plane. The Average Precision (AP) is calculated in both 3D and BEV under

the IoU thresholds of 0.7 and 0.5. 3D AP computes the 3D IoU of the predicted and ground-truth

3D bounding boxes. In BEV AP, the predicted and ground truth 3D bounding boxes are first

projected to 2D bounding boxes, and then the 2D IoU is calculated.

Table 7.7 presents the detection results on the KITTI and TUM datasets. Two conclusions

are easily obtained from the table. (1) For the KITTI dataset, the proposed detector achieves

high performance under the IoU thresholds of 0.7 and 0.5, while it performs worse testing on the

TUM dataset, only 25.94% and 54.15% on 3D AP and BEV AP respectively. This indicates the

generalization ability of the introduced detector is not well on the TUM dataset. Besides, some

visualization results are given in Fig. 7.5 and Fig. 7.6. (2) When the IoU threshold is set as 0.5,

the performance on the TUM dataset is increased significantly compared with the IoU thresholds

of 0.7, reaching 60.32% and 68.27% on 3D AP and BEV AP respectively. This demonstrates that

the proposed detector can determine which point clouds are vehicles in the input scans, but the

predicted locations and sizes of bounding boxes are not precise.

Table 7.6: The definition of difficulties in the KITTI benchmark.

Difficulty Min. height Max. Occlusion Max. Truncation

Easy 40 Pixel Fully visible 15%
Moderate 25 Pixel Partly occluded 30%

Hard 25 Pixel Difficult to see 50%

Table 7.7: Average precision for the proposed detector tested on the KITTI and TUM datasets. Notably,
the results on the KITTI dataset are for Easy level.

IoU
KITTI TUM

3D AP BEV AP 3D AP BEV AP

0.7 75.54 83.53 25.94 54.15
0.5 89.29 89.48 60.32 68.27

Results visualization

Fig. 7.5 and Fig. 7.6 show some selected cases of the proposed detector tested on the KITTI 3D

detection benchmark and TUM city campus dataset, respectively. The green one is the predicted

bounding box and the blue one is the ground truth. As seen from the figures, the LiDAR scan

in the TUM dataset differs significantly from the scans in the KITTI dataset. The LiDAR

point cloud in the TUM dataset is actually aggregated from two Velodyne scans at the same

time, covering a much wider range compared with point clouds in the KITTI. Fig. 7.6(a) and

Fig. 7.6(c) show the proposed detector can detect the targets accurately and tightly, indicating it

has good generalization ability in some cases. In Fig. 7.6(b), the vehicle in the top right corner

is not detected by the proposed detector. This scenario is never seen in the KITTI dataset,

which covers two streets with a single scan. In addition, some points floating on the ground are

incorrectly detected as vehicles, indicating the proposed detector is not very robust to noise.

Computational time analysis

In this section, the required computational time of the proposed detector is analyzed. Here,

the proposed method is tested on all frames of the annotated TUM city campus dataset with a

single Tesla T4 GPU (15G) and an Intel(R) Xeon(R) CPU @ 2.00GHz. The proposed detection

framework achieves real-time efficiency with 38.38ms per scan. During the inference stage, the

7.2. Detection and tracking results 97

Detections Ground truth

(a) (b) (c)

Figure 7.5: Visualizations of vehicle detection results on the KITTI 3D detection benchmark. The predicted
bounding boxes and ground truth are shown in green and blue, respectively. (a)-(c) show results for test
instances from different locations, with different views.

Detections Ground truth

(a) (b) (c)

Figure 7.6: Visualizations of vehicle detection results on the TUM dataset. The predicted bounding boxes
and ground truth are shown in green and blue, respectively. (a)-(c) show results for test instances from
different locations, with different views.

98 7. Results and Analysis

single LiDAR scan is loaded and filtered based on the range first, which takes 12.17ms. Then,

the points are organized into pillars, and the pillars are decorated, encoded, and scattered to the

pseudo-image, costing 5.19ms in this step. Afterward, the pseudo image is passed through the 2D

backbone, which takes 1.97ms. The following detection heads spend 0.065ms on predicting the

3D bounding boxes for vehicles. Finally, the post-processing NMS takes 20.77 ms to filter out the

redundant detection on the CPU. A conclusion can be drawn that the data pre-processing and

post-processing consume a large amount of time in the proposed detection framework.

7.2.2 DMT

Comparison with State-of-the-arts

The proposed DMT is compared with the state-of-the-art methods: SC3D [Achlioptas et al.,

2018], its follow-up SC3D-RPN [Zarzar et al., 2019], FSiamese [Zou et al., 2020], 3DSiamRPN

[Fang et al., 2020], P2B [Qi et al., 2020], MLVSNet [Wang et al., 2021], PTT [Shan et al., 2021],

and BAT [Zheng et al., 2021a]. For a fair comparison, the same evaluation metrics are used. In

this section, the default setting of the MPM is an LSTM prediction model. Fig. 7.7 and Table 7.8

show the success and precision of each network on the KITTI and NuScenes datasets. The success

and precision values for other methods are those reported in their published papers [Achlioptas

et al., 2018; Zarzar et al., 2019; Zou et al., 2020; Fang et al., 2020; Qi et al., 2020; Wang et al.,

2021; Shan et al., 2021; Zheng et al., 2021a]. DMT is first quantitatively evaluated on KITTI,

and then extend the comparisons to NuScenes.

SC3D

PTT
3DSiamRPN

P2B

BAT

DMT

MLVSNet

(b)

KITTI-Car KITTI-Ped KITTI-mean NuScenes-mean

3D Single Object Trackers
(a)

SC3D3DSiamRPN P2B MLVSNet PTT BAT DMT

Figure 7.7: a) Tracking accuracy v.s. speed on the car category of KITTI benchmark. DMT outperforms
state-of-the-art 3D single-object trackers in terms of both tracking accuracy and speed. b) Precision
comparison on KITTI-Car, KITTI-Pedestrian, KITTI-mean, and NuScenes-mean.

Comparisons on KITTI. Following [Qi et al., 2020; Zheng et al., 2021a], the search area

centered on the previous result in the inference stage is generated to meet the requirement of real

scenarios. The results in Table 7.8 show that the proposed DMT outperforms other 3D trackers

significantly. Specifically, when mixing all categories together to test the average performance

following previous trackers, the average performance of DMT reaches 55.1, outperforming BAT

by ∼4% on Success, indicating the effectiveness of the proposed DMT. When comparing PTT

on rigid object (e.g., Van) tracking, DMT has a significant advantage (∼10%) over PTT on the

less-frequent van category in terms of the success metric. However, DMT does not achieve the

highest performance in the more-frequent car category. The transformer-based tracker PTT can

learn better features of rigid objects since they have complex network architectures and more

parameters but rely on more data to train the networks. Qualitative results are given in Section

7.2.2.

7.2. Detection and tracking results 99

Table 7.8: Results of the Success and Precision of different 3D trackers with different categories on the
KITTI and NuScenes dataset. ’Ped’ represents ’Pedestrian’.

Dataset
Category

Frame Number

KITTI NuScenes
Car Ped Van Cyclist Mean Car Trunk Trailer Bus Mean
6424 6088 1248 308 14068 32302 8646 2297 2215 45460

S
u
cc

es
s

(%
)

SC3D [Giancola et al., 2019] 41.3 18.2 40.4 41.5 31.2 30.6 23.5 27.4 23.6 28.7
SC3D-RPN [Zarzar et al., 2019] 36.3 17.9 - 43.2 - - - - - -

FSiamese [Zou et al., 2020] 37.1 16.2 - 47.0 - - - - - -
3DSiamRPN [Fang et al., 2020] 58.2 35.2 45.6 36.1 46.6 - - - - -

P2B [Qi et al., 2020] 56.2 28.7 40.8 32.1 42.4 34.6 25.2 30.0 28.4 32.3
MLVSNet [Wang et al., 2021] 56.0 34.1 52.0 34.3 45.7 - - - - -

PTT [Shan et al., 2021] 67.8 44.9 43.6 37.2 55.1 - - - - -
BAT [Zheng et al., 2021a] 60.5 42.1 52.4 33.7 51.2 36.8 28.6 31.8 30.2 34.7

DMT (Proposed) 66.4 48.1 53.3 70.4 55.1 43.8 51.3 46.8 38.2 44.0

P
re

ci
si

on
(%

)

SC3D [Giancola et al., 2019] 57.9 37.8 47.0 70.4 48.5 35.9 24.8 24.8 21.8 32.5
SC3D-RPN [Zarzar et al., 2019] 51.0 47.8 - 81.2 - - - - - -

FSiamese [Zou et al., 2020] 50.6 32.2 - 77.2 - - - - - -
3DSiamRPN [Fang et al., 2020] 76.2 56.2 52.8 49.0 64.9 - - - -

P2B [Qi et al., 2020] 72.8 49.6 48.4 44.7 60.0 37.6 25.2 26.7 27.6 34.2
MLVSNet [Wang et al., 2021] 74.0 61.1 61.4 44.5 66.6 - - - - -

PTT [Shan et al., 2021] 81.8 72.0 52.5 47.3 74.2 - - - - -
BAT [Zheng et al., 2021a] 77.7 70.1 67.0 45.4 72.8 39.5 28.4 30.5 29.5 36.4

DMT (Proposed) 79.4 77.9 65.6 92.6 75.8 48.3 51.1 40.3 31.9 47.3

To demonstrate the generalizability for non-rigid object tracking, DMT is compared with

other trackers on Pedestrian and Cyclist. For Pedestrian, DMT outperforms BAT and PTT by

∼8% and ∼6% on Precision respectively, indicating the effectiveness of the proposed tracking

pipeline. Amazingly, DMT outperforms BAT and PTT by a large margin for the cyclist category,

achieving about ∼47%/∼45% improvement on Precision. This phenomenon can be explained as

follows: 1) the amount of training and testing samples are extremely small; 2) DMT is more

robust to interference with non-rigid objects in the search area; 3) DMT is simple yet effective,

thus relying on fewer data to learn better networks. The visualized results are shown in Fig. 7.8.

This also demonstrates that DMT can achieve better performance, especially when having fewer

data compared with BAT.

Comparisons on NuScenes. For the car category, DMT reaches the best performance

of 43.8/48.3 on Success/Precision, exceeding the performance of current state-of-the-art method

BAT [Zheng et al., 2021a] by ∼7%/∼9% respectively. Notably, for the truck and trailer categories,

DMT achieves about ∼23% and 20% improvements over BAT on Precision, which demonstrates

that the motion-guided pipeline is more effective, especially on the more challenging dataset.

Moreover, for the bus category, which has the fewest training samples, DMT still outperforms

BAT by a large margin of 8% in terms of the Success metric. Compared with the baseline method

BAT, the performance of DMT shows significant improvements (∼10% on average) in terms of

all categories. Note that PTT/MLVSNet did not present results on NuScenes in their papers.

Computational cost analysis

In this section, the required computational resources of different 3D trackers are analyzed in terms

of the number of parameters, floating point operations (FLOPs), and running speed. For a fair

comparison, here, DMT is tested on all frames of the KITTI-Car with a single NVIDIA RTX3090

GPU. As shown in Table 8.7 and Fig. 7.7 (Left), DMT uses less time per frame with fewer FLOPs

compared with other trackers. Notably, despite the fact that DMT includes an LSTM model,

the number of parameters of DMT are the same as P2B, while DMT is significantly faster (57%

improvement in frame per second) and simpler (36% improvement in FLOPs) by using the same

RTX3090 GPU. In addition, the running speed of MLVSNet is close to DMT. However, DMT

100 7. Results and Analysis

is lighter (i.e., with fewer model parameters) and can achieve much better performance on the

KITTI dataset (see Table 7.8), demonstrating that DMT is simple yet effective.

Table 7.9: Computational cost requirements of different 3D single object trackers on KITTI-Car. * indicates
the frame per second is reported from the corresponding paper.

Method Modality Params FLOPs Frame Per Second Platform

SC3D [Giancola et al., 2019] LiDAR - - 1.8* 1080Ti
FSiamese [Zou et al., 2020] LiDAR+RGB - - 4.9* 1080Ti

3DSiamRPN [Fang et al., 2020] LiDAR - - 20.8* 1080Ti
P2B [Qi et al., 2020] LiDAR 5.4M 4.65G 45.5 3090

MLVSNet [Wang et al., 2021] LiDAR 7.6M - 70.0* 1080Ti
PTT [Shan et al., 2021] LiDAR - - 45 3090

BAT [Zheng et al., 2021a] LiDAR 5.9M 3.05G 68.0 3090
DMT (Proposed) LiDAR 5.4M 2.98G 71.5 3090

Results visualization on the KITTI dataset

According to the different categories and difficulties of the targets, some advantageous cases

of DMT on the KITTI dataset are selected and visualized in Fig. 7.8. Four frames sorted by

time from a full sequence are selected from the cyclist and car categories, respectively. For the

cyclist target, the point clouds of the target and the tracked results are shown at the top of

Fig. 7.8. In this example, BAT tracks the cyclist wrongly when there are two similar cyclists in

the surrounding area. DMT can track the target accurately and tightly, indicating DMT is more

robust to complex scenarios. Furthermore, the tracked results on the car category are displayed,

which is shown at the bottom of Fig. 7.8. Here BAT fails in the extremely sparse scenes (fewer

than 10 points), but DMT works well, which shows that DMT is indeed robust to point sparsity.

Timeline (frame)

BAT (Baseline)
DMT (Proposed)
Ground truth

Figure 7.8: Visualizations of example results of DMT compared with BAT on the KITTI dataset. The
point clouds of tracked objects are shown in blue. (Top) shows results for test instances from the cyclist
category. There are two cyclists in a neighboring area, and DMT can maintain the correct track while
BAT drifts to the wrong object. (Bottom) shows results for test instances from the car category. Although
the point clouds are extremely sparse (< 10 points), DMT still tracks the object.

7.3. Shape completion results 101

Table 7.10: Vehicle tracking results compared with BAT on the TUM dataset.

Precision Success

BAT [Zheng et al., 2021a] 58.6 48.3
DMT (Proposed) 64.6 55.8

Application on the TUM dataset

In this section, the proposed DMT is applied to track the vehicles on the TUM dataset. Notably,

DMT is only trained on the KITTI dataset. Same with the experiments of the proposed detector,

the Gabelsbergerstraße is selected as the test area. Table 7.10 shows the vehicle tracking results of

DMT compared with BAT on the TUM dataset. From Table 7.10, DMT achieves 64.6% and 55.8%

on Precision and Success, outperforming BAT by 8% and 7.5% respectively. This demonstrates

DMT has a better generalization ability when applying an unseen dataset. To vividly present the

superiority of DMT, the tracking examples are visualized in Fig 7.9. Three frames sorted by time

from each full sequence are selected. In these examples, DMT can track the vehicle accurately

from the beginning frame to the end while BAT tracks the vehicle more incorrectly with time

going on. The examples demonstrate DMT is more robust to unknown scenarios, even though

the test dataset is extremely different from the training dataset.

Timeline (frame)Tracking area

BAT (Baseline)
DMT (Proposed)
Ground truth

Figure 7.9: Visualizations of vehicle tracking results of DMT compared with BAT on the TUM dataset.
The BAT and DMT are trained on the KITTI dataset and then tested on the TUM dataset. Although
the point clouds are different from the KITTI dataset, DMT still tracks the vehicle well.

7.3 Shape completion results

7.3.1 VPC-Net

Point completion on the ShapeNet dataset

For evaluating the performance of VPC-Net in completing point clouds of synthetic models,

VPC-Net is compared against the following state-of-the-art methods on the ShapeNet testing

data, including 3D-EPN [Dai et al., 2017b], PCN [Yuan et al., 2018], and TopNet [Tchapmi et al.,

2019]. 3D-EPN [Dai et al., 2017b] is a typical volumetric completion method, which was trained

on the large-scale synthetic dataset as well. PCN [Yuan et al., 2018] is a pioneering method that

completes partial inputs using point clouds directly, which conducted end-to-end training through

102 7. Results and Analysis

an auto-encoder. TopNet [Tchapmi et al., 2019] is the newest end-to-end point cloud completion

method. For a fair comparison, all methods were trained and tested on the same data for all

experiments. The size of the output point cloud and the ground truth was fixed to 16,384 points.

Quantitative results are shown in Table 7.11, respectively.

Table 7.11: Quantitative comparison (smaller value represents better performance) of VPC-Net against
the state-of-the-art methods on ShapeNet.

Methods Mean Chamfer Distance per point (10−3) Mean Earth Mover’s Distance per point (10−2)

3D-EPN [Dai et al., 2017b] 22.308 10.7080
PCN [Yuan et al., 2018] 11.668 6.0480

TopNet [Tchapmi et al., 2019] 13.765 9.6840
VPC-Net (Proposed) 8.662 5.1677

Table 7.11 shows that VPC-Net outperforms other methods significantly. In this table, the

value of CD and EMD metrics are scaled by 1000 and 100, respectively. A relative improvement

is obtained on the average CD value by 25.7% and the average EMD value by 14.6% over the

second-best approach PCN. Note that the values of EMD are much higher than those of CD. The

reason is that EMD is a one-to-one distance matching metric, whereas CD can have one-to-many

correspondences between points.

Point completion on the KITTI dataset

For evaluating the performance of VPC-Net on real scan LiDAR data, VPC-Net is tested for

point cloud completion on the KITTI dataset. 2483 partial point clouds of cars are extracted

from every frame based on their bounding boxes. Each extracted point cloud is transformed into

the bounding box’s coordinate system and then completed by VPC-Net trained on the ShapeNet

dataset. Lastly, they are turned back to the world coordinates. Considering the extra noisy

points from the ground or nearby objects within the bounding box of the car, the FPS operation

is removed in the refiner since it would bring this noise into the final completed results. Note that

there are no ground truth point clouds in this dataset.

The qualitative results are shown in Fig. 7.10. The single frame raw data and five detected

vehicles from the testing data are visualized in Fig. 7.10a. Fig. 7.10b shows five sparse and partial

input point clouds, while Figs. 7.10c and 7.10d display the completed point clouds by PCN and

VPC-Net, respectively. From Fig. 7.10, VPC-Net has a better generalization capability and has

complete shapes that show that the point sets are evenly distributed on the vehicle surface. Note

that both networks were trained on the same ShapeNet training set and tested on KITTI. For

example, for Example 2 in Fig. 7.10, the result generated by VPC-Net includes the details of

missing parts, and all points are more evenly distributed on the geometric surface, while point

sets completed by PCN are messy and lose detailed structures of the rear of the car. Many points

from PCN escaped the car surface, which can be observed in Example 3, Example 4, and Example

5.

Based on the obtained outputs and comparisons, it can be concluded from Fig. 7.10 that VPC-

Net is robust to different resolutions of input point clouds, which is an essential characteristic

for handling real scan data. For example, the point clouds of Examples 1 and 3 have 12 and

100 points, respectively, while 903 points are included in the case of Example 5. In spite of this,

VPC-Net is able to produce uniformly, dense, and complete point clouds with finely detailed

structures.

7.3. Shape completion results 103

(a)
Example 1 Example 3 Example 4 Example 5Example 2

(b)

(c)

(d)

Example 1

Example 2

Example 3

Example 4 Example 5

Figure 7.10: Completed 3D point clouds using real-scan data from the KITTI dataset. a) shows five
detected vehicle examples in a single frame. b) shows the input partial point clouds. c) shows the completed
point clouds by PCN and d) shows the completed point clouds by VPC-Net.

Point completion on the TUM dataset

To further illustrate VPC-Net’s effectiveness and generalization ability on real scan data, the

TUM dataset is selected as a test set. There are no complete point clouds as ground truth for the

TUM dataset either. The qualitative results of some vehicle instances are selected and shown in

Fig. 7.11.

Unlike point clouds from the KITTI dataset, point clouds from the TUM dataset are very

dense. These partial point clouds contain 4200 points on average here. In spite of this, VPC-Net

can still generate detailed information not only in partial inputs but also for the missing structures.

For example, in the fourth row of Fig. 7.11, the point cloud completed by VPC-Net preserves the

shape of the input and reconstructs the wheels and other missing parts. This verifies that VPC-

Net can transfer easily between the different distributions without any fine-tuning operations,

whether partial point clouds are from the KITTI dataset, the TUM dataset, or the ShapeNet

dataset.

7.3.2 ASFM-Net

Evaluation on the PCN dataset

PCN dataset [Yuan et al., 2018] is created from the ShapeNet dataset [Chang et al., 2015], con-

taining pairs of complete and partial point clouds. Notably, each complete model includes 16384

points and is corresponding to eight partial point clouds. The dataset covers 30974 CAD models

from 8 categories: airplane, cabinet, car, chair, lamp, sofa, table, and watercraft. Following [Yuan

et al., 2018], the number of models for validation and testing are 100 and 150, respectively. The

remaining models are used for training. The complete shapes are uniformly downsampled from

16384 points to 4096. The performance is evaluated on the resolution containing 4096 points.

104 7. Results and Analysis

(a)

(b)

Example 1 Example 3 Example 4 Example 5Example 2

Figure 7.11: Completed 3D point clouds using real-scan data from the TUM dataset. a) shows five vehicle
examples of partial point clouds seen from side view and top view. b) shows the completed point clouds
displayed from different viewpoints: side view, top view, and rear view.

Table 7.12: Quantitative comparison on known categories on the PCN dataset. Point resolutions for the
output and ground truth are 4096. For CD-P, lower is better.

Methods
Chamfer Distance(10−3)

Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Average

TopNet [Tchapmi et al., 2019] 8.21 15.99 13.28 15.80 15.29 17.49 13.27 13.81 14.14
PCN [Yuan et al., 2018] 7.95 15.59 13.10 15.47 15.31 16.78 13.22 13.37 13.85

RFA [Zhang et al., 2020b] 7.49 15.68 13.52 14.00 12.33 16.50 11.99 11.40 12.87

ASFM-Net (Proposed) 6.75 14.85 12.51 13.17 11.66 15.38 11.49 10.96 12.09

ASFM-Net is compared against several state-of-the-art point cloud completion methods such

as PCN [Yuan et al., 2018], TopNet [Tchapmi et al., 2019] and RFA [Zhang et al., 2020b] qual-

itatively and quantitatively. Table 7.12 shows that ASFM-Net achieves the lowest CD values

in all eight categories, which demonstrates the superior performance in this dataset. Especially,

ASFM-Net improves the average CD values by 6.1% compared to the second-best method RFA.

Besides, the visualization results are shown in the column labeled 4096 in Fig. 7.12. ASFM-Net

can not only predict the missing part of the object but also preserve the details of the input point

cloud. For example, in the fifth row of Fig. 7.12, TopNet and PCN totally failed. They cannot

complete the missing areas, and even destroy the original shape of the lamp. RFA attempts to

repair the lamp but fails to output a satisfactory result. In contrast, the completed point cloud

by the proposed ASFM-Net preserves the detailed structure from the input and reconstructs the

missing lamp cover successfully.

Evaluation on the Completion3D benchmark

Completion3D benchmark∗ is released by TopNet [Tchapmi et al., 2019], which is a subset of the

ShapeNet dataset derived from the PCN dataset. Different from the PCN dataset, the resolution

7.3. Shape completion results 105

Table 7.13: Quantitative comparison on known categories on the Completion3D benchmark. Point resolu-
tions for the output and ground truth are 2048. For CD-T, lower is better.

Methods
Chamfer Distance(10−4)

Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Average

FoldingNet [Yang et al., 2018] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
PCN [Yuan et al., 2018] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22

PointSetVoting [Zhang et al., 2021] 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18
AtlasNet [Groueix et al., 2018] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77

RFA [Zhang et al., 2020b] 6.52 26.60 10.83 27.86 23.21 23.58 11.66 7.41 17.34
TopNet [Tchapmi et al., 2019] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25

SoftPoolNet [Wang et al., 2020d] 4.89 18.86 10.17 15.22 12.34 14.87 11.84 6.48 11.90
SA-Net [Wen et al., 2020] 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22
GR-Net [Xie et al., 2020b] 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64
CRN [Wang et al., 2020a] 3.38 13.17 8.31 10.62 10.00 12.86 9.16 5.80 9.21

SCRN [Wang et al., 2020b] 3.35 12.81 7.78 9.88 10.12 12.95 9.77 6.10 9.13
VRC-Net [Pan et al., 2021] 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78 8.12

ASFM-Net (Proposed) 2.38 9.68 5.84 7.47 7.11 9.65 6.25 4.84 6.68

of both partial and complete point clouds is 2048 points. Moreover, each complete model is only

corresponding to one partial point cloud. The train/test split is the same as the PCN dataset.

In the column labeled 2048 in Fig. 7.12, the results of the visual comparison between ASFM-

Net and other approaches are presented, from which the more reasonable ability to infer the

missing parts and the more effective fidelity of ASFM-Net. The quantitive comparison results

of ASFM-Net with the other state-of-the-art point cloud completion approaches are shown in

Table 7.13. It is apparent from this table that the proposed ASFM-Net achieves the best perfor-

mance concerning chamfer distance averaged across all categories. Compared with the second-best

method VRC-Net [Pan et al., 2021], ASFM-Net improves the performance of averaged chamfer

distance with a margin of 17.7%.

Car completion on the KITTI dataset

Following PCN, the proposed ASFM-Net is evaluated for car completion on the KITTI [Geiger

et al., 2013] dataset. The KITTI dataset includes many real-scanned partial cars collected by a

Velodyne 3D laser scanner. In this experiment, one sequence of raw scans is taken. It contains

2483 partial car point clouds, which are collected from 98 real cars under 425 different frames.

Same as PCN, every point cloud is completed with a model trained on cars from ShapeNet, and

then transformed back to the world frame. Notably, there are no ground truth point clouds in

the KITTI dataset.

Table 7.14: Fidelity distance (FD) and consistency comparison on the KITTI dataset.

Methods Input TopNet PCN RFA ASFM-Net

FD - 0.041 0.041 0.072 0.025
Consistency 0.052 0.014 0.016 0.033 0.020

Therefore, fidelity distance (FD), consistency, and minimal matching distance (MMD) are

proposed by PCN as evaluation metrics. MMD is to measure how much the completion output

resembles a typical car. However, this metric is not meaningful due to only being trained in the car

category. In other words, the prior information is already known that this object must be a car.

Thus, MMD is ignored as an efficient evaluation metric in this paper. The fidelity is to measure

the similarity between the input and completed point clouds, which calculates the average distance

∗https://completion3d.stanford.edu/.

https://completion3d.stanford.edu/

106 7. Results and Analysis

Inputs

20482048

TopNet PCN
4096 2048 4096

RFA
2048 4096 2048 4096 4096

ASFM-Net Ground truth

Figure 7.12: Qualitative comparison on known categories on the Completion3D benchmark and the PCN
dataset. The 2048 and 4096 resolutions of the outputs are completed from the Completion3D benchmark
and the PCN dataset, respectively.

between each point in the input and the nearest point in the completed point cloud. Consistency

is to measure how consistent the outputs reconstructed by networks are against variations in

the inputs, which calculates the average Charmfer distance among the completion results of the

same instance in consecutive frames. The quantitative results are shown in Table 7.14. From

Table 7.14, it can be seen that ASFM-Net achieves excellent fidelity performance. The value is

far below the other three methods, which illustrates ASFM-Net can preserve the original shape of

the input effectively. The consistency performance of ASFM-Net is slightly weaker than TopNet

and PCN. However, ASFM-Net improves the performance by a large margin compared with raw

inputs. To explore the consistency performance more clearly, the results completed by different

methods for one specific vehicle in different frames are visualized in Fig. 7.13. The raw point

clouds of the same vehicle have significantly different shape appearances since they are collected

at different moments from a moving vehicle. This is the reason that the value of consistency for

inputs is high. From Fig. 7.13, PCN and TopNet are good at generating a general shape of the

car while ASFM-Net reconstructs plausible shapes and keeps fine-grained details from the input.

It demonstrates that ASFM-Net is more flexible when the appearance of the input point cloud

changes greatly.

7.3. Shape completion results 107

Inputs TopNet PCN RFA ASFM-Net

（a） （b） （c） （d） （e）

Figure 7.13: Qualitative comparison on the KITTI dataset. From a) to e): Raw point clouds of the
same vehicle scanned in consecutive frames, shape completion using TopNet, PCN, RFA, and ASFM-Net,
respectively.

109

8 Discussion

This chapter covers the discussions of the various algorithms and methods presented in Chapters

3-5. Based on extensive experimental results, the ablation studies, the advantages, limitations,

and applications of those algorithms and methods are thoroughly discussed.

8.1 Discussion on place recognition

8.1.1 SOE-Net

Ablation study

Ablation studies evaluate the effectiveness of different proposed components in SOE-Net, including

both the PointOE module and the self-attention unit. The performance of the proposed HPHN

quadruplet loss is also analyzed. All experiments are conducted on Oxford RobotCar.

PointOE module and self-attention unit. The effectiveness of the proposed PointOE

module and the self-attention unit is tested, using PointNetVLAD and PCAN as baselines,

PN VLAD, PCAN. Either the PointOE module or self-attention unit is integrated into Point-

NetVLAD, referred as PN VLAD-OE and PN VLAD-S. Both two components are then com-

bined into PointNetVLAD, denoted as PN VLAD-SOE. Besides, PointNet is replaced by Point-

Net++ [Qi et al., 2017b] in the local descriptor extraction stage, referred to as PN++ VLAD.

All networks are trained with lazy quadruplet loss, with results shown in Table 8.1.

Table 8.1: Ablation studies of self-attetnion unit and PointOE module on Oxford RobotCar. The results
show the average recall (%) at top 1% (@1%) and at top 1 (@1) for each model.

Ave recall @1% Ave recall @1

PN VLAD 81.01 62.76
PN++ VLAD 89.10 76.23

PCAN 83.81 69.05
PN VALD-S 86.71 73.03

PN VALD-OE 92.20 82.21
PN VALD-SOE 93.41 84.20

Comparing with PointNetVLAD, PN VLAD-S sees an improvement of 5.7% and 10.27% on

the average recall at top 1% and top 1, respectively. The performance of PN VLAD-S also exceeds

the recall of PCAN by 2.9% and 3.98%, respectively, indicating the proposed self-attention unit

is more effective than the attention strategy used in PCAN. This is due to the context informa-

tion has a significant effect on aggregating local descriptors into a global one, and the proposed

self-attention unit can learn long-range spatial relationships between local descriptors. With the

proposed PointOE module, SOE-Net brings significant improvements on the average recall by

11.19% and 19.45%, respectively, when compared with PointNetVLAD. Besides, PointNet++

enhances PointNet features with a hierarchical encoding pipeline, but still does not explicitly

encode orientation. The comparison with PN++ VLAD demonstrates the superiority of OE for

110 8. Discussion

3D descriptor learning for place recognition. Combining both modules can improve the perfor-

mance by 12.40% and 21.44% on average recall, respectively. The ablation studies demonstrate

the significant role of each module in SOE-Net.

HPHN quadruplet loss. To evaluate the proposed HPHN quadruplet loss, the performance

of the proposed SOE-Net trained with different losses is compared. As shown in Table 8.2,

the network performance is better when trained on the proposed HPHN quadruplet loss. The

performance on Oxford RobotCar reaches 96.40% recall at top 1% and 89.47% recall at top 1,

exceeding the same model trained with the lazy quadruplet loss by 2.99% and 5.17%, respectively,

demonstrating the superiority of the proposed HPHN quadruplet loss.

Table 8.2: Results of the average recall (%) at top 1% and at top 1 of SOE-Net trained with different losses
on Oxford RobotCar.

Ave recall @1% Ave recall @1

Lazy quadruplet 93.41 84.20
HPHN quadruplet 96.40 89.37

Output dimension analysis

In this section, the performance of the global descriptor with different output dimensions is

analyzed. The results of average recall at top 1% for the global descriptor produced by SOE-Net

and DAGC are shown in Table 8.3. Two conclusions can be drawn from this table: (1) SOE-Net

outperforms DAGC, even if the generated global descriptor has a smaller dimension; (2) when

the output dimension decreases from 256 to 128, the performance of SOE-Net only declines by

around 1%-3% on each benchmark. When the dimension expands to 512, the performance only

changes by about 0.3%-1%.

Table 8.3: Results of the average recall (%) at top 1% of different global descriptor dimensions on Oxford
RobotCar. D is the output dimension of global descriptors.

SOE-Net DAGC
D=128 D=256 D=512 D=128 D=256 D=512

Oxford 95.30 96.40 96.70 84.43 87.49 85.72
U.S. 91.24 93.17 94.47 81.17 83.49 83.02
R.A. 90.53 91.47 91.00 72.39 75.68 74.46
B.D. 85.88 88.45 89.29 69.57 71.21 68.74

Values of margin analysis

In this section, the network performance with different margins in the HPHN quadruplet loss is

explored using Oxford RobotCar. Table 8.4 shows results of average recall at top 1% and top 1

with different margins for the SOE-Net architecture. Seen from the table, SOE-Net achieves the

best performance with a margin value of 0.5. When the values expand to 0.7, the performance

steadily degrades. This implies the distance between positive and negative pairs is sufficient with

lower values of margin. On the other hand, when the value is set to 0.4, the performance decreases.

The fixed value of margin is thus set as 0.5 in SOE-Net.

8.1. Discussion on place recognition 111

Table 8.4: Margin analysis in the HPHN quadruplet loss. SOE-Net is chosen as a baseline and evaluate it
on Oxford RobotCar.

Margin Ave recall @1% Ave recall @1

0.4 95.87 88.84
0.5 96.40 89.37
0.6 96.23 89.30
0.7 95.63 88.46

8.1.2 CASSPR

Ablation study

To assess the relative contribution of each module, the LSA and the HCAT (including the point

branch) are removed from CASSPR one by one, denoted as CASSPR HCAT and CASSPR LSA,

respectively. The key/value and query for the fusion unit of HCAT is also swtiched, namely

the point branch acting as a query, and the voxel branch as a key and value, denoted as

CASSPR Switch. All networks are trained on the TUM dataset, with results shown in Table 8.5.

CASSPR HCAT outperforms MinkLoc3D-S in recall by 8.6%, indicating the proposed HCAT is

a crucial part of a successful fusion strategy. The LSA unit brings significant improvements on

the average recall metric (7.9%), when compared against MinkLoc3D-S performance. Combining

both modules achieves the best performance, improving the performance by 11.4% and 16.5%. It

is also observed inferior performance of CASSPR Switch to the proposed method when changing

the sequence of key/value and query in the second stage.

Table 8.5: Ablations of the hierarchical cross-attention transformer (HCAT) and lightweight self-attention
(LSA) on the TUM dataset.

Method MHCAT LSA Ave recall @1% Ave recall @1

MinkLoc3D [Komorowski, 2021] 82.7 66.9

MinkLoc3D-S [Żywanowski et al., 2021] 85.7 69.1
CASSPR MHCAT X 94.3 77.7

CASSPR LSA X 93.6 84.9
CASSPR Switch X X 89.2 77.7

CASSPR X X 97.1 85.6

Number of lightweight self-attention units

In this section, the network performance with different numbers of lightweight self-attention (LSA)

units is also explored on the Oxford RobotCar and in-house datasets. Specifically, the HCAT

module is removed and the LSA units is inserted one by one after the each convolutional layer.

The network is denoted as CASSPR LSA. ’0’ means that no LSA unit is added, thus the network

structure is exactly the same as MinkLoc3d.

Table 8.6 shows results of average recall at top 1% and top 1 with different numbers of LSA

units for the CASSPR LSA architecture. Seen from the table, three conclusions can be drawn:

(1) For Oxford RobotCar, it is observed that CASSPR LSA outperforms MinkLoc3d by 0.1% and

0.5% on the average recall at top 1% and top 1 respectively when only adding one unit, indicating

the effectiveness of the LSA unit. (2) CASSPR LSA achieves the best performance with 6 LSA

units. This implies the network has the best global awareness when all attention units are used.

(3) Comparing the performance when the number of units is 5 and 6, the network achieves the

same performance on Oxford RobotCar, while it has the better performance tested on in-house

datasets when the number is 6. This demonstrates the LSA unit benefits the generalization ability.

112 8. Discussion

Table 8.6: Average recall (%) at top 1% (@1%) and top 1 (@1) for CASSPR with different number of LSA
units trained on Oxford RobotCar, U.S. and R.A..

Number of LSA
Oxford RobotCar U.S. R.A. B.D.

AR @1 AR @1% AR @1 AR @1% AR @1 AR @1% AR @1 AR @1%

0 93.0 97.9 86.7 95.0 80.4 91.2 81.5 88.5
1 93.5 98.0 86.9 95.0 80.0 88.8 80.9 87.3
2 93.5 98.0 87.2 96.0 80.2 89.3 80.8 87.4
3 92.9 97.6 90.1 96.5 81.0 91.1 82.6 89.2
4 92.9 97.6 87.2 95.6 82.7 92.5 82.5 89.1
5 94.7 98.4 88.0 94.4 86.2 93.4 82.7 89.0
6 94.7 98.4 91.4 97.1 86.8 93.5 86.3 91.0

The maximum range of 3D LiDAR

In this section, the performance of the global descriptor with different maximum ranges of points

from LiDAR is analyzed. CASSPR is used as a baseline and the experiments are conducted

on the USyd Campus dataset. The maximum range of points is set from 20m to 100m at 20m

intervals since the Velodyne VLP-16 sensor utilized in the USyd dataset has a range of about

100m. Fig. 8.1 presents the CASSPR results obtained for varying maximum ranges of points.

As seen from the figure, the best results are obtained when the maximum measurement range

is set to at least 40m. Three conclusions can be drawn:(1) Compared the performance from 20m

to 100m, the average recall at top 1% only ranges from 93.9% to 98.4%, demonstrating CASSPR

is robust to the different maximum ranges of points. (2) The location of the 3D points is sparse at

larger maximum ranges, making it difficult to identify meaningful location identification features.

(3) When the smallest maximum range is 20m, the performance at top 1 drops to 77.7%. The

result implies the limited range contains less information and is more likely to contain highly

similar scenarios.

20 40 60 80 100
 Maximum range (m)

70

75

80

85

90

95

100

 A
ve

ra
ge

 re
ca

ll
(%

)

AR@1
AR@1%

Figure 8.1: Average recall of CASSPR tested on USyd with different maximum distance of points from
the 3D LiDAR position. Maximum ranges less than 40m show a drop in performance.

Computational cost analysis

In this section, the required computational resources of different global descriptors in terms of

the number of parameters and time efficiency are analyzed. For a fair comparison, here, all

8.2. Discussion on detection and tracking 113

Table 8.7: Computational cost requirements of different 3D global descriptors on the TUM dataset.

Methods Parameters (M)
Time Usage (ms)

total Point branch HCAT LSA

PointNetVLAD [Angelina Uy & Hee Lee, 2018] 19.8 12.6 - - -
PCAN [Zhang & Xiao, 2019] 20.4 66.8 - - -
SOE-Net [Xia et al., 2021a] 19.4 66.9 - - -

MinkLoc3D-S [Żywanowski et al., 2021] 1.1 6.0 - - -
CASSPR (Proposed) 3.8 29.7 5.0 12.7 1.4

scans of the TUM dataset are tested with a single NVIDIA V100 GPU. As shown in Table 8.7,

CASSPR takes 29.7ms to encode the one scan into a global descriptor with only 3.8M parameters.

Although CASSPR is a point-voxel fusion architecture, CASSPR has lower trainable parameters

compared with the point-based methods, including PointNetVLAD, PCAN and SOE-Net. For

inference time, CASSPR is faster than the attention-based methods PCAN and SOE-Net in terms

of running time per frame (29.7ms vs. 66.8ms). However, compared with the voxel-based method

MinkLoc3D-S, CASSPR costs more parameters and running times since CASSPR additionally

includes a point branch, a HCAT module, and a LSA unit. In addition, the running time of

each module in CASSPR is presented, including the point branch, HCAT, and LSA. The LSA is

light and fast, only spends 1.4ms. The most time-consuming module is HCAT since it still uses

a conventional dot-production attention layer.

8.2 Discussion on detection and tracking

8.2.1 Ablation studies

In this section, the effectiveness of important modules in DMT is analyzed, including both the

motion prediction module (MPM) and the explicit voting module (EVM).

Table 8.8: Ablation studies of motion prediction module (MPM) and explicit voting module (EVM) on
KITTI-Car.

Method MPM EVM Success Precision

BAT[Zheng et al., 2021a] 60.5 77.7
DMT MP X - 37.0
DMT EV X 54.0 64.1

DMT X X 66.4 79.4

An ablation study is first conducted on the necessity of the EVM and MPM. All studies are

conducted on KITTI-Car. The EVM and the MPM is removed one by one, denoted as DMT MP

and DMT EV. Both variations have the same structure as DMT except for the removed module.

The baseline model is BAT.

The results are shown in Table 8.8. Four conclusions are obtained from these results. (1)

The potential target center estimated by the MPM is extremely inaccurate, only reaching 37% on

Precision. Note that the MPM in DMT cannot regress the orientation of the target, and thus the

Success value cannot be computed. (2) The precision without EVM is 37% (DMT MP), and with

EVM is 79.4% (DMT), which demonstrates that EVM can estimate an effective target-specific

point feature to further refine the prediction of MPM. (3) Comparing DMT EV with BAT, the

performance of DMT EV degrades about 6%/13% in terms of Success/Precision. This is consis-

tent with the expectation that a simpler explicit voting module is used, removing the complicated

RPN module. (4) The full pipeline achieves the best performance, which demonstrates the two

114 8. Discussion

Precision Success

Figure 8.2: Comparison of using various regression or prediction models as the motion prediction module
on KITTI-Car.

modules are mutually beneficial and necessary. In addition, even if the MPM provides inaccurate

results, DMT achieves satisfactory performance due to the explicit voting module.

8.2.2 The choice of motion prediction module

In Fig. 8.2, various types of motion prediction models are compared on KITTI-Car. The compared

models include Constant Velocity (CV), Linear Regression (LR), Ridge Regression (RR), Gaussian

Process Regression (GPR), RANSAC with Ridge Regression (RSRR), and LSTM models. The

LR, RR, GPR, and RSRR models are trained in the same way as the LSTM model, i.e., using the

same sampled tracklets from the training data in KITTI-Car for offline training. These models are

then applied for motion prediction during online testing without further updating. In Fig. 8.2, the

differences among various models are not significant, which implies that DMT is not sensitive to

the MPM selection. This is because EVM is trained to predict GT bounding boxes from diverse

sampled locations in the training stage, which makes it more robust to noisy predicted target

center locations. The sequence-to-sequence prediction LSTM model achieves the best Precision

(79.4%) and Success (66.4%) due to its better ability of sequence modelling.

8.2.3 Template generation strategy

The performance of DMT with four template generation strategies is explored following [Zheng

et al., 2021a], including “the first ground-truth”, “the previous result”, “the first ground-truth

and previous result”, and “all previous results”. Table 8.9 shows results of Success/Precision with

different settings for different trackers on KITTI-Car. Note that P2B, BAT, and DMT use the

same PointNet++ backbone. The specific design in DMT enables it to achieve better tracking

performance than the other trackers under different template generation settings. Specifically,

DMT achieves the best performance when using the “all previous” strategy, outperforming BAT

and P2B by large margins (∼8%, ∼12% respectively). Another finding is P2B, BAT, and DMT

all report degraded results under the “all previous” setting since these trackers did not train

the networks using all previous results for efficiency, while SC3D did. Despite this, the superior

overall performance of DMT in Table 8.9 suggests that DMT better utilizes motion cues from all

previous predictions compared with BAT.

8.2.4 Sampling distance for training EVM

In this section, the network performance with different sampling distances (i.e., the distances

between the sampled points and the ground-truth center) is explored in the training of EVM.

8.2. Discussion on detection and tracking 115

Table 8.9: Different strategies for template generation. 3D trackers are evaluated on KITTI-Car.

Method
The First

GT
Previous

result
First &

Previous
All

Previous
S
u
cc

es
s

SC3D[Giancola et al., 2019] 31.6 25.7 34.9 41.3
P2B [Qi et al., 2020] 46.7 53.1 56.2 51.4

BAT [Zheng et al., 2021a] 51.8 59.2 60.5 55.8
DMT (Proposed) 54.3 63.8 66.4 63.5

P
re

ci
si

on

SC3D[Giancola et al., 2019] 44.4 35.1 49.8 57.9
P2B [Qi et al., 2020] 59.7 68.9 72.8 66.8

BAT [Zheng et al., 2021a] 65.5 75.6 77.7 71.4
DMT (Proposed) 67.2 76.7 79.4 75.9

As mentioned in Section 4.3.3, the distance should not be too large to maintain stable training.

An ablation experiment on KITTI-Car is conducted choosing the distance values from 0.65 to

0.95. As shown in Table 8.10, the performance of DMT reaches its peak with a distance value of

0.75. When the distance expands to 0.95, the performance steadily degrades. This implies the

distances between sampled points and the ground-truth center are still a little large so that some

outliers are picked. On the other hand, the network performance drops when the distance is set

to 0.65. Thus, the value is fixed at 0.75 for the best performance.

Table 8.10: Sampling distance analysis for DMT. DMT is evaluated on KITTI-Car.

Distance(m) Success(%) Precision(%)

0.65 64.0 77.0
0.75 66.4 79.4
0.85 63.0 77.5
0.95 63.0 76.8

8.2.5 Number of sampled training points

In the practical implementation, various points around the ground-truth target center are sampled

to mimic motion predictions during the online tracking process. In this section, how the number

of sampled points affects the final tracking performance is studied. Specifically, the number of

sampled points is varied and reported the corresponding performance in Table 8.11 on KITTI-

Car. Sampling dense points (i.e., 64) leads to better performance because dense sampling provides

more comprehensive cases for learning a more robust EVM. It is also noticed that the performance

is not saturated, implying that better performance can be obtained by sampling a larger number

of points. However, in the current experiments, DMT is limited by the GPU memory size.

Table 8.11: Sampling point number analysis for DMT. DMT is evaluated on KITTI-Car.

Number Success(%) Precision(%)

8 61.1 75.0
16 62.2 75.7
32 64.5 78.0
64 66.4 79.4

116 8. Discussion

DMT GTTrajectory

Tracked result of DMT
(b)(a)

Figure 8.3: (a) Comparison of BAT and DMT under various motion complexity on KITTI-Pedestrian.
(b) Example results of DMT for complex motion patterns.

8.2.6 Robustness test for object motion patterns

To better demonstrate the effectiveness of DMT on complex motion patterns, Fig. 8.3(a) shows

the comparison of DMT and BAT on tracklets with different motion complexity. Here, motion

complexity is defined as the average error of a simple constant velocity model. DMT still per-

forms better than the RPN-based 3D tracker BAT when the motion complexity increases, which

demonstrates the robustness of DMT to complicated motion patterns. The reason is that the

diverse points are randomly sampled when training the EVM, which makes DMT more effectively

handle various motion patterns. To further demonstrate the superiority clearly, one tracklet of

a pedestrian having a complex trajectory is visualized in Fig. 8.3(b). DMT can track the target

accurately despite the complicated motion pattern.

8.3 Discussion on 3D shape completion

8.3.1 VPC-Net

Visualization of completion details

To better gain further insights into the details of completion performance, the residual distance

between corresponding points from the outputs of VPC-Net to the ground truth is visualized in

Fig. 8.4. The 10 different vehicles are from ShapeNet test data. This figure provides detailed

information about which vehicle parts were completed correctly. Different colors encode the

normalized distance between the corresponding shapes. Fig. 8.4 clearly shows that the output

point clouds completed by the proposed VPC-Net recovered most of the vehicle parts correctly. In

addition, by observing the red area in Examples 1, 3, 5, and 6, it can be seen that VPC-Net cannot

capture the fine-grained details in terms of the roof of vehicles. However, from the perspective

of human perception, it can be tolerated since humans tend to judge an object’s quality by its

global features and will tolerate small inaccuracies in shape or location [Tatarchenko et al., 2019].

8.3. Discussion on 3D shape completion 117

Figure 8.4: Visualizing point distances between the completed point clouds with ground truth point clouds.

Table 8.12: Performance comparison of the proposed VPC-Net with different components. The mean
Chamfer Distance (CD) and Earth’s Mover Distance (EMD) per point are reported, multiplied by 103 and
102, respectively.

STN PFE Refiner CD EMD

11.668 6.0480
X 8.922 5.1947
X X 8.916 5.1777
X X X 8.662 5.1677

Ablation study

The ablation studies evaluated the effectiveness of the different proposed components in VPC-Net,

including the spatial transform network (STN), the point feature enhancement operation (PFE),

and the refiner. Four models are developed: (1) a model without STN, PFE, or the refiner, (2) a

model with STN only, (3) a model with both STN and PFE, and (4) a model with STN, PFE,

and the refiner. CD and EMD are used as the evaluation metric, and the quantitative results

of these models are shown in Table 8.12. All experiments were conducted on the ShapeNet

dataset, and the resolution of the points was 16,384. It is clear that the full pipeline has the

best performance. As shown in Table 8.12, with the proposed STN module, the proposed model

achieves an improvement of 23.5% and 14.1% on CD and EMD, respectively. This is because the

rigid geometric transformation has a significant effect on extracting features from partial inputs,

while STN can learn invariance to translation and rotation. With the proposed PFE module,

VPC-Net improves (0.1 %, 0.3 %) the CD and EMD. This confirms that enhancing the global

feature is essential to generate a more accurate coarse point cloud. The proposed refiner module

can further improve the performance by 3 % and 0.2 % in terms of the CD and EMD. The

improvement in the CD is especially significant. This is because the refiner actually improves

the fine-grained details of the completed point clouds, and the CD is better for measuring the

fine-detailed structure of objects than the EMD. As pointed out in [Fan et al., 2017], the CD

will produce points outside the main body at the correct locations. The EMD roughly captures

the mean shape and is considerably distorted, which means it will ignore some flying but correct

points. The ablation studies demonstrate that each proposed module plays a significant role in

VPC-Net for performance improvements. Removing any modules will decline the performance,

which proves that each proposed module contributes.

118 8. Discussion

Figure 8.5: Completeness on the tested datasets. Overlap ratio between input point clouds and completed
point clouds in a) KITTI dataset, b) ShapeNet dataset, and c) TUM dataset.

Figure 8.6: Qualitative results on the inputs with different amounts of missing content. a) shows partial
point clouds with different levels of visibility. b) and c) show the completed point clouds by PCN and
VPC-Net, respectively.

Robustness test

The experiments are carried out to evaluate the robustness of VPC-Net for input point clouds with

various degrees of missing information. First, the completeness statistics of the test data from the

ShapeNet dataset, the KITTI dataset, and the TUM-MLS-2016 dataset were collected, as shown

in Fig. 8.5. The overlap ratio Ro between the input partial point clouds and the completed point

clouds is referred to as the completeness metric, which is defined by

Ro = Sp/Sc (8.1)

where Sp and Sc are surface areas of input partial point clouds and completed point clouds,

respectively.

As can be seen in Fig. 8.5, most input instances from the KITTI dataset are very sparse, and

completeness is less than 50%. In contrast, the examples from the TUM dataset have enough

completeness since that dataset provides the aggregated point clouds, not the original scan data.

The completeness of the test data from the ShapeNet dataset is a normal distribution. Based on

the experimental results, VPC-Net can handle these inputs with different completeness.

To better illustrate the robustness, the robustness test experiment was performed on the

ShapeNet test data since there are ground truth point clouds. The incompleteness degree d of

8.3. Discussion on 3D shape completion 119

Table 8.13: Quantitative results on inputs with different amounts of missing content. The CD is reported
by PCN and VPC-Net, multiplied by 103.

Visible Ratio 25% 40% 60% 80%

PCN [Yuan et al., 2018] 21.555 13.979 12.002 11. 884
VPC-Net 14.786 12.377 7.926 7.612

input point clouds is changed, where d ranges from 20% to 75%. The qualitative and quantitative

results are shown in Fig. 8.6 and Table 8.13, respectively. The visible ratios 0.25, 0.4, 0.6, and

0.8 mean that four incomplete inputs lack 75%, 60%, 40%, and 20% of the ground truth data,

respectively. As illustrated in Fig. 8.6 and Table 8.13, three conclusions can be drawn: (1)

VPC-Net is more robust than PCN when dealing with a high degree of incompleteness. For

example, when the visible ratio is 0.25, VPC-Net is able to generate the general shape of the

car, but PCN fails. (2) When more regions are missing, CD and EMD errors slowly increase.

This implies VPC-Net is still robust when meeting inputs with different incompleteness degrees.

(3) The outputs completed by both methods are plausible when dealing with incomplete inputs

with a large percentage of missing information. For example, the car generated by the proposed

VPC-Net is a cabriolet, while the ground truth is a non-convertible car. However, this ambiguity

is a common issue [Fan et al., 2017], because even for humans, it is difficult to know what this

car is like based on just one wheel.

Registration Test

An even density and completeness are key factors for a successful registration between two point

clouds [Xu et al., 2019]. Correspondingly, the registration result can also reflect the quality (e.g.,

the evenness of point density or the completeness of points) of the input point clouds [Yuan

et al., 2018]. Here, similar to the test conducted in the work of the baseline method PCN [Yuan

et al., 2018], the registration experiments between pairs of vehicle point clouds are conducted.

Comparing the registration accuracy using incomplete and complete point clouds demonstrates

the feasibility of the proposed vehicle point cloud completion method. The vehicle point clouds

of adjacent frames in the same Velodyne sequence from the KITTI dataset were chosen as test

data. Two types of inputs in the registration method are adopted: one represents the partial

point clouds from the real-scan data, while the other represents the completed point clouds by

the proposed VPC-Net. Moreover, a simple point-to-point Iterative Closest Point (ICP) [Besl

& McKay, 1992] was applied as a registration algorithm, which minimizes distances iteratively

between points from two point clouds. Notably, the ICP algorithm is not the only choice for

registration tasks. Any registration algorithm that can be applied to illustrate the completed

results has a good and consistent shape for the same vehicle instances in different frames. The

average rotational and translational error in the registration results with partial and complete

input point clouds were compared. The rotational error ER and translational error ET are defined

as follows, respectively:

ER = 2 cos−1(2 < R1, R2 >
2 −1) (8.2)

ET = ||T1 − T2||2 (8.3)

where R1 and T1 are the rotation and translation of the ground truth in the KITTI dataset, re-

spectively. R2 and T2 are the rotation and translation measured by the ICP method, respectively.

As shown in Table 8.14, the quantitative results demonstrate that the complete point clouds

generated by VPC-Net provide a more accurate estimation of translation and rotation than the in-

120 8. Discussion

Table 8.14: Averaged rotation and translation errors of point cloud registration using different inputs.

Inputs
Average error

rotation (◦) translation (m)
Partial inputs 13.9422 7.0653
Complete inputs 7.9599 4.2059

Table 8.15: Quantitative comparison of point cloud registration task with different inputs.

Partial inputs Complete outputs
Example Rotation error Translation error Rotation error Translation error

1 4.5159 1.4715 1.8219 0.5904
2 11.4627 2.1093 0.5678 0.1060
3 4.5159 1.4715 1.8219 0.5904
4 143.9396 58.0907 1.5606 0.7201
5 178.6335 54.5161 3.1471 1.5235
6 14.8757 7.8894 2.4544 1.2499
7 3.1952 1.8321 2.4083 1.3489
8 1.7482 0.6973 0.9957 0.2084
9 0.0270 1.3128 5.5954 3.0927
10 0.6646 1.3941 4.1969 3.8149

Figure 8.7: Qualitative comparison of point cloud registration task with different inputs. a) and c) Regis-
tered results with partial point clouds. b) and d) Registered completed results of the same examples.

complete point clouds when conducting the registration test. Specifically, rotation and translation

accuracy improves by 42.9% and 40.5%, respectively.

8.3. Discussion on 3D shape completion 121

In Fig. 8.7, 10 qualitative examples are displayed. The completed point clouds have large

overlapping regions recovered by VPC-Net, which demonstrates that VPC-Net can generate con-

sistent shapes with high quality for the same vehicle in different frames. The corresponding

rotation and translation errors for these examples are listed in Table 8.15. As can be seen from

Example 1 to Example 8, the registration using complete point clouds shows an improvement in

both rotation and translation accuracy. The improvement is most significant when the error with

partial inputs is relatively large. Examples 9 and 10 are failure cases where the registered partial

inputs have better performance than registered complete inputs. However, this is explained by

the qualitative results in Fig. 8.7: the registered partial inputs have too few points, only about

10, so the ICP method is not able to compute the errors accurately.

8.3.2 ASFM-Net

Ablation Study

The ablation study evaluates the effectiveness of different proposed modules in ASFM-Net, includ-

ing both the pre-trained asymmetrical Siamese auto-encoder and refinement unit. All experiments

are conducted on the Completion3D benchmark. The CD-P is selected as the evaluation metric.

Table 8.16: Ablation studies of asymmetrical Siamese auto-encoder and refinement unit on the Comple-
tion3D benchmark.

Methods
Chamfer Distance(10−3)

Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Average

PCN [Yuan et al., 2018] 14.10 27.03 20.28 27.02 24.99 27.16 22.30 17.03 22.49
SA-PCN Decoder 13.32 25.69 19.82 23.67 22.98 24.12 22.46 16.84 21.11

PCN-Refine 10.57 23.48 18.87 21.45 18.37 22.59 18.27 13.98 18.45
TopNet [Tchapmi et al., 2019] 13.88 28.07 19.69 24.74 23.36 26.12 22.48 16.66 21.88

SA-TopNet Decoder 13.09 25.55 20.22 24.37 23.03 24.78 21.55 17.42 21.25
TopNet-Refine 10.96 23.86 18.78 21.41 17.85 22.05 18.31 14.08 18.41

w/o Refine 16.02 27.32 20.58 28.38 26.08 27.74 24.78 17.56 23.56
ASFM-Net 10.39 22.42 18.24 19.32 17.31 21.66 17.82 13.74 17.61

Pre-trained asymmetrical Siamese auto-encoder. In this section, the effectiveness of

the asymmetrical Siamese auto-encoder which learns shape prior was evaluated. The pre-trained

asymmetrical Siamese auto-encoder was used to replace the encoder modules of PCN and TopNet

but keep their decoder modules respectively, referred to as SA-PCN Decoder and SA-TopNet

Decoder. The quantitative results are illustrated in Table 8.16. With the proposed asymmetrical

Siamese auto-encoder module, ASFM-Net brings significant improvements on the average chamfer

distance by 6.1% and 2.9%, respectively, when compared with PCN and TopNet. This is due to the

global features extracted by the asymmetrical Siamese auto-encoder include shape priors, while

the global features directly encoded from the partial inputs are less informative. The comparison

results demonstrate the superiority of the Siamese auto-encoder for 3D global feature learning for

object completion.

The refinement unit. TopNet and PCN were chosen as the baseline. The refinement unit is

first just integrated into TopNet and PCN, referred as TopNet-Refine and PCN-Refine. The quan-

titative results are shown in Table 8.16. Compared with TopNet and PCN, both TopNet-Refine

and PCN-Refine improve the performance across all categories significantly. The performance of

TopNet-Refine and PCN-Refine also exceeds the average chamfer distance of TopNet and PCN by

15.86% and 17.96%, respectively. In addition, the refinement unit is removed from the proposed

ASFM-Net and only asymmetrical Siamese auto-encoder is used, referred to as w/o Refine. These

results show that the refinement unit contributes to learning more perfect shape information with

fine-grained details and is helpful for other point cloud completion networks.

122 8. Discussion

Robustness Test

To further evaluate the robustness of the models, the experiments were conducted on the input

point clouds with various visible ratios. The visible ratio Rv between the partial and the complete

point clouds is defined as:

Rv = Np/Nc (8.4)

where Np is the resolution of the points of a partial point cloud under the currently visible radius

in the spherical space and Nc is the total points of complete point clouds. Rv ranges from 20%

to 80% with a step of 20%.

The quantitative and qualitative results are shown in Table 8.17 and Fig. 8.8, respectively.

From them, the following two conclusions can be concluded: (1) ASFM-Net can deal with high

missing degrees more robustly. Even though the visibility is only 0.2, ASFM-Net still generates

the overall shape of the airplane. Both TopNet and RFA miss a good aircraft shape and generate

uneven points. The result of PCN is completely failed. (2) ASFM-Net reaches the best perfor-

mance no matter in any visible ratios, which demonstrates ASFM-Net is more robust to occlusion

data.

Table 8.17: Quantitative comparison on known categories under different visible ratios. The CD-P is
reported by TopNet, PCN, RFA, and ASFM-Net, multiplied by 103.

Methods
Visible Ratio

20% 30% 40% 50% 60% 70% 80%

TopNet [Tchapmi et al., 2019] 41.92 34.72 30.16 27.27 25.44 24.27 23.47
PCN [Yuan et al., 2018] 45.65 37.82 33.08 30.06 27.64 25.77 24.01

RFA [Zhang et al., 2020b] 41.58 34.61 29.64 25.83 22.74 20.74 19.06
ASFM-Net 39.94 31.71 25.97 22.03 19.29 17.47 16.27

Inputs

0.40.2

TopNet

PCN

0.6 0.8

RFA

ASFM-Net

Visible ratio Ground truth

Figure 8.8: Qualitative comparison on inputs with different visible ratios. From top to down: Partial point
clouds with different levels of visibility, completed point clouds by TopNet, PCN, RFA, and ASFM-Net.

Since the asymmetrical Siamese auto-encoder is trained using the models with known cat-

egories in the pre-built database, it is essential to explore its impact on the entire network

ASFM-Net when facing unknown objects. In this section, eight novel categories were selected

for evaluation from the ShapeNet dataset, which was divided into two groups: one is the bed,

bench, bookshelf, and bus (visually similar to the training categories), another is guitar, motor-

8.3. Discussion on 3D shape completion 123

bike, pistol, and skateboard (visually dissimilar to the training categories). All experiments are

conducted on the Completion3D benchmark.

Completion on novel categories

Inputs Coarse
After

refinement

Ground

truth

Figure 8.9: Qualitative point cloud completion result on the novel categories. ’Coarse’ means the outputs
are only completed by the asymmetrical Siamese auto-encoder. ’After refinement’ means the final point
cloud completed by ASFM-Net including a refinement unit.

The qualitative and quantitative results are shown in Table 8.18 and Fig. 8.9, respectively.

From Fig. 8.9, the coarse outputs generated by the asymmetrical Siamese auto-encoder are wrong.

It mistakenly completes the bed as the chair, the guitar as the lamp, and the motorbike as the wa-

tercraft. This is consistent with the expectation that the prior category information is learned from

the known training categories. However, even if the asymmetrical Siamese auto-encoder provides

wrong results, ASFM-Net can possibly reconstruct satisfactory point clouds (Row 2,3) thanks to

the refinement unit. Besides, as shown in Table 8.18, ASFM-Net outperforms other state-of-the-

art methods on all novel categories. Notably, ASFM-Net can improve performance by a large

margin on visually dissimilar categories (e.g. the pistol and skateboard). This demonstrates that

ASFM-Net has better generalizability than all previously tested state-of-the-art methods.

Table 8.18: Quantitative comparison on novel categories on the Completion3D benchmark. Point resolu-
tions for the output and ground truth are 2048. For CD-P, lower is better.

Methods
Chamfer Distance(10−3)

bed bench bookshelf bus guitar motor pistol skateboard Average

TopNet [Tchapmi et al., 2019] 39.76 20.64 28.82 17.77 15.62 22.52 22.13 18.26 23.19
PCN [Yuan et al., 2018] 38.73 21.28 29.26 18.47 17.19 23.10 20.34 17.70 23.26

RFA [Zhang et al., 2020b] 34.67 19.27 23.38 18.05 17.21 21.33 19.93 18.95 21.98
ASFM-Net 31.94 17.31 23.19 17.02 11.97 16.81 15.83 14.50 18.57

8.3.3 Application

Apart from evaluating the effectiveness of the proposed methods, more complete and denser

point clouds can be helpful for many common tasks [Yuan et al., 2018]. The completed results

were applied to a 3D vehicle monitoring task. The proposed VPC-Net can provide complete

shape information about vehicles, which can be regarded as an assistant for this task. It also

demonstrates that the proposed method is suitable for real-time applications. The goal is to

124 8. Discussion

provide the shape of the vehicles for the monitoring task only based on the existing raw LiDAR

data.

Figure 8.10: Application to 3D traffic monitoring. a) shows a 3D traffic scene at the crossroad visualized
via the SLAM technique. b), c), d) and e) show the vehicle point clouds completed by VPC-Net. Different
colors represent the vehicle appearing at different times.

Therefore, one Velodyne HDL-64E rotating 3D laser scanner is placed at the center of the

crossroads to collect spatially dense and accurate 3D information. The round hole in Fig. 8.10a is

the location of the LiDAR system. The typical monitoring technique Simultaneous Localization

and Mapping (SLAM) [Cadena et al., 2016] is leveraged to estimate the vehicles in a 3D map

while simultaneously localizing the object within it. The velocity, orientation, and trajectory of

vehicles can be obtained using the SLAM method. However, it cannot reconstruct the complete

8.3. Discussion on 3D shape completion 125

shape of moving vehicles, as shown in Fig. 8.10a. In Fig. 8.10a, the brown point clouds represent

a moving car passed in this LiDAR-based system, and form a band shape. Dynamic vehicles

were detected from each frame’s raw data and completed by VPC-Net trained on the ShapeNet

dataset. Figs. 8.10b-d show the completed vehicle appeared on these crossroads at continuous

time T1, T2, T3, and T4, respectively. As can be seen, the proposed VPC-Net can be applied to the

real-time 3D vehicle monitoring task. Furthermore, the completed point clouds have full-content

information on vehicle models. As pointed out by [Pan et al., 2018], the complete shape of the

measured vehicles plays an important role in designing the structure of urban highway viaducts,

since it is key to estimating wind pressure caused by vehicles driving close to the sound barrier.

Thus, the complete shape of vehicles will help traffic managers make the right decisions when

designing highway viaducts. In addition, the 3D shape acquisition of vehicles is critical in the

dynamic 3D reconstruction of traffic on road tasks [Zhang et al., 2020a]. However, they used the

3D CAD vehicle models from ShapeNet instead of real vehicles to simulate real traffic scenes.

This strategy cannot deal with occluded vehicles, nor can it preserve their real shape knowledge.

From this point of view, the shape of moving vehicles completed by the proposed method can

support dynamic 3D traffic scene reconstruction tasks.

127

9 Conclusion and Outlook

In this chapter, the most important conclusions are drawn based on the work carried out within

this thesis, and the new possible directions for further research work are outlined to address the

limitations of the proposed methods. The conclusions are organized according to their relevance

to the specific goals of this thesis as well as the research question in Section 1.3.

9.1 Conclusion

Research question I: Which accuracy of place recognition can be achieved by MLS

point clouds in an urban area collected at different times?

First, the task of point cloud based place recognition is addressed. In this work, two robust

and discriminative 3D global descriptors have been designed for recognizing the places of the MLS

point clouds in a large-scale urban area, one focuses on identifying submaps from the aggregated

point clouds, and another is for recognizing single LiDAR scans. The representation ability of the

global descriptors is developed via improving receptive fields of points, the context dependencies

among local descriptors, the improvement of the loss function, and the involvement of the Trans-

former. The improvement in place recognition results when applying the PointOE module reveals

the importance of improving receptive fields. From the result of SOE-Net, a conclusion is drawn

that a novel HPHN quadruplet loss can achieve more discriminative and generalizable global

descriptors. On the other hand, the long-range context dependencies among local descriptors

are investigated by utilizing the self-attention unit in SOE-Net and the LSA units in CASSPR.

In addition, the novel hierarchical cross-attention Transformer in CASSPR is also involved in

improving the discriminate features. The experiments on several benchmark datasets presenting

various urban scenarios have validated the effectiveness of the aforementioned aspects in the task

of point cloud based place recognition. The qualitative and quantitative results reveal the supe-

riority of the proposed methods over other state-of-the-art methods on the benchmark datasets.

Notably, the performance on the Oxford RobotCar and TUM datasets reaches a recall of 94.7%

and 85.6% at top 1 retrieval, respectively. Despite the fact that the proposed methods produce

promising results in place recognition, there are still notable limitations. For example, the margin

in the HPHN quadruplet loss needs to be set beforehand. Exploring adaptive margins that can

better distinguish positive and negative pairs should be considered in the future. The high GPU-

memory requirement has also limited the application of the proposed hierarchical cross-attention

Transformer to large batch sizes for training.

Research question II: Which success and precision rate of object detection and

tracking (e.g. vehicles) in an urban street environment can be achieved using features

learned from 3D sparse point clouds?

The second task addressed is object detection and tracking during driving on the urban road.

Here, a real-time and effective pipeline is proposed to detect and track vehicles using MLS scans

in two steps. The first one is vehicle detection, which locates and recognizes the vehicles in 3D

128 9. Conclusion and Outlook

space. It can be achieved by predicting the 3D bounding boxes of the vehicles. The second

one is the tracking of vehicles. It tracks the specific vehicle in successive scans given an initial

detection result in the first frame. Combining the two steps, self-driving roles can fully know

the locations of the vehicles that lie in the current urban scene and keep tracking them to avoid

collisions. For vehicle detection, an overall precision of about 68% can be finally achieved on

the TUM City Campus dataset. As for tracking, a novel lightweight 3D tracker is proposed. A

motion prediction module is designed for predicting a potential target center, explicitly leveraging

spatial-temporal correlations from previous frames to explore prior knowledge. In addition, a

simplified voting module is proposed to regress an accurate 3D box with the guidance of the

potential target center. Experiments on the KITTI Geiger et al. [2012] and NuScenes Caesar

et al. [2020] benchmark datasets demonstrate the superiority of DMT over other state-of-the-art

3D SOT methods. Notably, the performance on the NuScenes dataset reaches ∼10% improvement

on average, while running faster and lighter than the previous state-of-the-art methods. The

current pipeline of vehicle detection and tracking in the urban area, including the procedures:

data preprocessing, detection of vehicles, post-processing, and tracking of vehicles, however, has

some obvious limitations. The detection results heavily influence the final tracking results. The

success of tracking is dependent on optimal parameterization for each previous step. In the future,

combining these steps into an end-to-end network for efficiency is a research direction.

Research question III: Which completeness and robustness can be achieved for

completing point clouds of objects which are only partially scanned?

The final task addressed is 3D shape completion after the detection and tracking progress.

Here, two shape completion methods are proposed to synthesize complete, dense, and uniform

point clouds given a partial object from MLS data. The completion quality is improved by

improving the feature extraction ability of the encoder, refining the results with fine-grained

details, and learning prior information. The experimental results of VPC-Net demonstrate the

importance of improving global features extracted from the encoder by including an STN and

PFE layer. In addition, the improvement in shape completion results when adding a refiner

module illustrates the refiner can preserve the fine details of input point clouds. From the result

of ASFM-Net, a conclusion can be drawn that shapes prior information benefits generating a

more informative global feature. The experiments on the various urban datasets, including the

KITTI and TUM City Campus datasets, have demonstrated the effectiveness of the proposed

modules and strategies. In addition, the fine-grained and highly accurate completion results when

applying to the input point clouds with different point densities or intense noise and outliers reveal

that the proposed methods have good robustness. Besides, the 1st place in the leaderboard of

Completion3D is achieved, exceeding the previous state-of-the-art over 12%. However, there are

some obvious limitations of the proposed methods. For example, the designed refiner increases

the number of training parameters. Considering the ambiguity of the completion at test time,

in the future, generating multiple plausible shapes and then assessing the plausibility of several

various completions will be explored. Besides, completing other objects in urban scenes, such as

buildings, traffic signs, road lanes, and so on, should be investigated.

9.2 Outlook

Given the drawbacks of the proposed methods and their shortcomings in real-world applications,

the following aspects can be investigated in the future:

q The global descriptors for point cloud based place recognition should be optimized. First,

the the generalization ability of models should be further improved. Although the proposed

9.2. Outlook 129

methods performed well on benchmark datasets, their performance on unseen datasets was

not entirely satisfactory, limiting their applications in the real world. Currently, there are

some transfer learning methods working on improving the generalization ability, so that

further work could be conducted on the investigation of transfer learning methods. Second,

the current methods focus solely on learning geometric features from the coordinates of 3D

points. However, other information, like color and reflectance, is not thoroughly investi-

gated. Further research could be conducted into attribute information provided by point

clouds or other sensorÂ sources. Multi-sensor or multi-model fusion is a good exploration

direction to improve efficiency. Third, current benchmark datasets for point cloud based

place recognition tasks are still small. The 3D localization community will benefit from the

creation of a larger dataset that includes different countries, lighting, driving directions, and

precipitation.

q The process of 3D object detection and tracking should be further optimized. First, the

detection performance could be improved. The 3D detector could be optimized according

to the characteristics of point clouds. For example, the pillars can be designed following

a dynamic step, depending on the number of points in each pillar. Second, the current

3D single object tracker focuses more on dynamic objects, like vehicles, pedestrians, and

cyclists. In a real-world application, more categories, even unseen objects should be also

tracked. Thus, it is urgent to present a more strong and more efficient 3D single object

tracker. Third, multi-object tracking is a future research direction. Achieving simultaneous

tracking of multiple classes of objects in a single LiDAR scan is a challenging task, but has

great significance to avoid obstacles for autonomous vehicles.

q The 3D shape completion could be further improved. First, the completed objects can be

expanded from a single object to a scene. The completion of a single object is based on the

geometric information of the object itself, whereas the completion of a scene needs to take

into account the spatial connections between objects and the contextual semantic informa-

tion. Scene completion significantly benefits the scene understanding. Second, combining

completion and some downstream tasks (e.g. object detection and tracking) into one is a

worthwhile direction to pursue. The incompleteness of the data is one of the major chal-

lenges encountered in object detection and tracking tasks. Thus, it is natural to believe that

the two tasks are closely linked and complementary. Third, almost all 3D shape completion

methods are trained on synthetic 3D model datasets since it is hard to collect the complete

real-scanned datasets. However, there is a domain gap between synthetic data and real-

world data. Improving the generalization ability on real-scanned data should be explored

by reducing the domain gap.

131

Bibliography

Achlioptas P, Diamanti O, Mitliagkas I, Guibas L (2018) Learning representations and generative models
for 3d point clouds. In: International Conference on Machine Learning: 40–49.

Alman J, Williams VV (2021) A refined laser method and faster matrix multiplication. In: Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA): 522–539.

Angelina Uy M, Hee Lee G (2018) Pointnetvlad: Deep point cloud based retrieval for large-scale place
recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
4470–4479.

Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J (2005) SCAPE: shape completion and
animation of people. In: ACM SIGGRAPH 2005 Papers: 408–416.

Ao S, Guo Y, Hu Q, Yang B, Markham A, Chen Z (2022) You Only Train Once: Learning General and
Distinctive 3d Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Arandjelovic R, Gronat P, Torii A, Pajdla T, Sivic J (2016) NetVLAD: CNN architecture for weakly
supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition: 5297–5307.

Armeni I, Sax S, Zamir AR, Savarese S (2017) Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105.

Arroyo Contera R et al. (2017) Topological place recognition for life-long visual localization.

Asvadi A, Girao P, Peixoto P, Nunes U (2016) 3D object tracking using RGB and LIDAR data. In: 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC): 1255–1260.

Bai X, Luo Z, Zhou L, Fu H, Quan L, Tai CL (2020) D3feat: Joint learning of dense detection and
description of 3d local features. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition: 6359–6367.

Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM): Part II. IEEE
Robotics & Automation Magazine, 13 (3): 108–117.

Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms
and Data Structures, 1611: 586–606.

Bibi A, Zhang T, Ghanem B (2016) 3d part-based sparse tracker with automatic synchronization and
registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
1439–1448.

Borgmann B, Schatz V, Kieritz H, Scherer-Klöckling C, Hebel M, Arens M (2018) Data processing and
recording using a versatile multi-sensor vehicle. ISPRS Annals of Photogrammetry, Remote Sensing &
Spatial Information Sciences, 4 (1): 21–28.

Boric S, Schiebel E, Schlogl C, Hildebrandt M, Hofer C, Macht DM et al. (2021) Research in autonomous
driving–A historic bibliometric view of the research development in autonomous driving. International
Journal of Innovation and Economic Development, 7 (5): 27–44.

132 Bibliography

Broggi A, Bertozzi M, Fascioli A, Bianco CGL, Piazzi A (1999) The ARGO autonomous vehicleâs vision
and control systems. International Journal of Intelligent Control and Systems, 3 (4): 409–441.

Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1993) Signature verification using a” siamese” time
delay neural network. Advances in Neural Information Processing Systems, 6: 737–744.

Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present,
and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans-
actions on Robotics, 32 (6): 1309–1332.

Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, Beijbom O (2020)
nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition: 11621–11631.

Cai Q, Pan Y, Yao T, Yan C, Mei T (2018) Memory matching networks for one-shot image recognition.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 4080–4088.

Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H
et al. (2015) Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012.

Chauve AL, Labatut P, Pons JP (2010) Robust piecewise-planar 3d reconstruction and completion from
large-scale unstructured point data. In: 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition: 1261–1268.

Chen S, Liu B, Feng C, Vallespi-Gonzalez C, Wellington C (2020) 3D point cloud processing and learning
for autonomous driving: Impacting map creation, localization, and perception. IEEE Signal Processing
Magazine, 38 (1): 68–86.

Chen W, Chen X, Zhang J, Huang K (2017) Beyond triplet loss: a deep quadruplet network for person
re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
403–412.

Choy C, Gwak J, Savarese S (2019a) 4d spatio-temporal convnets: Minkowski convolutional neural net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 3075–
3084.

Choy C, Park J, Koltun V (2019b) Fully convolutional geometric features. In: Proceedings of the IEEE
International Conference on Computer Vision: 8958–8966.

Cohen TS, Geiger M, Köhler J, Welling M (2018) Spherical cnns. arXiv preprint arXiv:1801.10130.

Cui Y, Fang Z, Zhou S (2020) Point Siamese network for person tracking using 3D point clouds. Sensors,
20 (1): 143.

Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M (2017a) Scannet: Richly-annotated
3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition: 5828–5839.

Dai A, Ruizhongtai Qi C, Nießner M (2017b) Shape completion using 3d-encoder-predictor cnns and shape
synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
5868–5877.

Danielsson PE (1980) Euclidean distance mapping. Computer Graphics and Image Processing, 14 (3):
227–248.

Deng H, Birdal T, Ilic S (2018a) Ppf-foldnet: Unsupervised learning of rotation invariant 3d local descrip-
tors. In: Proceedings of the European Conference on Computer Vision: 602–618.

Deng H, Birdal T, Ilic S (2018b) Ppfnet: Global context aware local features for robust 3d point matching.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 195–205.

Bibliography 133

Dickmanns ED, Behringer R, Dickmanns D, Hildebrandt T, Maurer M, Thomanek F, Schiehlen J (1994)
The seeing passenger car’VaMoRs-P’. In: Proceedings of the Intelligent Vehicles’ 94 Symposium: 68–73.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M,
Heigold G, Gelly S et al. (2020) An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929.

Du J, Wang R, Cremers D (2020) Dh3d: Deep hierarchical 3d descriptors for robust large-scale 6dof
relocalization. In: Proceedings of the European Conference on Computer Vision: 744–762.

Dubé R, Dugas D, Stumm E, Nieto J, Siegwart R, Cadena C (2017) Segmatch: Segment based place
recognition in 3d point clouds. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA): 5266–5272.

Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robotics &
Automation Magazine, 13 (2): 99–110.

Elbaz G, Avraham T, Fischer A (2017) 3D point cloud registration for localization using a deep neu-
ral network auto-encoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition: 4631–4640.

Fan H, Su H, Guibas LJ (2017) A point set generation network for 3d object reconstruction from a single
image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 605–613.

Fan Z, Song Z, Liu H, Lu Z, He J, Du X (2022) :

Fang Z, Zhou S, Cui Y, Scherer S (2020) 3D-SiamRPN: An End-to-End Learning Method for Real-Time
3D Single Object Tracking Using Raw Point Cloud. IEEE Sensors Journal, 21 (4): 4995–5011.

Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28 (4): 594–611.

Fernández-Moral E, Mayol-Cuevas W, Arevalo V, Gonzalez-Jimenez J (2013) Fast place recognition with
plane-based maps. In: 2013 IEEE International Conference on Robotics and Automation: 2719–2724.

Fernández-Moral E, Rives P, Arévalo V, González-Jiménez J (2016) Scene structure registration for local-
ization and mapping. Robotics and Autonomous Systems, 75: 649–660.

Finman R, Paull L, Leonard JJ (2015) Toward object-based place recognition in dense rgb-d maps. In:
ICRA Workshop Visual Place Recognition in Changing Environments, 76: 480.

Frome A, Huber D, Kolluri R, Bülow T, Malik J (2004) Recognizing objects in range data using regional
point descriptors. In: Proceedings of the European Conference on Computer Vision: 224–237.

Fu Y, Yan Q, Yang L, Liao J, Xiao C (2018) Texture mapping for 3d reconstruction with rgb-d sensor. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 4645–4653.

Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: The KITTI dataset. The International
Journal of Robotics Research, 32 (11): 1231–1237.

Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark
suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition: 3354–3361.

Giancola S, Zarzar J, Ghanem B (2019) Leveraging shape completion for 3d siamese tracking. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 1359–1368.

Gojcic Z, Zhou C, Wegner JD, Wieser A (2019) The perfect match: 3d point cloud matching with smoothed
densities. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 5545–
5554.

134 Bibliography

Granström K, Schön TB, Nieto JI, Ramos FT (2011) Learning to close loops from range data. The
International Journal of Robotics Research, 30 (14): 1728–1754.

Groueix T, Fisher M, Kim VG, Russell BC, Aubry M (2018) A papier-mâché approach to learning 3d surface
generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 216–
224.

Guo MH, Cai JX, Liu ZN, Mu TJ, Martin RR, Hu SM (2021) Pct: Point cloud transformer. Computational
Visual Media, 7 (2): 187–199.

Gurumurthy S, Agrawal S (2019) High fidelity semantic shape completion for point clouds using latent
optimization. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV): 1099–
1108.

Han X, Leung T, Jia Y, Sukthankar R, Berg AC (2015) Matchnet: Unifying feature and metric learning
for patch-based matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition: 3279–3286.

Han X, Li Z, Huang H, Kalogerakis E, Yu Y (2017) High-resolution shape completion using deep neural
networks for global structure and local geometry inference. In: Proceedings of the IEEE International
Conference on Computer Vision: 85–93.

Häne C, Heng L, Lee GH, Fraundorfer F, Furgale P, Sattler T, Pollefeys M (2017) 3D visual perception for
self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection.
Image and Vision Computing, 68: 14–27.

Harary G, Tal A, Grinspun E (2014) Context-based coherent surface completion. ACM Transactions on
Graphics (TOG), 33 (1): 1–12.

He C, Zeng H, Huang J, Hua XS, Zhang L (2020) Structure aware single-stage 3d object detection from
point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition:
11873–11882.

He K, Zhang X, Ren S, Sun J (2016a) Deep residual learning for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition: 770–778.

He L, Wang X, Zhang H (2016b) M2DP: A novel 3d point cloud descriptor and its application in loop
closure detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS): 231–237.

Hee Lee G, Faundorfer F, Pollefeys M (2013) Motion estimation for self-driving cars with a generalized
camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 2746–
2753.

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural computation, 9 (8): 1735–1780.

Hu J, Lu J, Tan YP (2014) Discriminative deep metric learning for face verification in the wild. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 1875–1882.

Huang J, Feris RS, Chen Q, Yan S (2015) Cross-domain image retrieval with a dual attribute-aware ranking
network. In: Proceedings of the IEEE International Conference on Computer Vision: 1062–1070.

Huang Z, Yu Y, Xu J, Ni F, Le X (2020) Pf-net: point fractal network for 3d point cloud completion. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 7662–7670.

Hui L, Cheng M, Xie J, Yang J, Cheng MM (2022) Efficient 3D point cloud feature learning for large-scale
place recognition. IEEE Transactions on Image Processing, 31: 1258–1270.

Bibliography 135

Hui L, Yang H, Cheng M, Xie J, Yang J (2021) Pyramid point cloud transformer for large-scale place
recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision: 6098–
6107.

Jaderberg M, Simonyan K, Zisserman A et al. (2015) Spatial transformer networks. In: Advances in Neural
Information Processing Systems: 2017–2025.

Jiang M, Wu Y, Zhao T, Zhao Z, Lu C (2018) Pointsift: A sift-like network module for 3d point cloud
semantic segmentation. arXiv preprint arXiv:1807.00652.

Johnson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3d scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (5): 433–449.

Kart U, Kamarainen JK, Matas J (2018) How to make an rgbd tracker? In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops: 0–0.

Kart U, Lukezic A, Kristan M, Kamarainen JK, Matas J (2019) Object tracking by reconstruction with
view-specific discriminative correlation filters. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition: 1339–1348.

Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Proceedings of the Fourth
Eurographics Symposium on Geometry Processing, 7.

Khoury M, Zhou QY, Koltun V (2017) Learning compact geometric features. In: Proceedings of the IEEE
International Conference on Computer Vision: 153–161.

Kim G, Kim A (2018) Scan context: Egocentric spatial descriptor for place recognition within 3d point
cloud map. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS):
4802–4809.

Koch G, Zemel R, Salakhutdinov R et al. (2015) Siamese neural networks for one-shot image recognition.
In: ICML deep learning workshop, 2: 0.

Kokkinos I, Bronstein MM, Litman R, Bronstein AM (2012) Intrinsic shape context descriptors for de-
formable shapes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition: 159–166.

Komorowski J (2021) Minkloc3d: Point cloud based large-scale place recognition. In: Proceedings of the
IEEE Winter Conference on Applications of Computer Vision: 1790–1799.

Kulis B et al. (2013) Metric learning: A survey. Foundations and Trends in Machine Learning, 5 (4):
287–364.

Lang AH, Vora S, Caesar H, Zhou L, Yang J, Beijbom O (2019) Pointpillars: Fast encoders for object
detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition: 12697–12705.

Li B, Wu W, Wang Q, Zhang F, Xing J, Yan J (2019) Siamrpn++: Evolution of siamese visual tracking
with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition: 4282–4291.

Li B, Yan J, Wu W, Zhu Z, Hu X (2018) High performance visual tracking with siamese region proposal
network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 8971–
8980.

Li G, Liu L, Zheng H, Mitra NJ (2010) Analysis, reconstruction and manipulation using arterial snakes.
ACM Transactions on Graphics (TOG), 29 (6): 152.

Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: Deep filter pairing neural network for person re-
identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
152–159.

136 Bibliography

Li Y, Wu X, Chrysathou Y, Sharf A, Cohen-Or D, Mitra NJ (2011) Globfit: Consistently fitting primitives
by discovering global relations. In: ACM SIGGRAPH 2011 papers: 1–12.

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017a) Feature pyramid networks for object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
2117–2125.

Lin TY, Goyal P, Girshick R, He K, Dollár P (2017b) Focal loss for dense object detection. In: Proceedings
of the IEEE international conference on computer vision: 2980–2988.

Litany O, Bronstein A, Bronstein M, Makadia A (2018) Deformable shape completion with graph con-
volutional autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition: 1886–1895.

Liu H, Zhang G, Bao H (2016a) Robust keyframe-based monocular SLAM for augmented reality. In: 2016
IEEE International Symposium on Mixed and Augmented Reality (ISMAR): 1–10.

Liu M, Sheng L, Yang S, Shao J, Hu SM (2020) Morphing and sampling network for dense point cloud
completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, 34 (07): 11596–11603.

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016b) Ssd: Single shot multibox
detector. In: European Conference on Computer Vision: 21–37.

Liu Z, Zhou S, Suo C, Yin P, Chen W, Wang H, Li H, Liu YH (2019) Lpd-net: 3d point cloud learning
for large-scale place recognition and environment analysis. In: Proceedings of the IEEE International
Conference on Computer Vision: 2831–2840.

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. International Journal of Com-
puter Vision, 60 (2): 91–110.

Lu F, Chen G, Liu Y, Qu Z, Knoll A (2020) Rskdd-net: Random sample-based keypoint detector and
descriptor. arXiv preprint arXiv:2010.12394.

Lu W, Wan G, Zhou Y, Fu X, Yuan P, Song S (2019) Deepvcp: An end-to-end deep neural network for
point cloud registration. In: Proceedings of the IEEE International Conference on Computer Vision:
12–21.

Luo Z, Zhou L, Bai X, Chen H, Zhang J, Yao Y, Li S, Fang T, Quan L (2020) Aslfeat: Learning local
features of accurate shape and localization. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition: 6589–6598.

Maddern W, Pascoe G, Linegar C, Newman P (2017) 1 Year, 1000km: The Oxford RobotCar Dataset.
The International Journal of Robotics Research (IJRR), 36 (1): 3–15.

Magnusson M, Andreasson H, Nüchter A, Lilienthal AJ (2009) Automatic appearance-based loop detection
from three-dimensional laser data using the normal distributions transform. Journal of Field Robotics,
26 (11-12): 892–914.

Malassiotis S, Strintzis MG (2007) Snapshots: A novel local surface descriptor and matching algorithm for
robust 3d surface alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (7):
1285–1290.

Mandikal P, Radhakrishnan VB (2019) Dense 3d point cloud reconstruction using a deep pyramid network.
In: 2019 IEEE Winter Conference on Applications of Computer Vision: 1052–1060.

Mao J, Shi S, Wang X, Li H (2022) 3D Object Detection for Autonomous Driving: A Review and New
Outlooks. arXiv preprint arXiv:2206.09474.

Mao J, Xue Y, Niu M, Bai H, Feng J, Liang X, Xu H, Xu C (2021) Voxel transformer for 3d object
detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision: 3164–3173.

Bibliography 137

Mian AS, Bennamoun M, Owens R (2006) Three-dimensional model-based object recognition and segmen-
tation in cluttered scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (10):
1584–1601.

Moosmann F, Stiller C (2013) Joint self-localization and tracking of generic objects in 3D range data. In:
2013 IEEE International Conference on Robotics and Automation: 1146–1152.

Mur-Artal R, Montiel JMM, Tardos JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM
system. IEEE Transactions on Robotics, 31 (5): 1147–1163.

Nan L, Sharf A, Zhang H, Cohen-Or D, Chen B (2010) Smartboxes for interactive urban reconstruction.
In: ACM SIGGRAPH 2010 papers: 1–10.

Nebel D, Kaden M, Villmann A, Villmann T (2017) Types of (dis-) similarities and adaptive mixtures
thereof for improved classification learning. Neurocomputing, 268: 42–54.

Nguyen HV, Bai L (2010) Cosine similarity metric learning for face verification. In: Asian Conference on
Computer Vision: 709–720.

Oh Song H, Xiang Y, Jegelka S, Savarese S (2016) Deep metric learning via lifted structured feature
embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
4004–4012.

Osep A, Mehner W, Mathias M, Leibe B (2017) Combined image-and world-space tracking in traffic scenes.
In: 2017 IEEE International Conference on Robotics and Automation (ICRA): 1988–1995.

Pan L, Chen X, Cai Z, Zhang J, Zhao H, Yi S, Liu Z (2021) Variational relational point completion network.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 8524–8533.

Pan Y, Wang D, Shen X, Xu Y, Pan Z (2018) A novel computer vision-based monitoring methodology for
vehicle-induced aerodynamic load on noise barrier. Structural Control and Health Monitoring, 25 (12):
2271.

Panphattarasap P (2019) Urban patterns: using spatial arrangement for vision-based place recognition
and localisation. PhD thesis, University of Bristol.

Park C, Jeong Y, Cho M, Park J (2022) Fast Point Transformer. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition: 16949–16958.

Patil A, Malla S, Gang H, Chen YT (2019) The h3d dataset for full-surround 3d multi-object detection
and tracking in crowded urban scenes. In: 2019 International Conference on Robotics and Automation
(ICRA): 9552–9557.

Pauly M, Mitra NJ, Giesen J, Gross MH, Guibas LJ (2005) Example-based 3d scan completion. In:
Symposium on Geometry Processing: 23–32.

Pauly M, Mitra NJ, Wallner J, Pottmann H, Guibas LJ (2008) Discovering structural regularity in 3d
geometry. In: ACM SIGGRAPH 2008 papers: 1–11.

Petrelli A, Di Stefano L (2011) On the repeatability of the local reference frame for partial shape matching.
In: 2011 International Conference on Computer Vision: 2244–2251.

Pham QH, Uy MA, Hua BS, Nguyen DT, Roig G, Yeung SK (2020) LCD: learned cross-domain descriptors
for 2D-3D matching. In: Proceedings of the AAAI Conference on Artificial Intelligence, 34 (07): 11856–
11864.

Pomerleau D, Jochem T (1996) Rapidly adapting machine vision for automated vehicle steering. IEEE
Expert, 11 (2): 19–27.

138 Bibliography

Qi CR, Su H, Mo K, Guibas LJ (2017a) Pointnet: Deep learning on point sets for 3d classification and
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
652–660.

Qi CR, Yi L, Su H, Guibas LJ (2017b) Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. In: Advances in Neural Information Processing Systems: 5099–5108.

Qi H, Feng C, Cao Z, Zhao F, Xiao Y (2020) P2B: Point-to-box network for 3D object tracking in point
clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 6329–
6338.

Radenović F, Tolias G, Chum O (2018) Fine-tuning CNN image retrieval with no human annotation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41 (7): 1655–1668.

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region
proposal networks. In: Advances in Neural Information Processing Systems: 91–99.

Rock J, Gupta T, Thorsen J, Gwak J, Shin D, Hoiem D (2015) Completing 3d object shape from one
depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
2484–2493.

Röhling T, Mack J, Schulz D (2015) A fast histogram-based similarity measure for detecting loop closures
in 3-d lidar data. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems:
736–741.

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmenta-
tion. In: International Conference on Medical Image Computing and Computer-assisted Intervention:
234–241.

Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3d registration. In: 2009
IEEE International Conference on Robotics and Automation: 3212–3217.

Rusu RB, Blodow N, Marton ZC, Beetz M (2008) Aligning point cloud views using persistent feature
histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems: 3384–
3391.

Sarmad M, Lee HJ, Kim YM (2019) Rl-gan-net: A reinforcement learning agent controlled gan network for
real-time point cloud shape completion. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition: 5898–5907.

Scheidegger S, Benjaminsson J, Rosenberg E, Krishnan A, Granström K (2018) Mono-camera 3d multi-
object tracking using deep learning detections and pmbm filtering. In: 2018 IEEE Intelligent Vehicles
Symposium (IV): 433–440.

Schlichting A, Brenner C (2014) Localization using automotive laser scanners and local pattern matching.
In: 2014 IEEE Intelligent Vehicles Symposium Proceedings: 414–419.

Schnabel R, Degener P, Klein R (2009) Completion and reconstruction with primitive shapes. In: Computer
Graphics Forum, 28 (2): 503–512.

Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clus-
tering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 815–823.

Schwaller P, Laino T, Gaudin T, Bolgar P, Hunter CA, Bekas C, Lee AA (2019) Molecular transformer: a
model for uncertainty-calibrated chemical reaction prediction. ACS central science, 5 (9): 1572–1583.

Shan J, Zhou S, Fang Z, Cui Y (2021) PTT: Point-Track-Transformer Module for 3D Single Object Tracking
in Point Clouds. arXiv preprint arXiv:2108.06455.

Bibliography 139

Shen CH, Fu H, Chen K, Hu SM (2012) Structure recovery by part assembly. ACM Transactions on
Graphics (TOG), 31 (6): 1–11.

Shi S, Guo C, Jiang L, Wang Z, Shi J, Wang X, Li H (2020a) Pv-rcnn: Point-voxel feature set abstraction
for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition: 10529–10538.

Shi S, Wang Z, Shi J, Wang X, Li H (2020b) From points to parts: 3d object detection from point cloud
with part-aware and part-aggregation network. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43 (8): 2647–2664.

Söderlund H (2019) Real-time detection and tracking of moving objects using deep learning and multi-
threaded kalman filtering: A joint solution of 3d object detection and tracking for autonomous driving.

Spezialetti R, Salti S, Stefano LD (2019) Learning an effective equivariant 3d descriptor without supervi-
sion. In: Proceedings of the IEEE International Conference on Computer Vision: 6401–6410.

Stavens DM (2011) Learning to drive: Perception for autonomous cars. Stanford University.

Stutz D, Geiger A (2018) Learning 3d shape completion from laser scan data with weak supervision. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 1955–1964.

Sun Q, Liu H, He J, Fan Z, Du X (2020) DAGC: Employing dual attention and graph convolution for point
cloud based place recognition. In: Proceedings of the 2020 International Conference on Multimedia
Retrieval: 224–232.

Sun Y, Abidi MA (2001) Surface matching by 3d point’s fingerprint. In: Proceedings Eighth IEEE Inter-
national Conference on Computer Vision. ICCV 2001, 2: 263–269.

Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-
verification. Advances in Neural Information Processing Systems, 27.

Sung M, Kim VG, Angst R, Guibas L (2015) Data-driven structural priors for shape completion. ACM
Transactions on Graphics (TOG), 34 (6): 1–11.

Tagliasacchi A, Olson M, Zhang H, Hamarneh G, Cohen-Or D (2011) Vase: Volume-aware surface evolution
for surface reconstruction from incomplete point clouds. In: Computer Graphics Forum, 30 (5): 1563–
1571.

Tatarchenko M, Richter SR, Ranftl R, Li Z, Koltun V, Brox T (2019) What do single-view 3d reconstruction
networks learn? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
3405–3414.

Tchapmi LP, Kosaraju V, Rezatofighi H, Reid I, Savarese S (2019) Topnet: Structural point cloud decoder.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 383–392.

Tevs A, Huang Q, Wand M, Seidel HP, Guibas L (2014) Relating shapes via geometric symmetries and
regularities. ACM Transactions on Graphics (TOG), 33 (4): 1–12.

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ (2019) Kpconv: Flexible and
deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on
Computer Vision: 6411–6420.

Thrun S, Wegbreit B (2005) Shape from symmetry. In: Proceedings of the IEEE International Conference
on Computer Vision: 1824–1831.

Tombari F, Salti S, Stefano LD (2010) Unique signatures of histograms for local surface description. In:
European Conference on Computer Vision: 356–369.

140 Bibliography

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention
is all you need. Advances in neural information processing systems, 30.

Vo AV, Truong-Hong L, Laefer DF, Bertolotto M (2015) Octree-based region growing for point cloud
segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 104: 88–100.

Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, Chen B, Wu Y (2014) Learning fine-grained
image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition: 1386–1393.

Wang M, Tseng YH (2011) Incremental segmentation of lidar point clouds with an octree-structured voxel
space. The Photogrammetric Record, 26 (133): 32–57.

Wang N, Zhang Y, Li Z, Fu Y, Liu W, Jiang YG (2018) Pixel2mesh: Generating 3d mesh models from
single rgb images. In: Proceedings of the European Conference on Computer Vision: 52–67.

Wang X, Ang Jr MH, Lee GH (2020a) Cascaded refinement network for point cloud completion. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 790–799.

Wang X, Ang Jr MH, Lee GH (2020b) A self-supervised cascaded refinement network for point cloud
completion. arXiv preprint arXiv:2010.08719.

Wang Y, Sun Z, Xu CZ, Sarma SE, Yang J, Kong H (2020c) Lidar iris for loop-closure detection. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 5769–5775.

Wang Y, Tan DJ, Navab N, Tombari F (2020d) Softpoolnet: Shape descriptor for point cloud completion
and classification. In: Proceedings of the European Conference on Computer Vision: 70–85.

Wang Z, Xie Q, Lai YK, Wu J, Long K, Wang J (2021) MLVSNet: Multi-Level Voting Siamese Network for
3D Visual Tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision:
3101–3110.

Wen C, Dai Y, Xia Y, Lian Y, Tan J, Wang C, Li J (2019) Toward efficient 3d colored Mapping in
GPS-/GNSS-denied environments. IEEE Geoscience and Remote Sensing Letters, 17 (1): 147–151.

Wen X, Li T, Han Z, Liu YS (2020) Point cloud completion by skip-attention network with hierarchical
folding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 1939–
1948.

Weng X, Wang J, Held D, Kitani K (2020a) 3d multi-object tracking: A baseline and new evaluation
metrics. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS):
10359–10366.

Weng X, Wang Y, Man Y, Kitani KM (2020b) Gnn3dmot: Graph neural network for 3d multi-object
tracking with 2d-3d multi-feature learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition: 6499–6508.

Wu H, Li Q, Wen C, Li X, Fan X, Wang C (2021) Tracklet Proposal Network for Multi-Object Tracking
on Point Clouds. In: Zhou ZH (ed) Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21: 1165–1171. Main Track.

Wu P, Hoi SC, Xia H, Zhao P, Wang D, Miao C (2013) Online multimodal deep similarity learning with
application to image retrieval. In: Proceedings of the ACM International Conference on Multimedia:
153–162.

Wu S, Huang H, Gong M, Zwicker M, Cohen-Or D (2015) Deep points consolidation. ACM Transactions
on Graphics (ToG), 34 (6): 1–13.

Xia Y, Wang C, Xu Y, Zang Y, Liu W, Li J, Stilla U (2019) RealPoint3D: Generating 3d point clouds
from a single image of complex scenarios. Remote Sensing, 11 (22): 2644.

Bibliography 141

Xia Y, Xu Y, Li S, Wang R, Du J, Cremers D, Stilla U (2021a) Soe-net: A self-attention and orientation
encoding network for point cloud based place recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition: 11348–11357.

Xia Y, Xu Y, Wang C, Stilla U (2021b) VPC-Net: Completion of 3d vehicles from MLS point clouds.
ISPRS Journal of Photogrammetry and Remote Sensing, 174: 166–181.

Xie H, Yao H, Zhou S, Mao J, Zhang S, Sun W (2020a) Grnet: Gridding residual network for dense point
cloud completion. In: European Conference on Computer Vision: 365–381.

Xie H, Yao H, Zhou S, Mao J, Zhang S, Sun W (2020b) Grnet: Gridding residual network for dense point
cloud completion. In: European Conference on Computer Vision: 365–381.

Xu Q, Zhong Y, Neumann U (2022) Behind the curtain: Learning occluded shapes for 3D object detection.
In: Proceedings of the AAAI Conference on Artificial Intelligence, 36 (3): 2893–2901.

Xu TX, Guo YC, Lai YK, Zhang SH (2021) TransLoc3D: Point cloud based large-scale place recognition
using adaptive receptive fields. arXiv preprint arXiv:2105.11605.

Xu Y, Boerner R, Yao W, Hoegner L, Stilla U (2019) Pairwise coarse registration of point clouds in
urban scenes using voxel-based 4-planes congruent sets. ISPRS Journal of Photogrammetry and Remote
Sensing, 151: 106–123.

Yamany SM, Farag AA (2002) Surface signatures: an orientation independent free-form surface repre-
sentation scheme for the purpose of objects registration and matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24 (8): 1105–1120.

Yan Y, Mao Y, Li B (2018) Second: Sparsely embedded convolutional detection. Sensors, 18 (10): 3337.

Yang Y, Feng C, Shen Y, Tian D (2018) Foldingnet: Point cloud auto-encoder via deep grid deformation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 206–215.

Yang Z, Sun Y, Liu S, Jia J (2020) 3dssd: Point-based 3d single stage object detector. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 11040–11048.

Yang Z, Sun Y, Liu S, Shen X, Jia J (2019) Std: Sparse-to-dense 3d object detector for point cloud. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision: 1951–1960.

Yew ZJ, Lee GH (2018) 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In:
Proceedings of the European Conference on Computer Vision: 630–646.

Yi D, Lei Z, Liao S, Li SZ (2014) Deep metric learning for person re-identification. In: 2014 22nd Interna-
tional Conference on Pattern Recognition: 34–39.

Yuan W, Khot T, Held D, Mertz C, Hebert M (2018) Pcn: Point completion network. In: 2018 International
Conference on 3D Vision (3DV): 728–737.

Zaharescu A, Boyer E, Varanasi K, Horaud R (2009) Surface feature detection and description with ap-
plications to mesh matching. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition:
373–380.

Zarzar J, Giancola S, Ghanem B (2019) Efficient bird eye view proposals for 3D Siamese tracking. arXiv
preprint arXiv:1903.10168.

Zeng A, Song S, Nießner M, Fisher M, Xiao J, Funkhouser T (2017) 3dmatch: Learning local geometric
descriptors from rgb-d reconstructions. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition: 1802–1811.

Zhang H, Goodfellow I, Metaxas D, Odena A (2019a) Self-attention generative adversarial networks. In:
International Conference on Machine Learning: 7354–7363.

142 Bibliography

Zhang J, Chen W, Wang Y, Vasudevan R, Johnson-Roberson M (2021) Point set voting for partial point
cloud analysis. IEEE Robotics and Automation Letters, 6 (2): 596–603.

Zhang S, Wang C, He Z, Li Q, Lin X, Li X, Zhang J, Yang C, Li J (2020a) Vehicle global 6-DoF pose
estimation under traffic surveillance camera. ISPRS Journal of Photogrammetry and Remote Sensing,
159: 114–128.

Zhang W, Xiao C (2019) PCAN: 3D attention map learning using contextual information for point cloud
based retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:
12436–12445.

Zhang W, Yan Q, Xiao C (2020b) Detail preserved point cloud completion via separated feature aggrega-
tion. In: Proceedings of the European Conference on Computer Vision: 512–528.

Zhang W, Zhou H, Sun S, Wang Z, Shi J, Loy CC (2019b) Robust multi-modality multi-object tracking.
In: Proceedings of the IEEE International Conference on Computer Vision: 2365–2374.

Zhang Z, Peng H (2019) Deeper and wider siamese networks for real-time visual tracking. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 4591–4600.

Zhao H, Jiang L, Jia J, Torr PH, Koltun V (2021) Point transformer. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision: 16259–16268.

Zheng C, Yan X, Gao J, Zhao W, Zhang W, Li Z, Cui S (2021a) Box-Aware Feature Enhancement for
Single Object Tracking on Point Clouds. In: Proceedings of the IEEE International Conference on
Computer Vision: 13199–13208.

Zheng Q, Sharf A, Wan G, Li Y, Mitra NJ, Cohen-Or D, Chen B (2010) Non-local scan consolidation for
3d urban scenes. ACM Transactions on Graphics (TOG), 29 (4): 94–1.

Zheng W, Tang W, Jiang L, Fu CW (2021b) SE-SSD: Self-ensembling single-stage object detector from
point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition:
14494–14503.

Zhong Y (2009) Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: 2009 IEEE
12th International Conference on Computer Vision Workshops, ICCV Workshops: 689–696.

Zhou L, Zhu S, Luo Z, Shen T, Zhang R, Zhen M, Fang T, Quan L (2018) Learning and matching multi-view
descriptors for registration of point clouds. In: Proceedings of the European Conference on Computer
Vision (ECCV): 505–522.

Zhou W, Berrio JS, De Alvis C, Shan M, Worrall S, Ward J, Nebot E (2020) Developing and testing
robust autonomy: The university of sydney campus data set. IEEE Intelligent Transportation Systems
Magazine, 12 (4): 23–40.

Zhou Y, Tuzel O (2018a) Voxelnet: End-to-end learning for point cloud based 3d object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 4490–4499.

Zhou Y, Tuzel O (2018b) Voxelnet: End-to-end learning for point cloud based 3d object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 4490–4499.

Zhou Z, Zhao C, Adolfsson D, Su S, Gao Y, Duckett T, Sun L (2021) Ndt-transformer: Large-scale 3d
point cloud localisation using the normal distribution transform representation. In: IEEE International
Conference on Robotics and Automation: 5654–5660.

Zhu J, Gehrung J, Huang R, Borgmann B, Sun Z, Hoegner L, Hebel M, Xu Y, Stilla U (2020) TUM-
MLS-2016: An annotated mobile LiDAR dataset of the TUM city campus for semantic point cloud
interpretation in urban areas. Remote Sensing, 12 (11): 1875.

Bibliography 143

Zhu X, Zhou H, Wang T, Hong F, Ma Y, Li W, Li H, Lin D (2021) Cylindrical and asymmetrical 3d
convolution networks for lidar segmentation. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition: 9939–9948.

Zou H, Cui J, Kong X, Zhang C, Liu Y, Wen F, Li W (2020) F-Siamese Tracker: A Frustum-based
Double Siamese Network for 3D Single Object Tracking. In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS): 8133–8139.

Żywanowski K, Banaszczyk A, Nowicki MR, Komorowski J (2021) MinkLoc3D-SI: 3d LiDAR place recog-
nition with sparse convolutions, spherical coordinates, and intensity. IEEE Robotics and Automation
Letters, 7 (2): 1079–1086.

145

Acknowledgment

From the beginning of my PhD study to the completion of my doctoral dissertation, I have devoted

myself to the development of deep learning methods on point clouds for autonomous driving and

robotics applications. Life during doctoral studies is struggling and lonely, especially during the

coronavirus pandemic. There are many people without whom this dissertation would not have

been completed, or would not have ended in such a successful manner. I would like to express my

sincere gratitude to all those who have contributed to my success.

First and foremost, I would like to convey my sincere thanks to Prof. Uwe Stilla, who offered

me the opportunity to do this research in his team at Technical University of Munich. I really

feel lucky to be one of his students since I benefited greatly from his rigorous research attitude

while studying for my PhD under his supervision. Prof. Uwe Stilla provided me with many

valuable suggestions in academic studies, including how to write a good conclusion, how to give

a good talk, and so on. He also encouraged me to work with other research groups around

the world and to visit University of Oxford. His insightful feedback, constructive criticism, and

encouragement have helped me develop my ideas, refine my research questions, and improve my

writing. I am grateful for his wisdom, expertise, and patience, which have been invaluable in

helping me navigate the complexities of conducting research and writing a dissertation.

I would also like to express my deep appreciation to the members of my dissertation commit-

tee, Prof. Daniel Cremers and Prof. Yusheng Xu, for their valuable feedback, critical insights,

and constructive comments that have significantly improved the quality of my dissertation. Their

expertise, experience, and knowledge have been instrumental in helping me develop my research

methodology and interpret my findings. I am grateful for their willingness to share their time,

expertise, and resources, and for their support and encouragement throughout my doctoral jour-

ney. I would also like to express my gratitude to Prof. Marco Körner for his chairmanship of the

examination committee.

I would like to thank my colleagues, Prof. Ludwig Hoegner, Philipp Roman Hirt, Michael

Greza, Lukas Lucks, Manoj Kumar Biswanath, Olaf Wysocki, Jingwei Zhu, Max Hoedel, Joachim

Gehrung, for their friendship, support, and camaraderie. I am grateful for the many memories we

have shared over the years. I would also like to convey my special thanks to Dr. Joao Henriques

in Visual Geometry Group at University of Oxford for providing valuable guidance and support

on my research. Besides, I would like to express my thanks to my Chinese colleagues in Visual

Geometry Group, Dr. Tengda Han, Chuhang Zhang, Guanqi Zhan, Minghao Chen, Junyu Xie,

Jianyuan Wang, Dr. Shangzhe Wu, for their support and help to make my time at University of

Oxford a happy one. I would also convey my thanks to Qianru Zhao, Xin Chen, Lin Zhou, Chenyu

Fang, Peng Luo, Qiangqiang Wu, Xinyi Li, Hu Cao, for their support and their willingness to

listen.

I am also deeply indebted to my family, for their love, support, and encouragement. Their

unwavering belief in me, their sacrifices, and their constant encouragement have been a source

of strength and inspiration throughout my PhD journey. I am very grateful for their unwavering

support, and their constant encouragement.

	Abstract
	Kurzfassung
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.2.1 Point cloud based place recognition
	1.2.2 3D vehicle detection and tracking
	1.2.3 3D shape completion

	1.3 Objectives and contributions
	1.3.1 Point cloud based place recognition
	1.3.2 3D vehicle detection and tracking
	1.3.3 3D shape completion

	1.4 Structure and organization

	2 Basics
	2.1 Point-based learning methods
	2.1.1 PointNet
	2.1.2 PointNet++

	2.2 Deep metric learning
	2.2.1 Distance metric
	2.2.2 Siamese network
	2.2.3 Loss functions

	2.3 Transformer
	2.3.1 Attention
	2.3.2 Position-wise FFN
	2.3.3 Residual connection and normalization
	2.3.4 Positional encoding

	3 Point Cloud based Place Recognition
	3.1 Problem statement
	3.2 Self-Attention and Orientation Encoding Network (SOE-Net)
	3.2.1 Local descriptor extraction
	3.2.2 Feature aggregation
	3.2.3 Loss function
	3.2.4 Implementation details

	3.3 Cross Attention Single Scan Place Recognition (CASSPR)
	3.3.1 Spherical representation and point-voxel fusion
	3.3.2 Hierarchical cross-attention transformer
	3.3.3 Lightweight self-attention unit
	3.3.4 Loss function

	4 3D Vehicle Detection and Tracking
	4.1 Problem statement
	4.2 3D vehicle detection
	4.2.1 Pre-processing
	4.2.2 PointPillars
	4.2.3 Post-processing

	4.3 Detector-free Motion prediction based 3D Tracking network (DMT)
	4.3.1 Backbone
	4.3.2 Motion prediction module
	4.3.3 Explicit voting module
	4.3.4 Loss function
	4.3.5 Implementation details

	5 3D Shape Completion
	5.1 Problem statement
	5.2 Vehicle Point Completion Network (VPC-Net)
	5.2.1 Encoder
	5.2.2 Decoder
	5.2.3 Refiner
	5.2.4 Loss function
	5.2.5 Implementation details and training process

	5.3 Asymmetrical Siamese Feature Matching Network (ASFM-Net)
	5.3.1 Asymmetrical Siamese auto-encoder
	5.3.2 Refinement unit
	5.3.3 Loss function

	6 Experiments
	6.1 Experimental design
	6.2 Experimental datasets
	6.2.1 Oxford RobotCar and In-house datasets
	6.2.2 TUM City Campus dataset
	6.2.3 USyd Campus dataset
	6.2.4 3D vehicle dataset
	6.2.5 PCN dataset and Completion3D benchmark
	6.2.6 KITTI 3D object detection dataset
	6.2.7 NuScenes dataset

	6.3 Evaluation metrics
	6.3.1 Evaluation metric of point cloud based place recognition
	6.3.2 Evaluation metric of 3D object detection and tracking
	6.3.3 Evaluation metric of 3D shape completion

	7 Results and Analysis
	7.1 Point cloud based place recognition results
	7.1.1 SOE-Net
	7.1.2 CASSPR

	7.2 Detection and tracking results
	7.2.1 Vehicle detection
	7.2.2 DMT

	7.3 Shape completion results
	7.3.1 VPC-Net
	7.3.2 ASFM-Net

	8 Discussion
	8.1 Discussion on place recognition
	8.1.1 SOE-Net
	8.1.2 CASSPR

	8.2 Discussion on detection and tracking
	8.2.1 Ablation studies
	8.2.2 The choice of motion prediction module
	8.2.3 Template generation strategy
	8.2.4 Sampling distance for training EVM
	8.2.5 Number of sampled training points
	8.2.6 Robustness test for object motion patterns

	8.3 Discussion on 3D shape completion
	8.3.1 VPC-Net
	8.3.2 ASFM-Net
	8.3.3 Application

	9 Conclusion and Outlook
	9.1 Conclusion
	9.2 Outlook

	Bibliography
	Acknowledgment

