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Abstract

With isogeometric analysis (IGA), the range of interactive CAD-integrated
parametric design tools can be extended to include mechanical behaviour. A
structural model can be interpreted as a parametric model which describes
the energy state as a function of the displacements at discrete nodes. A stable
equilibrium state is defined as a state of minimum energy. From a mech-
anical point of view, the derivatives correspond to the residual force and
stiffness of the system. The energy functional to be minimized is usually
composed of elastic deformation, prestress and external loads. Depending
on the chosen geometric discretization (e.g. discrete meshes, NURBS, subdi-
vision surfaces, etc.), this energy functional can be defined as a function of
different parameters.
In this thesis, modular and efficient methods for the implementation of
finite isogeometric elements were developed, which allow interactive CAD-
integrated analyses of lightweight structures. The selection of different dis-
cretizations is interpreted as a reparameterization of the energy functional.
Techniques from algorithmic differentiation (AD) are used to compute the
required derivatives by decomposing the parametric model of the energy
functional into building blocks. It is shown that the use of the backward
method, especially in combination with smooth geometries, leads to a dra-
matic increase in performance. The approach leads to a core-congruential
element formulation, whichmakes it possible to define a core element that is
initially independent of the geometry parameterization and can subsequently
be combined with other parameterizations. The concept is presented for
structural analysis and shape finding in combination with trimmed NURBS
geometries and Catmull-Clark subdivision surfaces.
Computational efficiency and modularity make it possible to integrate iso-
geometric analysis for different geometric parameterizations as interactive
analysis tools which are fully integrated into a CAD package.
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Zusammenfassung

Isogeometrische Analyse (IGA) erweitert den Funktionsumfang CAD-inte-
grierter parametrischer Entwurfswerkzeuge um mechanisches Verhalten.
Das mechanische Modell eines Tragwerks kann als ein parametrisches Mo-
dell interpretiert werden, welches den Energiezustand als eine Funktion von
Verschiebungen an diskretenKnoten beschreibt. Ein stabilerGleichgewichts-
zustand entspricht einem Zustand minimaler Energie. Mechanisch werden
die Ableitungen als Residualkraft und Steifigkeit des Systems interpretiert.
Das zu minimierende Energiefunktional setzt sich u.a. aus elastischer Ver-
formung, Vorspannung und externen Lasten zusammen. Entsprechend der
gewählten geometrischen Diskretisierung (z.B. diskrete Netze, NURBS, Un-
terteilungsflächen usw.) kann dieses Energiefunktional in Abhängigkeit von
unterschiedlichen Parametern definiert werden.
Im Rahmen dieser Arbeit wurde ein modulares und effizientes Vorgehen für
die Implementierung von finiten isogeometrischen Elementen entwickelt,
welchea interaktive CAD-integrierte Analysen von Leichtbautragwerken
ermöglicht. Die Wahl unterschiedlicher Diskretisierungen wird als Umpa-
rametrisierung des Energiefunktionals interpretiert. Für die Berechnung
der benötigten Ableitungen werden Techniken des algorithmischen Ablei-
tens (AD) adaptiert und das parametrische Modell des Energiefunktionals in
Bausteine zerlegt. Die Verwendung der adjungierten Methode führt in Kom-
bination mit glatten Geometrien zu einer drastischen Leistungssteigerung.
Das Vorgehen entspricht einer ”Kern-kongruenten”Elementformulierung,
bei der Kernelement unabhängig von der Geometrieparametisierung defi-
niert werden und anschließend mit unterschiedlichen Parametrisierungen
kombiniert werden können. Das Konzept wird für die Strukturanalyse und
Formfindung in Kombination mit getrimmten NURBS Geometrien und
Catmull-Clark Unterteilungsflächen präsentiert. Aufgrund der Rechenef-
fizienz und Modularität ist es auf diese Weise möglich, isogeometrische
Analysetools für unterschiedliche Geometrieparametrisierungen in Form
von interaktiven Analysewerkzeugen in CAD-Pakete zu integrieren.
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1

Introduction

The design of lightweight structures as an interaction of form and force is an exciting
as well as challenging task. Pure geometry is enriched bymechanical properties such
as stiffness and prestress. To obtain a state of equilibrium, computer-aidedmethods
are usually required. The tight interaction of form and force results in multiple
design iterations. In this context, interactive tools are particularly helpful as they
provide a real-time feedback while changing specific parameters. The designer
creates a parametric model and specifies goals for form and force interactively while
the computer resolves the complex physical relations anddetermines the appropriate
equilibrium state. It is a productive collaboration between man and machine.
Ivan Sutherland demonstrated the potential of this concept in 1963 with his work
‘Sketchpad’ [1]. The focus is on the application of geometric constraints as shown in
Figure 1.1. Similar techniques can be found in many modern computer-aided design
(CAD) packages which allow the description of geometric relationships implicitly
via constraints or goals.
Sutherland considers the application to mechanical structures in a brief chapter
of his thesis. Indeed, there is a smooth transition from geometry to mechanics.
Geometric constraints, e.g. lengths and angles, can be interpreted mechanically
by elastic members or rotational springs. A complex problem can be decomposed
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1 Introduction

a) b)

c) d)

Figure 1.1: Constraint-driven design of a rivet with the interactive drawing tool Sketchpad
by Ivan Sutherland (screenshots from [2]). The user sketches a solution where he prescribes
the topology and initial geometry of the design. Then he imposes additional constraints
such as angles and lengths (a). The computer tries to satisfy the implicit constraints by
moving the design parameters - in this case the location of the vertices (b, c and d).

into a set of such finite elements. Each elastic element has the goal of minimizing its
own deformation energy and contributes to the total energy of the entire system. A
stable equilibrium corresponds to a state of minimal energy, which results in an op-
timization problem. Such problems can be solved by using gradient-basedmethods.
From amechanical point of view, the gradient of the energy functional corresponds
to the residual force vector, and theHessianmatrix to the tangential stiffness matrix.
The derivation, implementation and computation of these derivatives is usually a
time-consuming task.
Isogeometric analysis (IGA) extends the range of finite elements to smooth free-
form geometries. It adopts the geometric parameterization of computer-aided
design (CAD) tools for the formulation of mechanical and geometrical constraints.
Therefore, free-form geometries can be used directly for computer-aided engineering
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(CAE) without converting the geometric parametrization. Boundaries between
design and analysis are disappearing as the exchange of data between CAD and
CAE is simplified. This is especially useful in the early design phases where multiple
design iterations are necessary. However, CAD tools offer different possibilities
to parameterize free-form geometries. Besides discrete meshes, smooth B-splines,
NURBS and subdivision surfaces are also commonly used. Based on the geometric
parameterizations, different mechanical elements can be formulated for different
types of analysis. From the combinations, a large number of finite elements and
coupling conditions can be generated. Each of them requires an individual finite
element implementation.
The computation of the required derivatives usually becomes slower and requires
more memory when smooth CAD geometries are involved. CAD-integrated FE
tools are therefore usually divided into two components: a finite element analysis
(FEA) kernel, which is optimized for numerical computations, and a plug-in for
the CAD package, which has access to the data and functionalities of the CAD
tool, acts as a classic pre- and post-processor and provides the graphical user in-
terface. Additional interfaces must be designed, implemented and maintained to
enable communication between these two components. As the sharing of func-
tionalities and data structures through such interfaces is restricted, it is necessary
to re-implement CAD functionalities within the FEA kernel and vice versa. This
effortsmakes the implementation of IGAwithin CAD-integrated interactive design
tools difficult or even impossible.
This thesis addresses the following question:

How can IGA be implemented in a modular and efficient way to en-
able the interactive CAD-integrated analysis of lightweight structures?

In this context, the term ‘efficiency’ includes three aspects: (i) a quick and easy
implementation of new elements within an existing finite element framework, (ii)
an economic use of computational resources (computational time and memory
consumption) and (iii) an easy way to maintain, modify and reuse existing element
formulations. A ‘modular’ implementation should make it possible to combine
mechanical and geometrical finite elements from reusable building blocks.
For this purpose, algorithmic differentiation (AD) techniques are adapted and op-
timized for use in the field of IGA. The thesis is structured as follows:
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1 Introduction

Chapter 2 is an introduction to the concept of parametric modelling. It is shown
how algorithms can be used to represent parametric relationships. The basic dis-
tinction between explicit and implicit parametrizations is clarified. The search for
the parameters that produce a certain result leads to inverse problems where the
solution can be obtained by numerical optimization with gradient-based methods.
Chapter 3 introduces algorithmic differentiation (AD) as a technique to systemat-
ically determine the sensitivities of a model with respect to the design parameters.
The advantages over finite differences for functions with multiple parameters are
elaborated. The chapter concludes with a description of the implementation of
AD using hyperdual numbers.
Chapter 4 gives an overview of common parameterizations of free-form geomet-
ries and the corresponding subdivision schemes, which are visualized as graphic
solutions. This should clarify the algorithmic concept behind these geometries.
Chapter 5 transfers the concept of adjoint sensitivity analysis to the formulation
of isogeometric finite elements like cables, beams, membranes and shells. The pro-
cedure corresponds to the application of reverse-mode AD to the energy functional
of the corresponding element. The use of different geometric parameterizations
corresponds to a reparameterization of this energy functional. The element for-
mulations are modularized by dividing them into reusable blocks. In combination
with different geometric transformations the energy functional can be adapted to
different geometric parameterizations.
Chapter 6 extends this technique to the area of form finding. Prestressed mem-
brane and cable elements are used in combination with the updated reference
strategy (URS) to determine the equilibrium of lightweight structures. The refer-
ence configuration is reduced to the simple weights of the energy functional. It is
therefore sufficient to update the weights instead of the reference location of the
nodes. This allows the combination of form-found and elastic elements in hybrid
systems in a very elegant way and avoids modelling problems as descibed in [3].
Chapter 7 gives conclusions and provides an outlook on future research.

14



2

Parametric modelling

During the early design phase of a project, not all the details are yet known or finally
defined. Changing the design parameters usually leads to a revision of individual
parts or even the entire design.
Parametric modelling represents the relations between the design parameters and
the resulting design in a transparent way. The relation is described by a blueprint,
which defines how the solution is constructed based on a prescribed parameter
configuration. The blueprint can be executed for different configurations. There-
fore, parametric models represent not only one specific solution but the whole
solution space, which is spanned by the chosen design parameters. Parametric
models permit the modification of individual parameters, which allows changes
to be applied quickly. By varying certain parameters, the solution space can be
explored. As described in [4], the model can be automatically evaluated for a large
number of randomly chosen parameter configurations. The designs are grouped
computer-aided to present the designer with an overview of possible solutions. New
solutions might be discovered that were not initially obvious to the designer.
The solution space of a parametric Lissajous curve is shown in Figure 2.1. This curve
results from the superposition of two orthogonal oscillations. The blueprint of the
curve is defined by a simple formula:
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2 Parametric modelling
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Figure 2.1: Lissajous curves result from the superposition of two oscillations. By changing
the parameters of the individual oscillations, a variety of different shapes can be generated.

c (α) =
[
sin

(
α νx + ϕ

)
cos (α νmod,x)

sin α νy cos α νmod,y

]
∈ R2 with α ∈ [0, 2π] (2.1)

These formulas contain several parameters. The angle α is the curve parameterwhich
passes through the parameter space of the curve and is used to plot the geometry.
The shape of the curve can be controlled by the designer by changing the design
parameters ϕ ∈ R and νx , νy, νmod,x , νmod,y ∈ Z. The variation of these parameters
results in a large number of different shapes built according to the same principle.
Figure 2.1 shows a subset of the solution space, which is spanned by the parameters
νx, νmod,x and ϕ. νx, νmod,x are discrete parameters, which results in discontinuous
transitions between the solutions. In contrast, the continuous parameter ϕ allows a
smooth change of the shape. The influence of such a continuous parameter on the
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Figure 2.2: A parametric model transforms a set of input parameters according to specified
rules to a certain result. This results in a direct problem. Finding a parameter configuration
which produces a certain result yields an inverse problem. (Adapted from [5])

solution can be estimatedmathematically by computing the derivative of a property
with respect to the parameter.
A parametric model can be extended arbitrarily. In Figure 2.2, a parametric model
generates the input data for a form-finding analysis, which creates the shape of a
façade module. The design parameters include dimensions and internal forces. The
singlemodule is then duplicated according to a specific pattern. The resultingmodel
of the façade could then be used, e.g. for a sunlight study or wind analysis. When
modelling the construction process of a structure, a structural analysis is performed
for each building stage. Each analysis requires the results of the previous stage. The
individual analyses are linked together sequentially, where the initial configuration
of the design parameters has an influence on the final results. The datamanagement
when dividing the entire process into individual analyses is already a challenge that
should not be underestimated. Determining the influence of the parameters on the
final results within a sensitivity analysis makes the demands on data management
and computational efficiency even higher. It is essential to use clear notation from
which the interaction of parameters can be determined efficiently.
Even if a parametric model results in a wide range of the possible solutions, it is
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2 Parametric modelling

obvious that the choice of the design parameters and the definition of the model
have a decisive influence on the set of possible solutions. For example, it is not
possible to change the parameters of the Lissajous curve to create a square. Similarly,
changing the parameters in Figure 2.2 will never turn the membrane structure into
a grid shell. In both cases, the parametric model requires extensions which include
new solutions in the solution space. At this point, it should be mentioned that
the role of the designer in parametric modelling is very important. They decide
according to which principles the solution is constructed and, thus also, which
solutions can be contained in the solution space. It is necessary to be aware of
the possibilities provided by the chosen parametrization. Constraints resulting
from the parameterization should not be decisive for the design. Therefore, it
must be possible to adapt the parameterization and the design efficiently to the
requirements.

2.1 Algorithmic modelling

There are many possible notations to describe the relationship between the input
and output of a parametric model. In the previous section, for example, it was
a mathematical formula or a diagram. In general, the blueprint can be seen as a
process which transforms the input parameters into a certain output according to
specific rules. Algorithms are an elegant way to describe such processes in a formal
way. On the computer, they can be represented with the help of programming
languages. These languages have the advantage that they usually have a very clear
structure as they are designed to be interpreted by machines, e.g. by a compiler.
This makes it easier to analyze a process and extract additional information from
the blueprint. The interactions between individual parameters, for example, can be
determined automatically and leads to the subject of algorithmic differentiation.
In the field of geometric modelling, visual programming languages (VPL) are a
common tool for defining geometric relations using algorithms. VPLs are often
integrated directly into the CAD package. Due to their popularity in architecture,
Grasshopper for Rhino, Dynamo for Autodesk Revit and GenerativeComponents
for MicroStation should be highlighted. These tools are called node-based VPLs.
Each node corresponds to a function, which has inputs and outputs. The function
transforms the input parameters into the output. The outputs of one node can
be connected to the inputs of another node. This allows complex processes to be
described by combining basic building blocks.

18



2.2. Explicit and implicit parameterizations

Node-based VPLs share common features with functional programming languages.
Unlike procedural programming, the algorithm is not composed of a set of instruc-
tions. Instead, the model results from a composition of functions. The result of a
single function depends exclusively on the respective input parameters and only
affects the direct output. Beyond that, no interaction between the functions takes
place. Each function can be considered separately. There are advantages to the paral-
lelization of programs written in a functional notation. Single nodes or branches of
multiple nodes can be evaluated independently from each other as soon as all input
parameters are available. The change of a parameter only influences the subsequent
nodes. In this way, computational time can be saved by reevaluating only certain
parts of the program. The functional notation of computation sequences offers a
special advantage for algorithmic differentiation, which is described in more detail
in Chapter 3.
In computer programs, parameters are intuitively transformed by functions and
used as input for the following operations. This can be interpreted as a reparamet-
erization. Figure 2.3 shows the reparameterization of a simple point. In the first
case (a) the Cartesian coordinates (x, y) are prescribed explicitly. Similar to com-
mon VPLs, the design parameters which are controlled by the user are symbolized
by sliders. In the second case (b), the point is described by polar coordinates by
specifying an angle α and a radius r. The input parameters α and r are transformed
by a series of functions to produce Cartesian coordinates. This corresponds to a
reparameterization of the point from Cartesian to Polar coordinates. Altogether
this results in a new function which generates a point from polar coordinates (c).
This function corresponds to a composition of basic mathematical functions. The
interaction between the input and output can be determined automatically if the
structure of this composition is known.

2.2 Explicit and implicit parameterizations

A parametric model can be parameterized in different ways. The relationship
between the input and output can be specified explicitly or implicitly. In an explicit
parameterization, the input parameters are transformed directly into the desired
solution. In an implicit parameterization, the solution is described by formulating
a set of goals which the solution should satisfy.
Figure 2.4 shows how the geometry of a torus can be described via an implicit and
an explicit parameterization. The angles α and β are the surface parameters, while
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2 Parametric modelling
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Figure 2.3: In node-based VPLs, each node corresponds to a function that transforms input
parameters into output parameters. In (a), the node generates a point from Cartesian
coordinates. In (b), polar coordinates are converted to Cartesian coordinates to generate a
point. By prepending the additional functions, a reparameterization occurs. The resulting
composition of functions results in a new function (c) which generates points by polar
coordinates.

the radii R and r are the design parameters to control the size of the torus. The
explicit parametrization transforms a pair α, β directly into a point x, y, z on the
surface:


x
y
z

 =


(R + r cos β) cos α
(R + r cos β) sin α

r sin β

 (2.2)

The evaluation of such an explicit expression can usually be visualized very well as a
construction process. Therefore, one can also speak of a graphical solution.
An implicit parameterization describes the requirements for a spatial point x, y, z
to lie on the surface. In (2.3), a level set function Γ is used to determine whether a
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2.2. Explicit and implicit parameterizations

−3Γ(x, y, z) =

a)

b)

Γ(x, y, z) =

s(α, β) 

−2 −1

0

R

r

β

1 2 3

α

c(α) 

Figure 2.4: Implicit (a) and explicit (b) parameterization of a torus.

point is inside, on or outside the geometry:

Γ(x, y, z) = (R −
√
x2 + y2)2 + z2 − r2 =


< 0 inside
= 0 on surface
> 0 outside

(2.3)

The implicit parametrization provides a kind of quality measure for a proposed
solution. With an implicit parameterization, a compromise solution can be found
when it is not possible to fulfil all goals. Such a solution fulfils the objectives in the
sense of a least-square solution.
For simple cases, the implicit form can be transformed into an explicit one and vice
versa. For more complex problems, this is usually not possible. One example is
combinatorial equilibrium modelling (CEM) [6], where the nonlinear equation
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2 Parametric modelling

system that describes the equilibrium implicitly is transformed by substitution
into an explicit parameterization which can be solved sequentially. For this, the
topology of the structure must fulfil certain requirements. The solution process
can be represented graphically and leads to a variety of application possibilities.
Depending on the application, an explicit or implicit parameterization can be
more advantageous. An explicit parameterization is useful, e.g., if the solution can
be determined constructively. The implicit parameterization is preferable if the
solution can be described more easily by a set of goals. In practice, a combination of
both variants is common. In Figure 1.1, for example, the geometries of the individual
lines and arcs are explicitly parameterized. At the same time, additional constraints
are applied between the individual geometries in an implicit way. The aim is to find
the parameter configuration that best satisfies the constraints. This question leads
to an inverse problem.

2.3 Inverse parametric modelling

A parametric model can be evaluated for different parameter configurations. For
many practical applications, the parameter configuration that provides a certain
result is required. This is the case, for example, if an implicit parametrization is used
or if the desired variables cannot be controlled directly by an explicit parametrization.
In this case, the problem is called an inverse problem because the parametric model
has to be inverted (Figure 2.2). The inverted model would be able to compute the
design parameters for a prescribed result. In practice, it is difficult or even impossible
to invert a general problem. Instead, iterative methods are used, which modify
the design parameters in each iteration in order to reduce the divergence from the
desired result. This results in an optimization problem.
The general numerical optimization workflow is shown in Figure 2.5. Starting from
an initial configuration of the design parameters, a parametric model is evaluated
providing the actual state of the model. The result is then compared to a prescribed
target or reference state. The deviation between the actual and the reference state
is measured and provides an error. A key challenge is to capture the deviations
numerically and weight them in a proper way. If this is done, different parameter
configurations can be evaluated and compared. By simple trial and error, the best
design can be determined from a limited number of parameter configurations.
For simple problems, it might also be possible to plot the error over parts of the
design space in order to find a solution. For practical problems, this is usually not
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2.3. Inverse parametric modelling

Loops

Evaluate
parametric model

Target
Design goals, measurements,...

Update parameters Sensitivities

Output

Compare

Error

Parameters

Figure 2.5: A classical optimization workflow: A parametric model is evaluated for a pre-
scribed parameter configuration. The result is compared with a desired target, and the
deviation is evaluated. Iteratively, the parameters are adjusted to minimize the error. If the
influence of the parameters on the error is known in the formof sensitivities, gradient-based
methods can accelerate the convergence of the solution.

possible because of the computational effort due to thenumber of designparameters
and the complexity of the model. In this case, different optimization strategies,
which approach an optimum in several iterations, can be applied to the problem.
Optimization algorithms can be divided into derivative-free and gradient-based
methods [7, 8].
Derivative-free strategies, such as evolutionary optimization strategies, generate
a set of possible parameter configurations in each iteration and rate their quality
according to the error function. Starting from a set of randomly chosen config-
urations, the most promising candidates are slightly modified for the following
iteration while additional random candidates are added. In this way, the design
space is searched until a suitable candidate is found or the best solution up to that
point is selected after a certain number of iterations.
Gradient-based methods start from a given initial configuration. This configura-
tion is then improved iteratively until a local minimum is found. To achieve an
improvement, it is necessary to estimate the influence of the parameters on the error.
This influence is described by the derivatives of the error function with respect to
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2 Parametric modelling

the design parameters, which results in the gradient. The gradient corresponds to
a linearization of the error function at a certain point. It indicates the direction
with the largest increase in the error. Therefore, a small modification of the design
parameters in the opposite direction usually leads to an improved solution. This
procedure is known as gradient-descent strategy. The search direction might be
transformed to improve the modification, e.g. by applying the inverse Hessian as a
transformation matrix for the gradient. This is called aNewton-Raphson strategy, as
explained in Section 5.
Derivative-free strategies make no or no high requirements on the model to be
optimized. Therefore, they can work with a black-box model where the relations
between the input and output are unknown. Moreover, such algorithms can deal
with discontinuities due to discrete parameters. Gradient-based algorithms usually
expect an error function which is smooth and differentiable, at least in the search
area. The computation of the derivatives represents additional computational effort,
which might be compensated for a more targeted search and a faster convergence.
In this thesis, only gradient-based optimization algorithms for solving inverse prob-
lems are considered. The required gradients are determined automatically using
algorithmic derivative techniques to deal with different geometry parameteriza-
tions.

2.4 Example

As an example, consider the Chebyshev lambda mechanism in Figure 2.6. This is
a four-link coupling mechanism that converts a circular motion into a piecewise
approximate straight-line motion with almost constant velocity. The mechanism
was developed in the 19th century by Pafnuty Lvovich Chebyshev [9].
NodesA and B are fixed, while nodesC,D and E are connected by four members.
These members are assumed to be rigid, which is whyC, for example, must move
on a perfectly circular path around A. The motion path of nodes C, D, and E
should be determined as a function of α. For the prescribed location of the supports
and the lengths of the members L1 = 1, L2 = L3 = L4 = 2.5, the solution can be
constructed graphically, which lead to an explicit construction rule:

1. The location of the fixed supportsA and B are given.
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Figure 2.6: The mechanical system of the Chebyshev lambda mechanism. The motion
of each node is parametrized by the angle α. The movement of each node builds on the
movement of the previous nodes. This results in a composition of functions.

2. C can be constructed by intersecting a circle at A with R = L1 with a line
with angle α.

3. The intersection of two circles atB andCwithR = 2.5 provides two possible
solutions forD.

4. D is chosen as the intersection, which is on the right side of BC.

5. Extending the lineCD by 2.5 units provides the location of node E.

Thus the position of all nodes is determined for a specific α. A parametric model
can be generated that explicitly provides the positions depending on α by repeating
the graphic construction process. It results in the curves c(α), d(α) and e(α), which
represent themotion of each node. This illustrates how a linearmotion in parameter
space α is transformed first into a circular motion c, an arc d, and finally into a
sectional nearly linear motion e.
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2 Parametric modelling

The graphic solution is a visualization of an algorithmwhich can also be represented
as a simple computer program:

A← [0, 0];
B← [2, 0];
C← A + [cos(α), sin(α)];
v← 0.5 × (C − B);
h←

√
2.52 − v · v;

u← h/√v · v × [vy,−vx];
D← B + v + u;
E← 2 ×D − C;

Likewise, the representation as a mathematical function is also possible:

c(α) =
[
cos(α)
sin(α)

]
(2.4)

d(α) = 1
2

[
2 − cos(α)
sin(α)

]
+
√
5 + cos α
√
5 − cos α

[
sin α
− cos α

]
(2.5)

e(α) =
[
2
0

]
+ 2
√
5 + cos α
√
5 − cos α

[
sin α
− cos α

]
(2.6)

In any case, one obtains an explicit relationship between α and the node positions.
The position can be calculated directly and unambiguously. Which kind of descrip-
tion is more suitable may depend on the specific problem.
In step 3 of the graphic solution, two intersection points are obtained. This il-
lustrates that there are two solutions to position the nodes. The second solution,
where nodesD and E are mirrored aroundCD, is explicitly excluded. This is done
in the same way for the representation as a program or formula. To get the second
solution, only the sign of u has to be changed.
In an implicit parameterization, the solution is not computed directly. Instead, it is
described by a set of goals. The solution is expected to satisfy all the objectives. In
the case of the lambda mechanism, these goals can be as follows:
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2.4. Example

g1 =
|C − A|2

12
− 1→ 0 (2.7)

g2 =
|E − C|2

52
− 1→ 0 (2.8)

g3 =
|0.5(E − C) |2

2.5
− 1→ 0 (2.9)

g4 = ∠(B,A,C) − α→ 0 (2.10)

The constraints g1, g2 and g3 describe the length of the linesAC,CE andBD, where
g3 includes the fact thatD is located betweenC and E. This explicitly describes part
of the structure, namely the connection betweenC,D and E. Instead, it would also
be possible to describe the segmentsCD andDE separately and also to specify the
angle between the two segments. The constraint g4 specifies a certain angle α. This
constraint can be exchanged to control other parameters. For example, the position
of the node E can be specified instead. In this way, the objective can be assembled
conveniently from individual elements.
In any case, one obtains a set of nonlinear equations where the nodal coordinates are
the unknown quantities. Parameter configurations that describe a state compatible
with the kinematics of the mechanism satisfy these equations. If one wants to
determine the parameters such that the constraints are satisfied, an inverse problem
arises, as described in the previous section.
The constrained problem can be transformed into an unconstrained optimization
problem by using a penalty approach. Therefore, the constraints are accumulated
into an objective function:

Γ =
w1

2
g1

2 + w2

2
g2

2 + w3

2
g3

2 + w4

2
g4

2 (2.11)

The influence of each constraint gi on the objective Γ is weighted by a penalty factor
wi . The penalty factor can be interpreted mechanically as a stiffness. In the simple
case, all constraints are weight equally.
Using gradient-based optimization, the unknown positions of the nodes C, D
and E can be computed. An initial configuration is improved iteratively until all
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2 Parametric modelling

constraints are satisfied. Also, in this case, two solutions are possible. Since no ex-
plicit selection is made, it depends on the initial configuration and the optimization
algorithm, which of the two solutions is found.
The graphical and analytical solution allows to determine the position of node
E directly for a given angle α. However, if α should be determined for a given E,
a gradient-based optimization might be used to solve the inverse problem. This
makes it possible to control variables that are not explicitly available as design
parameters. In the context of CEM, for example, additional constraints can be
integrated into the problem as shown in [10] and [11]. For the analytical formula,
the determination of the derivatives is straightforward. If the blueprint of the
solution is available as an algorithm, the derivatives can be determined with the help
of algorithmic differentiation as described in Chapter 3. This technique can also be
used to compute the derivatives of the constraints gi for the implicit solution. In this
way, isogeometric finite elements are implemented in Chapter 5 and 6. Furthermore,
this technique is used to determine the derivatives for freeform geometries. This is
particularly helpful when dealing with extended subdivision surfaces as shown in
Chapter 6.
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Algorithmic differentiation

Solving inverse problems using gradient-based methods requires the derivatives of
the objective with respect to the design parameters. To solve complex problems,
efficient computation of these derivatives is necessary. Due to the complexity, it is
assumed that these calculations are performed by a computer. In this context, the
term ‘efficiency’ covers three aspects: (i) a simple and intuitive implementation, (ii) a
fast computation thatminimizes computation time andmemory consumption, and
(iii) a systematic approach that simplifies the maintenance and extension of an exist-
ing framework. In the context of this work, those requirements are implemented
by applying algorithmic differentiation (AD).
The derivative of a function f (x) with respect to a parameter x describes how the
value of f is influenced by a change in x. The first-order derivative can be visualized
as the slope or tangent of the function at a certain position and is therefore called
the gradient. Figure 3.1 visualizes the gradient for a univariate and bivariate scalar
function. The concept can be extended to an arbitrary number of input and output
parameters.
The first-order derivative yields a linear approximation T1 of f at x̂. This approxim-
ation can be generalized to a higher polynomial order by using a Taylor series. The
second-order Taylor polynomial T2 includes not only the function value but also
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3 Algorithmic differentiation

f(x, y)

x

y

Figure 3.1: The first derivative of a function corresponds to the slope at a certain point. It
can be visualized as a line for a scalar univariate function or as a plane for a scalar bivariate
function (adapted from [8]).

the first two derivatives and leads to a quadratic approximation of f at x̂.

Tn f (x, x̂) =
n∑

k=0

f (k) (x̂)
k!

Δxk with Δx = (x − x̂) (3.1)

= f (x̂) + f ′(x̂) Δx︸             ︷︷             ︸
T1

+ 1
2
f ′′(x̂) Δx2

︸                                 ︷︷                                 ︸
T2

+ . . . (3.2)

The extrema xext of T2 is given by (3.2):

xext = x̂ −
f ′(x̂)
f ′′(x̂) (3.3)

By iteratively determining the extrema ofT2, an inverse problem can be solved using
the Newton-Raphson process, as explained in Chapter 5. This chapter clarifies the
efficiency advantage of AD and provides details on the implementation used in
Chapters 5 and 6.
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3.1. Finite differences

f(x)

f(x)

f(x+Δx)

Δxxx x+Δx

Tangenta) b) c)

Secant

Figure 3.2: Finite differences approximate the derivative of a function with a secant (a). With
decreasing step size Δx, the secant converges to the tangent (b and c) (adapted from [8]).

3.1 Finite differences

Derivatives can be approximated numerically by finite differences (FD). FD evalu-
ates f twice, where the step sizeΔx specifies the distance between the two evaluation
points. Thisway, the tangent of f is approximated by a secant, as shown in Figure 3.2.
There are forward, central and backward differences:

f ′(x) ≈
f (x + Δx) − f (x)

Δx︸                 ︷︷                 ︸
Forward

≈
f
(
x + Δx

2

)
− f

(
x − Δx

2

)
Δx︸                         ︷︷                         ︸

Central

≈
f (x) − f (x − Δx)

Δx︸                 ︷︷                 ︸
Backward

(3.4)

With a smaller Δx the secant converges to the tangent. However, too small a value
might cause numerical problems, as explained in Chapter 5. Another problem is
the computational cost of FD which increases drastically for multivariate functions
since f must be evaluated for a distortion of each parameter. This issue will be
illustrated in this section.
Consider the case with one parameter shown in Figure 3.3. It visualizes the process
of FD for a scalar univariate function f = g ◦ h, which is obtained by concatenating
two functions, g and h. The evaluation of f (x) = g(h(x)), determines u = h(x)
(bottom right) and evaluates g(u) (top left) to get the value of f at x (top right).
Computing the derivative f ′(x̂) using forward finite differences requires a second
evaluation of f at x̂ + Δx. A large step size Δx is chosen to illustrate the deviation
between the secant and tangent. In practice, a small step size would be chosen
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x+Δxx

u = h(x)

g(û₂)

g(û)

x

u
û₁û

h(x)

h(x+Δx)

f(x)

f(x+Δx)

g(u)

h(x)

f(x)

f(x) = g(u) = g(h(x)) 

Du g(u)

Dx h(x)

Dx f(x)

Figure 3.3: Forward finite differences for a composed function f = g ◦ h with a parameter x.
g and h are each evaluated at two points to approximate the tangent with a secant.
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f(x₁, x₂+Δx₂)
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f(x₁, x₂) = g(u) = g(h(x₁,  x₂)) 

Dx₂ f(x₁, x₂)

Dx₂ h(x₁, x₂)

Dx₁ h(x₁, x₂)

Dx₁ f(x₁, x₂)

Du g(u)

x₁+Δx₁

Figure 3.4: Forward finite differences for a composed function f = g◦hwith two parameters,
x and y. g and h are each evaluated at three points to approximate the tangent with a secant.
For the function g, the same tangent is approximated in two different ways, resulting in
unnecessary extra work.

to increase the quality of the approximation. To compute the secants of f , the
functions g and h are each evaluated twice.
A second parameter extends the example. In this case, f = g(h(x1, x2)) is a scalar
bivariate function which results from a concatenation. Now h and thus also f
depend on two parameters, x1 and x2. Figure 3.4 visualizes the computation of the
derivatives of f with respect to x1 and x2 using forward FD. Similar to the univariate
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3 Algorithmic differentiation

example, the function is evaluated at the point x̂1, x̂2. The two parameters are
deflected separately by Δx1 and Δx2, and the corresponding function values û1, û2
are determined. To compute the two required secants of f , the functions g and h are
evaluated three times. During the computation, the tangent of g is approximated
by two different secants (Figure 2 top left). A sufficiently small step size should lead
to similar results for both secants. However, this redundant calculation could be
avoided if the secant for the first parameter could be reused for the second run.
Such redundant computations might increase the computational effort for FD
when it is applied to multivariate functions. The problem can be recognized and
avoided if the structure of the composed function is known. FD is usually applied
to functions whose structure is unknown (black box). For functions with a known
structure, the computational efficiency might be improved by using AD.

3.2 Algorithmic differentiation

In the previous section, it was shown that the computational effort could be re-
duced if the structure of the composed function is known. In this case, the partial
derivatives of each suboperation (e.g. g and h) can be calculated separately and
accumulated according to the chain rule. This avoids redundant computations
when dealing with multivariate functions. Computing the individual partial de-
rivatives can take place numerically or symbolically. AD deals with the consistent
implementation of this concept in arbitrary algorithms.
The calculation of the derivative follows a particular calculus. This set of rules is
well-suited for systematic processing with the aid of a computer. AD encompasses
the techniques that transform the algorithm that evaluates a parametric model into
an algorithm that evaluates the derivatives of the model. The technique goes back
to John McCarthy [12]. He introduces the basic features of the functional pro-
gramming language LISP, which was designed to work with symbolic expressions.
LISP represents algorithms and data in the same way: by chained lists. One speaks,
therefore, of a homoiconic (‘self-representable’) programming language. Due to
this property, it is particularly suitable for interpreting andmanipulating algorithms
(metaprogramming). In LISP, one can very elegantly transform a computer pro-
gram according to the differentiation rules in such a way that a new program is
generated, which computes the derivatives [13]. The concepts can also be applied
to other programming languages. The essential step is to capture and transform
the structure of an algorithm.
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3.3. Computational graph

3.3 Computational graph

As mentioned in Chapter 2, the structure of a computer program can be visualized
with a graph. Such a computational graph visualizes the computational process
within a parametric model as a composition of functions. Figure 2.3 shows the
computation of a point via polar coordinates using a node-based VPL. Due to
the visual and functional nature of this language, this definition already corres-
ponds to a visual representation of the algorithm as a composition of elementary
suboperations.
For each suboperation, the interaction between the input and output can be de-
termined by a linearization given by the first derivative of the function. These are
represented in the graph with the help of weighted edges. The weighting corres-
ponds to the partial derivative. For the example from 2.3, this results in the weighted
graph shown in Figure 3.5. The function is decomposed in suboperations visualized
by nodes. The analytical derivatives of each suboperation are stored and evaluated
at the same as the functions. This results in numerical values for the weights of the
edges.
The derivation of the whole composition is obtained from the graph by considering
the paths connecting the input and output. For example, there is a path connecting
the parameter αwith the x-coordinate of the point (Figure 3.5a red). Multiplying
the weights on this path results in the derivative Dα x = − sin(α) r. The same
technique can be used to compute the other derivatives,Dr x,Dα y andDr y.
The procedure corresponds to the application of the chain rule and yields the evalu-
ated analytical derivatives. There is no divergence as a result of an approximation,
as is the case for FD. The process can also be considered a transformation of the
computational graph. Two consecutive edges are replaced by a new edge. The
weight of the new edge results from the product of the weights of the former edges.
The corresponding transformation rule is shown in Figure 3.6a.
In the following sections, the computational graph is simplified. For this purpose,
the edges connecting the output and input of different nodes are omitted since
they always have a weight of one. In addition, the parameters are arranged in layers
(Figure 3.5b). The outer layers correspond to the input and output parameters. By
applying the transformation rule, the layers containing the intermediate results can
be eliminated. This results in a new graph which contains the direct connections
between the input and output.
The interaction between the parameters on the same levels can be specified by
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Figure 3.5: For the example from Figure 2.3, the relationships between the input and output
of the individual operations were added (a). The representation can be simplified (b).

additional edges whose weights correspond to the second-order derivatives. This
will be described inmore detail in Chapter 5. Additional transformation rules can be
defined to eliminate the layers with intermediate results for second-order derivatives
(Figure 3.6b and c).

3.4 Direct and adjoint methods

When applying the chain rule, the transformation rules can be applied in different
orders. This leads to the distinction between the direct and adjoint methods or the
forward andbackwardmode for computing derivatives. Even if both variants lead to
the same final result, the order might have a big impact on the computational effort.
In Chapter 5, this technique is used to increase the efficiency in the calculation
of IGA elements. The distinction between direct and adjoint methods will be
discussed in Chapter 5 and Chapter 6 in more detail.
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3.4. Direct and adjoint methods

a)

b)

c)

Figure 3.6: Transformation rules for calculating the derivative of a function. Rule 1 is needed
for the calculation of the first derivative, rules 2 and 3 for the second-order derivative. Their
application eliminates one level of intermediate results.
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3 Algorithmic differentiation

3.5 Implementing AD using hyperdual numbers

The forward mode of AD can be implemented in a simple but elegant way by using
hyperdual numbers [14]. This approach has the advantage that it can be realized
with simple commands and can therefore be integrated very well into an existing
FE framework.
Similar to complex numbers, dual numbers extend a real number by additional
components. For complex numbers, this is a complex unit; for dual numbers, it is
an infinitesimal or dual unit. To perform AD, the dual component is used to store
the derivative of the real value with respect to the design parameters. An additional
hyperdual component stores the second-order derivative. This way, a hyperdual
number represents the evaluated second-order Taylor polynomial of a function
for a certain parameter configuration. Thus, a hyperdual number represents not
only the value of a function but also the quadratic approximation at the evaluation
point.
Mathematical operations with hyperdual arguments are defined in a way that result
in hyperdual numbers. The result consists of the function value as well as the cor-
responding derivatives. A classic algorithm which transforms real parameters into a
real result can be executed with hyperdual parameters to return hyperdual results.
For this, all suboperations used within the algorithmmust be defined for hyperdual
numbers. The transformations from Figure 3.6 are applied synchronously with the
execution of the algorithm. Therefore, this process corresponds to the forward or
direct mode of AD.
For functions with several parameters, a dual number can be expanded to a jet. A
jet has not only one but several dual components, which take the derivatives with
respect to the individual parameters. Similarly, several hyperdual components can
be introduced to represent the second-order derivatives. Thus, the second-order
Taylor polynomial of a multivariable function can be represented.
The implementation is done using a simple data type, which stores the real and dual
components. A simple vector is used to store all values, as shown in Figure 3.7. The
first entry corresponds to the real component, followed by the dual and hyperdual
components. Assuming that theHessian is symmetric, only the entries of the upper
triangular matrix are stored in row-major format to reduce memory consumption
and avoid redundancies. For a function with s design parameters, this vector has a
length of
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Figure 3.7: A hyperdual number represents the second-order Taylor polynomial of a function
at the evaluation point.

n = 1 + s + s (s + 1)
2

(3.5)

A constant value only consists of a real component. It is independent of the design
parameters, and therefore dual, and hyperdual components are equal to zero. For
example, π is represented with respect to two parameters, x1 and x2, as follows:

π → [3.141 . . . , 0, 0, 0, 0, 0] (3.6)

A design parameter consists of a real component and depends only on itself. The
corresponding dual component is, therefore, equal to 1, while all other entries are
zero. For the design parameters x1 and x2, this leads to the following representation:
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3 Algorithmic differentiation

x1 → [x1, 1, 0, 0, 0, 0] (3.7)
x2 → [x2, 0, 1, 0, 0, 0] (3.8)

Operations are now defined according to the derivation rules. The partial derivat-
ives of the operation with respect to its parameters are required. The number of
arguments of a function is called its ‘arity’. The cosine function is an example of
a unary function which means that it depends on a single argument. For the first-
and second-order derivatives, we get:

f (a) = cos(a) Da f = − sin(a) DaDa f = − cos(a) (3.9)

The transformations can now be applied according to the following scheme:

def unary(s, n, a, f, da, dada, r):
r[0] = f
for i in range(1, n):
r[i] = da * a[i]

k = 1 + s
for i in range(s):
ca = dada * a[1 + i]
for j in range(i, s):
r[k] += ca * a[1 + j]
k += 1

The quotient of two numbers is an example of a binary operation. For the first-
and second-order derivatives, we get:

f (a, b) = a

b
Da f =

1
b

Db f = a DaDa f = 0 DaDb f = − 1
b2

DbDb f = 0

(3.10)

The transformations can now be applied according to the following scheme:
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def binary(s, n, a, b, f, da, db, dada, dadb, dbdb, r):
r[0] = f
for i in range(1, n):
r[i] = da * a[i] + db * b[i]

k = 1 + s
for i in range(s):
ca = dada * a[1 + i] + dadb * b[1 + i]
cb = dadb * a[1 + i] + dbdb * b[1 + i]
for j in range(i, s):

r[k] += ca * a[1 + j] + cb * b[1 + j]
k += 1

The principle can be extended to more parameters. A generalization to arbitrary
arity and vectorial output is shown in Chapter 5.
This type of implementation of AD can be extended to higher-order derivatives.
For a large number of design parameters, it may be more efficient to store the dual
components in sparse rather than dense vectors. Both features are implemented,
e.g. in [15]. For the application of element formulation described in this thesis,
only the first and second derivatives are required. With FEA, a large sparse problem
is divided into smaller finite elements where residual force vectors and stiffness
matrices are populated fairly densely. At the element level, the use of hyperdual
numbers can thus be very efficient.
In terms of computational efficiency, it is beneficial to explicitly define derivation
rules for recurring operations. Even if a decomposition into basic operations would
be possible and lead to the correct result, this is often associated with a considerable
additional effort.
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Freeform geometries

The form of basic geometric shapes such as lines, circles, prisms or spheres can be
defined by a few parameters. They include lengths and radii, as well as transforma-
tions like rotations or scaling. The basic character of the shape is usually preserved
when these parameters are varied (Figure 4.1a).
Freeforms offer greater design freedom by increasing the number of design paramet-
ers. This type of geometry includes polygons and discrete meshes. Their geometry
is determined by the control points that are combined into a control mesh. The
position of each control point in space is specified. The points can be connected
linearly by lines and triangles. This results in polygonal lines and triangular meshes.
The number of design parameters and the solution space increase with the number
of control points. Complex geometries can be represented with a higher number of
control points (Figure 4.1b).
The controlmesh canbe recursively refined according to certain subdivision schemes.
This process converges to a smooth geometry described by polynomials of higher
order (Figure 4.1c). Thus, smooth curves and surfaces can be described with fewer
control points. This chapter explains the subdivision schemes of some essential
refinement algorithms.
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b)
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Figure 4.1: Different parametrizations of geometries. In (a), a circle is parametrized by
a centre point and a radius. Changing the radius or scaling the geometry yields similar
shapes. The circle is approximated in (b) with a polyline. The polyline is parametrized by
the location of the control points. This offers more design possibilities. In (c), a quadratic
B-Spline is used to smooth the control polygon. This simplifies the representation of smooth
geometries but cannot produce sharp corners.
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4.1. Freeform curves

Figure 4.2: Traditional splines are bendable rods whose shape is controlled by some fixed
points [16].

4.1 Freeform curves

The representation of smooth curves using a set of control points goes back to
elastic rulers. The shape of these so-called splines was fixed at specific points with
weights (Figure 4.2). With the advent of CAD, it became necessary to represent
freeform geometries in an exact and reproducible form on the computer. Different
algorithms have been developed. Most of them refine a coarse mesh according to
a certain rule. The refinement process converges to a limit geometry, which has
certain properties, e.g. smoothness and can be expressed by simple construction
algorithms.

De Casteljau’s algorithm

Bézier curves are widely used to define freeform curves in CAD [17]. Paul de
Casteljau in 1959 andPierre Bézier in 1962 developed this type of curve independently
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Figure 4.3: De Casteljau’s algorithm generates a smooth Bézier curve of polynomial degree
p = n − 1 from a coarse control polygon with n control points. (a) Smoothing the line
segments of the control polygon (red, blue, green) results in two quadratic splines (purple
and orange) and finally in a cubic spline (black). (b) Evaluating the Bézier curve for multiple
parameters results in an interpolation (blue). From the intermediate results of the algorithm,
the curve can also be approximated with a refined control polygon (red).

of each other for automotive design.
A Bézier curve of polynomial degree p is defined by a control polygonwhich consists
of n = p + 1 control points P00,P01,P02, . . . (Figure 4.3). For a curve parameter
defined in the normalized domain t ∈ [0, 1], the corresponding point on the Bézier
curve can be determined by applying De Casteljau’s algorithm. Therefore, each
segment of the control polygon is divided in the ratio (t : 1− t). This results in n− 1
new points, P10,P11,P12, . . ., which are connected to a polygon. The segments of
this polygon are subdivided in the same way. Repeating this process (n − 1) times
results in a single point, which represents the smooth Bézier curve at parameter t.
Figure 4.3a shows the construction process for a cubic Bézier curve (p = 3) defined
by n = 4 control points.
The process can be repeated for different curve parameters in order to represent
the smooth curve. The resulting points are connected to form a polygon which
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4.1. Freeform curves

G¹ but not C¹G¹ and C¹

G⁰ and C⁰

Figure 4.4: The continuity between individual cubic Bézier segments can be controlled by
the alignment of the control points. By choosing identical start and end points G0 and
C0 continuity is a given. If the direction of the adjacent segments of the control polygon
coincides, a G1 continuity (no kink) is created. If the lengths of the segments also match,
C1 continuity is created (no change in the traversing speed).

interpolates the smooth Bézier curve (Figure 4.3b blue). By increasing the number
of evaluation points, the interpolation becomes more accurate. Alternatively, the
Bézier curve can also be approximated by a polygon (Figure 4.3b red). Looking
at the intermediate results of Casteljau’s algorithm in Figure 4.3, we see that the
point sequences (P00, P10, P20, P30) and (P30, P21, P12, P03) define two polygons
that approximate the smooth Bézier curve. In fact, these are again control polygons,
where each defines a subdomain, [0, t] and [t, 1], of the original Bézier curve. By
applying De Casteljau’s algorithm to these polygons, the approximation can be
refined stepwise. In this sense, this algorithm is a subdivision scheme which refines
a coarse polygon towards a smooth limit curve.
Cubic Bézier curves are particularly popular in geometric modelling because the
influence of the four control points on the shape is very intuitive for the design.
While the outer control points define the end points of the curve, the inner control
points define the directions of the tangents. Several cubic Béziers can be connected,
as shown in Figure 4.4. By aligning the control points, the derivatives at the trans-
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4 Freeform geometries

itions can be adjusted to create continuous joints without kinks. This alignment can
be explicitly incorporated into the definition of the curve and results in B-splines.

De Rham-Chaikin’s algorithm

Georges De Rham described an important subdivision algorithm in 1947 [18].
Starting from a rough control polygon, each segment is divided into three sections
of equal length (Figure 4.5). The two outer parts are discarded, while the once
middle parts are joined to a new polygon. The algorithm is, thereforem also known
as the ‘cutting-edge’ algorithm. By applying the algorithm recursively, the resulting
polygon converges to a C0-continuous curve.
The subdivision ratio (1/3 : 1/3 : 1/3) can be generalized to (u : 1 − u − v : v).
By choosing u and v, curves with different properties can be generated. De Rham
recognized that his algorithm converges to a C1-continuous curve for u = v =

1/4 (Figure 4.4). This property was also recognized by George Chaikin when he
rediscovered the algorithm in 1974 [19]. Moreover, he was able to prove that the
resulting curves correspond to quadratic B-splines (p = 2). These are particularly
suitable for computer-aided design. For a Bézier curve, the change of a control point
influences the shape of the whole curve. B-spline have local support, which means
that changing a control point only affects a subdomain of the curve. This makes
deforming the curve by moving the control points more intuitive.

Lane-Riesenfeld’s algorithm

Lane-Riesenfeld’s algorithm [20] generates uniform B-splines of arbitrary polyno-
mial degree p. The refinement of the control polygon with n ≥ p+ 1 control points
is done in two stages. In the first stage, the control points are duplicated. In the
second stage, the segments of the control polygon are subdivided in the ratio (1 : 1)
and connected p times. The two stages are repeated and converge to a B-spline of
degree p, as shown in Figure 4.6.

De Boor’s algorithm

De Boor’s algorithm introduces the knot vector and results in a nonuniform B-
spline (NUBS) [21]. This allows a distortion of the parameter space, which does
not have to be normalized anymore. The knot vector contains a non-descending
list of scalar values which are called knots. The distortion of the parameter space at
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P01

v = 1/4

u = v = 1/3

1 iteration

4 iterations

u = 1/7, v = 6/7 u = 4/5, v = 2/3

u = 1/4

„corner cutting“ Limit curve

P00
P03

P02

b)

a)

Figure 4.5: De Rham-Chaikin algorithm with a different subdivision ratio. The ratio in (a)
results in a quadratic B-spline. Other ratios produce, e.g. C1 continuous curves, a shifted
polyline or fractals (b).
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Control polygon

Duplicate points

...

Midpoints 1

Midpoints 2

Midpoints 3

Iteration 1

Iteration 2 Iteration ∞

Limit curve

Figure 4.6: Lane-Riesenfeld’s algorithm for a polynomial degree p = 3. At the beginning
of each subdivision iteration, the control points are duplicated. Then the midpoints of the
control polygon segments are determined and connected p times.

50



4.1. Freeform curves

t−
t₁ 

: t
₄−

t

t−
t₂ :

 t₄−
t

t₃−t : t₄−t
t−t₃ : t₅−t

t−t₂ : t₅−t

t₆−
t : 

t−
t₃

c(t)

P₁

t₁ = = = =< < <t₂ t₃ t₄ t₅ t₆ t₇ t₈

P₄

P₃

P₂a)

b)

c)

Figure 4.7: De Boor’s algorithm for generating a nonuniform Bézier segment of degree
p = 3 (a). An additional knot vector (b) defines the subdivision ratio. 2p knots define a
span. Multiple spans are connected to a NUBS (c). Knots with a multiplicity of p result in
the interpolation of the control points at both ends.

parameter t results from the 2p surrounding knots where p is again the polynomial
degree of the spline.
Similar to De Casteljau’s algorithm, the segments of a control polygon are divided.
However, the subdivision ratio is now also influenced by the knots (Figure 4.7).
Note that the outer control points are generally no longer interpolated. To achieve
interpolation of a control point, a node in the knot vector must be repeated p times.
Multiplicities generated in this way can lead to discontinuities within the curve.
Similar to Bézier curves, several such segments can be lined up. Nodes and control
points must overlap accordingly. In this way, a nonuniform B-splines (NUBS) is
created. Classic B-splines are a special form with evenly distributed nodes.
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4 Freeform geometries

NURBS

Nonuniform rational B-splines (NURBS) extend NUBS by applying weights to
the control points [22, 23]. The weights can be interpreted as abstract attracting
forces pushing the curve towards the control points. The principle can be illus-
trated by considering the weights as an additional dimension. Figure 4.8 shows a
planar NURBS curve with different weights. The same curve is shown in three-
dimensional space where the weights define the third dimension. A NUBS can be
constructed from the spatial control polygon. The corresponding planar NURBS
curve results from the central projection of the NUBS. A change in the weights
corresponds to the shifting of the control points in the higher dimensional space.
The visualization as a central projection also clarifies that the ratio of the individual
weights determines the shape of the NURBS. Scaling all weights by the same factor
has no impact on the form.
NURBS are widely used in CAD since they can represent cone sections exactly.
This property is essential for technical drawings.

4.2 Freeform surfaces

Freeform surfaces can be defined as tensor products of freeform curves. The geo-
metry is defined by a regular control mesh, which consists of n ×m control points,
which are connected by (n − 1) × (m − 1) quads, as shown in Figure 4.9. The n
rows and m columns of the control mesh define control polygons which can be
used, e.g. for the definition of Bézier, B-spline or NURBS curves. Evaluating all
rows for the parameter u results in n points. These define a control polygon of a
curve, which can be evaluated for the parameter v. The resulting point corresponds
to the smooth limit surface at the parameter pair (u, v) ∈ R2.
Evaluating the surfaces for a rectangular domain u, v ∈ [0, 1] results in a quadrilat-
eral shape. To create more complex models, the surfaces might be evaluated only
for a subsetΩ of the parameter space. This is then called a trimmed surface, where
the domain is usually defined by its boundaries in the parameter space. Multiple
trimmed surface patches can be joined together as a trimmed multipatch model,
as shown in Figure 4.10. It should be noted that in practice, the surfaces might
not match perfectly at the edges (watertightness) but lie within a certain tolerance.
During rendering, imperfections along coupling edges are usually hidden by the
CAD.
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a)

c)

Planar NURBS curve

Viewing frustum

Spatial B-spline curve
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Figure 4.8: An n-dimensional NURBS can be interpreted as a central projection of an (n+1)-
dimensional B-spline. The example shows a two-dimensional NURBS in the grey plane.
The weights correspond to a shift of the control points in an additional third dimension.
On the left, the situation is shown over the ‘viewing frustum’ (3D control polygon as linear
segments), on the right in the canonical volume (3D control polygon as distorted segments).
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u-curve

row polygon

column polygon

s(u, v)

Figure 4.9: A Bézier surface is defined by a regular control mesh. Each row and column of
the mesh defines the control polygon of a Bézier curve (adapted from [17]).

Untrimmed surface

Geometry space (3D)

Ω

Edge

Boundary edge

Coupling edge

Face

Trim

Trimming loop

Vertex Parameter space (2D)

Figure 4.10: A trimmed multipatch model consists of several faces. The geometry of each
face is defined by an untrimmed surface and a trimming domain Ω. The untrimmed
surface might be a classic NURBS surface. The domain is defined by a trimming loop in the
parameter space. Each segment of this loop belongs to an edge of the face. Boundary edges
only have single trims. Edges with several trims are defined as coupling edges (adapted from
[24]).
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Subdivision surfaces are another type of freeform surface. The control mesh of
these surfaces can have an arbitrary topology. This avoids the need for trimming.
At the same time, sharp edges and corners can be defined specifically. This type of
surface description is described in more detail in Chapter 6.

4.3 Sensitivities of freeform geometries

The freeform geometries described in the previous sections correspond to an explicit
parameterization. Based on the given control points, the smooth geometry can
be evaluated for a specific curve or surface parameter. To solve inverse problems
based on such geometries, the derivatives of this point with respect to the design
parameters are required.
This section explains the systematic computation of the derivatives for a Bézier
curve by using AD. The procedure can be transferred to other types of free-form
geometries. For this purpose, the procedure of the algorithm is shown in a graph.
Fig 15 shows the decomposition of the algorithm into basic mathematical functions.
The derivatives can then be determined from this graph. Since linear interpolation
between twopoints is frequently required during the calculation, it is recommended
that a dedicated operation is defined for this purpose, including derivation rules.
This simplifies the graph and speeds up the calculation. For this purpose, a function

lerp(a, b, t) = a + t (b − a) (4.1)

is introduced, which interpolates linearly between two values, a and b, where t ∈
[0, 1] is the interpolation parameter. The partial derivatives of this interpolation
with respect to the three arguments are given by:

Da lerp = 1 − t (4.2)
Db lerp = t (4.3)
Dt lerp = b − a (4.4)

These are the required coefficients for the algorithms in Chapter 3.
Apoint on the Bézier curve can be constructed by three stages of linear interpolation,
as shown in Figure 4.11. According to Chapter 3, the partial derivatives of the linear
interpolation are used to create the weighted computational graph in Figure 4.12.
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Figure 4.11: Computational graph for the computation of a cubic Bézier curve. In (a), the
computation is decomposed into basicmathematical operations. By introducing a dedicated
operation for linear interpolation in (b), the decomposition is simplified.
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Figure 4.12: (a) Steps to construct a point on a cubic Bézier curve. (b)Weighted computational
graph for the computation.

The derivatives ofX = P30 with respect to the positions of the control points result
from the weights of the corresponding paths. They result in the shape functions
Ni:

DP00X = t3 = N0 (t) (4.5)

DP01X = 3t2 (1 − t) = N1 (t) (4.6)

DP02X = 3t2 (1 − t) = N2 (t) (4.7)

DP03X = t3 = N3 (t) (4.8)

The pointX of the Bézier curve can also be formed from the linear combination of
the shape functions:
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X =

n∑
i

Ni P0i (4.9)

The derivative of X with respect to the curve parameter t also results from the
corresponding weights and provides the prescription for the basis vector a1:

Dt X = (P20 − P21) + t (P10 − P11) + (1 − t) (P11 − P12)+ (4.10)

t2 (P00 − P01) + 2t (1 − t) (P01 − P02)+ (4.11)

(1 − t)2 (P02 − P03) = a1 (t) (4.12)

The computation of the derivatives is done according to the principle of AD, as
described in Chapter 3. AD is applied to the algorithm, which evaluates the Bézier
curve by tracking the construction process in a computational graph. The structure
of this graph and the calculation of theweights for this type of curve follows a certain
scheme. An extensive AD library can optimize the computation of the derivatives
by applying the transformation rules in a smartway. In a perfect scenario, this would
yield the very efficient algorithms from [22]. Since these efficient algorithms are
already known, they can also be implemented directly to determine the weights of
the paths. This results in a new function which evaluates the curve and its derivative
and can be combined as a new building block within AD.
In the same way, building blocks are defined in Chapter 5 for isogeometric analysis
to apply the principles of AD in an efficient way. In Chapter 6, AD is used to
compute the shape functions of SubD surfaces. In this case, the computation turns
out to be more complex since the control mesh can have an arbitrary topology. AD
is a useful tool for simplifying the data management in such situations.

58



5

Application in isogeometric analysis

The content of this chapter was previously published as: Oberbichler, T., Wüchner,
R., Bletzinger, K.-U.: Efficient computation of nonlinear isogeometric elements
using the adjointmethod and algorithmic differentiation. ComputerMethods in Ap-
plied Mechanics and Engineering, 2021, https://doi.org/10.1016/j.cma.2021.113817
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Acknowledgments

We present a consistent and efficient approach to the formulation of
geometric nonlinear finite elements for isogeometric analysis (IGA) and
isogeometric B-Rep analysis (IBRA) based on the adjoint method. IGA ele-
ments are computationally expensive, especially for high polynomial degrees.
Using the method presented here enables us to reduce this disadvantage and
develop a methodical framework for the efficient implementation of IGA
elements. The elements are consistently derived from energy functionals.
The load vector and stiffness matrix are obtained from the first and second
order derivatives of the energy. Starting from the functional, we apply the
concept of algorithmic or automatic differentiation to compute the precise
derivatives. Here, we compare the direct (forward) and adjoint (reversed)
methods. Analysis of the computational graph allows us to optimize the
computation and identify recurring modules. It turns out that using the ad-
joint method leads to a core-congruential formulation, which enables a clean
separation between the mechanical behavior and the geometric description.
This is particularly useful in CAD-integrated analysis, where mechanical
properties are applied to different geometry types. The adjoint method pro-
duces the same results but requires significally fewer operations and fewer
intermediate results. Moreover, the number of intermediate results is no
longer dependent on the polynomial degree of the NURBS. This is important
for implementation efficiency and computation speed.

The procedure can be applied to arbitrary element formulations and
coupling conditions based on energy functionals. For demonstration pur-
poses, we present the proposed approach specifically for use with geometrically
nonlinear trusses, beams, membranes, shells, and coupling conditions based
on the penalty method.

5.1 Introduction

Ever since isogeometric analysis (IGA) was first introduced by Hughes in 2005 [25,
26], the method has been continuously expanded. Today, there are a wide range
of isogeometric mechanical elements available. These include cables, trusses, and
membranes [27] as well as beams [28] and shells [29, 30, 31]. Isogeometric B-Rep
analysis (IBRA) extends the methodology to trimmed multipatches. The intro-
duction of weak forms of geometric coupling conditions addresses the problem of
non-interpolating control points. Various types of coupling conditions have been
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Figure 5.1: Different scenarios in which the aim is to minimize the distance between two
pointsA and B by a coupling constraint (red). The difference lies in the parameterization
of the two points. This results in different control parameters (blue): (a) The locations are
explicitly given by the coordinates x and y; (b) The points are embedded in NURBS curves.
The locations ofA and B are controlled by the location of the control points Pi ; (c)A and
B can slide along the NURBS curves. The location is controlled by the curve parameters
ta and tb; (d) The distance between the tangents Ta and Tb is minimized to achieve G1
continuity. The geometry is controlled by Pi ; (e) The distance between the tangent Ta and
the normalNb is minimized by controlling Pi ; (f)A corresponds to a control point, while
B slides on the curve. The distance is controlled by Pi and t.

formulated, including the Penalty [32, 33, 34], Lagrange [35, 36], Nitsche [37, 38,
39, 40, 41, 42, 43], and Mortar methods [44, 35, 45]. In addition to classic NURBS,
embedded geometries can also be used to describe the shape of a structural entity.
They can be used to describe edge cables for membrane structures [27], to enforce
shells with beam elements [46] or to realize sliding conditions [47].
Manual implementation of all these elements requires considerable effort. Embed-
ding an element does not change its basic mechanical behavior but results in a new
element formulation. A similar problem arises with coupling conditions. Figure 5.1
shows different coupling scenarios. In all the examples, the aim is to minimize
the distance between two points. However, in each case, the points are described
differently, which results in varying formulations. The same applies when using
different coupling methods.
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We introduce a modular and computationally efficient method of formulating iso-
geometric elements and coupling conditions. We do this using an energy functional,
which can be formulated as a simple scalar functionΠ(x). The load vector F and
stiffness matrixK are obtained from the derivatives of the energy with respect to the
degrees of freedom x. To compute these derivatives, we decompose the functional
into basic operations and consistently apply the chain rule. The chain rule can
be applied in two different ways, resulting in the direct method and the adjoint
method [48]. Both produce identical results but may require a different number
of operations. The direct method is the one usually used for implementing IGA.
In Section 5.5, we compare the two methods and show that the adjoint method
significantly reduces computational effort and memory consumption. Moreover,
the adjoint method leads to a core-congruential formulation (CCF) [49, 50], which
enables themechanical behavior Π̂ to be separated from the geometrical description
g by decomposingΠ into:

Π(x) = (Π̂ ◦ g) (x).

The derivatives of Π̂ are interpretedmechanically as the core load F̂ and core stiffness
K̂. Both are independent of the geometrical description. Therefore, they are not
influenced by the polynomial degree of the NURBS and can be computed very
efficiently. By applying the chain rule, we transform F̂ and K̂ toF andK according to
the geometric description givenbyg. This separation is a key concept ofCCFandhas
special advantages in the context of IGA. If the geometry is described usingNURBS,
the complexity of this operation depends on the polynomial degree. With the direct
method, this affects all intermediate results. Since the adjoint method leads to CCF,
the NURBS description is only used for this final transformation. This minimizes
the influence of the higher polynomial degrees. Furthermore, different element
types can be created by transforming the same F̂ and K̂ for different geometric
descriptions g. For example, it is shown in Section 5.8 that all coupling scenarios
represented in Figure 5.1 can be realized by transforming the same F̂ and K̂ according
to the specific geometric representation.
As mentioned above, we decompose the functional into simpler suboperations
to determine the derivatives using the chain rule. This process can be generalized
and automated using algorithmic differentiation (AD), also called automatic dif-
ferentiation. Using this technique, decomposition can be done down to the basic
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mathematical operations. It can easily be applied to an arbitrary energy functional
and is therefore suitable for rapid implementation and testing of new element types.
A common way to implement AD is by using hyper-dual numbers [14]. This leads
to the so-called forward mode of AD. The authors presented this approach for
implementing isogeometric shell and beam elements based onNURBS geometries1.
A similar approach was used in [51] for the implementation of classic solid finite
elements. The forwardmode of AD represents an automation of the direct method.
It is less efficient for implementing isogeometric finite elements then the adjoint
method. For an even more efficient implementation, we analyze the computational
graph to calculate the derivatives. This allows us to identify recurring operations
and simplifies the decomposition of the functional. It also enables a mechanical
interpretation of individual components and decomposes the energy functional
down to the basic mechanical operations. This manual approach can be combined
with algorithmic differentiation using hyper-dual numbers to calculate branches of
the graph that are too complex for manual optimization.
This article is divided into ten sections. Section 5.2 describes the relationship
between the derivatives of the energy functional and the equilibrium of a structure.
It is in this context that the equality of the energy-based approach and the principle
of virtual work are presented. The relevant principles of NURBS, which are used to
describe the geometry of IGA elements, are recalled in Section 5.3. In Section 5.4, we
explain the methodical procedure of applying the chain rule to complex functions.
Section 5.5 compares the direct and adjoint methods of formulating IGA elements.
In Section 5.6, 5.7, and 5.8, we formulate the structural elements, geometric trans-
formations, and coupling conditions according to the adjoint approach. Section 5.9
presents a comparison with the established research software Carat++ [52]. Finally,
we discuss the results in Section 5.10 and provide an outlook on future research.

5.2 Finding Equilibrium— The Role of Derivatives

A structure is in stable equilibrium when it reaches a state of minimum energy. A
structural analysis using the finite element method (FEM) requires us to formulate
the energyΠ of the system as a function of the nodal coordinates x. By determining
x such that the energy is minimized, we obtain a state of equilibrium.

1T. Oberbichler, R. Wüchner, K.-U. Bletzinger, Benefits of Automatic differentiation in Finite
Element Analysis (2019). The 5th ECCOMAS Young Investigators Conference. Krakow, Poland.
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Figure 5.2 shows the internal energy in a simple two-bar truss. To identify a local
minimum, the derivatives must be considered. The first two derivatives of the
energy functional can be interpreted in a mechanical sense as the residual forces r(x)
and the tangential stiffness K(x).

Residual Forces

To obtain the residual forces, we compute the total differential of the energy func-
tional dΠ. We use Einstein notation to simplify sums. The components xr of a
vector x = (xr) = (x1, x2 . . . x |x |−1, x |x |) are numbered with an index r, while its
dimension is denoted by |x |. The displacements u = x − X of the nodes are de-
termined by their locations in the deformed configuration x and the undeformed
configurationX. SinceX is constant, the derivative ofΠ with respect to a coordin-
ate xr is equal to the derivative with respect to the corresponding displacement
ur .

dΠ =

|x |∑
r=1

mΠ

mxr
dxr =

mΠ

mur
dur =

mΠ

mxr
dxr (5.2)
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It turns out that dΠ is equivalent to the virtual work δW , which gives us the
analogy of the minimum energy state, and the principle of virtual work and shows
that mΠ/mxr is equal to the force Fr .

dΠ =
mΠ

mxr
dxr ≡ Fr δur = δW (5.3)

The partial derivative of Π with respect to a coordinate xr indicates the residual
force Fr in the corresponding direction. The vector r contains all residual forces
and is therefore called the residual force vector.

r =
(
mΠ

mxr

)
=

(
m Π

m x1
,
m Π

m x2
. . .

m Π

m x |x |

)
(5.4)

A local extremum is characterized by r(x) = 0, which means that there are no
residual forces. For the example in Figure 5.2, we can identify the extrema xA, xC
and xD.

Tangential Stiffness Matrix

By deriving r with respect to the nodal coordinates xr , we obtain the tangential
stiffness matrix K of the structural system. This is equivalent to the second order
derivatives ofΠ.

K =

(
mΠ

mxr mxs

)
=

©«

mΠ
mx1 mx1

mΠ
mx1 mx2

. . . mΠ
mx1 mx|x |

mΠ
mx2 mx2

. . . mΠ
mx2 mx|x |

. . .
...

sym. mΠ
mx|x | mx|x |

ª®®®®®®®¬
(5.5)

The definiteness ofK supplies information about the stability of the structure. A
positive definite stiffness matrix characterizes a point of stable equilibrium. Con-
sidering this relation for the example shown in Figure 5.2, we can identify stable
equilibrium points at xA and xD while xC is a state of unstable equilibrium.
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Π(x)

Π(x0)

p0 (x1)
Π(x1)

p1 (x2)
Π(x2)

x

x0 x1

p1 (x)
p0 (x)p1′(x)p0′(x)

x2

Figure 5.3: The Newton-Raphson algorithm is used to calculate the minimum of Π(x). In
each iteration i, the function Π is approximated by a parabola pi at xi . The minimum of pi
yields to xi+1, which is used for the next iteration.

Newton-Raphson Solver

Line-search algorithms have been established to locate a solution close to a given
initial state. TheNewton-Raphson algorithm is widely used in structuralmechanics
and canbe applied to a functionwithmultiple parameters. For simplicity, we assume
a single parameter x. The method can be used to determine the roots of r(x) = 0
iteratively, by applying the following iteration scheme:

xi+1 = xi −
r(xi)
r′(xi)

(5.6)

Similarly, the Newton-Raphson algorithm can be used to determine the minimum
ofΠ(x). In each iteration i, the functionΠ(x) is approximated by a parabola

pi (x) = Π(xi) + Π′(xi) (x − xi) +
1
2
Π′′(xi) (x − xi)2. (5.7)

The extrema of pi can be found at the intersection of p′i and the abscissa and yields
to xi+1 (Figure 5.3). For this, we need the first two derivatives ofΠ.

xi+1 = xi −
Π′(xi)
Π′′(xi)

(5.8)
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The sequence (x0, x1, . . . x̂) should converge to a local extremumΠ(x̂). The pro-
cedure in (5.6) is usually illustrated by the repeated intersection of tangents of r
with the abscissa. Similarly, (5.8) can be shown as the repeated minimization of a
parabola (Figure 5.3). Note that (5.6) and (5.8) are equal ifΠ′ = r andΠ′′ = r′ = K .
This confirms the analogy between minimum energy and equilibrium of forces.
Any other optimization or root-finding algorithm can be used to determine a state
of equilibrium. An overview of numerical approaches can be found in [7]. Some of
these algorithms omit the stiffness matrix (e.g. steepest-descent, conjugate gradient)
or use an approximation (quasi-Newton methods, e.g., L-BFGS). Another method
of determining equilibrium is to use the mass matrix in place of stiffness, which
results into dynamic relaxation (DR). The mass matrix is generally approximated
by a diagonal matrix. Details of the relation betweenDR and theNewton-Raphson
method can be found in [53]. For structural analysis, it is necessary to use the precise
stiffness matrix, as it generally improves the convergence rate of the solution and
provides essential information about the stability of the structure.

Finite Elements

The total energy of the system results from the sum of the energies of the single
elements. It allows element-wise calculation of the residual force and tangential
stiffness. The contribution of an element solely depends on a subset x(e) of x, which
enables efficient and parallel computation.
The energy functional is chosen with respect to the element type. The energy
contributionΠ (e) of a single element is obtained by integrating this functional over
the domain of the element. This domain results from the shape of the element,
e.g. the area of a trimmed NURBS patch. To perform a numerical calculation, the
integral is approximatedwith aweighted sumusing ann-pointGaussian quadrature
rule.

Π (e) =

∫
Ω

Π (e) (ω) dΩ ≈
n∑
i=1

Π (e) (ωi) αi (5.9)

Here ω is a point within the domain Ω of the element, ωi is the position of an
integration point, and αi is the corresponding weight in the geometry space. The
energy of the element results from the sum of the contributions of the individual
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5 Application in isogeometric analysis

integration points. Therefore, it is necessary to calculate the internal energy at
specific points of the structure and evaluate the derivatives with respect to the
degrees of freedom x.

Penalty Constraints

For an analysis of structures modeled by trimmed multipatches, the optimization
problem is extended by nonlinear equality constraints gi . This yields to the con-
strained optimization problem:

min
x

Π(x) s.t. g(x) = 0 (5.10)

To solve this problem, we use the penalty method and add the constraints to the
objective function by using a quadratic penalty function

Pi (x) =
wi

2
gi (x)2, (5.11)

where wi denotes the weight of the constraint. This converts the constrained op-
timization problem (5.10) into an unconstrained one (5.12), which can be solved
using the classical Newton-Raphson algorithm, for example.

min
x

©«Π(x) + 1
2

��g��∑
i=1

wi · gi (x)2
ª®¬ (5.12)

If not all conditions can be fulfilled, the procedure results in a least-square solution
according to the weights ratio.

5.3 Fundamentals of NURBS

A NURBS curve in d-dimensional space is defined by the polynomial degree p, the
knot vector Ξ and the control points Pi , where each point is associated with a weight
wi . The parametric representation of the curve is given by
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c(ξ ) =
|P |∑
i=1

Ri (ξ ) Pi ∈ Rd, (5.13)

where ξ is the curve parameter andRi is the weighted basis function, which depends
on p,Ξ andw. The knotsΞp andΞ |P | define the domain of the curve and constrain
the curve parameter Ξp ≤ ξ ≤ Ξ |P | . The knot vector defines the parameter space
of the NURBS and divides it into spans. It contains the knots in non-descending
order.

Ξ =
(
Ξ0 Ξ1 Ξ2 . . . Ξ |P |+p−1 Ξ |P |+p

)
(5.14)

Note that, in this case, we start with an index 0. This is because the knots Ξ0 and
Ξ |P |+p are never used to describe a continuous geometry. Omitting them yields the
reduced knot vector (Ξ1, . . .Ξ |P |+p−1), which facilitates consistent handling of the
knot spans. The location of c(ξ ) only depends on p + 1 control points because

Ri (ξ )
{
≠ 0 s ≤ i ≤ s + p where Ξs+p−1 ≤ ξ < Ξs+p
= 0 otherwise

. (5.15)

Here, s denotes the knot span of ξ . Within the same knot span, all points are influ-
encedby the same control points P̄. Furthermore, only the knots Ξ̄ = (Ξs . . .Ξs+2p−1)
are involved (Figure 5.4). Therefore, isogeometric finite elements are usually defined
according to the knot spans:

c(ξ ) =
p+1∑
i=1

R̄i (ξ ) P̄i with R̄i = Rs+i−1 and P̄i = Ps+i−1 (5.16)

When it comes to the continuummechanical derivation of finite elements, the basis
vectors of the geometry are of interest. These are defined as derivatives of (5.16)
with respect to the parameter ξ . It is therefore sufficient to compute the derivatives
of the basis functions denoted as R̄i,1 and R̄i,1,1 according to [22]:
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Geometry space:

P1

P2

P1=P3

Ξ0,1,2,3 Ξ4 Ξ5 ξ

c(ξ)

Ξ6 Ξ7,8,9,10

Ξ1=Ξ3 Ξ2=Ξ4 Ξ3=Ξ5 Ξ4=Ξ6 Ξ5=Ξ7, Ξ6=Ξ8

P3=P5

P4=P6

P7

Parameter space:

s=1 s=2 s=4s=3

P2=P4

Figure 5.4: A NURBS curve defined by the polynomial degree p = 3, the control points Pi
and the knots Ξi . Within the third knot span (s = 3), only the control points P̄i (red) and
knots Ξ̄i (blue) have an influence on the geometry.

d
dξ

c(ξ ) = a1 (ξ ) =
p+1∑
i=1

R̄i,1 (ξ ) P̄i (5.17)

d2

dξ 2
c(ξ ) = a1,1 (ξ ) =

p+1∑
i=1

R̄i,1,1 (ξ ) P̄i (5.18)

These concepts can be applied directly to NURBS surfaces. In this case, we have
two surface parameters ξ and η with two knot vectors Ξ and H. A knot span
corresponds to a rectangle in the parameter space. Also, for surfaces, the geometry
within a span is only influenced by a subset of the control points. Extension to
volume is performed analogously. Further details on NURBS can be found in [22]
and [23].

5.4 Methods of Computing Derivatives

Derivatives describe the effect of variations in design parameters (input) on the
response (output) of a mathematical model. We assume that the responses are
collected within the vector f = (fk) and are described by smooth functions of the
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design parameters collected in s = (si). Mathematically, the derivatives are defined
as a limit of difference quotients:

d fk
d si

= lim
ε→0

fk (si + ε) − fk (si)
ε

(5.19)

There are three methods of calculating such derivatives: (i) Numeric differentiation
or finite differences, (ii) symbolic or analytic differentiation, and (iii) algorithmic
or automatic differentiation. We now present a short overview of the different
methods. More detailed descriptions can be found in [7].

NumericDifferentiation (ND) Anapproximation of the derivatives is obtained
using difference quotients. For forward differences, ε is replaced by a small but finite
step size h. A too-small step size leads to errors in floating-point precision, while
a too-high value results in an inaccurate approximation. One way of improving
this problem is to use central differences or Ridders’ method [54]. ND is easy to
implement since it only necessitates evaluating the function for different input
parameters. This makes the computation very slow, with an increasing number of
parameters. ND is therefore not suitable for an efficient and exact calculation of
derivatives in the context of this study.

Symbolic Differentiation (SD) The derivatives are obtained by applying the
basic rules of derivation on symbolic expressions. This can be done manually or
with the aid of a computer algebra system (CAS) e.g. Mathematica, SymPy orMaple.
The result is an analytical expression of the derivatives, which is then implemented
in the FE code. Evaluating the expression for specific parameters provides exact
results. By representing the derivation as a single expression, SD can inflate the final
analytic solution. This makes the analytical expressions so complex that they can
barely be interpreted or processed.

Algorithmic Differentiation (AD) A complex function is decomposed into
simpler suboperations. The partial derivatives of the suboperation are computed for
specific input parameters. The derivatives of the complex function are obtained by
applying the chain rule. AD is heavily oriented towards computer implementation
and automation. It is based on the fact that a complex algorithm is a composition of
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simple operations, and the computer is fed the structure of the composition from
the program code. In contrast to SD, the results are numeric rather than symbolic.
This approach gives precise results and works efficiently, even with complex func-
tions.

It should be noted that AD is often mistakenly equated with SD and the use of a
CAS. Unlike ND, AD and SD do not provide approximations but precise results.
In this sense, the two methods are similar. The main difference is that SD aims
to generate a symbolic expression of the derivative. In contrast, the goal of AD
is to immediately evaluate the derivations at a specific position. Therefore, the
essential derivation rules are implemented so that the computer can evaluate the
derivatives of an arbitrary function. In this sense, algorithmic differentiation is
“Symbolic differentiation performed by a compiler” [55]. Both methods lead to the
same result. However, AD does not need to generate a human-readable analytical
expression for the derivatives. This allows AD to work very efficiently.
In this paper, we use AD for the computation of derivatives. Detailed descriptions
of AD can be found in [56, 57, 58, 55, 59, 60]. AD offers two distinct methods: the
forward mode (FAD) and the reverse mode (RAD). They directly correspond to
the direct method (DM) and the adjoint method (AM) of computing derivatives.
FAD/DM and RAD/AM are based on the consistent application of the chain rule.
The difference lies only in the order in which the rule is applied. Both methods can
also be combined into amixed mode. In this paper we focus on the basic methodo-
logy of AD in a systematic application of the chain rule to implement isogeometric
elements. Note that there are a wide range of advanced implementations [61, 62, 63]
that might also be suitable for other applications e.g. gradient based shape optimiz-
ation of IGA models, as shown in [64]. In the following sections, we describe the
principles of differentiating compositions of functions and how complex functions
can be decomposed.

Derivatives of Composed Functions

By applying a function g to the result of another function h, we obtain a composed
function g ◦ h. The symbol ◦ indicates the composition. Writing f = g(u) and
u = h(s) allows the following two interpretations of the composition:
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5.4. Methods of Computing Derivatives

f = (g ◦ h) (s) = g(h(s)) (5.20)

(i) A transformation of the output parameters of h from u to f by prepending g

(ii) A transformation of the input parameters of g from u to s by appending h

In both cases, we obtain the same result. The significance of the different interpret-
ations will become clear in Section 5.5, when several functions will be composed.
Using the chain rule, we can apply this reparametrization to the derivatives. The
formula for the second order derivative is the multivariate form of Faà di Bruno’s
formula [65, 66].

d fk
d si

=
mgk

mua
· mua
msi

(5.21)

d2 fk
d si d sj

=
m2gk

mua mub
· mua
msi
· mub
msj
+
mgk

mua
· m2ua
msi msj

(5.22)

We now introduce Spivak’s notation for writing derivatives [67]. In this functional
notation,Di f denotes the derivative of f with respect to its i-th argument. The
evaluation of this derivative for x̂ is written asDi f (x̂). Leaving the index out,D f
denotes the gradient andD2 f the hessian of f . The jacobian of a vector function f
is denoted byD f . Spivak notation allows (5.21) and (5.22) to be written without
having to define the auxiliary variables f and u:

Di (gk ◦ h) = Da gk · Di ha (5.23)

DiDj (gk ◦ h) = DaDb gk · Di ha · Dj hb +Da gk · DiDj ha (5.24)

A basic implementation of (5.23) is shown in Algorithm 1. It results in the matrix
product of the Jacobians of g and h. The time complexity of the operation results
from the three loops. It depends on the length of the vectors f , u, and s.
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O(
��f �� · |u| · |s|) (5.25)

To compute (5.24) we make use of the symmetry of the second order derivative, e.g.
DaDb gk = DbDa gk to obtain the time complexity of the operation (Algorithm 2).

O

(��f �� · |u|2 + |u|
2

· |s|
2 + |s|
2

)
(5.26)

Here, we assume that all partial derivatives are not zero. This means we have to
consider all contributions. In fact, many of the partial derivatives disappear, which
can reduce the number of operations. The sparse structure of the partial derivatives
can be illustrated with a computational graph, introduced in Section 5.4.

Input: First order derivatives Dg[k,a] = mgk/mua and Dh[a,i] = mua/msi
Output: First order derivatives Df[k,i] = mfk/msi
for k← 1 to

��f �� do
for i← 1 to |s| do

for a← 1 to |u| do
Df[k,i] = Dg[k,a] * Dh[a,i];

end
end

end
Algorithm 1: Computation of first order derivatives according to (5.23).

Decomposition of a Function and its Derivatives

For systematic differentiation using the chain rule, a complex function is decom-
posed into simpler suboperations for which the partial derivatives can be calculated.
With AD, this decomposition is performed down to the basic mathematical opera-
tions. This results in the automatic differentiation of an arbitrary functional. In
Sections 5.5, 5.6, 5.7 and 5.8, we optimize the decomposition to identify recurring
operations on IGA elements.
We now demonstrate the decomposition with a simple example. The function
(5.27) is decomposed into basic mathematical operations for which we already
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Input: First order derivatives Dg and Dh. Second order derivatives
DDg[k,a,b] = m2gk/(mua mub) and DDh[a,i,j] = m2ua/(msi msj)

Output: Second order derivatives DDf[k,i,j] = d2fk/(dsi dsj) with i ≤ j

for k← 1 to
��f �� do

for i← 1 to |s| do
for j ← i to |s| do

DDf[k,i,j] = 0;
for a← 1 to |u| do

DDf[k,i,j] += Dg[k,a] * DDh[a,i,j] + DDg[k,a,a] *
Dh[a,i] * Dh[a,j];
for b← a + 1 to |u| do

DDf[k,i,j] += DDg[k,a,b] * (Dh[a,i] * Dh[b,j] +
Dh[b,i] * Dh[a,j]);

end
end

end
end

end
Algorithm 2: Computation of second order derivatives by taking advantages of the
symmetries according to (5.24)3.

know the derivation rules. In Section 5.5, we will use the same procedure for the
decomposition of the energy functional.

f (s) = (f1) =
(
s1 − s2
s2 s3

)
with s = (s1, s2, s3) (5.27)

Input s and output f are vectors. For simplicity, the result consists of a single
component f1, while the input consists of the three parameters s1, s2 and s3. To
calculate the derivatives of f1, we decompose it into the simpler suboperations g1,
h1 and h2.

f1 = g1 (u) =
u1
u2

u1 = h1 (s) = s1 − s2 u2 = h2 (s) = s2 s3 (5.28)

3A mistake in line 6 from the original publication has been corrected for this thesis.
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This gives us the intermediate results u1 and u2, which are collected in the vector
u. The first order and second order partial derivatives can be determined using the
basic derivation rules:

Di h1 =

(
mh1
msi

)
=

(
1 −1 0

)
DiDj h1 =

(
mh1

msi msj

)
=

©«
0 0 0

0 0
sym. 0

ª®¬ (5.29a)

Di h2 =

(
mh2
msi

)
=

(
0 s3 s2

)
DiDj h2 =

(
mh2
msi msj

)
=

©«
0 0 0

0 1
sym. 0

ª®¬ (5.29b)

Da g1 =

(
mg1

mua

)
=

(
1
u2
− u1
u22

)
DaDb g1 =

(
mg1

mua mub

)
=

(
0 − 1

u22

sym. 2 u1
u23

)
(5.29c)

We can compute the derivatives of f with respect to s from the partial derivatives
of the suboperations by applying (5.23) and (5.24). Using SD, we perform this
transformation with symbolic expressions. This gives us an analytic solution for
the derivatives:

Di (g ◦ h) =
(
df1
dsi

)
=

(
1

s2 s3
− s1
s22 s3

s2 − s1
s2 s32

)
(5.30a)

DiDj (g ◦ h) =
(

d2f1
dsi dsj

)
=

©«

0 − 1
s22 s3

− 1
s2 s32

2 s1
s23 s3

s1
s22 s32

sym.
2 (s1 − s2)
s2 s33

ª®®®®®®®®¬
(5.30b)

With AD, the partial derivatives are directly evaluated for a specific set of parameters
e.g. ŝ = (3, 2, 0.5). The transformation is applied to the numerical results.
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u1 = h1 (ŝ) = 1 Di h1 (ŝ) =
(
1 −1 0

)
DiDj h1 (ŝ) = ©«

0 0 0
0 0

sym. 0

ª®¬ (5.31a)

u2 = h2 (ŝ) = 1 Di h2 (ŝ) =
(
0 0.5 2

)
DiDj h2 (ŝ) = ©«

0 0 0
0 1

sym. 0

ª®¬ (5.31b)

f1 = g1 (u) = 1 Da g1 (u) =
(
1 −1

)
DaDb g1 (u) =

(
0 −1

sym. 2

)
(5.31c)

By applying the chain rule on the partial derivatives, we obtain

Di (g ◦ h) =
(
1 −1.5 −2

)
DiDj (g ◦ h) =

©«
0 −0.5 −2

1.5 3
sym. 8

ª®¬ . (5.32)

Evaluating (5.30) for s = ŝ obviously yields to the same results. This shows the
strong relation between AD and SD. The computation of the underscored values
is visualized in Section 5.4.

Hyper-dual numbers

A convenient way to implement AD is by using hyper-dual numbers [14]. A dual
number consists of a real and an infinitesimal component. The real component
is used to store the value of a function, while the infinitesimal component stores
its derivative. For multivariable functions, an n-dimensional dual number, also
called Jet, with n infinitesimal components can be used. Hyper-dual numbers are an
extension of dual numbers, which are also able to store the second order derivatives.
They are used in many applications such as optimization and rendering systems for
automatic derivation of multivariable functions. We write the evaluated function f
at s as a hyper-dual number:
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< f (s)
↑

real component

, D f (s)
↑

infinitesimal component
first order

, D2 f (d)
↑

infinitesimal component
second order

> (5.33)

Mathematical operations with hyper-dual numbers apply the chain rule to the in-
finitesimal components. This gives us another hyper-dual number, which contains
the result of the operation as the real component and the derivatives as infinitesimal
components. Therefore, if a calculation is performed with hyper-dual numbers,
the derivatives are computed ‘automatically’. For the example in Section 5.4, we
write s as a function of ŝ to obtain the input parameters as hyper-dual numbers:

s1 (ŝ) =
〈
3, ©«

1
0
0

ª®¬ ,0
〉

s2 (ŝ) =
〈
2, ©«

0
1
0

ª®¬ ,0
〉

s3 (ŝ) =
〈
0.5, ©«

0
0
1

ª®¬ ,0
〉

(5.34)

Subtraction and multiplication of these hyper-dual numbers leads to the results in
(5.31a) and (5.31b):

u1 (ŝ) = s1 (ŝ) − s2 (ŝ) =
〈
1, ©«

1
−1
0

ª®¬ ,0
〉

u2 (ŝ) = s2 (ŝ) s3 (ŝ) =
〈
1, ©«

0
0.5
2

ª®¬ , ©«
0 0 0

0 1
sym. 0

ª®¬
〉

(5.35)

The result of the division of these intermediate values is equal to (5.32):

f1 (ŝ) =
u1 (ŝ)
u2 (ŝ)

=

〈
1, ©«

1
−1.5
−2

ª®¬ , ©«
0 −0.5 −2

1.5 3
sym. 8

ª®¬
〉

(5.36)

Since the chain rule is applied with each operation, this is known as forward mode
AD. Hyper-dual numbers are easy to implement and flexible to use. They can be
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combined with other methods. To express the base vectors of a NURBS, for ex-
ample, the infinitesimal component can be computed directly using the algorithms
of Section 5.3.
In the context of this paper, we use the open source libraryHyperJet [68] to deal
with hyper-dual numbers inC++andPython. With this implementation, functions
are decomposed into basic mathematical operations. For an efficient and modular
implementation of isogeometric elements, decomposition into basic mechanical
functions, as shown in Section 5.5, is more suitable. We therefore investigate the
computational graphs of the functions. Nevertheless, we use hyper-dual numbers
for computing derivatives of individual parts of the calculation to create a good
balance of performance and usability.

The Computational Graph

The application of the chain rule on a composed function can be visualized in a
computational graph. This is a visual representation of the operations performed in
(5.23) and (5.24). It helps in understanding the interaction between the individual
parameters and allows the procedure to be optimized. The computational graph
for the function (5.27) is shown in Figure 5.5. The graph consists of nodes, branches,
edges, weights and paths.

Nodes The nodes of the graph correspond to the parameters of the function. We
arrange the parameters into layers. The first layer contains the input parameters
(s1, s2, s3), the second the intermediate results (u1, u2) and the third the output (f1).

Branches For each suboperation, we obtain a set of edges, which we call a branch.
In our example, we obtain three branches: g1 (red), h1 (blue) and h2 (green).

Edges The parameters of two layers are connected by the suboperations g1, h1,
h2. This connection is illustrated by edges. We use colors to distinguish the edges of
each suboperation. We denote an edge between ua and ub as (ua ↔ ub). For an
edge that results from a certain suboperation gk we write (gk : ua ↔ ub). For each
suboperation we can add two types of edges to the graph:

(i) First order edges connecting nodes of different layers
e.g. the suboperation h2 connects u2 to s3 by the edge (h2 : u2 ↔ s3)
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Input:

Intermediate results:
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Figure 5.5: Structure of the computational graph using the function (5.27).

(ii) Second order edges connecting nodes of the same layer
e.g. the suboperation h2 connects s2 to s3 by the edge (h2 : s2 ↔ s3)

Note that a second order edge can also connect a node to itself, forming a loop e.g.
(g1 : u2 ↔ u2).

Weights The edges are weighted according to the partial derivatives of the sub-
operations (5.29).

(i) For the first order edges, we use the first order derivatives
e.g. the weight of (h2 : u2 ↔ s3) is mh2/ms3 = s2.

(ii) For the second order edges, we use the second order derivatives
e.g. the weight of (h2 : s2 ↔ s3) is mh2/(ms2 ms3) = 1):

The weighted computational graph shows the interaction between the parameters.
Edges with zero-weight indicate that two parameters do not interact owing to the
corresponding suboperation. In Figure 5.5, the zero-weight edges are indicated by
dashed lines. For a clearer overview, these edges can be hidden.
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5.4. Methods of Computing Derivatives

Paths The components of operations (5.23) and (5.24) correspond to the partial
derivatives and, in turn, the weights of the first order edges (i) and second order
edges (ii).

d fk
d si

=

(i)︷︸︸︷
mgk

mua
·

(i)︷︸︸︷
mua
msi︸         ︷︷         ︸

(I)

d2 fk
d si d sj

=

(ii)︷   ︸︸   ︷
m2gk

mua mub
·

(i)︷︸︸︷
mua
msi
·

(i)︷︸︸︷
mub
msj︸                       ︷︷                       ︸

(II)

+

(i)︷︸︸︷
mgk

mua
·

(ii)︷ ︸︸ ︷
m2ua
msi msj︸           ︷︷           ︸

(III)

The products (I), (II) and (III) are visualized in the graph by introducing three types
of weighted path:

(I) First order paths: fk → ua → si
From fk to si , passing two first order edges e.g. Figure 5.6b.
The weight of the path corresponds to the product of the weights of the
traversed edges.

(II) Indirect second order paths: si → ua → ub → sj
From si to sj , passing a first order edge (ua ↔ si), a second order edge
(gk : ua ↔ ub), and again a first order edge (ub ↔ sj), e.g. Figure 5.7b.
The weight of the path corresponds to the product of the weights of the
traversed edges.

(III) Direct second order paths: si → sj
From si to sj , passing one second order edge (ha : si ↔ sj), e.g. Figure 5.7a.
The weight of the path corresponds to the product of the weights of (ha :
si ↔ sj) and the corresponding first order edge (gk : fk ↔ ua).
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5 Application in isogeometric analysis

According to (5.23) we total the weights of all first order paths from fk to si when
we apply the chain rule. For instance, to compute df1/ds2, we total the weights of
all paths from f1 to s2 shown in Figure 5.6:

df1
ds2

= −1
↑

Fig. 5.6b

− 0.5
↑

5.6c

= −1.5 (5.37)

This corresponds with the results in Section 5.4. In the same way, we total the
weights of all second order paths from si to sj , when we apply (5.24). To compute
df1/(ds2 ds3), we use the weights of all possible second order paths from s2 and s3
shown in Figure 5.7 and 5.8.

d2f1
ds2 ds3

= − 1
↑

5.7a

+ 2
↑

5.7b

+ 2
↑

5.7c

+ 0
↑

5.8a

+ 0
↑

5.8b

+ 0
↑

5.8c

= 3 (5.38)

Paths with zero-weight do not contribute to the final result and can be ignored. In
this example, only three of the six possible paths need be evaluated. The graph helps
to simplify the computation of the chain rule by identifying such zero-weight paths.
Wewill use the computational graph in Sections 5.6, 5.7 and 5.8 to visualize the values
and structure of the partial derivatives of Π̂ andg, whichwill be discussed in the next
section. In Figure 5.9, we show two more examples, in which the derivatives of the
dot product are calculated. These two graphs will frequently appear in Section 5.6
as branches of the graphs for the element formulations.

5.5 Element Formulation using the Direct and Adjoint
Methods

Following the classical approach, an isogeometric element is formulated by deriving
the load vector F. The stiffness matrix K results from the derivatives of F with
respect to x. We, however, derive the elements directly from the energy functional
Π (e) according to (5.9). For the sake of simplicity, we write Π (e) = Π, where Π
describes the internal energy at a certain point ω of the element as a function of
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−1

f1
−1−−→ u2

0.5−−→ s2 : −0.5

Figure 5.6: (a) The weights are evaluated for s = ŝ. Zero-weight edges are hidden. To
compute the derivative of f1 w.r.t. s2, we total the weights of all first order paths from f1
to s2. There are two possible paths: (b) over u1 and (c) over u2. The weight of the paths
corresponds to the product of the weights of the edges.
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u1 u2

f1

−1

1

(f1
−1−−→ u2) × (s2

1−→ s3) : −1

b)
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−1
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2−→ s3 : 2
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s1 s2 s3
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0.5 2

2

s2
0.5−−→ u2

2−→ u2
2−→ s3 : 2

Figure 5.7: To compute the second order derivative of f1 w.r.t. s2 and s3, we total the weights
of all possible second order paths from s2 to s3. The diagram shows all paths with a non-zero
weight. The weight of the direct path (a) corresponds to the weight of the connecting edge
(h2 : s2 → s3) multiplied by the weight of the corresponding first order edge (g1 : f1 → u2).
The weight of the indirect paths (b and c) corresponds to the product of the weights of the
edges.
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Figure 5.8: All zero-weight second order paths from s2 to s3: (a) shows a direct path while
(b) and (c) show indirect paths. Since at least one edge has a weight of zero (dashed lines),
they do not contribute to the final result.
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Figure 5.9: Computational graph for the derivatives of (a) the dot product of two vectors
u = (ux , uy, uz) and v = (vx , vy, vz) and (b) the squared length of v. For a clearer overview,
we use a radial alignment of layers and parameters.
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5.5. Element Formulation using the Direct and Adjoint Methods

discrete nodal positions x. Load vector and stiffness are obtained from the first
and second order derivatives of Π, as in Section 5.2. To compute the derivatives,
we decompose Π into a sequence of suboperations by applying the techniques
described in Section 5.4.

Π(x) = (p ◦ e ◦ g) (x) (5.39)

Here, g evaluates the geometry in the deformed configuration (e.g. the components
of the base vectors), e provides the corresponding strains and p returns the energy
according to the material law. Depending on the element type, the vectors g and e
consist of

��g�� and |e| components, respectively. For an IGA truss, we calculate |e| = 1
strain ε and

��g�� = 3 components of the base vector a1 = (a1x , a1y, a1z). Section 5.6
gives more details about the various element types. According to Section 5.3, the
dimension |x | of x depends on the polynomial degree of the NURBS geometry.
The energy p is always a scalar. We apply (5.23) and (5.24) to compute the derivatives
of (5.39) with respect to x. This results in the force vector F and the stiffness matrix
K.

Fr = Dr Π

= Dr (p ◦ e ◦ g)
= Da p · Di ea · Dr gi

(5.40)

Krs = DrDs Π

= DrDs (p ◦ e ◦ g)
. (5.41)

Both expressions can be resolved in two ways: (i) using the direct method (DM),
which evaluates from right to left, or (ii) using the adjoint method (AM), which
evaluates from left to right. Since the operations are associative, the final result
is identical in both cases. However, the two methods might produce different
intermediate results and therefore change the computational effort. The classic
method of formulating isogeometric elements usesDM.We perform the calculation
for DM and AM to make a comparison.
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5 Application in isogeometric analysis

The Direct Method

DM evaluates (5.40) from right to left. This implies that we first compute the
derivatives of e◦g, which corresponds to the derivatives of the strains ewith respect
to the nodal locations x. The intermediate result is the so-called B-matrix of size
|e| × |x |. To facilitate familiarity with the Spivak notation, we also provide the
results in a simplified classical notation.

Fr =
mp

mea
Bar

= Da p · Dr (ea ◦ g)︸      ︷︷      ︸
Bar

(5.42)

Bar =
mea
mgi

mgi

mxr

= Di ea · Dr gi

(5.43)

In the same way, we use (5.24) to calculate the stiffness matrixK. As an additional
intermediate result, we obtain the third order tensor B(2) of size |e| × |x | × |x |.

Krs =
m2p

mea meb
Bar Bbs +

mp

mea
B(2)ars

= DaDb p · Dr (ea ◦ g)︸      ︷︷      ︸
Bar

·Ds (eb ◦ g)︸      ︷︷      ︸
Bbs

+Da p · DrDs (ea ◦ g)︸          ︷︷          ︸
B
(2)
ars

(5.44)

B(2)ars =
m2ea
mgi mgj

mgi

mxr

mgj

mxs
+ mea
mgi

m2gi

mxr mxs

= DiDj ea · Dr gi · Ds gj +Di ea · DrDs gi

(5.45)

The Adjoint Method

AM evaluates (5.40) from left to right. In this case, we first calculate the derivative
of Π̂ = p ◦ ewhich corresponds with the derivatives of the energy with respect to
the components of the geometry g. Since we are computing the derivatives of an
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5.5. Element Formulation using the Direct and Adjoint Methods

energy functional, we interpret this intermediate result mechanically as the core
force vector F̂ of size

��g��.
Fr = F̂i

mgi

mxr

= Di (p ◦ e)︸     ︷︷     ︸
F̂i

·Dr gi (5.46)

F̂i =
mp

mea

mea
mgi

= Da p · Di ea

(5.47)

We compute the stiffness matrixK by applying (5.24) from left to right. In this case,
we interpret the intermediate result as the core stiffness matrix K̂ of size

��g�� × ��g��.
Krs = K̂ij

mgi

mxr

mgj

mxs
+ F̂i

m2gi

mxr mxs

= DiDj (p ◦ e)︸        ︷︷        ︸
K̂ij

·Dr gi · Ds gj +Di (p ◦ e)︸     ︷︷     ︸
F̂i

·DrDs gi (5.48)

K̂ij =
m2p

mea meb

mea
mgi

meb
mgj
+

mp

mea

m2ea
mgi mgj

= DaDb p · Di ea · Dj eb︸                    ︷︷                    ︸
K̂m

+Da p · DiDj ea︸           ︷︷           ︸
K̂g

(5.49)

Note that K̂ can be decomposed into K̂m and K̂g, where K̂m is thematerial stiffness
matrix and K̂g the geometric stiffness matrix of the element. The two components
can be transformed separately toKm andKg according to the geometric descrip-
tion [49, 50]. In stability analysis, this can represent an easy way of extracting
the geometric stiffness of isogeometric elements. However, this aspect will not be
discussed any further in this paper.
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5 Application in isogeometric analysis

A Comparison

In DM and AM, the operations are performed in opposite directions. In both
cases, the derivation rules are applied correctly. Therefore the results are the same
and equal to the analytic solution. The difference between DM and AM results
from the intermediate steps shown in Figure 5.10. Using DM, we compute the
derivatives of different outputs with respect to the same input parameters x. Each
step transforms the output by prepending an additional function. AM computes
the derivatives of the same output Π with respect to different input parameters.
In each step, we transform the input by appending an additional function. This
approach allows a modular structure and reduces the computational effort and
memory consumption.

Modularization DM applies the relation of the nodal coordinates x and the
geometry g as the first step of the computation. It affects all intermediate results. It
is not possible to separate mechanics and geometry. AM applies this relation in the
final step. As F̂ and K̂ are in fact independent of the chosen geometry description,
it is possible to make a clean separation between mechanics and geometry.

Computational Time Computation of the partial derivatives of the subopera-
tions takes the same time for DM as it does for AM. However, the effort required
to apply the chain rule differs. According to (5.25) and (5.26), we can compute the
complexity of the computation of the forceO(•) and the stiffnessO(•2) .

O(DM) ( |e| ·
��g�� · |x | + 1 · |e| · |x |) (5.50)

O(AM) (1 · |e| ·
��g�� + 1 · ��g�� · |x |) (5.51)

O(DM2)

(
|e| ·

��g��2 + ��g��
2

· |x |
2 + |x |
2

+ 1 · |e|
2 + |e|
2

· |x |
2 + |x |
2

)
(5.52)

O(AM2)

(
1 · |e|

2 + |e|
2

·
��g��2 + ��g��

2
+ 1 ·

��g��2 + ��g��
2

· |x |
2 + |x |
2

)
(5.53)
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5 Application in isogeometric analysis

p |x | O(DM) O(AM) O(DM2) O(AM2) M(DM2) M(AM2)

1 6 24 21 87.5% 147 132 89.8% 42 14 33.3%
2 9 36 30 83.3% 315 276 87.6% 90 14 15.6%
3 12 48 39 81.2% 546 474 86.8% 156 14 9.0%
4 15 60 48 80.0% 840 726 86.4% 240 14 5.8%
5 18 72 57 79.2% 1197 1032 86.2% 342 14 4.1%
6 21 84 66 78.6% 1617 1392 86.1% 462 14 3.0%
7 24 96 75 78.1% 2100 1806 86.0% 600 14 2.3%

Table 5.1: Time complexity O and memory consumption M of a truss element (|e| = 1,��g�� = 3) w.r.t. the polynomial degree p

p |x | O(DM) O(AM) O(DM2) O(AM2) M(DM2) M(AM2)

1 12 252 90 35.7% 5382 1764 32.8% 468 54 11.5%
2 27 567 180 31.7% 26 082 8064 30.9% 2268 54 2.4%
3 48 1008 306 30.4% 81 144 24 822 30.6% 7056 54 0.8%
4 75 1575 468 29.7% 196 650 59 976 30.5% 17 100 54 0.3%
5 108 2268 666 29.4% 406 134 123 732 30.5% 35 316 54 0.2%
6 147 3087 900 29.2% 750 582 228 564 30.5% 65 268 54 0.1%
7 192 4032 1170 29.0% 1 278 432 389 214 30.4% 111 168 54 0.05%

Table 5.2: Time complexity O and memory consumption M of a membrane element
(|e| = 3,

��g�� = 6) w.r.t. the polynomial degree p in both parameter directions.

p |x | O(DM) O(AM) O(DM2) O(AM2) M(DM2) M(AM2)

1 24 1440 270 18.8% 87 300 14 445 16.5% 3600 132 3.7%
2 81 4860 783 16.1% 966 411 150 390 15.6% 39 852 132 0.3%
3 192 11 520 1782 15.5% 5 391 648 834 705 15.5% 222 336 132 0.06%
4 375 22 500 3429 15.2% 20 515 500 3 173 445 15.5% 846 000 132 0.016%
5 648 38 880 5886 15.1% 61 190 316 9 463 365 15.5% 2 523 312 132 0.005%
6 1029 61 740 9315 15.1% 154 211 085 23 848 020 15.5% 6 359 220 132 0.002%
7 1536 92 160 13 878 15.1% 343 501 056 53 119 665 15.5% 14 164 992 132 0.001%

Table 5.3: Time complexity O and memory consumptionM of a volume element (|e| = 6,��g�� = 9) w.r.t. the polynomial degree p in all three parameter directions.
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Memory Consumption We now compare the number of intermediate results
for DM and AM. In both cases, we assume that the memory for the final results
is buffered by the FE kernel and should not be considered. An efficient imple-
mentation of DM usually takes advantage of the sparse pattern of D g or D2 g
respectively (gray cells in Figure 5.11). Therefore, we only need to storeD (e ◦ g) (x)
and D2 (e ◦ g) (x), which are M(DM2) = |e| × |x | + |e| × |x |2 values. For AM,
we need to store M(AM2) = |e| +

��g�� + |e|2 + ��g��2 values. Note that M(AM2) is
independent of the polynomial degree. This enables more efficient implementation
without any dynamic allocation of memory. By using the symmetry of the second
order derivative, the memory demand can be further reduced. In practice, however,
the entire matrix is often created to simplify calculation using classic matrix indices.

The time complexity and memory consumption for the computation of a truss and
a membrane element with respect to the polynomial degree are shown in Table 5.1,
Table 5.2 and Figure 5.11. Table 5.3 shows that the benefits of the adjoint method
are even greater for a volume element. However, the scope of this paper does not
extend to investigating volume elements.

5.6 Structural Elements

In this section, we present the computation of F̂ and K̂ for the following types
of isogeometric elements: a truss [27], a Bernoulli beam [28], a membrane [27]
and a Kirchhoff shell [29]. We focus on the formulation using the adjoint method
described in Section 5.5. For a detailed description of the mechanical behavior, see
the relevant publications. We compute F̂ and K̂ by evaluating the derivatives of Π̂
with respect to g. For the purpose of generalization, we recompose Π̂ as

Π̂(g) = (p ◦ e) (g) = (P ◦ d) (g), (5.54)

where P =
1
2
Wab da db. (5.55)

This recomposition has to be equivalent to the original formulation in the sense
that it has the same input g and outputΠ. Therefore, we chooseW and d in the
appropriate manner. As long as |e| = |d|, the observations in Section 5.5 remain
valid. We accumulate all constant terms as weightsWab, whereWab = Wba. W
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Figure 5.12: Computational graph of (5.55) for |d| = 1 (a) and |d| = 3 (b).

includes the constant integration weight α from (5.9). The partial derivatives of P
are then simplified to:

DP =
mP

mda
= Wab db D2 P =

mP

mda mdb
= Wab (5.56)

Figure 5.12 shows the partial derivatives for |d| = 1 and |d| = 3, respectively. For
each type of element, we only need to define W and d to compute the internal
energy from a given geometry g using (5.54). Two different approaches are used to
compute F̂ and K̂: for the truss and membrane elements, we perform a complete
manual analysis of the computational graph. For the beam and the shell element,
we analyze parts of the graph manually and use algorithmic differentiation with
hyper-dual numbers for branches which are too complex for manual optimization.
In the following sections, aα denotes a base vector in the actual configuration (de-
formed), whileAα denotes the same base vector in the reference configuration (un-
deformed). The dot product can be simplified using aγ ·aδ = aγδ andAγ ·Aδ = Aγδ .
We assume that the reference configuration is constant.

Truss

To describe the mechanics of a simple truss or cable, we only need to evaluate the
geometry for the basis vector a1. In three-dimensional space, a1 consists of three
components, a1x , a1y and a1z, which are collected in g:

93



5 Application in isogeometric analysis

g = (a1x , a1y, a1z︸      ︷︷      ︸
a1

) (5.57)

We will now apply the Green-Lagrange strain measurement εGL. The material
stiffnessD is described by the Young’s modulus E and the area of the cross-section
A. By grouping the constant terms inW we obtain

d = (a11 − A11︸    ︷︷    ︸
d1

) (5.58)

W11 =
1
4
T11 D11 T11 α D11 = EA T11 =

1
A11

(5.59)

whereT transforms the material stiffnessD into parameter space. Correctness can
be checked by evaluating the composition, which results in the familiar formula for
the truss’s internal energy.

Π̂ = P ◦ d =
1
2

1
4

1
A11

EA
1
A11

α︸             ︷︷             ︸
W11

(a11 − A11︸    ︷︷    ︸
d1

)2 = 1
2
EA( a11 − A11

2A11︸    ︷︷    ︸
εGL

)2 α (5.60)

The partial derivatives of dwith respect to g are given by:

Dd1 =
(
2 a1x 2 a1y 2 a1z

)
(5.61)

D2 d1 =
©«
2 0 0

2 0
sym. 2

ª®¬ (5.62)

This corresponds to the computational graph already shown in Figure 5.9b. The
partial derivatives of Π̂ and d are shown in the computational graph in Figure 5.13
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d1 W11
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Figure 5.13: Computational graph of a truss element. Suboperations: p (red), d1 = a11 − A11
(blue)

which combines Figure 5.9b and Figure 5.12a. Using (5.23) and (5.24), we obtain F̂
and K̂. This corresponds to the load vector and stiffness matrix of a generic truss
of length α and base vector a1 (Figure 5.14a). In Section 5.7, we transform these
results into the appropriate geometry description. This allows us to generate a
classic nonlinear FE truss (Section 5.7), a simple isogeometric cable (Section 5.7),
and an embedded cable (Section 5.7).

Membrane

The geometry of the membrane element is described by a surface. This gives us the
two base vectors a1 and a2, which means that g consists of 6 components.

g = (a1x , a1y, a1z︸      ︷︷      ︸
a1

, a2x , a2y, a2z︸       ︷︷       ︸
a2

) (5.63)

For a membrane, we consider deformations in the direction of the base vectors (d1
and d2). However, shear deformation can also occur (d3). This leads to the three
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Figure 5.14: Force F̂ and Stiffness K̂ of (a) a generic truss of length α and base vector a1 is
transformed to (b) a classic linear truss element, (c) an IGA cable element, (d) an embedded
IGA cable element. In the same way (f) a generic membrane element of area α and base
vectors a1 and a2 is transformed to (e) a classic linear membrane element and (d) an IGA
membrane element. The base vectors (blue) are controlled by different parameters (red).
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components of d.

d = (a11 − A11︸    ︷︷    ︸
d1

, a22 − A22︸     ︷︷     ︸
d2

, a12 − A12︸    ︷︷    ︸
d3

) (5.64)

The weights are computed with Young’s modulus E, Poisson’s ratio ν, and thickness
t. The transformation matrixT according to (29) in [27] transforms the material
stiffnessD from the local Cartesian space eγ into the curvilinear spaceAα. It takes
into account that the shear deformation is symmetrical. Here Aα denotes the
contravariant base vectors ofAα.

tγδ
αβ = (eγ · Aα) (Aβ · eδ) (5.65)

(Tab) =
©«
t11

11 t11
22 t11

12 + t1121
t22

11 t22
22 t22

12 + t2221
2 t1211 2 t1222 2 (t1212 + t1221)

ª®¬ (5.66)

The partial derivatives of d1 and d2 are computed as in (5.62). For d3 we obtain

Dd3 =
(
a2x a2y a2z a1x a1y a1z

)
(5.67)

D2 d3 =

©«

0 0 0 1 0 0
0 0 0 1 0

0 0 0 1
0 0 0

sym. 0 0
0

ª®®®®®®®¬
(5.68)

which corresponds to Figure 5.9a. The partial derivatives are visualized by the com-
putational graph in Figure 5.15, which combines Figure 5.9 and Figure 5.12b. It shows
that the deformations d1 and d2 only have connections to a1 and a2, respectively.
In contrast, d3 represents the shear deformation and connects the two base vectors.
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Wad =
1
4
Tab Dbc Tcd α Dad =

E t

1 − ν2
©«
1 ν 0

1 0
sym. 1−ν

2

ª®¬ 4 (5.69)

By settingW13 = W23 = W33 = 0, we would remove all paths from Π̂ over d3.
This would result in a surface element without shear stiffness.
We obtain F̂ and K̂ for a generic membrane element of area α and base vectors a1
and a2 (Figure 5.14f). In Section 5.7, these results are transformed according to the
respective geometry description of a1 and a2. Accordingly, we can generate a classic
triangular FE membrane element (Section 5.7) or a simple isogeometric membrane
(Section 5.7).

Beam

The isogeometric Bernoulli beam extends the truss element by adding terms for
bending and torsion. The extensional strain energy can be taken from the truss
element. To compute the energy arising from bending and torsion, we need the
base vectors a1 and a1,1 as well as the torsion angleφ and its derivativeφ,1. Therefore,
g consists of 8 components.

g = (a1x , a1y, a1z︸      ︷︷      ︸
a1

, a1,1x , a1,1y, a1,1z︸           ︷︷           ︸
a1,1

, φ, φ,1) (5.70)

We now introduce an additional layer of intermediate results ḡ, which consists of the
base vectors a1, a1,1, a2,1 and a3,1, which extends the compositionΠ = p ◦ d ◦ ḡ ◦ g.

ḡ = (a1x , a1y, a1z︸      ︷︷      ︸
a1

, a1,1x , a1,1y, a1,1z︸           ︷︷           ︸
a1,1

, a2,1x , a2,1y, a2,1z︸           ︷︷           ︸
a2,1

, a3,1x , a3,1y, a3,1z︸           ︷︷           ︸
a3,1

) (5.71)

According to [28], the relation between g and ḡ contains a transformation of the
reference base vectors using the Euler-Rodriguez formula. For a detailed explana-
tion, please refer to the publication on the beam. This transformation renders the

4Incorrect indices from the original publication were corrected for the thesis.
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Figure 5.15: Computational graph of a membrane element. Suboperations: p (red), d1 =
a11 − A11 (blue), d2 = a22 − A22 (orange), d3 = a12 − A12 (green).

computation of the derivatives very complex and leads to a dense computational
graph. A detailed exploration of the graph can slightly increase the performance
but leads to a more complex implementation. At this point, we have to make a
trade-off between usability and performance. We therefore forego a manual ana-
lysis of the graph between these two layers and apply algorithmic differentiation
with hyper-dual numbers to generate and evaluate these branches of the graph
automatically.
For the remaining branches, we canuse the samepattern as for the previous elements.
In this case, d consists of three components arising from the bending deformation
around the two axes of the cross-section (d1 and d2) and the deformation due to
torsion (d3).
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5 Application in isogeometric analysis

Figure 5.16: Computational graph of a beam element. Suboperations: p (red), d1 = b2 − B2
(blue), d2 = b3 − B3 (green), d3 = c2 − C2 (orange).

d = (b2 − B2︸  ︷︷  ︸
d1

, b3 − B3︸  ︷︷  ︸
d2

, c2 − C2︸  ︷︷  ︸
d3

) (5.72)

Here bα = aα,1 · a1 and c2 = a3,1 · a2. The material stiffnessD depends on Young’s
modulus E, the shear modulusG, and the moments of inertia I , Iy and Iz.
The graph in Figure 5.16 represents the computation of F̄ and K̄. By applying
the additional transformation from ḡ to g, we obtain F̂ and K̂. These results are
then transformed according to Section 5.7 to compute F andK of the IGA beam
element.
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Wad = Tab Dbc Tcd α Dab =
©«
EIz 0 0

EIy 0
sym. GI

ª®¬ Tab =
©«

1
A11

0 0
0 1

A11
0

0 0 1√
A11

ª®®¬ 5

(5.73)

Shell

The nonlinear Kirchhoff-Love shell adds further bending terms to the membrane
element. The extensional strain energy can be taken from the membrane element.
To compute the bending and twisting energy, we need the base vectors a1, a2, a1,1,
a1,2 and a2,2. Thus g contains a total of 15 input parameters, while d comprises three
components. We introduce an additional layer of parameters ḡ which contains a3,
a1,1, a1,2 and a2,2.

g = (a1x , a1y, a1z︸      ︷︷      ︸
a1

, a2x , a2y, a2z︸       ︷︷       ︸
a2

, a1,1x , a1,1y, a1,1z︸           ︷︷           ︸
a1,1

, a1,2x , a1,2y, a1,2z︸           ︷︷           ︸
a1,2

, a2,2x , a2,2y, a2,2z︸            ︷︷            ︸
a2,2

)

(5.74)

ḡ = (a3x , a3y, a3z︸       ︷︷       ︸
a3

, a1,1x , a1,1y, a1,1z︸           ︷︷           ︸
a1,1

, a1,2x , a1,2y, a1,2z︸           ︷︷           ︸
a1,2

, a2,2x , a2,2y, a2,2z︸            ︷︷            ︸
a2,2

) (5.75)

d = (b11 − B11︸   ︷︷   ︸
d1

, b22 − B22︸    ︷︷    ︸
d2

, b12 − B12︸    ︷︷    ︸
d3

) (5.76)

Here bαβ = aα,β · a3, where a3 is a unit vector perpendicular to a1 and a2. This
relation connects the parameters of layer g and ḡ.

a3 =
a1 × a2
‖a1 × a2‖

. (5.77)

5Incorrect indices from the original publication were corrected for the thesis.
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Figure 5.17: Computational graph of a shell element. Suboperations: p (red), d1 = a11 − A11
(blue), d2 = a22 − A22 (green), d3 = a12 − A12 (orange).

For the sake of simplicity, we use algorithmic differentiation with hyper-dual num-
bers to create the graph between ḡ and g. For the remaining branches, we use the
same pattern as for the other elements. To determine the required weights, we need
the material stiffness for bendingD. The transformation matrixT is the same as
for the membrane element.
Figure 5.17 shows the graph of the computation of F̄ and K̄. This corresponds
to load and stiffness with respect to ḡ. By transforming the results from ḡ to g,
we obtain F̂ and K̂. Finally, we compute F andK for the IGA shell elements by
applying the transformation coming from the geometric description (Section 5.7).
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Wab =
1
4
Tab Dab Tba α Dab =

E t3

12 (1 − ν2)
©«
1 ν 0

1 0
sym. 1−ν

2

ª®¬ 6 (5.78)

Validation

In Section 5.5 it was shown analytically that AM leads to the same result as DM. To
validate the implementation of the adjoint formulations, we compare the results
with the research software Carat++, in which the isogeometric elements presented
were previously implemented according to DM, using a classic manual approach.
For validation, the load vector and stiffness matrix for the AM and DM were
compared numerically for the two examples shown in Figure 5.22 and 5.23. Both
produce the same results.

5.7 Evaluate Geometry

In this section, we consider different ways of calculating the basis vectors aα used in
Section 5.6. We derive the partial derivatives for the individual cases. This allows us
to transform F̂ and K̂ to different geometry descriptions according to (5.46) and
(5.48).

A Simple Line

In this case, the base vector a1 is described as the connection of two points P1 =

(x1, y1, z1) and P2 = (x2, y2, z2), as shown in Figure 5.14b. The control paramet-
ers are given by x = (x1, y1, z1, x2, y2, z2), while the base vector results from the
difference between the coordinates.

a1 = (a1x , a1y, a1z) = P2 − P1 = (x2 − x1, y2 − y1, z2 − z1) = g(x) (5.79)

To perform the transformation into the geometry space according to Section 5.5 we
need the partial derivatives of g.

6Incorrect indices from the original publication were corrected for the thesis.
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D g =

(
mgi

mxr

)
=

©«
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

ª®¬ D2 g =

(
m2gi

mxr mxs

)
= 0

(5.80)

This enables us to transform F̂ and K̂ from Section 5.6 to F andK (Figure 5.14a to
Figure 5.14b). For the length of influence α, we choose the real geometric distance
between P1 and P2. This results in a classic truss element whose geometry is de-
scribed by a simple line. As described in Section 5.4, we can use the sparse structure
of the partial derivatives to eliminate paths. For example all second order paths
vanish because all second order partial derivatives are zero. As a result, the number
of operations is significantly reduced.

A Simple Triangle

As shown in Figure 5.14f, the base vectors a1 and a2 define a triangle (P1,P2,P3),
such that a1 = P2 − P1 and a2 = P3 − P1. The coordinates of the points P are the
control parameters x = (x1, y1, z1, x2, y2, z2, x3, y3, z4).

D g =

©«

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
−1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1

ª®®®®®®®¬
D2 g =

(
m2gi

mxr mxs

)
= 0

(5.81)

The partial derivatives allow us to transform F̂ and K̂ from Section 5.6 to F andK
of a classic triangular membrane element (Figure 5.14f to Figure 5.14e). The area of
influence α is given by the area of the triangle.

Classic NURBS Geometries

In the simplest case, the shape of an isogeometric element is described by the
NURBS function (5.18). The geometry of a cable is described by a NURBS curve
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(Figure 5.14c). In this case, x consists of the coordinates of the control points P̄i ,
where

��P̄�� depends on the polynomial degree.

x = (x1, y1, z1, x2, y2, z2 . . . z��P̄��) (5.82)

a1 = (a1x , a1y, a1z) = Ri,1 Pi = g(x) (5.83)

The partial derivatives

D a1 =
©«
R1,1 0 0 R2,1 0 0 . . . 0
0 R1,1 0 0 R2,1 0 . . . 0
0 0 R1,1 0 0 R2,1 . . . R��P̄��,1

ª®¬
D2 a1 = 0

(5.84)

enable us to transform F̂ and K̂ from Section 5.6 to F and K of an IGA cable
(Figure 5.14a to Figure 5.14c). For IGA elements, we perform numerical integration
according to Section 5.2. We choose the length of influence α according to the
weight of an integration point. Figure 5.18 shows the computational graph for the
base vector a1. Computation of other basis vectors gives us the same graph but with
different weights resulting from the corresponding basis functions. The extension
to the second base vector a2 gives us the transformation for the IGA membrane
element (Figure 5.14f to Figure 5.14d).

Embedded NURBS Geometries

As an example of embedded geometries, we consider a curve embedded into a surface.
Embedded curves are used, for instance, for the description of edge cables [27].
The shape of the embedded curve c(ξ ) results from the composition of a spatial
NURBS surface s(ξ̂ , η̂) and a planar curve ĉ(ξ ) = (ξ̂ , η̂) in the parameter space of s
(Figure 5.19). According to (5.13) the shape functions R̂ of the surface are evaluated
for the parameters ξ̂ , η̂. Therefore, c can be described as a linear combination of the
basis functionsRi = R̂i and the control points Pi of the surface.
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Figure 5.18: Computational graph of the base vector a1 of a NURBS geometry with four
control points. The pattern of edges is repeated for each additional control point.

c = s ◦ (ξ̂ , η̂)
= R̂i (ξ̂ , η̂) Pi

= Ri (ξ ) Pi

(5.85)

The base vector a1 which is needed for the formulation of an embedded cable is
given by the first derivative of c. It can be described by a linear combination of the
first derivatives of the shape functionsRi,1 = ξ ′ R̂i,1 + η′ R̂i,2 and the control points
Pi .

a1 = D c = ξ̂ ′ R̂i,1 (ξ̂ , η̂) Pi + η̂′ R̂i,2 (ξ̂ , η̂) Pi

= (ξ̂ ′ R̂i,1 (ξ̂ , η̂) + η̂′ R̂i,2 (ξ̂ , η̂)) Pi

= Ri,1 (ξ ) Pi

(5.86)
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Figure 5.19: A curve (blue) embedded in a surface (gray). The curve parameter ξ is first
transformed to the parameter space of the surface by ĉ and then to the geometry space by
s. The location of the point in geometry space is controlled by a subset of the the control
points of the surface (red)

Computation of an embedded curve leads to the same computational graph as a
classic NURBS curve (Figure 5.18). It is only necessary to change the weights accord-
ing to the basis functions (5.86). Note that a more complex geometry description
can result in a different computational graph. In such a case, it is not sufficient
simply to replace the weights of the edges.
Now that we have the appropriate weights, we are able to transform F̂ and K̂ from
Section 5.6 to F andK of an embedded IGA cable (Figure 5.14a to Figure 5.14d).

5.8 Coupling Conditions

We now return to the various coupling scenarios shown in Figure 5.1. The distance
between two points a and b is given by the vector d = b − a. To minimize the
length of d, we formulate the quadratic penalty functional according to Section 5.2.

g = (xa, ya, za︸   ︷︷   ︸
a

, xb, yb, zb︸   ︷︷   ︸
b

) (5.87)

d = (xb − xa, yb − ya, zb − za) (5.88)

P =
1
2
w (d · d) (5.89)
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Note that (5.89) can be seen as a special case of (5.55), whereWab = w δab and δab is
theKronecker delta. The partial derivatives are given by:

DP = F̂ = w
(
xa − xb ya − yb za − zb xb − xa yb − ya zb − za

)
(5.90)

D2 P = K̂ = w

©«

1 0 0 −1 0 0
1 0 0 −1 0

1 0 0 −1
1 0 0

sym. 1 0
1

ª®®®®®®®¬
(5.91)

The corresponding computational graph is shown in Figure 5.20. This reveals an
analogy to the force density method [69]. The force density method allows form
finding of prestressed cable nets. The force density q = S/L prescribes a constant
ratio of internal force S and reference length L of the individual cables. If we
choose w = q, then F̂ and K̂ correspond to the load vector and stiffness matrix of a
force density element. This relation makes sense considering that the force density
method searches for a minimum path network by minimizing the lengths of the
individual cables.
Transfomation to F andK is performed by applying the chain rule according to the
geometric description g(x). Various geometric descriptions of a and b are shown in
Figure 5.1. Using different transformations in the geometry space, we can generate
all the illustrated coupling scenarios from a simple force density element.

Minimizing the Distance Between Two Nodes

In this case, the coordinates of a = (xa, ya, za) and b = (xb, yb, zb) are controlled ex-
plicitly (Figure 5.1a). The control parameters are given by x = (xa, ya, za, xb, yb, zb).
For the partial derivatives, we obtainDg = I andD2 g = 0, which eliminates the
transformation from g to x. This leads to F = F̂ andK = K̂, which corresponds to
a classic computation using the force density method.
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Figure 5.20: Computational graph of a force density element

Coupling of Two Points Embedded in NURBS

For the coupling, a = ca (ta) and b = cb (tb) are given implicitly by NURBS
functions (Figure 5.1b). The location of a and b is controlled by the location of
the control points Pi . The partial derivatives of g are given by (5.84). A possible
solution for xwhere a = b is shown in Figure 5.21a. Such constraints can be used to
couple trimmed NURBS geometries along the common edges.

Sliding Points

By choosing the curve parameters ta and tb as design parameters instead of the
control points, we can implement sliding conditions [47] as shown in Figure 5.1c.
For the geometric transformation, we compute the partial deivatives of g using
FAD. A possible result is shown in Figure 5.21b. Note that in this case, the distance
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Figure 5.21: Different scenarios in which the distance between two points are minimized.
Starting from an initial geometry (gray), the coupling constraints are not yet fulfilled,
the control parameters (blue) are modified using the Newton-Raphson algorithm. The
computed displacements (green) yield the final geometry (black), in which the distance
between the two points is minimized (red).

between a and b is not zero but minimized as a least-square solution.

Coupling of Tangents and Normals

Instead of minimizing the distance between two points, it is also possible to min-
imize the difference between two vectors. This can also be done by transforming
(5.90) and (5.91). In the case of Figure 5.1d, we write a = Ta and b = Tb, where
the tangents Ta and Tb are controlled by the locations of the control points Pi .
This can be used to achieve G1 continuity similar to [32, 34]. A possible solution is
shown in Figure 5.21c. For the sake of simplicity, we use algorithmic differentiation
with hyper-dual numbers to calculate the partial derivatives of g.
In the same way, it is possible to couple a tangent with a normal vector (Figure 5.1e).
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In this case, we choose a = Ta and b = Nb. A solution is shown in Figure 5.21d.

5.9 Comparison with a Classic Implementation

The adjointmethod can be used in existing FE frameworks as a drop-in replacement.
In this section we compare the performance of the adjoint method with that of an
existing and established implementation within the research software Carat++. For
this purposes, we will choose two examples using beam and shell elements.

Example 1 We perform a classic nonlinear structural analysis using an arc-shaped
beam (Figure 5.22). The geometry of the arc corresponds to a semicircle with a
radiusR = 5. It is modeledwith aNURBS curve of polynomial degree p = 4 and 34
control points. We choose a rectangular cross sectionwith an areaA = 0.1×0.1. For
the material parameters we choose E = 21 · 107 andG = E/2. The fixed support
(A) is rotated about the z-axis in each time step by π/20 = 9° using displacement
control. To model the clamping at each end and apply the rotation, we use vector
couplings (see Section 5.8) with a weight of w = 1012. By executing 40 time steps,
we rotate (A) by a total of 360°. The support on the right can now slide along the
x-axis. We show the deformations for the rotation angles 0°, 90°, 180°, 270°, 315°
and 360°. The example is inspired from a blog post by Daniel Piker7.

Example 2 We apply a discrete displacement field to transform a CAD model
(Figure 5.23). The displacement field consists of of 8859 vectors and is the result
of a shape optimization using vertex morphing. IGA displacement couplings are
applied (weight wfield = 1) to transfer the displacements to the CAD geometry.
The CAD geometry consists of 9 trimmed NURBS surfaces of polynomial degree
p = 4 in each direction. To maintain geometric continuity at the edges, we apply
coupling conditions to the displacements and normal vectors (weightswdisp = 1 and
wnorm = 10). To keep the surfaces as smooth as possible, we apply elastic stiffness
in the form of an IGA shell (thickness t = 0.01, E = 1, ν = 0). To improve the con-
ditioning of the problem, we apply a simple regularization term by adding a small
constant value β = 10−8 to the diagonal entries of the hessian [7]. In addition, we
apply automatic weight scaling. Details of the methodology can be found in [70].

7https://www.grasshopper3d.com/group/kangaroo/forum/topics/fun-with-beams, accessed Novem-
ber 15, 2020
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Figure 5.22: Benchmark using the IGA beam element. The rotation of (A) around the z-axis
is increased continuously while (B) can slide along the x-axis.

Figure 5.23 shows the initial CAD geometry with the displacement field and the
resulting geometry after three iterations.

To compare the performance, we vary the polynomial degree of the geometries and
measure the duration for calculating F andK at a single integration point. Out of
10000 measurements we determine the arithmetic mean. As shown in Figure 5.24,
the performance of the adjoint method is significally higher for the beam and for
the shell. Note that no implementation was performed by professional software
developers. However, the comparison shows that the adjoint method can lead to a
significant increase in performance within a research code.

5.10 Conclusion and Outlook

For a consistent implementation of finite elements, the load vector and stiffnessmat-
rix are obtained from the first and second order derivatives of the energy functional.
These derivatives can be computed using either the direct or adjoint method. In this
paper, the two methods were compared for the implementation of various geomet-
rical nonlinear isogeometric elements and coupling conditions using the penalty
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Figure 5.23: Benchmark using the IGA shell element. Coupling conditions are used to apply
a displacement field to the geometry. At the same time, couplings ensure continuity at the
edges.

method. The procedures of the direct and adjoint methods can be automated using
algorithmic differentiation. This was further optimized by way of a detailed analysis
of the computational graph for common mechanical and geometrical operations.
The computational efforts were compared by analyzing the number of required
operations. In addition, the performance of the adjoint methodwas compared with
an existing, classic implementation of the direct method.
It turns out that the adjoint method has two advantages: (i) it leads to a core-
congruential formulation that allows a clean separation into mechanical and geo-
metrical components, and (ii) it reduces the influence of the polynomial degree of
the geometry on the computational effort. This in turn improves theperformance of
the simulation. Both of these aspects are particularly important for CAD-integrated
isogeometric analysis. The core-congruential formulation enables a modular imple-
mentation of IGA, in which the samemechanical properties are applied to different
types of geometry. In this paper, we focus on linear and NURBS-based geometries.
The technique can also be used to support additional geometry types, such as sub-
division surfaces. The gain in performance may be used to achieve a higher level of
interactivity for CAD-integrated analysis tools. This would be especially useful in
early design stages, in which the influence of different parameters on the structure
is studied. By extending the elements to account for prestress, the method may also
show this advantage in the case of interactive form finding.
The method was applied to classic elastic curve and surface elements based on
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IGA shell

p = 3

p = 2

p = 4

p = 6

p = 7

p = 5

 13.37
 3.50 (26%)

 39.51
 9.17 (23%)

 100.00
 21.11 (21%)

 199.68
 42.78 (21%)
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 132.96 (20%)

CARAT++ Adjoint Method

IGA beam
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 100.00
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 6.67 (4%)

 235.30
 7.00 (3%)

Figure 5.24: Comparison of the computation time for evaluating a single integration
point of a beam and a shell element (less is better). We choose p = 4 as a reference value.
Environment: MSVC 19.27, Windows 10.0.19041, Intel Xeon CPU E3-1280 v6, 3.90GHz, 1
CPU, 8 logical and 4 physical cores
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Bernoulli and Kirchhoff-Love formulations. It should be found to be easily extend-
able to isogeometric solid elements or Reissner-Mindlin formulations based on
energy functionals. In conjunction with a hierarchical approach [31], modularity
can be further improved.
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Acknowledgments

Extended Catmull-Clark subdivision surfaces are implemented within
a CAD-integrated analysis workflow for form-finding by using the updated
reference strategy. In this context, form-finding determines the shape of a
structure that is in equilibrium for a predefined stress state. Following the
principles of isogeometric analysis, the geometry for the form-finding is
described by the control mesh of the subdivision surface. Using the subdi-
vision scheme, the coarse control mesh is recursively refined to a smooth
limit surface. The shape functions are obtained from the refinement process
by applying algorithmic differentiation to the subdivision algorithm. This
approach also supports sharp features like creases and corners. In this way,
the modeling functionalities of common CAD environments are covered
which allows seamless integration of the analysis into the CAD system. A
core-congruential element formulation enables the efficient combination
of mechanical properties with different geometric discretizations. This al-
lows an existing framework to be extended easily with subdivision surfaces.
Within this work, form-finding is applied to prestressed cable and mem-
brane structures. Weak boundary conditions allow the modeling of oriented
edge supports. The CAD-integrated implementation within the framework
of a visual programming language is outlined. Using selected numerical
examples, the method is demonstrated and verified.

6.1 Introduction

Membranes and cables allow the construction of impressive and at the same time
lightweight structures. A fundamental characteristic of such designs is the special
load transfer. The load is absorbed by tensile forces alone without any compression
or bending forces, which allows a particularly slender design. These properties
result in a strict relationship between form and forces. Inevitably, the design of
membrane structures must take into account mechanical considerations. Form-
finding becomes an integral part of the design process. The goal is to find an
initially unknown geometry that is in equilibrium for a predefined internal stress
state. Mechanical and geometrical conditions must be considered simultaneously.
Due to the strong interaction, several iteration loops are usually necessary to find an
appropriate design. This process can be enhanced by an interactive CAD-integrated
implementation of form-finding.
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The interactions of form and force are reflected in the digital tools: computer-aided
design (CAD) is used to model the geometry while computer-aided engineering
(CAE) is used to model the mechanical behavior usually based on the finite element
method (FEM). For closer integration of these disciplines, isogeometric analysis
(IGA) is a useful tool. The geometric description of the CAD is taken over for
the analysis by FEM, which enables a fluent exchange of inputs and outputs. This
approach is ideal for integrating mechanical analysis directly into CAD environ-
ments and accelerating the design process of mechanical structures. TheAnalysis
in CAD (AiCAD) philosophy was introduced in [32, 27]. The focus was on the
use of non-uniform rational B-Splines (NURBS) which are widely used in CAD
for the modeling of free-form surfaces. More recently, subdivision surfaces (SubDs)
have become more important in the field of architectural design and are supported
by common CAD packages. CAD-integrated analysis tools must therefore be able
to support this type of geometry.
This paper presents a concept to implement form-finding for combined membrane
and cable structures based on Catmull-Clark surfaces within a CAD-integrated IGA
environment. A comprehensive toolbox for CAD-integrated structural analysis
is obtained from the combination of different mechanical elements (e.g., cables,
membranes, beams, shells) and geometric constraints (e.g., support and coupling
conditions)with various geometric discretizations (e.g., meshes, NURBS, or SubDs)
and by using different analysis types (e.g., structural analysis, form-finding). To
minimize the implementation effort, a modular approach is proposed which reuses
existing components from NURBS-based IGA. The updated reference strategy is
used for the form-finding. It is based on continuum mechanics and can be imple-
mented within a classical finite element workflow. In [71], the authors describe a
modular and computationally efficient framework for IGA by combining mechan-
ical and geometric building blocks. Within this paper, this concept is extended by
two aspects: (i) the extension of the mechanical building blocks (core elements) for
prestressed structures which enables form-finding, and (ii) new geometric building
blocks (geometric transformation) to discretize structures by extended Catmull-
Clark SubDs.
In combination with the existing blocks, this results in a wide range of applications.
Figure 6.1 shows the form-finding of a simple tent structure based on trimmed
NURBS multipatches and SubDs. In both cases, the same core elements for mem-
branes and cables are combined with the corresponding geometric descriptions for
surfaces and edges.
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Trimmed surfaces

Embedded cables

Embedded supports
Edge coupling

Cables match edges

n-gon faces

Edges share vertices
Supports match vertices

Figure 6.1: A membrane structure modelled with trimmed NURBS multipaches (left) and
SubDs (right).

The implementation takes advantage of algorithmic differentiation (AD). AD is
applied to the energy functional to compute the required forces and stiffnesses.
The same technique is used to determine the shape functions for the SubDs and
simplifies the implementation process for extended Catmull-Clark surfaces.
Section 6.2 provides an overview of the existing work related to isogeometric form-
finding. Themechanically-driven process of form-finding is described in Section 6.3.
This section introduces the prestressed core elements for cables and membranes
and conditions for couplings and oriented supports. In Section 6.4, the geometric
transformation is discussed which allows the transfer of the mechanical properties
to SubDs. The extended subdivision rules are described and the computation of the
required shape functions and the numerical integration process are demonstrated.
Section 6.5 provides an overview of the proposedCAD-integrated analysis workflow.
Within Section 6.6 the method is demonstrated and verified by several examples.

6.2 Related research

Klaus Linkwitz andHans-Jörg Scheck provided the foundation for numerical form-
finding of prestressed cable structures [72, 69] based on the force density method
(FDM). The method was used to design the roof structure of the Olympic Stadium
in Munich, in 1972. The FDM was generalized to the updated reference strategy
(URS) by identifying the similarity between force density and the second Piola-
Kirchhoff stress [73]. This allows the consistent extension to membrane structures.
The geometry of the membranes and cables was described by line segments and
triangles. The principles of FDM and URS are explained in Section 6.3.
URS was transferred to smooth NURBS-based geometries [27], based on the idea
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of isogeometric analysis (IGA). NURBS do not generally interpolate the control
points, which is why boundary and coupling conditions usually cannot be modeled
directly via the FE nodes. The isogeometric B-Rep analysis (IBRA), as introduced
by [32], solves this problem by integrating trimming and weak coupling conditions.
Mechanical properties are applied to points and curves which are embedded on
the surface to model supports, coupling conditions, and edge cables. In [71], a
modular and efficient framework for the implementation of CAD-integrated IGA
was introduced. The usage of a core-congruential formulation [50, 49] allows
the separation of the element formulation into a mechanical core element and
a geometrical transformation. Mechanical properties can be applied to discrete
meshes, NURBS, and other discretizations in a modular way.
The Catmull-Clark algorithm is a subdivision scheme introduced by EdwinCatmull
and Jim Clark in 1978 [74]. Other than the Loop scheme [75], it is the most com-
monly used subdivision scheme and is available in a number of geometric modeling
systems for architectural and engineering design. It represents the generalization
of the subdivision process of uniform B-splines to control meshes with arbitrary
topology. This refinement is an iterative process. In theory, an infinite number of
refinement steps are necessary to obtain the smooth limit surface (Figure 6.2). To
address this practical issue, [76] proposes an elegant approach by using an eigen-
value decomposition of the subdivision matrix. However, this approach requires a
control mesh where each face is quadrilateral and contains only one extraordinary
vertex. The classical Catmull-Clark subdivision scheme was extended to support
boundary edges, sharp creases, and corners. In this work, a subset of the extensions
from [77] is used which is currently supported by the CAD tool Rhino1.
Loop subdivision surfaces were used to describe the geometry of finite shell ele-
ments in [78, 79, 80]. The support of extended Loop subdivision surfaces was
shown in [81]. Isogeometric structural analysis based on Catmull-Clark subdivision
was performed for solids [82] and shells [83]. A comprehensive compendium
of isogeometric analysis based on SubDs is provided by [84, 85]. An advanced
numerical integration scheme was presented in [86]. The generation of minimal
subdivision surfaces was studied for the Loop [87, 88, 89] and the Catmull-Clark
scheme [90, 91, 92]. In this context, minimum surfaces are generated from geomet-
ric considerations by iteratively minimizing the mean curvature flow.

1Rhinoceros 3D by Robert McNeel & Associates. Version 7 SR17 for Windows. ht-
tps://www.rhino3d.com
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Level 0 = control mesh Level 1 Level 2 Level ∞ = limit surface
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Figure 6.2: Refining a cube with the Catmull-Clark subdivision scheme.

For the CAD-integration of numerical analysis, there are two main approaches: a
classic pre- and post-processing toolchain and a fully CAD-integrated approach.
Pre- and post-processors that are embedded in the CAD are available for com-
mercial analysis tools e.g., Sofistik2 and RFEM 3. This approach was also used for
TeDA/Kiwi!3d4 which acts as a pre-/post-processor for the NURBS-based IGA
solver CARAT++4. This has the advantage, that an existing analysis package can
be used. The data interface is usually realized by writing input files and reading
output files. While it is easy to exchange data using such an interface, it is not
possible to exchange functionalities. Therefore it is necessary to re-implement geo-
metric algorithms and CAD data structures within the analysis tool and vice-versa.
This approach allows the creation of parametric input files similar to text-based
tools. However, there is no way to interact with the analysis process. Each para-
meter change results in a new input file and starts a new analysis. By contrast, fully
CAD-integrated tools such asKangaroo5 allow direct interaction with the mechan-
ical model. It is possible to observe and interact with the convergence process in
real-time. The complete analysis process is integrated into the CAD environment.
This simplifies data exchange and allows the use of the advanced geometric CAD
algorithms.

2www.sofistik.com/products/finite-elements/rhinoceros-interface (access: 15.11.2021)
3www.dlubal.com/en/solutions/application-areas/building-information-modeling-bim/rfem-

and-rhinoceros-grasshopper (access: 15.11.2021)
4www.cee.ed.tum.de/en/st/software (access: 15.11.2021)
5kangaroo3d.com (access: 15.11.2021)
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6.3 Form-finding

Form-finding is an essential part of the design of lightweight structures. In classical
structural analysis, the internal stress state results from the calculated deformations,
while in form-finding, the final stress state is prescribed. The goal is to find a
geometry that is balanced for this specific stress state. The following sections describe
the basics of the force density method and its extension to the updated reference
strategy, which is used for the design of cable and membrane structures.
Vectors, matrices, and tensors are denoted with bold letters. Their components are
indicated in italics with the corresponding index. An n-dimensional vector v or an
n ×m-dimensional matrixM is written as:

v =
(
vi
)
=

(
v1 v2 . . . vn

)
M =

(
Mij

)
=

©«
M11 . . . M1m
...

. . .
...

Mn1 . . . Mnm

ª®®¬
Einstein notation is used to express the summation of tensors, Spivak’s notation for
derivatives.

Force density method

The principle of the force density method is explained by a simple example shown
in Figure 6.3a. The planar system consists of four nodes which are connected by
three cables. Nodes 1-3 are fixed. Their position is denoted byXi . Node 0 is located
atX0 and can move in both directions. The length of a cable i is denoted by Li and
the prescribed internal force by Fi . The sum of the forces acting on the free node
results in the residual force r ≠ 0. Form and forces are not in equilibrium. This
can be illustrated by a force diagram in which the forces are accumulated visually
(Figure 6.3b). The system should be balanced by moving the free node as shown in
Figure 6.3c to a position x̂0 so that r(x0) = 0. In the deflected configuration, the
position of the node is denoted by x0 while the location of the supports is given by
xi = Xi . The lengths of the cables result accordingly:

li = |x0 − xi | (6.1)
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Figure 6.3: For FDM, the force densities qi are specified for eachmember. A reference length
Li is required to determine qi from prescribed internal forces Fi . The initial configuration
(a) is not in equilibrium as the residual force does not vanish (b). The FDM provides a
solution in equilibrium (c and d) where the prescribed force densities are maintained, but
the internal forces fi are different from Fi . URS provides a state of equilibrium in which
the internal forces fi correspond to the prescribed forces Fi (e and f).

The internal force in each member is denoted by fi . The forces acting on the
free node are accumulated to the residual force r. A linear system of equations is
obtained by introducing the force density qi = fi/li as a constant ratio.

r(x0) =
3∑
i=1

fi
x0 − xi

li
=

3∑
i=1

qi (x0 − xi) (6.2)

Equilibrium of forces is given when r = 0. Starting at a initial guess for x0, the
position x̂0 of the free node for which this equilibrium condition is satisfied can be
determined directly:

x̂0 = x0 −K−1 r(x0) (6.3)

K = D r =
3∑
i=1

(
qi 0
0 qi

)
(6.4)
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In this configuration, the forces are in equilibrium. The internal force acting in
each member is given by fi = qi li (Figure 6.3d). The matrixK is the Jacobian of r
and contains the partial derivatives with respect to the degrees of freedom. Since
r represents a linear system of equations, K is constant. As a consequence, the
solution is independent of the initial guess x0. Only the location of the supports,
the force densities, and the topology of the structure are required for the solution.
The solution of the FDM can be considered as a cable net with a minimum total
length. This relationship becomes apparent when considering the corresponding
optimization problem. The lengths li are accumulated into a single objective func-
tionΠ using the penalty method. The contribution of the individual members is
weighted according to the force density:

Π =

3∑
i=1

1
2
qi li

2 (6.5)

Considering the physical units,Π can be interpretedmechanically as work or energy.
The derivative of Π with respect to the degrees of freedom corresponds to (6.2).
The procedure can be applied to an arbitrary number of elements and degrees of
freedom. At x̂0 the gradientDΠ = r is zerowhile theHessianD2 Π = K is positive
definite. The solution is therefore a minimum ofΠ.
By introducing force densities, a linear system is obtained which can be solved in a
reliable way. To determine the force density from a prescribed internal force fi , the
length li in the equilibrium state would already have to be known. Instead, some
other reference length must be selected. By using, e.g., the initial configuration
(x0 = X0), the force densities are qi = Fi/Li . Since the force density remains
constant, a change in length must result in a change in forces which is defined by
the ratio of li and Li:

fi = qi li = Fi
li
Li

(6.6)

Therefore, the specified forces are only achieved if the length of the solution has
already been used as a reference length. Since this length depends on the unknown
solution, the force density must be adjusted iteratively. The updated reference
strategy derives the distinction between reference and actual configurations using
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continuum mechanics and provides a generalized update scheme that can also
applied to membranes.

Updated reference strategy

The system from Figure 6.3 is modeled with prestressed cable elements. A structure
in equilibrium is characterized by a local minimum of the total energy. The internal
energyΠi of each member i is given by:

Πi =
1
2
σPK2,i εGL,i Ai Li + σ̄PK2,i εGL,i Ai Li

with σPK2,i = εGL,i Ei , εGL,i =
l2i − L2

i

2L2
i

(6.7)

where E is Young’s modulus, A the cross-sectional area, εGL the Green-Lagrange
strain, σPK2 the second Piola-Kirchhoff stress, and σ̄PK2 the prestress in each member.
Neglecting the elastic energy by setting Ei = 0 and accumulating the energy of each
member results in the total energy of the prestressed system:

Π =

3∑
i=1

σ̄PK2,i εGL,i Ai Li (6.8)

The gradient of the energy with respect to the degrees of freedom provides the
residual force r. From the comparison with (6.2), the equivalence with the FDM
and the analogy of force density and PK2 stress becomes apparent:

DΠ = r =
3∑
i=1

σ̄PK2,i Ai

Li︸   ︷︷   ︸
qi

(x0 −Xi) (6.9)

FDM is equivalent to an FEM model with the elastic stiffness E = 0 and the
prestress σ̄PK2 = q L/A. Strains and stresses can be measured in different reference
systems. Green-Lagrange strains and second Piola-Kirchhoff stress are defined in
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the undeformed (reference) configuration, whileEuler-Almansi strains andCauchy
stresses σc are defined in the deformed (actual) configuration. The relation is given
by:

qi =
σ̄PK2,i Ai

Li
=
σ̄c,i ai
li

(6.10)

where a is the cross-sectional area in the deformed configuration. Assuming a con-
stant cross-section (Ai = ai), this relation corresponds to (6.6). For form-finding,
the Cauchy stresses should be prescribed. Therefore, (6.9) can be adapted by (6.10).
The corresponding stiffness matrix is no longer constant and several Newton iter-
ations are required for the solution. Since the discrete solution of a form-finding
problem is usually not unique [93], the stiffness matrix might become singular.
Additional conditions are required to regularize the problem, e.g., additional geo-
metric constraints. URS proposes a superposition of the Cauchy problem with the
PK2 problem using a homotopy factor λwhich results in the modified problem:

rmod = λ rPK2 + (1 − λ) rc (6.11)

where the PK2 problem rPK2 acts as a regularization whose influence can be con-
trolled by λ. In the context of this work the PK2 problem is used exclusively (λ = 1).
This procedure has already been successfully applied in [93, 94] for the form-finding
of membrane structures.
After each iteration, the reference lengths Li of the PK2 problem are updated with
the current lengths li . This way, the solution converges to the desired configuration
at which Li = li and σPK2 = σc. The solution obtained by URS after 20 iterations is
shown in Figure 6.3e. The forces fi are equal to the prescribed Fi (Figure 6.3f).
Due to the consistent mechanical derivation, URS allows a generalization of FDM
for arbitrary element types, e.g., membranes. The corresponding formulation can
be derived from the energy functional.

Energy functional

The functionalΠ which evaluates the internal energy of the structure can be ob-
tained from theHu-Washizu functional [95]. In this paper, the components ori-
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ginating from elastic deformation and prestress are considered. Extension to the
additional terms such as external loads can be done analogously.

Π =

∫
Ω

1
2
(S : E)︸     ︷︷     ︸
elastic

+
(
S̄ : E

)︸ ︷︷ ︸
prestress

dΩ with S = C : E (6.12)

where E, S, S̄, and C are tensors representing the Green-Lagrange strain, second
Piola-Kirchhoff stress, prestress, and the constitutive tensor. The shape of these
tensors depends on the element type. A St. Venant Kirchhoff material is assumed.
The domain of the structure is denoted byΩ.
The strains result from a comparison between the deformed and undeformed
geometry and can be computed from the base vectors. The base vectors are the de-
rivatives of the geometry at a specific point. Using FEM, the geometry is controlled
by a set of degrees of freedom (DOFs). In the case of IGA, these are the location of
the control points of the NURBS or SubDs.
The numerical evaluation of the integral in (6.12) is done by using an n-point
quadrature scheme that approximates the integral by a sum. The domain Ω is
decomposed according to the integration points into subdomainsΩi with energy
Πi:

Π ≈
n∑
i=1

(
1
2
Si : Ei + S̄i : Ei

)
Ωi︸                       ︷︷                       ︸

Πi at integration point i

where
n∑
i=1

Ωi ≈ Ω (6.13)

Quadrature points, which are influenced by the same DOFs, are combined within
finite elements. This way the whole system is decomposed into a set of finite
elements where each element consists of a variable list of quadrature points. To
minimize the energy using the Newton-Raphson algorithm, gradient and Hessian
ofΠi are required which correspond to the residual force r and stiffnessK at the
quadrature point.
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6.3. Form-finding

Core-congruential formulation

This section focuses on the efficient computation of the derivatives of the energy
functional Πi at a specific evaluation point. The evaluation of Πi can be decom-
posed into a concatenation of functions. For the sake of clarity, the index i is omitted
in the following:

Π(x) = (p ◦ e ◦ g) (x) (6.14)

where g evaluates the base vectors of the deformed geometry based on the location
of the control points x, e evaluates the strains based on the base vectors and p
evaluates the energy based on the strains. According to the chain rule, the first
derivative results from the product of the individual Jacobianmatrices. The product
is associative, i.e., the order of operations does not matter:

DΠ = Dp · (D e · D g)︸      ︷︷      ︸
B-Matrix

= (Dp · D e)︸      ︷︷      ︸
Core-residual

·D g (6.15)

Multiplying from right to left gives the B-matrix as an intermediate result. It
contains the derivatives of the strain with respect to the degrees of freedom. When
multiplying from left to right, the intermediate results correspond to the derivatives
of the energy with respect to the base vectors. Mechanically, this can be interpreted
as the residual force of a core element. Considering the chain rule, the stiffness
matrix can be evaluated in the same way to obtain the ‘core stiffness’. According
to [50, 49] this corresponds to a core-congruential element formulation (CCF).
For CAD-integrated IGA, there are three important benefits resulting from the
CCF: (i) The core element is independend of the geometric discretization g. By
exchangingD g, the same core element can be used for different geometry types
without modifications. (ii) The size of the B-Matrix depends on the number of
control-points while the sizes of core residual force and core stiffness are constant.
Therefore CCF reduces dynamic memory allocation. This is especially useful when
using programming languages with automatic memorymanagement which are very
common for the implementation of CAD plugins. (iii) The order of operations in
(6.15) is not important for the result but has a big influence on the computational

129



6 Application in form-finding

N₁,₁ 0

00

0 0

6 n operations

3 + 3 n operations

direct mode:

adjoint mode:

N₁,₁

N₁,₁

0 0

00

0 0

0 0

00

0 0

0 0

00

0 0

0N₂,₁

N₂,₁

N₂,₁

N₃,₁

Nn-₁,₁

Nn,₁

Nn,₁

Nn,₁

D₁p D₁e₁ D₂e₁ D₃e₁· ·
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Figure 6.4: Direct and adjoint mode to compute the residual force of an IGA truss element
with n nodes. The residuum is given by the product of the Jacobians of the individual
functions. If g is a linear combination, then D g consists of the derivatives of the shape
functionsNi,1.

effort. The CCF corresponds to the adjoint or backwardmode of evaluating derivat-
ives, while the approach via the B-matrix corresponds to the direct or forwardmode.
For functions with many inputs and few outputs, the adjoint mode is usually more
efficient. This is the case for the energy functional which computes a scalar output
depending on many control points. For simple FE elements which are described by
a few nodes, this effect can be neglected. In the case of IGA, the number of control
points is usually higher. Figure 6.4 shows the difference for the computation of the
residual force for a simple IGA truss with n nodes. The adjoint mode only requires
(1 + n)/2n of the addition and multiplication operations that are required by the
direct mode. The difference becomes even higher when calculating the stiffness
matrix. A more detailed analysis is provided in [71].
The core element can be interpreted mechanically. For a cable, it corresponds to a
simple linear truss element where the geometry is defined by the base vector a1 as
shown in Figure 6.5. For IGA, the core elements are positioned at the integration
points tangential to the smooth curve. The domainΩi results from the integration
weight and the cross-sectional area. Residual force and stiffness are transformed to
the control points of the smooth geometry according to the geometric parametriza-
tion g. If g is a linear combination of the control points, then only the Jacobian
D g is required to perform this transformation. In this case, the entries of D g
correspond to the derivatives of the shape functions of the geometry.
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Figure 6.5: Transformation between control mesh (left) and core element (right).

Algorithmic differentiation

For the mechanical computation, the derivatives of the energy functional are re-
quired. Algorithmic differentiation (AD) is a set of techniques for transforming an
algorithm that evaluates a numerical model into an algorithm that evaluates the
numerical derivatives of the model with respect to specific design parameters [57].
In this work, a multivariate extension of hyper-dual numbers [14] is used for the
algorithmic computation of the required derivatives. Similar to complex num-
bers, hyper-dual numbers consist not only of a real part but have additional dual
components. They can be used to represent the coefficients of a 2nd-order Taylor
series which are equivalent to the partial derivatives of a function. The multivariate
extension allows the computation of derivatives of multivariate functions.
Operations with hyper-dual numbers take the chain rule into account. The result
contains not only a scalar result but the Taylor series expansion about the evaluation
point. By initializing the parameters of a function with hyper-dual numbers and
performing a calculation (e.g., computing the energy), the result will also be a hyper-
dual number that contains the derivatives w.r.t. the input parameters. With proper
implementation, an algorithm can be used for the calculation of the derivatives
just by exchanging the data type. This simplifies the development of IGA elements
since only the energy functional has to be implemented.
The implementation of hyper-dual numbers is done by operator overloading. Clas-
sical mathematical operations are extended to apply the chain rule while computing
the result. This corresponds to the direct mode of evaluating derivatives. Direct
mode is easy to implement and intuitive to handle. However, it was shown in
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6 Application in form-finding

Section 6.3 that it is less efficient than the adjoint mode when implementing IGA
elements. As a trade-off between efficiency and usability, the direct mode is used
to compute the core element and the geometry transformation separately. In the
second step, the results are combined using the adjoint mode.
Besides the basic mathematical operations (e.g., addition, multiplication,…) ad-
ditional operators are identified and implemented which are required frequently
during the evaluation of the energy functional. Despite the scalar product and the
squared vector norm, the function p(d) is implemented and optimized:

p = Va da +
1
2
Wab da db with Wab = Wba (6.16)

whereV is a constant vector,W is a constant symmetric matrix, and d is a vector
that usually measures a deviation between an actual and a reference state. The
implementation of the operator for hyper-dual numbers also requires the partial
derivatives to apply the chain rule:

Da p = Va +Wab da DaDb p = Wab (6.17)

The partial derivatives can be visualized in a computational graph as shown in Fig-
ures 6.6, 6.7, and 6.8. The layers p, d, and g contain the parameters of the individual
functions. Dependencies between parameters are described by edges. The weights
correspond to the partial derivatives. Connections between two different layers are
weighted with the first-order derivatives. Connections within the same layer have
the second-order derivative as weight. In all cases, the connections on the inner
layers (red) have the same weights which correspond to (6.17). The weights on the
outer layers depend on the respective element type. For the implementation of the
core elements,V andW are given by:

Va = Tab S̄b Ω (6.18)
Wab = Tca Ccd Tdb Ω (6.19)

where T represents a transformation matrix between the curvilinear system of d
and the local cartesian system of S̄ andC, S̄ is the PK2 prestress, andΩ is the domain
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Figure 6.6: Computational graph of a core element for prestressed cable element.

of the corresponding quadrature point. It is sufficient to specify the formulas for
d,C, andT for each element type. The computational steps for cables or trusses,
membranes, and couplings are provided in the following sections. For a classical
structural analysis,V andW remain constantwhiled is recalculated in each iteration.
For URSC = 0, which impliesW = 0 and neglects the elastic terms whileV and
d are updated after each iteration.

Cable

For a simple cable element, the base vector a1 is required. It is defined by the
derivative of the curve w.r.t. the curve parameter. The corresponding base vector
in the reference configuration is denoted byA1. The material stiffness is given by
Young’s modulus E. The tensors d,C, andT consist of single entries:

d =
(
a1 · a1 − A1 · A1

)
(6.20)

T =
1
2

(
1

A1 · A1

)
(6.21)

C =
(
E
)

(6.22)
Ω = A dL (6.23)
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where dL is obtained from the integration weight. The basis vectors are calculated
according to the geometric discretization. The resulting geometric transformations
are used to transform the residual force and stiffness of the core elements accordingly.
Choosing a1 = x0 − xi results in a1 · a1 = li

2, A1 · A1 = Li
2 and dL = L. This

provides the energy functional of the linear cable or truss element given by (6.7).
The relation to FDM is given by V = (q/2). Computing a1 based on NURBS
results in the element formulation of the cable provided by [94]. In combination
with the transformation for SubDs presented in Section 6.4, the core element can
be transformed to represent the edges of a SubD.

Membrane

The geometry of the membrane element is described by a surface. This provides the
two base vectors a1 and a2 in the deformed configuration, respectivelyA1 andA2 in
the reference configuration. The vector d consists of three entries that measure the
longitudinal deformations in the parameter directions and the shear deformation.
Consequently,T andC are 3 × 3matrices:

d =
(
a1 · a1 − A1 · A1 a2 · a2 − A2 · A2 a1 · a2 − A1 · A2

)
(6.24)

T =
1
2

©«
T11

11 T11
22 T11

12 + T11
21

T22
11 T22

22 T22
12 + T22

21

2T12
11 2T12

22 2 (T12
12 + T12

21)
ª®¬

with Tγδ
αβ = (eγ · Aα) (Aβ · eδ) (6.25)

C =
E

1 − ν2
©«
1 ν 0
ν 1 0
0 0 1−ν

2

ª®¬ (6.26)

Ω = t dA (6.27)

where ν is Poisson’s ratio, t is the thickness of the membrane, and dA is obtained
from the integration weight. The matrix T transforms between the curvilinear
coordinate system of the surface (A1,A2) and the local coordinate system (e1, e2)
where material properties and prestresses are defined. To adjust the orientation of e,
a projection strategy can be used as shown in [96]. This is important when dealing
with anisotropic materials and prestresses which is not required in the context of
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Figure 6.7: Computational graph of a prestressed membrane element.

this work. The local system is therefore chosen as a cartesian system where e1 is
parallel toA1 and e2 lies in the tangential plane:

e1 =
A1

|A1 |
e2 =

A2 − (A2 · e1) e1
|A2 − (A2 · e1) e1 |

(6.28)

Defining a1 and a2 by the edges of a triangle results in the classic mesh based mem-
brane element. Computing the base vectors based on NURBS results in the mem-
brane element provided by [94].
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Weak coupling and support

Supports and couplings are implemented in classical FEM by fixing or coupling the
corresponding DOFs. In general, this approach cannot be applied to NURBS, be-
cause the control mesh does not interpolate the limit surface. For trimmedNURBS
surfaces, the boundaries are not defined directly by the control points, but by trim-
ming curves in the parameter space. This requires an implementation using weak
conditions (Figure 6.1). Control points of SubDs can be interpolated selectively
by exploiting the sharp features. Boundaries are defined by the control mesh. Ad-
ditional corner vertices can be used specifically for the modeling of supports. In
addition, weak conditions are implemented for SubDs because in certain cases they
simplify the modeling.
Weak couplings and supports can be interpreted as springs that minimize the dis-
tance between two free points (coupling) or between a free point and a fixed ref-
erence (support). By choosing a high stiffness, the distance can be minimized to
match a certain tolerance. Such conditions can be positioned independently of
the control mesh which allows intuitive modeling when dealing with CAD mod-
els. To minimize the difference between two spatial points xa = (xa, ya, za) and
xb = (xb, yb, zb) the following parameters are chosen:

d =
(
xa − xb ya − yb za − zb

)
(6.29)

T =
©«
e1x e1y e1z
e2x e2y e2z
e3x e3y e3z

ª®¬ (6.30)

C =
©«
k1 0 0
0 k2 0
0 0 k3

ª®¬ (6.31)

Ω = 1 (6.32)

where the unit vectors e1, e2, and e3 define a local cartesian coordinate system in
which the stiffnesses k1, k2, and k3 are measured. For this element type, no prestress
is applied as only the elastic stiffness is required. Aweak support can be generated by
assuming a constant xb which represents the target location. Setting the stiffness in
one direction to zero allows the implementation of a sliding support. By updating
Wab after each iteration, the coupling/spring can be dynamically oriented.
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Figure 6.8: Computational graph of a core element for coupling.

6.4 Catmull-Clark subdivision surfaces

Subdivision surfaces are the result of a recursive refinement of an initial control
mesh to a smooth limit surface. In this paper, the subdivision scheme of Catmull
and Clark [74] is implemented, which is widely used in computational design.
The scheme is modified by a subset of the extensions provided in [77] to support
sharp creases and corners. The same subdivision rules are also used within the
CAD environment Rhino which is used by the authors for the implementation of
CAD-integrated analysis.
The Catmull-Clark algorithm allows the subdivision of an arbitrary n-gon mesh
into a quadrilateral mesh. Each vertex has a valence that corresponds to the number
of adjacent edges. The initial control mesh might contain extraordinary vertices
(EV) not incident on four edges (valence ≠ 4). Applying the subdivision algorithm
to the coarse control mesh results in a finer mesh. This process can be repeated and
converges to a smooth limit surface as shown in Figure 6.2. Vertices, edges, and
faces of the control mesh have their counterparts on the limit surface. The limit
surfaces are C2-continuous except at points corresponding to an EV [97].
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Figure 6.9: Control meshes with different tags and corresponding limit surface

Tagged control mesh

The algorithm refines an arbitrary control mesh. The geometry is defined by the
location of the vertices V and the topology by the edges E and the faces F. Each
edge connects exactly two vertices while each face connects at least three vertices.
To support sharp features, different tags are assigned to edges and vertices. An edge
might be tagged as a crease to model sharp interior and boundary edges. Similarly, a
vertex can be tagged as a crease, dart, or corner. An edge or vertex without a tag is
called untagged or smooth.
The influence of different tags on the limit surface is shown in Figure 6.9. Tagged
edges are indicated by a thick line. A vertex connected to exactly one crease edge is
assumed to be a dart. If the vertex is connected to two edges, it might be a crease or
a corner vertex. To distinguish them, the corners are highlighted with the symbol
�. Whenever a vertex is only connected to smooth edges, the vertex is assumed to
be smooth.

Extended Catmull-Clark subdivision

This section contains an overview of the subdivision rules provided by [74, 77]
which are used in the context of this work. In each subdivision step, a subdivi-
sion point is computed for each face Fi , vertex Vi an edge Ei . To determine the
subdivision point fi of the face Fi , the average of all n adjacent verticesVj is taken.

fi =
1
n

n∑
j=1

Vj (6.33)
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Figure 6.10: Crease edges spanning sectors around a tagged vertexVt . At a dart vertex (left)
there is only one sector (red). A crease vertex (middle) results in two sectors (blue and red).
A corner might be adjacent to an arbitrary number of sectors (e.g. blue, red, green).

Depending on the tag ofVi , three scenarios need to be distinguished to compute
the subdivision point vi of the vertexVi . IfVi is a crease, there are exactly two crease
edges connectingVi withVa andVb. For smooth and dart vertices, the valence of
Vi is denoted with n. In this case, the valence is equal to the number of adjacent
edges, faces, or vertices.

vi =



Vi ifVi is a corner

3
4
Vi +

1
8
Va +

1
8
Vb ifVi is a crease

n − 2
n

Vi +
1
n2

n∑
j=1

Vj +
1
n2

n∑
j=1

fj ifVi is smooth

(6.34)

Next, an angle θi is computed for each smooth edge Ei that is connected to exactly
one tagged vertexVt . IfVt is a dart, n corresponds to the number of faces connected
to the vertex, otherwise, Ei is surrounded by two crease edges connectingVt with
Va andVb. These two edges span a sector as shown in Figure 6.10. The number of
faces within this sector is indicated by nwhile the angle α corresponds to the smaller
angle between the two radii of the sector.
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θi =



2π
n

ifVt is a dart

π

n
ifVt is a crease

α

n
ifVt is a corner

where α = ^ (Va,Vt ,Vb) = arccos
(
Va − Vt

|Va − Vt |
· Vb − Vt

|Vb − Vt |

)
(6.35)

For the computation of the subdivision point ei of an edge Ei , three scenarios must
be distinguished. Here we need to look at the tag of the edge as well as at the tags
of the adjacent vertices. A smooth edge is connected to exactly two faces fa and fb.
If only one vertex of the edge is tagged, the tagged vertex is denoted Vt , and the
smooth vertexVs. Otherwise, the order of the vertices is not relevant and they are
namedVa andVb.

ei =



1
2
Va +

1
2
Vb if Ei is a crease

1
4
Va +

1
4
Vb +

1
4
fa +

1
4
fb ifVa andVb are tagged

or both are untagged

1 + cos θ
4

Vt +
1 − cos θ

4
Vs +

1
4
fa +

1
4
fb otherwise

(6.36)

The subdivision points are the vertices of the refined mesh. From each fi a new
smooth vertex is obtained which has a valence equal to the number of vertices of
Fi . The tags of the new vertices obtained by vi and ei correspond to the tags of the
originalVi or Ei . For each edge Ei = {Va,Vb} two new edges {va, ei} and {ei , vb}
are obtained which have the same tag and θ as the original Ei . For each face Fi the
subdivision point fi is connected with the subdivision points ej of the adjacent
edges to new smooth edges fi , ej . Based on the new edges, each face is subdivided
into n new faces. The same algorithm can be applied to the refined mesh. A vertex
V(k)i of the control mesh at the refinement level k is associated with a vertexV(k+1)i

on the refined mesh and converges to a pointV(∞)i on the limit surface.
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6.4. Catmull-Clark subdivision surfaces

Evaluating the limit surface

A convergence study of the refinement process is required to evaluate a point on
the limit surface. This can be performed as an eigenvalue decomposition of the
subdivision matrixA. For a crease vertexVi which is connected with crease edges
Va and Vb, the coefficients of the subdivision matrix are provided by (6.34) and
(6.36). Recursive refinement results in the k-th power ofA.

©«
v(k)i

e(k)a

e(k)
b

ª®®®®®¬
=

©«
3
4

1
8

1
8

1
2

1
2 0

0 1
2

1
2

ª®®®®¬︸        ︷︷        ︸
A

k ©«
Vt

Va

Vb

ª®®®®¬
(6.37)

The subdivision matrixA can be decomposed into a linear combination ofΛ and
Q . Λ is a diagonal matrix containing the eigenvalues ofA. The columns ofQ are
the corresponding eigenvectors.

A(k) = Q ΛkQ−1 =
©«
1 0 − 1

2

1 −1 1

1 1 1

ª®®®®¬
©«
1 0 0

0 1
2 0

0 0 1
4

ª®®®®¬
k ©«

1 0 − 1
2

1 −1 1

1 1 1

ª®®®®¬
−1

(6.38)

For the evaluation of the limit state k→∞, only the diagonal matrix needs to be
taken into account. It provides the limit of the matrix power.

A(∞) =
©«
1 0 − 1

2

1 −1 1

1 1 1

ª®®®®¬
©«
1 0 0

0 0 0

0 0 0

ª®®®®¬
©«
1 0 − 1

2

1 −1 1

1 1 1

ª®®®®¬
−1

=

©«
2
3

1
6

1
6

2
3

1
6

1
6

2
3

1
6

1
6

ª®®®®¬
(6.39)

With each subdivision step, the edges adjoined to the vertex become smaller. Con-
sequently, the subdivision points of the vertex and the adjoined edges converge to
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a single point. Therefore, the rows of A(∞) are identical. The limit point of the
vertex can be written as a linear combination of the control points.

v(∞)i =
2
3
Vi +

1
6
Va +

1
6
Vb (6.40)

To evaluate a point on the limit curve of an edge for the parameter η, a finite number
of subdivision steps needs to be performed. The subdivision algorithm must be
applied k times until η lies within the span of a cubic B-spline. The spline describes
the point as a linear combination of the basis functions B and 4 verticesV(k)i of the
refined edge which defines the control polygon of the spline.

x(η) =
4∑
i

Bi (η) V(k)i (6.41)

Points within faces can be evaluated in a similar way. To define the location of the
point, a local parametrization is required. After the first refinement step, the control
mesh consists of quads (Figure 6.11). Each quad can be parameterized with the local
coordinates η and ζ . Again, the mesh has to be refined k times until the point can
be described with the help of a bicubic B-spline. The point is then defined by a
linear combination of 4 × 4 = 16 verticesV(k)ij of the refined mesh.

x(η, ξ ) =
4∑
i

4∑
j

Bi (η) Bj (ξ ) xij (6.42)

The base vectors can be computed in a similar way using the derivatives of the B-
spline basis functionswith respect to the local parameters. Applying the subdivision
algorithm k times can be simplified by an eigenvalue analysis as explained in [76].

Quadrature

To integrate the energy functional over the structure numerically, the functional
needs to be evaluated at certain quadrature points. Catmull-Clark surfaces are
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ΩiΩ
V(1)(V(0))

(D V(1))(V(0))

Level 0 Level 1

Figure 6.11: Catmull-Clark subdivision. Left: the limit surface of a face (blue) is influenced
by a subset of the vertices (red). Right: after applying one step of the subdivision algorithm,
an n-gon is subdivided into n quadrilateral faces. The limit surface of each face is influenced
by a subset of the refined control mesh. The influence of the control vertices on the refined
mesh is described by the partial derivatives.

infinite piecewise polynomials, whichmakes numerical integration difficult. Within
this work, a 4-pointGauss-Legendre quadrature rule is used. This corresponds to
the procedure for cubic splines in IGA. Each n-gon is subdivided into n quads. The
4 × 4 = 16 quadrature points are placed in the parameter space of each quad. This
way 16n integration points per face are obtained.
The applied quadrature rule cannot perfectly integrate over SubDs. According to
the examples in Section6.6, the accuracy is sufficient in the context of the application.
The technique has also already been used successfully in [98, 99]. Other integration
strategies (e.g., [86]) were not investigated.
To evaluate the base vectors at the location of the quadrature points, the quad needs
to be subdivided up to 4 further times as shown in Figure 6.12. After level 3, it is
possible to compute 8 quadrature points without further assumptions. At level
4, the outermost quadrature points are evaluated which are at a smooth border
edge. Finally, the remaining quadrature points at level 5 are evaluated. The process
is optimized by subdividing only the required parts of the control mesh up to the
finest level.
The transformationof the core elements fromSection 6.3 according to the geometric
description requires the partial derivatives of the base vectors at the quadrature
points with respect to the initial controlmesh. This includes the subdivision process
of the tagged mesh as well as the evaluation of the B-splines. For this purpose, the
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Level 3 Level 4 Level 5 Quadrature points
u

v

Figure 6.12: Position of the quadrature points. Different refinement levels are necessary for
the calculation of the individual points.

partial derivatives of the individual steps must be combined using the chain rule.
This concatenation is performed with the help of algorithmic differentiation.

Shape functions with algorithmic differentiation

To apply mechanical properties to SubDs we need to evaluate shape functions and
their derivatives at certain points. They are defined by the derivatives of the base
vectors w.r.t. the location of the control points. Since each refinement step depends
on the previous one, the chain rule must be applied consistently. The procedure
for the extended Loop subdivision scheme is described in [81].
In this work, algorithmic differentiation is used to compute the shape functions.
This has the advantage that only the algorithm for the subdivision process has to be
implemented and this simplifies the handling of different tags in the control mesh.
By evaluating the algorithm with hyper-dual numbers, the required derivations
are obtained automatically. The resulting Jacobian is equivalent to the evaluated
shape functions denoted withN. It accumulates the Jacobians of each refinement
step and the B-spline shape functions from (6.41) and (6.42). Since only the first
derivative is required, multivariate dual numbers instead of hyper-dual numbers
can be used. They only store the 1st-order Taylor polynomial.
Based on the angle θ, the shape functions depend on the current geometry at
smooth edges connected to corners. This results in nonlinear shape functions. As a
simplification, θ is treated as a constant and updated after each iteration. Using this
procedure, the first derivatives and therefore the equilibrium conditions are still
valid. The influence of the simplified stiffness on the convergence behavior was not
investigated. The geometry can be evaluated as a linear combination of the initial
control points:
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6.5. CAD-integration

x =

n∑
i=1

Ni (η, ζ ) Vi (6.43)

As shown in Figure 6.11, only a subset of the control vertices affect the geometry
within a face. For the other vertices, the shape functions are zero. The definition of
the finite element takes advantage of the sparse structure ofN.

Finite elements

The subdivision surface is divided into finite elements dependent on the faces and
edges of the control mesh. Within the same element, the points on the limit surface
are influenced by the same control vertices and thus by the sameDOFs. The number
of DOFsmight vary for each element depending on the topology and the tags of the
control mesh. For the same reason, the evaluation process of the shape functions
might be different for each element.
Therefore, the evaluated basis functions cannot be hard-coded as for classical finite
elements. Instead, a similar approach as for trimmed NURBS elements is used.
Each finite element stores a dynamic list that contains the required data to evaluate
the core element and the geometric transformation at each quadrature point. In
our scenario, this includes the weightsV,W, and the shape functionN for each
quadrature point. With this information, the local residual force and stiffness can
be computed for the element. The total energy, residual force, and stiffness for the
whole system result from the sum of all elements.

6.5 CAD-integration

We outline the workflow of the fully CAD-integrated analysis in the research tool
EQlib6. For the implementation, we extend the VPL Grasshopper7 using custom
components written in the programming language C# (Figure 6.13). The tool can
be used to define and solve form-finding problems as well as any other types of
numerical analysis and optimization problems. We start with a pure geometric
model defined in the CAD system. Based on IGA, we also use the same geometric

6Access on request.
7www.grasshopper3d.com (access: 3.5.2022)
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Figure 6.13: CAD-integrated analysis. Direct interaction with the analysis process simplifies
the design process.

description for the analysis. In the first step, we apply additional properties to the
geometric entities that are required for the specific analysis. Therefore, we provide
a set of design elements for different tasks such as the definition of a membrane or
a cable. The design element subdivides the problem into entities suitable for the
design phase. By contrast, the finite elements subdivide the problem into smaller
entities that are optimal for the solution process. The finite elements are created
automatically in the background. Each design element is able to create a suitable
control mesh and a bunch of finite elements for the analysis stage dependent on
the definitions made by the designer. The concept is illustrated in Figure 6.14.
Each finite element integrates a functional defined by the element formulation
over a domain that is influenced by a subset of the control mesh. The integration
domain is specified as a dynamic list. Each entry contains the required information
to evaluate the core element at a specific location and to transform the result into
the geometry. The required information might be stored either as a precomputed
value (less computation) or as a function that is evaluated in each iteration (less
memory). The same finite element type can be used for classic meshes, SubDs, and
trimmed NURBS by simply changing the geometric transformation.
TheVPLprovides a flexible and extendable user interface for defining arbitrary com-
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Figure 6.14: Diagram of the CAD-integrated workflow. Modeling of the geometry and
application of the mechanical properties takes place at different levels of abstraction. The
designer works with familiar entities such as faces and edges. The decomposition into finite
elements for the analysis is done in the background.

putational models. Using a core-congruential formulation simplifies the memory
management and allows an efficient implementation as a plugin that is integrated
into the CAD environment. The direct integration allows access to the advanced
geometry kernel of the CAD. For the solution process, we take advantage of the
sparse linear algebra functionalities of the Intel Math Kernel Library (MKL). This
allows evenmore complex examples to be solved in aCAD-integrated environment.

6.6 Examples

This section provides several numerical examples to verify the proposed method.
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Modeling aspects

Figure 6.15 compares the required modeling techniques for a simple membrane
structure when usingNURBS and SubDs. NURBS surfaces are defined by a regular
control mesh. For the design of more complex surface models, it is usually necessary
to trim NURBS in the parameter space and to couple several trimmed NURBS to
a multi-patch. The modeling of a pentagonal shape requires trimming edges that
define the boundaries in the parameter space of the surfaces. The trimmed domain
is used for the definition of a prestressed membrane. The trimming edges define
prestressed edge cables. TwoNURBS surfaces are coupled by a coupling edge which
defines the domain for the coupling. The coupling acts as a spring which results in
a small gap between the patches. Assigning a high stiffness to the coupling reduces
the gap below the model tolerance. In addition, two coupling points at the end
of the coupling edge are defined to avoid gaps due to the higher prestress of the
edge cables. The corners of the trimmed domain do not correspond to the control
points of the NURBS. Embedded points must be used to define the supports since
the vertices of the trimmed surfaces do not coincide with the control mesh. To
create C1 continuity along an edge, additional coupling conditions are needed to
couple the surface normals of both sides [32]. Again the penalty factor determines
how well continuity would be maintained.
Modeling the same structure with SubDs does not require trimming, embedding,
or coupling. The control mesh can be adapted to the shape of the structure by
combining triangles, quads, and pentagons. Corner vertices, boundaries, and inner
edges of the limit surface have direct counterparts on the control mesh. Properties
for membranes, cables, and supports are assigned directly to the entities of themesh.
This can significantly simplify the modeling of such structures. The continuity at
the edges is inherently given by the definition of the SubDs and does not have to be
minimized by a penalty factor. Support and coupling constraints can also increase
the modeling capabilities of SubDs. This could be used, e.g., to connect SubDs
with different refinement levels.

Form-finding of a catenoid

This example is based on [27] and compares an analytic solution of a minimal
surface with the numerical results. The objective is to find a minimal surface that
connects two circles of radiusR and a vertical distance ofH as shown in Figure 6.16.
The most important points are repeated here. For a more detailed explanation, the
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Figure 6.15: Modeling features required for NURBS (left) and SubDs (right).

interested reader should refer to the mentioned publication.

Analytic solution

According to theGoldschmidt solution [100], the analytic expression for the area of
the minimal surface depends on the ratio betweenH andR:

Aanalytic =


(r0)2 π sinh

(
H

r0

)
+ r0πH H ≤ Hcrit ≈ 1.32548684R

2R2π H > Hcrit

(6.44)

ForH > Hcrit, the solution of the form-finding collapses into two circles connected
by a straight line. Otherwise, the solution corresponds to a catenoid which is
described in cylindrical coordinates (r, θ, z) by:
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r(z) = r0 cosh
(
z

r0

)
θ ∈ [−π, π] z ∈ [−H/2, H/2] (6.45)

The unknown constant r0 is determined by the given radius at both edges:

R = r(z = ±H/2) = r0 cosh
(
H

2r0

)
(6.46)

where r0 denotes the minimal radius r0 at z = 0. The expression cannot be resolved
analytically for r0. Instead, we solve it numerically for a givenR andH with r (0)0 = R
as an initial guess. With r0 and H we are then able to compute the area of the
catenoid in (6.44).

Numerical solution

We use a cylinder as the initial geometry for the form-finding. The cylinder has
a radius R and a height H as shown in Figure 6.16. To test the functionality for
arbitrary topologies, we use a control mesh that consists of triangles, quads, and
hexagons. Using the same pattern, three control networks with different refinement
levels were generated. Rational subdivision surfaces are required to represent conic
sections exactly. These are not yet supported by the CAD program. Therefore the
cylinder is approximated by non-rational SubDs. Depending on the resolution
of the control mesh, there is already a deviation from the cylinder. To apply the
boundary conditions we fix the displacement of the control points for the crease
edges. We do this by fixing the DOFs of the corresponding FE nodes.
Figure 6.16 shows the convergence of the form-finding for different refinement
levels. The numerical solution converges to the analytical reference. ForH > Hcrit,
we also obtain the degenerate solution which consists of two discs.

Form-finding of a Schwarz-P minimal surface

The shape of a Schwarz-P surface is computed numerically via form-finding. The
SubD shown in Figure 6.17a is used as the initial geometry. The geometry is defined
by a single quadrilateral control mesh with EVs. At first, only a membrane prestress
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Figure 6.16: Form-finding of a catenoid. (a) Terminology for the catenoid (b) Pattern of
the control mesh. (c) Convergence of the form-finding for different control meshes (red =
420 vertices/270 faces, blue = 1560 vertices/1020 faces, green = 6000 vertices/3960 faces).

of 1 is applied to the faces. The control points of the crease boundary edges are fixed
in-plane by adding supports to the corresponding FE nodes. Figure 6.17 shows the
convergence of the iterative form-finding process in red. After the first iteration, the
area is reduced to 82% compared to the initial geometry (b). During the subsequent
iterations, the geometry changes only slightly and straightaway matches the shape
of the Schwarz-P surface. However, it becomes apparent that this solution is only
an unstable local minimum. After 10 iterations, the geometry starts to collapse. The
openings increase with each iteration (c). The geometry of the faces degenerates to
lines while the area converges to zero (d and e). It is therefore a valid solution in
the sense of a minimal surface. The instability of a problem is caused by minimal
imperfections of the geometry that cannot be avoided in a numerical computation.
The same behavior was explained in [93] for a Costa surface.
By applying prestressed cables to the crease edges, the solution process is directed
in a particular direction. We choose a prestress of 1. The convergence is shown in
blue. Due to the prestress in the cables, the length of the edges is reduced in each
iteration (f). Again, the form-finding converges to a zero-area solution (g).
To stabilize the problem, the first 10 iterations are computed with membrane
prestress only. Then an elastic stiffness is applied to the edges (EA = 1). This
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restricts the stretching and compression of the edges. A collapse of the surface is no
longer possible (h).
Next, the boundary conditions are remodeled by using weak supports at the na-
ked edges. The edges are fixed in the direction of the global coordinate system.
Therefore, the transformation matrix can be ignored and the stiffness of the weak
supports is defined in global directions. By increasing the penalty factor, the shape
converges towards the previous solutionwhere the FE nodeswere fixed. Figure 6.18a
compares the area for different penalty factors after 5 iterations.
Finally, the initial geometry is rotated in space through 30° around the globalX - and
Y -axis. Since the orientation of the edge planes is no longer along global directions,
the transformation matrix is required. The form-finding is repeated for different
penalty factors as shown in Figure 6.18b. By increasing the penalty factor, the
form-finding converges towards the reference solution.

Form-finding of SkySong

Finally, we demonstrate the application of the method for a more complex example
inspired by the SkySong multi-use campus in Scottsdale, USA. In the center of the
campus, there is an impressive tensile structure that was designed by FTL Design
Engineering Studio in 2009. The structure was remodeled by form-found SubDs in
combination with trusses and cables. The dimensions were estimated on the basis
of openly accessible image material. The ratio of the prestress of the membrane
and edge cables was adjusted so that the appearance complies with the real building.
The result is shown in Figure 6.19.

6.7 Conclusion

It was shown how Catmull-Clark subdivision surfaces can be used for the form-
finding of lightweight structures in a CAD-integrated IGA environment by using
URS. The approach is based on the structure of a classical FE program and allows
combination with other elements and analysis methods. The modular design of
CCF allows a mechanical core element to be combined with different geometric
discretizations. It reduces the implementation effort and increases the computing
speed at the same time. By supporting extended SubDs in addition to classical
meshes andNURBS, all types of free-formgeometries currently available in the state-
of-the-art CAD environment Rhino can be covered. The seamless integration into
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Figure 6.17: Form-finding for a Schwarz-P surface with different configurations: prestress
only in the membrane (red); prestress in the membrane and the edge cables (blue); elastic
stiffness in the edge cables after iteration 10 for stabilization (green).

a CAD system in combination with VPLs offers significant advantages, especially
at the beginning of the design phase. Particularly in form-finding, several design
iterations are necessary, which are accelerated by the direct integration.
Although the focus was on membrane and cable elements the methodology can be
applied to other types of structural elements as well. According to CCF, the core
elements from[71] can be used and combined with the geometry transformation
for SubDs described in this paper. This yields a modular toolbox for numerical
analysis.
There is particular potential for improvement in calculating and positioning the
integration points. The current approach is very much based on the procedure
for NURBS. The use of AD simplifies the computation of shape functions for
extended SubDs. The procedure should be better adapted to SubDs to increase
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Figure 6.18: Edge support in global and local directions with weak boundary conditions. By
increasing the penalty factor k, the area of the solution Ak converges towards the reference
solution Aref.

Figure 6.19: Form-finding of SkySong ASU.

performance. This could be done by use of optimized integration rules, or the
pre-computation of shape functions for frequently occurring topological situations
e.g., regular faces.
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7

Conclusion and outlook

Interactive form-finding and analysis tools integrated into CAD frameworks are
improving the design process of lightweight structures significantly. In order to
follow the concept of CAD-integrated IGA, a wide variety of geometry descriptions
must be supported to let the boundaries betweenCADand FEMdisappear. In com-
bination with different types of structural analysis and form-finding strategies, this
results in a high implementation effort. Due to the complexity of the computation
involved, an external finite element kernel is usually required. For the communic-
ation between FEA and CAD, additional interfaces must be developed, e.g. an
exchange via writing and reading files. The exchange of functions, in particular, is re-
stricted or even impossible. Functionalities fromCADhave to be re-programmed in
the FEA kernel and vice versa. This contradicts the idea of a ‘fully CAD-integrated’
design and analysis workflow . The computational speed of this classic approach
remains rather poor and precludes an interactive design using smooth geometries.
Certainly, the computational performance can be increased by usingmore powerful
and expensive hardware. For the sake of efficiency, however, this work investigated
how performance can be increased on the methodical level.
This thesis elaborated a methodology to address these issues and implement finite
elements in an efficient and modular way. The mechanical model is interpreted as a
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parametric model which calculates the energy within the structure as a function
of the degrees of freedom. A stable equilibrium will then correspond to a state of
minimum energy. The energy functional is parameterized explicitly as a function of
the location of discrete nodes. Finding a minimum of this function leads – for non-
linear problems – to an inverse problemwhich is solved in an iterative process using
the Newton-Raphson algorithm. This requires the residual force vector and the
tangential stiffness matrix, which are obtained as the derivatives of the energy func-
tional. The computation of these derivatives incurs most of the implementation
effort. This effort is reduced by using AD. Instead of implementing the derivatives
manually, only the energy functional needs to be implemented to compute the
required derivatives. Since the energy functional can be reparameterized easily, a
wide variety of geometry descriptions can be supported.
A short overview of different freeform parameterizations highlights the algorithmic
character of subdivision geometries. The geometric functions for trimmedNURBS
models required for IBRA were implemented in the packageANurbs1 for Python
and C++. In addition, an interface was created to exchange geometry models with
the CAD software package Rhino. Therefore, ANurbs contains all the necessary
functionalities to prepare geometries for IBRA. The implementation has also been
adopted, for example, in the open-source FE solverKratos Multiphysics2.
The interpretation of the energy functional as a parametric model similar to a node-
based VPL illustrates the decomposition of the functional into smaller components.
The knowledge of this composition in the form of a computational graph enables
the application of AD to determine the required derivatives automatically. The
application of AD using hyperdual numbers was presented, which enables easy
integration into existing FE frameworks. Here, the derivatives are calculated using
the forward method. The computation of gradients and Hessians using hyperdual
numbers was implemented within the package HyperJet3 for the programming
languages Python, C++ and C#.
To increase the computational performance, the adjoint method is used to evaluate
the required derivatives. The energy functional is a scalar function of the degrees
of freedom. For smooth free-form geometries, this results in a high number of
input parameters. In this case, the adjoint method leads to a reduction of the com-
putational effort without affecting the quality of the results. It has been shown

1https://github.com/oberbichler/ANurbs (access: 31.10.2022)
2https://github.com/KratosMultiphysics/Kratos (access: 31.10.2022)
3https://github.com/oberbichler/HyperJet (access: 31.10.2022)
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that this leads to a reduction in computational operations and constant memory
consumption, which is independent of the polynomial degree of the geometry. This
was verified on the basis of theoretical considerations and also through practical
benchmarks. It is important to take advantage of the well-known structure of an
FEM problem in order to increase the performance of AD. The decomposition
of the structure into finite elements, for example, can be used to obtain the sparse
structure of the Hessian and allows the application of AD on the element level. For
each element type, the corresponding energy functional needs to be formulated. In
this way, mechanical elements, as well as geometric coupling conditions, can be real-
ized. By implementing additional differentiation rules for mechanical operations,
such as the computation of strains or the penalty functional, AD can be optimized
for dealing with structural analysis.
In addition to the increased computational performance, the adjoint approach
results in a modular structure of the element formulation. It allows a clean separa-
tion into mechanical and geometric components according to a core-congruential
element formulation. The mechanical component is referred to as the “core ele-
ment” and is independent of the chosen geometric description. Core elements for
cables, membranes, beams and shells are formulated. The core elements include
elastic deformation and prestress. This enables classic structural analysis as well as
form-finding. In addition, hybrid structures can be modelled in a very elegant way,
combining form-finding elements and classic elastic elements in one simulation.
Various geometric descriptions can be used by combining the core element with
different geometric transformations. The approach was presented using discrete
meshes, NURBS and subdivision surfaces. These blocks permit numerous combin-
ations , resulting in a versatile IGA toolbox. When implementing core element and
geometry transformation, hyperdual numbers can be used.
The increase in efficiency allows direct integration of the analysis tools in CAD
and simplifies the exchange between CAD and FEM without additional interfaces
and code duplication. Functionalities and data structures can be shared . For ex-
ample, geometric operations fromCAD can be used by the FEM kernel to compute
trimmed geometries. Moreover, it enables direct interaction with the analysis pro-
cess. For smaller models, real-time calculations based on high-order geometries are
possible. At the same time, the dimensions of the models that can be calculated in
CAD-integrated analysis increase. The resulting methodology was implemented in
the plugin EQlib for Rhino and Grasshopper. As a result, a modular and automat-
able framework was obtained, which also enables efficient implementation of IGA
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within interactive CAD environments.
This modular system can subsequently be extended to other applications. The
modelling of design surfaces with the help of an implicit description of certain
requirements, e.g. C2-continuous junctions of NURBS patches, was tested and
seems to be a promising application. The solution of such optimization problems
requires skilful adjustment of parameters to meet industry standards. Here, an
efficient CAD-integrated implementation can help in choosing the appropriate
settings.
By using advanced meta-programming capabilities, the integration of AD into
CAD tools can be further simplified. The user could then formulate their own ele-
ments or goals on-the-fly and adapt them perfectly to the problem. The algorithm,
generated in the background, for calculating the derivatives can make use of high-
end techniques such as parallelization and GPU acceleration without the designer
having to deal with them. Initial experiments with SIMD instructions have already
significantly accelerated the calculation.
Since VPLs already present a computational graph, AD could be used to integrate
gradient-based optimization into such frameworks.
In the long term, this work should contribute to simplifying the implementation
of IGA and making it more accessible. The engineer and designer can focus on the
abstract formulation of the problem, while the machine can optimally perform
the systematic but time-consuming implementation of the derivatives. This allows
collaboration between man and machine, where the strengths of both sides are
combined in a productive way.
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