or reuse of any copyrighted component of this work in other works.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

KAPETANIOS: Automated Kubernetes Adaptation
through a Digital Twin

Johannes Zerwas!, Patrick Kramer!, Rizvan-Mihai Ursu', Navidreza Asadi’,
Phil Rodgers?, Leon Wong*2, Wolfgang Kellerer!
ITechnical University of Munich, 2Rakuten Mobile Inc.

Abstract—This demo presents a self-operating Kubernetes
(K8s) cluster that uses digital twinning and machine learning
to autonomously adapt its Horizontal Pod Autoscaler (HPA)
to workload changes. The demo uses a digital twin of a K8s
cluster to gather performance statistics and learn a model for
the workload. With the model, the cluster autonomously adjusts
HPA parameters for better performance. The demo illustrates
this process and shows that the requested pod seconds decrease
by ~37 %, while the request latency stays mostly unaffected.

Index Terms—Kubernetes, Digital Twin, Machine Learning

I. INTRODUCTION

Modern networks such as 5G cloud-native cores become
distributed service meshes, running containerized on top of
Kubernetes (K8s) clusters [[1]. Managing those clusters in a
dynamic environment requires a high degree of automation.
Automation is challenging as, e.g., adjusting configurations
requires an understanding of how the cluster responds to
changes. Today, this knowledge is provided through highly
trained experts. This practice becomes a limiting factor to the
evolution of modern networks as they grow in size and become
more diverse, and dynamic. Thus, in the future, the clusters
must continuously measure and analyze themselves to detect
and react to changing conditions.

We present KAPETANIOﬂ a self-operating K8s cluster
that adaptively tunes its scaling policy to dynamic work-
loads. Fig. gives an overview of KAPETANIOS. At a
high level, KAPETANIOS uses a digital twin (DT) to repre-
sent the cluster state, collect measurements, and manage the
cluster. KAPETANIOS learns models of the cluster behavior
with Machine Learning (ML) from the gathered data, and
uses the learned models to enhance simulations, allowing
KAPETANIOS to autonomously search for configurations. Sim-
ulations and ML models thereby replace human experience. In
this demo, the ML models allow KAPETANIOS to predict the
cluster utilization in response to the request arrival rate, and
adjust the cluster configuration to new profiles. Specifically,
KAPETANIOS automatically tunes the configuration of K8s’
built-in horizontal pod autoscaler (HPA) with the goal to
reduce the number of deployed application instances (pods)
over time while keeping request completion time low.

* This work was conducted as a part of Beyond5G R&D Promotion Project
(#01701), supported by National Institute of Information and Communication
Technology (NICT), Japan.

'Kubernetes originates from the greek word for helmsman. We further
automate the orchestration of containerized applications, reliving the operator
from his position as the captain of K8s.

<«

Canary Cluster

Pod
Load Generator| 3
r Pp-
r M

<€ Usage

Measurements ML

D
e

easurement
Sidecar

Behaviors

Production Cluster

S
B -
> [P _]
>

HPAEvolver

HPA

Fig. 1: Major components of KAPETANIOS.

II. BACKGROUND

K8s has emerged as the de facto standard to orchestrate ser-
vice meshes. K8s employs a horizontal pod autoscaler (HPA)
to realize scalable service management. The HPA monitors
a predefined metric, e.g., CPU utilization of pods, and tries
to meet Quality of Service (QoS) requirements by adding or
removing pods, while avoiding over-provisioning [2], [3[]. To
achieve these goals, the HPA can optimize two parameters:
(1) the frequency of checking conditions to scale; (2) the
utilization thresholds at which the HPA scales [2]], [3]. If the
workload varies, e.g., the application’s resource requirements,
or the arrival patterns of the requests change, HPA settings are
likely to become invalid [2].

Verifying existing settings and finding new ones is chal-
lenging. The operator has to know requests patterns, i.e., how
requests arrive over time, as well as the application’s resource
profile, i.e., how resource demands change with the pattern.
Both can only be obtained empirically, and do not directly
translate into HPA settings. Obtaining the necessary informa-
tion and translating them into HPA setting are considered time-
consuming and tedious [2], [3].

I1I. KAPETANIOS

KAPETANIOS has five building blocks: production cluster,
canary cluster, DT, simulation and HPAEvolver.

Production Cluster: a K8s cluster that provides services
(applications), and has an HPA for each service. The ingress
controller distributes requests to running pods. KAPETANIOS
collects data via available APIs and logs. For example, the
resource utilization through K8s’ cAdvisor, and HPA actions
and the deployment time of pods from the cluster’s logs.



Canary Cluster: KAPETANIOS uses it to gather data which
the production cluster does not provide. To this end, the canary
cluster runs applications from the production cluster in a pod
together with two sidecar containers. The first sidecar is a
reverse proxy that gathers arrival, departure and service times
per request. The second sidecar gathers CPU utilization at
high resolutions (<1s) and makes them available in real-time.
Further, it parses the request information from the proxy logs.

Requests originate from two sources: (1) mirroring or
forwarding random samples of requests from the production
cluster; (2) synthetic workloads from the load generator.
Sampling from the production cluster allows KAPETANIOS
to detect changes in request patterns, e.g, request arrival rate
or the distribution over services. For instance, if users start to
access a more resource-intensive service more often, it might
necessitate an update in the cluster configuration.

KAPETANIOS uses the load generator to generate diverse
synthetic workloads to benchmark the applications with pat-
terns that are different from the production traffic. For ex-
ample, it synthesizes specific distributions over request types.
Generating such patterns is necessary to provide ample data for
subsequent data analysis tasks and ML. Especially ML needs a
variety of behaviors for accurate predictions that might rarely
occur in day-to-day usage scenarios.

Digital Twin: serves as an interface to the production and
the canary clusters. DT collects data from both clusters, and
monitors and controls the clusters. Further, it uses ML to
extract models from data. The models describe aspects of the
clusters, e.g., how the request arrivals affect CPU utilization,
how long the deployment of pods takes, how the request arrival
rate changes over time, etc. DT also provides control over
the production cluster via a Translator that turns high-level
commands into configurations and applies them.

Simulation: evaluates different configurations and estimates
their impact on resource consumption and QoS parameters. It
uses the behavioral models from DT to mimic the cluster as
closely as possible. For example, the simulation exploits appli-
cation profiles and usual request arrivals to simulate how a spe-
cific HPA setting might affect resource consumption and QoS.
Using simulations instead of testbeds allows KAPETANIOS to
concurrently evaluate multiple configurations.

HPAEvolver: searches for the configurations that mini-
mize the resources a cluster uses while satisfying QoS require-
ments. The HPAEvolver uses simulations to evaluate differ-
ent HPA configurations and selects the best one. It then utilizes
the DT to apply the new configuration. KAPETANIOS can
trigger the HPAEvolver automatically, e.g., if KAPETANIOS
detects a change in the request pattern, or through external
triggers, e.g., through a scheduled update of the application.

IV. DEMO SCENARIO

Fig.[2]shows a screenshot of the demo. The demo showcases
the automatic tuning of the HPA by the HPAEvolver. For
this, the demo runs a dummy web application. In the app, each
request occupies a single CPU core for a given amount of time
(request processing time).

The illustrated use-case is a change in the application’s
request processing time: the application running in the pro-
duction cluster is updated, changing a requests’ processing
time, and making the HPA configuration inefficient. The demo
has four application versions that the user can select with
the slider in the upper left corner. Each version corresponds
to a different request processing time (upper left in Fig. [2).
The demo proceeds in three steps. For each step, the demo
highlights the involved components in the left of Fig. [2]

Firstly, KAPETANIOS uses the canary cluster together with
the load generator to generate measurements on the resource
consumption of the updated application. The measurements
are collected by the DT, where the ML engine learns a new
profile from the collected data. The demo shows the mismatch
between the old profile (orange), the actual cluster utilization
(blue), and how the new profile (green) correctly predicts the
utilization (upper right of Fig. ). The demo uses the Random
Forest Regressor from the sci-kit learn library [4].

Secondly, the HPAEvolver employs the simulation, the
behavior models, and historical data on request patterns from
the DT to optimize the HPA configuration. The simulation
initializes itself with the current configuration of the produc-
tion cluster. The HPAEvolver then updates the parameters
that the simulation should evaluate. The simulation reports the
expected QoS and pod resources over time of the cluster to
HPAEvolver. HPAEvolver selects the best configuration
and uses the DT to apply it on the cluster.

Finally, the demo deploys the updated application to the
production cluster, and shows the resulting QoS, and pod
resources of the application. Further, the demo compares
the values with bar-plots against a scenario in which the
configuration is not changed to showcase the benefits of
adapting the HPA’s scaling behavior. Fig. 2] shows examples
at the bottom: whereas the average request completion time
remains unchanged at ~0.07 s, the used pod seconds decreases
by ~37 %, i.e., from ~476s to ~298s.

V. RELATED WORK

Tamiru et al. [2] show that scaling performance depends
heavily on the workload and that using multiple node pools
increases performance. Toka et al. [3] design an ML-based
autoscaler. It predicts the request arrival rate for the next
minute, and demonstrates that with a slightly higher resource
over-provisioning more requests can be served compared to the
default K8s HPA. Libra [3] is an adaptive autoscaler for K8s.
It scales horizontally until reaching a predefined maximum
number of pods. Afterwards, it behaves as a vertical scaler
and predicts a CPU limit per pod. KubeKlone [6]] uses a
DT to model and simulates resource management methods
for microservice-based applications, and abstracts infrastruc-
ture details by providing high-level interfaces. In contrast to
previous work on adaptive HPA scaling, KAPETANIOS learns
a model of the applications’ resource consumption and uses
the learned models to realistically model the cluster’s behavior
in simulations. KAPETANIOS then uses the simulations to
autonomously update the cluster’s configuration.



Request Time [ms]

Structure CPU Usage - Canary

— Measurement
Old Model

— Current Model

o
®

<«Usage

o
o

)
S

CPU Usage Ratio

=
¥

Kapetanios Dashboard

c—\/ﬁﬂ

!
|
34

Production Cluster

HPAEvolver|

.

Pods - Production
500

Sum pod resources
over time

nonopt

300
200 -

ﬁ

Request Completion Time - Production

.06
.02
0

nonopt

sample index [0.5 5]

Mean Completion
Time[s]

S

i

o

Fig. 2: Demo GUL Left: Structure of KAPETANIOS, indicating the demo’s state. Upper right: Mismatch between new and old ML model.

Bottom right: KPIs for old and optimized configuration.

Recently, DTs have gained attention as a facilitator to
close knowledge gaps for operators [7], [8]. For instance,
Hui et al. [9]] observe that packet-level network simulators
are slow and thus not adequate to use in digital network
twins. Instead, they observe that Neural Networks can model
complex behaviors and suggest to model the impact of various
factors on performance. The authors identify requirements
for the performance evaluation to be useful in DTs. Sun et
al. [10] try to assure service level agreements (SLAs) via
a DT. They use information from the physical network to
make decisions. However, it is unclear what the network
looks like, and how data is retrieved. ChaosTwin [11] uses
fuzzing to optimize cloud-based services, specifically, to find
fault tolerant locations of VMs. Zhang et al. [12]] provides
fast performance estimation for data center networks at scale,
based on packet-level simulations and ML. KAPETANIOS does
not focus on establishing a novel concept of DTs. Instead, this
demo shows a new avenue of how DTs can help the automation
of next generation networks.

VI. CONCLUSION

This demo presents KAPETANIOS. KAPETANIOS automates
the configuration of Kubernetes (K8s) clusters by combining
Canary testing, digital twinning, ML, and discrete event sim-
ulations in a novel way. The demo shows how KAPETANIOS
adapts the configuration of a K8s cluster in real-time to a
changing behavior of the application, decreasing requested pod
seconds by ~37 % while keeping request latency low.

REFERENCES

[1] 5G Core (5GC) network: Get to the core of 5G.
[Online]. Available: https://www.ericsson.com/en/core-network/5g-core/
en/core-network/5g-core

[2] M. A. Tamiru, J. Tordsson, E. Elmroth, and G. Pierre, “An Experimental
Evaluation of the Kubernetes Cluster Autoscaler in the Cloud,” in
CloudCom 2020. Bangkok, Thailand: IEEE, 2020, pp. 17-24.

[3] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine Learning-
Based Scaling Management for Kubernetes Edge Clusters,” IEEE TNSM,
vol. 18, no. 1, pp. 958-972, Mar. 2021.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[5] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of Kubernetes
pods,” in IEEE/IFIP NOMS 2020, Apr. 2020, pp. 1-5.

[6] A. Bhardwaj and T. A. Benson, “KubeKlone: A Digital Twin for
Simulating Edge and Cloud Microservices,” Asia-Pacific Workshop on
Networking (APNet 2022), p. 7, 2022.

[71 A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital Twin: Enabling
Technologies, Challenges and Open Research,” IEEE Access, vol. 8,
pp. 108952-108971, 2020.

[8] M. M. Rathore, S. A. Shah, D. Shukla, E. Bentafat, and S. Bakiras,
“The role of ai, machine learning, and big data in digital twinning:
A systematic literature review, challenges, and opportunities,” IEEE
Access, vol. 9, pp. 32030-32052, 2021.

[91 L. Hui, M. Wang, L. Zhang, L. Lu, and Y. Cui, “Digital Twin for
Networking: A Data-driven Performance Modeling Perspective,” CoRR,
vol. abs/2206.00310, 2022, arXiv: 2206.00310. [Online]. Available:
https://doi.org/10.48550/arX1v.2206.00310

[10] X. Sun, C. Zhou, X. Duan, and T. Sun, “A digital twin network solution
for end-to-end network service level agreement (sla) assurance [version
1; peer review: awaiting peer review],” Digital Twin, vol. 1, no. 5, 2021.

[11] E. Poltronieri, M. Tortonesi, and C. Stefanelli, “Chaostwin: A chaos
engineering and digital twin approach for the design of resilient it
services,” in CNSM 2021, 2021, pp. 234-238.

[12] Q. Zhang, K. K. W. Ng, C. W. Kazer, S. Yan, J. Sedoc, and V. Liu,
“Mimicnet: fast performance estimates for data center networks with
machine learning,” in ACM SIGCOMM’ 2021, 2021, pp. 287-304.


https://www.ericsson.com/en/core-network/5g-core/en/core-network/5g-core
https://www.ericsson.com/en/core-network/5g-core/en/core-network/5g-core
https://doi.org/10.48550/arXiv.2206.00310

	Introduction
	Background
	Kapetánios
	Demo Scenario
	Related Work
	Conclusion
	References

