
1 INTRODUCTION 
 
With the increase in demands for creating real-world 
digital twin (DT) models with rich semantic and co-
herent geometry, the use of 3D data acquisition 
technologies has increased significantly. Laser scan-
ners and photogrammetry technology are the most 
modern and efficient measurement tools for provid-
ing geometric and semantic information, which is 
widely used in many fields such as BIM, simulation, 
navigation, robotics, and facility management (Volk 
2014). Besides all the opportunities such as high-
density point cloud collection at high speeds and 
high accuracy, the scanning of large-scale buildings 
has always been associated with complex layouts of 
space, clutter, and obstruction (Ochmann, Vock et al. 
2015). These have made experts face different chal-
lenges in data processing, geometrical modeling, and 
statistical analysis. Therefore, providing methods for 
3D parsing of interior spaces is essential for ideally 
using large-scale point cloud data. 

Defining the space and separating the interior of 
buildings into distinct spaces (e.g., rooms, corridors, 
halls, etc.) have different meanings depending on the 
application and the purpose (Zlatanova, Yan et al. 
2020). In the 3D model reconstruction and naviga-
tion, an enclosed interior space is defined by main 
structural elements such as floor, ceiling, and wall, 

which have topological relations with other connect-
ed spaces (Nikoohemat, Peter et al. 2017).  In this 
regard, inferring the prevailing topological relation-
ships between spaces is a practical tool for accurate 
geometric modeling of complex spaces and simplify-
ing the analysis process in indoor navigation applica-
tions (Zlatanova, Liu et al. 2014).   

This paper proposes a hybrid top-down, bottom-
up approach to alleviate the existing limitations in 
3D parsing of the Indoor environment and finding 
topological relationships between spaces. First, as a 
top-down approach, the main elements of the build-
ing structure, such as walls, and ceilings, are detect-
ed using a CNN semantic segmentation method. 
Then, by neighborhood analyzing the ceiling points 
at the junction with the wall element and implement-
ing a clustering method, the points of the ceiling el-
ement are classified into unique clusters. Finally, the 
information on clusters is used for disjointing the 
spaces. The position of common walls in intercon-
nected spaces can express the topological relation-
ships between the spaces in a simple or complex 
building environment. Due to the complexity of 3D 
scenes, the extraction of wall elements using previ-
ously developed methods has always been associated 
with challenges such as gaps and noise in the output 
results. To address this problem, we propose a bot-
tom-up approach to extract the footprints of walls in 
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robotic society. This paper proposes a novel automatic hybrid top-down, bottom-up approach for the 3D space 
parsing in the building environment and inferring relations between spaces. The proposed method is based on 
applying a deep convolutional neural network (CNN) for semantic segmentation of main elements and the use 
of existing knowledge in the construction of buildings. Unlike the existing methods, the proposed approach 
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ing wall footprints, and particularly finding the topological relation between them. 
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a closed space using the existing knowledge in the 
design and construction of buildings. Finally, after 
finding the adjacency matrix and the position of 
common walls between the spaces, the adjacency 
graph of the building spaces is formed. The structure 
of the paper is as follows: A brief research back-
ground of indoor point cloud segmentation and 3D 
space parsing is given in Section 2. Next, our pro-
posed framework is explained in Section 3. Section 
4 handles the implementation of the proposed algo-
rithm on two different datasets, followed by evalua-
tion and analyses of our results. A conclusion and 
discussion about the results are presented in Section 
5. 

2 RELATED WORK 
 
Developing an automatic and robust algorithm for 
partitioning large-scale indoor point clouds into in-
dividual spaces is a topic that has long been re-
searched and studied. Generally, the previously de-
veloped methods have tried to use the structural-
architectural definitions of buildings for segmenting 
the spaces. They mainly employed various tech-
niques and assumptions to detect the walls of space 
separators.  

In constructing 3D building models based on the 
BIM concept, Xiong et al., (Xiong, Adan et al. 2013)  
separated the spaces in an indoor environment using 
an assumption of the similarity of planar surfaces. 
Mura et al., (Mura, Mattausch et al. 2014) used an 
occlusion-aware approach by employing knowledge 
of laser scanner locations to separate spaces and re-
construct complex indoor spaces. Ochmann et al. 
proposed an iterative clustering algorithm that uses 
the probability of affiliation of each point to an indi-
vidual room by estimating the visibilities between 
any two locations (Ochmann, Vock et al. 2014). 

 In some developed methods, the researchers fo-
cused on utilizing tools such as RGB image features 
(Ren, Bo et al. 2012), depth features (Silberman, 
Hoiem et al. 2012), or floor plan maps (Liu, 
Schwing et al. 2015) to simplify the problem of 
identifying planar walls and separating spaces in 
buildings with complex designs. Ochmann et al., 
(Ochmann, Vock et al. 2015) presented an automatic 
approach for parametric modeling of the building, 
which detects the wall elements shared between 
rooms by solving a labeling problem and implement-
ing an energy minimization optimization. To im-
prove the previous methods, Ochmann et al., 
(Ochmann, Vock et al. 2019) used the RANSAC 
plane detection algorithm and an integer linear opti-
mization problem to develop a fully automatic room 
segmentation. Armeni et al. (Armeni, Sener et al. 
2016) proposed a density-based histogram analysis 
for 3D space parsing. They divided a whole point 
cloud of the indoor scene into disjoint spaces (i.e., 

the floor plan), which afterward the information such 
as spaces adjacency can easily be reached.  

According to what was examined, most of the de-
veloped methods for 3D space parsing required pre-
knowledge about the layout of spaces or the location 
of laser scanners. They can only be considered for 
small-scale environments. In addition, the output of 
unsupervised segmentation methods that use features 
such as density to separate spaces is always associat-
ed with threats such as over-segmentation. 

Examining all aspects and limitations of devel-
oped methods, we propose an automated knowledge-
based algorithm that utilizes artificial intelligence 
capacities and knowledge in building structural de-
sign to minimize the effects of challenges. Our focus 
is on separating spaces in real-world built environ-
ments with any simple/complex layout designs. 
More details about the proposed methodology are 
provided in the next section. 

3 METHODOLOGY 
 
As shown in Figure 1, the proposed method includes 
three major steps including; 1) semantic segmenta-
tion of point cloud to extract the main elements (e.g., 
walls, ceiling), 2) point neighborhood analysis and 
performing density-based clustering algorithm, 3) 
Walls footprint extraction using principal component 
analysis (PCA). The details of the steps are given in 
the following subsections. 

3.1 Semantic segmentation of point cloud 

The first step in the proposed method is the se-
mantic segmentation of the indoor point cloud and 
separating elements that constitute the structure of 
the building. Ceilings and walls are the major part of 
any building, which have important rules in space 
layout and design. In a building, each space is sur-
rounded by interior and/or exterior walls, and gener-
ally, the Interior walls are a common part between 
two or more spaces. Due to the complexity of indoor 
scenes and point cloud challenges, accurate extrac-
tion of the planar elements such as walls and ceilings 
using the traditional unsupervised method is a prob-
lematic and costly computational task. Also, these 
methods often need to define a set of prerequisites 
parameters for each case, which reduces the automa-
tion level of algorithms.  

With the ongoing development of deep learning 
concepts in the last decade, large-scale data classifi-
cation and segmentation have become one of the 
most prevalent research aspects in computer vision 
and construction society. We use the unique capabil-
ities of artificial intelligence (AI) methods for se-
mantic segmentation of large-scale point cloud data 
and extract wall and ceiling elements in complex and 
cluttered building environments. 

 



 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 
 

 
Figure 1. Proposed workflow for 3D parsing of indoor spaces 
and extracting corresponding walls footprints. 

 
In this case, we use a pre-trained semantic seg-

mentation model based on the PointNet++ network 
(Ruizhongtai Qi, Yi et al. 2017). The PointNet++ ar-
chitecture considers connectivity between points to 
extract local/global detailed geometrical features 
through multi-scale regions and hierarchical aggre-
gation. The main focus of this step is on detecting 
wall and ceiling points for disjointing the 3D spaces. 
Thus, we use the semantic segmentation network 
trained with the S3DIC dataset, a well-known da-
taset of indoor space of buildings with thirteen ob-
ject classes (e.g., ceiling, floor, wall, and furniture) 
(Armeni, Sax et al. 2017) (figure 2). 
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Figure 2. Semantic segmentation of S3DIC dataset using 
PointNet++ model, (a) RGB point cloud, (b) ground truth, (c) 
result of semantic segmentation, and (d) extracted ceiling and 
walls elements. 

3.2 Neighborhood analysis and points clustering 

Obviously, in the buildings, the ceiling and wall el-

ements are mounted vertically on each other and 

have a common boundary. Also, when generating 

point clouds using laser scanners and camera sen-

sors, a gap always appears in the part of the common 

wall between the two spaces. This knowledge pro-

vides key clues to separate the spaces from each oth-

er. 

An enclosed indoor space consists of basic struc-

tural elements such as floor, ceiling, and wall. To 

find the central part of an individual enclosed space 

surrounded by walls, the neighborhood of the ceiling 

points at the junction with the wall element is ana-

lyzed. So, each ceiling point in th distance from the 

wall points is removed from the ceiling segment. 

The value of th is based on the average thickness of 

interior walls in the type of buildings considered. Af-

ter that, the ceiling point clouds become a set of scat-

tered segments far from the walls separating the 

space. Subsequently, a clustering method can turn 

the remaining points of the ceiling element into 

unique segments (figure 3). These segments are the 

central part of the space ceilings that are now sepa-

rated and get their unique labels. In this regard, the 

density-based clustering algorithm (DBSCAN) is 

recommended for clustering the scattered points 

(Ester, Kriegel et al. 1996). The DBSCAN algorithm 

clusters the points by assuming that clusters are 

dense point groups in space within a specific range 

(a certain neighborhood radius) separated by lower 

density groups. The efficiency in dealing with noisy 

data is one of the outstanding features of DBSCAN.  

Eventually, a hierarchical nearest neighbor 

method assigns the correct cluster label to the re-



moved ceiling points (figure 4). All clusters’ points 

are used to find the nearest point to the removed 

ceiling points in this process. 

 

   
(a) (b) (c) 

Figure 3. Overview of the proposed algorithm for 3D space 
parsing, (a) ceiling and walls points, (b) removing ceiling 
points at th distance from walls, and (c) clustering remaining 
ceiling points using the DBSCAN algorithm. 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 4. Applying the nearest neighbor method to assign clus-
ter-ID for removed ceiling points. 

3.3 Walls footprint extraction 

The similarity of geometric and spectral features of 

wall points with other elements in the building envi-

ronment leads to the fact that detecting wall surface 

points using deep learning methods would not be 

without error. As accurate wall positioning is an im-

portant and highly demanded task in many applica-

tions such as digital twinning, path planning, etc., we 

combine the bottom-up knowledge-based approach 

with the capabilities of deep learning networks to 

reach a high accuracy in detecting the location of 

walls. Based on the research, the detection of ceiling 

and floor points has the highest accuracy toward the 

whole elements in all developed semantic segmenta-

tion models (Table-1) (Hu, Yang et al. 2019). Also, 

the ceiling and wall elements have a common outer 

and inner boundary in an enclosed space. We can use 

boundary points of the ceiling to extract the footprint 

of the walls belonging to each 3D space. In a closed 

space consisting of several intersecting walls, chang-

es in the PCA parameters indicate breakpoints or ab-

rupt changes. These abrupt changes are for the end-

points of each wall where the curvatures are 

changed. 

To make it clearer, first, the boundary points of 

ceilings are extracted using the Alpha shape 

(Edelsbrunner, Kirkpatrick et al. 1983), and 

MeanShift (Cao, Qiu et al. 2019) methods, and then 

points are sorted in the x-y plane using the traveling 

salesman problem (TSP) (Sangwan 2018). This in-

creases the accuracy of the calculation of PCA val-

ues and leads to control over the data when finding 

the location of the abrupt changes. Next, the PCA 

coefficients are calculated for each point by consid-

ering n sorted neighbor points. We apply a histogram 

analysis to the real part of PCA coefficients values to 

find the locations of abrupt changes in PCA values. 

The points between two consecutive breakpoints be-

long to the surface of a wall. Finally, the points be-

longing to each wall in the 3D space are extracted 

from the original point cloud by considering a buffer 

around the separated points (figure 5). 

 

 

 

 

 

 

 

 

 

 
Figure 5. Extraction walls footprint using the proposed method. 

3.4 Creation adjacency graph 

Individual spaces are separated by common walls or 

connected by openings like doors/windows in an in-

door environment. An adjacency graph represents 

the adjacency relationships plan of all spaces that are 

not necessarily connected, which can provide differ-

ent processing possibilities in applications such as 

BIM, robotics, path planning, etc. The adjacency 

graph G is defined by G (V, E), in which Vertices 

(or nodes) of a graph are individual spaces, and Edg-

es present adjacency between two distinct spaces. 

Accordingly, the method of calculating the distance 

between the point cloud of space instances with 

a th neighborhood tolerance is used to find the adja-

cency relationships (figure 6). Also, the location of 

common walls, which indicates the connection be-

tween two spaces, can easily be handled by calculat-

ing the distance between all walls in two adjacency 

spaces and checking the parallelity conditions of the 

lines passing through the candidate wall's points.



Table 1.  Quantitative results of different approaches on S3DIS (6-fold cross-validation) (Hu, Yang et al. 
2019), the difference between the accuracy of detection ceilings and wall points. 

 
OA 

(%) 

mAcc 

(%) 

mIoU 

(%) 
ceil. floor wall beam col. wind. door table chair sofa book board clut. 

PointNet 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2 

RSNet - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0 

3P-RNN 86.9 - 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6 

SPG 86.4 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9 

PointCNN 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6 

PointWeb 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5 

ShellNet 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4 

KPConv - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3 

RandLANet 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1 

  

 

 

 

 

 

 

 

 

  (a)                 (b) 
Figure 6. Creation of the adjacency graph, (a)3D individual 
spaces, (b) corresponding adjacency graph. 

4 RESULTS AND DISCUSSION 

4.1 Case Study 

To validate the performance of the proposed method, 
we considered two building dense point clouds with 
different space layouts (figure 7). The first is the 
S3DIC area 5 dataset. The building is mainly for 
educational and office use and contains different 
enclosed 3D spaces (e.g., hallway, office, storage, 
etc.). The second dataset is a part of building No.1 of 
the Technical University of Munich. Ground truths 
for 3D space parsing are available for both raw point 
cloud data. Apart from that, some statistical 
information about the structural design of the 
buildings has been provided by the facilities 
department which have been reported in Table 2. 
 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 7. Overview of the data: (a) Stanford building, (b) TUM 
building. 

 

 

Table 2. Statistics information on buildings. 

Dataset 
Area 

(m2) 

Number 

of spaces 

Number 

of walls 

Number of 

points 

Stanford 

building 
1700 55 344 78.649.818 

TUM 

building 
99.60 4 16 16.529.431 

 

4.2 Experimental results of point cloud semantic 
segmentation  

As mentioned in section 3.1, we used the Point-

Net++ pre-trained network for the semantic segmen-

tation task. The model has been trained using the 

S3DIC dataset, including; Area 1-4 and Area 6. 

These datasets include 210 individual spaces from 

three educational buildings with different architec-

tural features. Table 3 shows more details about the 

parameters used in network training. We tested the 

model on both cases study datasets. The general met-

rics, Intersection-Over-Union (IOU) per class, the 

average accuracy of the classes (mAcc), and overall 

accuracy of points (OA) were calculated to evaluate 

the performance of the semantic segmentation step 

which have been reported in table 4. As stated be-

fore, the purpose of the semantic segmentation step 

is to extract the main elements of the building space, 

including ceilings and walls. In this regard, an aver-

age IOU of about 88.56% for detecting ceiling, floor 

and walls elements highlights the efficiency of the 

used semantic segmentation model. 

 

Table 3. Parameters of pre-trained semantic segmentation 

network using Point Net++ model. 
Parameter value 

Batch size 16 

Number of points 

per voxel 
4096 

Epoch 128 

Learning rate 0.001 

Decay rate 0.0001 

Learning rate decay 0.7 

 



Table 4.  Quantitative results of the semantic segmentation datasets using PointNet++ network. 

Building 
OA 

(%) 

mAcc 

(%) 

mIoU 

(%) 

(IOU) per class 

ceil. floor wall beam col. wind. door table chair sofa book board clut. 

Stanford  82.98 62.02 53.53 89.4 97.7 75.4 0 1.8 58.3 19.5 69.2 79.0 46.2 59.1 58.7 41.6 

TUM  86.53 69.7 55.92 91.3 96.4 81.2 0 2.6 53.9 27.1 73.3 75.7 52.5 58.7 61.5 53.7 

 

As reported in Table 1, the averages of the mod-

els' IoU value in detecting the ceiling and wall ele-

ments are 92.05% and 77.51% respectively, which is 

somewhat equal to the accuracy obtained in the 

PointNet++ model. The low accuracy in the detec-

tion of walls depends on various factors such as the 

scene's complexity and the use of different materials 

in the design (e.g., glasses, wood, etc.), which are in-

evitable in building environments. Addressing this 

problem requires preparing huge different datasets to 

achieve excellent performance, and collecting such 

data for buildings with cluttered scenes is highly ex-

pensive and challenging. These problems place limi-

tations on all developed models. Therefore, once 

again, the importance of addressing the existing 

knowledge in building design and element interac-

tion for use in processes related to feature extraction 

and modeling tasks is highlighted. 

 

4.3 Experimental results of 3D space parsing and 
walls footprint extraction 

To disjoint 3D spaces, first, the points of the ceiling 

element at the 40 cm distance from the wall element 

were removed from the ceiling segment. Considering 

the value of 40 cm as the distance threshold was 

based on the average thickness of the interior-

exterior walls in office building design with any ma-

terial such as concrete, stone slab, etc. After that, the 

DBSCAN clustering method and the nearest neigh-

bor algorithm were applied to cluster 3D space 

points into the different groups (figure 8). 

After separating the 3D spaces, the ceilings 

boundary points were extracted and then point sorted 

in the X-Y plane with the TSP algorithm. Next, the 

PCA coefficient was calculated for each point by 

considering 25 neighbor points. Subsequently, the 

location of walls footprints in each space instance 

was detected by finding abrupt changes in the histo-

gram of the real part of corresponding PCA coeffi-

cients (figure 9). Eventually, to extract the points be-

longing to walls in XYZ space, a 2.5 cm buffer was 

considered around the footprints, and then the inlier 

points were extracted from the original point cloud 

(figure 10). 
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(b) 

Figure 8. 3D space parsing: (a) Ground truth, (b) The result of 
proposed method, left; Stanford building, and right; TUM 
building. 

 
(a) 

 
(b) 

Figure 9. Walls separation, (a) detecting wall endpoints us-

ing histogram analysis of PCA coefficients, and (b) separat-

ing walls using breakpoints. 
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(b) 

Figure 10. Wall points extraction using the proposed method: 

(a) Stanford building, (b) TUM building. 

 

To find the adjacency relations of spaces accord-

ing to indoor layout, the distance between all the 

segmented spaces was calculated, and considering a 

40 cm tolerance as the neighborhood confidence dis-

tance, the adjacency graph of the spaces was formed 

for building datasets. Figure 11 shows the generated 

adjacency graphs. 

In order to investigate the performance of the 

proposed algorithm for 3D space parsing and extrac-

tion of the corresponding walls, a quantitative evalu-

ation between the statistical parameters of the result 

and the information reported by the facilities de-

partment is considered (Table 5). These include; the 

calculation of the standard unsupervised clustering 

metric Rand Index (RI) (Rand 1971), the number of 

individual spaces, and the number of walls per 

space. Also, an average distance between the ex-

tracted wall points cloud and ground truths' wall 

points is calculated for each building dataset. In this 

regard, the overall accuracies for 3D space parsing 

and extracting the number of the corresponding 

walls are 96.25% and 95.21%, respectively, which 

indicates the utility of the proposed algorithm. One 

of the most important challenges in 3D space parsing 

in a large-scale indoor environment is the separation 

of hallways from each other and solving their over-

segmentation problem. In contrast, the hallways are 

connected and form a space in a building. As can be 

seen in the results, our proposed knowledge-based 

algorithm can solve this problem well and separate 

hallways and corridors into one space without any 

post-processing task. 
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(b) 

Figure 11. Adjacency graph of spaces: (a) Spaces, (b) created 
adjacency graph, left; Stanford building, right; TUM building. 

 

Table 5. Quantitative results of the proposed                     

algorithm for 3D space parsing and walls extraction. 

 

Rand 

Index 

(RI) 

(%) 

Number 

of 

Spaces 

(%) 

Number of 

walls per 

space 

(%) 

C2C distance 

between walls 

points 

(cm) 

Stanford 

building 
93.61 94.55 90.43 12 

TUM 

building 
98.9 100 100 2 

Overall 96.25 97.27 95.21 7 

5 CONCLUSION 

This paper presents a novel hybrid bottom-up-top-

down algorithm for automatic 3D space parsing in 

the built environment. The main idea of the pro-

posed approach is to combine the capabilities of AI 

methods and knowledge in the building's design to 

overcome the limitations of common traditional 

methods of point cloud processing, such as deter-

mining variable parameters and over-segmentation. 

Also, the hybrid approach improves automation and 

efficiency in the face of all real-world building de-

signs such as Manhattan and non-Manhattan layouts. 

To improve the algorithm's performance in prevail-



ing challenges such as noisy point clouds with clut-

ter in the complex buildings' indoor scenes, Point-

Net++ semantic segmentation model is implemented 

and its results for wall and ceiling detection are used 

for the 3D space parsing. The accuracies of 97.27% 

for the segmentation of 3D spaces and 95.21% for 

the extraction of the corresponding walls prove the 

high performance of the proposed algorithm in the 

face of buildings with any simple or complex design. 

Unlike other developed methods, our proposed ap-

proach does not require prior knowledge, such as the 

layout of indoor environments, sensors' location, 

etc., to separate the spaces. Segmentation of indoor 

point clouds into partitioned spaces paves the way 

for novel industrial applications such as building 

space statistics analysis and manipulation. In particu-

lar, the real-time space parsing by simplifying the 

large-scale data processing is an important and effec-

tive leap in the robotic application for the built envi-

ronment which makes it feasible in specific usage 

such as facility management, path planning, etc. One 

of the main goals of constructing digital twin models 

based on BIM concepts is to provide geometric and 

semantic information about an object simultaneous-

ly. As the outputs are partitioned 3D spaces and cor-

responding wall instances, it is easily possible to in-

fer any statistical information (e.g. area, volume, 

height, etc.) and also the topological relationship be-

tween them, which allows the independent use and 

processing in many applications such as; scan to 

BIM, 3D modelling, and navigation. 
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