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Abstract

Medical imaging is essential for examining the human body, internal organs, disease develop-
ments, and many other medical applications. However, dealing with medical images needs
decent experience, and it is subject to individuals’ differences. Consequently, computer-based
approaches have been developed to overcome the above limitations. Among these methods are
the deep-learning ones. Although deep learning methods have dominated all traditional ones,
one drawback is that they require big annotated data, which is expensive, time-consuming,
need experts, and is not always available. Therefore, this thesis addresses the insufficiency of
annotated data by proposing annotation-efficient medical imaging in deep learning-based ap-
proaches. We tackle the problem from three related perspectives. The first perspective devises
a novel data augmentation technique that enriches the model with new data points generated
from random linear interpolation of labeled and unlabeled data. Our semi-supervised learning
approach overcomes the limitations of previous works by exploring the input and latent spaces
in the training process where virtual training signals are generated. This method showed
state-of-the-art segmentation results on a couple of public MRI datasets for brain structures,
and superior performance on CT scans for COVID-19 infection.

While accessing the labeled and unlabeled data at one site is not always feasible, a potential
solution could be leveraging the distributed data in remote locations without breaching privacy
or so-called federated learning. Thus, the second perspective proposes a semi-supervised
federated learning method that exploits global knowledge and employs peer learning and
knowledge sharing inspired by the educational sciences. In a nutshell, our method constructs
clients’ communities based on their similarities, then encourages similar clients, a.k.a peers, to
learn from each other to create precise pseudo labels for the unlabeled data. Furthermore,
we propose a peer anonymization technique to enhance privacy and hide clients’ identities
adhering to the regulations of federated learning. This method was applied to more than
72,000 dermoscopic skin cancer images collected from five public datasets and distributed
to ten clients under four scenarios covering most real-life applications. In a set of extensive
experiments, our method achieved the best results. Furthermore, we extended our work to
include a dynamic learning policy that controls the learning stream between peers, which has
demonstrated effectiveness, especially for out-of-distribution clients.

Although the unlabeled data is missing their annotations, they are still wealthy with another
type of information hidden in their representations. Thus, the third perspective employs
representation learning in a self-supervised learning paradigm. Precisely, without annotations,
our strategy to learn better representations is to generate virtual embeddings by mixing
the actual data using random percentages. Then we train the model to extract hidden
information by decomposing the new embeddings to their original components and regressing
the mixing factors. Further, we support our method by proposing a self-consistency between
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the augmented and original embeddings, which forces the linearity and enhances the results.
Finally, we tested our approach on eight standard and medical data benchmarks. In addition,
we compared it with recent works, achieving superior performance in many downstream tasks.
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Zusammenfassung

Die medizinische Bildgebung ist unerlässlich für die Untersuchung des menschlichen Körpers,
der inneren Organe, der Entwicklung von Krankheiten und vieler anderer medizinischer
Anwendungen. Der Umgang mit medizinischen Bildern erfordert jedoch ein hohes Maß an
Erfahrung und unterliegt individuellen Unterschieden. Daher wurden computergestützte
Ansätze entwickelt, um die oben genannten Einschränkungen zu überwinden. Zu diesen
Methoden gehören die Deep-Learning-Methoden. Obwohl die Deep-Learning-Methoden alle
traditionellen Methoden dominiert haben, besteht ein Nachteil darin, dass sie große annotierte
Daten benötigen, die teuer und zeitaufwändig sind, Experten erfordern und nicht immer
verfügbar sind.

Daher befasst sich diese Arbeit mit dem Mangel an annotierten Daten, indem sie eine annota-
tionseffiziente medizinische Bildgebung in Deep-Learning-basierten Ansätzen vorschlägt. Wir
gehen das Problem aus drei verwandten Perspektiven an.

In der ersten Perspektive wird eine neuartige Technik zur Datenerweiterung entwickelt, die
das Modell mit neuen Datenpunkten anreichert, die durch zufällige lineare Interpolation von
gekennzeichneten und nicht gekennzeichneten Daten erzeugt werden. Unser halbüberwachter
Lernansatz überwindet die Einschränkungen früherer Arbeiten, indem er die Eingabe- und la-
tenten Räume im Trainingsprozess erforscht, in dem virtuelle Trainingssignale erzeugt werden.
Diese Methode hat bei einer Reihe von öffentlichen MRT-Datensätzen für Gehirnstrukturen
hervorragende Segmentierungsergebnisse und bei CT-Scans für COVID-19-Infektionen eine
überragende Leistung gezeigt.

Die zweite Perspektive schlägt eine halbüberwachte föderierte Lernmethode vor, die globales
Wissen ausnutzt und Peer-Learning und Wissensaustausch, inspiriert von den Bildungswis-
senschaften, einsetzt. Kurz gesagt, unsere Methode konstruiert Client-Gemeinschaften auf
der Grundlage ihrer Ähnlichkeiten und ermutigt dann ähnliche Clients, auch Peers genannt,
voneinander zu lernen, um präzise Pseudo-Etiketten für die unetikettierten Daten zu erstellen.
Darüber hinaus schlagen wir eine Technik zur Anonymisierung der Peers vor, um die Privat-
sphäre zu verbessern und die Identitäten der Clients zu verbergen, wobei wir uns an die Regeln
des föderierten Lernens halten. Diese Methode wurde auf mehr als 72.000 dermatoskopische
Hautkrebsbilder angewendet, die aus fünf öffentlichen Datensätzen gesammelt und in vier
Szenarien, die die meisten realen Anwendungen abdecken, auf zehn Clients verteilt wurden. In
einer Reihe von umfangreichen Experimenten erzielte unsere Methode die besten Ergebnisse.
Darüber hinaus haben wir unsere Arbeit um eine dynamische Lernpolitik erweitert, die den
Lernstrom zwischen den Peers steuert, was sich als wirksam erwiesen hat, insbesondere für
Clients, die nicht an der Verteilung beteiligt sind.
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Die dritte Perspektive setzt auf das Lernen von Repräsentationen in einem selbstüberwachten
Lernparadigma. Ohne Anmerkungen besteht unsere Strategie zum Erlernen besserer Reprä-
sentationen darin, virtuelle Einbettungen zu generieren, indem wir die tatsächlichen Daten
mit Zufallsanteilen mischen. Dann trainieren wir das Modell, um versteckte Informationen zu
extrahieren, indem wir die neuen Einbettungen in ihre ursprünglichen Komponenten zerlegen
und die Mischungsfaktoren regressieren. Darüber hinaus unterstützen wir unsere Methode,
indem wir eine Selbstkonsistenz zwischen den augmentierten und den ursprünglichen Ein-
bettungen vorschlagen, die die Linearität erzwingt und die Ergebnisse verbessert. Schließlich
haben wir unseren Ansatz an acht Standard- und medizinischen Daten-Benchmarks getestet.
Darüber hinaus haben wir ihn mit neueren Arbeiten verglichen und in vielen nachgelagerten
Aufgaben eine bessere Leistung erzielt.
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1Introduction

„In the name of Allah, Most Gracious, Most Merciful
Read (Prophet Muhammad) in the Name of your Lord
who created (1) created the human from a (blood)
clot. (2) Read! Your Lord is the Most Generous, (3)
who taught by the pen, (4) taught the human what he
did not know. (5)

— Holy Quran
(Sura 96: AL-ALAQ, Ayah 1-5)„And Allah has revealed to you the Book and wisdom

and has taught you that which you did not know. And
ever has the favor of Allah upon you been great.

— Holy Quran
(Sura 4: AN-NISA, Ayah 113)

1.1 Motivation

Recent years have witnessed enormous development and improvements in using computer
and machine learning algorithms in real-life applications, such as autonomous driving, speech
recognition, recommendation systems, health care, finance, military, education, robotics,
agriculture, surveillance, etc. All these systems generally work by consuming large amounts
of labeled training data, analyzing the data for correlations and patterns, and using these
patterns to make predictions about future states. However, despite all mentioned benefits,
these systems have many drawbacks related to finding high-quality training data, which is
expensive [240], time-consuming [71], needs experts [58], and is not always available [240].
These limitations are severe in the medical domain. On top of that, medical data can hold
sensitive information and have business value limiting it from being publicly available [216].

Consequently, massive efforts are dedicated by researchers to find alternative strategies to
compensate for the scarcity of labeled data. While these alternatives can vary significantly, this
thesis addresses the insufficiency of annotated data by proposing annotation-efficient deep
learning-based approaches for medical imaging. In this context, the primary motivation
of this dissertation is to find methods and techniques and leverage different available
resources to provide the deep learning models with new training signals that are not
available by the labeled data alone.
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1.2 Problem Statement

In this dissertation, we address the following research questions, which are considered
necessary for deep learning problems, in particular when dealing with the deficiency of
annotated medical images:

• To what extent does the huge available non-annotated data in training helps build
robust deep learning method suitable to the complexity of medical images?

Given that the unlabeled data is cheap, easy to find, and available in vast amounts, can
we build a semi-supervised learning method [49] that combines labeled and unlabeled
data intelligently and efficiently to generate proper and novel training signals without
needing more human annotations? Furthermore, can knowledge in the labeled data be
transferred effectively to unlabeled data to create accurate pseudo labels, then these
unlabeled data with its artificial annotations enhance the models’ accuracy? We address
these research questions in Chapter 4 of this dissertation.

• Can we incorporate and seek other available data resources from remote locations
to build powerful deep-learning models?

It is known that different medical centers have their data on their premises. However,
some or most of these data are available without annotations. Nevertheless, these
medical institutes are willing to collaborate to model a beneficial clinical usage of their
data without breaching privacy. Hence, can we mitigate the scarcity of annotated data
by building collaborative methods in which the distributed knowledge is shared instead
of isolated without any utilization? Furthermore, can we find an approach to distill the
understanding between different clients, given that some lack the annotated data? Thus,
creating a global model that exploits this accessible and distributed data is desirable.
Fortunately, this perspective can be addressed by the so-called federated learning [193].
We address these concerns in this dissertation’s second contribution in Chapter 5.

• Can we extract the knowledge from unlabeled data to perform the same tasks
achieved by the labeled ones and handle labeled data shortage?

Representation learning [25] is a set of techniques that allows a model to automat-
ically discover the representations needed for different deep learning tasks, such as
classification from raw data. This method replaces manual annotations and enables a
machine to learn and use the features to perform a specific task. Can we build useful
representations from the unlabeled data transferable to different downstream supervised
tasks? Thus, utilizing such an approach could solve the need for labeled data. These
research questions have been addressed in Chapter 6 of this dissertation.
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1.3 Contributions

To this end, this thesis tackles the above problem from three related contributions that handle
the scarcity of labeled data. We summarize our contributions as follows:

Contribution I. We addressed our first research question; to what extent does the huge
available non-annotated data in training helps build robust deep learning method suitable to
the complexity of medical images? In summary, we successfully incorporated a vast amount
of unlabeled data and a few labeled ones to augment the model with new data generated
by mixing both data types. This approach is dealt with by a well-known research direction,
namely semi-supervised learning [49]. Specifically, our method generates new virtual data
points by performing linear interpolation between labeled and unlabeled data. Similarly, the
pseudo labels for the new data are generated. These new data are created in the input space
and the hidden spaces. Then we train the model by leveraging both data types (i.e. , labeled
and pseudo-labeled) in a semi-supervised medical image segmentation task, including five
public datasets of brain MRI images and two lung infection CT datasets. This contribution is
covered in detail in Chapter 4 of this dissertation.

Contribution II. To answer the second research question, we explore utilizing knowledge
sharing distilled in multiple locations without violating privacy issues in the so-called federated
learning [193]. In this contribution, peer learning [267] from educational sciences and
ensemble averaging from committee machine [268] were utilized to build a semi-supervised
federated learning framework [130]. Peer learning enables our method to exchange knowledge
between similar clients, while ensemble averaging enables us to create anonymized peer that
reduces communication and hides clients’ identities. Further, we proposed static and dynamic
learning policies to control client learning streams. Our application of this approach is to
classify skin lesions in a database of more than 72,000 dermoscopic images distributed to ten
clients. This dissertation’s details of this contribution are described in Chapter 5.

Contribution III. We answer the third research question, Can we mine and extract the
knowledge from unlabeled data to perform the same tasks achieved by the labeled ones
and handle labeled data shortage? We address this part by employing the representations
learning [25] of the unlabeled data before fine-tuning the model with a few annotations
in the so-called self-supervised learning methods. In this approach, we build upon current
contrastive learning methods [132, 206]. Then, we propose an auxiliary task that composes
new data from the original ones, then learn the model to regress the percentage of such
composition of the mixed-up images. Further, we propose a self-consistency term that forces
the linearity and consistency between composed and original embeddings for better training.
Finally, we test our method on eight public datasets, achieving superior accuracy in different
downstream tasks. All these details are found in Chapter 6 of this dissertation.

1.4 Outline

This dissertation is organized as follows:

1.3 Contributions 3



Chapter 1: Introduction. In the first part of this dissertation, we introduce the motivation and
context of our work, problem description, contributions and solutions to the stated problem,
and the outline of this dissertation.

Chapter 2: Background. The first section introduces medical imaging, its definition, modal-
ities, applications, and challenges. Then, in the second section, we give a brief history of
computer-based methods focusing on deep learning.

Chapter 3: Learning Paradigms. In the third chapter, we introduce the essentials and relevant
technical details of deep learning in general, including the common learning paradigms; Super-
vised, Unsupervised, Semi-supervised, Self-supervised, and Federated Learning paradigms.

Chapter 4: Data Augmentation via Random Linear Interpolation in Semi-Supervised
Learning. This chapter presents Contribution I. The motivation, contributions, and related
works are covered in sections 4.1, 4.2, and 4.3, respectively. The method is described in
section 4.4, and the experiments and results are presented in section 4.5 and discussed in
section 4.6.

Chapter 5: Knowledge Sharing via Static & Dynamic Peer Learning in Semi-Supervised
Federated Learning. This chapter covers the second contribution. The motivation is mentioned
in section 5.1, while our contributions and related works are presented in sections 5.2 and
5.3, respectively. The method is presented in section 5.4, while the experiments and results
are reported in section 5.5 and discussed in section 5.6.

Chapter 6: Representations Learning via Virtual Embeddings and Self-consistency in Self-
Supervised Learning. Our last Contribution III is presented in this chapter. The motivation
is mentioned in section 6.1, the contributions are presented in 6.2, while related works are
in section 6.3. The methodology is presented in chapter 6.4, the experiments and results
reported in chapter 6.5, and discussed in chapter 6.6.

Chapter 7: Conclusion & Future Works. In the last chapter of this dissertation, we summarize
our contributions’ findings and observations in section 7.1. While we present our vision of the
possible future directions in section 7.2.
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2Background

„Great discoveries are made accidentally less often than
the populace likes to think

— Wilhelm Conrad Röntgen (1845–1923)
(German mechanical engineer and physicist and the

first Nobel Prize Winner in Physics in 1901, in
recognition of the extraordinary services he has

rendered by discovering the X-rays subsequently
named after him)

2.1 Medical imaging

2.1.1 Definition

Medical imaging is described as the procedure of capturing the internal body organs and
tissues for clinical use, medical intervention, as well as visual monitoring of the function of
some organs or tissues [258]. Medical Image plays a fundamental role in the medical field [2]
since it provides a tool to examine different diseases [242], quantify human organs [213],
therapy planning [202], tumor development monitoring [88, 146], diagnostic aid systems
[70], and intra-operative assistance [117].

These wide ranges of applications led to a great interest in the medical image. Globally, the
market size of medical imaging is estimated at 20.1 billion USD in 2021, and it is expected to
grow by 5.2% in 2028 [251]. Further, the revenue forecast is expected to be USD 28.6 billion
in 2028 [251]. At the same time, the high interest in using medical imaging comes from the
increasing demand for early-stage diagnosis of chronic disease and rising aging demographics,
which is expected to boost the demand for diagnostic imaging across the globe.

2.1.2 Modalities

Medical images include a broad spectrum of technologies such as magnetic resonance imaging
(MRI), X-ray radiography, ultrasound, endoscopy, positron emission tomography (PET), com-
puted tomography (CT) scans, optical coherence tomography (OCT), dermoscopy, and others.
While covering all these modalities is out of the scope of this thesis, next, we only brief the
commonly used ones.
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Fig. 2.1. (A) an Illustrative diagram of the working principle of the X-ray machine and (B) a sample X-ray image.

X-ray, the most widely used medical imaging modality, was discovered by W.C. Röntgen in
1895. X-rays take the form of ionizing radiation with a usual energy range between 25 keV
and 500 keV. A traditional X-ray machine has an X-ray pipe that sends a short pulse of X-rays
that travels through the human body. Those X-ray pulses that are not absorbed or scattered
reach a large area detector creating an image on a film [195]. An Illustrative diagram of the
working principle of the X-ray machine and a sample X-ray image for the chest are shown in
Fig. 2.1.

Ultrasound consists of sound waves with high frequencies significantly more than the range
of human hearing (>20,000 Hz). Ultrasonic images, also known as sonograms, are created by
sending ultrasound pulses into tissue using a probe. The ultrasound pulses echo off tissues
with different reflection properties and are returned to the probe, which records and displays
them as images. Many different types of images can be created. The most standard is a
Brightness or B-mode image, which shows the acoustic impedance of a two-dimensional
cross-section of tissue [75, 286]. An Illustrative diagram of the working principle of the
ultrasound machine and a sample image of a pregnant woman are shown in Fig. 2.2.

A computed tomography scan, introduced by Hounsfield in 1972, and also known as a CT
scan, is a non-invasive form of x-rays used to obtain detailed internal images of the body
for diagnostic purposes. CT scanners take multiple X-ray measurements from various angles
using a row of sensors and a rotating X-ray pipe positioned in the gantry to measure X-ray
attenuations by different tissues inside the body. These measurements are then treated on a
computer using reconstruction algorithms to produce cross-sectional or tomographic images
of a body [285]. An Illustrative diagram of the working principle of the CT machine and a
sample CT scan for the lung are shown in Fig. 2.3.

6 Chapter 2 Background



Fig. 2.2. (A) Illustrative diagram of the working principle of the ultrasound machine and (B) a sample ultrasound
image for a pregnant woman.

Fig. 2.3. (A) an Illustrative diagram of the working principle of the CT machine and (B) a sample CT scan for the
lung.

Magnetic resonance imaging (MRI) uses the property of nuclear magnetic resonance, where
powerful magnets are emitted to excite hydrogen nuclei of water molecules in human tissue,
producing a detectable signal spatially encoded, resulting in images of the body. Specifically, a
Radio Frequency (RF) device sends a pulse to the region of interest in the body to be examined.
Once protons absorb the RF pulse, the RF pulse changes its direction to the original magnetic
field. When the RF pulse is turned off, the protons align back to the primary magnet and
emit radio waves. This radio-frequency emission from the hydrogen atoms in the water of
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Fig. 2.4. (A) An Illustrative diagram of the working principle of the MRI machine and (B) a sample MRI of the
brain.

Fig. 2.5. (A) An Illustrative diagram of the working principle of the OCT machine and (B) a sample OCT for the
retinal image.

human tissue is caught and rebuilt into an image [195]. An Illustrative diagram of the working
principle of the MRI machine and a sample MRI for the brain are shown in Fig. 2.4.

Optical coherence tomography (OCT) is a non-contact non-invasive technique for cross-
sectional tissue imaging with a high resolution of 20–5 µm, much higher than other medical
imaging modalities like MRI. OCT has similar working principles to ultrasound images.
However, it typically uses light in the near-infrared spectral field, with a penetration depth of
several hundred microns in tissue. The reflected light is computed with an interferometric
set-up to reconstruct the depth profile of the example at the region of interest. Because OCT
uses light in the near-infrared, it travels much faster than ultrasound [13]. An Illustrative
diagram of the working principle of the OCT machine and a sample OCT for the retinal are
shown in Fig. 2.5.

Dermoscopy, also known as epiluminescent microscopy or surface microscopy, is a method
that allows the visualization of pigmented cutaneous lesions of the reticular dermis. This
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Fig. 2.6. (A) An Illustrative diagram of the working principle of the dermoscopy machine and (B) a sample skin
lesion.

technique includes using a device similar to an otoscope but with a specific contact lens. The
device generates a beam of light sent on the cutaneous surface at an angle of 20°. Light
reflection is removed by putting a fluid at the interface between the epidermis and the
device’s glass slide. The visualization of the dermoscopic features results from the existence
of hemoglobin and melanin in the various skin layers [44]. An Illustrative diagram of the
working principle of the dermoscopy machine and a sample skin lesion are shown in Fig. 2.6.

2.1.3 Applications

The success of medical imaging and the advances in computing power enhanced the research
in the direction of image-processing solutions for medical pathology. Over the past decades,
several applications have been developed and improved to assist radiologists in this new era of
medical imaging. The following list includes the most common medical imaging applications
developed for clinical and research purposes.

Organ and tissue segmentation: Medical image segmentation involves the extraction of
regions of interest (ROIs) or areas of the anatomy required for a particular study. These
ROIs include but are not limited to (i) lung [42] and bone [77, 125] in X-rays, (ii) Breast
cancer [124] in Ultrasound images, (iii) abdominal organs such as liver, spleen, kidneys,
pancreas, gallbladder, and aorta in CT scans [83, 321], (iv) skin lesion in dermoscopic
images [287, 305], (v) brain tissue [80, 226], stroke lesions [136] and cardiovascular and
heart [211] in MRI, and (vi) retinal layers in OCT [111].

Disease classification and diagnosis: In many cases, medical images are rich with texture,
and morphological features, which are increasingly used in healthcare for diagnosing, classifi-
cation, planning, guiding treatment, and monitoring disease progression [39, 153, 169, 180,
282, 296].
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Abnormality Detection: It is the identification of irregular makers or observations that deviate
from standard data distribution i.e. out-of-distribution, such as a tumor or lesion [22, 23, 237,
330].

Registration: As medical images are increasingly used in the medical health sector, in many
of these studies, multiple images are obtained from patients at different times, often with
various imaging modalities. The information provided by the various imaging modalities is
often complementary. Therefore, possible uses in improving how these images are compared
and combined, aka image registration. Medical image registration is used in considerable
clinical applications, such as motion tracking, image guidance, dose accumulation, image
reconstruction, segmentation, and many other applications [92, 114, 189, 190, 276].

2.1.4 Challenges

Over the last few years, medical images have noticed significant improvements due to their
wide range of applications and crucial role in detecting, diagnosing, and treating diseases.
In the clinic institutes, human experts such as radiologists and physicians primarily perform
medical image interpretation and analysis. Medical image analysis aims to extract infor-
mation effectively and efficiently for improved clinical diagnosis. In addition, the current
advancements in biomedical engineering have made medical image analysis one of the highest
research and growth areas. Still, manual analysis of medical images is not easy and involves
many challenges.

2.2 Deep Learning

Due to the previous limitations of manual medical data analysis mentioned in section 2.1.4,
researchers have started investigating a computer-based approach to achieve accurate, fast,
cheap, and consistent analysis. Thus, machine learning, including deep learning methods, are
the keystone of today’s artificial intelligence (AI) advancement, brings new improvements
to clinical practice with medical images [57, 180, 320]. For instance, machine learning
has been shown to function on par with medical experts to analyze various diseases from
medical images [184]. Further, software applications are starting to be licensed for clinical
usage [239, 266]. The following sections briefly describe the automated analysis focusing on
deep-learning-based methods.

2.2.1 Brief History of Computer-based Methods

Once the researchers were able to generate and provide medical images into a computer, they
built automated-based systems for analysis. One early implementation of the computer-based
methods of the 1970s in medicine was by Shortliffe [247], which led to the development
of rule-based, expert systems to suggest different antibiotic therapies for patients. In the
following attempts to the 1990s, medical image analysis was done with sequential application
of low-level pixel processing such as region growing, thresholding, and edge and line detector
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Fig. 2.7. Machine and Deep Learning Methods Pipelines.

filters [212, 230], and mathematical models such as fitting lines, circles, ellipses, and Markov
random field [82, 212].

By the end of the 1990s, AI algorithms progressed from heuristics-based techniques to manual
feature extraction techniques, where training data is used to design a system in so-called
supervised learning techniques. These computer algorithms determine the optimal decision
boundary in the high-dimensional feature space. Consequently, extracting discriminant
features from medical images is a vital stage in designing such systems. Until that point, this
process is still done by human researchers, a.k.a handcrafted features. Examples include active
shape models and atlas methods [145]. Because the success of these methods depends on the
quality of extracted features, most efforts of the researchers were focused on finding the most
discriminating features.

The logical next evolution is to computerize the feature extraction step. This idea lies at
the root of many deep learning algorithms; artificial neural networks are composed of many
layers that receive and transform input data (e.g., medical images) into outputs or predictions
(e.g., disease present/absent) without any manual features extraction steps in the so-called
end-to-end learning approach. In Fig. 2.8, we present an illustrative diagram showing the
conventional machine learning methods pipeline compared to the deep learning ones. Because
deep learning methods relax the need for a manual finding of the most discriminating features,
the researchers focus on finding the best architecture that can automatically extract the most
valuable and generalizable representations from the data. Thus, we summarize the most
successful deep-learning architectures in medical images in the next sections.
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2.2.2 Deep Learning Methods

In the last two decades, more and more deep-learning methods have been widely applied
in medical imaging. This impressive success of deep learning over other machine learning
techniques is attributed to the fact that many traditional machine learning methods rely on
handcrafted texture or morphological feature extraction to identify the valid characteristics
in the image. However, such designed features need human experts and intensive efforts.
Moreover, the manual-designed features are often problem-specified and barely generalizable,
i.e., not ensured to perform for other types of images [245]. Deep learning models consist of
multiple linear and non-linear processing units organized in a deep architecture to capture
high-level features presented in the data such that it can solve intricate problems, i.e. computer
vision and medical image tasks that were very hard to solve in the past.

2.2.3 Basic Building Blocks

Perceptron

Perceptron or artificial neuron is the most fundamental building block of all deep learning
models; see Fig. 2.8. Inspired by the human and animal nervous system’s biological neurons,
a single perceptron consists of a mathematical operation that performs the weighted sum of
multiple inputs and computes activation value as output. Mathematically, we can represent
the perceptron by a function f(x), where it receives a vector of inputs x ∈ RN . Each of these
inputs is multiplied by its corresponding weight. Thus, we need a vector of weights, w ∈ RN .
The results are then summed and added to a so-called bias term b ∈ R analogously capture
the neuron-specific potentials. The resulting mathematical function f(x) simulates neural
behavior with a simple linear combination of w, x, and b. Thus, our perceptron can estimate
linear functions and solve linearly separable tasks such as linear regression. However, to
add more abilities such as binary classification tasks, non-linear and differentiable activation
function σ(.) is attached to the previous result where the activation function evaluates output
against threshold τ , which leads to the neuron’s final output:

f(x) = σ(wT x + b) = σ(w1x1 + w2x2 + w3x3 + · · ·+ wnxn + b) (2.1)

Note that bias and weights are learnable parameters. Conventionally, training the parameters
is done by solving a least-squares optimization problem based on the input data X with
corresponding labels Y. Initially; the weight and bias values are set randomly. Then, as training
progress, both parameters are updated closer to the desired values, leading to more accurate
output. Both bias and weight parameters have their influence on the training. While weights
describe the strength and importance of the input data, bias represents how close or far the
predictions are to their actual value. Weight shows how the output will behave regarding the
changes in the input. A small weight value represents the input’s minor importance, while a
more considerable weight value conveys a more significant input value. On the other hand, a
slight bias means that the network is making more hypotheses about the shape of the output,
whereas a high bias value makes fewer hypotheses about the form of the output.
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Fig. 2.8. A graphical illustration of the Perceptron.

Artificial Neural Networks

Thus far, we have seen that a single perceptron can approximate simple functions. However, to
add more capabilities to estimate more complex and non-linear functions, one can interconnect
more than artificial neurons to form so-called artificial neural networks (ANN). Neurons inside
the network are arranged in three layers; the input layer, the hidden layer, and the output
layer (see Fig 2.9. A). As its names suggest, the neurons in the input layer receive the input
data. In contrast, neurons in the output layer produce the predictions or the estimations. On
the other hand, the neurons in the hidden layer receive the outputs from the input layer’s
neurons and feed them to the output layer. Each neuron in a layer has its weight and shares
one bias with other neurons in the same layer. Yet, no biases are shared across different layers.
Mathematically, Eq. 2.1 can be extended to include all neurons in ANN and is given by:

f(x) = σ(wT
o σ(wT

h x + bh) + bo), (2.2)

where x is the input vector, wh and wo are vectors containing the weights for the hidden
and output layers, receptively, and bh and bo are the biases for the hidden and output layers,
receptively.

The Multilayer Perceptron

While adding more neurons extended the abilities of a single perceptron, the researchers have
found that attaching more hidden layers also increases the power of our neural network to
solve even more complex tasks, which leads to the invention of the Multilayer Perceptron
(MLP), see Fig 2.9. B. The MLP stacks multiple but at least two hidden layers to form a neural
network of L layers. Consequently, Eq. 2.2 becomes:

f(x) = σ(wT
L(. . . σ(wT

1 σ(wT
0 x + b0) + b1) . . . ) + bL) (2.3)
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Fig. 2.9. A graphical illustration of the (A) Artificial Neural Networks, and (B) Multilayer Perceptron.

Usually, the layers from 1 to L−1 are denoted as hidden layers, while layers 0 and L represent
the input and output layers of the MLP. As the computation power has increased over the
last two decades, researchers have used more and more hidden layers. Hence, deep neural
networks, so-called deep learning, have rapidly evolved to solve real-life applications such
as computer vision, speech recognition, natural language processing, medical imaging, and
many more.

Activation Functions
We have mentioned that the artificial neuron takes input data or the output from a previous
neuron, then performs a linear transformation, i.e. , multiplies the input data with weight,
then adds results to bias. This operation is followed by an evaluation of the activation
function, leading to the neuron’s output, which is forwarded to the next layer or neuron. The
most straightforward activation function is linear activation, where no transform is applied.
A network of only linear activation functions is directly trained but cannot learn complex
mapping functions. However, linear activation functions are still used in the output layer for
networks that predict a quantity (e.g., regression problems). On the other hand, the goal of
the non-activation functions is to add more capacities to the artificial networks such that they
can achieve more complex tasks. Note that the activation functions are only used in the output
and the hidden layers. Although all hidden layers typically use the same activation function,
the output layer uses a different activation function from the hidden layers depending on the
required task. Next, we are listing the most commonly used activation function.

Sigmoid function [33]: The sigmoid, or the logistic function, is the most known and widely
used activation function for a long time, and it is known for its S-shape curve. This function
takes any real value as input and outputs values from 0 to 1. Inputs larger than 1.0 are
cropped to the value 1.0, whereas values smaller than 0.0 are cut to 0.0. We can use the
sigmoid function to separate the input space into two groups where the threshold is 0.5, which
makes it excellent for binary classification problems in the output layer, see Fig. 2.10. (A).

Hyperbolic tangent function [33]: The hyperbolic tangent function, a.k.a tanh, has a similar
S-shape to the sigmoid function; see Fig. 2.10. (B). However, the output values are between
-1.0 and 1.0. The tanh function is easier to train, has a better predictive performance than
sigmoid, and is usually used in the hidden layers.
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Fig. 2.10. A graphical illustration of the most commonly used activation functions.

Both the sigmoid and tanh functions suffer from a saturate problem. Large values cut to
1.0, while small values cropped to -1 for tanh and 0 for sigmoid. Another drawback is that
both functions are less sensitive to changes beyond their mid-point, i.e. , 0.5 and 0.0 for
sigmoid and tanh, respectively. With such limitations, it becomes challenging for the learning
algorithm to continue to adapt the weights to improve the performance of the model or the
so-called vanishing gradients problem.

Rectified linear unit [198]: Also known as the ReLU activation function, it is considered the
most used function for hidden layers. ReLU performs a simple calculation that returns the
input value if it is greater than zero or 0.0 if the input is equal or less than zero. This property
enables ReLU to overcome the limitation of sigmoid and tanh activations. Specifically, it is less
prone to vanishing gradients problems, see Fig. 2.10.(C).

Softmax function [33, 101]: In contrast to the previous functions, the softmax function,
Eq.(2.4), outputs a vector of values that sum to 1.0 that can be interpreted as probabilities of
class membership. This feature makes the softmax function the best fit in the output layer and
the most popular function for multi-class prediction tasks.

σ(x)i = exi∑k
j=1 exj

(2.4)

The common property of the previous activation functions is that they are differentiable for
a given input value. This property makes the neural networks trainable using a learning
algorithm such as the backpropagation algorithm to adjust the model’s parameters toward the
best results.

Backpropagation

By far, the most used algorithm for training. Backpropagation was proposed in 1986 [228]
and is an intelligent and efficient way of calculating the partial derivatives of the loss function
with respect to the learnable parameters, e.g., weights, and biases. After the gradients or
derivatives calculation, the network’s parameters are gradually adjusted toward the optimal

2.2 Deep Learning 15



solution that minimizes the loss function using a learning rate step using the so-called gradient
descent optimization algorithms [227]. Nowadays, all training methods are based on different
variants of gradient descent (e.g., stochastic gradient descent [218], momentum [214], and
Adam [147]).

Consider a neural network and training data consisting of input X and their labels Y . Also,
consider a loss function L that measures the difference of the model’s output for every training
sample from the target value of Y . Our goal is to optimize our loss function by searching in
the parameters space using the backpropagation algorithm. Mathematically, backpropagation
makes use of the chain rule for computing the derivatives. For instance, given an input
example xi and its label yi, the algorithm calculates the derivative of the loss with respect to
every parameter of the network fL(X; θ), where θ is the network parameters, and L is the
total number of layers:

∂

∂θ
L(fL(xi), yi) = ∂

∂θ
L(fL(fL−1(. . . f1(xi))), yi) (2.5)

The above equation can be extended to compute the derivatives of the loss w.r.t. a parameter
θl,j of the layer l:

∂

∂θl,j
L(fL(xi), yi) = ∂

∂fL(xi)
L(fL(xi), yi).

∂

∂fL−1(xi)
fL(xi). . . . .

∂

∂θl,j
fl(xi) (2.6)

After calculating the derivatives w.r.t. all network parameters via backpropagation, an iterative
approach, the so-called gradient-descent, is used to update each parameter in the direction of
the opposite derivatives. For example, to update the parameter θl,j of the layer l, the following
simple updating rule is used:

θl,j = θl,j − η
∂

∂θl,j
L(fL(xi), yi), (2.7)

where η is a hyperparameter called learning rate that controls the fraction of the gradient
used to update the parameters. The learning rate may be the most significant hyperparameter
when training our neural network. Selecting too small values may result in a long training
process, whereas too large values may lead to an unstable training process.

2.2.4 Common Loss Functions

The loss or cost function measures how well our learning algorithm predicts the data by
calculating the difference between the predicted values and actual labels. Thus, the lower the
loss function, the better our model is. Of course, no loss function fits all algorithms in machine
learning. However, various factors are involved in choosing a loss function for a specific
problem, such as the type of machine learning algorithm and the required task. Assume
our dataset consists of n training samples, where X = {x1, x2, . . . , xn} is the training data,
Y = {y1, y2, . . . , yn} is the corresponding labels set, i.e. ground truth. For each input data xi,
ŷi represents the predicted label produced by our network such that ŷi = fL(xi; θ).
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Mean Square Error Loss (MSE): Also known as squared L2 norm, mainly used in regression
and image reconstruction tasks, it measures an average of squared differences between the
ground truth and the predicted values.

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (2.8)

The MSE loss function punishes the model for making errors by squaring them. This feature
makes the MSE loss function less robust to outliers. Therefore, using it with a dataset with
many outliers is not recommended.

Mean Absolute Error(MAE): Also known as L1 norm, mainly used in regression and image
reconstruction tasks, it measures an average of absolute differences between the ground truth
and the predicted value. Compared to the MSE loss function, the MAE loss function is more
robust to outliers.

MAE = 1
n

n∑
i=1
|ŷi − yi| (2.9)

Binary Cross Entropy Loss (BCE): Used for binary classification and segmentation tasks. It
measures the accuracy of a classification model whose output is a probability value between 0
and 1. An essential characteristic is that cross-entropy loss heavily punishes predictions that
are wrong but confident.

BCE = −(yi. log(ŷi) + (1− yi). log(1− ŷi)) (2.10)

Cross Entropy Loss (CE): An extended version of the BCE loss used in multi-class classification
and segmentation tasks.

CE = − 1
n

n∑
i=1

yi. log(ŷi) (2.11)

One limitation of the cross-entropy loss is that the calculation is done discretely, without
considering whether adjacent pixels are boundaries, mainly when used for segmentation
tasks.

Dice Loss: Dice loss originates in or Sørensen–Dice coefficient. It measures the dice coefficient
between the predicted and the actual values. In statistics, the Dice coefficient measures the
overlap between two sets over their union. For example, if two sets, A and B, overlap perfectly,
the dice get their maximum value of 1. In contrast, the dice value equals 0 when there is no
overlap. Therefore, Dice loss considers local and global information, making it suitable for
segmentation tasks.

DSC = 1− 1
c

c∑
i=0

∑n
j 2yj

i ŷj
i + ϵ∑n

j yj
i +

∑n
j ŷj

i + ϵ
(2.12)

c is the number of classes, and ϵ is a small number added to avoid division by 0.

Kullback-Leibler divergence Loss: The Kullback–Leibler divergence, also called relative
entropy, measures how one probability distribution differs from a second reference probability
distribution—mainly used to measure the distance between two continuous distributions.
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Fig. 2.11. A graphical illustration of the convolutional neural network (CNN).

Hence, suitable for regression tasks. In the simple case, when the Kullback–Leibler divergence
equals 0, it indicates that the two distributions have identical quantities of information.

KLD(ŷ||y) =
n∑

i=1
ŷi log ŷi

yi
(2.13)

2.2.5 Common Deep Architectures

Convolutional Neural Network (CNN) and its variants
We have shown in previous sections that ANNs can be used to achieve different machine-
learning tasks. However, at the heart of any successful ANN is the number of parameters used
to train the model, which becomes more significant as the data gets complicated. For example,
data comes in high-dimensional space in vision tasks such as detecting diseases or tumor
segmentation in medical images. In such cases, the number of parameters and computation
power needed to train a good ANN model becomes very high. Fortunately, these limitations
have been mitigated by proposing the convolutional neural network (CNN) [165].

In a nutshell, A convolutional neural network (CNN) is a fundamental building block in any
modern deep-learning architecture for computer vision. CNN uses a mathematical operation
called convolution in place of general matrix multiplication. Building CNN architectures has
three main layers: Convolutional Layer, Pooling Layer, and Fully-Connected Layer, besides
the input and output layers. The Convolution Layer and the Pooling Layer are used as
Feature-Extraction components, while the Fully Connected Layer is just simple neural network
architecture and is used to perform the prediction task based on the convolutional block’s
input. At the core of the CNN is the convolution operation, which remarkably decreases
the number of parameters used in ANNs, simultaneously captures the spatial information in
the images, and learns appropriate representation for the task in an end-to-end fashion. A
standard CNN consists of multiple layers stacked at each other and composed of different
building blocks; see Fig. 2.11. In the following, we briefly present the most important ones.

Convolutional Layer: A core building block of the CNN and possess the major part of the
computational load of the network. The convolution operation performs a dot product between
two matrices, the kernel or filter matrix (typically 3x3 matrix), and a smaller part of the input
data, a.k.a receptive field, see Fig. 2.12. The filter consists of learnable parameters that are
initialized randomly using some initialization algorithms at the beginning of the training,
such as Xavier [100]. Then backpropagation algorithm is used to update the parameters
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Fig. 2.12. A graphical illustration shows convolutional steps. (Source.
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/)

after each optimization step. During the forward pass, the kernel slides across the height and
width of the image, producing the image representations or so-called activation or feature
map of that receptive field. Then, the filter is moved with a defined step (called stride) to
apply the operation to each filter-sized patch of the input image at the end. Consequently,
these representations capture helpful information at each spatial position of the input data.
Moreover, the researchers proposed adding zeros pixels around the input’s border, called
Zero-padding, to preserve the image size and the information at the edge. Usually, multiple
convolutional layers are stacked together and then followed by an activation function such as
the ReLU function [198].

Three hyperparameters control the output size of the convolutional layer; depth, stride, and
padding. The depth represents the number of filters we would like to use; each filter learns to
look at something different in the input, such as various oriented edges or blobs of colors. On
the other hand, the stride is responsible for sliding the filter. So, for instance, when the stride
is 1, we move the filters one pixel at a time, and when the stride is 2, the filters jump 2 pixels
simultaneously as we slide them around. This will produce smaller output volumes spatially.
Finally, padding adds Zeros around the borders. Adding padding to a CNN-processed image
provides more accurate image analysis and preserves the information at the borders. Formally,
the convolutional layer accepts the volume of a shape of W1×H1×D1, i.e. , Width × Height
× Depth, and requires four hyperparameters; the number of filters K, filter size F , the stride
S, and the padding size P . Based on that, the output size after the convolution operation takes
the shape of W2×H2×D2, where W2 = (W1−F + 2P )/S + 1, H2 = (H1−F + 2P )/S + 1,
and D2 = K (the output depth equals the number of filters K). Note that a common set of
hyperparameters is F=3, S=1, P=1.

Convolutional neural networks are comprised of multiple convolutional layers. When we feed
an image in a convolutional layer, each layer generates several activation functions passed on
to the next layer. However, this operation generates a different level of abstraction related to
the spatial location at which the kernel matrix focuses in the receptive field. The first layer
usually extracts basic features such as horizontal or diagonal edges. Then, this output is passed
on to the next layer, which detects more complex features such as corners or combinational
edges. Finally, moving deeper into the network can identify more complex features such as
objects, faces, etc.; see Fig 2.13.

Pooling Layer: Used between the convolutional layers and performs dimensionality reduction
to the feature map. The benefits of this step are two folds. First, it reduces the computational
power. Second, it extracts prevalent features, which are rotational and positional invariant,
thus maintaining the process of effectively training the model. In practice, there are two
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Fig. 2.13. A graphical illustration shows what different convolutional layers learn from the image. (Source.
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/)

types of Pooling: Max Pooling and Average Pooling. Max pooling returns the maximum value
within the kernel window, while average pooling returns the average value; see Fig. 2.14.
The pooling layer accepts input of a shape of W1×H1×D1, requires two hyperparameters,
the spatial size F and the stride S, and produces an output of size W2 × H2 × D2, where
W2 = (W1 − F )/S + 1, H2 = (H1 − F )/S + 1, and D2 = D1. Note that a standard set of
hyperparameters is F=2, S=2, and it is not common to pad the input using zero padding.

Fig. 2.14. A graphical illustration of the pooling layer, max and average pooling.
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Fig. 2.15. A graphical illustration of (A) VGGNet [250], and (B) ResNet [110].

Fully Connected Layer: After a set of convolutional and pooling layers, we have successfully
allowed the model to learn valuable features. The next step is to flatten the final result and
feed it to a regular neural network or multilayer perceptron for prediction purposes, also
called a fully connected layer. Flatten operation means converting the shape of the output to a
column vector. For example, a tensor of shape D1×D2×D3 will be converted to a vector of
the size D × 1, where D = D1 ∗D2 ∗D3. The flattened result is passed to a fully connected
layer, and backpropagation is applied to every training iteration. Over a sequence of epochs,
the model can differentiate between high and low-level features in images and use them in
the prediction.

CNN-based known architectures: Several architectures based on Convolutional Networks
have become popular in computer vision. Among these are (i) LeNet [164]: one of the
earliest convolutional neural networks that promoted deep learning development. Developed
by Yann LeCun in 1989 and consists of 5 layers, two convolutional layers, and three fully
connected or dense layers. LeNet used to read zip codes and digits. (ii) AlexNet [159]: was
developed by Alex Krizhevsky in 2012 and was the first work that popularized Convolutional
Networks in Computer Vision. AlexNet significantly outperformed the second runner-up, in
the ImageNet ILSVRC challenge in 2012, by more than 10.8 percent. The Network shares
a very similar architecture to LeNet. Still, it was deeper, bigger, and stacked Convolutional
Layers on top of each other. (iii) VGGNet [250]: VGG stands for Visual Geometry Group and
was developed by Karen Simonyan and Andrew Zisserman from Oxford. VGGNet depends
on using a large number of convolutional layers and showed that they are essential of good
performance. For instance, VGG16 contains convolutional and fully connected layers in an
extremely homogeneous model that only utilizes 3x3 convolutions and 2x2 pooling in the
whole network, see Fig. 2.15.(A). A drawback of the VGGNet is that it is expensive to evaluate
and uses a huge memory and parameters ( 140M). (iv) ResNet [110]: or Residual Network
proposed using the so-called skip connections or shortcuts. Skip-connection means skipping
some of the layers in the neural network and passing the output from one layer directly to
the following layers. It is used to avoid the vanishing gradients [116] and to mitigate the
degradation (accuracy saturation) problem. On the other hand, ResNet does not use fully
connected layers, while it heavily depends on batch normalization, see Fig. 2.15. (B).
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Fig. 2.16. A graphical illustration of the FCNN architecture. FCNN replaces the last classification layer by a
deconvolution filter (up-sampling) for dense pixel-wise prediction.

Fully Convolutional Neural Network (FCNN)

We have shown that CNN-based architectures perform classification at the image level, i.e. ,
they assign one label for the whole image. However, we need to label each pixel in the image
for medical image segmentation or segmentation tasks in general. Thus, the segmentation
task is considered a particular case of the classification task at the pixels level. In this regard,
Long et al. [186] proposed one of the first works contributing to the extension of classification
CNNs to segmentation tasks. The proposed architecture is trained end-to-end for the semantic
segmentation problem and is called a fully convolutional network (FCNN [186]) because it
consists only of convolutional layers, see Fig 2.16. The FCNN takes an image of arbitrary
size and produces a segmented image of the same size. The authors modified CNN-based
architectures (such as AlexNet or VGG16) to have a non-fixed size input and replaced all the
fully connected layers with convolutional layers. The author proposed using an up-sampling
operation because traditional convolutional layers produce several feature maps with small
sizes and dense representations. This operation is called deconvolution and consists of a
convolutional layer with a stride equal to 1 and creates an output larger than the input. FCNN
considered different up-sampling strategies, which incorporate local and global information in
the prediction of the segmentation map. For instance, one strategy considers only the outputs
after the last pooling layer; hence, it includes information obtained at a coarse level. While
other approaches incorporate the results of previous pooling layers, giving a more refined
level of data, which leads to improvements in the prediction.

U-Net [222]: One of the most successful architectures for medical image segmentation. The
authors proposed using encoder-decoder architecture while introducing skip-connections
between corresponding layers of the two paths; see Fig. 2.17. The encoder or downsampling
part has an FCNN-like architecture for extracting features with 3x3 convolutions. Each block
at the encoder halves the spatial dimension of the image and duplicates the number of feature
channels. The decoder or upsampling part uses a deconvolution operation to reduce the
number of feature maps while increasing their height and width, hence, recovering spatial
resolution. The kip-connections are used to concatenate the feature maps in the encoding
path with their peer in the decoder path to avoid losing pattern information. Eventually, a 1x1
convolution processes the feature maps to generate a segmentation map, thus categorizing
each pixel in the input image. This concept has been successfully extended to 3D medical data
using the V-Net [196] and 3D U-Net [60].
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Fig. 2.17. A graphical illustration of the Unet architecture.

Fig. 2.18. Confusion Matrix.

2.2.6 Common Evaluation Metrics

It is required to comprehensively and intensively validate and standardize machine learning
solutions to adopt in real clinical scenarios and greatly benefit from the recent advances in
deep learning networks. On the other hand, increasing generalization abilities and ensuring
the reproducibility of algorithms is essential, particularly in the case of healthcare procedures
where patients’ safety is the highest priority. Furthermore, the evolution from theoretical
research to clinical practice requires algorithms to be validated on vast patient cohorts, ideally
coming from multiple laboratories, to ensure the broad applicability of the methods. To
validate computer-based methods, we need to quantify the similarity between the outcomes
of the trained model and the ground truth labels produced by expert physicians on a specific
task. Several metrics have been used to assess the performance of the trained model. However,
most metrics are based on the confusion matrix, Fig 2.18.
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A confusion matrix (CM) is a performance measurement matrix for machine learning al-
gorithms. Each row of the matrix contains actual classes while each column contains the
predicted classes or vice versa – both options are found in the literature. The entries of the CM
are (i) True Positive (TP): the prediction accurately indicates the presence of a condition, i.e. ,
disease. (ii) True Negative (TN): the prediction accurately indicates the absence of a condition.
(iii) False Positive (FP): the prediction inaccurately indicates the presence of a condition. (iv)
False Negative (FN): the prediction inaccurately indicates the absence of a condition.

Accuracy: It measures the percentage of correct predictions of the model. Accuracy defines
the general performance of the model, but it is not considered as a reliable indicator in case of
class imbalanced datasets:

Accuracy = TP + TN

TP + TN + FP + FN
(2.14)

Precision: Also known as positive predictive values (PPV) and measure the percentage of
positive predictions that were actually positive. It is more suitable than Accuracy in the case
of imbalanced class datasets:

Precision = TP

TP + FP
(2.15)

Recall or Sensitivity: Hit rate or true positive rate (TPR). It measures the percentage of actual
positives that were predicted correctly as positives. It is more suitable than Accuracy in the
case of imbalanced class datasets:

Recall = TP

TP + FN
(2.16)

F1-score [253]: Also known as Dice coefficient. It is defined as the harmonic mean of precision
and recall. It is more suitable than Accuracy in the case of imbalanced class datasets:

F1 = 2× (Recall × Precision)
Recall + Precision

= 2TP

2TP + FP + FN
(2.17)

Specificity: Also known as selectivity, or actual negative rate measures a model’s ability to
generate a correct negative result for truly negative cases:

Specificity = TN

TN + FP
(2.18)

Area Under Receiver Operating Characteristic (AUROC): A receiver operating characteristic
(ROC) curve displays how well a model can classify binary outcomes. The AUROC shows the
model’s ability to discriminate between positive and negative examples, assuming balance
data. It is created by plotting the true positive rate (TPR), a.k.a sensitivity or recall, against
the false positive rate (FPR) at different classification thresholds. The false-positive rate is
calculated as (1 - specificity). AUC measures the entire area under the ROC curve. The higher
the area (maximum value is 1), the better the overall performance. See Fig. 2.19. (A).

Area Under Precision-Recall (AUPR) curve: Similar to the AUROC curve, The precision-recall
curve is used for evaluating the performance of binary classification algorithms. For example,
it is often used when classes are heavily imbalanced, as in many medical datasets. Also, like
the AUORC, the AUPR provides a graphical sketch of a classifier’s performance across multiple
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Fig. 2.19. An illustration shows (A) Area Under Receiver Operating Characteristic (AUROC). (B) Area Under
Precision-Recall (AUPR) curve.

threshold settings instead of a single value (e.g., accuracy, f-1 score, etc.). See Fig. 2.19. (B).

Hausdorff distance (HD) [219]: The distance metrics are used in the segmentation tasks
and measure the deviation between the outer surfaces S and S′ of the segmentations Y and
Y ′, such that the distance between a point s on surface S and the surface S′ is given by the
minimum of the Euclidean distance d(s, S′) = mins′∈S′ ∥s− s′∥2. Calculating this for all pixels
gives the total distance between the surfaces S and S′: d(S, S′). Now, the largest difference
between the surface distances is defined as the Hausdorff distance (HD) and calculated as:

HD = max[d(S, S′), d(S′, S)] (2.19)

The Mean Surface Distance (MSD) [32]: This metric measures the average variation between
the surfaces, i.e. , the segmentation and the GT, and is given as:

MSD = 1
ns + ns′

(
ns∑

s=1
d(s, S′) +

ns′∑
s′=1

d(s′, S)
)

, (2.20)

Where ns and ns′ are the number of pixels for the surfaces S and S′ respectively.

Risk-Coverage (RC) curve [94]: RC curve plots the risk as a function of the coverage and is
used to investigate the uncertainty evaluation and model confidence. The coverage denotes
the percentage of the input processed by the model without rejection, while the risk denotes
the level of risk of the model’s prediction [94]. For a selective model, the mode abstains from
the prediction of input sample x if the prediction confidence of that sample is below a specific
threshold, e.g., 0.5. The higher coverage with lower risk, the better the model is. Because
the Risk-Coverage curve is not famous in medical imaging, we provide a detailed definition
next.
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Fig. 2.20. An illustration shows (A) the Risk-Coverage curve. Each line represents a different classifier. (B)
Reliability Diagram.

Consider a multi-class classification task. Let X be a set of input images with Y labels. Now,
let P (X, Y ) is a distribution over X × Y. f is classifier f : X → Y, and the true risk of f

w.r.t. P is R(f |P ) ≜ EP (X,Y )[ℓ(f(x), y)], where ℓ : Y × Y → R+ is a loss function. Given
Dm = {(xi, yi)}m

1=1 ⊆ (X × Y) is a sampled i.i.d labeled data from P (X, Y ). The empirical
risk of the classifier f is defined as:

r̂(f |Dm) ≜ 1
m

m∑
i=1

ℓ(f(xi), yi). (2.21)

A selective classifier is a pair (f, g), where f is a classifier, and g : X → {0, 1} is a selection
function, which represents a binary qualifier for f as follows:

(f, g)(x) ≜

 f(x), if g(x) = 1;

reject, if g(x) = 0.
(2.22)

Thus, the selective classifier abstains from prediction at x iff g(x) = 0. The performance of the
selective classifier is quantified using its coverage and risk.

Definition 1 (coverage) The coverage of a selective classifier (f, g) is the mean value of the
selection function g(X) taken over the underlying distribution P , i.e. , is the probability mass of
the non-rejected region in X ,

Φ(f, g) ≜ E[g(X)] (2.23)

Definition 2 (risk) The risk of a selective classifier (f, g) is defined as the average loss on the
accepted samples,

R(f, g) ≜ E[ℓ(f(X), Y ).g(X)]
Φ(f, g) (2.24)

The entire performance of such a classifier can be specified by its risk-coverage curve, which
defines the risk as a function of coverage. An illustration figure is shown in Fig. 2.20. (A).
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Reliability Diagram (RD) [106]: On the other hand, the reliability diagram plots the accuracy
as a function of confidence such that in the ideal case i.e. , a perfect calibrated model, the
RD will plot the identity function. For instance, suppose that we have 1000 samples, each
with 0.85 confidence; we expect that 850 samples should be correctly classified. RD divides
the predictions into bins of confidence, i.e. , Bv; v ∈ {1, ..., V }, where V is the total number
of bins. Then, the average accuracy and the confidence for each bin Bv are calculated as
Eq.(2.25) and Eq.(2.26), respectively.

acc(Bv) = 1
|Bv|

∑
i∈Bv

I(ŷi = yi) (2.25)

conf(Bv) = 1
|Bv|

∑
i∈Bv

p̂i (2.26)

Where ŷi, yi, and p̂i are the prediction, ground truth, and the confidence for sample i,
respectively. The difference (gap) between the accuracy and the confidence can be positive
when the confidence is higher than the accuracy and negative when the accuracy is higher
than the confidence. These gaps are shown in the RD using different colors; see Fig. 2.20. (B).
For a perfect calibrated model, acc(Bv) = conf(Bv) for all v ∈ {1, ..., V }. However, achieving
a perfect calibrated model is impossible [106].

Expected and Maximum Calibration Errors [78]: Denoted as ECE and MCE, respectively.
Based on the previous definitions, ECE and MCE are calculated, where ECE is defined as the
difference in the weighted average of the bins’ accuracy and confidence. At the same time,
MCE represents the maximum difference; see Eq.2.27 and Eq.2.28, respectively.

ECE =
V∑

v=1

|Bv|
s

∣∣∣∣∣acc(Bv)− conf(Bv)

∣∣∣∣∣ (2.27)

MCE = max
v∈{1,...,V }

∣∣∣acc(Bv)− conf(Bv)
∣∣∣ (2.28)

s is the number of samples in bin Bv. For a perfectly calibrated model, ECE and MCE both
equal 0.

To calculate the reliability diagrams and calibration errors, we adopted, in this thesis, an
adaptive binning strategy [78] that depends on fixable intervals in the calculations. This
strategy is more accurate than using fixed intervals [78]. Practically, we can realize the
intervals used from the figure itself. For example, the width of the bars in Fig. 2.20. (B)
represents the ranges used to calculate ECE and MCE.

2.2.7 Overfitting

Deep Learning models have made significant improvements in different tasks. That is at-
tributed to the deep network architectures consuming massive amounts of data. One of the
biggest challenges deep learning models face is the generalization ability. Generalizability is
defined as how well the model evaluates data never seen before (testing data). Models with
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poor generalizability are called overfitted, performing very well on the training data while not
performing well on the testing data. Overfitting occurs when the model estimates the training
data perfectly, not generalizing to testing or unseen data.

There are different strategies to reduce overfitting. Some of the techniques focus on the model’s
architecture itself. This contains series of improvements of more complicated architectures
from AlexNet [159] to VGG-16 [250], ResNet [110], Inception-V3 [259], DenseNet [122],
and recently vision transformers (ViT) [81]. Other strategies focus on data augmentation;
see section 2.2.8. While the last strategies investigated the functional solutions such as batch
normalization [126], dropout regularization [257], and transfer learning [241, 284] that will
be described in the following paragraphs.

Batch Normalization [126]: When training deep neural networks, one serious problem is that
the data distribution for each internal layer may change due to randomness in the parameter
initialization and the randomness in the batch data after each epoch or mini-batch. These
slight variations cause the learning algorithm to chase a moving target. This phenomenon,
called internal covariate shift [126], yields an unstable and slower training process. Therefore,
batch normalization [126] is used by bringing all the information into a similar distribution
and reducing the variability in the data. Batch normalization is implemented by subtracting
the batch mean and dividing it by the batch standard deviation, see Eq.2.29. Note that the
learned statistics (mean and standard deviation) are used in the inference time instead of the
actual statistics.

x̂ = γ
x− E[x]√

Var[x]
+ δ (2.29)

where x represents the input batch for a particular layer, x̂ is the normalized batch, γ and δ are
learnable parameters, E[.] is the batch mean, and Var[.] is the batch standard deviation.

Dropout [257]: Dropout is a regularization method that reduces overfitting by removing a
set of neurons or hidden layers and their connections during the training step. One way to
interpret how dropout helps mitigate the overfitting problem is to consider that a particular
neuron should learn how to produce a meaningful feature under a randomly chosen sample
of the other units, reducing complex co-adaptations. Dropout is used only during training and
turned off at testing time.

Transfer Learning [241, 284]: Transfer Learning works by teaching a model on an extensive
dataset such as ImageNet [73], then using the model’s weights as the initial weights in a new
task. Usually, the weights in convolutional layers are reused while other network weights,
including fully-connected layers, are replaced, then finetuned using the new dataset. This
approach is practical since many image datasets share low-level spatial characteristics better
learned with big data.

2.2.8 Data Augmentation

Data Augmentation is a technique that can artificially extend the size of a training set by
creating altered data from the existing one. That includes making minor transformations
to data to generate new data points. Augmentation addresses overfitting from the heart of
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Fig. 2.21. A sample of different data augmentation approaches. (A) geometric transformations. (B) color transfor-
mations. (C) Kernel filters.

the problem; the training dataset itself. Data augmentation can generally be divided into
geometric transformations, color transformations, and kernel filters [246]. Surveying all these
methods is out of the scope of this thesis. However, we will brief on the most common ones in
the next paragraphs.

Geometric transformations: These methods enclose using image processing functions on
the input image. Geometric transformations include (i) Flipping: horizontally or vertically
flipping the given image randomly with a given probability. (ii) Rotation: rotate the image
randomly with a specific angle. (iii) Resizing: changing the size of the input image to a given
ratio. (iv) Cropping: randomly select a part or location of the image, then resize it to its
original size. That includes center cropping, i.e. , selecting the center part of the image, or
random cropping, i.e. , random location of the image. (v) Translation: repositioning the image
along the X or Y directions (or both). (vi) Scaling: zoom in or out of the image along the X or
Y directions. (vii) Noise injection: injecting a matrix of random values usually drawn from
a Gaussian distribution. A common example is salt and pepper noise, presented as random
black and white pixels spread through the image. A sample of geometric transformations is
shown in Fig. 2.21. (A).

Color transformations: Image data consists of 3 piled matrices of size height×width, rep-
resenting pixel values for a particular RGB color. Lighting variations are amongst the most
repeated challenges to image recognition problems. Therefore, building a model that invariant
these color space changes, also known as photometric transformations, is of high importance.
Therefore, building a model invariant to these color changes, also known as photometric trans-
formations, is highly important. The most common color augmentations are (i) Brightness:
changing the image’s brightness. The resultant image becomes darker or lighter compared to
the original one. (ii) Contrast is the degree of divergence between an image’s darkest and
brightest parts. A sample of color transformations is shown in Fig. 2.21. (B).

Kernel filters: Kernel filters include sharpening and blurring the images. These filters apply
a sliding widow of n × n matrix across the image. Intuitively, blurring images could lead
to higher antagonism to movement blur during testing. Besides, sharpening images could
encapsulate more details about objects of interest. A sample of kernel transformations is
shown in Fig. 2.21. (C).
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3Learning Paradigms

„The superiority of the learned man over the devout
worshipper is like that of the full moon to the rest of
the stars (i.e., in brightness). The learned are the heirs
of the Prophets who bequeath neither dinar nor
dirham but only that of knowledge; and he who
acquires it, has in fact acquired an abundant portion.

— Prophet Muhammad ibn Abdullah (PBUH)
(570–632 CE)

(Ranked No.1 in "The 100: A Ranking of the Most
Influential Persons in History" book by Michael H.

Hart, 1972)

Machine learning (ML) involves the methods and algorithms that enable a computer program
to learn from data. The standard learning paradigm is the fully-supervised learning. In this
learning scheme, data comes in input data and their corresponding labels. The tasks attended
by this learning scheme look to find a mapping between the input values and desired outputs.
However, in real-life scenarios, especially in medical data, finding such pairs is rare and
expensive, and labeling unlabeled data is time-consuming and needs expertise in the domain.
Although the literature provides different learning strategies to overcome these limitations,
this thesis will focus on three learning paradigms: semi-supervised learning in the standard
setting, semi-supervised learning in the federated setting, and self-supervised learning. Before
we dive into the details, we give an overview of fully and unsupervised learning in the next
sections, as they are the basic learning schema in many medical imaging tasks.

3.1 Supervised Learning

Supervised learning is a machine learning algorithm where the training dataset consists of
inputs paired with their correct outputs known as ground truths [154]. We aim to optimize
the model’s parameters by minimizing a previously defined cost function utilizing the labeled
training dataset. After the training phase, the trained model can predict outcomes to new
unseen data; see Fig. 3.1.

In the supervised learning paradigm, we are given a labeled dataset SL = {X ,Y} consisting
of N training pairs (xi, yi), where X = (x1, . . . , xN ) and Y = (y1, . . . , yN ), such that xi

represents the input image and yi is the ground truth or the label for each sample i ∈
{1, . . . , N}. Our objective is to learn a function fθ(x) = ŷ, parameterized by θ, that minimizes
the error on the training examples. Here, θ groups all the learnable parameters (e.g., weights
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Fig. 3.1. An illustration figure shows the supervised learning paradigm at the training and testing phases.

and biases), and ŷ is the predicted outcome. The desired function f can be approximated by
finding the optimal set of parameters θ∗ that optimize the loss functions L:

θ∗ = arg min
θ

N∑
i=1
L(f(xi), yi) (3.1)

The loss function, a differentiable function, comes in different forms depending on the required
task. For instance, Mean Squared Error loss (MSE) is the default choice loss in the case of
regression tasks, while the Cross-Entropy (CE) loss is widely used for classification tasks. A
list of the common loss functions is presented in section 2.2.4.

3.1.1 The Limitations of Supervised Learning

Recently, considerable improvements in supervised deep learning methods have been achieved
in different medical image problems [64, 95, 105, 168, 187, 226, 308], and show their
applicability to a wide range of datasets without requiring a human expert [127]. Furthermore,
deep learning has shown a human-level performance when dealing with cancer classification
[87, 269]. Yet, large amounts of labeled training datasets are needed to achieve such success.
Unfortunately, annotating the training data comes with many limitations. Next, we listed
some of them.

Needs experience: Manual annotation requires highly experienced physicians. Because
medical image analysis aims to aid radiologists and clinicians in making the diagnostic and
treatment process more efficient, it requires excellent knowledge to extract the disease’s most
correlated and relevant underlying features from the image [58].

Costly and time-consuming: Manual annotation, such as segmentation, is not only demand-
ing for expert graders but also time-consuming and tedious for clinical use. For example, the
average time for manual brain segmentation for one case achieved by an expert radiologist is
14.5 minutes [71]. On the other hand, whole-body computed tomography (WBCT) has been
utilized extensively in human trauma medicine to diagnose injuries in severely traumatized
patients. Nevertheless, the average cost to analyze each case is 1200 USD [240]. These
problems become more burdensome when dealing with large-scale datasets or multi-center
trials [10, 245].
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Fig. 3.2. An illustration figure shows the unsupervised learning paradigm. Unsupervised learning finds the
underlying structure of the data, then clusters it into groups based on the similarities.

Inter or intra-observer variability: The manual analysis is prone to errors due to different
experiences and backgrounds between evaluators and yields so-called inter-observer variability
[120]. Also, due to significant variations in pathology and potential fatigue of human
experts, the same radiologist might evaluate the same case differently, a.k.a. intra-observer
variability [245].

3.2 Unsupervised Learning

In unsupervised learning, on the other hand, no specific labels for the input data are provided;
see Fig. 3.2. Let SU = {X} a set of unlabeled data, such that X = (x1, . . . , xN ) represents an
N data examples, where xi ∈ X for all i ∈ [N ] := {1, . . . , N}. Typically, it is assumed that the
points are drawn independently and identically distributed (i.i.d) from a common distribution
on X . In unsupervised learning, the model attempts to deduce the underlying structure from
the inputs or estimate a density likely to have generated X . However, there are also different
forms of unsupervised learning, such as clustering the data into groups, outlier detection,
and dimensionality reduction. The main characteristic of unsupervised learning is that it
trains the network without having a "supervisor" continually correcting the model. While
the supervised learning approaches give better performances, in many cases, labeled data
are complex, expensive, or impossible to obtain, making using unsupervised learning-based
methods essential.

3.3 Semi-Supervised Learning

Despite the recent deep learning-based methods that have achieved state-of-the-art perfor-
mance in the medical domain, one major drawback of this approach is the necessity for
a huge amount of annotated data often unavailable in medical images. These limitations,
see section 3.1.1, motivates the researchers to go beyond traditional supervised learning
by including other types of data that might be available and cheaper to obtain, i.e. , the

3.2 Unsupervised Learning 33



Fig. 3.3. An illustration figure shows the semi-supervised learning paradigm at the training and testing phases.
The unsupervised loss takes different forms depending on the used category. β is a hyperparameter that
controls the contribution of the unsupervised loss. For example, β could be Zero for some types, e.g., the
pseudo labeling method.

unlabeled data. Fortunately, the semi-supervised learning (SSL) [49, 326, 327] framework
provides the solution by utilizing a huge amount of unlabeled data along with a few annotated
ones in intelligent and efficient ways. Thus, SSL methods have proved their benefits to real
cases which fit the nature of medical data, where the scarcity of labeled data is the main
characteristic.

The first idea about using unlabeled data in classification is self-learning, self-training, self-
labeling, self-learning, or decision-directed learning[49]. This wrapper algorithm starts by
training on the labeled data only. Then, some unlabeled points are labeled according to the
current decision function. Next, the supervised method is retrained using its predictions as
extra labeled data. This idea has been used in the literature for some time (e.g., Scudder
(1965) [238]; Fralick (1967) [90]; Agrawala (1970) [3]).

3.3.1 Problem Definition

In semi-supervised learning, we are given a set of labeled SL = {XL,YL} and unlabeled
data SU = {XU}, where {XL,XU} = {x1, . . . , xL, xL+1, . . . , xL+U} are input images, x ∈
RH×W , where H and W are the height and the width of the input image, respectively,
YL = {y1, . . . , yL} are the ground truth labels, where y ∈ RH×W ×C for the segmentation
tasks and y ∈ RC for the classification tasks, and C represents the number of classes. Usually
L << U .

Our goal is to build a model fθ(x) that takes input image xi and outputs its prediction ŷi. To
leverage both labeled and unlabeled data in the SSL paradigm, the objective function takes
the form

LT otal = LSupervised + βLUnsupervised, (3.2)

Where LSupervised denotes the supervised loss and trained using labeled data SL, LUnsupervised

denotes the unsupervised loss and trained on the unlabeled data SU , and β is a weighing
factor that controls the contribution of the unsupervised loss. The weighing factor β can be
set as a fixed value between 0 and 1, or in many cases, its importance changes dynamically by
using a predefined formula. However, since the model at the early stages of the training phase
produces not accurate predictions, a common approach for using β is to start with a small
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value (e.g., 0 ) and then increase it gradually as we proceed in training using exponentiation
moving average (EMA).

The unsupervised loss can have different forms depending on the employed SSL approaches;
see section 3.3.3 for more details. For example, in the consistency-regularization approach
(section 3.3.3), the goal of the unsupervised loss is to minimize the distance between the
feature representations of the input data point x and its perturbed version x̂, such that
LUnsupervised = d(fθ(x), fθ(x̂)), and d(·, ·) is a distance metric. An illustration diagram shows
the semi-supervised learning paradigm at the training and testing phases is presented in
Fig. 3.3

3.3.2 Assumptions

Semi-supervised learning aims to leverage the unlabeled data in the learning process so that
the trained model performs better than the labeled data. Thus, a natural concern emerges: is
semi-supervised learning noteworthy? More specifically, compared to a supervised algorithm
that uses only labeled data, can we expect that adding the unlabeled data to the training
will generate a more accurate prediction? One could assume that the knowledge attained
on the marginal data distribution p(x) from utilizing the unlabeled data has to hold valuable
information in the inference of the posterior distribution p(y|x). Otherwise, semi-supervised
learning will not induce a gain over supervised learning [49]. Hence, for SSL methods to
work, certain assumptions have to hold in SSL algorithms [49, 57, 272, 301, 326, 327], see
Fig. 3.4.

The smoothness assumption states that if two points {x1, x2} located in the same high-density
region are close, so should be their corresponding labels/outputs {y1, y2}. For example, in
Fig 3.4.(B), assume that a labeled data point x1 ∈ XL and an unlabelled data point x2 ∈ XU

exist, such that x1 is close to x2. Then, based on the smoothness assumption, we can predict
that x2 to have the same label as x1 since proximity—and thereby the label—is transitively
propagated through x1.

The cluster assumption implies that the data tend to form discrete clusters, and the points
in the same cluster are more likely to share the same label. Therefore, cluster assumption is
considered a particular case from smoothness assumption.

The low-density separation assumption suggests that the good decision boundary line
should lie in a low-density region to avoid cutting the same cluster into two different areas,
see Fig. 3.4.(B). The smoothness assumption is not violated if we place the decision boundary
in this low-density region since it only interests pairs of similar data points. On the other hand,
many data points can be expected for high-density areas. Thus, placing the decision boundary
in a high-density area violates the smoothness assumption since the predicted labels would be
dissimilar for similar data points.

The manifold assumption means that the high-dimensional data could lie or be transferred
(roughly) to a low-dimensional manifold. Thus, data points on the same low-dimensional
manifold should have the same label; see Fig. 3.4. (C). The manifold assumption helps to avoid
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Fig. 3.4. Semi-supervised Learning. (A) The unlabeled data shapes the data distribution and helps to produce
a more accurate decision boundary. (B) Smoothness assumption: the points close to each other are
likely to belong to the same class. Clustering assumption: the data tend to form clusters, two classes
in this figure. Low-density separation assumption (also shown in (B)): a good decision boundary line
should lie in a low-density region to avoid cutting the same cluster into two different areas. (C) Manifold
assumption: the high dimensional data can be reduced to more low dimensional data.

the well-known problem of many statistical methods and learning algorithms, the so-called
curse of dimensionality [49]. This problem is related to the attribute that volume increases
exponentially with the number of dimensions; hence, the number of examples required for
statistical tasks to estimate the densities is growing exponentially. This problem has significant
effects on generative approaches that are based on density estimates in input space. On the
other hand, in discriminative methods, a related issue of high dimensions is that pairwise
distances tend to become more similar and, thus, less expressive. Nevertheless, with the help
of manifold assumption, i.e. , the learning algorithm can avoid the curse of dimensionality if
the data lie on a low-dimensional manifold.

As mentioned earlier, these assumptions are the foundation of many, if not most, semi-
supervised learning algorithms, which generally depend on one or more being satisfied, either
explicitly or implicitly [272].

3.3.3 Taxonomy & Categories

Over the past years, several semi-supervised classification algorithms have been proposed.
However, these methods vary in the semi-supervised learning assumptions they are based on,
how they employ unlabelled data, and how they connect to supervised algorithms.

Transductive vs Inductive: Regarding the availability of the (unlabeled) testing data in the
training process, semi-supervised learning can be classified into two settings: the transductive
and the inductive learning setting [49]. Transductive learning considers that the unlabeled
data, in the training process, are precisely the data to be predicted, and the goal is to generalize
over these unlabeled samples. On the other hand, inductive learning supposes that the learned
method will still apply to new unseen [301]. Thus, the goal is to output a function defined
on the entire space [49]. Inductive methods aim to construct a model that can generate
predictions for any object in the input space; hence, they can be used to predict the label of
previously unseen data points. Unlabelled data in this setting is used when training this model,
but the predictions for new, previously unseen samples are separate once training has been
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done. The graph-based methods (sec. 3.3.3) are transductive, while most other SSL methods
are inductive.

In general, the recent SSL methods can be grouped into four main categories; (i) Self-
Supervision & Entropy Minimization, (ii) Perturbation & Consistency Regularization, (iii)
Graph-based methods, and (iv) Generative Methods. Next, we briefly introduce these methods
focusing on SSL works on medical images.

Self-Supervision & Entropy Minimization

Among the oldest and most widely known algorithms in the SSL [49, 326, 327]. These methods
force the decision boundary to pass through low-density regions to minimize the entropy of
the predictions [103]. One way to achieve this in the SSL setting is to generate pseudo labels.
Practically, it consists of two alternating steps: (i) training and (ii) pseudo-labeling. First, one
or more supervised-based learners are trained on the labeled data. Then, the most confident
predictions are used as pseudo-labeled for the next iteration. Finally, this process is repeated
using labeled and pseudo-labeled data until convergence. Note that the algorithm here is a
purely supervised learning algorithm, unaware of the distinction between initially labeled and
pseudo-labeled data; hence β in Eq.(3.15) becomes 0. This approach is also a.k.a wrapper
method because the pseudo-labels are generated using a wrapper procedure.

Depending on the number of supervised learners and how the data is being used, these
methods can be further divided into (i) self-training: the most basic form where one supervised
learner is re-trained on its own most confident predictions, see Fig.3.5. (A). (ii) Co-training:
two or more learners re-trained on each other’s pseudo labels. Each learner is trained on
a different view of the data, i.e. , on a subset of the training data, see Fig.3.5. (B). (iii)
Ensembling: consisting of either boosting (sequential training)or bagging (parallel training)
methods usually builds a stronger learner by ensembling multiple weak learners. In boosting,
an individual learner is trained on both labeled data and the pseudo labels from the previous
learner [272]. In bagging methods, each weak learner is given a distinct view of the data,
uniformly sampled with replacements from the original training data. The final result is
aggregated outputs from all individual weak learners [326], see Fig.3.5. (C).

Perturbation & Consistency Regularization

These methods followed the smoothness assumption and are based on the fact that when
we realistically perturb or augment the same data point, the predictions for that data point
should be similar. In contrast to the pseudo labeling methods, which rely on intermediate
steps or supervised base learners, these methods directly optimize an objective function with
components for labeled and unlabeled samples [272]. The most typical architecture for these
methods is the Teacher-Student model [301]. The student is trained as usual, while the
teacher’s goal is to generate target predictions for the student.

There are different strategies to generate target predictions; the first one is to apply augmen-
tation or a small amount of noise to the input data while performing dropout regularization
inside the network. Thus, we train the model to predict the same output for different pertur-
bations or augmentations of the input data. The so-called Π-Model [231] is a popular method
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Fig. 3.5. An illustration diagram showing (A): Self-training, (B) Co-training, and (C) Ensembling methods
(bagging in this example). These methods are examples of the Self-Supervision & Entropy Minimization
approach in semi-supervised learning.

that applies this strategy. Formally, the unsupervised loss appeared in Eq.(3.15) takes the form
of:

LUnsupervised = d(fθ(x), fθ(x̃)), (3.3)

where d(.) is any distance function such as L2 Norm or KL-divergence, x̃ is the perturbed
version of x, and β could be a fixed or dynamic value. However, a main problem with the
Π-Model is that it depends on two evaluations of the network under different stochastic
conditions, which leads to unstable predictions during the training phase, see Fig.3.6. (A).

Temporal Ensembling [160], overcame this limitation and produced more stable targets using
a modified version of the generalization term in the Π-Model by leveraging the Exponential
Moving Average (EMA) of past epochs predictions. Specifically, the ensembled outputs are
updated with the network outputs zi after each training epoch, i.e. , Zi ← Zi + (1 − α)zi,
where α is a momentum term. Consequently, the unsupervised loss becomes:

LUnsupervised = d(fθ(x), f̂θ(x̃)), (3.4)

where f̂θ(.) is calculated using exponential moving average of fθ(.) for the previous predictions,
see Fig.3.6.(B).

Mean-Teacher [263] generated more precise targets, hence, the model, by averaging model
weights over training steps instead of the model predictions. Specifically, the teacher model’s
parameters θ̂ were updated using the EMA of the student model’s parameters θ. See Fig.3.6.
(C).

LUnsupervised = d(fθ(x), fθ̂(x̃)), (3.5)
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Fig. 3.6. An illustration figure of common Consistency Regularization methods. (A): Π-Model: minimizes
the discrepancies of prediction of the same input under two stochastic augmentations, (B) Temporal
Ensembling: leverages the Exponential Moving Average (EMA) of past epochs to produce more stable
predictions, (C) Mean Teacher: the teacher wights are the EMA of the student wights and (D) Virtual
Adversarial Training: instead of stochastic augmentation, virtual adversarial training (VAT) generates a
perturbated version of the input image in the adversarial direction.

Instead of using random perturbations as the previous methods, Virtual adversarial training
(VAT) [197], Fig.3.6. (D), depends on a tiny perturbation in the adversarial direction radv, in
which the unsupervised loss is trained to minimize the distance function:

LUnsupervised = d(fθ(x), fθ(x + radv)) (3.6)

Graph-based methods

These methods use a graph structure to represent the data, with a node for each labeled and
unlabeled example. The edges in the graph represent the connectivity between the nodes.
The weights between two nodes are calculated based on an adjacency or similarity matrix
W. WhereWi,j is the similarity between samples xi, xj ∈ XL ∪ XU . The similarity can be the
Euclidean distance, the dot product, or any distance matrix [139]. Based on how they work,
the graph methods are argued to be built on the manifold assumption [49]. As mentioned
earlier, graph-based methods are transductive, i.e. , they directly optimized on the unlabeled
data without separation between the training and testing phases. Thus, graphs can propagate
the labels from the labeled data to the unlabeled ones based on connectivity and similarity.

Most graph methods utilize the graph Laplacian to represent the data. Let G = (V, E) be a
graph, where V contains the nodes of the graph, i.e. , holds the data points (labeled and
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Fig. 3.7. An illustration diagram showing the Graph Convolutional Network (GCN). GCN is an example of the
Graph-based approach in semi-supervised learning.

unlabeled), and E contains the edges in the graph. Now, the weighted adjacency matrixW is
given by

Wij :=

 w(e) if e = (i, j) ∈ E ,

0 otherwise,
(3.7)

where w(e) is the weight of the edge between nodes i and j. Note that a missing edge
corresponds to zero weight. Now, the diagonal matrix D (called the degree matrix of of G)
is defined as Dii =

∑
jWij . Finally, we can define the normalized and unnormalized graph

Laplacian as 3.8 and 3.9, respectively.

∆′ = I − D− 1
2WD− 1

2 , (3.8)

∆ = D −W, (3.9)

where I is the identity matrix.

In semi-supervised learning methods, Graph Convolutional Networks (GCNs)[150] is a com-
mon graph-based method. GCNs generalize the traditional convolution neural networks (CNN)
to the graph domain. In this work, the authors encode the graph structure directly using
a neural network model and train on a supervised loss for all nodes with labels. The label
information is smoothed over the graph via explicit graph-based regularization [150]. Thus,
the unsupervised loss appeared in Eq.(3.15) takes the form of:

LUnsupervised =
∑

xi,xj∈X
Wi,j ∥ f(xi)− f(xj) ∥2= f(X )T ∆f(X ) (3.10)

Where X = {XL ∪ XU}. The above formula assumes that connected nodes in the graph will
likely share the same label. Furthermore, utilizing the graph’s adjacency matrix lets the model
propagate information from the labeled data, allowing it to learn representations of nodes
both with and without labels. An illustration of GCN is shown in Fig 3.7.

Generative Methods
The methods mentioned above are all discriminative: they aim to estimate a function that can
classify data points, i.e. , directly infer the labels [49]. The discriminative methods handle
the classification problem without explicitly modeling any data-generating distributions. In

40 Chapter 3 Learning Paradigms



contrast, generative models try to estimate the true density distribution that generated the
data [49]. Gaussian mixtures models [192], variational autoencoders (VAE) [148], and
Generative adversarial network (GAN) [102] are examples of these methods.

Mixture models are based on the assumption that data are generated from a mixture of K

Gaussian distributions [301]. Thus, when the prior p(y) is available and a conditional distribu-
tion p(x|y) is correct, data can be assumed to be generated from the mixed models [301]. Each
component j = 1, . . . , K consists of three parameters; a weight πj (where

∑K
j=1 ϕj = 1), mean

vector µj , and covariance matrix Σj . We can use, for example, expectation-maximization
(EM) [72] to infer these parameters. Thus, when the above conditions are met, and the
generative model is correct, the connection between the distribution of unlabeled data and the
category labels can be established by assigning to an unlabelled data point xi ∈ XU , the class
c that maximizes p̂(xi|yi = c)p(yi = c). In the Gaussian mixture models, p(yi = c) = πc.

VAE [148] is proposed by Kingma and Welling (2013). This architecture is a model that
considers each data point x as being generated from a vector of latent variables z. The
traditional autoencoders model has a highly complex distribution p(z), which is not easy
to use for sampling. In contrast, VAEs constrain p(z) as a simple distribution, such as a
standard multivariate Gaussian distribution; hence, the sampling process is straightforward.
VAE consists of encoder and decoder networks. At training time, the encoder estimates the
parameters of a distribution p(z|x) (e.g., mean and variance) based on the input data point.
Then, the latent vector z can be sampled from this distribution and passed through the decoder
to reconstruct x. The decoder and encoder are trained together to minimize a combined loss
consisting of (i) the Kullback-Leibler divergence between the posterior distribution p(z|x)
and some simple prior distribution p(z) and (ii) the reconstruction loss. Kingma et al. [149]
proposed two steps to use VAEs in semi-supervised learning. First, the authors train VAE to
extract useful latent representations from the unlabelled and labeled data as an unsupervised
preprocessing step. Then, the VAE is augmented with the latent representation of the label
vector yi, which encodes the labels for the labeled data and is treated as an additional latent
variable for unlabelled data. The architecture is supported by a classification network used to
infer the label predictions to implement the last point [149]. See Fig.3.8. (A).

On the other hand, the generative adversarial network [102] consists of two networks; a
generator network G and a discriminator network D. The generator task is to generate a fake
data point from a noise vector z sampled from some distribution p(z), while the discriminator
network aims to distinguish the real from fake data. Both networks are trained alternatively
to optimize a single objective function. Specifically, the discriminator’s goal is to minimize the
objective function, whereas the generator’s goal is to maximize it. Thus, the generator and the
discriminator networks are playing a min-max game with the value function V (D, G):

min
G

max
D

V (D, G) = Ex∼p(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))] (3.11)

Because GANs are trained in an unsupervised way, they can be used to handle the SSL. There
are many ways to use GANs in SSL settings. However, a popular approach is proposed by the
so-called Semi-supervised GAN (SGAN) [204, 232]. Both works independently extended GANs
to the semi-supervised setting by using |Y |+ 1 outputs, where outputs 1, . . . , |Y | correspond to
the individual classes, and output |Y |+ 1 is used to denote fake data points. The loss function
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Fig. 3.8. An illustration diagram showing (A) the Semi-supervised VAE and (B) the Semi-supervised GAN. These
methods are examples of Generative Methods in semi-supervised learning.

is modified to have the cross-entropy loss of the prediction given the true label for the labeled
data points. Further, when an unlabelled data point is given, the discriminators predict the
data point is not fake by calculating

∑|Y |
c Dc(x) for data point x, where Dc(x) is the value

of output c of the discriminator. One interpretation of how GAN enhances semi-supervised
learning results was provided by [68], in which the authors showed that the fake examples
generated from GAN are located in low-density regions that guide the classifier to find a better
decision boundary. The Semi-supervised GAN is illustrated in Fig.3.8. (B).

3.3.4 Realistic Evaluation of Semi-Supervised Learning
Methods

Evaluating and comparing machine learning algorithms requires many steps that have a
crucial impact on the relative performance of different algorithms. For instance, supervised
learning includes hyperparameters fine-tuning, selecting data sets, and partitioning those data
sets into training, validation, and test sets. In semi-supervised learning, we should consider
more factors. For example, how to select the labeled and unlabeled data and their amount in
training. Additionally, how to choose our supervised baselines that needed to evaluate the
advantages of adding more unlabelled data. Recently, Oliver et al. [205] recommended a set
of guidelines for the realistic evaluation of semi-supervised learning algorithms. Next, we will
summarize these recommendations.

A shared implementation: To have a fair comparison with different SSL methods, the re-
searchers should use a unified underlying architecture. Oliver et al. [205] have noticed that
various implementation details (parameter initialization, data preprocessing, data augmenta-
tion, regularization, etc.) result in variability in performance. Also, there are discrepancies
in the training procedure (optimizer, number of training steps, learning rate decay schedule,
etc.). These discrepancies prevent direct comparison between approaches.

High-Quality supervised baseline: SSL aims to obtain better performance using the combi-
nation of labeled and unlabeled datasets than what would be received with the labeled data
alone. Thus, a fully-supervised baseline trained only on the labeled data is vital to show the
advantages of adding more unlabelled data. Further, this baseline should be reported at its
best performance.
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Comparison to transfer learning: Transfer learning is a commonly used approach to deal
with the scarcity of labeled data. Thus, when the source dataset is available, one should
consider it as a baseline to compare with it for any successful SSL method.

Class distribution mismatch: When evaluating a semi-supervised learning algorithm, it is
suggested to consider the class mismatch between the labeled and unlabeled datasets. While
this setting has been neglected by the researchers, in real-life scenarios [205], the unlabeled
dataset is unlikely to contain all classes in the labeled data or vice versa. Thus, studying the
effect of differing class distributions between labeled and unlabeled data is recommended.

Amount of labeled and unlabeled data: We employ labeled and unlabeled data in training a
semi-supervised learning method. A common practice in the literature is to study the effect
of changing the size of labeled data [205]. Still, while it is of the same importance, it is less
common to systematically vary the amount of unlabeled data. First, it shows to what extent
adding more unlabeled data is beneficial. Moreover, it simulates a more realistic case when
unlabeled data is relatively small, as in the medical domain [205].

Validation dataset: the validation data is used to finetune the hyperparameters, and the
researchers select it in the supervised learning is larger than the training set [205]. However,
in a semi-supervised setting and because of the scarcity of annotated data, this large validation
set would instead be used as the training set. While selecting validation sets larger than the
training could lead to noisier results [205], smaller validation sets constrain the ability to
choose models [49]. However, Oliver et al. [205] have found that the trade-off between the
two settings can be achieved when the validation dataset is 10% of the training dataset.

3.3.5 Semi-Supervised Learning in the Medical Imaging

The deep learning methods need a large amount of labeled data to achieve the best results,
which is expensive and hard to find. Fortunately, the power of semi-supervised learning comes
from the efficient utilization of the large amount of unlabeled data, which are cheap and
easy to find. Such approaches are fundamental in the medical field, where the problem of
labeled data is crucial. In the following paragraphs, we are briefing the most recent works in
semi-supervised learning, with a focus on deep-learning-based methods.

Self-Supervision & Entropy Minimization: As mentioned earlier, these methods force
the decision boundary to pass through low-density regions to minimize the entropy of the
predictions. One way to achieve this in the SSL setting is to generate pseudo labels for the
unlabeled data using a model trained on the labeled data. Next, the training process is
repeated using labeled and pseudo-labeled data [103]. This approach has been employed
by Bai et al.[18] for cardiac image segmentation, where the pseudo labels were additionally
fine-tuned using the conditional random field (CRF) method [155]. Close to pseudo labeling
is Co-Training [34], where confident predictions from separate models, trained using different
data views, are utilized to enhance the training. Xia et al.[290] employed Co-Training by
enforcing multi-view consistency of the unlabeled data for the pancreas and multi-organ
segmentation. PLAT [16] exploited an adaptive threshold that avoids noisy signals and
generates more accurate pseudo labels to detect the cells in microscopic and stained histology
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images. Finally, [177] proposed a pseudo labeling approach, namely self-loop uncertainty, that
exploited a self-supervised learning sub-task that solves Jigsaw puzzles to mine the information
from the unlabeled data to help the training. While the FCN-based network is optimized to
solve Jigsaw puzzles, it produces different segmentation predictions (corresponding to each
stage). Then, these predictions are averaged and used as uncertainty estimation yielded by
ensembling multiple models to improve the segmentation accuracy in stained tissue and skin
lesion images.

Perturbation & Consistency Regularization: These methods train the model to predict
the same output for different perturbations or augmentations of the input data. Mean-
Teacher [263], one of the most successful methods of consistency regularization, has been
employed by Cui et al.[66] for brain lesion segmentation. They introduce a segmentation
consistency loss to minimize the discrepancy between the outputs of unlabeled data under
different perturbations. A similar approach was utilized by Bortsova et al.[36] for Chest X-ray
image segmentation. Yu et al.[304] included the uncertainty information to enable the student
model to learn from the reliable targets for left atrium segmentation. Li et al.[173] utilized
transformation-consistent to enhance the regularization on the pixel level. Interestingly, skin
lesions, optical disks, and liver segmentation were demonstrated by their approach. UDC-
Net [176] forced the so-called Dual consistency between the predictions of unlabeled images
on one side and the predictions of its transformed version and auxiliary decoders on the other
side. Further, the consistency is guided by uncertainty measures and applied for COVID-19
lesion segmentation in the CT scans. Moreover, UATS [194] used the consistency between the
current prediction of unlabeled images and its ensemble predictions from previous epochs
for prostate segmentation. Yet, Wang et al.[283], in addition to the consistency between
different augmentations of the unlabeled images, forced consistency between the input images
and their adversarial direction to classify breast cancer in ultrasound images and ophthalmic
disease in the OCT scans.

Graph-based methods: Graph methods represent labeled and unlabeled data in a graph
structure, where the nodes represent the data points, and the edges represent the connectivity.
The weights represent the distance between the nodes. Graphs can be used to propagate the
labels from the labeled data to the unlabeled ones based on connectivity and similarity. Baur et
al.[21] introduced this concept as a regularization term to the main objective function for MS
Lesion Segmentation. The term is based on the Laplacian graphs and attempts to minimize
the distance between similar unlabeled and labeled data points in the hidden space. Ganaye et
al.[93] took advantage of the invariant nature of the brain structure to build an adjacency
graph of the brain structures, acting as a constraint to refine the predicted segmentation
of the unlabeled data. Graph Convolutional Networks (GCNs)-based approaches have been
proposed to handle the unstructured format of some medical data. For instance, GKD [97]
distilled the knowledge from the teacher to a student model. The teacher graph injects the
available information into soft pseudo-labels. Then, the pseudo-labels train a student graph
for Autism spectrum disorder or Alzheimer’s disease prediction. RA-GCN [98], on the other
hand, addressed the imbalanced class distribution in the medical data by representing each
class by a graph-based neural network responsible for the weighting of class samples. The
whole architecture, then, is trained in an adversarial manner such that the classifier adapts
itself with attention to rare cases.
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Generative Models: These models have been extensively used in the past few years to estimate
the density distribution of the data using the concept of Generative Adversarial Network
(GAN) [102]. Specifically, two networks were used in the training process: the generator and
the discriminator networks. The generator aims to produce fake data of a parallel high quality
to the original data, while the discriminator intends to distinguish between the fake and the
original data. This idea has been utilized by Zhang et al.[313] for gland image segmentation
by encouraging the discriminator to distinguish between the segmentation results of unlabeled
and labeled images while boosting the segmenter (generator) to produce results fooling the
discriminator. Nie et al.[201] utilized an attention-based approach, based on the confidence
map from the confidence network (discriminator), to include the unlabeled data in the
adversarial training for pelvic organ segmentation. Chen et al.[52] encouraged the model to
learn discriminative features for segmentation from unlabeled images, using an autoencoder
trained to synthetic segmentation labels to segment tumor and white matter hyperintensities
in the brain. SCLLD [7] proposed GAN-based architecture consisting of two training phases to
detect COVID-19 infection. First, the weights of the generator and discriminator networks
are initialized using the unlabeled data, then fine-tuned by exploiting the labeled ones.
VTGAN [140] proposed a semi-supervised GAN-based method to synthesize retinal vascular
structure angiograms from fundus images while detecting healthy and abnormal retinas.
Transformer-based [81, 274] discriminators take the original and generated images and then
produce feature maps for disease classification.

3.4 Federated Learning

The advances in machine learning (ML) and deep learning (DL) methods have led to notable
success in medical images and other fields. However, modern DL models require millions
of parameters that must be learned from adequate large, curated data sets to reach reliable
performance while being secure and equitable and generalizing well to unseen data. When
dealing with the medical field, accessing patient data is very hard to obtain because this infor-
mation is very sensitive, while its usage is strictly regulated [215, 273]. Further, collecting,
curating, and maintaining a high-quality medical data is time-consuming, exhausting, expen-
sive, and may have considerable business value, preventing it from being freely shared [216].
On top of that, accessing the labeled and unlabeled data at one site is not always feasible.
Thus, a potential solution could be leveraging the distributed data in remote locations without
breaching privacy, which is the focus of the so-called federated learning [137, 170, 181, 193,
300].

The are many advantages of federated over the traditional centralized machine learning
approaches. First, traditional methods require gathering the distributed data from different
devices or institutions to a single location or a server with shared data storage, which may
not be feasible and bring serious data privacy and security leake [181]. Second, FL typically
utilizes different security techniques to ensure data privacy or security, while the centralized
approach pays little awareness to this security issue [323]. Third, FL exploits distributed
computing power and resources in multiple regions or organizations, allowing different
servers to share the load and preventing any single location from being the bottleneck in the
training [181].
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3.4.1 Problem Definition and Learning Paradigm

The term federated learning was proposed by Google [193]. The main idea is to build machine-
learning models based on datasets distributed across multiple devices, such as mobile devices,
while preventing data leakage. FL enables training collaboratively, i.e. , in the form of an
aggregated model, without transferring local data outside the firewalls of the organizations
or devices in which they are located. Rather, the training process happens locally at each
participating client (e.g., medical institute, mobile device, or organization). A primary aspect
of FL is that only model weights (e.g., parameters, gradients) are shared. Recently, it has been
shown that models trained by FL can achieve accuracy levels equivalent to centralized models
and superior to single-institutional models [172, 244].

Problem Definition

In this thesis, we consider a problem with medical imaging. Given M clients Cm who
have access to their own local dataset Dm ∈ RH×W ×Nm , where H and W are the height
and the width of the input images, and Nm is the total number of images. Dm consists
of labeled SL = {XL,YL}, where XL = {x1, . . . , xL} are input images; xi ∈ RH×W , and
YL = {y1, . . . , yL}; yi ∈ RC are the corresponding categorical labels for C classes. Given
query image xq, our objective is to train a global model f(·) to predict the corresponding label
ỹq for xq, where the local data is leveraged in training in a privacy-preserved fashion.

Objective Function

Let L denote a global loss function obtained via a weighted combination of M local losses
{Lm}M

m=1, computed from private data Dm, which is located at the individual involved clients
and never shared among them. Thus, the objective is to optimize the following overall loss:

min
θ
L(D; θ) with L(D; θ) =

M∑
m=1

wm Lm(Dm; θ), (3.12)

where wm = Nm/
∑M

i=1
Ni is the respective weight coefficient for each client, and θ is the model

parameters.

In the training process, the Stochastic Gradient Descent (SGD) algorithm [218, 331] is
generally applied to minimize the loss function [181]:

fk+1(x)← fk(x)− ηk∆fk(x), (3.13)

where fk(x), ∆fk(x), fk+1(x), and ηk represent the learned model, the gradient, the updated
model, and the learning rate in the kth iteration, respectively. The learning rate can be
dynamically adapted using a local adaptive optimizer (e.g., Adam [147]). In practice, each
client typically receives and trains a global aggregated model by executing a few rounds of
optimization locally and before sharing weights directly or via a parameter server. The actual
process for aggregating parameters depends on the network topology.
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Fig. 3.9. An illustration diagram showing the Federated Learning Topologies (A) Centralized topology, (B)
Decentralized topology, and (C) Hierarchical topology.

Federated Learning Topologies

The FL has different topologies, see Fig. 3.9, but the objective remains the same, i.e. , to
integrate knowledge learned from distributed data. The most common topologies are (i)
Centralized topology: by far the most used topology, consists of a centralized server that
coordinates the training iterations and collects, aggregates, and distributes the models to and
from the clients, see Fig.3.9. (A). (ii) Decentralized topology: each of the training clients is
connected to one or more peers, while the aggregation happens on each node in parallel; see
Fig.3.9. (B). (iii) Hierarchical topology: the network is composed of several sub-networks
built from a mix of peer-to-peer architecture and centralized server, see Fig.3.9. (C).

Aggregation Algorithms

The actual process for aggregating parameters depends on the network topology. The aggre-
gation algorithms can be either centralized, decentralized, or hierarchical. The centralized
aggregation algorithms typically depend on a centralized aggregation server that coordinates
and organizes the execution of distributed computing resources. In contrast, hierarchical
aggregation algorithms rely on multiple servers for model aggregation. The decentralized
aggregation algorithms make each participant equally perform the calculation based on a
predefined protocol without relying on a centralized server. In this thesis, we will focus
centralized algorithm, which is the most related to our work. In a centralized aggregation
approach, a single server collects and averages model weights or gradients sent from multiple
computing resources or clients. Then, the server updates the global model using a centralized
aggregation algorithm, and then the updated global model is transferred to each selected
client for the following computation round.

Many centralized aggregation algorithms have been proposed in the last few years [28, 119,
170, 175, 193, 281]. FedAvg is introduced as the assembly method in the implementation
of an FL system by Google. First, a centralized server collects the updates of models from
randomly selected users. Then, a global model is aggregated using a weighted sum of
each participating client. After that, the new global model is shared with other randomly
selected users, and the training process is continued until convergence. While FedAvg is
a straightforward approach, other methods are proposed to address additional problems.
However, they could be considered an adaptation and a modification to the widely used
algorithm; FedAvg [193], and they proposed to solve different problems in the federated
learning such as data heterogeneity [170, 281], Non-independent-identically-distributed data
(non-IIDness) [175], highly imbalance clients [119], or data heterogeneity in the medical
images [28].
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Fig. 3.10. An illustration diagram showing the training process in the FedAvg algorithm.

Training Process

The training process of federated learning, in the FedAvg algorithm, starts at the server by
broadcasting initial weights of global model parameters to a random set of participating
clients, who share the same model architecture with the global model. Each client, afterward,
trains locally on its local data before sending back the updated model parameters to the
server. Once all clients send their updates, the server aggregates them using an aggregation
algorithm (e.g., FedAvg) to update the global model weights. Next, the updated global model
is broadcasted to a new random set of clients before a new round of local training processes
starts. Eventually, the previous steps are repeated until the global model converged. During
the training, only model weights are shared while data is kept locally. An illustration diagram
showing the training process in FedAvg algorithm in Fig.3.10

3.4.2 Characteristics of the Federated Learning

Despite its benefits, FL still has features and considerations when applied in real-life, especially
when dealing with medical data. In the following, we mention some of the most popular
aspects.

Data heterogeneity & non-IIDness: Applying FL requires coordinating between multiple par-
ties, each with its own dataset. However, this process is not straightforward due to the diversity
of data for many reasons causing this variousness; for example, different imaging modalities
(e.g., CT, MRI, etc.), data acquisition differences, device manufacturer differences, or local
demographics infomration [216]. Therefore, various algorithms, such as FedProx [170],
FebBN [175], and FedMA [281], have been proposed to solve this issue. Still, inhomogeneous
data distribution represents a challenge in applying many FL algorithms in medical images,
especially since many of these algorithms assume IID data across the participants [200, 216,
243].

Privacy, security, & data sharing: Privacy is one of the essential properties of federated
learning. Thus, any successful FL algorithm should provide meaningful privacy guarantees,
model security, and prevent indirect data leakage [300]. A prominent line of work to handle
privacy in federated learning is differential privacy [84]. Differential privacy works by adding
noise to the data or using generalization methods to conceal specific sensitive details until
the third party cannot distinguish the client, thus, making the data impossible to retrieve
and protecting user privacy [300]. In [96], the authors introduced a differential privacy
approach to federated learning to protect client-side data by hiding the client’s contributions
during training. Other approaches include data encryption to protect clients. For instance,
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homomorphic encryption [217] and Secure Multiparty Computation (SMC) [35] are adopted
to improve privacy through parameter exchange under the encryption mechanism during
machine learning [1]. Bonawitz et al. [35] introduced a secure aggregation protocol to protect
individual model updates. The central server cannot see any local updates but can still observe
the aggregated results at each round. However, because these methods work by introducing
some noises or encrypting data, this yields trade-offs between accuracy and privacy [170].

Communication efficiency: Federated learning workflow requires extensive exchanging of
data (e.g., clients’ updates, global model weights). Consequently, it is necessary to develop
bandwidth-efficient FL methods to deal with this situation. Compression algorithms such
as sparsification and quantization can remarkably decrease the size of data communicated
at each round [170]. For example, the ternary compression framework [235] is proposed
to compress uplink and downlink communications between the central server and each FL
client. Moreover, several works have provided practical strategies in federated settings, such
as forcing the updating models to be sparse and low rank [151], performing quantization
with structured random rotations [151], and using lossy compression and dropout to reduce
server-to-device communication [41].

3.4.3 Semi-Supervised Federated Learning

Thus far, we have discussed different aspects of federated learning. In the problem definition
of federated learning, we assume that all clients have a dataset of fully labeled data, see
section 3.4.1, while in many realistic settings, data obtained at the client side often comes
without labeling due to many reasons such as high labeling cost, or the requirement of expert
knowledge. Consequently, it is natural to face a case where a client has only unlabeled data or
is partly labeled. The previous setting leads us to a new practical federated learning problem;
the so-called Semi-Supervised Federated Learning (SSFL) [130].

Problem Definition

The definition of the federated learning problem that we gave in the section 3.4.1 will be
slightly modified to include the unlabeled dataset as follows. Here we assume a direct setting
where each client has access to locally labeled and unlabeled data. Given M clients Cm who
have access to their own local dataset Dm ∈ RH×W ×Nm , where H and W are the height and
the width of the input images, and Nm is the total number of images. Dm consists of labeled
SL = {XL,YL} and unlabeled data SU = {XU}, where XL = {x1, . . . , xL, xL+1, . . . , xL+U}
are input images; xi ∈ RH×W , and YL = {y1, . . . , yL}; yi ∈ RC are the corresponding
categorical labels for C classes. Given query image xq, our objective is to train a global model
f(·) to predict the corresponding label ỹq for xq, where the labeled and unlabeled data are
leveraged in the training in a privacy-preserved fashion.

Objective Function

Accordingly, the overall objective is to minimize the weighted sum of M local semi-supervised
losses. Let L denote a global loss function obtained via a weighted combination of M local
losses {Lm}M

m=1, computed from private data Dm, which is located at the individual involved
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clients and never shared among them. Thus, the objective is to optimize the following overall
loss:

min
θ
L(D; θ) with L(D; θ) =

M∑
m=1

wm LSSLm
(Dm; θ), (3.14)

where wm = Nm/
∑M

i=1
Ni is the respective weight coefficient for each client, and θ is the model

parameters.

Locally, each client optimizes the loss function using any semi-supervised approach that
appeared in section 3.3.3. At the same time, the loss function takes the general form as in
Eq.(3.15) with a slight modification to adapt to the federated learning setting.

LSSLm
(Dm; θ) = LmSupervised

+ βmLmUnsupervised
. (3.15)

The term Semi-Supervised Federated Learning (SSFL) is relatively new and was introduced
by Jeong et al. [130]. In their novel work, called FedMatch [130], the authors proposed an
approach that utilized the so-called inter-client consistency loss that forces the consistency
between similar clients, in addition to decomposing the parameters of the model during
weights exchanging with the server. Since then, several contributions have been made to
benchmark the SSFL to the community [108, 316]. Some works targeted challenges in
semi-supervised federated learning, such as communication efficiency [76, 128], diversity of
unlabeled data [315]. While other groups improved the accuracy by exploiting knowledge
distillation [234], multi-view training [141], data augmentation techniques [179], graph-
based method [279], or adversarial training [332]. Yet, other another line of researchers
proposed novel SSFL methods for other domains such as human activity recognition [30,
317], transportation systems [328], or medical imaging [182, 297]. While surveying all these
methods is out of the scope of this thesis, we will brief, in the following section, on the FL
works in medical images with a focus on semi-supervised methods, which are closely related
to our work.

3.4.4 Federated Learning in the Medical Imaging

We have mentioned that the key properties of federated learning are data privacy, Non-IIDness,
and communication efficiency, which goes in line with the nature of the medical setting
(section 3.4.2). Consequently, federated learning has been investigated by several works in
the medical domain [4, 9, 69, 199, 200, 216, 244].

Supervised Federated Learning in Medical Imaging
Li et al. [172] have investigated the feasibility of applying federated learning methods for brain
tumor segmentation on the BraTS dataset [19] while exploiting differential-privacy techniques
to protect the patient data. SiloBN [8] was proposed to train federated learning models
robust to inter-center data variability by calculating local-statistic in BN layers. IDA [303]
targeted the data heterogeneity in medical imaging. The authors proposed a novel averaging
method that is adaptive to meta-information. IDA is based on the inverse distance of each
client parameter to the average model of all clients. This allows the global model to reject
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or weigh less the clients who may poison other clients yielding an approach that can handle
unbalanced and non-iid data in skin cancer classification. [174] have shown the applicability
of federated learning for training a multi-site fMRI classification utilization, for the first time,
the domain adaptation techniques in a privacy-preserving scheme. FedNorm [28] has been
proposed for liver segmentation targeting high data heterogeneity due to multi-modal imaging
(e.g., CT and MRI). At the same time, other methods have paved the way for implementing
federated models in real-world applications for SARS-COV-2 prediction [89], breast density
classification [225], and whole prostate segmentation [233].

Unsupervised Federated Learning in Medical Imaging

FedDis [27] involved disentangled representation learning in an unsupervised scheme for
brain anomaly detection and segmentation. In their work, the authors provided a solution to
statistical heterogeneity caused by multi-institute data acquisition for MRI brain images. The
idea is to separate the model parameters into two spaces; global parameters (the shape of the
brain), which will be shared with other clients, and local parameters (the appearance), which
will be kept for each client. A GAN-based framework has been proposed in [291] for brain
neuroimaging synthesizing. The so-called FedMed-GAN [291] improved the generated image
of the standard GAN architecture (centralized training) thanks to federated learning, which
effectively incorporated the distributed knowledge from cross-modality data. Curriculum
learning also has been employed with unsupervised domain adaptation for the first time in
[131] for breast cancer classification in federated learning. The proposed method prioritized
the training samples that were most prone to be forgotten after the deployment of the global
model. The authors have shown that presenting the training samples in the order suggested
by their proposed method is beneficial and boosts the domain alignment between domain
pairs.

Semi-Supervised Federated Learning in Medical Imaging

Yang et al.[297], among the firsts who introduced semi-supervised learning to federated
settings (SSFL), has shown the applicability of SSFL for COVID-19 pathology segmentation.
The proposed method has straightforwardly applied a semi-supervised learning method locally
in the federated setting globally. At first, a local model is trained in a fully supervised fashion
using the labeled data. Then, the trained model is used to produce predictions for unlabeled
data, where the predictions with high confidence are used to generate pseudo labels. Next,
the pseudo labels are attached to the labeled data before a new training process starts.
On the other hand, FedAvg was employed at the server to organize the training between
different clients. Another recent work, [182], has proposed the so-called FedIRM for skin
lesion classification. In their work, the authors have suggested distilling the knowledge from
labeled clients to unlabeled ones by building a disease relation matrix extracted from the
labeled clients and providing it to the unlabeled ones to guide the pseudo-labeling process.
Liang et al.[178] targeted the federated semi-supervised learning with Non-IID local clients
suffering from inconsistent reliability among labeled and unlabeled clients. In the so-called
Random Sampling Consensus Federated learning (RSCFed), rather than a direct aggregation
of local models, RSCFed divides the clients into sub-consensus models randomly and then
aggregates the sub-consensus models into the global model. In addition, the authors created a
distance-reweighted aggregation strategy that improves the robustness of models. RSCFed
has shown its usability in skin lesion classification in dermatoscopic images. Jiang et al. [178]
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have addressed the class imbalance in the semi-supervised federated learning problem. They
utilized a dynamic bank learning scheme consisting of dynamic bank construction to distill
various class proportions for each local client and the sub-bank classification to impose the local
model to learn different class proportions. The method was evaluated on two public medical
datasets, including intracranial hemorrhage diagnosis CT slices and skin lesion diagnosis in
dermoscopy images. FedCy [142] was proposed for the first time, in semi-supervised federated
learning, to surgical videos by exploiting temporal patterns in the labeled data, which guide
unsupervised training toward learning task-specific features for phase recognition.

3.5 Self-Supervised Learning

In the previous sections, we discussed how fully-supervised, semi-supervised, and federated
learning have significantly improved machine learning systems and tackled a vast range of
real-life problems in medical images by utilizing fully, partially, or distributed annotated data
sets. However, the labeling process (fully, partially, or distributed) is often long, expensive,
and error-prone. Thus, it represents a bottleneck in further advancements in deep learning.
Self-Supervised Learning (SelfSL) is one procedure that can learn complex patterns from
unlabeled data. In addition, SelfSL allows machine learning models to work more efficiently
when deployed due to their ability to train themselves, thus requiring less training time [248].
Although the unlabeled data is missing their annotations, they are still wealthy with another
type of information hidden in their representations. This section will discuss what we have
researched in the third perspective by employing representation learning in a self-supervised
learning paradigm. While this learning paradigm originated from natural language processing
applications, this thesis will focus on the literature from a computer vision and medical
imaging perspective.

3.5.1 What is the Self-Supervised Learning

Self-supervised learning is a subset of unsupervised learning methods which has gained more
and more popularity in recent years [54, 132]. It seeks supervised feature learning, where
the supervision tasks are generated from the unlabeled data by leveraging its structure [86,
183, 185]. This approach enables access to many training instances where supervision is
available from the data itself [129, 293]. Therefore, self-supervised learning is an excellent
option to explore unlabelled images to improve models’ performance in cases where only
limited annotations are available [5, 288]. Self-supervised learning pipeline consists of two
tasks; see Fig.(3.11). The first task, namely the pretext task, aims to enable the learning of
semantic features by generating self-supervised signals from a set of unlabeled data without
the need for human annotations [51]. Then, the learned features from the first step are
used for subsequent tasks or downstream tasks, e.g., classification or segmentation, where
the amount of the annotated data is limited. From the unsupervised learning viewpoint, the
self-supervised learning approach relaxes the need for manually annotated data. However,
from the supervised perspective, the model is trained with labels generated from the data
itself [248]. Note that in the pretext task where the self-supervised learning happens, a
model is learned in a supervised way using the unlabeled data by creating labels from the
data to enable the model to learn the proper representation. While in the downstream task,
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Fig. 3.11. An illustration figure shows the Self-Supervised Learning paradigm. Self-supervised learning pipeline
consists of two tasks. The first task, the pretext task (top), aims to enable the learning of semantic
features by generating self-supervised signals from a set of unlabeled data. The learned features from the
first step are used for subsequent tasks (bottom) or downstream tasks, e.g., classification or segmentation.

the learned representations from the previous task are transmitted as initial weights to the
downstream task to perform its intended goal by fine-tuning the labeled data [5, 86, 129, 132,
183, 248, 288, 293].

Pretext tasks
Pretext tasks are central to the self-supervised learning approach and act as its backbone [248].
Pretext tasks are pre-designed tasks for networks to solve, and proper representations are
learned by minimizing objective functions of pretext tasks [132]. While the supervision signal
for pretext tasks is generated from the data itself based on its structure. The pretext task can
be shared among different downstream tasks. The pretext tasks can be predictive, generative,
or contrastive [132]. Examples of predictive tasks are relative position prediction [79],
Jigsaw puzzle [203], rotation prediction [99], and predict the applied transformation to the
image [6]. Generative tasks include image denoising [271], image inpainting [210], image
colorization [311], image reconstruction [312]. Nonetheless, contrastive-based tasks are to
contrast similar (positive) and dissimilar (negative) pairs. Positive examples are generated
by applying a set of random augmentations to an input image, resulting in two transformed
views of the same image, while negative examples are any other images different from the
altered views [5, 183, 248, 288].

Downstream Tasks
On the other hand, the downstream task may differ according to the researchers’ needs and
targets. Accordingly, the downstream tasks are computer-specific tasks such as computer vision
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applications, medical imaging applications, or other types that can evaluate the quality of
features learned by self-supervised learning. High-quality labels like human-annotated labels
are needed to solve the downstream tasks. However, in some applications, the downstream
task can include data without using human-annotated labels, e.g., semi-supervised learning.
These applications can significantly benefit from the pre-trained models when training data
are scarce.

3.5.2 Problem Definition

Self-Supervised Learning is considered a particular case of Unsupervised Learning, as both
schemes learn without labels. However, Self-Supervised learning approaches rely on pretext
tasks that exploit knowledge about the data modality used for training. The self-supervised
training considers two steps; pretraining the model to solve the pretext tasks using an
unlabeled source dataset and finetuning or transferring the pre-trained model to solve a
downstream task utilizing a labeled target dataset. Formally, Given unlabeled source dataset
SU = {XU} and labeled target dataset SL = {XL,YL}, where XU = {x1, . . . , xU}, and
XL = {x1, . . . , xL} with their corresponding labels YL = {y1, . . . , yL}. Note that L << U .
Our objective is to build a predictive model; f(x) = gϕ(hθ(x)) by utilizing both datasets, where
gϕ(.) and hθ(.) are classifier/regression and representation extractor functions, respectively.

In the pretraining phase, the model is optimized on the unlabeled dataset to solve the pretext
task. In this regard, a pretext task can be defined as a process, P, that generates pseudo
labels and an objective to guide learning. Given a raw data set like SU , the pretext process
automatically generates pseudo labels z for each sample such that {xi, zi}U

i=1 = P(SU ).
Consequently, in this stage, our goal is to optimize a self-supervised objective in a supervised
way using the pseudo labels.

arg min
θ,γ

∑
(xi,zi)∈P(SU )

L(kγ(hθ(xi)), zi), (3.16)

where kγ(hθ(.)) is the pretrained model. The pretext task enables learning general-purpose
representations hθ and provides data-efficient knowledge of downstream tasks.

In the second stage, the pretext output function kγ is discarded, while the representation
function h∗

θ is transferred to solve the target downstream task using model gϕ(h∗
θ(.)). There

are two typical methods to optimize the downstream task; linear regression and fine-tuning.

In linear regression, let kγ(hθ(.)) be the pre-trained model, consisting of a feature extractor,
hθ, followed by a task-specific head, kγ . The easiest way to reuse hθ for a new task is to
replace the old head with a new one, gϕ, designed for the new task. This head is then trained
with a frozen feature extractor. Given a target-labeled dataset of L examples, our objective
is:

arg min
ϕ

L∑
i=1
L(gϕ(hθ(xi)), yi). (3.17)
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Alternatively, one can retrain the entire network for the downstream task instead of just
training a new head. Consequently, the pretext head is replaced with a new one. However, we
optimized both the feature extractor and the task head as follows:

arg min
θ,ϕ

L∑
i=1
L(gϕ(hθ(xi)), yi). (3.18)

3.5.3 Categories of Self-Supervised Learning

As mentioned earlier, the pretext can be shared for different downstream tasks. For exam-
ple, the same pretext task, e.g., inpainting, could be used to learn visual features for two
downstream tasks with other data. Because the pretext tasks can be predictive, generative,
and contrastive [132], this property makes it helpful to categorize self-supervised learning
approaches according to the nature of the pretext task [248]. see Fig.(3.12). The predictive
methods aim to self-generate informative labels from the data as supervision and handle
the data-label relationships. The generative methods focus on the intra-data information.
The contrastive methods focus on the inter-data information (data-data pairs). Next, we
will outline these methods focusing on contrastive-based ones since they are considered the
current state-of-the-art methods.

Predictive Self-Supervised Learning

Figure (3.12). (A): The predictive self-supervised learning approach seeks to learn useful
representations from unlabeled data by training the pretext task to predict pseudo labels
assigned to the unlabeled data [248]. The pseudo labels are generated from the data itself,
while its nature depends on the pretext of task design specifications [132], e.g., it can be
either categorical or numerical. For example, we can randomly assign a set of transformations
to the input data and train the model to predict which transformation is applied to a specific
sample. Note that these transformations are considered pseudo labels. Because the goal
of the predictive method is to generate informative labels from the data as supervision and
handle the data-label relationships [288], the pseudo labels must be carefully designed to
allow reasonable learning representations [248, 288].

For instance, Doersch et al.[79] divided the input image into nine patches, where the central
patch represents the anchor patch, and the remaining patches are query patches. Then the
anchor and one random query patch are fed to the network. Then, the self-supervised model
is trained to predict the relative position of the query patch to the anchor patch. Inspired by
this work, Noroozi et al.[203] introduced a model to solve jigsaw puzzles. First, the image
is divided into patches. Then, these patches are randomly shuffled using a predefined set
of permutations where each permutation has a specific index. Then the model is trained to
solve the puzzle by predicting the index number for each patch. Gidariset al.[99], on the
other hand, introduced a model to predict the applied geometric transformation, i.e. , four
random rotations, on the input image. This way, rotation prediction allows learning useful
representations by recognizing the orientations of images.
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Generative Self-Supervised Learning

Figure (3.12). (B): The generative self-supervised learning approaches seek to learn good
representations in the input data by treating pretext tasks to regenerate the same input data
or to generate new examples from the same distribution of the input data [86, 132, 183, 288,
319]. Generative adversarial networks [102] or auto-encoder-based architectures [156] are
utilized in these types of methods.

Denoising auto-encoder [277] was utilized in self-supervised learning by reconstructing a
noise-free output from noisy input [271]. The noisy version is created by applying certain
types of noise, such as Gaussian noise. Then, the auto-encoder feeds the deteriorated image
to reconstruct the original one. The intuition behind this pretext task is to enable the model
to recognize the object in a noisy image correctly. Thus, the learned representations are
robust and invariant to noises, while they are useful in the downstream tasks [248]. Yet,
image inpainting was proposed by Pathak et al.[210]. The framework starts by masking or
cropping part of the input image. The masking process includes central or random blocks.
Then, an auto-encoder is trained to reconstruct the missing part in the masked image by
minimizing reconstruction and adversarial losses. The adversarial loss is proposed to enhance
the appearance of the predicted patch. An encoder-decoder architecture was proposed to
produce a colored image from a grayscale one [311]. The authors have used 3-channel
images; one grayscale and two colored channels. The grayscale input is fed to the network,
while the remaining channels are used to supervise the training to predict the image’s original
colors. This task aims to enable the model to understand the coloring scheme of the objects
in the input images, which results in learning wealthy representations. The image super-
resolution (SR) technique was proposed as a pretext task in a self-supervised method by
Ledig et al. [166]. The task’s idea is to enhance images’ resolution thanks to super-resolution
GAN (SRGAN) [166], such that better and more realistic high-resolution images can be
produced from low-resolution ones. Furthermore, this strategy intends to take advantage of
the loss, consisting of adversarial and content losses, leading to a model which learns better
semantic features of data. Eventually, the parameters of the discriminator network can be
transferred to other downstream tasks [132].

Contrastive Self-Supervised Learning

Figure (3.12). (C): Contrastive self-supervised learning is recently the state-of-the-art rep-
resentation learning approach that aims to produce robust representations from the input
data by learning to differentiate between similar (positive) and dissimilar (negative) pairs.
Positive examples are generated by applying a set of random augmentations to an input image,
resulting in two transformed views of the same image. In contrast, negative examples are
any other images. The positive examples are assumed to be slightly different but preserve the
global features of the input image, which makes the similarity between them higher. Lastly,
a contrastive model is trained to maximize the agreement between the positive pairs and
minimize it with the negative pairs in case of using them [5, 86, 129, 132, 183, 248, 288,
319]. To understand better how these methods work; we start by explaining the contrastive
loss before briefly discussing the current state-of-the-art methods.

Contrastive Loss. The goal of contrastive loss is to minimize the distance of the latent embed-
ding between positive pairs while maximizing it between negative ones. Different functions
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have been utilized for contrastive learning, including NCE loss [107] and InfoNCE loss [206].
Normally, these methods employ the noise-contrastive elimination (NCE) method to learn
data and allow the model to pull the same images together and push unlike ones away [107].
Formally, given a mini-batch of unlabeled samples (x1, x2, . . . , xN ) and a stochastic augmen-
tation T (.). The augmentation is implemented to generate two different views of the given
sample x; x+

i and x+
j . Then, the different views are fed to the encoder in the network to

obtain the latent embedding vector, denoted as (zi, z+), as a positive pair extracted from base
header g(.).

The NCE loss [53] is expressed mathematically as follows:

LNCE = −log
exp(sim(zi, zj)/τ))∑2N

j=1 I[k ̸=i]exp(sim(zi, zj)/τ)
, (3.19)

where sim(.) is a similarity or distance function, I is an indicator function whose value is
equal to 1 if k ̸= i and zero otherwise, and τ temperature hyperparameter which helps in
controlling penalties on hard-negative sample [280]. The total number of augmented pairs is
2N , with 2(N − 1) negative examples from other images. In general, the cosine function is
used as similarity measurement between embedding representations zi and zj as follows:

sim(zi, zj) = zi.zj

∥ zi ∥ . ∥ zj ∥
, (3.20)

where ∥ . ∥ is the Euclidean distance. The cosine similarity calculates the slope between two
non-zero vectors in a d-dimensional space. At zero angle, the cosine similarity is one, which
means the two vectors are identical, while at any other angle, the cosine value ranges from
positive to negative.

InfoNCE loss [206], on the other hand, is the most widely used loss function in contrastive
learning. In a self-supervised learning context, InfoNCE estimates the information shared
by two images, and it is preferred because it corresponds to cross-entropy loss [5]. The
InfoNCE distinguishes a positive pair (zi, z+) from its corresponding k negative examples
(zi, z−

1 ), . . . , (zi, z−
k ), and given as:

LInfoNCE = −log
exp(sim(zi, z+)/τ)

exp(sim(zi, z+)/τ) +
∑k

j=1 exp(sim(zi, z−
j )/τ)

. (3.21)

Related Works. Several works [53, 109, 112, 115, 206, 289] have applied the above concept
in self-supervised learning. For instance, Momentum Contrast (MoCo) [109] proposed a
framework consists of a siamese network [38], memory bank, and InfoNCE loss [206]. The
Siamese network includes a query encoder and a momentum encoder. The query-encoder
generates a features vector from a query image, while the momentum-encoder encodes the
other images. The memory bank acts as a dictionary lookup that performs a lookup operation
between a query image encoding and the dictionary, which contains other images’ encoding
as keys. Consequently, learning useful representations is done by maximizing the similarity
between the encoding of the query image and its matching key while minimizing it with the
non-matching ones. While SimCLR [53] relaxes the need for contrast momentum, it mainly
relies on two simple concepts; heavy data augmentation technique, which results in correlated
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views for the same input, and large batch size that includes a large set of negative examples.
SimCLR [53] framework applies a set of random augmentations to generate two positive
views of the same input image. Both views, then, are passed to a siamese network [38], to
generate the hidden representations; (h1, h2), which in turn, are passed to projection heads;
g(.), leading to a pair of feature vectors or embeddings; (z1, z2). Then, the InfoNCE contrastive
loss is employed to optimize the whole network by maximizing the similarity between the
positive pairs and minimizing it for other images in the same batch (negative samples). The
projection heads are removed when the model converges, while the convolutional encoders
are used for downstream tasks. One drawback of the previous approach is that it requires
expensive computations to find the negative images from a memory bank [109] or a large
batch size [53].

Clustering methods. Other works overcome the necessity of distinguishing individual samples
by differentiating between groups of images clustered based on their likenesses [11, 45,
46, 292]. For instance, clustering-based methods such as DeepCluster [45] utilized K-mean
assignments as priors to cluster the learned representations. On the other hand, SwAV [46]
applied an online clustering approach while forcing agreement between the representations
from several views of the same image. Deep Cluster [45] demands a complete pass over the
dataset to calculate the clusters’ assignment, which becomes computationally intense in the
case of large datasets. On the other hand, online methods, such as SwAV [46], calculate
clusters’ assignment by mapping the encoded embeddings (z1, z2) to a K learnable clusters
(groups) on the current batch using the prototype layer (a dense layer with linear activation
function). This prototype layer generates the cluster assignments (codes), i.e. , (Q1, Q2) that
represent the mapping of feature vectors into clusters. Then, the Sinkhorn-Knopp distance [67]
is employed to measure the similarity between the codes. Finally, a swapped prediction is
performed on these codes such that it is possible to predict the codes of one view from the
features vector of the other. Nonetheless, these methods require a lot of negative samples to
produce reliable predictions.

Symmetric architectures methods. In a different work direction, [56, 104] trained self-
supervised models without relying on negative examples. The idea is to have a Siamese
architecture and online target networks. The online network, with learnable parameters, is
trained to predict the presentations for the target network. BYOL [104], for example, sets
the parameters of the target network as moving average parameters of the online network.
However, the parameters in SimSiam [56] are shared between both networks, while backprop-
agation and stop-gradient trick are applied to online and target networks. Despite these tricks
avoiding the collapse solutions, they lack the explainablty [20].

Information maximization methods. An elegant method, Barlow Twins [306], utilizes the
redundancy-reduction principle to make the cross-correlation matrix, produced from two
siamese embeddings, close to the identity matrix. In addition, the author proposed a new
objective function consisting of invariance and redundancy-reduction terms. The invariance
term makes the embedding fixed to the applied augmentations by encouraging the diagonal
elements of the cross-correlation matrix to be 1. However, the redundancy reduction term
decorrelates the different vector elements of the embedding by equating the off-diagonal
components of the cross-correlation matrix to 0. This decorrelation minimizes the redundancy
between output units. W-MSE [43] achieves this by whitening feature representations within
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each batch via Cholesky decomposition [26]. Hua et al. [121] proposed shuffled decorrelated
batch normalization (DBN) [123] to prevent a dimensional collapse. However, VicReg [20]
proposed another method free from the normalization step by employing Variance-Invariance-
Covariance regularization terms. The invariance term is the mean square distance between
the embeddings, while the goal of the variance term is to maintain the standard deviation
(over a batch) of each embedding variable above a given threshold. This term pushes the
embedding vectors of instances within a batch to differ. Finally, the covariance term moves
the covariances (over a batch) between every pair of embedding variables toward zero. This
term decorrelates the variables of each embedding and prevents an informational collapse
in which the variables would vary together or be highly correlated. VicReg is training joint
embedding architectures based on preserving the information content of the embeddings.

3.5.4 Self-Supervised Learning in the Medical Imaging

The success of self-supervised learning in different domains, from natural language processing
to computer vision, attracted other workers, with growing interest, to investigate its ability in
medical images. This motivation comes from medical images always suffering from a severe
scarcity of data annotations, which aligns with the problem that self-supervised learning is
handling. The following paragraphs summarize the most recent works of self-supervised
learning that targeted medical imaging [51, 59, 157, 248].

Predictive methods. Zhang et al. [310] proposed a self-supervised learning method for
fine-grained body part recognition by solving slice sequences on 3D CT and MRI scans. The
authors train a model to predict the spatial order of these slices as an auxiliary task. Bai et
al. [17] proposed anatomical position prediction as a pretext task for cardiac segmentation
in MRI images. The authors utilized several MRI orientations, e.g., short-axis, 2CH long-
axis, and 4CH long-axis, as different views and trained the network to predict the relative
positions of anatomical regions in these views concerning a specific one. A jigsaw puzzle
has been utilized as a pretext task to solve different medical imaging tasks [177, 260]. For
instance, Li et al. [177] adopted a jigsaw puzzle combined with random patches’ rotation
prediction to propose the so-called Self-loop uncertainty in nuclei and skin lesion segmentation.
While multi-modal (e.g., T1 and T2 scans) Jigsaw puzzle pretext task has been exploited to
solve four downstream tasks consisting of brain tumor segmentation, prostate segmentation,
liver segmentation, and survival days regression by Taleb et al. [260]. The success of the
jigsaw puzzle as a pretext task has motivated other researchers to investigate Rubik’s cube
puzzles in their works for brain hemorrhage classification and brain tumor segmentation [324,
329]. Solving the Rubik’s cube enables the model to learn invariant rotation and translation
features.

Generative methods. A GAN-based architecture was employed in the image colorization pre-
text task to segment endoscopic medical instruments as a downstream task by [223]. Chen et
al.[51] employed a relative position prediction task to train a model for abdominal multi-organ
localization and brain tumor segmentation. The idea is to create a corrupted version of the
input image by swapping two random patches repeatedly. Then train a model to restore the
original version from the corrupted one. A similar idea of restoring the distorted image to its
original context was proposed by Zhou et al.[322] to solve six downstream tasks, including, for
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example, Lung nodule and Liver segmentation in CT scans, Brain tumor segmentation in MRI
images, and eight pulmonary diseases classification in X-rays. Holmberg et al.[118] designed
a specific pretext task for ophthalmic disease diagnosis called cross-modal self-supervised
retinal thickness prediction. First, the authors created the thickness maps extracted from a
segmentation model trained on a small annotated dataset of optical coherence tomography
scans (OCT). These maps serve as labels to guide the self-supervised learning process to
predict the thickness maps on unlabeled infrared fundus images. A combined framework of
GAN-based architecture and Rubik’s cube pretext task was proposed by Tao et al. [262] for
the pancreas and brain tissue segmentation. To learn useful representations, the generator is
trained to restore the original order of the Rubik’s cube before the random transformation,
while the discriminator’s goal is to distinguish between the correct and wrong arrangement of
the generated cubes.

Contrastive learning. Some contrastive-based algorithms have been slightly modified to
adapt and solve medical image problems. For example, BYOL [104] has been exploited by
Xie et al.[294] for liver, spleen, kidney tumor, and internal abdominal organs segmentation in
CT scans. Other researchers adopted MoCo [109] for tuberculosis detection [254] and pleural
effusion classification [278] in chest x-rays, and COVID patient prognosis [256] and COVID
classification [55] in chest CT scans. While SimCLR [53] was used by Chaitanya et al. [47] for
cardiac and prostate segmentation, and by Azizi et al.[14] for chest X-ray classification and
skin lesions classification in dermoscopic images. Zhang et al. [314] designed a self-supervised
multi-tasking method that integrates rotation prediction [99], Jigsaw puzzle [203], and
SimCLR [53] in one framework; the so-called twin self-supervision based semi-supervised
learning (TS-SSL) for spectral-domain optical coherence tomography (SD-OCT) classification.
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Fig. 3.12. An illustration shows the Self-Supervised Learning categories. (A) Predictive Methods, (B) Generative
Methods, and (C) Contrastive Methods.
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4Data Augmentation via Random
Linear Interpolation in
Semi-Supervised Learning

„All you need is lots and lots of data and lots of
information about what the right answer is, and you’ll
be able to train a big neural net to do what you want.

— Geoffrey Hinton
(British-Canadian cognitive psychologist and

computer scientist. Also known as the Godfathers of
Deep Learning. Hinton received the 2018 Turing

Award, for his work on deep learning.)

4.1 Motivation

Medical image segmentation plays a fundamental role in the medical field [2] since it provides
a tool to examine different diseases [242], quantify human organs [213], therapy planning
[202], tumor development monitoring [88, 146], diagnostic aid systems [70], and intra-
operative assistance [117]. Nevertheless, manual segmentation is a tedious task that requires
highly experienced physicians [58] and is subject to intra-/inter-observer variability [120].
That led to a great interest in automated segmentation methods estimated at 70% of interna-
tional image analysis challenges in the medical domain [188]. Recently, deep learning-based
methods have achieved state-of-the-art performance in medical image segmentation [64, 105,
226], and shown their applicability to a wide range of datasets without requiring human
expert [127]. However, one major drawback of this approach is the necessity for a huge
amount of annotated data which is oftentimes not available in medical images. Fortunately,
the semi-supervised learning (SSL) framework provides the tool to alleviate this problem by
utilizing a huge amount of unlabeled data along with a few annotated ones in intelligent and
efficient ways. Thus, SSL methods have proved their benefits to real cases which fit the nature
of medical data, where the scarcity of labeled data is the main characteristic.

4.2 Contribution

In this part, we developed a novel and automated semi-supervised deep learning method to
segment medical images. We address the task of segmenting 27 internal Brain structures in
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MRI images from multiple resources and COVId-19 infection in Lung CT scans. We summarize
our contributions as follows:

• We propose our data augmentation method; RandOm lAyer Mixup (ROAM) that
explores the manifold by randomly selecting a subset of input and hidden layers to
perform a linear interpolation of labeled and unlabeled data points and generate virtual
data that fits the complexity of medical imaging segmentation in both fully and semi-
supervised settings. ROAM overcomes the limitations of the previous methods by
encouraging the network to be less confident for interpolated data points and reducing
over-fitting and generalizing well to unseen data.

• We perform a comprehensive ablation study showing the importance of our design
choices. Further, we discuss employing the Manifold Mixup with the presence of
skip-connections in U-Net-like architectures. Also, we conduct extensive experiments,
following the recommendations of Oliver et al.[205], to evaluate our method under the
presence of domain shift, class mismatch, and different amounts of un-/labeled data.

• We utilize a unified architecture to implement different SSL methods for a fair com-
parison. Finally, we empirically show the effectiveness of ROAM by demonstrating a
SOTA performance in both supervised and semi-supervised settings in the whole brain
image segmentation and beating the baseline models in COVID-19 infection and lung
segmentation.

The content of this part is based on the following publication:

Bdair T, Wiestler B, Navab N, Albarqouni S. "ROAM: Random layer mixup for semi-
supervised learning in medical images". IET Image Processing. 2022 May 2.

4.3 Related Works

4.3.1 Semi-Supervised Learning Methods in Medical
Imaging

We already have shown in section 3.3.5 the recent semi-supervised works in medical imaging
that are most related to our work. In a nutshell, the current methods can be categorized into
the following four main types.

Self-Supervision & Entropy Minimization: As mentioned, these methods force the decision
boundary to pass through low-density regions to minimize the entropy of the predictions. One
way to achieve this in the SSL setting is to generate pseudo labels for the unlabeled data using
a model trained on the labeled data. Our method is similar to the methods mentioned in
section 3.3.5 in the pseudo labeling step. However, we are different in two folds. First, the
aforementioned methods generate pseudo labels for unlabeled data only. Yet, our method,
in addition to that, generates virtual data points and their corresponding pseudo labels from
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linear interpolation at a random layer of the input data. This process augments the model
with novel training signals that have never been seen before; see section 4.4.2 for more details.
Second, the previous methods utilize different post-processing steps to enhance the quality
of the pseudo labels, yet, none of them used a sharpening operation that pushes the pseudo
labels into more confident regions, which was adopted by our method, check section 4.4.2
and Fig.4.1 for more details.

Perturbation & Consistency Regularization: These methods train the model to predict the
same output for different perturbations or augmentations of the input data. However, as
mentioned earlier, all methods in section 3.3.5 applied data augmentation at the input space
to force the consistency loss. Nonetheless, our approach augments the images at the input
and the hidden layers. Although UDC-Net [176] proposed the perturbations at the features
level, they introduced a sophisticated augmentation process consisting of seven decoders.
In contrast, our method handles that by simply utilizing linear interpolation. Moreover,
UDC-Net [176] used seven decoders fixed at one hidden space to create different variations.
However, our method overcomes this limitation by randomly selecting the hidden spaces on
which the augmentation is performed.

Graph-based methods: Graph methods represent labeled, unlabeled data in a graph structure,
where the nodes represent the data points, and the edges represent the connectivity. Graphs
can be used to propagate the labels from the labeled data to the unlabeled ones based on
connectivity and similarity. The previous methods, in section 3.3.5, have shown their benefits
to unstructured data, yet, it suffers the burden of graph construction and weighing steps.
Moreover, graph-based approaches are transductive methods, i.e. , optimized on unlabeled
data without separation between the training and testing phases., which results in a lack of
scalability.

Generative Models: These models have been extensively used in the past few years to estimate
the density distribution of the data. Major drawbacks of these approaches, as mentioned in
section 3.3.5, include the computation overhead and the complexity of the architecture. For
instance, [7] involves two training stages, while VTGAN [140] consists of four networks; two
generators and two transformer-based discriminators.

4.3.2 Modern Regularization Methods

Modern regularization methods such as Input MixUp [307], and Manifold Mixup [275] have
been recently introduced to avoid over-fitting by encouraging the model to be less confident
for interpolated data points at the input space or the latent space respectively.

Input Mixup [307] is a simple data augmentation method that generates new data points
(xk, yk) through a linear interpolation between a pair of training examples:

xk = λxi + (1− λ)xj , (4.1)

yk = λyi + (1− λ)yj , (4.2)

where λ ∈ [0, 1].
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Fig. 4.1. Illustrative example. (a)-(b) Input Mixup: This shows the inconsistency of the generated soft label of
grey-dot resulting from two different linear interpolations of inputs. (c) Manifold Mixup: The hidden
learned states are better organized in local regions leading to the consistency of the soft labels. (d) The
sharpening operation (red arrow) pushes the soft label to a more confident region.

Mixup is considered a type of data augmentation where the newly generated data points
extend the training dataset following the cluster and manifold assumptions [49] that linear
interpolations of input examples should lead to linear interpolations of the corresponding
labels. One major drawback of this approach is that the interpolations between two samples
may lead to inconsistent soft labels at interpolated points. Thus Input Mixup can suffer from
underfitting and high loss. This can be better understood by examples. Fig.4.1 shows an
illustrative example, where the red and the blue circles represent two classes. In Fig.4.1(A),
the grey dot is generated by the linear combinations of a blue labeled example (X1) and a red
unlabeled example (U2). Since the grey dot is located in the middle distance between the
two classes, based on the mixing factor λ, the generated soft label has an equal probability of
blue and red classes (50% each). In contrast, in Fig.4.1(B), the same data point (grey-dot) has
been generated from a combination of X2 (red class) and U1 (blue class) with a probability
of 90% of being blue and 10% of being red, as it is located closer to U1, which leads to the
inconsistency of the generated soft labels between the different scenarios.
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Manifold Mixup [275], on the other hand, overcomes the above limitations by performing
the mixup operation at the hidden layers. Thus, training is carried out on the convex
combinations of data samples hidden representations. The learned representations lead to
better organization of the hidden state for each class, where it is more concentrated and
organized. As a result, the inconsistency of soft labels at interpolated points can be avoided.
This can be shown in Fig.4.1.(C), where the generated soft label of grey-dot is consistent, with
an equal probability of each class, regardless of the interpolated data points (X1 and U2 or
X2 and U1).

Both methods, i.e. , Input [307] and Manifold [275] Mixup, have been successfully employed
for fully supervised segmentation frameworks; e.g. cardiac image segmentation [48], brain
tumor segmentation [85], knee segmentation [209], and prostate cancer segmentation [135].
While the previous works have shown the effectiveness of MixUp over standard data augmen-
tation methods in medical images, they depend heavily on fully labeled datasets, which are
usually expensive and unavailable. Nevertheless, this paper addresses the scarcity of labeled
data by proposing a semi-supervised learning approach.

Recently, MixMatch [29], which inspired our work, introduced Input MixUp to the SSL
paradigm achieving SOTA results in image classification. MixMatch augments the model
with interpolated data between labeled and unlabeled images at the input space. While
this approach is exciting and provides the model with diverse data points, it is somewhat
limited and suffers from inconsistent soft labels for the interpolated data points. We argue
that performing the mixup operation at randomly selected input and hidden representations
of the labeled and the unlabeled data provides the network with novel representations and
additional training signals that suit the complexity of medical image segmentation tasks.
Moreover, it provides durable soft labels of the augmented samples. Our method takes the
advantages of both MixMatch and Manifold Mixup to boost the model’s performance, leading
to better generalizability.

4.4 Methodology

4.4.1 Problem Definition

In the semi-supervised learning, we are given a set of labeled SL = {XL,YL} and unlabeled
data SU = {XU}, where {XL,XU} = {x1, . . . , xL, xL+1, . . . , xL+U} are input images, x ∈
RH×W , where H and W are the height and the width of the input image, respectively,
YL = {y1, . . . , yL} are the ground truth labels, where y ∈ RH×W ×C for the segmentation
tasks, and C represents the number of classes. Usually L << U . Our goal is to build a model
fθ(x) that takes input image xi and outputs its prediction ŷi. To leverage both labeled and
unlabeled data in SSL paradigm, the objective function takes the form

LT otal = LSupervised + βLUnsupervised, (4.3)

where β is a weighing factor that controls the contribution of the unsupervised loss, LSupervised

denotes the supervised loss and trained using labeled data SL, and LUnsupervised denotes the
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unsupervised loss and trained on the unlabeled data SU . In this section, we will focus on
the consistency-regularization approach, where its goal is to minimize the distance between
the feature representations of the input data point x and its perturbed version x̂. Formally,
LUnsupervised = d(fθ(x), fθ(x̂)), where d(·, ·) is a distance metric.

4.4.2 ROAM: Random Layer Mixup for Semi-Supervised
Learning in Medical Images

The core components of our method are (a) Pseudo Labeling: Given a pre-trained model
for a few epochs on labeled data, the initial labels for the unlabeled batch were produced,
then refined by applying a sharpening operation. (b) Random Layer Mixup: The labeled and
unlabeled batches were concatenated, then passed to the network as usual. Then, a mixup
operation is applied at a random layer, where the paired examples are randomly selected. At
the same time, a mixup operation is applied to the corresponding labels. Finally, the process
is continued from that layer to the output layer. In the following sections, we illustrate our
methodology in detail, while the entire framework and the algorithm are shown in Fig.4.2
and Algorithm 1, respectively.

Pseudo Labels

First, the unlabeled data along with the labeled set are leveraged using two steps; i) sharpening
the initial predictions for unlabeled data to minimize its entropy following [29], and ii) mixup
the labeled and unlabeled data at random layers following [275]. The unlabeled data are first
fed to the model outputting the initial predictions:

ŷi = f(xi; θ); where xi ∈ XU , (4.4)

before being post-processed by a sharpening operation, parameterized with T , which is highly
inspired by the entropy minimization literature [29, 106]. The pseudo label set is then defined
as ỸU = {ỹi, . . . , ỹU}, where

ỹi = Sharpening(ŷi, T )j := ŷ
1
T
ij

/
C∑

j=1
ŷ

1
T
ij , (4.5)

where ŷi is given by Eq.4.4, j ∈ C, and C is the total number of classes. Note that as T → 0, yi

approaches one-hot encoding. Applying the sharpening operation to the initial labels produces
more stable predictions by pushing the labels away from the decision boundaries to more
confident regions for each class by minimizing its entropy. This effect can be easily seen in
Fig.4.1.(D), where the unlabeled data point U1 is moved closer to the right distribution.

Random Layers Linear Interpolation

Given the unlabeled data XU and its pseudo labels ỸU , along with the labeled data XL and its
one-hot encoding labels YL, the two sets are concatenated as X = {XL,XU},Y = {YL, ỸU}.
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Fig. 4.2. Illustration of ROAM. (a) First, initial labels for the unlabeled batch are produced from a pre-trained
model, then, a sharpening step is applied to fine-tune the labels. (b) Second, the labeled and unlabeled
batches are fed to the network, and mixed at a random layer. Both models in (a) and (b) are the same,
yet we freeze the parameters in step (a).

To enable running the mixup operation at a randomly selected latent space, we first define
(H,Y), where

H =

 X , κ = 0

fκ(X ), otherwise

, (4.6)

where fκ(·) is the hidden representation of the input data at layer κ. Note that the input
data is selected when κ = 0. To introduce noisy interpolated data, a permuted version of the
original data is created H̃, Ỹ = Permute(H,Y), Moreover, it fed to the MixUp operation as

H′ = λ′H+ (1− λ′)H̃, (4.7)

Y ′ = λ′Y + (1− λ′)Ỹ, (4.8)
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Algorithm 1 ROAM: Random Layer MixUp for SSL

Require: pre-trained model f(·; θ(0)), labeled dataset SL, unlabeled dataset SU , batch size B,
number of iteration K, The hyper-parameters {T, α, β}

Initialize: k ←− 0, θ ←− θ(0)

1: while k ≤ K do
2: BL ∼ (XL, YL); BU ∼ XU //sample labeled and unlabeled batches
3: ŷi = f(xi; θ); xi ∈ BU //initial labels for XU ; Eq.4.4
4: ỹi = Sharpening(ŷi, T ) //pseudo labels; Eq.4.5
5: X = {XL,XU},Y = {YL, ỸU}//concatenate both batches, ỸU from Eq.4.5
6: κ←− randomly select layer
7: H = fκ(X )//pass the data to the network, and extract H; Eq.5.7
8: H̃, Ỹ = Permute(H,Y) //randomly shuffle the data
9: H′,Y ′ = Mixup(α,H,Y, H̃, Ỹ) //perform mixup operation; Eqs.(5.8,8)

10: P ←− resume passing H′ from layer κ to the output layer
11: PL,PU = Split(P);Y ′

L,Y ′
U = Split(Y ′) //split the predictions and labels

12: θ ←− arg minθ LCE(Y ′
L,PL) + βLMSE(Y ′

U ,PU ) //calculate the loss; Eq.4.9
13: end while

where Permute(.) randomly shuffles the data, H′ and Y ′ are the interpolated mixed-up data,
where the paired examples are selected randomly. To favour the original data over the
permuted one, λ′ is set to max(λ, 1 − λ), where λ ∈ [0, 1] is sampled from a Beta(α, α)
distribution with α as a hyper-parameter. Further, to keep the original data flow, we run some
experiments without the mixup operation and denoted as κ = Φ. In practice, this can be
achieved by setting κ and λ′ to 0 and 1, respectively. To this end, the mixed-up data H′ are
fed to the model from layer κ along the way to the output layer at which the segmentation
maps are predicted P. Eventually, P is split back into labeled and unlabeled predictions
P = {PL,PU}, and similarly Y ′ into Y ′

L and Y ′
U .

Overall Objective Function

Our overall objective function is the sum of the cross entropy loss LCE on the mixed-up
labeled data and the consistency mean squared loss LMSE on the mixed-up unlabeled data,

arg min
θ
LCE(Y ′

L,PL) + βLMSE(Y ′
U ,PU ), (4.9)

where β is a hyper-parameter.

4.5 Experiments & Results

Our experiments to validate our first contribution involve two parts; the whole-brain segmenta-
tion (Sec. 4.5.6) and lung segmentation (Sec. 4.5.8). First, a comparison with SSL methods for
medical image segmentation is performed (Sec. 4.5.6), followed by a comparison with SOTA
methods for whole-brain segmentation in a fully-supervised setting (Sec. 4.5.6). Then, exten-
sive experiments, following the recommendations of [205], are performed (Sec. 4.5.7). Further,
the performance of ROAM is investigated in the presence of the domain shift (Sec. 4.5.7). In
the second part, lung segmentation results are reported in semi and fully-supervised fashions
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(Sec. 4.5.8). Then, ROAM is investigated in the presence of domain shift and class mismatch
(Sec. 4.5.8). Finally, the performance vs. infection size is discussed (Sec. 4.5.8)

4.5.1 Datasets

Brain
For whole-brain segmentation, we opt for three publicly available datasets as follows: (i)
MALC [161], which consists of 30 T1 MRI volumes, with manual segmentation for the whole
brain, which is provided by [162]. This dataset is divided into 15 training and 15 testing
volumes (∼2500 slices each). The training volumes are further split into three labeled (∼500
slices), nine unlabeled volumes (∼1500 slices), and three validation volumes (∼500 slices).
(ii) IBSR [221], which consists of 18 T1 MRI volumes (∼2000 slices). This dataset is provided
with manual segmentation for the whole brain. (iii) CANDI [144], which consists of 13 T1
MRI volumes (∼1500 slices). Neuromorphometrics, Inc provides the manual segmentation for
whole-brain for this dataset. The labels for whole-brain segmentation include 27 classes (27
internal structures); Left Cortical WM, Left Cortical GM, Right Cortical WM, Right Cortical GM,
Left Lateral Ventricle, Left Cerebellar WM, Left Cerebellar GM, Left Thalamus, Left Caudate,
Left Putamen, Left Pallidum, 3rd Ventricle, 4th Ventricle, Brain Stem, Left Hippocampus, Left
Amygdala, Left Ventral DC, Right Lateral Ventricle, Right Cerebellar WM, Right Cerebellar GM,
Right Thalamus, Right Caudate, Right Putamen, Right Pallidum, Right Hippocampus, Right
Amygdala, Right Ventral DC.

Lung
Two publicly available datasets for lung segmentation are used. (i) COVID-19-CT-Seg-
Benchmark [134]: which consists of 20 CT volumes with the segmentation of three classes;
right lung, left lung, and infection. The data is divided into ten training and testing volumes
(∼2000 slices each). The training data is further divided into two labeled volumes (∼300
slices), seven unlabeled volumes (∼1400 slices), and one validation volume (∼300 slices).
(ii) MedSeg: Consists of 100 axial CT images (i.e. , slices) from more than 40 patients with
COVID-19. The images are divided into 80 training images and 20 validation images. The
labels include ground-glass, consolidation, and pleural effusion classes. The whole-lung masks
for this data set are provided separately. Thus, we combined them with the previous three
classes to create labels for four classes.

In all previous data settings, a patient-wise random splitting strategy was considered to avoid
any overlaps, such that all slices for a specific volume/patient appear in one splitting. All
images are resized to the dimension of 256×256, where the resolution is 1.5mm for the brain
images and in the range of ∼ 0.86mm to 1.2mm for the lung images. The intensity values
normalized to [0, 1].

4.5.2 Baselines

Our baselines include: (i) The lower bound models, trained on the labeled volumes. (ii) The
SSL models are trained on the labeled and the unlabeled volumes. (iii) The upper bound
models trained on the labeled volumes and the nine unlabeled volumes. However, all labels
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are revealed. (iv) Regularized ROAM: to evaluate our contributions, our method is introduced
as a regularizer to the fully supervised lower and upper bound models, denoted as ROAM-LB,
and ROAM-UB, respectively.

For the SSL setting, the following methods are selected. (i) Bai et al.[18], (ii) Baur et al.[21],
(iii) Cui et al.[66], and (iv) Zhang et al.[313]. We opt for these methods based on the following
criteria. First, one method from each of the SSL approaches is chosen. Second, the easiness of
implementation and the compatibility with the unified architecture. Third, we rule out the 3D
methods or the methods that introduce sophisticated training mechanisms, such as Multi-view
training, uncertainty estimations, and domain adaptation.

4.5.3 Implementation details

2D U-Net [222] is employed as backbone architecture, where the 2D slices are the input for
the network. The weights are initialized using Xavier [100] initialization and trained using
Adam optimizer [147]. The learning rate, weight decay, and batch size are set to 0.0001,
0.0001, and 8, respectively. The initial models denoted lower bounds trained for 40 epochs,
the other semi-supervised, and the upper bound models further trained for an additional 40
epochs. The hyper-parameters are set to T = 0.5, α = {0.75, 1}, and β = {75, 1} for the brain
and lung datasets respectively. The mixup layer κ is selected randomly from the input, the
first, and the last convolution layers, which is denoted as κ = {0, 1, L} for the brain images
and κ = {Φ, 0, 1, L} for the lung images, where Φ means no mixing of the data performed. All
the experiments are performed using PyTorch framework hosted on an NVIDIA GTX 1080 8GB
machine. The training time is about 6 hours. The model with the best validation accuracy is
used to report the testing results

4.5.4 Evaluation Metrics

The statistical summary of the Dice score, Eq.2.17, are reported. In addition, the Hausdorff
distance (HD), Eq.2.19, and the Mean Surface Distance (MSD), Eq.2.20, are reported. A
Relative Improvement (RI) w.r.t the baseline is also reported such that RI of a over b is :
(a− b)/b. Note that we follow the One vs ALL methodology for calculating previous metrics
such as for the multi-class segmentation, the mean value of any metric, i.e. , Dice, HD, or MSD
is calculated by taking the value of each class individually and averaging them.

4.5.5 Ablation Study

ROAM introduces the sharpening and concatenation operations to the Manifold Mixup. Also,
it involves a set of hyper-parameters, i.e. , (α, β), and design choices, i.e. , κ, in the training
process. Thus, for the model selection, an ablation study and sensitivity analysis are conducted.
In all these experiments, the training is done for 80 epochs, where the model with the highest
validation accuracy is selected to report the testing results. The results are presented in Table
4.1.
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Tab. 4.1. Mean Dice for Brain validation and testing datasets. ROAM, with κ = {0, 1, L}, sharpening, concatena-
tion, α = 0.75, and β = 75, obtains the best validation results, hence, will be our model selection. Φ: no
data mixup. All: all hidden layers. L: last layer. First, κ is examined when α and β are equal to 0.75 and
75, respectively. Based on the results, κ = {0, 1, L} is used before the selection of the other parameters
is investigated.

Ablation Value Validation Testing

ROAM {0, 1, L} 0.898 0.870

κ 0 0.881 0.852

1 0.867 0.843

2 0.894 0.872

3 0.868 0.825

4 0.863 0.828

5 0.877 0.847

L 0.865 0.843

{0, 2, L} 0.884 0.851

{1, 2, L} 0.883 0.863

{0, 1, 5} 0.881 0.860

{Φ, 0, 1, L} 0.882 0.864

{All} 0.882 0.858

α 0.25 0.880 0.851

2 0.885 0.836

β 0 0.893 0.844

Sharpening(✓) Concatenation(×) 0.878 0.850

Sharpening(×) Concatenation(✓) 0.861 0.823

Sharpening(×) Concatenation(×) 0.870 0.843

The selection of the random layer κ

First, a set of layers are examined to determine which mixup operation will obtain the best
results. That includes the input layer, the hidden layers, and a no-mix option, where the data
is passed to the network as per the usual training procedure. Note that κ is investigated when
α and β are equal to 0.75 and 75, respectively. Please refer to section 4.5.5 for why these
values were selected. It is seen from the results in Table 4.1 that mixing the data at different
random layers achieves better results than using only one fixed layer, except for κ = 2. This
correlation emphasizes the importance of alternating the hidden space with the input space
during the training process, which provides the model with novel data variations that can not
be generated using either the input or the hidden layers. Based on these results, κ = {0, 1, L}
is fixed before the selection of the other parameters is investigated as presented the next
sections.
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The concatenation & the sharpening operations
In this experiment, we removed the sharpening step on the soft labels and(or) concatenated
labeled and unlabeled batches, which resulted in three combinations as shown in the last
rows in Table 4.1. When removing one or both steps, a drop in the Dice score was observed.
However, the worst result was obtained when applying the mixup operation on a concatenated
batch without the sharpening. That is attributed to mixing the initial labels without minimizing
their entropy through the sharpening step, which could harm the quality of the mixed-up
data.

The hyperparameters α and β

First, three values of α = {0.25, 0.75, 2} are examined, where α = 0.75 as in [29], α = 0.25
to favor one sample over the other, and α = 2 to make more balance between the different
samples. It is noticed from Table 4.1 that ROAM obtains the best results when selecting
α = 0.75 because this value makes the mixed-up data closer to the original data while
maintaining the novelty of the generated points. In the final part of our analysis, two values of
β = {0, 75} are investigated, where β = 75 as in [29], and β = 0 to evaluate the effectiveness
of the newly-generated data on the training where we do not propagate the unlabeled loss.
The results in Table 4.1 show that ROAM effectively uses the unlabeled loss, where the
accuracy when β = 75 is better than when β = 0. Furthermore, the obtained results at β = 0
show that the random layer mixup operation boosts the performance without the unlabeled
loss. That is because the mixup between the labeled and the unlabeled examples augments
the model with new virtual data.

In summary, the above analysis shows that ROAM, with κ = {0, 1, L}, sharpening, concatena-
tion, α = 0.75, and β = 75, obtains the highest validation accuracy. Unless stated otherwise,
we opt for these selections in the next experiments. In some experiments, we report the results
at the input space i.e. , ROAM(κ = 0) to compare our method with MixMatch. Also, we report
the results for ROAM(κ = 2) because it obtains the second-highest validation accuracy and
evaluates our method at the Manifold Mixup.

On the other hand, model selection experiments on lung validation data are conducted. Simi-
larly, the hyperparameters {κ, α, β}, concatenation, and sharpening steps are examined. The
results in these experiments show that ROAM with κ = {Φ, 0, 1, L}, sharpening, concatenation,
α = 1, and β = 1, obtains the highest validation accuracy. Thus, we opt for this selection for
lung segmentation testing results.

The ablation study from both datasets shows the essential role of each component of our
method on the segmentation task justifying its design choice.

4.5.6 Whole-brain Segmentation Results

Comparison with SSL methods.
Table 5.2 illustrates the results for whole-brain segmentation. It is apparent from this table that
our method outperforms the lower bound, upper bound, and all SSL methods with a statistical
significance (p < 0.001). The best result, with average Dice of 87.0% and RI about 16.50%,
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Tab. 4.2. Mean (Median) ± Std. of different evaluation metrics are reported on the MALC testing set for baselines
and different SSL methods, including ours. *: significant improvement. L: Last layer. †: MixMatch [29].
↑(↓): The higher (lower) the better.

Model Name Dice Coefficient ↑ RI(%) ↑ HD ↓ MSD ↓

Lower Bound 0.747(0.769)±0.071* 0 4.16±0.43 1.06±0.088

ROAM-LB 0.823(0.841)±0.052 10.17 4.07±0.35 1.05±0.071

Bai et al.[18] 0.800(0.815)±0.055* 7.10 4.06±0.43 1.02±0.086

Zhang et al.[313] 0.819(0.851)±0.060* 9.64 4.02±0.44 1.00±0.089

Cui et al.[66] 0.829(0.847)±0.045* 11.00 3.97±0.38 1.03±0.089

Baur et al.[21] 0.778(0.795)±0.071* 4.15 4.06±0.40 1.05±0.082

ROAM (κ = 0)† 0.852(0.866)±0.037 14.05 3.91±0.35 0.99±0.067

ROAM (κ = 2) 0.872(0.881)±0.024 16.73 3.78±0.28 1.00±0.077

ROAM (κ = {0, 1, L}) 0.870(0.873)±0.023 16.50 3.87±0.31 1.00±0.061

Upper Bound 0.871(0.886)±0.044* 16.60 3.72±0.42 0.95±0.087

ROAM-UB 0.893(0.902)±0.024 19.54 3.56±0.34 0.91±0.075

is obtained by ROAM(κ = {0, 1, L}). Further analysis shows that ROAM(κ = {0, 1, L})
outperforms its variant ROAM(κ = 0), which is similar to MixMatch. The justification is that
ROAM(κ = {0, 1, L}) introduces a lot of variations and generates novel data points that have
never been seen before via its random layer mixup. Thus, it avoids over-fitting. Interestingly,
a similar performance is reported for ROAM(κ = 2). Further statistical tests revealed that
our method achieves the best HD and MSD scores of 3.87 and 1.00, respectively. Moreover,
ROAM-LB and ROAM-UB models outperform their competitors significantly with average Dices
of 82.3% and 89.3%, and RI of 10.17% and 19.54%, respectively. That is strong evidence
that applying ROAM as a regularizer provides the model with new data points. Consequently,
it boosts the performance without the need for any additional data. Surprisingly, ROAM-LB
outperforms most SSL methods by significant margins, confirming its advantages as a strong
regularizer.

Structures Level Results
The segmentation results for some internal structures are reported in Fig.4.3. The results show
that ROAM significantly outperforms all SSL methods in most structures. Besides, ROAM
excels over the upper bound in the Right Hippocampus and 3rd Ventricle. Additionally, the
performance of our method is consistent across different structures. That is clearly shown in
the Left Pallidum, 3rd Ventricle, Left Amygdala, and Right Hippocampus. Our model achieves
a lower performance in Left Cortical GM, yet the difference is not statistically significant.

Qualitative Results
To provide more insights on the performance, the qualitative results are shown in Fig.4.4. The
first row shows the predictions on the MALC dataset. The second row shows a cropped version,
where we highlighted the right and left lateral ventricle, right thalamus, right hippocampus,
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Fig. 4.3. Dice score for selected structures. Our method significantly outperforms all other SSL methods in most
brain structures.

left palladium, left amygdala, and 3rd ventricle. Despite the complexity of these small
structures, ROAM performs more reliably than all SSL methods. To support our findings, we
also include another case from the MALC dataset in the third row. Likewise, ROAM surpasses
all SSL methods. Finally, the predictions under cross-domain settings are shown for IBSR and
CANDI datasets in the fourth and fifth rows, respectively. In general, ROAM predicts more
accurate results than other SSL methods indicating its generalization ability to other domains.
Together, the quantitative and the qualitative results show the superiority of ROAM against all
SSL methods.

Comparison with SOTA for Whole Brain Segmentation
To realize the effectiveness of ROAM in a fully-supervised fashion, we run our method using
the labeled data. In this experiment, the batch is mixed with its permuted version, where no
sharpening nor pseudo labeling steps are performed. Also, β is set to 0 so that the unsupervised
loss is not propagated. The MACL dataset is used for the training for 80 epochs, where the
model at the last epoch is saved. Our method is compared with U-Net[222], and QuickNAT
[226]. In contrast to U-Net and our model, QuickNAT is pre-trained using 581 labeled volumes
from IXI dataset. Table 5.4 shows the testing results on the MALC dataset. All ROAM variations
significantly outperform U-Net and are on par and sometimes outperform QuickNAT, without
a sophisticated pre-training mechanism. Note that ROAM (κ = 0) is a special case of our
method where the mixup is performed at the input space i.e. MixMatch. Further, the results
show that our models achieve lower standard deviations compared to other methods. In
summary, the results show that our simple but elegant ROAM operation leads to SOTA results
without the need for large datasets.

4.5.7 Realistic Evaluation of ROAM

The purpose of the next set of experiments is to (i) assess ROAM in the presence of domain
shift, (ii) show the correlation between the amount of labeled and unlabeled data on the
overall performance, following the recommendations of [205].
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Fig. 4.4. Qualitative results of brain segmentation. The first row shows a coronal view of one case from the MALC
dataset. The second row shows a cropped version highlighting selected structures for the same case.
Another case is shown in the third row. Further, the segmentation results in the presence of domain shift
are shown in the fourth and fifth rows of IBSR and CANDI datasets respectively. In these cases, ROAM
obtains the best results, where the red boxes show the false predictions made by different models.

Tab. 4.3. Dice score for fully supervised models. ROAM significantly outperforms both U-Net and on par with
QiuckNAT without sophisticated pre-training mechanism.

Model Name Mean(median)±std RI(%)

U-Net 0.874(0.888)±0.039 0

QuickNAT 0.895(N/A)±0.055 2.40

ROAM (κ = 0) 0.890(0.898)±0.025 1.83

ROAM (κ = {0, 1, L}) 0.895(0.901)±0.022 2.40

ROAM (κ = 2) 0.897(0.906)±0.025 2.63

Domain Shift Results

The trained models were picked and tested on IBSR and CANDI datasets. The results in Fig.4.5
show a drastic drop in all models, including the baseline ones. This drop is higher on the
ISBR dataset. However, ROAM(κ = {0, 1, L}) performs just as well in both cases and is less
sensitive to the domain shift problem compared with other models, including ROAM(κ = 2)
and ROAM(κ = 0). Surprisingly, although ROAM(κ = 2) achieves one of the best results on
the MALC dataset, it has less generalization ability than ROAM(κ = {0, 1, L}). The results
indicate that the domain shift has a lower effect on ROAM than the other methods.
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Fig. 4.5. Domain shift results. The domain shift has a lower effect on ROAM than the other methods.

Changing Amount of Labeled Data

At first, we fix the number of unlabeled data at 1500 slices while gradually increasing the
amount of labeled data from 100 to 500. With successive increases in the amount of the
labeled data, our model displayed a higher performance and confidence compared to other
models (cf. Fig.4.6.(a)). This confidence level is inconsistent in other models. The same
superiority is also observed at the lowest amount of labeled data (100 slices), where the
obtained Dice scores are 0.622, 0.402, 0.500, 0.571, 0.400 for ROAM, Bai et al. [18], Zhang et
al. [313], Cui et al. [66], and Baur et al. [21] respectively, cf. Fig.4.6.(a), the results on the far
left.

Changing Amount of Unlabeled Data.

In this experiment, we fix the labeled data at 500 slices while gradually reducing the unlabeled
from 1500 to 500. The results are shown in Fig.4.6.(b). In contrast to other methods, our
model shows its superior w.r.t variable amount of unlabeled data. The figure shows that our
approach still outperformed when the amount of unlabeled data is the lowest (500 slices)
with considerable margins. The obtained Dice scores for ROAM against the other methods are
0.820, 0.795, 0.798, 0.809, and 0.760 respectively, cf. Fig.4.6.(b), the results on the far right.
Yet, [66] achieves insignificant higher Dice at 1000 unlabeled slices. Both results confirm the
superiority of our method at a low data regime.
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Fig. 4.6. Varying amount of data. The shaded region represent the standard deviation. The more labeled or
unlabeled data being used, the higher performance and confidence of our model comparing to others.

Tab. 4.4. Lung CT images segmentation results. ROAM outperforms SSL methods for the infection and lung
classes, while it outperforms the lower bound in the overall and lung results. ROAM shows lower
performance in the infection segmentation comparing to U-net. The foreground column includes the
infection, the left, and the right lung classes. (): negative value.

Setting Model Foreground Infection Lung

Mean(median)±std RI(%) Mean(median)±std RI(%) Mean(median)±std RI(%)

Lower Bounds U-Net 0.702(0.738)±0.176 0 0.543(0.657)±0.254 0 0.782(0.897)±0.231 0

ROAM-LB 0.777(0.839)±0.126 10.68 0.528(0.606)±0.275 (2.76) 0.902(0.942)±0.121 15.35

SSLs Bai et al.[18] 0.730(0.772)±0.154 3.99 0.552(0.599)±0.233 1.66 0.819(0.881)±0.153 4.73

Zhang et al.[313] 0.736(0.775)±0.161 4.84 0.606(0.717)±0.251 11.60 0.802(0.880)±0.213 2.56

Cui et al.[66] 0.810(0.873)±0.116 15.38 0.605(0.672)±0.239 11.42 0.913(0.953)±0.102 16.75

ROAM 0.822(0.887)±0.122 17.09 0.632(0.710)±0.252 16.39 0.918(0.957)±0.103 17.39

Upper Bounds U-Net 0.849(0.888)±0.096 20.94 0.675(0.737)±0.229 24.31 0.936(0.974)±0.091 19.69

ROAM-UB 0.829(0.872)±0.107 18.09 0.630(0.686)±0.218 16.02 0.929(0.974)±0.102 18.80

4.5.8 Lung Segmentation Results

In the second part of our experiments, ROAM is validated on lung CT images for lung
segmentation. Note that our model selection for this dataset is ROAM(κ = {Φ, 0, 1, L}), α and
β = 1.

COVID-19-CT-Seg-Benchmark Results

Quantitative Results

The segmentation results, reported in Table 5.5, show that ROAM and ROAM-LB surpass
their competitors in the overall results, see the foreground column in Table 5.5. The obtained
relative improvements are 10.86%, 17.09%, and 18.09% respectively for ROAM-LB, ROAM, and
ROAM-UB. In line with the whole-brain segmentation results, it also observed that ROAM-LB
outperforms the other SSL methods by considerable margins. In contrast to that, ROAM-UB
performs just lower than the upper bound. Surprisingly, ROAM-LB’s segmentation score for
the infection dropped by 2.76% comparing to the U-Net. In summary, ROAM outperforms
all SSL methods for all classes, and outperforms the lower bound in the overall and lung
results. Yet, ROAM shows lower performance in the infection segmentation when compared
to U-net.
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Fig. 4.7. Qualitative results of lung segmentation. Red boxes represent the false positives. ROAM generates more
accurate predictions than the other models with the exception of the U-Net-UB.

Qualitative Results
The segmentation predictions for the previous models are shown in Fig.4.7. The first two
columns in the first row show the input image with its ground truth. The next four columns
present the segmentation results for the lower and upper bounds, respectively. The second
row shows the predictions for the SSL methods and ROAM. The red boxes are drawn to show
the false predictions made by different models. Except for the upper bound, ROAM makes
fewer false positives and generates more accurate predictions than the other models in all
settings. Moreover, ROAM-LB performs better than U-Net lower bound and better than some
SSL methods such as [18], and [313]

MedSeg: Cross Domain & Class Mismatch Results
MedSeg dataset consists of 100 CT images divided into 80 training images and 20 validation
images, with four classes of lung, ground-glass opacity, consolidation, and pleural effusion. In
this experiment, the model trained on MedSeg while it was tested on the COVID-19-CT-Seg-
Benchmark dataset. Notice that the last dataset contains segmentation of the right lung, left
lung, and infection classes. Thus, the goal of this experiment is to investigate the ability of
ROAM cross domains and class mismatch conditions. Note that the training and the testing
images come from different datasets with a domain shift problem. Further, the training and
testing classes differ, making it a very challenging task. To resolve this issue, we perform
two steps. First, after training the models, we generate the four-class predictions. Then, we
assemble the predictions of ground-glass opacity, consolidation, and pleural effusion as one
class called the infection class, yet the lung predictions remain without any modification. The
result from the previous step is predictions of two classes; lung and infection. The second
step, however, is performed on the testing data. Specifically, the right and lung masks are
assembled as one class called the lung class, while the infection masks remain without any
modification. The result from this step is labels with two classes; lung and infection. Having
performed these two steps, our results for this experiment are generated. The results are
reported in Table 4.5. We notice that ROAM enhances the predictions by 16.26% and 5.78%
for the infection and foreground, respectively. The results of this experiment are in line with
the results reported for brain images. That is, both are consistent and highlight the ability of
ROAM to generalize to unseen data.
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Tab. 4.5. Cross domain and class mismatch results. The models are trained on MedSeg dataset, while tested on
COVID-19-CT-Seg-Benchmark dataset. ROAM enhances the prediction of the baseline.

Model Foreground Infection

Mean(median)±std RI(%) Mean(median)±std RI(%)

U-Net 0.675(0.684)±0.107 0 0.449(0.496)±0.233 0

ROAM 0.714(0.728)±0.111 5.78 0.522(0.501)±0.224 16.26

Fig. 4.8. Dice vs Infection. The x-axis represents the percentage of the infection size to the lung size. When the
percentage below 3%, SSLs produce uncertain results. The best obtained when the classes are balanced
(at 30%). The percentage of (59%) is an outlier case.

Performance vs Infection sizes

Thus far, the performance of ROAM at different data settings, domain- shift, and class mismatch
has been reported. In this experiment, we try to analyze the effect of the COVID-19 infection
size w.r.t the lung size. Fig.4.8 shows the individual Dice score for each test volume from
the COVID-19-CT-Seg-Benchmark dataset. The percentage below each column represents the
infection size. It stands out that the same pattern for all SSLs models is found. First, when the
infection size is below 3%, all SSL methods produce uncertain results. Second, the best results
are obtained when the classes are balanced (at 30%). In this case, the infection represents
one-third of the lung size, while the remaining percentages are one-third for the left lung
and one-third for the right lung. Third, the results at 59% represent outlier cases that fool all
models because the infection represents the minor class in the image in the usual cases. In
general, ROAM obtains the best results regardless of the infection percentage.
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4.6 Discussion

In this dissertation, we address the insufficiency of annotated data by proposing annotation-
efficient medical imaging in deep learning-based approaches. Our first solution is to augment
the model with new data generated from random linear interpolation of the input and hidden
spaces in a semi-supervised learning setting. Specifically, we propose ROAM as an SSL method
that utilizes the modern regularization methods i.e. , MixUp and Manifold Mixup, to boost
the model with newly-generated data points. Our approach overcomes the limitations of the
previous works by exploring the manifold and performing linear interpolation at a randomly
selected subset of input and hidden layers. Consequently, it generates new data points and
additional training signals that suit the complexity of medical image segmentation for semi-
supervised learning. Moreover, our method utilizes the better organized hidden representation
of classes and produces consistent soft labels for the corresponding data points generated via
the mixup operation. In this chapter, we will discuss our findings and observations of this
method in detail.

4.6.1 Performance Across Different Datasets

Our method is validated using five publicly available datasets for the brain and lung images.
These datasets are heterogeneous. While the structures in the brain images are almost rigid
and geometrically constrained, the lung images contain highly variable sizes of COVID-19
infection. The results show that ROAM performs consistently and outperforms all SSL methods
with large margins across these datasets. Further, the robustness of ROAM is significant in the
brain segmentation, where ROAM always obtains the best results.

The main advantage of ROAM is the generating of new virtual data points. This process
enriches our method with a wide range but free training signals which are explored not only
in the input space but also at the hidden representations. Further, what makes our new data
beneficial is selecting the mixing factor λ, which has been selected to keep the virtual points
in the vicinity distribution of the training examples. In contrast, the other methods are limited
to the original training examples such that whatever approach is used, the knowledge gain
is still limited. Another advantage is that our method enhances the quality of the pseudo
labels by the sharpening operation, while none of the remaining approaches make use of this
post-process step.

On the other hand, ROAM (κ = 2) achieves one of the best results on the MALC dataset. We
attributed this to hidden representation at this layer, where it might be the most organized
and concentrated among all layers. Thus, the inconsistency in soft labels is minimized. Despite
that, ROAM (κ = 2) has less generalization ability than ROAM (κ = 0, 1, L), indicating
the possibility of overfitting to the training data. Further investigation might lead to more
explanations.

However, one limitation has been noticed in the lower bound for the COVID-19 infection
segmentation. Even though ROAM enhances the overall prediction, it fails to enhance the
segmentation of the infection class. This could be attributed to the fact that mixing highly
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imbalanced classes, i.e. infection pixels vs lung pixels, at a low data regime, could bias
the model to the dominant class. In another anticipated finding, ROAM-UB achieves lower
performance than the upper bound baseline model. A possible explanation might be that the
amount of data- at the upper bound setting- is enough for the training. Therefore, augmenting
the model with additional virtual data points may not be useful. Also, it has been shown
that our lower bound model (ROAM-LB) consistently outperforms many SSL methods. That
means this regularization technique, with just a few labeled data, could surpass the other SSL
methods which have access to a large amount of unlabeled data. Moreover, ROAM generates
new data points through its linear interpolation. The effectiveness of this operation is essential
at a lower data regime where the data is crucial for the training.

Interpretability might be another limitation of our method. The generated data from the
mixup operation could be hard to interpret, especially when the two mixed-up samples are
randomly selected. Consider, for example, in brain experiments, an image containing the
white matter was mixed with another one containing grey matter or any other brain structure.
For a human or an expert, the resulting image will not be recognized as a known structure in
the brain. Thus, instead of augmenting the training, this should confuse the model. Although,
our experiments showed that this operation boosted the performance, the explainability of
our method needs further investigation.

4.6.2 Generalizability & Domain Mismatch

One way to alleviate the need for a large amount of annotated data is to utilize datasets
generated from different sources. Usually, these datasets come with many challenges, i.e.
different cohorts, scanning protocols, and scanners. That leads to a technical challenge, the
so-called domain shift. This problem has been investigated in this paper and have noticed that
all SSL methods, including ROAM, suffer in the presence of domain shift. Yet, ROAM was less
sensitive, see Fig.4.5 and Table 4.5. Nevertheless, we make no claim here that our approach is
domain agnostic. Thus, further research in handling the domain shift in the SSL methods is of
high importance.

4.6.3 Convergence

Manifold Mixup is guaranteed to be converged when the mixup operation is performed at a
hidden layer, as long as the dimensionality of that layer is greater than the number of the
classes [275]. In our paper, this condition is satisfied where the dimensionality of the hidden
layers > 32, which is greater than the number of segmentation classes i.e. 28 for brain images
and 4 for lung images.

4.6.4 Handling Skip Connections

An important question is how to handle the skip connections when mixing at a random layer.
Do the skip connections get interpolated using the same lambda as the convolution layers
or just forwarded without any mixup? For example, when mixing two samples x1 and x2

at a random hidden layer i.e. κ = 2, the skip connections related to that layer still hold the
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Tab. 4.6. The results for Whole-brain and lung segmentation at κ = 2 with/out skip-connections mixup. ROAM
works better without skip-connections mixup at SSL setting, while it performs just lower at the upper
bounds. SK: Skip-Connection Miuxp.

Dataset Model SK Mean(median)±std

Brain ROAM-SSL ✓ 0.834(0.853)±0.047

× 0.872(0.881)±0.024

ROAM-UB ✓ 0.892(0.898)±0.024

× 0.890(0.898)±0.023

Lung ROAM-SSL ✓ 0.779(0.849)±0.137

× 0.797(0.860)±0.121

ROAM-UB ✓ 0.851(0.889)±0.100

× 0.850(0.901)±0.107

original data from the first hidden layer. Therefore, they will not correspond to the mixed-up
labels properly, which might cause a problem. One suggestion to handle this issue is to
perform the mixup for a given layer and the skip-connections up to that layer with the same
lambda and the same example-pairing. Practically, we investigate this solution on MALC and
COVID-19 datasets when κ = 2, and report the results in Table 4.6. It is shown that ROAM
performs differently, and no such approach produces consistent performance. For instance,
the skip-connections mixup at SSL settings impairs the results while it has almost no effect or
a negligible positive effect at the upper bounds. The issue of handling the skip-connections is
intriguing and could be usefully explored in further research. Fortunately, this problem did
not happen in our main scenarios, i.e. , performing random mixup at κ = {0, 1, L} because
the mixed-labels correspond to the mixed data as well. Yet, it is not the case for the manifold
mixup when κ = 2, which surprisingly shows a superior result. One of the reasons could be
attributed to the choice of the beta distribution parameter, i.e. α. For instance, when α is
less than 1, the mixed data tend to preserve the original data point. Therefore, performing
manifold at the bottleneck or other layers might not have such an expected negative impact.

4.6.5 Infection Size

ROAM can be affected by the highly-imbalanced dataset as can many SSL methods. Fig.4.8
shows that the best performance is obtained when the classes are equally distributed. Thus,
performing mixup operations with highly-imbalanced data remains a challenging question.
Our preliminary analysis in this direction paves the way for further investigation.

4.6.6 Validation Datasets

One problem of using small validation datasets is the inconsistency of the results, which may
not reflect the actual performance of the model [205]. The smaller the validation set, the
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larger the variations in the output. Moreover, [205] also argued that a comparison between
different SSL models is possible when the validation set is equal to the training one. In this
paper, we consider all these recommendations in our implementation. Consequently, the
reported results fairly reflect the actual performance of each model.

4.6.7 The Unsupervised Loss

Interestingly, β = 0 shows the third-highest validation results. β is a hyperparameter that
controls the contribution of the unsupervised loss. Setting β = 0 implicitly means that our
model is still augmented with new data points from our random mixup yet without the
unlabeled single. Based on the selected λ in Eq.(5.8) and Eq.(8), the newly-generated data
points are close to the labeled data. In other words, the new data are in the vicinity distribution
of the labeled data, i.e. high-quality data is generated, justifying the boost in the performance.
On the other hand, setting β > 0 means that we propagate the training signals from the
unlabeled data. These signals might be noisy and introduce uncertainty to the model because
of the low quality of the pseudo labels. Hence, a decrease in performance was observed.
However, after applying the sharpening, an enhancement is noticed in the model performance
because the sharpening operation helps to generate more accurate pseudo labels, as shown in
Fig.(??).d.

4.6.8 Hyper-parameters Tuning

ROAM involves a set of hyperparameters and design choices besides the standard ones.
Although fine-tuning such an amount of parameters is a tedious task, our results show that
ROAM outperforms all SSL methods in a wide range of hyperparameter choices. Thus, with
a little effort, one can achieve SOTA performance. Our argument can be supported by the
following examples. First, ROAM outperforms all SSL models regardless of the selected layer
κ. Also, the lowest scores obtained by ROAM, when κ ={3 or 4}, are better than all other
SSL methods, with one exception of [66]. Third, all ROAM variations, i.e. the sharpening
and concatenation steps, outperform all other SSL models. Fourth, we show that the newly-
generated data boosts the performance without the need for the unlabeled loss when β = 0.
That is, the number of hyperparameters can be reduced significantly by fixing κ = {0, 1, L} and
just fine-tuning α and β, which is the standard procedure in many SSL methods. Consequently,
our method does not require any extra effort or exhausting design choices. Based on that,
our approach is easy to implement and can be generalized to different datasets, which have
been shown in the brain and lung segmentation. Further, our code is publicly available for
benchmarking and reproducibility.
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5Knowledge Sharing via Static &
Dynamic Peer Learning in
Semi-Supervised Federated
Learning

„Share your knowledge. It’s a way to achieve
immortality.

— Dalai Lama (1357–1419)
(The high lama of Tibetan Buddhism)„A man can only attain knowledge with the help of

those who possess it. This must be understood from the
very beginning. One must learn from him who knows.

— George Ivanovich Gurdjieff (1866–1949)
(Russian psychologist and scientist)

5.1 Motivation

In the recent estimation, an expectation of two hundred thousand fatal invasive and in-situ
melanoma cases will be diagnosed in the USA in 2021 [249]. Yearly, millions of people are
diagnosed with skin carcinoma [220]. Worldwide, skin cancer is considered one of the most
expensive and fatal cancers. While most non-melanoma skin cancer cases can be cured, the
melanoma ones are curable when detected in the early stages. For example, the 5-year survival
rate ranges from 99% in the earliest stage to 27% for the latest stage [249]. Moreover, early
detection of skin cancer can reduce the treatment expenses significantly [87]. Therefore,
several attempts have investigated the automated classification of skin lesions in dermoscopic
images [31, 61, 236]. Though, these attempts require handcrafted engineered features and
exhausted pre-processing steps.

Yet, huge improvements in computerized methods have been achieved in recent years. For
instance, the deep-learning-based methods proved to have a superior [95, 168, 187, 308] or a
human-level performance [87, 269] when dealing with skin cancer classification. Nevertheless,
this success comes at the cost of exhausting pre-processing steps, a prudently designed
framework, or a substantial amount of labeled data assembled in one location. In real life,
medical data is generated from different scanners and unevenly distributed in multiple centers
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in raw formats without annotations resulting in heterogeneous data, or so-called Non-IIDness.
Unfortunately, building a large repository of annotated medical data is quite challenging
due to privacy burdens [138, 216], and labeling cost which is time-consuming and requires
domain expert knowledge.

Federated learning (FL) [193] has been recently proposed to learn machine learning models
utilizing the ample amounts of labeled data distributed in mobile devices while maintaining
clients’ privacy, i.e. , without sharing the data. Note that, the key properties of the FL are
data privacy, Non-IIDness, and communication efficiency (section 3.4.2). Thus, FL goes
in line with the nature of the medical setting. Consequently, federated learning has been
investigated by several works in the medical domain [4, 170, 325] paving the way to training
machine learning models in privacy-preserved fashion in real-world applications [89, 225,
233]. Though, in the previous works, the training demand highly accurate labeled data, e.g.,
ground-truth confirmed through histopathology, which often is costly and not available. In a
more realistic scenario, the clients may have access to a large amount of unlabeled data along
with a few annotated ones. Nevertheless, they are willing to train a reliable model to use their
data. Fortunately, the semi-supervised federated learning (SSFL) paradigm can address the
above scenario, which is the focus of this part of our thesis.

5.2 Contribution

In the second part of our methodology, we developed a semi-supervised federated learning
method tackling the task of classifying eight skin lesions distributed over ten clients’ in four
realistic scenarios where the clients may or may not have a few annotated data besides many
unannotated ones (e.g., not confirmed through histopathology).

Our contributions are:

• We propose FedPerl, an SSFL framework, inspired by Peer Learning (PL) [267] to build
cooperative learning between similar clients to help each other in the pseudo labeling
process and hence, better performance.

• We propose peers anonymization (PA) for the first time in the SSFL. In this work, we
employ the ensemble averaging from the committee machine (CM) [12, 133, 268]
for our peers anonymization (PA) technique. PA improves privacy by hiding clients’
identities. Moreover, PA reduces communication costs while preserving performance.
To our knowledge, no prior work has proposed the PA technique in the SSFL for the
medical images. Furthermore, we show that our peer anonymization is orthogonal and
can be easily integrated into other methods without additional complexity.

• We propose a dynamic learning policy that controls the contribution of peer learning in
the training process. While our dynamic policy excels in the static one, it simultaneously
helps the individual clients to achieve better performance.

• We introduce and test our method in four challenging scenarios, not yet been investigated
thoroughly in the medical images. Moreover, we test the ability of FedPerl to generalize
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to unseen clients. Additionally, we conduct extensive analyses on the effect of committee
size on the performance at the client and community levels. Furthermore, we introduce
additional evaluation metrics to evaluate the calibration of these models and their
clinical applicability.

• We validate our skin lesion classification method with a database of more than 71,000
images, showing superior performance over the baselines.

The content of this part is based on the following publications:

Bdair T, Navab N, Albarqouni S. "FedPerl: Semi-supervised peer learning for skin lesion
classification". In International Conference on Medical Image Computing and Computer-
Assisted Intervention 2021 Sep 27. Springer, Cham.

Bdair T, Navab N, Albarqouni S. "Semi-Supervised Federated Peer Learning for Skin Lesion
Classification". Journal of Machine Learning for Biomedical Imaging (MELBA) 2022 March
5.

5.3 Related Works

A very recent work [297] has shown the applicability of semi-supervised learning in a feder-
ated setting (SSFL) for COVID-19 pathology segmentation. The previous work among the
firsts introduced semi-supervised learning to federated learning. Nevertheless, they have
straightforwardly applied a semi-supervised learning method, e.g. FixMatch [252] locally. At
first, a local model is trained in a fully supervised fashion using the labeled data. Then, the
trained model is used to produce predictions for unlabeled data, where the predictions with
high confidence are used to generate pseudo labels. Next, the pseudo labels are attached
to the labeled data before a new training process starts. At the server, on the other hand,
FedAvg [193] was employed to organize the training between different clients, see Sec. 5.4.2.
In the previous method, clients are only trained i) globally, where the knowledge is accumu-
lated in global model parameters, and ii) locally, where the knowledge is distilled via the
local data. While this is a straightforward approach, we argue that the knowledge gained
for generating pseudo labels for the local models is limited. Instead, we hypothesize that
gaining extra knowledge by learning from similar clients, i.e. , Peer Learning (PL), is highly
significant, assuming that peer learning encourages the clients’ self-confidence by sharing their
knowledge in a way that does not expose their identities. In contrast to [297], our method
employs peer learning such that the clients gain extra knowledge by helping each other in
a privacy-preserved way to leverage the unlabeled data, while [297] is limited to the local
knowledge by the client itself.

Another recent work, [182] proposed an SSFL approach; FedIRM for skin lesion classification.
They suggested distilling the knowledge from labeled clients to unlabeled ones through
building a disease relation matrix extracted from the labeled clients and providing it to the
unlabeled ones to guide the pseudo-labeling process. To share the knowledge between the
clients, the previous work has assumed some clients are labeled while others are not. However,
in a more challenging situation, which has not been investigated thoroughly in the medical
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images or by any previous works, the labeled data is located on the server side, while the
clients only have access to unlabeled data. Such a scenario is not applicable in FedIRM [182],
however, it has been addressed in this thesis.

FedMatch [130] has proposed cooperative learning between clients to guide the pseudo
labeling process, where similar clients share the weights. The similarities between clients
are measured using K-Dimensional Tree (KD Tree) on clients’ prediction of an arbitrary input.
Although, FedMatch [130] has shown that such extra knowledge is helpful, it was obtained at
the cost of communication and privacy. In contrast to [130], our approach is communication
efficient and avoids any privacy breaches by employing an ensemble before sharing the
knowledge between the peers.

Our method is inspired by peer learning from education science literature, where peer learning
is defined as acquiring skills by sharing knowledge between peers [267]. In this thesis, the link
between peer learning and federated learning is direct, where the clients have considered peers
learning from each other. Further, in this contribution, we employ the ensemble averaging from
the committee machine [268] for our peers anonymization (PA) technique. PA improves privacy
by hiding clients’ identities. Moreover, PA reduces communication costs while preserving
performance. To our knowledge, no prior work has proposed the PA technique in the SSFL for
the medical images.

5.4 Methodology

5.4.1 Problem Definition

Given M clients Cm who have access to their own local dataset Dm ∈ RH×W ×Nm , where
H and W are the height and the width of the input images, and Nm is the total number
of images. Dm consists of labeled SL = {XL,YL} and unlabeled data SU = {XU}, where
XL = {x1, . . . , xL, xL+1, . . . , xL+U} are input images; xi ∈ RH×W , and YL = {y1, . . . , yL};
yi ∈ RC are the corresponding categorical labels for C classes. Given query image xq, our
objective is to train a global model f(·) to predict the corresponding label ỹq for xq, where the
labeled and unlabeled data are leveraged in the training in a privacy-preserved fashion.

Definition. We define a model f(·) to be trained in a privacy-preserved fashion, if the following
conditions are met:

(i) Data can not be transferred across different clients participating in the training process
adhering to the General Data Protection Regulation (GDPR) 1.

(ii) Local models can not be transferred across different clients participating in the training
process to avoid privacy breaches [207], or model inversion [91].

1https://gdpr.eu/
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5.4.2 Semi-Supervised Federated Learning (SSFL)

The aforementioned conditions can be met by picking off-the-shelf SoTA SSL models, e.g.,
FixMatch [252], to train the clients locally leveraging the unlabeled data, while employing
FedAvg [193] to coordinate between the clients in a federated fashion as [297],

min
θ
L(D; θ) with L(D; θ) =

M∑
m=1

wm LSSLm(Dm; θ), (5.1)

where wm = Nm/
∑M

i=1
Ni is the respective weight coefficient for each client, and θ is the model

parameters.

The SSL objective function appeared in FixMatch [252], can be used to train the client locally
utilizing both labeled and unlabeled data as

LSSLm(Dm; θ) = arg min
θ
LCE(YL, f(α(XL); θ))

+βLCE(ỸU , f(A(XU ); θ)),
(5.2)

where LCE(·, ·) is the cross-entropy loss, β is a hyper-parameter that controls the contribution
of the unlabeled loss to the total loss, ỸU is the pseudo labels for the unlabeled data XU ,
and α(·) and A(·) are weak and strong augmentations respectively. For an unlabeled input
xi, the pseudo label ỹi ∈ ỸU , is produced by applying a confidence threshold τ on the client’
prediction on a weak augmented version of xi such that

ỹi = arg max(I(fCm(α(xi); θ∗) ≥ τ)), (5.3)

where fCm
(.) is the local model, θ∗ are frozen model parameters, and I(·) is the indicator

function.

5.4.3 Preliminaries

Peer Learning
Peer learning is defined in educational psychology as acquiring skills and knowledge through
active helping among the companions. It involves people from similar social groups helping
each other [267]. Peer Learning includes cooperative learning, tutoring, coaching, mentoring,
and others. While distinguishing between all types of PL is out of our scope, we describe the
cooperative learning that we utilized in this thesis. In cooperative learning (CL), peers work
together through an interactive strategy. Usually performed in small groups of learners, CL
often needs previous training to guarantee equal participation, concurrent exchange, synergy,
and added value [267]. The researchers have shown clear evidence that cooperative learning
can yield considerable progress, and it has also been noted to be among the most useful
learning approaches [167].

Committee Machine
In the computer science literature, a similar concept to peer learning has been introduced
known as Committee Machines (CM) [12, 133, 268]. In a nutshell, CM is a well-known
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and active research direction and is defined as an ensemble of estimators, consisting of
neural networks or committee members, that cooperate to obtain better accuracy than the
individual networks. The committee prediction is generated by ensemble averaging (EA) of the
individual members’ predictions. CM has shown to be effective in machine learning hardware
[133]. The interest in committee machines in the machine learning community started a
long time ago in the last century and is still an active topic in recent deep learning methods.
For instance, ensembling methods such as bagging, boosting, and averaging algorithms are
considered a kind of committee machines [268]. Thus far, the idea of a committee machine is
to train a group of learners to have one combined prediction aggregated from the individual
ones, hoping it achieves improved performance compared to a single learner. The combined
prediction takes the form of the weighted sum of the predictions or voting mechanism of the
T committee members for the regression and classification tasks, which are given by 5.4 and
5.5, respectively.

p̂(x) =
T∑

i=0
wifi(x). (5.4)

p̂ = arg max
j

T∑
i=0

wifi,class=j(x). (5.5)

Where fi(x) is the prediction of the i-th committee member at input x, wi is the weight for
that member, and fi,class=j(x) is the output of the learner i for j-th class.

5.4.4 FedPerl: Semi-Supervised Federated Peer Learning for
Skin Lesion Classification

While the straightforward SSFL is simple, we argue that the learned knowledge of the indi-
vidual clients could be further improved by involving similar clients in training. Therefore,
inspired by peer learning, our method utilizes similar peers to help the target client in the
pseudo labeling by sharing their knowledge without exposing their identities through the
peer anonymization method. Our proposed FedPerl, illustrated in Fig. 5.1, consists of three
components, namely 1) building communities, 2) peer learning, and 3) peer anonymization.
While peer learning can be static or dynamic, as shown in the following sections.

Building communities

In educational social science [267], "peers" are referred to as two or more persons who share
similarities and consider themselves as companions. In this work, we adopt the same concept
and describe a group of clients as "peers" if they are similar. Previous work has shown that
clustering can be achieved using models updates [37], While other works measure similarities
between deep neural networks by comparing the representations between layers [152]. We
build upon this and argue that the model weights represent and summarize the learned
knowledge for each client from its training data. Thus, to measure the similarities between the
clients, we represent each client Cm by a feature vector fm = {(µ0, σ0), . . . , (µl, σl)} ∈ R2·l,
where (µl, σl) is the first two statistical moments, i.e. the mean and the standard deviation, of
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Fig. 5.1. Our semi-supervised federated learning framework (FedPerl). Our method consists of (i) Building
communities: similar clients clustered into one community, (ii) Peer Learning: peers are helping in
pseudo labeling, and (iii) Peer Anonymization (PA) to hide client identity, improve privacy, and reduce the
communication cost. Top Right: Pseudo labeling utilizing an anonymized peer in this diagram. Bottom:
Selecting the similar peers, peer learning, peers anonymization, and similarity matrix calculations are
performed on the server. FedPerl exploits either static or dynamic learning policies.

the model’s layer l parameters. Then, we compute the similarity ωmk between clients Cm and
Ck using the cosine similarity, where ωmk = fT

mfk

∥fm∥·∥fk∥ .

Using the cosine similarity brings the model parameters to the same behaviors without being
exact, given that the means might differ, as long as they are in the same direction.

Finally, the similarity matrix between all clients is defined as

WM×M =


ω11 . . . ω1M

...
. . .

...

ωM1 . . . ωMM

 . (5.6)

Our method starts with standard federated learning warm-up rounds (e.g. ten rounds in
our case). In the next training rounds, the feature vectors are extracted after receiving the
updates from the participating clients. Then, the similarity matrix is computed and updated
accordingly. In FedPerl, The communities are formed implicitly based on the similarity matrix
where similar clients are clustered into one community.

Knowledge Sharing via Peers Learning

The term "learning" is frequently defined as improved knowledge, experiences, and capabilities
[267]. In peer learning, "peers" help each other by sharing their knowledge [267]. In this
regard, we describe "peer learning" as the means of top T alike clients (peers) helping each
other to generate pseudo labels by sharing their knowledge (model parameters). This is a
helpful process since the main property of medical data is data heterogeneity. In federated
learning, the clients experience different data and class distribution during the training. Thus,
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accumulating and sharing distributed knowledge is useful. Particularly, it can help the local
client generate pseudo labels for the unlabeled data from experiences that might never have
learned from its own labeled data. To realize this, we modify the pseudo label defined in
Eq.5.3 to include the predictions of the similar T peers, i.e. ft(·; θ) according to the similarity
matrixW as

ỹi = arg max
(
I

(
fCm

(α(xi); θ∗) +
T∑

t=0
ft(α(xi); θ∗

t ) ≥ τ

))
. (5.7)

Peers Anonymization
To improve privacy and adhere to the privacy regulations introduced in section 5.4.1, knowl-
edge sharing among peers has to be anonymized and regulated. Thus, we propose peers
anonymization (PA), at the server side, a simple yet effective technique. Mainly, we create an
anonymized peer fa(·; θa) that assembles the learned knowledge from the top T similar peers
where

fa(·; θa) = 1
|T |

T∑
t=0

ft(·; θt). (5.8)

Then, fa(·) is shared with the local model to help pseudo labeling. Accordingly, Eq.5.7 is
modified to

ỹi = arg max (I (fCm
(α(xi); θ∗) + fa(α(xi); θ∗

a) ≥ τ)) . (5.9)

Notice that sharing the peers and the anonymized peer are not equivalent, i.e. ,

1
|T |

T∑
t=0

ft(α(xi); θt)) ̸= fa(α(xi); θa). (5.10)

Eventually, the anonymized peer is shared only once for each client at every training round,
not at every local update. The advantages of the anonymized peer are; (i) it reduces the
communication cost as sharing the knowledge of one peer is better than sharing two or more
peers, (ii) it hides clients’ identities by creating an anonymized peer. Finally, to prevent the
local model from deviating from its local knowledge, we employ an MSE loss as a consistency-
regularization term, which is broadly used in semi-supervised learning,

LCONm
=∥ fCm

(xi; θ)− fa(xi; θ∗
a) ∥2 . (5.11)

Dynamic Learning Policy
Thus far, we have proposed a static learning policy in which the top T similar peers are used to
help the local clients in the pseudo-labeling process. In peer learning, the clients are divided
into groups or communities based on their similarities. A natural result of this step is also
individual clients who do not belong to any community. Practically, we may have no control
over the effect of applying the static peer learning policy on these clients, which could vary
from one client to another where it is beneficial for some clients and not for others. For
example, individual clients who do not belong to any community would be forced to learn
from top T peers, based on the proposed similarity matrix, however, there is no guarantee that
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they would be beneficial from the training since they may not belong to the same or similar
community. Therefore, we suggest performing a dynamic policy where we could carefully
involve the peers based on additional similarities or restrict the peers to a subset who are close
enough. Our dynamic learning policy controls the learning stream to the clients where the
peers are utilized in the learning process. In short, our goal is to maintain the gain and boost
the performance of all clients. In this regard, we propose the following policies.

Validation Policy. In this policy, first, the client and its peers are validated on the global
validation dataset. Then, only the peers with a validation accuracy equal to or higher than
the client’s accuracy are utilized. This policy can be applied with or without the peers’
anonymization technique. Formally, assume that Vacc(.) is a function that measures the
accuracy on a global validation dataset, then the set of the peers that participate in peer
learning for client Cm is defined as

Ω = {Cn|Vacc(Cn) ≥ Vacc(Cm)}, (5.12)

where Cn is a peer, n = 1, 2, ..., T , and T is the committee size.

Gated Validation Policy. As in the previous policy, the peers are validated on the global
validation dataset. However, we apply a gateway on their accuracies, such that if it is equal
to or higher than a pre-defined gateway threshold ρ, the peer will be involved in the pseudo
labeling. Otherwise, it will be discarded from the process. In this policy, the set of peers that
participate in peer learning for client Cm is defined as

Ω = {Cn|Vacc(Cn) ≥ ρ}. (5.13)

Gated Similarity Policy. Like in the gated validation policy, this policy depends on a gateway
that controls peers participation. Yet, no validation set is used, and a peer is allowed to
participate if its similarity with the client is equal to or higher than the gateway threshold ρ.
Assume that Hsim(.) is a function that measures the similarity between two clients, then the
set of the peers that participate in peer learning for client Cm is defined as

Ω = {Cn|Hsim(Cm, Cn) ≥ ρ)}. (5.14)

Note that regardless of the used policy, we first select the top T similar peers based on the
similarity matrix. Then, one of the above policies is applied. The only difference between the
last two policies is that in the gated validation policy, we used the validation accuracy as a
gateway, while in the gated similarity policy, we stick to our similarity matrix. A pseudo-code
summarizing our method is shown in Algorithm 2.

Overall Objective Function

The overall objective function for client m is the sum of semi-supervised and consistency-
regularization losses, and given by

Lm = LSSLm + γLCONm , (5.15)
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Algorithm 2 Semi-Supervised Federated Peer Learning for Skin Lesion Classification

1: StartServer()
2: initialize global weights θ0

G

3: for each round r=1, 2, ..., R do:
4: n←− select random n clients from M // i.e. n=3
5: for each client Cm in 1, 2, ..., n do in parallel:
6: fCm

←− initialize client’s weights with global weights
7: if r > 10 : //Peer learning starts after warm-up rounds
8: fC1:T ←− GetTopSimilarPeers(T, fCm) // Sec. 5.4.4
9: if IsDynamicPolicy // Sec. 5.4.4

10: fC1:T ←− ApplyPolicy(fCm
, fC1:T , ρ) //Could return from 0 up to T peers, here

we assume all peers passed
11: if IsPeerAnonymization
12: fa ←− AnonymizePeers(fC1:T ) // Eq.5.8
13: θm ←− LocalTraining(fCm , fa)
14: else // No Peer Anonymization
15: θm ←− LocalTraining(fCm

, fC1:T )
16: else // No Peer learning, standard federated learning
17: θm ←− LocalTraining(fCm)
18: end for
19: θG ←− 1

n

∑n
j=1 θj // Update global weights i.e. FedAvg

20: Fm ←− extract features vector for each client
21: WM×M ←− update the similarity matrix // Eq.5.6
22: end for

where γ is a hyperparameter, and LSSLm
and LCONm

are Eq.5.2 and Eq.5.11, respectively.
Note that the two terms in Eq.5.15 collaborate to achieve the balance between the local and
global knowledge.

5.5 Experiments & Results

We test our method on skin dermoscopic images through a set of experiments. Before that, we
show our method’s proof of concept results and compare them with the current SOTA in SSFL

for CIFAR10 and FMNIST in image classification tasks in section 5.5.6. FedPerl outperforms
the baselines at different settings. Next, in section 5.5.7, we compare our method’s skin image
classification results with the baselines. The results show that peer learning enhances the
performance of the models, yet applying PA enhances the communication cost in addition
to the performance. After that, we show and discuss how FedPerl builds the communities
in section 5.5.8. The results show that FedPerl clusters the clients into main communities
and individual clients thanks to our similarity matrix. Besides, FedPerl boosts the overall
performance of communities while it has a different effect on individual clients. Thus, in
section 5.5.9, we comment on the impact of peer learning on individual clients. FedPerl shows
superiority and less sensitivity to a noisy client. Then, we dig more deeply and present the
classification results for each class in section 5.5.10. Our method enhances the classification
for the individual classes, e.g. up to 10 times for the DF class. Further, to confirm our
findings and for more validation, we present the results using different evaluation metrics
in section 5.5.11. Our method is more calibrated and shows superiority over the SSFL in the
area under ROC and Precision-Recall curves, risk-coverage curve, and reliably diagrams. The
qualitative results are presented in the same section. In section 5.5.13, we propose a more
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Fig. 5.2. Illustrative diagram shows the distribution of our clients. The datasets are divided randomly into ten
clients besides the global model, without overlap between the clients. (A) The standard semi-supervised
learning scenario. Each client data is divided into testing (gray), validation (green), labeled (blue), and
unlabeled (orange) data. (B) The unlabeled/disjoint clients scenario. The labeled and unlabeled images
are combined and used as unlabeled images. (C) The class distribution. The data split is designed to
simulate a realistic scenario with severe class imbalance, varying data sizes, and diverse communities.
The clients 5-9 missing one or more classes.

challenging scenario in which the clients do not have any labeled data. The classification
results show that FedPerl still achieves the best performance with or without PA. We end this
part of the experiments by showing the ability of FedPerl to generalize to unseen clients in
section 5.5.14. In section 5.5.15, we conduct a comparison with FedIRM, a SOTA SSFL method
in skin lesion classification, under a fourth scenario where we have few labeled clients. Both
models achieve comparable results when participation rate (PR)= 30%, while our method
shows a lower performance when PR= 100%. Note that the previous results were obtained
when utilizing a static learning policy. However, in the last part of our experiments, we show
the results of our dynamic peer learning policy in section 5.5.16. In general, the new policy
outperforms the results from the earlier one, while at the same time, it is successfully boosting
the performance of the individual clients.

5.5.1 Datasets

Our database consists of 71,000 images collected from 5 publicly available datasets as the
following. (1) ISIC19 [63] which consists of 25K images with 8 classes. The classes are
melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AK),
benign keratosis (BKL), dermatofibroma (DF), the vascular lesion (VASC), and squamous cell
carcinoma (SCC). (2) HAM10000 dataset [270] which consists of 10K images and includes 7
classes. (3) Derm7pt [143] which consists of 1K images with 6 classes. (4) PAD-UFES [208]
which consists of 2K images and includes 6 classes. The previous datasets are divided randomly
into ten clients besides the global model, without overlap between datasets, cf. Fig.5.2. (5)
ISIC20 dataset [224] which consists of more than 33K images with malignant (∼ 500 images)
and benign (∼ 32.5K images) classes. The last dataset is used as testing data to study how
FedPerl generalizes to unseen data. Note that testing our method on the ISIC20 is a very
challenging task due to the huge class imbalance and class distribution mismatch.
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5.5.2 Baselines

We conduct our experiments on the following baselines; (i) Local models: which include
lower, upper, and SSL (FixMatch [252]) models; these models are trained on their local data
without utilizing the federated learning. (ii) Federated learning models include lower, upper,
SSFLs similar to [297], and FedMatch [130] models, where these models are trained locally on
their data and utilizing the federated learning globally. (iii) Ablation for our method, namely
FedPerl with(out) the PA. Note that for ease of implementation, we compare our method with
one variant of FedMatch that do not implement weights decomposition.

5.5.3 Scenarios

Our experiments conducted under four scenarios. In the first scenario, the standard semi-
supervised learning, cf. Fig.5.2.(A), each client data is divided into testing (gray), validation
(green), labeled (blue), and unlabeled (orange) data. The data split is intended to resemble
a realistic scenario with varying data size, severe class imbalance, and diverse communities,
e.g., the clients 0-4 originated from ISIC19, the clients 5-7 originated from HAM10000, and
clients 8 and 9 originated from Derm7pt, and PAD-UFES, respectively. We train the lower
bounds on the labeled data while we train FixMatch, SSFLs, and FedPerl on both labeled and
unlabeled data. The upper bounds trained akin to SSLs, yet, all labels were exposed. We use
the global data to train the global model in the second scenario, the unlabeled clients’ scenario.
On the client’s side, however, the labeled and unlabeled images are combined and used as
an unlabeled dataset, i.e. , the labels were excluded from the training, cf. Fig.5.2.(B). While
the second scenario is not yet investigated thoroughly in the medical images, we address
it in this paper. In the third scenario, we test the ability of our model and the baselines to
generalize to an unseen client (ISIC20) with new classes that have never been seen in the
training. The fourth scenario proposed by [182] in which there are few labeled clients. For
this scenario, clients 1 & 9 are selected as labeled clients while the remaining are not, such
that they represent the largest community and individual clients, respectively.

5.5.4 Implementation Details

We opt for EffecientNet [261] pre-trained on ImageNet[229] as a backbone architecture and
trained using Adam optimizer [147] for 500 rounds. We follow FedVC [119] approach for
clients’ federated learning. The idea of FedVC is to conceptually split large clients into multiple
smaller ones and repeat small clients multiple times such that all virtual clients are of similar
sizes. Practically, this is achieved by fixing the number of training examples used for the
federated learning round to be fixed for every client, resulting in exact optimization steps.
The batch size B and participation rate (PR) were set to 16 & 30% (3 clients each round),
respectively. The local training is performed for one epoch. The learning rate was investigated
in [0.00001, 0.0001] and found best at 0.00005. τ investigated in [0.5, 0.95] and found best at
0.6 & 0.9 for the federated and local models, respectively. β investigated in [0.1, 5], and found
best at 0.5. γ investigated in [0.01, 0.1], and found best at 0.01. T investigated in {2, 3, 4, 5},
and found best at T = 2. The dynamic learning policy threshold ρ tested at three values:
0.75, 0.85, and 0.95. All images were resized to 224 × 224, and normalized to intensity

98 Chapter 5 Knowledge Sharing via Static & Dynamic Peer Learning in Semi-Supervised Federated

Learning



values of [0, 1]. Random flipping and rotation were considered weak augmentations, whereas
RandAugment [65] was used as strong augmentation. We opt for the PyTorch framework for
the implementation hosted on a standalone NVIDIA Titan Xp 12 GB machine. As the followed
procedures in semi-supervised learning, FedPerl starts with warm-up rounds, e.g., ten rounds
in our case. The testing results are reported for the models with the best validation accuracy.
The average training time takes around 7 hours for each run for FedPerl models (w/o PA),
about 5.85 hours for FedPerl (with PA), about 5.5 hours for SSFL, and about 6.25 hours for
FedMatch shedding light on the cost-effectiveness of our approach. All the hyperparameters
tuning was performed on a validation detest.

5.5.5 Evaluation Metrics

We report the statistical summary of precision, recall, and F1-score. A Relative Improvement
(RI) w.r.t the baseline is also reported, where RI of a over b is : (a− b)/b. To highlight more in
the model’s performance at various threshold settings, we plot Area Under Receiver Operating
Characteristic (AUROC) and Area Under Precision-Recall (AUPR) curves. Note that we follow
the One vs. ALL methodology for plotting. AUROC shows the model’s ability to discriminate
between positive and negative examples, assuming balance data. Nevertheless, AUPRC is a
useful performance metric for imbalanced data, such as in our case, where we care about
finding positive examples. Further, we investigate the uncertainty evaluation and model
confidence. Thus, we report Risk-Coverage (RC) curve [94], Reliability Diagram (RD) [106],
and Expected and Maximum Calibration errors [78], denoted as ECE and MCE respectively.
RC curve plots the risk as a function of the coverage. The coverage denotes the percentage of
the input processed by the model without rejection, while the risk denotes the level of risk of
the model’s prediction [94]. To calculate the reliability diagrams and calibration errors, we
adopted an adaptive binning strategy [78] that depends on fixable intervals in the calculations.
This strategy is more accurate than using fixed intervals [78]. Practically, we can realize the
intervals used from the figure itself. For example, the width of the bars in figures 5.6 and 5.8
represents the ranges used to calculate ECE and MCE.

5.5.6 Proof-Of-Concept Results

First, we show proof of concept of our method on CIFAR-10 and FMNIST datasets and
compare it with FedMatch [130]; a very recent work of SSFL. We follow the codebases and the
experimental setup they used to have a fair comparison. The results, reported in Table 5.1,
show that FedPerl Outperforms FedMatch [130] in all experiments setup indicating the
effectiveness of our method on finding the similarity (Sec 5.4.4), without introducing extra
complexity, e.g., weight decomposition [130]. Additionally, our peers anonymization (PA)
improves the accuracy and privacy at a low communication cost. Note that PA employs one
anonymized peer while FedMatch uses two clients in training. Interestingly, the FMNIST
dataset results show that our method outperforms FedProx-SL, which is inconsistent with the
CIFAR10 dataset results. Although, these results are not comparable because of FedProx-SL
results were taken from the original paper, whereas FedPerl results were generated by our
environment. However, this could be attributed to the fact that FMNIST images are much
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simpler than the ones in CIFAR10, yielding more robust similarities and producing more
accurate pseudo labels.

Tab. 5.1. The classification accuracy for the Proof-Of-Concept experiment on CIFAR10 & FMNIST datasets. *:
Results as in FedMatch [130]. SL: Fully supervised. The SSL methods use 10% of the labeled data.

PA Method (SSFL) CIFAR10 IID CIFAR10 NonIID FMNIST NonIID

* FedAvg-SL 58.60±0.42 55.15±0.21 -

* FedProx-SL 59.30±0.31 57.75±0.15 82.06±0.26

* FedAvg-UDA 46.35±0.29 44.35±0.39 -

* FedProx-UDA 47.45±0.21 46.31±0.63 73.71±0.17

* FedAvg-FixMatch 47.01±0.43 46.20±0.52 -

* FedProx-FixMatch 47.20±0.12 45.55±0.63 62.40±0.43

* FedMatch 52.13±0.34 52.25±0.81 77.95±0.14

w/o PA FedMatch (Our run) 53.12±0.65 53.10±0.99 76.48±0.18

w/ PA FedMatch (Our run) 53.32±0.59 53.80±0.39 76.72±0.44

w/o PA FedPerl 53.37±0.11 53.75±0.40 76.52±0.08

w/ PA FedPerl 53.98±0.06 53.50±0.71 82.75±0.44

5.5.7 Skin Lesion Results

Federated Learning Results
In this section, we present the federated learning classification results before applying our
method i.e. , without peer learning or PA. Table 5.2 proves the current findings that FedAvg
outperforms the local models significantly. For example, see Local/FixMatch vs. FedAvg, the
obtained F1-score are 0.647 and 0.698, 0.664 and 0.734, and 0.726 and 0.773, respectively,
with relative improvement (RI) up to 19.74%. Interestingly, both lower FedAvg and FedAvg ‡
(SSFL) models exceed the local SSL and upper bound models. That implies aggregating knowl-
edge across different clients is more beneficial than individually exploiting local unlabeled or
labeled data. Next, we discuss FedPerl results at different values of T .

FedPerl Results without PA
The results of FedPerl without applying peer anonymization is shown in Table 5.2 (denoted as
w/o PA). The first concluding remarks reveal that peer learning enhances the local models. For
illustration, our method outperforms the lower model with RI between 14.53% and 15.46%.
Further, FedPerl exceeds (SSFL) FedAvg† [297] and FedMatch [130] by 1.8% and 1.08%,
respectively. Moreover, our approach is better than the local upper bound by 2.9%. Note
that SSFL is considered a special case of FedPerl when T = 0. In addition, FedPerl results at
a different number of peers T (committee size) are comparable, while the communication
cost, compared to the standard SSFL, increases proportionally with the increasing value of T

(see AC in Table 5.2). Note that the additional cost is calculated with respect to the baseline
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Tab. 5.2. The results under the standard semi-supervised learning scenario. Mean (Median) ± Std. of different
evaluation metrics. †:∼[297]. ‡:∼ FedMatch[130]. RI: Relative Improvement. AC: Additional Cost. The
AC is calculated w.r.t the baseline (SSFL). For simplicity, we assume the initial cost for the SSFL is 0%.
+: with PA.

Setting Model F1-score Precision Recall RI(%) AC(%)

Lower Local 0.647(0.632)±0.053 0.644(0.622)±0.053 0.666(0.650)±0.053 -

FedAvg 0.698(0.690)±0.084 0.711(0.702)±0.072 0.709(0.700)±0.077 7.88

SSL FixMatch 0.664(0.636)±0.060 0.666(0.645)±0.063 0.692(0.671)±0.052 2.63

SSFL FedAvg† 0.734(0.725)±0.065 0.744(0.730)±0.064 0.739(0.728)±0.061 13.44 0

FedMatch‡ 0.739(0.729)±0.076 0.751(0.745)±0.068 0.744(0.732)±0.071 14.22 200

w/o PA FedPerl(T=1) 0.746(0.741)±0.071 0.753(0.744)±0.069 0.748(0.744)±0.069 15.30 100

w/o PA FedPerl(T=2) 0.747(0.736)±0.071 0.756(0.741)±0.067 0.750(0.739)±0.069 15.46 200

w/o PA FedPerl(T=3) 0.746(0.741)±0.072 0.757(0.743)±0.066 0.747(0.743)±0.070 15.30 300

w/o PA FedPerl(T=4) 0.741(0.731)±0.077 0.751(0.735)±0.069 0.745(0.736)±0.072 14.53 400

w/o PA FedPerl(T=5) 0.744(0.734)±0.073 0.753(0.744)±0.071 0.747(0.739)±0.069 15.00 500

FedMatch+‡ 0.745(0.737)±0.071 0.750(0.737)±0.067 0.750(0.746)±0.069 15.15 100

FedPerl(T=2) 0.746(0.737)±0.075 0.754(0.741)±0.071 0.749(0.742)±0.073 15.30 100

FedPerl(T=3) 0.746(0.738)±0.066 0.756(0.743)±0.060 0.748(0.740)±0.065 15.30 100

FedPerl(T=4) 0.746(0.736)±0.077 0.755(0.745)±0.072 0.750(0.740)±0.074 15.30 100

FedPerl(T=5) 0.749(0.739)±0.068 0.758(0.744)±0.065 0.750(0.742)±0.066 15.77 100

Upper Local 0.726(0.701)±0.044 0.729(0.705)±0.045 0.732(0.710)±0.042 12.21

FedAvg 0.773(0.757)±0.068 0.779(0.765)±0.065 0.773(0.759)±0.069 19.47

(SSFL). For simplicity, we assume the initial cost for the SSFL is 0%. Finally, the results imply
that employing one similar peer (T = 1) is adequate to obtain remarkable enhancement with
minimal communication cost, yet, at the loss of privacy. To address this, we propose peers
anonymization technique.

FedPerl Results

After applying the peer anonymization, all models show a similar or slightly better performance
when compared to the previous results (i.e. , w/o PA), cf. Table 5.2. Nevertheless, the new
models enhance the baseline’s performance while still being better at hiding clients’ identities
and reducing the communication cost O(1) regardless of the committee size T . Interestingly,
applying peer anonymization not only enhances FedPerl, but also the FedMatch method.
Specifically, the F1-score increases from 0.739 to 0.745, see FedMatch vs. FedMatch+ in
Table 5.2. Note that the additional advantages of FedMatch+ over FedMatch is the anonymized
peer and the communication cost. The performance improvement is attributed to the carefully
designed strategy of creating the anonymized peer, such that the learned knowledge from
many models is ensembled into a single model. The results confirm the superiority of FedPerl,
and show that our peer anonymization is orthogonal and can be easily integrated into other
methods without additional complexity.

In Fig. 5.3, we show the performance accuracy during the training. While we notice that
similar clients have achieved similar training behavior, no further improvement in the last
stages of the training was observed for all clients. For example, the accuracy for the clients is
0-4 between 75-65, while it is between 80-90 for the clients 5-7. Client 9 achieved accuracy
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Fig. 5.3. The accuracy performance during the training. Due to the large number of curves that can be presented,
we opt for FedMatch and FedPerl at different community sizes. Similar clients have achieved similar
training performance.

Fig. 5.4. FedPerl clusters clients into two main communities (blue & green rectangles), while clients 8 & 9 do
not belong to any community. As we increase the committee size T , the frequency of selecting peers
within the same community decreases. The numbers and colors correspond to the frequency, where the
brighter colors or higher numbers values represent higher frequencies.

that is similar to clients 0-4. However, the best accuracy for client 8 was achieved in the
middle of the training. This suggests that handling Out-of-Distribution clients in federated
learning has to be further investigated.

5.5.8 Building Communities Results

This experiment investigates the importance of the similarity matrix used to rank similar
clients and cluster them into communities. In Fig.5.4, we present the percentage of selecting
peers during the training at different T values. Let us consider the community size (T=2) to
gain more insights. For instance, the percentage of 33.2% between clients 6 and 5 reflects
how often client 5 has chosen as a similar peer for client 6. The blue & green rectangles show
that the clients clustered into two main communities. Interestingly, the clustering matches the
clients’ distribution we designed in our experiment, cf. Fig.5.2.
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For further analysis on community 1 (blue rectangle), we find the frequency of selecting
peers from the same community for each client by calculating the horizontal summations
(columns 0-4). The frequencies are 81.6%, 85.6%, 89.5%, 86.4%, and 88.1% for the clients 0-4,
respectively. That suggests that client 0 learns from its community with a percentage of 81.6%
of the training time. On average, 86.24% of the time, the first community members learn from
each other, while it is 57.77% for community 2 (green rectangle). The same clustering also
is shown for FedPerl at different committee sizes; T = {1, 3, 4, 5}. Note that the frequency
values gradually decrease when a larger committee size is used for communities 1 & 2. The
decrease in frequencies is expected because the likelihood of selecting peers from outside the
community increases as we use a bigger committee size. Hence, the frequencies are distributed
among the clients. In contrast, the frequencies for selecting peers for the individual clients (8
& 9) are comparable at different T values.

Tab. 5.3. The mean F1-score is reported to show the influence of peer learning on the community and individual
clients. M: number of clients. *: SSFL.

Model CISIC CHAM 8 9

(M=5) (M=3) (M=1) (M=1)

FedPerl(T=0)* 0.718 0.816 0.602 0.703

FedPerl(T=1) 0.738 0.829 0.584 0.699

FedPerl(T=2) 0.736 0.833 0.567 0.717

FedPerl(T=3) 0.735 0.828 0.594 0.725

FedPerl(T=4) 0.735 0.826 0.562 0.727

FedPerl(T=5) 0.737 0.824 0.588 0.731

For further analysis of the community results, we average the classification results in each
community and report them in Table 5.3. The first note from the results indicates that peer
learning boosts the overall performance of the communities, compare the values of T = 0 vs.
T = {1, 2, 3, 4, 5} for CISIC and CHAM respectively. Note that peer learning is not applied
when T = 0. Further, we notice a stable performance for the CISIC community after applying
the peer learning regardless of T values, yet with slight changes. However, an increasing then a
decreasing performance is observed for the CHAM at increasing values of T . This performance
inconsistency is attributed to the community size. For instance, CISIC community includes 5
clients, while CHAM community contains 3 clients. At first, let us consider CISIC . Based on
their similarities, the probability of selecting peers from the outside community for different
values of T ≥ 1 is very low, and most likely the peers coming from the same community i.e. ,
internal peers. For the case when T = 5, selecting an external peer is guaranteed. However,
its effect is negligible compared to the other clients, who most likely are internal peers. Now
let us consider CHAM . We notice that the performance increases gradually and reaches its
best at T = 2. Based on our similarity matrix, the peers until this value most likely are internal
peers, yielding enhancement in the performance. Nevertheless, involving external peers is
confirmed after that (i.e. , T > 2). Consequently, the local model is distracted by increasing
the number of external peers when using larger T values. Hence, the decrease in performance.
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Tab. 5.4. The classification results for each client (mean F1-score). CISIC , CHAM : the results at the community
level. Avg/C8: the results after excluding client 8. †:∼[297]. ‡:∼FedMatch[130]. Diff.% = Avg/C8 -
Avg. +: with PA.

Setting Model/Client 0 1 2 3 4 CISIC 5 6 7 CHAM 8 9 Avg/C8 Avg Diff.%

Lower Local 0.581 0.618 0.603 0.622 0.596 0.604 0.742 0.738 0.670 0.717 0.656 0.641 0.646±0.056 0.647±0.053 -

FedAvg 0.678 0.687 0.667 0.703 0.692 0.685 0.794 0.796 0.787 0.792 0.492 0.684 0.731±0.047 0.698±0.084 3.3

SSL FixMatch 0.634 0.635 0.608 0.637 0.626 0.628 0.752 0.783 0.716 0.751 0.650 0.602 0.666±0.063 0.664±0.060 -

SSFL FedAvg † 0.727 0.718 0.686 0.723 0.735 0.718 0.812 0.831 0.806 0.816 0.602 0.703 0.764±0.045 0.734±0.065 3.0

FedMatch‡ 0.724 0.724 0.722 0.734 0.751 0.731 0.801 0.850 0.813 0.822 0.553 0.717 0.760±0.046 0.739±0.076 2.1

FedMatch+‡ 0.733 0.740 0.729 0.734 0.744 0.736 0.813 0.843 0.826 0.827 0.581 0.703 0.768±0.053 0.745±0.071 2.3

w/o PA FedPerl(T=2) 0.735 0.731 0.725 0.737 0.739 0.733 0.805 0.850 0.839 0.831 0.582 0.729 0.769±0.047 0.747±0.071 2.2

FedPerl(T=2) 0.737 0.737 0.724 0.730 0.751 0.736 0.818 0.846 0.834 0.833 0.567 0.717 0.765±0.046 0.746±0.075 1.9

Upper Local 0.698 0.698 0.677 0.700 0.696 0.694 0.806 0.804 0.752 0.787 0.702 0.722 0.728±0.046 0.726±0.044 -

FedAvg 0.736 0.747 0.735 0.753 0.761 0.746 0.859 0.855 0.861 0.858 0.630 0.789 0.797±0.054 0.773±0.068 2.4

On the other hand, the individual clients’ results are interesting (i.e. , clients 8 & 9). While
an enhancement is noticed for client 9, a reduction is observed for client 8. We note that the
accuracy of client 9 is increased as the committee size increases, thanks to peer learning. In
general, the large the committee size, the better the performance. However, peer learning
harms client 8. One explanation is attributed to the class distribution mismatch between client
8 and the others, cf. Fig.5.2.(C). Further analysis is discussed in the next section concerning
the individual clients’ performance.

Random Peers
To investigate the importance of peer learning and our similarity matrix, we perform an
additional experiment where the peers for the clients are selected randomly. The obtained F1-
score is 0.736, with RI equals 13.75% and 0.27% w.r.t. the lower bound and SSFL, respectively.
These results imply two conclusions. (i) Even with random clients, peer learning still benefits
training; compare this experiment results with the SSFL. (ii) Utilizing our similarity matrix
brings extra knowledge by picking more accurate peers; compare this experiment results with
the FedMatch models.

5.5.9 The Influence of Peer Learning on Clients

This experiment aims to gain more insights into the individual results, realize the influence of
peer learning on clients, and compare it with the baselines. The results are shown in Table 5.4.
First, we observe that FedPerl exceeds the baselines, including the local upper bounds with
salient margins, e.g., for client 7, it is about 16.4% (Lower Local vs. FedPerl). In the same
direction, FedPerl steadily surpasses FedMatch at the community’s level and in all individual
clients’ results except for client 4. Yet, thanks to our PA, FedMatch+ shows better results than
FedMatch at all communities and clients except for clients 4, 6, and 9. Surprisingly, FedPerl
excels the upper FedAvg for client 0. The performance improvement is observed for all clients
except client 8. One explanation is that FedPerl does not find suitable peers for client 8 to
learn from due to the class distribution mismatch (cf. Fig. 5.2.(C)).

For further investigation on the impact of client 8, we explore excluding it from the training.
Then we compare the new and the previous results, reported as Avg/C8 and Avg respectively in
Table 5.4. The comparison unveils that all federated learning models (i.e. , FedAvg, FedMatch,
and FedPerl) obtain better performance after excluding client 8. Still, the best performance
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Tab. 5.5. The classification results for the eight classes (mean F1-score). +: with PA. †:∼[297]. ‡:∼FedMatch[130]

Setting Model MEL NV BCC AK BKL DF VASC SCC

Lower Local 0.430 0.811 0.502 0.293 0.357 0.099 0.318 0.124

FedAvg 0.501 0.834 0.646 0.377 0.507 0.173 0.642 0.111

SSL FixMatch 0.451 0.831 0.540 0.304 0.374 0.052 0.292 0.135

SSFL FedAvg † 0.565 0.852 0.680 0.396 0.570 0.416 0.707 0.253

FedMatch† 0.573 0.852 0.700 0.366 0.565 0.462 0.701 0.275

FedMatch+ 0.579 0.853 0.701 0.376 0.574 0.506 0.708 0.302

w/o PA FedPerl(T=2) 0.576 0.854 0.706 0.393 0.589 0.552 0.702 0.305

FedPerl(T=2) 0.602 0.854 0.687 0.390 0.592 0.493 0.712 0.315

Upper Local 0.551 0.853 0.651 0.428 0.520 0.308 0.654 0.308

FedAvg 0.617 0.867 0.750 0.510 0.637 0.672 0.804 0.282

is observed for FedPerl over the local upper and the (SSFL) FedAvg models. Note that the
performance reduction after including client 8 in training (see Avg in Table 5.4) implies a
negative impact of this client. To realize that, we calculate the difference in performance
before and after including client 8, i.e. Avg/C8 −Avg, and report the results in column Diff.

in Table 5.4. The resulting values show the negative impact of client 8 on the results. Where
the higher the difference is, the higher the negative impact is. For example, it negatively
impacted the smallest on FedPerl (1.9%), moderate on FedPerl w/o PA (2.2%) and on both
FedMatch methods (2.1% and 2.3%), and the largest on FedAvg (3%). Such negative behavior
could represent a threat in federated learning, where a noisy and out-of-distribution client
might hurt other clients and mislead the global model. Nevertheless, the most interesting
observation from this experiment is that FedPerl is less prone to the negative and noisy impact
than SSFLs thanks to the training schema we proposed. We do not claim that FedPerl is robust
against class distribution mismatch but is less sensitive to a noisy client. Nevertheless, the
inconsistency in behavior between clients 8 & 9 could be further investigated.

On the other side, we notice that the enhancement after applying peer learning was also
observed at the community level; CISIC and CHAM with 13.2% and 11.6%, respectively,
confirming the finding in the previous section.

Note that our final objective consists of two terms that try to balance the local and global
benefits. Experimentally, we have shown that client 8 harms the clients. However, this impact
was the minimum on FedPerl who is utilizing peer learning. Thus, we argue that involving
peers, who influence the local models through participating in the pseudo labeling, has two
advantages; (i) it restricts client 8 to sending more reliable updates, and (ii) it reduces the
negative influence of that client. Also, the T peers learn and coach the local client and guide
it to be more accurate, where a noisy client could be fixed by averaging with more reliable
clients.
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Tab. 5.6. The area under ROC curve for the eight classes. +: with PA. †:∼[297]. ‡:∼FedMatch[130]

Setting Model MEL NV BCC AK BKL DF VASC SCC

Lower Local 0.662 0.777 0.760 0.677 0.644 0.529 0.676 0.540

FedAvg 0.709 0.834 0.827 0.634 0.739 0.575 0.909 0.528

SSL FixMatch 0.670 0.804 0.785 0.685 0.658 0.515 0.644 0.540

SSFL FedAvg† 0.737 0.846 0.827 0.692 0.777 0.675 0.889 0.583

FedMatch‡ 0.749 0.851 0.843 0.650 0.772 0.690 0.897 0.586

FedMatch+ 0.751 0.854 0.847 0.655 0.778 0.717 0.904 0.596

w/o PA FedPerl(T=2) 0.750 0.859 0.853 0.659 0.785 0.732 0.900 0.608

FedPerl(T=2) 0.758 0.860 0.838 0.660 0.791 0.717 0.907 0.608

Upper Local 0.728 0.838 0.831 0.733 0.733 0.648 0.824 0.606

FedAvg 0.773 0.869 0.848 0.750 0.805 0.876 0.958 0.594

5.5.10 Class Level Results

Because our setting is heterogeneous and suffers from severe class imbalance (cf. Fig.5.2.(C)), it
is important to validate our method in that setting. Thus, we report the class level performance
in Table 5.5. FedPerl obtains skin lesion classification accuracy better than local models
(FedPerl vs. Local/FixMatch). For example, the improvement reaches ten times in the DF
class. Moreover, FedPerl enhances the accuracy for BCC, BKL, DF, VASC, and SCC lesions by
16.6%, 21.8%, 50.4%, 42.0%, and 18.0%, respectively, in the SSL setting. The comparison with
FedMatch reveals the same behavior seen in the previous results. First, our method, in general,
outperforms FedMatch in all lesions. Second, applying PA to FedMatch (denoted as FedMatch+)
boosts its accuracy. On the other hand, we observe an insignificant decrease in the accuracy of
the AK lesion. The key factor of FedPerl advantage is attributed to the knowledge exchanged
through peer learning.

5.5.11 Additional Evaluation Metrics

Area Under ROC & Precision-Recall Curves

For more validation, we report the area under ROC curve (AUROC) and the area under
Precision-Recall curve (AUPRC) in Table 5.6 and Table 5.7 respectively. It is clearly shown that
FedPerl exceeds SSFLs in all classes results except for the AK class. For instance, in AUROC
results, the enhancement of FedPerl over SSFL around 2.1%, 1.4%, 1.1%, 1.4%, 4.2%, 1.8%,
and 2.5% for the MEL, NV, BCC, BKL, DF, VASC, and SCC classes respectively. Moreover,
the boosting of FedPerl over the lower FedAvg reaches 14% for the DF class. Interestingly,
FedPerl outperforms both upper bounds for the SCC class. On the other side, comparing the
AUPRC results reveals the same observations. Finally, the superiority of our method is still
found over FedMatch.
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Tab. 5.7. The area under Precision-Recall curve for the eight classes. +: with PA. †:∼[297]. ‡:∼FedMatch[130]

Setting Model MEL NV BCC AK BKL DF VASC SCC

Lower Local 0.505 0.864 0.622 0.457 0.409 0.287 0.524 0.164

FedAvg 0.582 0.894 0.702 0.443 0.556 0.394 0.712 0.313

SSL FixMatch 0.527 0.879 0.646 0.476 0.453 0.358 0.534 0.216

SSFL FedAvg† 0.620 0.903 0.730 0.494 0.617 0.574 0.762 0.348

FedMatch‡ 0.640 0.906 0.745 0.460 0.615 0.559 0.753 0.344

FedMatch+ 0.645 0.908 0.752 0.479 0.632 0.598 0.761 0.349

w/o PA FedPerl(T=2) 0.642 0.910 0.751 0.476 0.630 0.618 0.754 0.368

FedPerl(T=2) 0.651 0.911 0.744 0.475 0.629 0.627 0.769 0.356

Upper Local 0.596 0.899 0.710 0.561 0.555 0.456 0.690 0.361

FedAvg 0.668 0.916 0.762 0.574 0.670 0.719 0.847 0.373

Risk Coverage curve

We show the Risk-Coverage curves for FedPerl and our baselines in Fig.5.5. Each plot in the
figure depicts a model. Inside each plot, we draw the curves for all clients. The numbers
next to a client name represent the risk value at the full coverage of the input data, i.e. (risk:
coverage). It is shown from the figures that FedPerl achieves the lowest risk with the best
coverage amongst all models, and this is for all clients except for clients 5 & 8. Note that the
coverage of client 8 in all federated models is worse than the local models, which is attributed
to class mismatch. Please refer to sections 5.5.8 and 5.5.9 for more details. Nevertheless, if we
consider the clients 0, 4, and 9 as examples, we observe that FedPerl obtains the maximum
coverage at risks of 25.7%, 24.4%, and 26.0%, respectively. These values are better than
all local models, including the upper local model, and better than FedAvg SSL (SSFL) model.
Though, an insignificant drop in the coverage is noticed for client 5 compared to SSFL. A
detailed comparison between FedPerl and SSFL at 10% risk shows the superiority of FedPerl
over SSFL in all clients, except client 8. For instance, the coverage jumps from (33% to 49%)
for client 2, from the range of (46.5%− 55%) to the range of (53%− 65%) for clients 0, 1, 3,
4, and 9, and from the range of (79.8%− 86%) to the range of (79.5%− 90%) for clients 5, 6,
and 7. Note that the minimum coverage of the client is 7 in FedPerl (at 0 risk) is 30%, while
it is 0 coverage at 0 risk for SSFL. Client 6, on the other hand, achieves a minimum coverage
of 56% at 2% risk. Utilizing our method achieves lower risk and better coverage in skin lesion
classification.

Reliability Diagram and Calibration Error

To investigate the uncertainty and models’ calibration, we draw reliability diagrams and the
expected and the maximum calibration errors in Fig.5.6. Then, we show the results for the
federated models, including ours. The numbers inside the sub-figures show the calibration
error for each client. The numbers next to the model name show all clients’ averaged ECE
and MCE errors. In each figure, we present the models’ accuracy at different confidence
intervals, such that the width of each bin represents the difference between the highest and
lowest confidences. The figures show that our method improves the calibration for all models
and reduces the errors significantly cf. Fig.5.6 (FedPerl vs. FedAvg models). While the most
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Fig. 5.5. The area under Risk-Coverage curve for FedPerl and the baselines. The numbers that appear next to a
client name represent the risk at the full coverage respectively, i.e. , (risk: coverage). In general, FedPerl
obtains the lowest risk with the best coverage among all models.

interesting and surprising results reveal that the lower federated model (Lower FedAvg) is the
most calibrated model after the upper model (Upper FedAvg), such that it is better than SSFL

and FedPerl respectively. We can attribute this issue to the uncertainty of using unlabeled
data during the training of both models (SSFL and FedPerl). In contrast to that, the lower and
the upper FedAvg models only trained on high-quality labeled data. Nonetheless, our model
has better calibration errors than the SSFL, where the ECE and MCE are 0.144 and 0.277
for FedPerl, and 0.152 and 0.287 for SSFL, respectively. Besides, FedPerl outperforms the
remaining baselines with considerable margins. Such lower calibration errors indicate more
reliable and confident predictions for the FedPerl over the other methods. Moreover, our
experiments showed that peer learning produced a more calibrated model than SSFL, cf. Fig.5.6
(FedPerl vs. SSFL models). Yet, after applying peer anonymization, a better calibration error is
obtained, cf. Fig.5.6 (FedPerl(T=2) vs. FedPerl(T=2) w/o PA models). That implicitly means
that the used peers are calibrated enough to produce more accurate pseudo labels than the
ones generated from the clients individually.

5.5.12 Skin Lesion Qualitative Results

Sample predictions of FedPerl are shown in Fig.5.7. The first row shows that sample cases
were classified correctly by FedPerl, yet, misclassified by the other methods. Below each case,
we show the prediction confidence. The first row shows the confidence for FedPerl, while
the second row shows the confidence for both FedPerl and SSFL respectively. It is noticed
that there are challenging cases, still, FedPerl could classify them correctly, e.g., AK and
SCC classes. The remaining cases were classified correctly with high confidence by FedPerl,
while the others misclassify them. On the other hand, the second row shows cases that
were classified correctly by both FedPerl and SSFL, yet, FedPerl achieves higher confidence.
For instance, in BKL, DF, and SCC classes, the confidence margins are 35.9, 39.2, and 39.8,
respectively.
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Fig. 5.6. Reliability diagrams and calibration errors. FedPerl is more calibrated than SSFL and local upper models
indicating better and more confident predictions. The local models are shown in the supplementary
materials.

5.5.13 Unlabeled Clients Scenario

Till this experiment, we have trained our models to exploit the labeled and unlabeled data at
each client. The previous setting is widely studied in the literature, a.k.a, the standard semi-
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Fig. 5.7. Qualitative results. Sample predictions of FedPerl and SSFL for skin lesion. FedPerl confidence is shown
below the images in the first raw, while the second raw shows the confidence for FedPerl and SSFL
respectively.

Tab. 5.8. The classification results for unlabeled clients scenario. +: with PA. †:∼[297]. ‡:∼FedMatch[130]

Setting Model F1-score Precision Recall

SSFL FedAvg† 0.637(0.649)±0.121 0.647(0.649)±0.099 0.670(0.678)±0.120

FedMatch‡ 0.641(0.662)±0.131 0.653(0.657)±0.099 0.667(0.693)±0.134

w/o PA FedPerl(T=1) 0.644(0.662)±0.115 0.658(0.660)±0.078 0.674(0.688)±0.118

w/o PA FedPerl(T=2) 0.644(0.670)±0.126 0.651(0.664)±0.100 0.671(0.691)±0.130

w/o PA FedPerl(T=3) 0.645(0.654)±0.117 0.655(0.657)±0.094 0.670(0.677)±0.123

w/o PA FedPerl(T=4) 0.644(0.660)±0.124 0.655(0.665)±0.103 0.668(0.678)±0.129

w/o PA FedPerl(T=5) 0.641(0.659)±0.129 0.655(0.660)±0.098 0.668(0.681)±0.134

FedMatch+ 0.649(0.662)±0.118 0.655(0.659)±0.102 0.677(0.688)±0.121

FedPerl(T=2) 0.645(0.662)±0.119 0.654(0.659)±0.103 0.673(0.687)±0.119

FedPerl(T=3) 0.648(0.663)±0.118 0.660(0.669)±0.102 0.678(0.693)±0.120

FedPerl(T=4) 0.649(0.666)±0.124 0.656(0.663)±0.102 0.678(0.692)±0.125

FedPerl(T=5) 0.645(0.659)±0.114 0.652(0.653)±0.096 0.675(0.687)±0.118

supervised learning paradigm. In federated learning, however, a more challenging situation
may appear to the surface in which the clients only have access to unlabeled data without
knowing their annotations, see Scenarios in sec. 5.5.3 for more details. The results of applying
this scenario to FedPerl and our baselines are reported in Table 5.8. Thanks to peer learning,
our method enhances the performance of the baselines up to 0.8% and 0.4% compared to
FedAvg and FedMatch, respectively. Moreover, an additional improvement of about 1.2% is
obtained after applying peer anonymization (see last four rows in Table 5.8). That also holds
for FedMatch where FedMatch+ shows a relative improvement of about 0.8% after applying PA.
The better results are attributed to the aggregated knowledge from distributed similar clients
who help the local models overcome the missing labeled data.

5.5.14 Generalization to Unseen Client Scenario

The goal of this experiment is to investigate the generalization ability of the federated models
to unseen clients. To achieve this, we collect the previously trained global models, including
the baselines and FedPerl, then we perform inference on the ISIC20 dataset. Note that this
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Fig. 5.8. Reliability diagrams and calibration errors on the ISIC20 dataset. FedPerl is more calibrated with lower
calibration errors than the baselines.

Tab. 5.9. The unseen client scenario. The global models’ classification results for FedPerl and the baselines on the
ISIC20 dataset. +: with PA. †:∼[297]. ‡:∼FedMatch[130]

Malignant Benign

Setting Model F1-score Precision Recall F1-score Precision Recall

Lower FedAvg 0.131 0.097 0.204 0.976 0.985 0.966

SSFL FedAvg† 0.161 0.114 0.274 0.974 0.987 0.962

FedMatch‡ 0.160 0.113 0.278 0.972 0.987 0.954

w/o PA FedPerl(T=1) 0.160 0.112 0.279 0.973 0.987 0.960

w/o PA FedPerl(T=2) 0.178 0.126 0.305 0.974 0.987 0.962

w/o PA FedPerl(T=3) 0.166 0.110 0.339 0.969 0.988 0.951

w/o PA FedPerl(T=4) 0.169 0.117 0.308 0.972 0.987 0.958

w/o PA FedPerl(T=5) 0.166 0.120 0.269 0.975 0.987 0.965

FedMatch+ 0.146 0.099 0.281 0.970 0.987 0.954

FedPerl(T=2) 0.163 0.113 0.295 0.973 0.987 0.959

FedPerl(T=3) 0.167 0.114 0.308 0.972 0.987 0.957

FedPerl(T=4) 0.170 0.115 0.324 0.971 0.987 0.956

FedPerl(T=5) 0.150 0.099 0.305 0.968 0.987 0.950

Upper FedAvg 0.153 0.095 0.382 0.961 0.988 0.935

dataset consists of more than 33K images with two classes; malignant and benign. Considering
that the class distribution is highly imbalanced, around 500 images contain malignant cases,
while the remaining images have benign cases. Also, the models were trained to distinguish
between 8 classes making the direct inference a very challenging task. To resolve this issue, we
perform two steps. First, we generate the eight-class predictions from the models. Then, we
assemble these predictions into two groups. The malignant group contains melanoma, basal
cell carcinoma, actinic keratosis, and squamous cell carcinoma classes. The benign group
includes melanocytic nevus, benign keratosis, dermatofibroma, and vascular lesions. Then,
we generate our metrics as a binary classification task.

The results are reported in Table 5.9. Interestingly, FedPerl obtains the best malignant-class
classification results outperforming the lower, the SSFL including FedMatch, and the upper
bounds, with F1-score up to 0.178 for FedPerl models. Note that, for clinical applications, the
ability of a model to detect the true positive cases (malignant) is high relevant than detecting
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the true negative cases (benign) because the early detection of cancerous lesions reduces
the treatment cost and the death rate. The ability of FedPerl to classify the malignant and
benign classes is also shown in the reliability diagrams and calibration errors, cf. Fig.5.8. We
can see from the figure that FedPerl is more calibrated and achieves better expected and
maximum calibration errors than SSFL. From these results, we show that FedPerl has a better
generalization ability to detect malignant cases than the baselines and FedMatch. While we
have seen in all previous experiments that applying PA to FedMatch (denoted as FedMatch+)
always boosts its performance; this observation does not hold in this experiment—specifically,
the F1-score drops from 0.160 to 0.146. The same observation is found for some FedPerl

models.

5.5.15 Comparison with SOTA in the Few Labeled Clients
Scenario

In this experiment, we conduct a comparison with FedIRM [182]; very recent work in SSFL

for the skin lesion classification. Notice that FedIRM introduced a scenario where some clients
are labeled while others are not. In addition, the training paradigm in FedIRM assumed
that all clients participate in the training in each round, i.e. , PR = 100%, which is not
applicable in many cases. The vast majority of federated learning approaches assume that
a random set of clients will participate in the training each round, which was our selection
in this paper where the PR = 30%. Thus, to cover both cases, we present the results at
PR = {30%, 100%}. For our comparison, we opt FedAvg and FedPerl(T=2) models. Note that
the hyperparameters are kept as in the previous experiments, while the results are reported
in Fig.5.9. First, let us consider when PR = 30%. FedAvg obtains F1-score equals 62.3 while
FedIRM, FedPerl w/o PA, and FedPerl achieve comparable results at 66.3, 66.1, and 66.1,
respectively. Although our method outperforms FedAvg (PR = 100%), we observe a slight
relative drop in the performance when we compare to FedIRM, by 1.4% and 0.3% for FedPerl
w/o PA and FedPerl, respectively. That could be attributed to that FedIRM only transfers the
knowledge from labeled to unlabeled clients to guide the pseudo labeling process. However,
this is not the case in our method, where we utilize similar peers (regardless of their labels).
Note that around 80% of the clients are unlabeled in this particular scenario favoring the
FedIRM method. Still, FedPerl outperforms FedAvg, and extensive hyperparameters tuning
could yield better performance for our method. For the same reasons, FedPerl w/o PA, when
PR = 100%, achieves the lower results among FedPerl models with F1-score equals 65.7,
where more unlabeled clients were involved in the training. Nevertheless, averaging the
unlabeled peers might cancel their negative impact on the local model, as shown by FedPerl

with peer anonymization (PA) at F1-score = 68.7.

5.5.16 Dynamic Learning Policy Results

Previously, we have shown that the static peer learning policy constantly benefits clients and
communities. For instance, see the results in Table 5.4. Also, we have shown that for the
individual clients, who do not belong to any community, our method is still profitable, as for
client 9. However, for other clients, i.e. , client 8, we have seen that peer learning, FedMatch,
and FedAvg perform lower than the local model, even though our model is better than the
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Fig. 5.9. Comparison between our Method and FedIRM. While both methods achieve comparable results when
the participation rate =30%, ours show lower performance when 100% of the participation rate. Still,
FedPerl outperforms FedAvg.

Tab. 5.10. Dynamic learning polices results. The classification results under two different settings. CISIC , CHAM :
the results at the community level. (mean F1-score). PA+/-: with/out Peers anonymization.

The classification results when the clients contain labeled and unlabeled data (the standard SSL setting)

Policy Model/Client 0 1 2 3 4 CISIC 5 6 7 CHAM 8 9 Avg

No Policy (baselines) PA- FedPerl(T=2) 0.735 0.731 0.725 0.737 0.739 0.733 0.805 0.850 0.839 0.831 0.582 0.729 0.747

PA+ FedPerl(T=2) 0.737 0.737 0.724 0.730 0.751 0.736 0.818 0.846 0.834 0.833 0.567 0.717 0.746

Validation Policy PA- FedPerl(T=2) 0.729 0.727 0.724 0.737 0.746 0.732 0.814 0.845 0.819 0.826 0.571 0.732 0.744

PA+ FedPerl(T=2) 0.743 0.729 0.736 0.732 0.749 0.738 0.806 0.845 0.822 0.824 0.572 0.724 0.746

Gated Validation Policy PA-(75) FedPerl(T=2) 0.729 0.727 0.738 0.732 0.750 0.735 0.814 0.841 0.828 0.827 0.598 0.725 0.748

PA+(75) FedPerl(T=2) 0.746 0.727 0.737 0.731 0.748 0.738 0.814 0.844 0.834 0.831 0.571 0.725 0.748

PA-(85) FedPerl(T=2) 0.728 0.734 0.740 0.738 0.760 0.740 0.814 0.842 0.830 0.829 0.535 0.710 0.743

PA+(85) FedPerl(T=2) 0.738 0.732 0.723 0.742 0.755 0.738 0.818 0.850 0.838 0.835 0.596 0.729 0.752

PA-(95) FedPerl(T=2) 0.739 0.732 0.735 0.737 0.754 0.739 0.815 0.850 0.839 0.834 0.583 0.730 0.751

PA+(95) FedPerl(T=2) 0.747 0.745 0.731 0.738 0.752 0.743 0.818 0.851 0.839 0.836 0.596 0.731 0.755

Gated Similarity Policy PA-(75) FedPerl(T=2) 0.734 0.721 0.742 0.739 0.764 0.740 0.821 0.843 0.832 0.832 0.593 0.714 0.750

PA+(75) FedPerl(T=2) 0.740 0.725 0.735 0.742 0.754 0.739 0.811 0.841 0.827 0.826 0.580 0.699 0.745

PA-(85) FedPerl(T=2) 0.727 0.741 0.731 0.742 0.751 0.739 0.812 0.846 0.825 0.828 0.586 0.716 0.748

PA+(85) FedPerl(T=2) 0.738 0.735 0.735 0.742 0.752 0.741 0.820 0.850 0.839 0.836 0.588 0.730 0.753

PA-(95) FedPerl(T=2) 0.734 0.728 0.732 0.739 0.765 0.740 0.820 0.845 0.839 0.835 0.617 0.731 0.755

PA+(95) FedPerl(T=2) 0.737 0.740 0.731 0.739 0.764 0.742 0.819 0.853 0.836 0.836 0.618 0.732 0.757

The classification results when the labeled data is only available on the server while the clients have no labeled data (the unlabeled clients or the disjoint setting)

Policy Model/Client 0 1 2 3 4 CISIC 5 6 7 CHAM 8 9 Avg

No Policy (baseline) PA+ FedPerl(T=2) 0.649 0.642 0.671 0.645 0.654 0.652 0.730 0.751 0.729 0.737 0.308 0.670 0.645

Validation Policy PA+ FedPerl(T=2) 0.642 0.638 0.669 0.647 0.678 0.655 0.721 0.752 0.740 0.738 0.267 0.656 0.641

Gated Validation Policy PA+(75) FedPerl(T=2) 0.642 0.639 0.667 0.647 0.659 0.651 0.740 0.750 0.745 0.745 0.303 0.678 0.647

PA+(85) FedPerl(T=2) 0.669 0.657 0.664 0.643 0.666 0.660 0.740 0.740 0.744 0.740 0.340 0.687 0.655

PA+(95) FedPerl(T=2) 0.653 0.650 0.662 0.630 0.669 0.653 0.743 0.751 0.733 0.742 0.343 0.664 0.650

Gated Similarity Policy PA+(75) FedPerl(T=2) 0.659 0.660 0.671 0.650 0.657 0.659 0.732 0.749 0.744 0.742 0.334 0.671 0.653

PA+(85) FedPerl(T=2) 0.649 0.645 0.679 0.636 0.656 0.653 0.728 0.757 0.751 0.745 0.327 0.670 0.650

PA+(95) FedPerl(T=2) 0.658 0.647 0.678 0.655 0.676 0.663 0.732 0.759 0.738 0.743 0.336 0.672 0.655

others. To resolve this issue, in section 5.4.4, we propose a dynamic learning policy that
controls the learning stream of the clients. The results are reported in Table 5.10. Due to
the enormous amount of models that could be examined in this experiment, we opt for ρ

at {0.75, 0.85, 0.95} and T = 2. We generate the results for the standard semi-supervised
and unlabeled client scenarios. Our baseline in this experiment is our model FedPerl(T=2)
because our goal is to compare with the static policy, and we do not see any need to include
the previous models that already compared with FedPerl(T=2).
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The Standard Semi-supervised Learning Results

Validation Policy. First, by comparing overall results, denoted as Avg in Table 5.10, we notice
no significant improvement in the performance for both models; PA(±) FedPerl(T=2). On the
other hand, lower results are obtained for the CHAM community. For instance, the F1-score
dropped from 0.831 and 0.833 to 0.826 and 0.824, respectively. In contrast, a comparable
result at 0.732 or a slight enhancement at 0.738 are obtained for CISIC . Besides, the clients’
results are inconsistent regardless of whether they belong to a community. While we notice
boosting for clients 0, 2, 3, and 9, the remaining clients have lower results. Further, we notice
no positive influence on the results when applying PA.

Gated Validation Policy. While there is not much benefit in the previous policy, the results
in this experiment show a consistent improvement as the gateway threshold ρ increases. For
instance, the overall results boosted up to 0.2%, 0.6%, and 0.9% when ρ = 0.75, 0.85, and
0.95, respectively. A consistent improvement was also found at the community level when ρ is
larger than 0.75, with better results at ρ = 0.95. While an increase reaches 1% is noticed for
CISIC clients starting from ρ = 0.75 with PA model i.e. PA+(75) FedPerl(T=2), the increase is
seen starting from PA+(85) model for CHAM clients with F1-score reaches 0.836. In general,
the clients’ results get boosted by our gated validation policy. In the beginning, when ρ = 0.75,
clients 0, 2, and 8, show better performance than the baseline. Then, more clients are included
when ρ = 0.85 until all clients show improvement with our model PA+(95) with F1-score at
0.752 at client 4. These results confirm the same behavior found in communities’ results. A
more discussion on the individual clients’ results, i.e. , 8 & 9, reveals that the combination of
PA with values of ρ = {0.85, 0.95} achieves more reliable F1-scores. Even though our model
PA-(75) obtains the highest score for client 8, the results for other clients are not of the same
quality. In summary, we present in this experiment that our gated validation policy improves
the overall, communities’, and clients’ results demonstrating its advantage. More importantly,
the results of client 8 were boosted from 0.567 to 0.596 at PA+(95) model.

Gated Similarity Policy. This policy differs from the earlier one in using the similarity
between the client and its peers as a gateway to control peers’ participation instead of using
the global validation dataset. We notice that the general behavior is similar to the preceding
one. Though, better results are obtained at different levels, especially for client 8, whose
reported F1-scores are equal to 0.617 and 0.618 on models PA±(95), which are better than the
former ones by 1.9% and 4.7% respectively. The similarity in the results is justified because
both policies proposed to manage the learning stream of the clients, especially the individual
ones, shown in both strategies. A gated similarity policy brings more stability to all clients and
better accuracy for client 8.

The Unlabeled Clients’ Results

We have shown in the past section that the validation policy has no potential improvement
while combining the gated methods with PA usually obtains the best performance. Therefore,
and for simplicity, we only report the results with the PA technique.

After analyzing the second part of Table 5.10, we notice that the results of the validation
policy are improved by F1-score equals to 0.655 and 0.738, for CISIC and CHAM respectively.
However, the overall results decreased by 0.4%. The individual results, on the other hand, vary
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between the clients. While clients 3, 4, 6, and 7 show an enhancements, clients’ 0, 1, 2, 5, 8,

and 9 accuracies are decreased. In contrast to the previous results, we observe a constant
improvement of gated policies in the overall accuracy from 0.647 to 0.655 for the validation
with PA+(75) to similarity with PA+(95) gated models, respectively. Note that all models
from both policies accomplish better results than the baseline model. On the other hand, the
communities’ results show comparable results, yet better than the baseline, for both strategies
with some advantages for similar models. While the individual improvement is distributed
among the clients in the gated validation approach except for client 2, it is intelligible in
similarity models, especially in PA+(95) model. Moreover, both individual clients, 8 & 9, show
steady improvements in all similarity models, yet, client 9 suffers from lower performance in
gate validation with ρ larger than 0.75. However, the maximum gain appears for client 8 in
the PA+(95) gated validation policy with F1-score equaling 0.343.

5.6 Discussion

Thus far, we have investigated the distributed data in remote locations by a novel approach
that enables individual clients to share their knowledge through different peer learning policies
in a semi-supervised federated learning setting. Thus, we propose FedPerl. This new approach
compiles semi-supervised learning, federated learning, peer learning, committee machine,
and learning policies to devise a novel framework for skin lesion classification tasks. We show
through extensive experiments and evaluation metrics that our method performs better over
the baselines in the standard semi-supervised labeled and unlabeled client settings. In this
chapter, we will discuss our findings and observations of this method in detail.

5.6.1 Simplicity & Performance

A key feature of our method is simplicity. Implementing and applying our method is direct and
can be implemented with a few lines of code. The computational cost to calculate the similarity
between the clients is negligible, thanks to our strategy which computes the similarity on
extracted features rather than on the whole weight parameters. Such that for a model with
l layers and θ weights parameters, where θ ≫ l, the cost of our similarity is O(l) ≪ O(θ),
note that θ could be millions of parameters. From another perspective, the experiments show
that FedPerl is more calibrated and outperforms the baselines, including the SSFL, thanks to
the peer learning we propose, where FedPerl exploits other clients by interacting with their
experiences. As a core component in our method, peer anonymization reduces communication
cost while enhancing performance. Additionally, it improves the clients’ privacy by hiding
their identities. Yet, a non-avoidable cost is still property in peer learning.

5.6.2 Similarity

Clients’ communities are shaped implicitly based on the similarities between the clients. To
measure the similarities, we exploited model parameters to profile the clients. Yet another
approach to quantify the similarity is to use a server-side validation set as it has been utilized
in FedMatch. While we have shown through different experiments that our method of finding
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the similarities outperformed the one that depends on validation set i.e. FedMatch, another
drawback is that the availability of validation datasets at the server side is challenging. Further,
we have shown the importance of peer learning and our similarity in the random peers
experiment. Still, the representational similarity is an open research direction in federated
learning.

5.6.3 Orthogonality

Another main property of the PA technique is that it can be implemented directly to other
methods, which are similar to ours, with negligible effort. We have shown through different
experiments that applying PA to FedMatch is resulted in a better model, i.e. FedMatch+. While
the new model achieves better accuracy, it also reduces the communication cost comparing to
the original one.

5.6.4 Privacy

Our anonymized peer is designed by aggregating/averaging the model parameters of the
top T similar peers. This process generates a virtual model that is not related to a specific
client and offers a harder target for attackers seeking information about individual training in-
stances [193, 207]. Nevertheless, a privacy guarantee for aggregated models (not individuals)
is an open issue and has not been thoroughly investigated in the community and mathematical
analysis is yet to be proven.

5.6.5 Local Updates

While the local models’ weights are continually updated during the training, the peers’ ones
remain intact. A natural question could be if such a procedure might poison the models,
especially with larger iteration updates? While such concern is of high importance, we have
designed our method to alleviate this problem by training the local model and keeping the
peer models intact to avoid any poisoning. Also, we employed an MSE loss as a consistency-
regularization, FedVC approach in the federated learning, and our dynamic policy, especially
if the local model is quite different from the peers and has been trained for more local
iterations.

5.6.6 Communities & Committee Size

Figure 5.4 shows that FedPerl clusters the clients into communities based on their similarities.
The overall performance for each community gets boosted by FedPerl, cf. Tables 5.3 and
5.4, which is attributed to the knowledge sharing. We have noticed that the community
performance is related to the committee size i.e. T . While changing T has an insignificant
effect on CISIC performance, its effect is clear on CHAM . Thus, a natural question would
be, what is the ideal committee size? Our experiments show that as long as T below the
actual community size, the overall performance is rather stable, cf. CISIC in Table 5.3. Once
T exceeds the community size, the performance starts decreasing, cf. CHAM in Table 5.3.
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We associate this with the probability of including external peers as we increase T , which
might negatively influence the local models/sites of the community, see sec.5.5.8. While
the cluster/community size can be defined by the cardinality of the spectral clustering of
the similarity matrix, yet in more practical scenarios, setting T to a value larger than the
community size is impractical. The trade-off between the committee size and the performance
needs further investigation.

5.6.7 Clustering

The clustering in the literature means grouping similar data and assigning labels to them.
Because we use this word frequently in our paper and to resolve any ambiguity, we provide
the following interpretation. First, we do not use any clustering method nor it is defined
heuristically or fixed at the beginning of the federated learning. Hence, we do not assign labels
to the clusters, but rather we want to highlight that our similarity matrix works effectively
to force similar peers to learn from each other. At the beginning of the training, the clusters,
i.e. learning from similar peers, are dynamically changed. This is explained by the small
numbers in each row in Fig. 5.4, where the darker colors or smaller numbers represent lower
frequencies. However, as the training proceeds, these clusters are evolved to force the similar
peers to learn from each other more frequently, which is shown by the brighter colors or
higher numbers values in the same figure.

5.6.8 Individual Clients

The clustering produces individual clients who do not belong to a specific community i.e. clients
8 & 9, which confirms the reality. The effect of FedPerl is diversified between those two clients.
While client 9 makes use of FedPerl, a drastic drop in the performance of client 8 was noticed,
which could be attributed to the class distribution mismatch. This indicates that FedPerl may
not fit non-iid scenarios. Yet, combining FedPerl with works that are handling the distribution
mismatch (non-iid) problem would be a promising direction of research [171, 175, 309, 318].
On the other side, one nice property has been shown by our experiments that FedPerl is
less sensitive to the noisy clients than the standard SSFL and FedAvg methods (cf. Table. 5.4),
which could be attributed to the learning schema of selecting similar peers in FedPerl. In our
experiments, we found out that inductive bias coming from similar in-distribution clients did
not hurt the global model, it rather improved the global model performance. Having said that,
Out-of-Distribution (OOD) client, e.g., client 8, has shown to harm the model’s performance.
If there is a strong inductive bias from a couple of OOD clients, this potentially might hurt the
global model. One might need to consider a smarter way of aggregation for such OOD clients.
However, this is out of the scope of this manuscript.

5.6.9 Unlabeled Clients

In a more challenging experiment, which is unique in federated learning, we trained our
models utilizing labeled global data and unlabeled local ones. FedPerl also shows the best
results comparing to the baselines thanks to our peer learning strategy, which enforces
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additional knowledge to the clients besides the global one exploited via federated learning.
Further, applying PA produced more stable results and higher accuracy.

5.6.10 Unseen Clients

In another part of our experiments, we have tested our method on the ISIC20 dataset. The
low performance for all models can be attributed to two things; i) Class Mismatch: the models
were trained on 8 classes while ISIC20 contains only two classes with severe class imbalance
(500 malignant vs. 32.5K benign), and ii) Domain Shift: none of the models proposed to
address the domain shift problem between ISIC19 and ISIC20. In this experiment, we tried to
show how SSFL models perform in such a challenging situation. The results showed that our
model is still better than all baseline models in skin cancer classification shedding the light on
the generalization capability. This is attributed to the FedPerl is learning more powerful and
discriminative representations of the minority class by aggregating the peers’ knowledge and
experiences. At the same time, we attributed the better performance of our model to FedMatch

to the similarity matrix that we utilized such that our method picks more accurate peers to
the local model than the FedMatch approach. In the current version, FedPerl does not have a
specific property that handles the class imbalance.

5.6.11 Learning from Few Labeled Clients

The comparison with a SOTA method reveals that our method is on par with FedIRM when
part of the unlabeled clients participate in the training. Yet, that is not the case when all
clients are involved, which is a rare setup. We attributed that to the quality of the pseudo
labels generated with the help of unlabeled peers to ones generated with the help of labeled
clients. Nevertheless, combining both approaches in a joint or a co-training setup could be an
interesting research direction and might lead to better performance.

5.6.12 Learning Policy

Our first strategy depends on a static peer learning policy that involves best T peers based
on their similarities. While this policy is effective in the communities and clients, it suffers
in performance when countered by an ODD client. To resolve this issue, we proposed, in
this paper, more dynamic and adaptive policies. Specifically, the successful policies employed
a gateway to control the learning rate from peers. The participation is measured based on
either a global dataset or how similar the peer is to the client. Only the clients who pass a
predefined threshold can participate in the training. We found that the results of the two
policies are somehow similar with advantages to the one based on similarity. Yet, most
importantly, the performance of the OOD client gets boosted by both policies. Because we
do not have control or can not anticipate the in-distribution from out-of-distribution clients,
the selection between the static and dynamic methods goes toward the dynamic ones. Even if
we know the clients, the results show that the dynamic policy betters the static one. On the
other hand, our preference between the validation or similarity gated policies goes toward
the similarity. In most cases, the global validation data is not available, which prevents
us from applying the validation policy. Further, the gated similarity policy produces more
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consistent and stable results. Though, the trade-off between the global and local benefits could
be the decision-maker in real-life scenarios. Our dynamic learning policies are considered
heuristic ones, however, they were proposed to address a problem that we noticed in the
static learning policy, where the performance of some individual clients has not improved by
the federated learning. We could achieve that by utilizing the global validation dataset or
the client similarities. However, to provide a comprehensive study addressing any potential
questions from the reader, we tested three different policies. Note that the three policies are
separate and work independently. Besides, they have shown to be effective (cf. Table 5.10).
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6Representations Learning via
Virtual Embeddings and
Self-Consistency in
Self-Supervised Learning

„Most of what we learn as humans and most of what
animals learn is in a self-supervised mode, not a
reinforcement mode. It’s basically observing the world
and interacting with it a little bit, mostly by
observation in a test-independent way. This is the type
of learning that we don’t know how to reproduce with
machines

— Yann LeCun
(French computer scientist, a Professor at New York
University, and Vice President, Chief AI Scientist at

Meta. LeCun received the 2018 Turing Award for his
work on deep learning.)

6.1 Motivation

Although the unlabeled data is missing their annotations, they are still wealthy with another
type of information hidden in their representations. The last is what we researched in the
third perspective by employing representation learning in a self-supervised learning paradigm.
In this regard, self-supervised learning has recently gained much attention due to the high
cost and data limitation in training supervised learning models. The current paradigm in
self-supervised learning is to utilize data augmentation at the input space to create different
views of the same images and train a model to maximize the representations between similar
images and minimize them for different ones. While this approach achieves state-of-the-art
(SOTA) results in various downstream tasks, it still lakes the opportunity to investigate latent
space augmentation.
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6.2 Contribution

In this part of our thesis, we propose TriMix, a novel concept for self-supervised learning that
leverages the virtual data augmentation at the input and hidden embeddings, at the same
time forcing the model to predict the percentage of such compositions in the virtual data
from its original ones. Our method performs linear interpolation on the input images and
their corresponding hidden embeddings. Likewise, the mixed samples are fed to the model to
generate virtual features. During the training, the model learns to decompose the mixed-up
augmented features to their original components through our virtual embeddings loss. Note
that the virtual embeddings are generated from a series of non-linear operations of the mixed-
up data at the network. At the same time, the mixed-up data is produced from the linear
process of the input images. Thus, matching the mixed-up data with its virtual embeddings
might not be straightforward. To resolve this issue, we propose our self-consistency loss,
which ensures the linearity and forces both embeddings to be consistent. To this end, our
contributions are:

• We propose TriMix, a novel method for self-supervised learning that leverages the
augmentation at hidden embeddings in training and guides the model to decompose
the mixed data to its original components through our virtual embeddings loss. Fur-
thermore, the newly generated representations are fine-tuned via redundancy reduction
techniques to learn better discriminative features.

• We propose self-consistency loss to force the linearity and consistency between virtual
embeddings and mixed-up embeddings for better training.

• We compare TriMix with recent self-supervised learning methods on eight benchmark
datasets of natural and medical datasets while showing superior performance.

The content of this part is based on the following manuscript:

Bdair T, Abdelhamid H, Navab N, Albarqouni S. "TriMix: Virtual embeddings and self-
consistency for self-supervised learning". Submitted to "IEEE Transactions on Neural
Networks and Learning Systems". 2022 Jun 13.

6.3 Related Works

The current self-supervised learning approaches have shown remarkable advances in down-
stream tasks such as computer vision [15, 20, 43, 46, 53, 54, 56, 104, 109, 255, 264, 265, 306],
natural language processing [74, 302], and speech recognition [206, 295]. Self-supervised
learning methods do not rely on a massive amount of annotated data. Instead, they train a
model to produce good representations of the unsupervised data, a.k.a pretext task that help
in a supervised task such as image classification and segmentation, a.k.a downstream task.

An evolving direction in self-supervised learning methods known as contrastive learning
utilizes siamese networks [38] to maximize agreement between different views of the same
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image, known as positive samples, while decreasing it with other images, i.e. the negative
examples as proposed in SimCLR [53] and MoCO [109]. One drawback of the previous works
requires expensive computations to find the negative images from a memory bank [109] or a
large batch size [53].

SwAV [46] overcomes this limitation by clustering the samples based on the similarities of their
features while forcing a consistency between cluster assignments produced for the positive
examples. However, BYOL [104] and SimSiam [56] relax the necessity for negative samples by
employing asymmetric network tricks to avoid model failure while achieving state-of-the-art
results.

Recent methods were proposed based on information maximization to avoid features collapse
via (i) whiting approaches; W-MSE [43], (ii) redundancy reduction; Barlow Twins [306], (iii)
features decorrelation and normalization; Shuffled-DBN [121], and (iv) variance-preservation
term; VICReg [20]. While the previous methods work properly on highly curated datasets for
pretraining such as ImagNet [73], DnC [264] alternates between the contrastive learning and
clustering-based methods to improve the performance on less curated datasets.

So far, the above methods utilize augmentation at the input space to create different views
of the same image to learn better representations. However, a couple of non-self-supervised
works have shown a boost in performance in image classification [29, 275] or medical image
segmentation [24, 48, 85, 135, 209] via the augmentation at the input space [29, 48, 85,
209], the hidden representations [275], or randomly at the input and hidden layers [24, 135].
Although the latter process provides virtual data points that benefit the model during the
training, none of the former self-supervised learning methods has investigated that. Therefore,
we propose our method that provides the model with virtual embeddings created at the hidden
layers to learn better representations.

6.4 Methodology

Our method has the same architecture employed in the recent self-supervised learning meth-
ods [20, 43, 56, 104, 121, 306] where a siamese network [38] is trained on joint embeddings
of distorted images. In addition, our strategy proposes a mutual training of redundancy
reductions and latent space augmentation approaches. Thus, we build upon information
maximization approaches to include our contributions. Specifically, we borrow the redundancy-
reduction principle from Barlow Twins [306] before combining it with augmented embeddings
and self-consistency methods. An illustrative diagram showing our method in Fig. 6.1, while
PyTorch-style pseudocode for TriMix is shown in Algorithm 3.

6.4.1 Redundancy-Reduction

Given a batch of input images I sampled from a dataset D, two different views (X, X ′) are
generated by applying two transformations t and t′ on I, where X = t(I), X ′ = t′(I), and t

and t′ are sampled from a distribution of data augmentations T . Then, X and X ′ are encoded
to a deep neural network with trainable parameters fθ to produce the hidden representations
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Y = fθ(X) and Y ′ = fθ(X ′), respectively. Next, these representations are fed to projector hϕ

to create the embeddings Z and Z ′, where Z = hϕ(Y ) and Z ′ = hϕ(Y ′). The embeddings
are normalized along the batch dimension to produce unit vectors with 0 mean. The training
loss appeared in Barlow Twins [306], consists of two terms; invariance Linv and redundancy
reduction Lrr terms as follows.

LBT ≜ Linv + αLrr, (6.1)

where α is a hyperparameter, and Linv and Lrr are given by 6.2 and 6.3 , respectively.

Linv =
∑

i

(1− Cii)2, (6.2)

Lrr =
∑

i

∑
i̸=i

Cij
2, (6.3)

where C is the cross-coloration matrix between the two outputs of the network and given by

Cij ≜

∑
b zb,i z′

b,j√∑
b(zb,i)2

√∑
b(z′

b,j)2
, (6.4)

where i, j index to the vector dimension of the networks’ outputs, and b indexes to the batch
samples. Note that C ∈ Rd×d is a square matrix with a size equal to the output dimension, with
entries between (1) for perfect correlation and (−1) for perfect anti-correlation. Barlow Twins’
objective function tries to find the best representations that preserve as much information
about the samples. At the same time, the distortions applied to these samples are agnostic or
less informative.

6.4.2 TriMix: Virtual Embeddings and Self-Consistency in
Self-Supervised Learning

Augmented Embeddings
To augment the model with new data points, our method, shown in Fig.(6.1), takes one
view of the input, i.e. X, and flips it to create a reversed version Xr, where Xr = flip(X).
Then, virtual data is generated by applying linear interpolation, i.e. Mixup [307], between the
original and the reversed versions as follows.

Xvrt = λ ∗X + (1− λ) ∗Xr, (6.5)

where the mixup factor λ is randomly sampled from the Uniform distribution; i.e. λ ∈ [0, 1].
Note that the Mixup is performed on one arm of the siamese network with its reversed version
to guarantee that no sample is mixed-up with itself. Once we generate the mixed-up data,
we pass it to the model to produce virtual embeddings; Zvrt = hϕ(fθ(Xvrt). Then, Zvrt

is normalized along the features dimension and batch size to produce unit vectors with 0
mean.

Embeddings Decomposition
We train the model to decompose the virtual embeddings to their original components to learn
useful representations from the new virtual data points and their embeddings. In other words,
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we train the model to predict the values of the mixup factor λ. To achieve this, first, we create
a cross-correlation matrix computed between the original embeddings of the input X and
virtual embeddings, i.e. (Z, Zvrt).

Mmn ≜

∑
a za,m zvrt

a,n√∑
a(za,m)2

√∑
a(zvrt

a,n)2
, (6.6)

where m, n index to the batch samples, and a indexes the embeddings’ vector dimension. Note
thatM ∈ RB×B is a square matrix with a size equal to the batch size B. To this end, each
row represents the similarities between an image m in the original batch and all the images in
the virtual batch. Then,M is normalized using softmax operation to generate distributions
with probabilities between [0, 1] along its rows.

Mm,: = softmax(Mm,:/τ), (6.7)

where m indexes the batch sample, and τ is the temperature hyperparameter.

Virtual mbeddings loss. To enforce the model to regress the percentage of mixed-up data
composition, we propose our virtual embeddings loss as the absolute mean difference between
the matrixM and our ground truth matrix GT , and given by

Lvrt = ∥M− GT ∥ (6.8)

where GT = λI+(1−λ)(I∗R),GT ∈ RB×B , where I ∈ RB×B is a square identity matrix with a
size equal to the batch size B, and R is a transformation matrix that rotates I counterclockwise
by 90 degree, see GT in Fig.(6.1).

Self-Consistency
Thus far, we train the model to decompose the virtual embeddings to their original components.
However, the mixed-up data Xvrt are generated from linear interpolation of the input images
(X, Xr). In contrast, the virtual embeddings Zvrt are generated from a series of non-linear
operations of Xvrt at the network. Thus, training the model to predict this linear operation
of the mixed-up data from non-linear virtual embeddings might be challenging. To resolve
this issue, we force the linearity and consistency between the virtual embeddings Zvrt and
mixed-up embeddings; Z̃. Such that we define Z̃ as the result of linear interpolation of the
original inputs embeddings and their reversed version (Z, Zr), and given by

Z̃ = λ ∗ Z + (1− λ) ∗ Zr, (6.9)

where Zr = flip(Z), and λ is the same one used in Eq.(6.5).

Self-consistency loss. Consequently, we propose our loss as the mean absolute difference be-
tween the two embeddings and the mixed-up embeddings to force the linearity and consistency
between the virtual embeddings.

Lcon = ∥Z̃ − Zvrt∥. (6.10)
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Algorithm 3 PyTorch-style pseudocode for TriMix

1: # net: fθ(hϕ())
2: # α,β,γ: hyperparameters
3: # uniform: uniform distribution
4: # B: batch size
5: # D: embeddings dimensionality
6: # mm: matrix-matrix multiplication
7: # eye: identity matrix
8: for tuple in dataloader:
9: x, x′ = tuple # sample two augmented views

10: z, z′ = net(x), net(x′) # produce embeddings
11: # Barlow Twins
12: z = (z - z.mean(0))/z.std(0) #BxD
13: z′ = (z′ - z′.mean(0))/z′.std(0) #BxD
14: # DxD cross-correlation matrix
15: c = mm(z.T, z′)/B
16: # loss calculation for Barlow Twins
17: c_diff = (c-eye(D)).pow(2)
18: off_diagonal(c_diff).mul_(α)
19: LBT = c_diff.sum()
20: # TriMix: 1. Augmented Embeddings
21: λ= uniform() # sample the mixing factor
22: xr= flip(x)# reversed version
23: zr= flip(z)# reversed embeddings
24: xvrt = λ*x + (1-λ)*xr # mixed-up/virtual data
25: zvrt = net(xvrt) # virtual embeddings
26: z̃ = λ*z + (1-λ)*zr # mixed-up embeddings
27: # TriMix: 2. Features Decomposition
28: # Normalization along D and B
29: zvrt = (zvrt - zvrt.mean(0))/zvrt.std(0)
30: zvrt = ((zvrt.T - zvrt.mean(1))/zvrt.std(1)).T
31: m = mm(z, zvrt.T)/D # BxB matrix
32: m = softmax(m(0)/τ) # softmax normalization
33: # Create our ground truth
34: gt = λ*eye(B)+(1− λ)*rotation90(eye(B))
35: # Virtual embeddings loss
36: Lvrt = L1Loss(gt-m)
37: # TriMix: 3. Self Consistency
38: Lcon = L1Loss(z̃-zvrt)
39: # Over all loss #
40: loss = LBT + βLvrt + γLcon

41: loss.backward()
42: optimizer.step()

Overall Objective Function

The overall objective function is the sum of Barlow Twins, virtual embeddings, and self-
consistency losses, and given by

L = LBT + βLvrt + γLcon (6.11)

where β and γ are hyperparameters.
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Fig. 6.1. TriMix mainly consists of virtual embeddings and self-consistency. Virtual embeddings: First, virtual data
Xvrt is created by linear interpolation of the input images. Xvrt is then fed to the network to create
the virtual embeddings Zvrt. The model is trained to decompose the virtual data to the original ones
using Lvrt loss, see Eq.(6.8). Self-consistency: to force the consistency between the virtual embeddings
Zvrt and augmented embeddings Z̃, we propose Lcon, see Eq.(6.10), where Z̃ is created using Eq.(6.9).
PyTorch alike pseudo code is presented in Algorithm 3.

6.5 Experiments & Results

6.5.1 Datasets

We conduct our experiments on eight public benchmarks. (i) CIFAR-10 [158] and (ii) CIFAR-
100 [158]. Both datasets consists of 32 × 32 images with 10 and 100 classes, respectively.
(iii) STL10 [62], consists of 96 × 96 images with 10 classes. (iv) Tiny ImageNet [163],
consists of 64 × 64 images with 200 classes. Four medical datasets from MedMNIST[298,
299]. MedMNIST provides an MNIST-like set of standardized biomedical images consisting
of 18 datasets with different scales and tasks. In this work, we randomly opt for four 2D
multi-class datasets as follow. (i) PathMNIST: 107,180 colon pathology images of 9 classes.
(ii) DermaMNIST: 10,015 dermatoscopic images of 7 classes. (iii) OCTMNIST: 109,309
retinal OCT images of 4 classes. (iv) BloodMNIST: 17,092 blood cell microscopic images of 8
classes. All the medical images are provided with the size of 28× 28.

6.5.2 Baselines

Our baselines are the current state-of-the-art self-supervised learning methods. We opt for the
following approaches; (i) SimCLR [53], (ii) BYOL [104], (iii) Barlow Twins [306], and (iv)
VicReg [20].
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Tab. 6.1. Top-1 accuracy(%) of TriMix and the baselines for KNN (with 200-epoch pretraining) and linear
evaluations ( with 100-epoch supervised training) on the benchmark datasets. All models use a ResNet-
18 encoder and the same projector and augmentations. The best results are in bold. Our method
outperforms other methods at different datasets in both KNN and linear evaluations.

KNN Linear

Method CIFAR10 CIFAR100 STL10 Tiny ImageNet CIFAR10 CIFAR100 STL10 TinyImageNet

SimCLR 82.17 48.06 79.47 30.33 86.14 59.27 86.35 42.74

BYOL 81.13 45.73 81.19 30.75 85.43 57.31 86.33 41.94

Barlow Twins 84.37 52.47 80.98 36.70 86.93 60.66 86.29 45.50

VICReg 77.73 44.58 74.06 26.20 81.38 53.46 77.45 34.17

TriMix(ours) 86.35 54.01 81.59 34.66 88.39 63.37 87.06 45.15

6.5.3 Implementation Details

Adam optimizer [147] is utilized for training the models for 200 epochs, with a learning rate
of 1 × 10−3, weigh decay of 1 × 10−6, and batch size of 256. We adopt ResNet-18 [110] as
back-bone encoder with 512 output units. A 3-layer MLP with hidden layers of the size of
1024 is used as a projector. All hidden layers are followed by the batch normalization layer
and ReLU activation. We set α = 5× 10−3 as in Barlow Twins [306], and perform grid search
for β and γ where it found best at 1000 and 200, respectively. τ set to 2 as widely adopted in
the literature. We opt for the PyTorch framework as an implementation environment hosted
on a standalone NVIDIA Tesla V100 (Volta) with a 32 GB machine. The average training time
takes around 7− 8 hours for each approach.

6.5.4 Image Augmentations

To produce the two views of the images, we follow the standard data augmentations used
in the community. Specifically, random cropping, color jittering, horizontal flipping, and
grayscaling were applied.

6.5.5 Results

KNN and Linear Evaluations on Natural Images
We evaluate the pre-trained representations using a supervised linear classifier on the frozen
representations following the standard procedures. Specifically, after an unsupervised pre-
training on the training sets for 200 epochs, the features were frozen, then a supervised linear
classifier, consisting of a fully-connected layer followed by a softmax layer, was trained on
the extracted features for 100 epochs. We use a learning rate of 1 × 10−3, weight decay of
1× 10−6, a momentum of 0.9, and a batch size of 256. The results are reported in Table 6.1.
Our method obtains the best top-1 accuracy of 88.39%, 63.37%, and 87.06% for the linear

evaluation on CIFAR10, CIFAR100, and STL10 datasets, respectively, which are better than
all baseline methods. Note that the KNN results reveal the same superiority of our approach
over the baselines. On the other hand, TriMix achieves the second-best results and is on
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Fig. 6.2. TriMix training curves show that all losses converged and contributed significantly to the training on the
TinyImage dataset. While tiny oscillations are noticed in the self-consistency loss, the overall trend is
decreased.

Tab. 6.2. Top-1 accuracy(%) of the semi-supervised learning results (with 100 fine tuning epochs) using 1%, 10%
and 100% training examples on the benchmark datasets. The best results are in bold. Our method
outperforms three out of 4 datasets at lower data regimes (at 1% and 10%), while it obtains the
second-best results at 100% data split.

1% 10% 100%

Method CIFAR10 CIFAR100 STL10 TinyImageNet CIFAR10 CIFAR100 STL10 TinyImageNet CIFAR10 CIFAR100 STL10 TinyImageNet

SimCLR 79.03 29.94 65.23 16.14 86.16 51.65 79.98 35.5 92.68 70.09 88.94 55.36

BYOL 77.27 28.04 61.05 15.68 85.01 50.36 79.03 34.13 92.29 69.56 88.74 54.26

Barlow Twins 79.19 33.14 63.82 20.28 86.55 54.86 80.15 39.83 92.00 69.15 88.95 54.62

VICReg 70.07 22.51 53.79 12.23 81.94 45.93 71.93 31.35 91.97 69.18 85.41 52.38

TriMix(ours) 81.03 34.08 66.80 19.32 87.56 56.23 81.08 39.52 92.16 69.72 89.54 54.89

par with the Barlow Twins in the linear evaluation for the Tiny ImageNet dataset. For more
illustration, we draw the losses during the training of our method on TinyImage in Fig.6.2.
The curves show that our losses (virtual embeddings and consistency) are beneficial and
contribute significantly to the training. Despite that, we notice negligible oscillations in the
consistency loss, which is attributed to the complexity of its task. However, its overall curve
decreases during the training. The above results demonstrate the importance of utilizing the
manifold embedding augmentations and the self-consistency tasks to achieve outstanding
results in self-supervised learning.

Semi-supervised Evaluation on Natural images

In this experiment, our method and the baselines were fine-tuned on subsets of 1%, 10%,
and 100% of the benchmark datasets for semi-supervised learning. We use a learning rate
of 1× 10−3, weight decay of 1× 10−6, a momentum of 0.9, and a batch size of 256 for 100
epochs. The obtained semi-supervised results are reported in Table 6.2. Our approach achieves
the best results for the data splits at 1% and 10% on 3 out of 4 datasets. Nevertheless, our
method gets the second-best results for the 100% of the data split. This experiment shows the
effectiveness of our strategy in a lower data regime.

KNN and Linear Evaluations on Medical images

Thus far, we have shown the performance of TriMix in four natural datasets. In the follow-
ing experiments, we validate our method on four publicly available medical datasets from
MedMNIST. Note that we kept the same setup from previous experiments. In addition, we
evaluated the pre-trained representations using a supervised linear classifier on the frozen
representations from the pre-training step on the medical data. The results are reported in
Table 6.3. Starting with the KNN results, TriMix outperforms all other methods in the four
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Tab. 6.3. Top-1 accuracy(%) of TriMix and the baselines for KNN (with 200-epoch pretraining) and linear
evaluations ( with 100-epoch supervised training) on the medical datasets. Best results are in bold.
Our method outperforms other methods in the medical datasets in the KNN and linear evaluations,
confirming the results in the previous experiments.

KNN Linear

Method PathMNIST DermaMNIST OCTMNIST BloodMNIST PathMNIST DermaMNIST OCTMNIST BloodMNIST

SimCLR 91.56 71.87 69.90 89.42 92.69 73.41 74.5 92.90

BYOL 91.50 71.16 70.00 86.14 92.72 72.47 75.80 90.73

Barlow Twins 91.36 71.68 71.20 87.89 92.42 73.36 77.50 92.28

VICReg 90.40 70.77 69.50 86.14 90.87 72.24 72.39 89.16

TriMix(ours) 91.92 72.07 72.30 89.92 92.88 73.82 76.60 93.16

Tab. 6.4. Top-1 accuracy(%) of the semi-supervised learning results (with 100 fine tuning epochs) using 1%, 10%
and 100% training examples on 4 medical datasets. Best results are in bold. In general, our method
shows the best results in all data split.

1% 10% 100%

Method PathMNIST DermaMNIST OCTMNIST BloodMNIST PathMNIST DermaMNIST OCTMNIST BloodMNIST PathMNIST DermaMNIST OCTMNIST BloodMNIST

SimCLR 90.47 66.88 77.30 84.68 91.95 71.22 80.69 92.15 93.50 75.86 83.89 95.81

BYOL 89.07 67.11 78.40 80.64 92.09 71.32 80.01 91.25 93.34 75.31 83.60 96.11

Barlow Twins 89.90 67.13 78.30 82.61 92.08 70.97 80.20 91.34 92.54 75.86 82.30 95.90

VICReg 89.77 66.98 79.30 78.54 91.61 71.37 80.59 88.97 93.38 76.00 81.50 95.32

TriMix(ours) 90.81 67.23 78.80 84.89 92.15 71.37 80.78 92.15 93.50 76.21 81.90 95.73

medical data with a classification accuracy of 91.92, 72.07, 72.30, and 89.92 for PathMNIST,
DermaMNIST, OCTMNIST, and BloodMNIST, respectively, with improvement between 0.2%
and 1.1% better than the second-best models, confirming the results in the previous experi-
ments. The same superiority also is found in the results of the linear evaluation. For example,
except for OCT images, our approach outperforms all methods with accuracy reaching 93.16
in blood cell microscopic images.

Semi-Supervised Evaluation on Medical images
The semi-supervised learning for the medical data is presented in Table 6.4. As in the previous
setting, we fine-tune the pre-trained models on subsets of 1%, 10%, and 100% of datasets.
The table shows that our method achieves the best results in all datasets at all data splits.
Exception from that is the results of OCT and Blood datasets at 100% of the data. For instance,
the accuracy of our approach at 1%, 10%, and 100% of the data are 90.81, 92.15, and 93.50 in
PathMNIST, 67.23, 71.37, and 76.21 in DermaMNIST, 78.80, 80.78, and 81.90 in OCTMNIST,
and 84.89, 92.15, and 95.73 in BloodMNIST, respectively. These experiments in both medical
and natural datasets reveal the generalizability and applicability of our method to various
types of images in self/semi-supervised settings. Nearly in all these experiments, TriMix has
superiority over others. Still, another critical issue is to investigate our method in a transfer
learning setting.

Transfer Learning from Natural to Medical Images
This experiment aims to build linear classifiers on top of fixed representations of the pre-
trained models on the natural images. Then, we fine-tune these models on the four medical
datasets simulating the transfer learning setting as in the literature, which resulted in 80
models shown in Table 6.5. One can notice that our approach generalizes better when using
a pre-trained model on CIFAR10 and TinyImage. Nevertheless, Barlow Twins works better
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Tab. 6.5. Top-1 accuracy(%) of transfer learning experiments of the pre-trained models on natural data to the
medical data. The best results are in bold. Our learned representations capture more beneficial
information and generalize better than the remaining approaches.

CIFAR10 CIFAR100

Method PathMNIST DermaMNIST OCTMNIST BloodMNIST PathMNIST DermaMNIST OCTMNIST BloodMNIST

SimCLR 77.17 71.57 63.90 77.81 76.43 71.57 60.50 76.23

BYOL 78.19 72.21 65.00 79.42 80.78 71.52 57.30 75.85

Barlow Twins 78.30 71.67 62.70 80.70 77.60 73.01 58.40 80.35

VICReg 77.47 71.77 63.50 77.19 80.87 71.22 65.10 76.79

TriMix(ours) 78.43 72.27 67.20 78.49 80.92 71.17 57.40 78.84

STL10 TinyImageNet

Method PathMNIST DermaMNIST OCTMNIST BloodMNIST PathMNIST DermaMNIST OCTMNIST BloodMNIST

SimCLR 74.27 70.22 40.90 61.47 77.43 70.92 46.00 69.48

BYOL 72.93 69.52 57.90 67.72 77.42 70.97 52.10 73.98

Barlow Twins 77.40 70.12 50.20 67.17 76.50 71.06 56.20 73.77

VICReg 71.10 70.02 44.60 60.07 72.86 71.02 47.50 64.42

TriMix(ours) 76.56 70.32 49.30 63.84 77.77 71.87 51.20 72.46

Fig. 6.3. 2D UMAP projection of CIFAR10 testing dataset using different self-supervised learning methods. Our
method (TriMix) is better and less noisy in clustering the ten classes than the remaining methods.

using CIFAR100, and BYOL outperforms others using STL10. Generally, TriMix is among
the best models regardless of the dataset used. This experiment reveals that our learned
representations capture more beneficial information and generalize better than the remaining
approaches.

Clustering the Learned Representations Y Analysis
To gain more insights into the effect of our approach on the learned representations and realize
the differences between ours and the baselines, we visualize the learned representations using
UMAP [191], an open-source library for dimensionality reduction. As an illustration, we
cluster the learned representations for the CIFAR10 testing dataset in Figure 6.3. It is noticed
that our method clusters the ten classes more precisely than the others. For example, the
classes of "truck" and "automobile" are more compact by ours than the others, while the
classes of "ship" and "airplane" are less overlapped with each other. On the other hand, the
animals’ classes (i.e. , bird, cat, deer, dog, frog, and horse) represent a challenge to all models;
nevertheless, our method clusters them with lower noises.

Objective Function Components Analysis
This experiment investigates the effect of our main contributions. We train different versions
of TriMix with(out) virtual embeddings and self-consistency terms on the CIFAR10 dataset for
200 epochs. Then, we conduct a linear evaluation for 100 epochs and register the results in
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Tab. 6.6. Objective function components analysis. Linear evaluation on the CIFAR10 and STL10 data. Our
contributions enhance the baseline while combining them boosts the performance significantly.

Configuration CIFAR10

Barlow Twins 86.29

TriMix: Virtual embeddings loss only 87.16

TriMix: Self-consistency loss only 87.32

TriMix: Virtual embeddings loss + self-consistency loss 87.74

TriMix: Virtual embeddings loss + self-consistency loss + feature norms 88.39

Fig. 6.4. Top-1 accuracy(%) of TriMix when changing the batch size and features dimension. (i) Batch size:
increasing the size of the features enhances the results. (ii) Features dimension: smaller batches work
better with smaller dimensions and vice versa.

Table 6.6. First, it is shown that utilizing either of our contributions enhances total accuracy
with 87.16 and 87.32 when using the virtual and self-consistency losses, respectively. While
combining both terms adds more enhancements up to 87.74. Finally, joining all contributions,
including the features normalization, plays a significant role in the overall performance at
88.39.

Batch and Projector Sizes Analysis
Further, we test the effect of changing the batch size and projector dimension on TriMix.
Specifically, we investigate batches of size {32, 64, 128, 256, 512}, with features dimensions
of {128, 256, 512, 1024, 2048} on CIFAR10/100, STL10, and TinyImage. The results are
curves for 100 models, presented in Fig.6.4. In general, the accuracy curves show that for
fixed batch size, using more extensive features achieves better results, which agrees with the
literature. Also, for most models, no significant difference in the accuracy for dimensions
1024 and 2048. Further, for fixed feature size, the smaller batches work better with smaller
dimensions, while bigger batches favor bigger dimensions.

Virtual Data Analysis
This experiment aims to realize how our method decomposes and regresses the augmented
data from its mixture. In Fig.6.5, we present sample images from the STL10 dataset. Fig.6.5.(A)
shows a sample ground truth matrix (GT ), which is created at each epoch, see Eq.(6.8). To
illustrate, we also show the corresponding batch in the above raw. To the left of the matrix,
we display the augmented images. For example, the one in the red rectangle is generated by
mixing the two images from the original batch, i.e. , the images in green rectangles in the above
raw, using λ and 1−λ (0.51 and 0.49, respectively in this sample). Figures 6.5.(B) and 6.5.(C),
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Fig. 6.5. Mixed data analysis. (A) sample ground truth matrix. We depict the corresponding batch in the above
raw. To the left of the matrix, we display the virtual images. For example, the image in the red rectangle
is generated from the images in the green rectangles. (B) and (C) show the predicted matrix before and
after softmax operation. By raining on this task, our method gains more information from the images
and hence, better performance.

on the other hand, show the predicted matrix before and after softmax operation, which are
corresponding to Eq.(6.6) and Eq.(6.7), respectively. Our method attempts to anticipate the
ground truth matrix and decomposes the mixed images into the original parts, as shown in
Fig.6.5 (B). Thus, by training on this auxiliary task, our method learns to distinguish between
different images and gain more information, boosting performance. Notice that the predicted
matrix, in Fig.6.5 (B), contains some noises, i.e. , negative values. However, the model
produces more stable predictions and better results after applying the softmax operation,
Eq.(6.7).

TriMix Variants Analysis

Our initial setting depends on Z to train the model. While in this experiment, we explore
alternative ways of implementing our loss functions. Specifically, we attempt to use the hidden
feature representation Y in our objective functions. The first alternative is to define virtual
embeddings loss and self-consistency loss on feature representation Y . The second choice
is to optimize virtual embeddings loss on embeddings Z and self-consistency loss on hidden
feature Y . Eventually, we compared both experiments with our baseline model and reported
the results in Table 6.7. In short, our initial choice for the overall loss function that depends
on Y is still the most reasonable approach. However, using our losses on different data types,
i.e. , virtual embeddings loss on embeddings Z and self-consistency loss on hidden feature Y

achieve the lowest accuracy. That is related to the fact that each term works on incompatible
features (i.e. , Y and Z), confusing our objective function.

6.6 Discussion

Our last contribution is to address the deficiency of the labeled data by investigating the
representations of learning in a self-supervised learning setting. To achieve that, we propose
our method, TriMix, which incorporates; i) virtual embeddings loss: first, we augment the
network with novel embeddings generated from the original ones, then we train the model to
decompose these virtual embeddings to their original components, 2) self-consistency term
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Tab. 6.7. TriMix: Loss function based on feature representation Y analysis. Linear evaluation on the CIFAR10.
Our initial setting is the most valid option. While using different features in both terms confuses the
model.

Configuration Accuracy

Virtual embeddings loss on Y + self-consistency loss on Y 86.32

Virtual embeddings loss on Z + self-consistency loss on Y 85.37

Virtual embeddings loss on Z + self-consistency loss on Z (Baseline) 88.39

that enforces the consistency between the virtual and the original data. In this chapter, we
will discuss our findings and observations of this method in detail.

6.6.1 Applicability and Transferability

Our method has shown to be effective in all experiments beating recent SSL methods in
most tasks. First, we have demonstrated the applicability of our approach to eight public
datasets, including natural and medical images. Also, our strategy was very beneficial in
semi-supervised learning settings, especially at lower data regimes i.e. , 1% and 10%, where
the models suffer from scarcity in the labeled data. That corresponds to the need, in this
particular setting, for additional and novel representations to augment the model with new
training data. Even though no specific approach was dominated in the transfer learning
experiments due to the complexity of transferring the pre-trained models, using any natural
dataset, to all medical data and achieving SOTA performance. Still, among all the pre-trained
models, ours were the most successful.

6.6.2 Manifold and Hidden Embeddings Augmentation

The current self-supervised learning methods heavily depend on two views or augmentations
of the input data to train the network. While this is an essential step for any successful self-
supervised approach, none of the previous efforts have investigated the augmentation at the
manifold or hidden representations. We have shown in this thesis that attaching the manifold
augmentation to the training boosts performance. Our augmentation methodology depends on
mixing the original embeddings with random percentages while training the model to predict
these percentages and decompose the augmented data to the original elements. Analyzing the
hidden representations shows that our method is better at clustering the classes with fewer
noises, which justifies its top performance over other baselines. Still, an important question
addressed by our thesis was where to inject this function. We have shown that placing the
two losses at the hidden embeddings, i.e. , Z, achieved the best results. That is attributed to
the homogeneity of used data in both terms. On the other hand, placing the two losses at
different locations, i.e. , embedding Z or hidden representations Y , might confuse the model
and reduce its performance. While we kept our augmentation methodology simple, one can
investigate more sophisticated augmentation approaches or inject more extra tasks. Model
failure is one of the most challenging tasks in that situation.
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6.6.3 Interpretability

TriMix performance is related to the training strategy we introduced. Our auxiliary task serves
two purposes. First, augment the model with novel data generated from the mixup operation
at the manifold layers. It is known that data augmentation plays a fundamental role in the
performance of any deep learning method. Second, train the model to distinguish between
the images by predicting the mixing ratio used to generate the new data. For illustration,
consider a case when mixing a malignant sample with a benign one. Now, when we train our
model to decompose the combined image to the original ones. The model implicitly learns the
characteristic of each class. Thus, more information is being realized by achieving this task.
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7Conclusion & Future Works

7.1 Conclusion

This thesis addresses the insufficiency of annotated data by proposing annotation-efficient
methods in medical imaging. We tackle the problem from three related perspectives that
handle the scarcity of labeled data. First, we investigate data augmentation via random linear
interpolation in a semi-supervised learning setting. Our proposal uses linear interpolations
at the input and hidden spaces to boost the model’s performance with newly generated data
points that fit the complexity of the medical images. Further, we show the applicability of our
method to medical image segmentation tasks for brain and lung images. Our comprehensive
analysis shows that our method efficiently utilizes labeled and unlabeled data, proving its
stability, superiority, and consistency. Thus, it addresses our first research question, to what
extent does the massive available non-annotated data in training help build robust deep
learning methods suitable to the complexity of medical images?

In some cases, the availability of high-quality annotated data is impossible. Thus, we ask
whether we can incorporate and seek other available data resources from remote locations
to overcome the labeled data’s limitation and build powerful deep learning models. Our
second contribution addresses this point by proposing a federated semi-supervised learning
method inspired by peer learning, knowledge sharing from educational science, and ensemble
averaging from committee machines. Specifically, our strategy is based on knowledge sharing
via static & dynamic peer learning policies. Finally, we show a real-life application of our
approach that suits the characteristics of the medical data, i.e., data heterogeneity, severe
class imbalance, and an abundant amount of unlabeled data on skin lesion classification in
dermoscopic images. Furthermore, our testing environment comprises the standard semi-
supervised setting and a more challenging and less investigated scenario where clients can
access the unlabeled data. Our method is on par with the state-of-the-art process in skin
classification in the standard federated learning and outperforms all other baselines. Moreover,
our solution demonstrates less sensitivity to noisy clients and better generalizes to unseen
data. Besides, we propose the peer anonymization (PA) technique. PA is a simple and
efficient approach to creating an anonymized peer and hiding clients’ identities. PA enhances
performance while reducing communication costs. We show that our method is orthogonal
and easy to implement to other methods without additional complexity. By achieving most of
the best results, we believe that our proposed method answers the second research question.

Our last research question was whether we could mine and extract the knowledge from
unlabeled data to perform the same tasks achieved by the labeled ones. In this regard,
we suggested to utilized representation learning and proposed virtual embeddings and self-
consistency in our self-supervised learning method, TriMix. While the current works depend on
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data augmentations at the input space in Siamese-based architectures, our approach proposed
an auxiliary task that generates new virtual data from hidden embeddings. Besides providing
new data, our training strategy is to learn the model to predict the mixing factor in the data
so that the model can distinguish between the images and decompose the mixed data to the
original components. Further, we propose a loss term to force self-consistency in the data.
We have shown the applicability of our method on eight public datasets consisting of natural
and medical images, with notable improvements in both data types. Moreover, our approach
demonstrated superior performance in the low amount of data of the semi-supervised learning
setting while on par with the best models when utilizing the whole training data. Although
none of the methods excels in all transfer learning experiments, our pre-trained models showed
the best accuracy. Our strategy highlights the importance of embedding augmentations and
additional tasks to achieve leading results. Accordingly, we found that utilizing this approach
provides a decent solution that mitigates the scarcity of annotated data.

7.2 Future Works

Although this work allowed us to achieve promising results and outstanding performances,
several possible future directions and extensions can be studied and addressed.

Generating The New Data. In the first approach, the quality of the generated data and
pseudo labels mainly depends on the initial guess and the mixup coefficient λ. Also, we opt
for a simple augmentation methodology in the third method to avoid any potential model
collapsing. However, studying different ones, including sophisticated techniques, could be
a future research direction. For instance, one could think of modeling this coefficient as a
function of uncertainty measures. Also, to generate more realistic mixed-up data, one could
investigate performing the mixup operation on disentangled representations [113]. Therefore,
instead of naive mixups, one could explore more intelligent ways of data mixing. Further, in
the last approach, we build a ground truth matrix based on an arbitrary factor at the beginning
of each epoch. However, we could research a more intelligent and adaptive way that evolved
during the training. On the other hand, we already enhanced the pseudo-labeling process in
the second approach by seeking help from similar clients. Still, we could refine it by including
post-processing steps such as conditional random fields [155] or prior knowledge extracted
from the data [93, 182].

Learning Policies. In this thesis, we investigate two learning policies; a fixed approach that
selects similar top peers and a dynamic and more adaptive one that controls the learning
stream of the clients. We have shown that both strategies are effective with advantages to the
dynamic one. Thus far, we exploited the model parameters as similarity measurement, while
we could employ different techniques to profile the clients such as graph-based methods[40,
50].

Privacy. While we encourage our method to exchange knowledge in FedPerl (second con-
tribution), the ensembling approach is utilized to build the anonymized peer, which hides
clients’ identities and improves privacy. Yet, we could investigate the privacy guarantee for
aggregated models as future work.
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[151] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. “Federated learning:
Strategies for improving communication efficiency”. In: arXiv preprint arXiv:1610.05492 (2016)
(cit. on p. 49).

[152] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. “Similarity of neural network representations
revisited”. In: International Conference on Machine Learning. PMLR. 2019, pp. 3519–3529 (cit. on
p. 92).

[153] E. Korot, Z. Guan, D. Ferraz, et al. “Code-free deep learning for multi-modality medical image
classification”. In: Nature Machine Intelligence 3.4 (2021), pp. 288–298 (cit. on p. 9).

[154] S. B. Kotsiantis, I. Zaharakis, P Pintelas, et al. “Supervised machine learning: A review of
classification techniques”. In: Emerging artificial intelligence applications in computer engineering
160.1 (2007), pp. 3–24 (cit. on p. 31).

[155] P. Krähenbühl and V. Koltun. “Efficient inference in fully connected crfs with gaussian edge
potentials”. In: Advances in neural information processing systems 24 (2011) (cit. on pp. 43, 138).

[156] M. A. Kramer. “Nonlinear principal component analysis using autoassociative neural networks”.
In: AIChE journal 37.2 (1991), pp. 233–243 (cit. on p. 56).

[157] R. Krishnan, P. Rajpurkar, and E. J. Topol. “Self-supervised learning in medicine and healthcare”.
In: Nature Biomedical Engineering (2022), pp. 1–7 (cit. on p. 59).

[158] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny images”. In: (2009)
(cit. on p. 127).

[159] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks”. In: Advances in neural information processing systems 25 (2012) (cit. on pp. 21,
28).

[160] S. Laine and T. Aila. “Temporal ensembling for semi-supervised learning”. In: arXiv preprint
arXiv:1610.02242 (2016) (cit. on p. 38).

[161] B Landman and S Warfield. “MICCAI 2012 workshop on multi-atlas labeling”. In: Medical image
computing and computer assisted intervention conference. 2012 (cit. on p. 71).

[162] B. A. Landman and S. K. Warfield. MICCAI 2012: Workshop on Multi-atlas Labeling. éditeur non
identifié, 2019 (cit. on p. 71).

[163] Y. Le and X. Yang. “Tiny imagenet visual recognition challenge”. In: CS 231N 7.7 (2015), p. 3
(cit. on p. 127).

[164] Y. LeCun, B. Boser, J. S. Denker, et al. “Backpropagation applied to handwritten zip code
recognition”. In: Neural computation 1.4 (1989), pp. 541–551 (cit. on p. 21).

[165] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on p. 18).

[166] C. Ledig, L. Theis, F. Huszár, et al. “Photo-realistic single image super-resolution using a generative
adversarial network”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 4681–4690 (cit. on p. 56).

[167] H. M. Levin, G. V. Glass, and G. R. Meister. “Cost-effectiveness of computer-assisted instruction”.
In: Evaluation review 11.1 (1987), pp. 50–72 (cit. on p. 91).

150 Bibliography



[168] H. Li, Y. Wang, R. Wan, S. Wang, T.-Q. Li, and A. C. Kot. “Domain Generalization for Medical Imag-
ing Classification with Linear-Dependency Regularization”. In: arXiv preprint arXiv:2009.12829
(2020) (cit. on pp. 32, 87).

[169] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen. “Medical image classification with
convolutional neural network”. In: 2014 13th international conference on control automation
robotics & vision (ICARCV). IEEE. 2014, pp. 844–848 (cit. on p. 9).

[170] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. “Federated learning: Challenges, methods, and
future directions”. In: IEEE Signal Processing Magazine 37.3 (2020), pp. 50–60 (cit. on pp. 45,
47–49, 88).

[171] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. “Federated optimization in
heterogeneous networks”. In: arXiv preprint arXiv:1812.06127 (2018) (cit. on p. 117).

[172] W. Li, F. Milletarì, D. Xu, et al. “Privacy-preserving federated brain tumour segmentation”. In:
International workshop on machine learning in medical imaging. Springer. 2019, pp. 133–141
(cit. on pp. 46, 50).

[173] X. Li, L. Yu, H. Chen, C.-W. Fu, L. Xing, and P.-A. Heng. “Transformation-Consistent Self-
Ensembling Model for Semisupervised Medical Image Segmentation”. In: IEEE Transactions
on Neural Networks and Learning Systems (2020) (cit. on p. 44).

[174] X. Li, Y. Gu, N. Dvornek, L. H. Staib, P. Ventola, and J. S. Duncan. “Multi-site fMRI analysis using
privacy-preserving federated learning and domain adaptation: ABIDE results”. In: Medical Image
Analysis 65 (2020), p. 101765 (cit. on p. 51).

[175] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou. “Fedbn: Federated learning on non-iid features
via local batch normalization”. In: arXiv preprint arXiv:2102.07623 (2021) (cit. on pp. 47, 48,
117).

[176] Y. Li, L. Luo, H. Lin, H. Chen, and P.-A. Heng. “Dual-consistency semi-supervised learning with
uncertainty quantification for COVID-19 lesion segmentation from CT images”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2021,
pp. 199–209 (cit. on pp. 44, 65).

[177] Y. Li, J. Chen, X. Xie, K. Ma, and Y. Zheng. “Self-loop uncertainty: A novel pseudo-label for
semi-supervised medical image segmentation”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2020, pp. 614–623 (cit. on pp. 44, 59).

[178] X. Liang, Y. Lin, H. Fu, L. Zhu, and X. Li. “RSCFed: Random Sampling Consensus Federated
Semi-supervised Learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 10154–10163 (cit. on p. 51).

[179] H. Lin, J. Lou, L. Xiong, and C. Shahabi. “Semifed: Semi-supervised federated learning with
consistency and pseudo-labeling”. In: arXiv preprint arXiv:2108.09412 (2021) (cit. on p. 50).

[180] G. Litjens, T. Kooi, B. E. Bejnordi, et al. “A survey on deep learning in medical image analysis”.
In: Medical image analysis 42 (2017), pp. 60–88 (cit. on pp. 9, 10).

[181] J. Liu, J. Huang, Y. Zhou, et al. “From distributed machine learning to federated learning: A
survey”. In: Knowledge and Information Systems (2022), pp. 1–33 (cit. on pp. 45, 46).

[182] Q. Liu, H. Yang, Q. Dou, and P.-A. Heng. “Federated Semi-supervised Medical Image Classification
via Inter-client Relation Matching”. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer. 2021, pp. 325–335 (cit. on pp. 50, 51, 89, 90, 98, 112,
138).

[183] X. Liu, F. Zhang, Z. Hou, et al. “Self-supervised learning: Generative or contrastive”. In: IEEE
Transactions on Knowledge and Data Engineering (2021) (cit. on pp. 52, 53, 56).

Bibliography 151



[184] X. Liu, L. Faes, A. U. Kale, et al. “A comparison of deep learning performance against health-care
professionals in detecting diseases from medical imaging: a systematic review and meta-analysis”.
In: The lancet digital health 1.6 (2019), e271–e297 (cit. on p. 10).

[185] Y. Liu, M. Jin, S. Pan, et al. “Graph self-supervised learning: A survey”. In: IEEE Transactions on
Knowledge and Data Engineering (2022) (cit. on p. 52).

[186] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic segmentation”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 3431–
3440 (cit. on p. 22).

[187] A. R. Lopez, X. Giro-i Nieto, J. Burdick, and O. Marques. “Skin lesion classification from dermo-
scopic images using deep learning techniques”. In: 2017 13th IASTED international conference on
biomedical engineering (BioMed). IEEE. 2017, pp. 49–54 (cit. on pp. 32, 87).

[188] L. Maier-Hein, M. Eisenmann, A. Reinke, et al. “Why rankings of biomedical image analysis
competitions should be interpreted with care”. In: Nature communications 9.1 (2018), pp. 1–13
(cit. on p. 63).

[189] J. A. Maintz and M. A. Viergever. “A survey of medical image registration”. In: Medical image
analysis 2.1 (1998), pp. 1–36 (cit. on p. 10).

[190] C. R. Maurer and J. M. Fitzpatrick. “A review of medical image registration”. In: Interactive
image-guided neurosurgery 1 (1993), pp. 17–44 (cit. on p. 10).

[191] L. McInnes, J. Healy, and J. Melville. “Umap: Uniform manifold approximation and projection
for dimension reduction”. In: arXiv preprint arXiv:1802.03426 (2018) (cit. on p. 131).

[192] G. McLachlan. Discriminant analysis and statistical pattern recognition. Vol. 544. John Wiley &
Sons, 2004 (cit. on p. 41).

[193] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. “Communication-efficient
learning of deep networks from decentralized data”. In: Artificial intelligence and statistics. PMLR.
2017, pp. 1273–1282 (cit. on pp. 2, 3, 45–47, 88, 89, 91, 116).

[194] A. Meyer, S. Ghosh, D. Schindele, et al. “Uncertainty-aware temporal self-learning (UATS): Semi-
supervised learning for segmentation of prostate zones and beyond”. In: Artificial Intelligence in
Medicine 116 (2021), p. 102073 (cit. on p. 44).

[195] A. Meyer-Bäse, A. Meyer-Baese, and V. J. Schmid. Pattern Recognition and Signal Analysis in
Medical Imaging. Academic Press, 2004 (cit. on pp. 6, 8).

[196] F. Milletari, N. Navab, and S.-A. Ahmadi. “V-net: Fully convolutional neural networks for volu-
metric medical image segmentation”. In: 2016 fourth international conference on 3D vision (3DV).
IEEE. 2016, pp. 565–571 (cit. on p. 22).

[197] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. “Virtual adversarial training: a regularization
method for supervised and semi-supervised learning”. In: IEEE transactions on pattern analysis
and machine intelligence 41.8 (2018), pp. 1979–1993 (cit. on p. 39).

[198] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann machines”. In: Icml.
2010 (cit. on pp. 15, 19).

[199] D. Ng, X. Lan, M. M.-S. Yao, W. P. Chan, and M. Feng. “Federated learning: a collaborative effort
to achieve better medical imaging models for individual sites that have small labelled datasets”.
In: Quantitative Imaging in Medicine and Surgery 11.2 (2021), p. 852 (cit. on p. 50).

[200] D. C. Nguyen, Q.-V. Pham, P. N. Pathirana, et al. “Federated learning for smart healthcare: A
survey”. In: ACM Computing Surveys (CSUR) 55.3 (2022), pp. 1–37 (cit. on pp. 48, 50).

[201] D. Nie, Y. Gao, L. Wang, and D. Shen. “ASDNet: Attention based semi-supervised deep networks
for medical image segmentation”. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer. 2018, pp. 370–378 (cit. on p. 45).

152 Bibliography



[202] S. Nikolov, S. Blackwell, A. Zverovitch, et al. “Deep learning to achieve clinically applicable
segmentation of head and neck anatomy for radiotherapy”. In: arXiv preprint arXiv:1809.04430
(2018) (cit. on pp. 5, 63).

[203] M. Noroozi and P. Favaro. “Unsupervised learning of visual representations by solving jigsaw
puzzles”. In: European conference on computer vision. Springer. 2016, pp. 69–84 (cit. on pp. 53,
55, 60).

[204] A. Odena. “Semi-supervised learning with generative adversarial networks”. In: arXiv preprint
arXiv:1606.01583 (2016) (cit. on p. 41).

[205] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow. “Realistic evaluation of deep
semi-supervised learning algorithms”. In: Advances in neural information processing systems 31
(2018) (cit. on pp. 42, 43, 64, 70, 76, 84, 85).

[206] A. v. d. Oord, Y. Li, and O. Vinyals. “Representation learning with contrastive predictive coding”.
In: arXiv preprint arXiv:1807.03748 (2018) (cit. on pp. 3, 57, 122).

[207] T. Orekondy, S. J. Oh, Y. Zhang, B. Schiele, and M. Fritz. “Gradient-leaks: Understanding and
controlling deanonymization in federated learning”. In: arXiv preprint arXiv:1805.05838 (2018)
(cit. on pp. 90, 116).

[208] A. G. Pacheco, G. R. Lima, A. S. Salomão, et al. “PAD-UFES-20: a skin lesion benchmark
composed of patient data and clinical images collected from smartphones”. In: arXiv preprint
arXiv:2007.00478 (2020) (cit. on p. 97).

[209] E. Panfilov, A. Tiulpin, S. Klein, M. T. Nieminen, and S. Saarakkala. “Improving Robustness of
Deep Learning Based Knee MRI Segmentation: Mixup and Adversarial Domain Adaptation”. In:
Proceedings of the IEEE International Conference on Computer Vision Workshops. 2019, pp. 0–0
(cit. on pp. 67, 123).

[210] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. “Context encoders: Feature
learning by inpainting”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 2536–2544 (cit. on pp. 53, 56).

[211] C. Petitjean and J.-N. Dacher. “A review of segmentation methods in short axis cardiac MR
images”. In: Medical image analysis 15.2 (2011), pp. 169–184 (cit. on p. 9).

[212] D. L. Pham, C. Xu, and J. L. Prince. “A survey of current methods in medical image segmentation”.
In: Annual review of biomedical engineering 2.3 (2000), pp. 315–337 (cit. on p. 11).

[213] D. L. Pham, C. Xu, and J. L. Prince. “Current methods in medical image segmentation”. In: Annual
review of biomedical engineering 2.1 (2000), pp. 315–337 (cit. on pp. 5, 63).

[214] N. Qian. “On the momentum term in gradient descent learning algorithms”. In: Neural networks
12.1 (1999), pp. 145–151 (cit. on p. 16).

[215] P. Regulation. “Regulation (EU) 2016/679 of the European Parliament and of the Council”. In:
Regulation (eu) 679 (2016), p. 2016 (cit. on p. 45).

[216] N. Rieke, J. Hancox, W. Li, et al. “The future of digital health with federated learning”. In: NPJ
digital medicine 3.1 (2020), pp. 1–7 (cit. on pp. 1, 45, 48, 50, 88).

[217] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. “On data banks and privacy homomorphisms”.
In: Foundations of secure computation 4.11 (1978), pp. 169–180 (cit. on p. 49).

[218] H. Robbins and S. Monro. “A stochastic approximation method”. In: The annals of mathematical
statistics (1951), pp. 400–407 (cit. on pp. 16, 46).

[219] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Vol. 317. Springer Science & Business
Media, 2009 (cit. on p. 25).

Bibliography 153



[220] H. W. Rogers, M. A. Weinstock, A. R. Harris, et al. “Incidence estimate of nonmelanoma skin
cancer in the United States, 2006”. In: Archives of dermatology 146.3 (2010), pp. 283–287 (cit. on
p. 87).

[221] T. Rohlfing. “Image similarity and tissue overlaps as surrogates for image registration accuracy:
widely used but unreliable”. In: IEEE transactions on medical imaging 31.2 (2011), pp. 153–163
(cit. on p. 71).

[222] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomedical image
segmentation”. In: International Conference on Medical image computing and computer-assisted
intervention. Springer. 2015, pp. 234–241 (cit. on pp. 22, 72, 76).

[223] T. Ross, D. Zimmerer, A. Vemuri, et al. “Exploiting the potential of unlabeled endoscopic video
data with self-supervised learning”. In: International journal of computer assisted radiology and
surgery 13.6 (2018), pp. 925–933 (cit. on p. 59).

[224] V. Rotemberg, N. Kurtansky, B. Betz-Stablein, et al. “A patient-centric dataset of images and
metadata for identifying melanomas using clinical context”. In: Scientific data 8.1 (2021), pp. 1–8
(cit. on p. 97).

[225] H. R. Roth, K. Chang, P. Singh, et al. “Federated Learning for Breast Density Classification: A
Real-World Implementation”. In: Domain Adaptation and Representation Transfer, and Distributed
and Collaborative Learning. Springer, 2020, pp. 181–191 (cit. on pp. 51, 88).

[226] A. G. Roy, S. Conjeti, N. Navab, C. Wachinger, A. D. N. Initiative, et al. “QuickNAT: A fully
convolutional network for quick and accurate segmentation of neuroanatomy”. In: NeuroImage
186 (2019), pp. 713–727 (cit. on pp. 9, 32, 63, 76).

[227] S. Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv preprint arXiv:1609.04747
(2016) (cit. on p. 16).

[228] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-propagating
errors”. In: nature 323.6088 (1986), pp. 533–536 (cit. on p. 15).

[229] O. Russakovsky, J. Deng, H. Su, et al. “Imagenet large scale visual recognition challenge”. In:
International journal of computer vision 115.3 (2015), pp. 211–252 (cit. on p. 98).

[230] P. K. Sahoo, S. Soltani, and A. K. Wong. “A survey of thresholding techniques”. In: Computer
vision, graphics, and image processing 41.2 (1988), pp. 233–260 (cit. on p. 11).

[231] M. Sajjadi, M. Javanmardi, and T. Tasdizen. “Regularization with stochastic transformations and
perturbations for deep semi-supervised learning”. In: Advances in neural information processing
systems 29 (2016) (cit. on p. 37).

[232] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. “Improved
techniques for training gans”. In: Advances in neural information processing systems 29 (2016)
(cit. on p. 41).

[233] K. V. Sarma, S. Harmon, T. Sanford, et al. “Federated learning improves site performance in
multicenter deep learning without data sharing”. In: Journal of the American Medical Informatics
Association (2021) (cit. on pp. 51, 88).

[234] F. Sattler, T. Korjakow, R. Rischke, and W. Samek. “Fedaux: Leveraging unlabeled auxiliary data
in federated learning”. In: IEEE Transactions on Neural Networks and Learning Systems (2021)
(cit. on p. 50).

[235] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. “Robust and communication-efficient
federated learning from non-iid data”. In: IEEE transactions on neural networks and learning
systems 31.9 (2019), pp. 3400–3413 (cit. on p. 49).

[236] T Schindewolf, W. Stolz, R. Albert, W. Abmayr, and H. Harms. “Classification of melanocytic
lesions with color and texture analysis using digital image processing.” In: Analytical and Quanti-
tative Cytology and Histology 15.1 (1993), pp. 1–11 (cit. on p. 87).

154 Bibliography



[237] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs. “Unsupervised anomaly
detection with generative adversarial networks to guide marker discovery”. In: International
conference on information processing in medical imaging. Springer. 2017, pp. 146–157 (cit. on
p. 10).

[238] H. Scudder. “Probability of error of some adaptive pattern-recognition machines”. In: IEEE
Transactions on Information Theory 11.3 (1965), pp. 363–371 (cit. on p. 34).

[239] M. P. Sendak, J. D’Arcy, S. Kashyap, et al. “A path for translation of machine learning products
into healthcare delivery”. In: EMJ Innov 10 (2020), pp. 19–00172 (cit. on p. 10).

[240] R. G. Sepuya, E. T. Dozeman, J. E. Prittie, A. J. Fischetti, and J. G. Weltman. “Comparing
diagnostic findings and cost of whole body computed tomography to traditional diagnostic
imaging in polytrauma patients”. In: Journal of Veterinary Emergency and Critical Care 32.3
(2022), pp. 334–340 (cit. on pp. 1, 32).

[241] L. Shao, F. Zhu, and X. Li. “Transfer learning for visual categorization: A survey”. In: IEEE
transactions on neural networks and learning systems 26.5 (2014), pp. 1019–1034 (cit. on p. 28).

[242] N. Sharma and L. M. Aggarwal. “Automated medical image segmentation techniques”. In: Journal
of medical physics/Association of Medical Physicists of India 35.1 (2010), p. 3 (cit. on pp. 5, 63).

[243] M. J. Sheller, B. Edwards, G. A. Reina, et al. “Federated learning in medicine: facilitating multi-
institutional collaborations without sharing patient data”. In: Scientific reports 10.1 (2020),
pp. 1–12 (cit. on p. 48).

[244] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas. “Multi-institutional deep learning
modeling without sharing patient data: A feasibility study on brain tumor segmentation”. In:
International MICCAI Brainlesion Workshop. Springer. 2018, pp. 92–104 (cit. on pp. 46, 50).

[245] D. Shen, G. Wu, and H.-I. Suk. “Deep learning in medical image analysis”. In: Annual review of
biomedical engineering 19 (2017), p. 221 (cit. on pp. 12, 32, 33).

[246] C. Shorten and T. M. Khoshgoftaar. “A survey on image data augmentation for deep learning”.
In: Journal of big data 6.1 (2019), pp. 1–48 (cit. on p. 29).

[247] E. Shortliffe. Computer-based medical consultations: MYCIN. Vol. 2. Elsevier, 2012 (cit. on p. 10).

[248] S. Shurrab and R. Duwairi. “Self-supervised learning methods and applications in medical imaging
analysis: A survey”. In: PeerJ Computer Science 8 (2022), e1045 (cit. on pp. 52, 53, 55, 56, 59).

[249] R. L. Siegel. Cancer Statistics, 2021. Published early online January 12, 2021 in CA Cancer Journal
for Clinicians. MPH, American Cancer Society, Atlanta, Ga. 2021 (cit. on p. 87).

[250] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recogni-
tion”. In: arXiv preprint arXiv:1409.1556 (2014) (cit. on pp. 21, 28).

[251] D. I. M. Size and D. I. M. S. Growth. “Share & Trends Analysis Report By Product (Titanium
Implants, Zirconium Implants), By Region (North America, Europe, Asia Pacific, Latin America,
MEA), And Segment Forecasts, 2018-2024”. In: Personalized Medicine Market Analysis By Product
And Segment Forecasts To 2022 (2018) (cit. on p. 5).

[252] K. Sohn, D. Berthelot, C.-L. Li, et al. “Fixmatch: Simplifying semi-supervised learning with
consistency and confidence”. In: arXiv preprint arXiv:2001.07685 (2020) (cit. on pp. 89, 91, 98).

[253] T. A. Sorensen. “A method of establishing groups of equal amplitude in plant sociology based on
similarity of species content and its application to analyses of the vegetation on Danish commons”.
In: Biol. Skar. 5 (1948), pp. 1–34 (cit. on p. 24).

[254] H. Sowrirajan, J. Yang, A. Y. Ng, and P. Rajpurkar. “Moco pretraining improves representation
and transferability of chest x-ray models”. In: Medical Imaging with Deep Learning. PMLR. 2021,
pp. 728–744 (cit. on p. 60).

Bibliography 155



[255] A. Srinivas, M. Laskin, and P. Abbeel. “Curl: Contrastive unsupervised representations for rein-
forcement learning”. In: arXiv preprint arXiv:2004.04136 (2020) (cit. on p. 122).

[256] A. Sriram, M. Muckley, K. Sinha, et al. “Covid-19 prognosis via self-supervised representation
learning and multi-image prediction”. In: arXiv preprint arXiv:2101.04909 (2021) (cit. on p. 60).

[257] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: a simple
way to prevent neural networks from overfitting”. In: The journal of machine learning research
15.1 (2014), pp. 1929–1958 (cit. on p. 28).

[258] P. Suetens. Fundamentals of medical imaging. Cambridge university press, 2017 (cit. on p. 5).

[259] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the inception architecture
for computer vision”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 2818–2826 (cit. on p. 28).

[260] A. Taleb, C. Lippert, T. Klein, and M. Nabi. “Multimodal self-supervised learning for medical image
analysis”. In: International Conference on Information Processing in Medical Imaging. Springer.
2021, pp. 661–673 (cit. on p. 59).

[261] M. Tan and Q. Le. “Efficientnet: Rethinking model scaling for convolutional neural networks”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 6105–6114 (cit. on p. 98).

[262] X. Tao, Y. Li, W. Zhou, K. Ma, and Y. Zheng. “Revisiting Rubik’s cube: self-supervised learning with
volume-wise transformation for 3D medical image segmentation”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer. 2020, pp. 238–248
(cit. on p. 60).

[263] A. Tarvainen and H. Valpola. “Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results”. In: Advances in neural information
processing systems 30 (2017) (cit. on pp. 38, 44).

[264] Y. Tian, O. J. Henaff, and A. v. d. Oord. “Divide and Contrast: Self-supervised Learning from
Uncurated Data”. In: arXiv preprint arXiv:2105.08054 (2021) (cit. on pp. 122, 123).

[265] Y. Tian, D. Krishnan, and P. Isola. “Contrastive multiview coding”. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16.
Springer. 2020, pp. 776–794 (cit. on p. 122).

[266] E. J. Topol. “High-performance medicine: the convergence of human and artificial intelligence”.
In: Nature medicine 25.1 (2019), pp. 44–56 (cit. on p. 10).

[267] K. J. Topping. “Trends in peer learning”. In: Educational psychology 25.6 (2005), pp. 631–645
(cit. on pp. 3, 88, 90–93).

[268] V. Tresp. “Committee machines”. In: Handbook for neural network signal processing (2001), pp. 1–
18 (cit. on pp. 3, 88, 90–92).

[269] P. Tschandl, N. Codella, B. N. Akay, et al. “Comparison of the accuracy of human readers
versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based,
international, diagnostic study”. In: The Lancet Oncology 20.7 (2019), pp. 938–947 (cit. on pp. 32,
87).

[270] P. Tschandl, C. Rosendahl, and H. Kittler. “The HAM10000 dataset, a large collection of multi-
source dermatoscopic images of common pigmented skin lesions”. In: Scientific data 5.1 (2018),
pp. 1–9 (cit. on p. 97).

[271] M. Tschannen, O. Bachem, and M. Lucic. “Recent advances in autoencoder-based representation
learning”. In: arXiv preprint arXiv:1812.05069 (2018) (cit. on pp. 53, 56).

[272] J. E. Van Engelen and H. H. Hoos. “A survey on semi-supervised learning”. In: Machine Learning
109.2 (2020), pp. 373–440 (cit. on pp. 35–37).

156 Bibliography



[273] W. G. Van Panhuis, P. Paul, C. Emerson, et al. “A systematic review of barriers to data sharing in
public health”. In: BMC public health 14.1 (2014), pp. 1–9 (cit. on p. 45).

[274] A. Vaswani, N. Shazeer, N. Parmar, et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017) (cit. on p. 45).

[275] V. Verma, A. Lamb, C. Beckham, et al. “Manifold mixup: Better representations by interpolating
hidden states”. In: International Conference on Machine Learning. 2019, pp. 6438–6447 (cit. on
pp. 65, 67, 68, 83, 123).

[276] M. A. Viergever, J. A. Maintz, S. Klein, K. Murphy, M. Staring, and J. P. Pluim. A survey of medical
image registration–under review. 2016 (cit. on p. 10).

[277] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. “Extracting and composing robust
features with denoising autoencoders”. In: Proceedings of the 25th international conference on
Machine learning. 2008, pp. 1096–1103 (cit. on p. 56).

[278] Y. N. T. Vu, R. Wang, N. Balachandar, C. Liu, A. Y. Ng, and P. Rajpurkar. “Medaug: Contrastive
learning leveraging patient metadata improves representations for chest x-ray interpretation”. In:
Machine Learning for Healthcare Conference. PMLR. 2021, pp. 755–769 (cit. on p. 60).

[279] B. Wang, A. Li, H. Li, and Y. Chen. “Graphfl: A federated learning framework for semi-supervised
node classification on graphs”. In: arXiv preprint arXiv:2012.04187 (2020) (cit. on p. 50).

[280] F. Wang and H. Liu. “Understanding the behaviour of contrastive loss”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2021, pp. 2495–2504 (cit. on
p. 57).

[281] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni. “Federated learning with
matched averaging”. In: arXiv preprint arXiv:2002.06440 (2020) (cit. on pp. 47, 48).

[282] W. Wang, D. Liang, Q. Chen, et al. “Medical image classification using deep learning”. In: Deep
learning in healthcare. Springer, 2020, pp. 33–51 (cit. on p. 9).

[283] X. Wang, H. Chen, H. Xiang, H. Lin, X. Lin, and P.-A. Heng. “Deep virtual adversarial self-training
with consistency regularization for semi-supervised medical image classification”. In: Medical
image analysis 70 (2021), p. 102010 (cit. on p. 44).

[284] K. Weiss, T. M. Khoshgoftaar, and D. Wang. “A survey of transfer learning”. In: Journal of Big
data 3.1 (2016), pp. 1–40 (cit. on p. 28).

[285] Wikipedia contributors. CT scan — Wikipedia, The Free Encyclopedia. [Online; accessed 19-June-
2022]. 2022 (cit. on p. 6).

[286] Wikipedia contributors. Medical ultrasound — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Medical_ultrasound&oldid=1089398967. [Online; accessed
21-June-2022]. 2022 (cit. on p. 6).

[287] H. Wu, S. Chen, G. Chen, W. Wang, B. Lei, and Z. Wen. “FAT-Net: Feature adaptive transformers
for automated skin lesion segmentation”. In: Medical Image Analysis 76 (2022), p. 102327 (cit. on
p. 9).

[288] L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li. “Self-supervised learning on graphs: Contrastive,
generative, or predictive”. In: IEEE Transactions on Knowledge and Data Engineering (2021)
(cit. on pp. 52, 53, 55, 56).

[289] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. “Unsupervised feature learning via non-parametric instance
discrimination”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 3733–3742 (cit. on p. 57).

[290] Y. Xia, D. Yang, Z. Yu, et al. “Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation”. In: Medical Image Analysis (2020), p. 101766
(cit. on p. 43).

Bibliography 157

https://en.wikipedia.org/w/index.php?title=Medical_ultrasound&oldid=1089398967
https://en.wikipedia.org/w/index.php?title=Medical_ultrasound&oldid=1089398967


[291] G. Xie, J. Wang, Y. Huang, et al. “FedMed-GAN: Federated Domain Translation on Unsupervised
Cross-Modality Brain Image Synthesis”. In: arXiv preprint arXiv:2201.08953 (2022) (cit. on
p. 51).

[292] J. Xie, R. Girshick, and A. Farhadi. “Unsupervised deep embedding for clustering analysis”. In:
International conference on machine learning. PMLR. 2016, pp. 478–487 (cit. on p. 58).

[293] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji. “Self-supervised learning of graph neural networks: A
unified review”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) (cit. on
pp. 52, 53).

[294] Y. Xie, J. Zhang, Z. Liao, Y. Xia, and C. Shen. “PGL: prior-guided local self-supervised learning for
3D medical image segmentation”. In: arXiv preprint arXiv:2011.12640 (2020) (cit. on p. 60).

[295] W. Xiong, J. Droppo, X. Huang, et al. “Achieving human parity in conversational speech recogni-
tion”. In: arXiv preprint arXiv:1610.05256 (2016) (cit. on p. 122).

[296] S. S. Yadav and S. M. Jadhav. “Deep convolutional neural network based medical image classifi-
cation for disease diagnosis”. In: Journal of Big Data 6.1 (2019), pp. 1–18 (cit. on p. 9).

[297] D. Yang, Z. Xu, W. Li, et al. “Federated Semi-Supervised Learning for COVID Region Segmentation
in Chest CT using Multi-National Data from China, Italy, Japan”. In: Medical Image Analysis
(2021), p. 101992 (cit. on pp. 50, 51, 89, 91, 98, 100, 101, 104–107, 110, 111).

[298] J. Yang, R. Shi, and B. Ni. “MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark
for Medical Image Analysis”. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI).
2021, pp. 191–195 (cit. on p. 127).

[299] J. Yang, R. Shi, D. Wei, et al. “MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and
3D Biomedical Image Classification”. In: arXiv preprint arXiv:2110.14795 (2021) (cit. on p. 127).

[300] Q. Yang, Y. Liu, T. Chen, and Y. Tong. “Federated machine learning: Concept and applications”.
In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.2 (2019), pp. 1–19 (cit. on
pp. 45, 48).

[301] X. Yang, Z. Song, I. King, and Z. Xu. “A survey on deep semi-supervised learning”. In: arXiv
preprint arXiv:2103.00550 (2021) (cit. on pp. 35–37, 41).

[302] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xlnet: Generalized
autoregressive pretraining for language understanding”. In: Advances in neural information
processing systems 32 (2019) (cit. on p. 122).

[303] Y. Yeganeh, A. Farshad, N. Navab, and S. Albarqouni. “Inverse distance aggregation for federated
learning with non-iid data”. In: Domain Adaptation and Representation Transfer, and Distributed
and Collaborative Learning. Springer, 2020, pp. 150–159 (cit. on p. 50).

[304] L. Yu, S. Wang, X. Li, C.-W. Fu, and P.-A. Heng. “Uncertainty-Aware Self-ensembling Model for
Semi-supervised 3D Left Atrium Segmentation”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2019, pp. 605–613 (cit. on p. 44).

[305] Y. Yuan, M. Chao, and Y.-C. Lo. “Automatic skin lesion segmentation using deep fully convolutional
networks with jaccard distance”. In: IEEE transactions on medical imaging 36.9 (2017), pp. 1876–
1886 (cit. on p. 9).

[306] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. “Barlow twins: Self-supervised learning via
redundancy reduction”. In: arXiv preprint arXiv:2103.03230 (2021) (cit. on pp. 58, 122–124,
127, 128).

[307] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. “mixup: Beyond empirical risk minimiza-
tion”. In: arXiv preprint arXiv:1710.09412 (2017) (cit. on pp. 65, 67, 124).

[308] J. Zhang, Y. Xie, Y. Xia, and C. Shen. “Attention residual learning for skin lesion classification”.
In: IEEE transactions on medical imaging 38.9 (2019), pp. 2092–2103 (cit. on pp. 32, 87).

158 Bibliography



[309] L. Zhang, Y. Luo, Y. Bai, B. Du, and L.-Y. Duan. “Federated Learning for Non-IID Data via
Unified Feature Learning and Optimization Objective Alignment”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 4420–4428 (cit. on p. 117).

[310] P. Zhang, F. Wang, and Y. Zheng. “Self supervised deep representation learning for fine-grained
body part recognition”. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI
2017). IEEE. 2017, pp. 578–582 (cit. on p. 59).

[311] R. Zhang, P. Isola, and A. A. Efros. “Colorful image colorization”. In: European conference on
computer vision. Springer. 2016, pp. 649–666 (cit. on pp. 53, 56).

[312] R. Zhang, P. Isola, and A. A. Efros. “Split-brain autoencoders: Unsupervised learning by cross-
channel prediction”. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 1058–1067 (cit. on p. 53).

[313] Y. Zhang, L. Yang, J. Chen, M. Fredericksen, D. P. Hughes, and D. Z. Chen. “Deep adversarial
networks for biomedical image segmentation utilizing unannotated images”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2017,
pp. 408–416 (cit. on pp. 45, 72, 75, 78–80).

[314] Y. Zhang, M. Li, Z. Ji, et al. “Twin self-supervision based semi-supervised learning (TS-SSL):
Retinal anomaly classification in SD-OCT images”. In: Neurocomputing 462 (2021), pp. 491–505
(cit. on p. 60).

[315] Z. Zhang, Y. Yang, Z. Yao, et al. “Improving semi-supervised federated learning by reducing the
gradient diversity of models”. In: 2021 IEEE International Conference on Big Data (Big Data).
IEEE. 2021, pp. 1214–1225 (cit. on p. 50).

[316] Z. Zhang, Z. Yao, Y. Yang, Y. Yan, J. E. Gonzalez, and M. W. Mahoney. “Benchmarking semi-
supervised federated learning”. In: arXiv preprint arXiv:2008.11364 17 (2020), p. 3 (cit. on
p. 50).

[317] Y. Zhao, H. Liu, H. Li, P. Barnaghi, and H. Haddadi. “Semi-supervised federated learning for
activity recognition”. In: arXiv preprint arXiv:2011.00851 (2020) (cit. on p. 50).

[318] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. “Federated learning with non-iid data”.
In: arXiv preprint arXiv:1806.00582 (2018) (cit. on p. 117).

[319] Y. Zheng, M. Jin, Y. Liu, L. Chi, K. T. Phan, and Y.-P. P. Chen. “Generative and contrastive
self-supervised learning for graph anomaly detection”. In: IEEE Transactions on Knowledge and
Data Engineering (2021) (cit. on p. 56).

[320] S. K. Zhou, H. Greenspan, C. Davatzikos, et al. “A review of deep learning in medical imaging:
Imaging traits, technology trends, case studies with progress highlights, and future promises”. In:
Proceedings of the IEEE 109.5 (2021), pp. 820–838 (cit. on p. 10).

[321] Y. Zhou, L. Xie, W. Shen, E. Fishman, and A. Yuille. “Pancreas segmentation in abdominal CT
scan: a coarse-to-fine approach”. In: arXiv preprint arXiv:1612.08230 (2016) (cit. on p. 9).

[322] Z. Zhou, V. Sodha, M. M. Rahman Siddiquee, et al. “Models genesis: Generic autodidactic models
for 3d medical image analysis”. In: International conference on medical image computing and
computer-assisted intervention. Springer. 2019, pp. 384–393 (cit. on p. 59).

[323] H. Zhu, H. Zhang, and Y. Jin. “From federated learning to federated neural architecture search: a
survey”. In: Complex & Intelligent Systems 7.2 (2021), pp. 639–657 (cit. on p. 45).

[324] J. Zhu, Y. Li, Y. Hu, K. Ma, S. K. Zhou, and Y. Zheng. “Rubik’s cube+: A self-supervised feature
learning framework for 3d medical image analysis”. In: Medical image analysis 64 (2020),
p. 101746 (cit. on p. 59).

Bibliography 159



[325] W. Zhu, M. Baust, Y. Cheng, S. Ourselin, M. J. Cardoso, and A. Feng. “Privacy-Preserving Federated
Brain Tumour Segmentation”. In: Machine Learning in Medical Imaging: 10th International
Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13,
2019, Proceedings. Vol. 11861. Springer Nature. 2019, p. 133 (cit. on p. 88).

[326] X. Zhu and A. B. Goldberg. “Introduction to semi-supervised learning”. In: Synthesis lectures on
artificial intelligence and machine learning 3.1 (2009), pp. 1–130 (cit. on pp. 34, 35, 37).

[327] X. J. Zhu. “Semi-supervised learning literature survey”. In: (2005) (cit. on pp. 34, 35, 37).

[328] Y. Zhu, Y. Liu, J. James, and X. Yuan. “Semi-supervised federated learning for travel mode
identification from gps trajectories”. In: IEEE Transactions on Intelligent Transportation Systems
23.3 (2021), pp. 2380–2391 (cit. on p. 50).

[329] X. Zhuang, Y. Li, Y. Hu, K. Ma, Y. Yang, and Y. Zheng. “Self-supervised feature learning for
3d medical images by playing a rubik’s cube”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2019, pp. 420–428 (cit. on p. 59).

[330] D. Zimmerer, F. Isensee, J. Petersen, S. Kohl, and K. Maier-Hein. “Unsupervised anomaly localiza-
tion using variational auto-encoders”. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2019, pp. 289–297 (cit. on p. 10).

[331] M. Zinkevich, M. Weimer, L. Li, and A. Smola. “Parallelized stochastic gradient descent”. In:
Advances in neural information processing systems 23 (2010) (cit. on p. 46).

[332] G. Zizzo, A. Rawat, M. Sinn, and B. Buesser. “Fat: Federated adversarial training”. In: arXiv
preprint arXiv:2012.01791 (2020) (cit. on p. 50).

160 Bibliography



List of Figures

2.1 Illustrative diagram of the working principle of the X-ray machine. . . . . . . . 6
2.2 Illustrative diagram of the working principle of the ultrasound machine. . . . . 7
2.3 Illustrative diagram of the working principle of the CT machine. . . . . . . . . . 7
2.4 An Illustrative diagram of the working principle of the MRI machine. . . . . . . 8
2.5 An Illustrative diagram of the working principle of the OCT machine. . . . . . . 8
2.6 An Illustrative diagram of the working principle of the dermoscopy machine. . . 9
2.7 Machine and Deep Learning Methods Pipelines. . . . . . . . . . . . . . . . . . . 11
2.8 Graphical illustration of the Perceptron. . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Graphical illustration of ANN and MLP. . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 A graphical illustration of some Activation Functions. . . . . . . . . . . . . . . . 15
2.11 A graphical illustration of Convolutional neural network. . . . . . . . . . . . . . 18
2.12 A graphical illustration inside the Convolutional Layer. . . . . . . . . . . . . . . 19
2.13 Visualization inside the Convolutional Layer. . . . . . . . . . . . . . . . . . . . . 20
2.14 A graphical illustration of the pooling layer. . . . . . . . . . . . . . . . . . . . . 20
2.15 A graphical illustration VGGNet and ResNet architectures. . . . . . . . . . . . . 21
2.16 A graphical illustration of the FCNN architecture. . . . . . . . . . . . . . . . . . 22
2.17 A graphical illustration of the Unet architecture. . . . . . . . . . . . . . . . . . . 23
2.18 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.19 AUROC and AUPR curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.20 Risk-Coverage (RC) curve and Reliability Diagram (RD). . . . . . . . . . . . . . 26
2.21 List of sample data augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 An illustration figure of Supervised Learning. . . . . . . . . . . . . . . . . . . . 32
3.2 An illustration figure of Unsupervised Learning . . . . . . . . . . . . . . . . . . 33
3.3 An illustration figure of Semi-supervised Learning . . . . . . . . . . . . . . . . . 34
3.4 An illustration figure of Semi-supervised Learning Assumptions. . . . . . . . . . 36
3.5 An illustration figure of Self-Supervision & Entropy Minimization. . . . . . . . . 38
3.6 An illustration figure of common Consistency Regularization methods . . . . . . 39
3.7 n illustration diagram of Graph Convolutional Networks . . . . . . . . . . . . . 40
3.8 An illustration diagram of Semi-Supervised Generative Methods . . . . . . . . . 42
3.9 An illustration diagram of Federated Learning Topologies . . . . . . . . . . . . . 47
3.10 An illustration diagram of Training Process in Federated Learning . . . . . . . . 48
3.11 An illustration of the Self-Supervised Learning paradigm . . . . . . . . . . . . . 53
3.12 An illustration shows the Self-Supervised Learning categories . . . . . . . . . . 61

4.1 Modern Regularization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 ROAM: An illustrative diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 ROAM: Dice score for selected brain structures . . . . . . . . . . . . . . . . . . 76
4.4 ROAM: Qualitative results of brain segmentation . . . . . . . . . . . . . . . . . 77

161



4.5 ROAM: Domain shift results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 ROAM: Varying amount of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 ROAM: Qualitative results of lung segmentation . . . . . . . . . . . . . . . . . . 80
4.8 ROAM: Dice vs Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 FedPerl: An illustrative diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 FedPerl: Illustrative diagram shows the distribution of our clients . . . . . . . . 97
5.3 FedPerl: Accuracy Performanc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 FedPerl: Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 FedPerl: Area under Risk-Coverage Curve . . . . . . . . . . . . . . . . . . . . . 108
5.6 FedPerl: Reliability Diagrams and Calibration Errors . . . . . . . . . . . . . . . . 109
5.7 FedPerl: Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.8 FedPerl: Unlabeled Clients Scenario Results . . . . . . . . . . . . . . . . . . . . 111
5.9 PedPerl: Comparison with FedIRM . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 TriMix: An illustrative diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 TriMix: Training Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 TriMix: 2D UMAP projection of CIFAR10 . . . . . . . . . . . . . . . . . . . . . . 131
6.4 TriMix: Batch and Projector Sizes Analysis . . . . . . . . . . . . . . . . . . . . . 132
6.5 TriMix: Mixed data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

162 List of Figures



List of Tables

4.1 ROAM: Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 ROAM: Brain segmentation main results . . . . . . . . . . . . . . . . . . . . . . 75
4.3 ROAM: Dice score for fully supervised models . . . . . . . . . . . . . . . . . . . 77
4.4 ROAM: Lung CT images segmentation results . . . . . . . . . . . . . . . . . . . 79
4.5 ROAM: Cross domain and class mismatch results . . . . . . . . . . . . . . . . . 81
4.6 ROAM: Skip-connection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 FedPerl: Proof-Of-Concept Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 FedPerl: Skin Lesion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 FedPerl: Communities Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 FedPerl: Client Level Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 FedPerl: Class Level Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 FedPerl: Area Under ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 FedPerl: Area Under Precision-Recall curve . . . . . . . . . . . . . . . . . . . . . 107
5.8 FedPerl: Unlabeled Clients Scenario Result . . . . . . . . . . . . . . . . . . . . . 110
5.9 FedPerl: The unseen client scenario . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.10 FedPerl: Dynamic Learning Polices Results . . . . . . . . . . . . . . . . . . . . . 113

6.1 TriMix: KNN and Linear Evaluations on Natural Images . . . . . . . . . . . . . . 128
6.2 TriMix: Semi-Supervised Learning Results on Natural images . . . . . . . . . . . 129
6.3 TriMix: KNN and Linear Evaluations on Medical images . . . . . . . . . . . . . . 130
6.4 TriMix: Semi-supervised Evaluation on Medical images . . . . . . . . . . . . . . 130
6.5 TriMix: Transfer Learning from Natural to Medical Images . . . . . . . . . . . . 131
6.6 TriMix: Objective Function Components Analysis . . . . . . . . . . . . . . . . . 132
6.7 TriMix: Variants Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

163






	Titlepage
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Medical imaging
	2.1.1 Definition
	2.1.2 Modalities
	2.1.3 Applications
	2.1.4 Challenges

	2.2 Deep Learning
	2.2.1 Brief History of Computer-based Methods
	2.2.2 Deep Learning Methods
	2.2.3 Basic Building Blocks
	2.2.4 Common Loss Functions
	2.2.5 Common Deep Architectures
	2.2.6 Common Evaluation Metrics
	2.2.7 Overfitting
	2.2.8 Data Augmentation


	3 Learning Paradigms
	3.1 Supervised Learning
	3.1.1 The Limitations of Supervised Learning

	3.2 Unsupervised Learning
	3.3 Semi-Supervised Learning
	3.3.1 Problem Definition
	3.3.2 Assumptions
	3.3.3 Taxonomy & Categories
	3.3.4 Realistic Evaluation of Semi-Supervised Learning Methods
	3.3.5 Semi-Supervised Learning in the Medical Imaging

	3.4 Federated Learning
	3.4.1 Problem Definition and Learning Paradigm
	3.4.2 Characteristics of the Federated Learning
	3.4.3 Semi-Supervised Federated Learning
	3.4.4 Federated Learning in the Medical Imaging

	3.5 Self-Supervised Learning
	3.5.1 What is the Self-Supervised Learning
	3.5.2 Problem Definition
	3.5.3 Categories of Self-Supervised Learning
	3.5.4 Self-Supervised Learning in the Medical Imaging


	4 Data Augmentation via Random Linear Interpolation in Semi-Supervised Learning
	4.1 Motivation
	4.2 Contribution
	4.3 Related Works
	4.3.1 Semi-Supervised Learning Methods in Medical Imaging
	4.3.2 Modern Regularization Methods

	4.4 Methodology
	4.4.1 Problem Definition
	4.4.2 ROAM: Random Layer Mixup for Semi-Supervised Learning in Medical Images

	4.5 Experiments & Results
	4.5.1 Datasets
	4.5.2 Baselines
	4.5.3 Implementation details
	4.5.4 Evaluation Metrics
	4.5.5 Ablation Study
	4.5.6 Whole-brain Segmentation Results
	4.5.7 Realistic Evaluation of ROAM
	4.5.8 Lung Segmentation Results

	4.6 Discussion
	4.6.1 Performance Across Different Datasets
	4.6.2 Generalizability & Domain Mismatch
	4.6.3 Convergence
	4.6.4 Handling Skip Connections
	4.6.5 Infection Size
	4.6.6 Validation Datasets
	4.6.7 The Unsupervised Loss
	4.6.8 Hyper-parameters Tuning


	5 Knowledge Sharing via Static & Dynamic Peer Learning in Semi-Supervised Federated Learning
	5.1 Motivation
	5.2 Contribution
	5.3 Related Works
	5.4 Methodology
	5.4.1 Problem Definition
	5.4.2 Semi-Supervised Federated Learning (SSFL)
	5.4.3 Preliminaries
	5.4.4 FedPerl: Semi-Supervised Federated Peer Learning for Skin Lesion Classification

	5.5 Experiments & Results
	5.5.1 Datasets
	5.5.2 Baselines
	5.5.3 Scenarios
	5.5.4 Implementation Details
	5.5.5 Evaluation Metrics
	5.5.6 Proof-Of-Concept Results
	5.5.7 Skin Lesion Results
	5.5.8 Building Communities Results
	5.5.9 The Influence of Peer Learning on Clients
	5.5.10 Class Level Results
	5.5.11 Additional Evaluation Metrics
	5.5.12 Skin Lesion Qualitative Results
	5.5.13 Unlabeled Clients Scenario
	5.5.14 Generalization to Unseen Client Scenario
	5.5.15 Comparison with SOTA in the Few Labeled Clients Scenario
	5.5.16 Dynamic Learning Policy Results

	5.6 Discussion
	5.6.1 Simplicity & Performance
	5.6.2 Similarity
	5.6.3 Orthogonality
	5.6.4 Privacy
	5.6.5 Local Updates
	5.6.6 Communities & Committee Size
	5.6.7 Clustering
	5.6.8 Individual Clients
	5.6.9 Unlabeled Clients
	5.6.10 Unseen Clients
	5.6.11 Learning from Few Labeled Clients
	5.6.12 Learning Policy


	6 Representations Learning via Virtual Embeddings and Self-Consistency in Self-Supervised Learning
	6.1 Motivation
	6.2 Contribution
	6.3 Related Works
	6.4 Methodology
	6.4.1 Redundancy-Reduction
	6.4.2 TriMix: Virtual Embeddings and Self-Consistency in Self-Supervised Learning

	6.5 Experiments & Results
	6.5.1 Datasets
	6.5.2 Baselines
	6.5.3 Implementation Details
	6.5.4 Image Augmentations
	6.5.5 Results

	6.6 Discussion
	6.6.1 Applicability and Transferability
	6.6.2 Manifold and Hidden Embeddings Augmentation
	6.6.3 Interpretability


	7 Conclusion & Future Works
	7.1 Conclusion
	7.2 Future Works

	A List of Authored and Co-authored Publications
	Bibliography
	List of Figures
	List of Tables

