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Abstract—In the next-generation wireless networks, energy
efficiency (EE) is a fundamental requirement due to the limited
battery power and the deployment of various devices in hardly
accessible areas. While a plethora of approaches have been
proposed to increase users’ EE, there are still many unresolved
issues stemming mainly from the limited wireless resources. In
this paper, we investigate the energy-efficient resource allocation,
taking into account users’ radio resource control (RRC) state.
We aim to achieve max-min fairness among users in an uplink
orthogonal frequency-division multiple access (OFDMA) system
while fulfilling data rate requirements and transmit power
constraints. In particular, we avoid waste of the energy through
unnecessary state transitions when no network resources are
available. We study the impact of the RRC Resume procedure
on users’ EE and propose allocating resources while users are
in their current RRC Connected or RRC Inactive state. The
solution is obtained from a constrained optimization problem,
whose output is max-min fair and energy-efficient. To that end,
we use generalized fractional programming and the Lagrangian
dual decomposition approach to allocate the radio resources
and transmission power iteratively. Using extensive realistic
simulations with input parameters from measurement data, we
compare the results of our approach against benchmark models
and show the performance improvements RRC state awareness
brings. Specifically, using our approach, the users’ EE increases
by at least 10% on average.

Index Terms—Energy efficiency, RRC state awareness, max-
min fairness.

I. INTRODUCTION

The enhancement of spectral and energy efficiency in next-
generation wireless networks is an important topic, attracting
the attention of both academic and industry research [1], [2].
Energy efficiency (EE) has become a key performance indica-
tor for sustainable 5G networks due to the growth of mobile
devices connected to the network with energy-preserving re-
quirements. In that regard, industrial wireless sensors, wear-
ables, and video surveillance use cases, which require low
complexity, low-cost internet of things (IoT) devices, with
battery life requirements reaching up to 10 years [3] are in our
focus. The relevance of EE is on the base station (BS) side
and the device side. In both cases the EE is defined as the
ratio of the achieved data rate and the energy consumed. The
limited battery life of devices has increased the importance
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Fig. 1: 5G state diagram for RRC states and signalling.

of EE on the device side. To address the EE issue, research
is ongoing on device power-saving techniques and battery
lifetime enhancement [4] while meeting the quality of service
(QoS) requirements.

A. New device state: RRC Inactive

Numerous methods are proposed to increase the EE of
devices, such as bandwidth adaption, energy harvesting, DRX
mechanism, and wake-up signaling [5]. To reduce further the
energy consumption in 5G, an energy-efficient state named
RRC Inactive is introduced, as shown in Fig. 1. RRC Inactive
state decreases users’ power consumption, latency, and sig-
naling overhead during the resumption of the connected state,
compared to the resumption from RRC Idle state [6]. Although
RRC Inactive state is energy efficient, data transmission is
performed mainly in the connected state, except in small
data transmission cases supported by the inactive state [7].
Therefore, RRC Inactive is insufficient for energy-efficient
devices as transition to the connected state is inevitable, thus
decreasing the EE. The number of transitions to the connected
state increases for bursty and small data packet applications.

B. Contribution: RRC state aware resource allocation

The impact of transition among states increases further
when accounting for the limited radio resources, which can not
support all users’ QoS requirements. Consequently, resuming
the connection of devices containing uplink data to transmit
before resource allocation gives additional energy consump-
tion. This is caused by the RRC Resume procedure and
listening of the physical downlink control channel (PDCCH)
while in the connected state. This energy is wasted when
users do not receive resources and cannot transmit uplink data.



 
UE gNB 

RRC Inactive 

Msg1: Random Access Preamble 

Msg2: Random Access Response 

Msg3: RRC Connection Resume Request 

Msg4: RRC Connection Resume 

Fig. 2: RRC Connection Resume procedure [6].

When this is the case, a data inactivity timer expiration triggers
the transition of the device back to the inactive state [6]. As
a result, the device consumes considerable energy [8] without
transmitting the uplink data. To overcome this problem, in this
paper, we consider the impact of device transition among RRC
states and propose a state aware resource allocation approach,
assigning resources while devices are in their current inactive
or connected state to avoid the redundant resume procedure
completion for devices that do not get resources during a
period. We introduce a resource allocation mechanism, ex-
ecuted after message 3 of the resume procedure (shown in
Fig. 2). The algorithm runs after message 3 since devices
transmit the information about the number of packets stored
in their buffer during this message. We develop a mathemat-
ical representation of the EE in a multi-RRC state scenario,
focusing on user-based EE maximization while satisfying the
transmit rate and power constraints. The type of EE fairness
we consider in this work is max-min fairness. Due to the non-
convexity of our problem, we utilize generalized fractional
programming theory and Lagrangian dual decomposition to
allocate the scarce subcarriers and power jointly. To verify
the results, we use extensive realistic simulations from 5G
channel gain measurements. We compare our approach with a
baseline procedure, specified in 3GPP [6], where the resources
are assigned only in the connected state after RRC Resume
execution, concluding an improvement of the user’s EE by up
to 30% for simulations.

The remainder of this paper is structured as follows. Section
II provides a comprehensive state-of-the-art overview of EE
resource allocation. In Section III, we describe the system
model and problem formulation. We elaborate on the iterative
subcarrier assignment and power allocation in Section IV. The
performance of the proposed approach is evaluated in Section
V, whereas the practical aspects are discussed in section VI.
Finally, Section VII concludes the paper.

II. RELATED WORK

The problem of energy efficiency in the wireless network
has received substantial attention in the last couple of years
due to the rapid increase of connected IoT devices. Relevant
work regarding the power saving techniques in next-generation
networks is found in [5]. From the wireless resource man-
agement perspective, resource allocation aims at increasing
the overall EE of the OFDMA system [9], [10] or the EE

of individual users [11], [12], [13]. The authors in [11]
address the drawbacks of increasing the overall system EE
instead of improving the individual users’ EE, concluding that
fairness is a necessary metric for the EE problem. From the
fairness perspective, various optimization approaches ranging
from logarithmic EE [14], weighted sum EE [11], to max-
min EE [12], [13] are utilized for an efficient allocation of
the wireless resources among users. From the mathematical
perspective, the generalized fractional programming [15] the-
ory and the Lagrangian dual decomposition [16] are applied
to transform the non-convex problem and jointly allocate
subcarriers and power iteratively to the users. While the former
works are beneficial and efficiently allocate the scarce radio
resources to the users, they do not consider different RRC
states of devices where the transition among states has to be
addressed carefully during the resource assignment procedure,
which we do in this work.

Similar to our work, there is previous state of the art
considering the energy-efficient resource allocation problem
with a fairness guarantee. In [11], the weighted-sum approach
and max-min approach are investigated using generalized
fractional programming and Lagrangian dual decomposition.
However, the allocation of the resources takes place only for
RRC Connected users, not addressing the impact of transi-
tioning the device in the connected state. Under minimum
user throughput and power constraints, [12] investigates a
max-min energy-efficient problem in uplink OFDMA systems,
ensuring fairness among users. In [13], a similar problem
is formulated as an EE maximization problem with fairness
among users. The authors solve the problem using iterative
joint subcarrier and power allocation algorithms or separate
subcarrier and power allocation algorithms, which differ from
algorithms proposed in [12]. Yet, they do not evaluate the
energy efficiency deterioration caused by the unnecessary
transitions of the device to the connected state to compete
for the limited radio resources.

While the aforementioned works [9] - [13] can be sufficient
for scenarios only with connected users, they might not be op-
timal for scenarios with a portion of users in an RRC Inactive
state. Although data transmission consumes the majority of the
energy, the RRC Resume procedure, presenting the transition
of the devices from inactive to connected state, increases the
overall energy consumption of the device, which is the reason
we consider it in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an OFDMA uplink scenario of a cellular
network consisting of a single BS. The system is time-slotted,
where the slot duration is defined by a transmission time
interval (TTI) of 1 ms for 15 kHz subcarrier spacing. The BS
serves a total of N users, which are in RRC Connected and
RRC Inactive states at a given slot. Upcoming uplink data
trigger the RRC Resume, and on the other hand, the expiration
of data inactivity timer triggers the RRC Release [6]. The
spectrum is divided into R physical resource blocks (PRBs),
with a bandwidth of W. A PRB can be assigned to at most



one user to avoid intra-cell interference. Therefore, we use a
binary variable ρi,j , set to 1 to indicate the assignment of PRB
j to user i, or 0 otherwise. Let hi,j denote the channel gain
of user i on PRB j. The transmit power of user i on PRB j
is pi,j , whereas N0 represents the background noise at user.
The transmit rate of user i on PRB j (in units bits/s/Hz) is

ri,j = log2

(
1 +

pi,j |hi,j |2

N0W

)
= log2 (1 + pi,jgi,j) , (1)

where gi,j = |hi,j |2/(N0W ). Therefore, the total transmit rate
and the total transmit power of user i are calculated as

ri(ρ, p) =

R∑
j=1

ρi,jri,j , ∀i, (2)

pi(ρ, p) =

R∑
j=1

ρi,jpi,j , ∀i. (3)

The inefficiency of the power amplifier ξi ≥ 1, circuit power
consumption pCi ≥ 0 [12], and RRC Resume power consump-
tion pTi ≥ 0 [8], depicting the state awareness component, are
used to calculate the total power consumption of user i

Pi(ρ, p) = ξipi(ρ, p) + pCi + pTi , ∀i. (4)

The total transmission rate and power consumption of the
network are obtained by summing the transmission rate and
power consumption of all the users, as follows

RT (ρ, p) =

N∑
i=1

ri(ρ, p), (5)

PT (ρ, p) =

N∑
i=1

Pi(ρ, p). (6)

Finally, the EE of user i and the EE of the network are

ηEE
i (ρ, P ) =

ri(ρ, p)

Pi(ρ, p)
, (7)

ηEE
T (ρ, P ) =

RT (ρ, p)

PT (ρ, p)
. (8)

A. Problem formulation
To achieve the EE max-min fairness among RRC state aware

users, while always satisfying a minimum transmit rate and
maximum power consumption constraints, we jointly optimize
the radio resource assignment and power allocation across
PRBs. The optimization problem is defined as

max
ρ,p

min
i

ηEE
i (ρ, p) (9)

s.t.
R∑

j=1

ρi,jri,j ≥ rmin
i , ∀i (9a)

R∑
j=1

ρi,jpi,j ≤ pmax
i , ∀i (9b)

pi,j ≥ 0,∀i, ∀j (9c)
N∑
i=1

ρi,j ≤ 1, ∀j (9d)

ρi,j ∈ {0, 1}, ∀i, ∀j. (9e)

The optimization problem (9) maximizes the EE of the
worst-case user, i.e., provides max-min fairness. The param-
eters rmin

i and pmax
i are the minimum required transmit

rate and the maximum transmission power for each user,
respectively. Constraint (9a) ensures the minimum guaranteed
rate for all users. Constraint (9b) guarantees that the transmit
power does not exceed the maximum transmit power of each
user, while (9c) captures the fact that the power cannot be
negative. Constraints (9d) and (9e) guarantee the orthogonal
allocation of resources.

IV. RADIO RESOURCE ASSIGNMENT AND POWER
ALLOCATION ALGORITHM

The optimization problem (9) is a non-convex mixed-integer
nonlinear programming problem because of the nonlinear
function in the objective, denoted as a fractional function of
ρi,j and pi,j and constraint (9b) indicated by the multiplication
of ρi,j by pi,j [17]. We use generalized fractional program-
ming and Lagrangian optimization as efficient tools to solve
this problem.

A. Problem transformation with fractional programming

We apply generalized fractional programming and La-
grangian dual decomposition to transform the problem into
an equivalent convex problem [17] because the objective is
defined as several fractional functions, defining users’ energy
efficiency. The algorithm that is most often used to solve
the generalized fractional programming is the generalized
Dinkelbach’s algorithm [15], which converges to an optimal
solution with limited complexity [17]. In [15], it is denoted
that the sequence of fractional problems is solved with a
linear convergence rate. Generalized Dinkelbach’s algorithm
reformulates the objective function to decouple the nominator
ri(ρ, p) > 0 and the denominator Pi(ρ, p) > 0, using an iterative
updated variable η (shown in Algorithm 1), which results into

ηitEE = max
ρ,p

min
i

ri(ρ, p)

Pi(ρ, p)
= min

i

ri(ρ
it, pit)

Pi(ρit, pit)
, (10)

where subscript it represents the iteration index, ρit the radio
resource assignment and pit the power allocation for problem
(9) at iteration it. After applying the generalized Dinkelbach’s
algorithm [15], the objective function transforms into

max
ρ,p

min
i

[ri(ρ, p)− ηPi(ρ, p)]

s.t. (9a), (9b), (9c), (9d), (9e).
(11)

The optimal solution of (9) represented by ρ∗, p∗ and the value
of η∗EE , achieved from the optimal solution, are unknown in
advance and defined by iteratively calculating the suboptimal
radio resource assignment and power allocation until the opti-
mal values are achieved, or the maximum number of iterations
is reached. The procedure for achieving the optimal resource
assignment and power allocation is defined in Algorithm 1
and explained in the following sections. Algorithm 1 contains
two iteration loops which converge to the optimal solutions.
The inner iteration loop updates iteratively the radio resource
assignment, power allocation and Lagrange multipliers in



order to calculate the optimal EE solutions. Meanwhile the
outer loop updates iteratively the variable η until convergence
of the algorithm is achieved or the iteration index it has
reached the maximum value.

Since the objective function is formed by multiple users’
fractional ratios of energy efficiency, a variable φ is introduced
to smoothen the objective function [12]. It is defined that φ ≥ 0

for 0 ≤ η ≤ η∗
EE and feasible values of ρ, p, while (11) is

transformed as follows after incorporating φ

max
ρ,p,φ

φ

s.t. (9a), (9b), (9c), (9d), (9e),
Ri(ρ, p)− ηPi(ρ, p) ≥ φ, ∀i.

(12)

B. Radio resource assignment and power allocation

The Lagrangian dual decomposition approach is applied
to (12) to assign resources and allocate power [11]–[13].
Due to the nonconvex constraint (9b), the binary variable
ρi,j ∈ {0, 1} is relaxed in the interval [0, 1]. Consequently, the
transmitted power is pi,j = 0 if subcarriers are not allocated
to users , i.e., ρi,j = 0. Otherwise, if ρi,j = 1, the transmitted
power is pi,j ≥ 0. Accordingly, to relax the assignment
process we use a variable si,j = ρi,jpi,j , where si,j ∈ S
defines the power allocation for user i on PRB j. Meanwhile,
the constrained optimization (12) is transformed into (13),

max
ρ,S,φ

φ (13)

s.t.
R∑

j=1

ρi,j log2

(
1 +

si,jgi,j
ρi,j

)
≥ rmin

i , ∀i (13a)

R∑
j=1

si,j ≤ pmax
i , ∀i (13b)

si,j ≥ 0, ∀i, ∀j (13c)
N∑
i=1

ρi,j ≤ 1, ∀j (13d)

0 ≤ ρi,j ≤ 1, ∀i, ∀j (13e)
R∑

j=1

ρi,j log2

(
1 +

si,jgi,j
ρi,j

)
−

η

ξi

R∑
j=1

si,j + pCi + pTi

 ≥ φ, ∀i,

(13f)

which is convex in S, ρ, p.
The Lagrangian function (14) and Lagrangian dual function

(15) are defined in order to relax the problem. The Lagrangian
function of our optimization problem is formed by augment-
ing the objective function with the constraint functions [16]
using the Lagrange multipliers. We define these multipliers
as vectors β = (β1, β2...βi) ⪰ 0, µ = (µ1, µ2...µi) ⪰ 0,
ν = (ν1, ν2...νi) ⪰ 0, γ = (γ1, γ2...γi) ⪰ 0 which are associated
with constraints (13a), (13b), (13d) and (13f), respectively.

Hence, we have the Lagrangian function defined as

L(ρ, S, φ, β, µ, ν, γ) = φ+
N∑
i=1

βi

[
R∑

j=1

ρi,jlog2

(
1 +

si,jgi,j
ρi,j

)

− rmin
i

]
+

N∑
i=1

µi

pmax
i −

R∑
j=1

si,j

+
R∑

j=1

νj

1−
R∑

j=1

ρi,j


+

N∑
i=1

γi

{
R∑

j=1

[
ρi,j log2

(
1 +

si,jgi,j
ρi,j

)
− ηξisi,j

]

− η(pCi + pTi )− φ

}
.

(14)
Moreover, the Lagrangian dual function used to find the
Lagrange multipliers, is derived by the primal problem (13)
and defined by the maximum value of Lagrangian function
(14) with respect to ρ, s, φ for given β, µ, ν, γ as

D(β, µ, ν, γ) = max
ρ,S,φ

L(ρ, S, φ, β, µ, ν, γ). (15)

The optimal values of the problem are denoted as ρ∗i,j , p∗i,j
and φ∗ for given values of Lagrange multipliers, assuming
a zero duality gap. First, the optimal values are calculated
from initial Lagrange multiplier values, and afterwards, the
Lagrange multipliers are derived from the optimal values in
an iterative process. The Karush-Kuhn-Tucker conditions [17]
∂L
∂s∗i,j

= 0 and ∂L
∂ρ∗

i,j
= 0 are used to solve the optimization

problem with the inequality constraints. To find the optimal
power allocation and subcarrier assignment, we need to con-
sider the Lagrangian function defined in (14) and solve the
first derivative of the function with respect to s and ρ while
setting them to zero as above. This yields the optimal power
allocation for the given radio resource assignment ρ as

p∗i,j =
s∗i,j
ρi,j

=

[
βi + γi

(µi + ηξiγi) ln 2
− 1

gi,j

]+
, ∀i, j, (16)

where [y]+ = max[0, y].
Since ρi,j is a binary variable, the resource j is allocated

to user i with the maximum positive partial derivative of the
Lagrangian function with respect to ρi,j [12], denoted as

max
1≤i≤N

(βi + γi)

{[
log2

(
gi,j

βi + γi
(µi + ηξiγi) ln 2

)]+

− 1

ln 2

[
1− 1

gi,j
βi+γj

(µi+ηξiγi) ln 2

]+}
.

(17)

To find the optimal φ∗, we derive the Lagrangian func-
tion (14) with respect to φ, apply the constraint (13f) and
obtain

max

(
1−

N∑
i=1

γi

)
φ

s.t. 0 ≤ φ ≤
R∑

j=1

ρi,j log2

(
1 +

si,jgi,j
ρi,j

)

− η

ξi

R∑
j=1

si,j + pCi + pTi

 .

(18)



Since φ ≥ 0, from (18) we obtain that the optimal value is
φ∗ = 0, if

∑N
i=1 γk > 1. Otherwise, the optimal value is

min
k

{∑R
j=1 ρ

∗
i,j log2

(
1 +

s∗i,jgi,j
ρ∗
i,j

)
− η

(
ξi
∑R

j=1 s
∗
i,j + pCi + pTi

)}
.

(19)

Algorithm 1 Iterative Subcarrier Assignment and Power Al-
location Algorithm

1: Initialization, set outer loop iteration index it = 0 and
iteration energy efficiency ηit

EE = 0

2: Set the maximum outer iteration number itmax and outer
loop error threshold ϵ

3: repeat
4: Set inner loop iteration index t = 0, maximum inner

iteration number tmax, inner loop error threshold δ,
β, µ, γ, a, b, c

5: repeat
6: Allocate transmit power p∗i,j , assign subcarriers ρ∗i,j
7: Select φ∗

8: Update β, µ, γ and t = t+ 1
9: if ∥ β(t+ 1)− β(t) ∥2< δ, ∥ µ(t+ 1)− µ(t) ∥2< δ and

∥ γ(t+ 1)− γ(t) ∥2< δ then
10: break
11: end if
12: until t > tmax

13: if
∣∣∣min

i

[
ri(ρ

it, pit)− ηit
EEPi(ρ

it, pit)
]∣∣∣ < ϵ then

14: η∗
EE = min

i

ri(ρ
∗,p∗)

Pi(ρ∗,p∗)

15: break
16: else
17: ηit+1

EE = min
i

ri(ρ
it,pit)

Pi(ρit,pit)

18: it = it+ 1
19: end if
20: until it > itmax

C. Lagrange multipliers update

The optimal power allocation and radio resource assign-
ment depend on the optimal values of Lagrange multipliers.
These values are derived iteratively from the dual optimization
problem (20), which is always convex because the objective
function is concave and the Lagrangian multipliers constraints
are convex [16], as follows

min D(β, µ, ν, γ)

s.t. β ⪰ 0, µ ⪰ 0, ν ⪰ 0, γ ⪰ 0.
(20)

To solve the dual optimization problem, we take the derivative
of the dual function with respect to Lagrangian multipliers
and use the projected subgradient method [18] to minimize
the convex function. The projected subgradient method starts
from a random feasible initial point which is updated by a step
of subgradient descent and then projects the solution on the
constraint set. The procedure is repetitive until the convergence
is achieved. The subgradients of D(β, µ, ν, γ) are given by

∇βi =

R∑
j=1

ρ∗i,j log2

(
1 +

s∗i,jgi,j

ρ∗i,j

)
− rmin

i , ∀i (21)

∇µi = pmax
i −

R∑
j=1

s∗i,j , ∀i (22)

∇γi =

R∑
j=1

[
ρ∗i,j log2

(
1+

s∗i,jgi,j

ρ∗i,j

)
− ηξis

∗
i,j

]
− η(pCi + pTi )−φ.

(23)

Let t denote the inner loop iteration index, where the
radio resource assignment, power allocation and Lagrange
multipliers are updated. Let at, bt and ct represent the
projected subgradient method step size at iteration t [18], set
to 0.01

t [12]. The projected subgradient method updates the
Lagrange multipliers at iteration t based on the subgradient
of dual function (21), (22), (23), as follows

β
(t+1)
i = [β

(t)
i − at∇β

(t)
i ]+, (24)

µ
(t+1)
i = [µ

(t)
i − bt∇µ

(t)
i ]+, (25)

γ
(t+1)
i = [γ

(t)
i − ct∇γ

(t)
i ]+. (26)

The updated Lagrange multipliers at iteration t are updated at
Lagrangian function and used to calculate the radio resource
assignment and power allocation at iteration t + 1, until
convergence or maximum iteration index is achieved. The
detailed procedure is described in Algorithm 1.

V. NUMERICAL AND MEASUREMENT EVALUATION

Considering that energy efficiency is the focus of our work,
we demonstrate why RRC state transition energy consumption
needs to be included in the resource assignment to extend
the battery life of reduced capability devices. Then we show
the improvements of our RRC state aware resource allocation
compared to the baseline approach. The latter is described
in the 3GPP documentation [6] and allocates the resources
only to the devices which are in RRC Connected state or
have transitioned to the connected state. In that regard, the
inactive users with uplink traffic should perform the RRC
Resume procedure, shown in Fig. 2, before the BS determines
the wireless resource allocation. Given that, cases, when the
users execute the RRC Resume procedure but afterwards do
not receive resources, are not excluded. Further, we compare
the performance of the proposed and baseline method with the
approach analyzed by the authors in [12], which considers all
the users being in the RRC Connected state. Since it is not the
focus of our work, we do not consider during our evaluations
the energy consumed due to continuous listening of PDCCH
channels in the connected state.

We apply the max-min fairness optimization to the consid-
ered methods to ensure a fair comparison of the performance.
Even though the initial state of the users is identical for all
methods, as RRC Connected, the subsequent state of each user
is affected based on the applied resource allocation method. In
that regard, the users in [12] are always in the RRC Connected
state even though there is no uplink data to be transmitted at
that time or network resources are not allocated. Meanwhile,
for the RRC state aware and baseline approaches, the users’
RRC state changes over time, depending on the allocation



of resources, uplink traffic pattern, and the data inactivity
timer. In the remainder of the paper, we refer to our proposed
approach as RRC state aware, the operation described in 3GPP
as the baseline, and the method in [12] as RRC only method.

A. Simulation parameters

Our results evaluate the behavior of the RRC state aware
resource allocation using data generated from simulations
and measurements. While the simulated wireless channel is
modeled as a frequency-selective channel using Clarke’s flat
fading model [12], the measurement datasets include time-
varying channel gains generated for a mobile user during
various periods of the day and on different days. These values
are generated in our lab’s 5G network, and the measurement
data correspond to a bandwidth of 20 MHz, subcarrier spacing
of 15 kHz, and a total number of PRBs of 106. The channel
gain measurements, performed in a small room with low
transmit power and varying distance between the device and
BS, have small values in comparison with simulation, which
are also reflected in the achieved EE. We vary the number
of devices N and the number of subcarriers R to study the
behavior of the methods in different scenarios. Table I sum-
marizes the simulation parameters for channel gains achieved
from the simulations and the measurements. The majority of
the algorithm’s parameters are the same for simulated and
measurement channel gains scenarios. To test our algorithm,

TABLE I: Simulation and measurement parameters

Parameters Value
System bandwidth per BS 1 MHz (simulation)

20 MHz (measurement)
Subcarrier spacing 15 kHz
Average noise power N0 = 1.1565× 10−8 W/Hz
Transmission Time Interval 1 ms
Device minimum data rate rmin

i = 15 bits/s/Hz (simulation)
= 3.5 bits/s/Hz (measurement)

Device maximum transmit power pmax
i = 0.2 W

Inefficiency of power amplifier ξi = 18

Circuit power consumption pCi = 0.4 W
RRC Resume power consumption pTi = 2.5425 W
Data inactivity timer 1 ms
Algorithm convergence ϵ = 0.01
error threshold δ = 0.01
Number of BSs 1
Number of users [8, 16]
Number of radio resources [64, 128]
Simulated channel model Frequency selective channel

using Clarke’s flat fading model
Measurement channel model Channel gain values in 5G

we assume a minimal data inactivity timer value of 1 ms [6] to
suspend the user connection when detecting a lack of allocated
resources, even though users have uplink data to transmit.
The generated results are averaged over time. We choose a
different number of timeslots to average our results achieved
from simulation and measurements to test the performance
of the proposed algorithm and benefit from the diversity
gains depending on the frequency-selective wireless channel.
Accordingly, each of the figures from the simulated wireless
channel is based on the averaged values of 50 timestamps. The
results from the measured wireless channel are generated by
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Fig. 3: Comparison of the worst-case user’s energy efficiency
during 10 outer loop iterations, for RRC Connected-only and
baseline approach for N = 8 users and R = 64 PRBs
generated using the simulated and measurement channel.

averaging over 500 timestamps to include more diverse data
in our algorithm. To guarantee a fair comparison among the
RRC state aware, baseline and RRC Connected only methods,
we use the seed concept in our simulation. Consequently,
we assure the generation of the same channel characteristics,
uplink traffic, and user initial state values.

B. Worst-case user EE performance

The initial results of our work illustrated in Fig. 3 identify
the possibility of improving the users’ EE by reducing the
transitions among states. Intending to demonstrate the effect
of connection resume, we compare the results from the max-
min optimization applied to the RRC Connected only [12]
and baseline method. The comparison is performed on the
EE achieved from the worst-case user, based on simulated
and measured channel gains. The x-axis represents the outer
loop iterations index it used in Algorithm 1 to achieve the
optimal users’ EE (η∗EE), or until the maximum iteration
index is reached it = itmax. The results do not account
for continuous PDCCH listening, which would significantly
degrade the EE of the RRC Connected only case because
the user listens to the PDCCH every TTI. The degradation
is less for the baseline case since the user listens to the
PDCCH for short periods before sleeping in the inactive state.
Therefore, we consider the RRC Connected only as a corner
case to show the maximum achievable EE concerning state
changes, as illustrated in Fig. 3 because users do not perform
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Fig. 4: Comparison of the worst-case user’s energy efficiency
during 10 outer loop iterations, for baseline (B) and RRC state
aware (P) approaches under different N users and R PRBs for
the simulated channel gains.

transitions. However, in reality for EE for low energy devices
that we target here, the users’ transition among RRC states
is inevitable, so staying RRC Connected is not a solution
for EE. Although the network, where the resource allocation
algorithms run, knows that radio resources are not available,
users have to transition to the connected state to compete for
radio resources, causing the decrease in EE evaluated above.
We would like to point out that the important conclusion for
us from Fig. 3 is that reducing the number of executed resume
procedures can improve the user’s EE achieved in the baseline
scenario by more than 40% in simulations and more than 15%
in measurements, depending on the iteration number.

Therefore, we propose our RRC state aware mechanism to
improve the energy efficiency of the baseline approach. In the
following, we show numerical results comparing our proposed
RRC state aware resource allocation algorithms with the
baseline approach. Both consider multi-RRC state users in the
scenarios. Fig. 4 illustrates the decrease of the RRC Resume
procedure effects on EE when the allocation of resources is
performed following the RRC state aware algorithm, which
allocates the radio resources while devices are in the inactive
or connected state. Given the lack of resource allocation for a
device, the network suggests that the device should remain in
the RRC Inactive state. As a result, the worst-case device’s EE
increases compared to the baseline scenario because the user
does not consume the transition power among states. Due to
space limitations, in Fig. 4 we show only the results pertaining
to the simulated channel gains.

In order to demonstrate the effectiveness of our approach in
different system configurations, we vary the number of users
and radio resources. The results are depicted in Fig. 4, where
the RRC state aware allocation of resources performs better
for any number of users or radio resources in comparison
with the baseline approach. Given a constant number of users,
the increasing number of radio resources improves further the
worst-case user EE of the RRC state aware algorithm related
to the baseline. After users reach the minimum throughput
requirement specified in Table I, the remaining radio resources
are distributed based on the channel conditions. In that regard,
the users with good channel conditions will receive most of the
resources. In contrast, the users with bad channel conditions
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Fig. 5: Comparison of the individual users’ and network’s
energy efficiency for baseline and RRC state aware approaches
for N = 8 users and R = 64 PRBs.

are kept in the inactive state without receiving resources. On
the contrary, the EE improvement is smaller when the number
of users increases, given a constant number of radio resources,
because the data rate requirements of all users need to be
satisfied, causing more frequent transitions even though the
channel conditions are not good.

C. Energy efficiency improvement

In this subsection, we conduct a comparison between our
proposed RRC state aware resource allocation with the base-
line approach, focusing on the energy efficiency improvements
for individual users and fairness. As before, we verify the
performance of our approach with simulated data and more
importantly, with the measurement data. We present the results
of one system configuration, consisting of 8 users and 64
radio resources. Moreover, we add to the analysis the results
corresponding to the total EE achieved from the network.
Fig. 5 illustrates the EE achieved by individual users. Results
demonstrate that the RRC Resume power consumption does
not impact just the worst-case user EE but all users in the
system due to the limited number of radio resources. Thus,
the overall network’s EE has an evident increase, supporting
further the idea of allocating radio resources while the devices
are in the current RRC state, such as RRC Inactive and RRC
Connected state. As can be observed by Fig. 5, individual
users have a balanced EE, where the difference between the
worst-case user and best-case user EE is not considerable.
As result, the EE fairness is maintained by the RRC state
aware approach, in a similar way as the baseline approach.
Our proposed approach increases users’ EE by 5%- 30%
on average compared to the baseline approach, when using
the measurement or simulated data. The results illustrate
an increase in measurement data, even though the channel
gains are small. Further investigations are conducted to
demonstrate the fulfilment of the minimum required transmit
rate constraint by individual users, besides the increase of
the users’ EE. Fig. 6 shows that the achieved transmit rate
with our approach surpasses the user’s minimum required rate
with a value of rmin = 15 bits/s/Hz, for the simulations and
rmin = 3.5 bits/s/Hz, for the measurements. The transmit rate
of some users decreases when applying the RRC state aware
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Fig. 6: Comparison of the individual users’ transmit rate for
baseline and RRC state aware approaches for N = 8 users,
R = 64 PRBs, where rmin

i = 15 bits/s/Hz for simulated
channel and rmin

i = 3.5 bits/s/Hz for measured channel gains.

resource allocation because the radio resources are assigned to
maximize the EE instead of the throughput. This behaviour is
described in [19]. We notice in Fig. 6a an increased transmit
rate for user 6 to increase the achieved EE as indicated in
Fig. 5. Meanwhile, in Fig. 6b, the RRC state aware not only
achieves a higher transmit rate in comparison with the baseline
approach, but fulfills the throughput requirement for user 4, for
which the baseline approach fails. Therefore, we observe that
the proposed energy-efficient and RRC state aware resource
allocation approach increases users’ and network EE while
fulfilling the constraints of the optimization problem.

VI. PRACTICAL ASPECTS

The proposed approach in this work can be adopted by the
standardization for the reduced capability (RedCap) devices
investigated by the 3GPP for the 5G network in Release
17 [3]. Redcap devices are defined as mid-range IoT de-
vices with requirements between ultra-reliable low latency
communications (URLLC) and massive machine-type commu-
nications (mMTC) features. The industrial wireless sensors,
video surveillance in smart cities, and wearable devices are
defined as use cases of the RedCap devices. While RedCap
devices can serve a wide range of use cases with device
lifetime requirements reaching up to 10 years for industrial
sensors, they have a low device complexity, low cost, small
size, and often run applications solely supported by batteries.
Due to medium data rate requirements reaching up to 150
Mbps for downlink and 50 Mbps for the uplink scenario, the
devices have to resume the connection and can not apply the
small data transmission technique, which saves energy. At this
point, our energy-efficient RRC state aware resource allocation
mechanism is a useful power-saving technique for RedCap
devices to fulfill the battery lifetime requirements.

VII. CONCLUSION

This work studies the energy-efficient resource allocation
with fairness guarantees for an uplink OFDMA system. Con-
sidering the multiple device RRC states, we introduced the
power consumption during state transition in the EE defini-
tion. While the state-of-the-art approaches perform well in
the scenario with only RRC Connected users, our results

demonstrate that the allocation is not optimal for systems with
devices in multiple RRC states. We emphasize that the RRC
state awareness of resource allocation algorithm avoids the
RRC Resume procedure execution on battery-powered devices
that lack sufficient resource allocation. We have addressed
the problem by using the max-min optimization problem for
fairness, generalized fractional programming, and Lagrangian
dual decomposition for the iterative allocation of power and
radio resources. In that regard, we formulate the optimization
problem as individual users’ EE maximization with QoS
constraints. Our results demonstrate the improvement of users’
EE when applying our proposed RRC state aware approach to
simulations and measurement datasets. We plan to consider
the impact of varying the system parameter in the achieved
EE in the future.
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