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Abstract: Digital twins (DT) can decrease the maintenance costs of bridges through a 3D geometric-
semantic model representing the current status of the structure. The 3D model of a DT is generally
created from point cloud data (PCD) captured by laser scanning or photogrammetry. Semantic
segmentation is an essential step in processing PCD and 3D bridge modeling. Deep learning models
are efficient tools to automate semantic segmentation. These models, however, need a large dataset
for training which is challenging to achieve for bridges. This paper proposes an approach to generate
synthetic PCD of bridges for training deep learning models. The parametric model of bridges is
created, and their synthetic PCD is simulated. This dataset is then added to the real dataset of bridges
for training a deep learning model. The paper results show that the synthetic PCD can be used for
data augmentation and improving the performance of deep learning models.
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1 Introduction

Bridges, as critical structures, require maintenance during their service life. Recent ASCE report card
[1] shows that the number of deficient bridges is increasing as the rate of deterioration is higher than
rehabilitation and replacement. Despite the feasibility of the conventional methods for evaluation and
condition assessment of bridges, they are loosely and only partially supported by digital methods.
Digitization of existing bridges can support the inspection and maintenance process of the structure
and decrease the applying costs to a large extent.

The concept of digital twin (DT), originated from the industry [2], is concerned with providing the digital
counterpart of a system or object. In the domain of building information modeling (BIM), a digital
twin represents the digital replica of an existing structure [3]. This 3D model can incorporate all the
collected information from the construction site. This information can include the current geometry
of the structure, cracks and their location on the body of the structure. In comparison with a building
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information model, a DT is largely concerned with the as-performed and as-is phases of the structure
[4]. Also, it illustrates the interaction of humans with the structure and can be updated in specific
intervals. In bridges, these intervals might be longer as the physical features of the asset vary gradually
[5]. A digital twin is generally created from the point cloud data (PCD) resulting from terrestrial and
aerial capturing methods. Laser scanning and photogrammetry are two common methods that can
capture existing assets with high measurement accuracy [6], [7]. Compared to a visual inspection,
these methods are faster and less labor-intensive. To create the DT model of a bridge, its PCD
needs to be processed. Semantic segmentation is an essential step in processing PCD. Through
semantic segmentation, the entire PCD of the bridge is divided to clusters representing the point cloud
of elements. In the current practice, this step is conducted manually that in turn, increases the costs of
digital twinning to a large extent. To benefit from the advantages of a DT, semantic segmentation is
required to be automated or at least semi-automated.

2 Related research

Recently, there have been efforts to automate the point cloud segmentation of bridges. The proposed
methods can be divided to heuristic algorithms and deep learning models. In what follows, some of
these methods are reviewed.

Lu, Brilakis, and Middleton [8] detected elements in the point cloud of concrete bridges by a heuristic
algorithm following the relative distance of points in the point clusters of elements. Hu, Zhao, Huang, et
al. [9] used a multi-view convolutional neural network (CNN) to extract features from photogrammetry
and linked it with a multi-layer perceptron (MLP) to segment the point cloud of bridges. Lee, Park, and
Ryu [10] added contextual features by kd-tree and K-nearest neighbors (KNN) to PointNet [11] and
deep graph-convolutional neural network (DGCNN) [12] and improved the performance of the models.
Yan and Hajjar [13] segmented the point cloud of steel bridges by a heuristic algorithm based on the
connection rules that generally exist in the bridges. Truong-Hong and Lindenbergh [14] proposed a
heuristic algorithm to segment elements in the point cloud of bridges by a voxel growing algorithm. Xia,
Yang, and Chen [15] calculated a local feature descriptor for classifying points in the PCD of bridges.

3 Overview of the paper

Heuristic algorithms are capable of labeling the input PCD of bridges without training. These algorithms,
however, are mostly limited to presumptions and conditions that might not be satisfied in all bridges.
On the other side, deep learning models are highly generic and can learn the features of points. These
models, however, need a large dataset for training. Despite the recent advances in technologies such
as laser scanning and photogrammetry, the capturing process of existing bridges is still challenging
and time-consuming. Also, deep models generally need more than a few samples of PCD for training.
The main objective of this paper is to provide a workflow for simulation of bridges and generating
their PCD. For this purpose, the 3D models of bridges are created in a BIM-authoring system. These
models are then used as input in Helios++ [16] to generate their PCD. RGB channels are also added
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by interpolating the points of the real PCD. First, the model is trained only by using real PCD. Next, to
evaluate the augmentation impact of synthetic data, the model is trained with both real and synthetic
PCD. Finally, the statistical metrics obtained from the models with and without augmentation are
compared.

4 Synthetic point cloud data

Synthetic PCD of bridges can be created and used to augment the dataset for training the deep
learning models. Generating synthetic PCD requires modeling and simulating the existing bridges
along with the capturing process by scanning tools. In what follows the required steps to create
synthetic PCD are described.

4.1 Parametric modeling

Parametric modeling is a computer-aided design (CAD) approach for creating dynamic models. As a
result of parametric modeling, the model of bridges achieves the capability of reshaping as the value
of parameters change. To generate the synthetic PCD of bridges, the parametric model of bridges is
created on Revit [17] using a plugin named SOFiSTiK Bridge Modeler [18]. To provide more realistic
bridge models, the dimension of structural elements are considered following the structural drawings of
actual bridges. Each part of the bridge, including the surrounding background, is designed to resemble
the real PCD of bridges. The dimensions of the components, number of spans, and the shape of
elements are varied to increase the diversity of the parametric models. Trees with dense vegetation
are also modeled around the structure, as shown in Figure 1.

4.2 Simulation

To create the PCD of the modeled bridges, the laser scanning process of actual bridges is simulated
by Helios++ [16]. In this software, tripods are placed around the structure to ensure the full coverage
of the models, as shown in Figure 1. The scanning process of the bridge models is conducted by
rotating optics with 120Hz scanning frequency, 5000Hz pulse frequency, 180° scanning angle, and 10
head rotate per sec/deg.

To automate the annotation process of the synthetic PCD, the 3D model of each structural element,
including piers, railings, deck, and background, is scanned separately. This process results in the
exact labeling of synthetic PCD; however, some regions that cannot be generally captured in real
bridges are scanned as well. To simulate occlusion that generally exist in the PCD of real bridges,
these regions are cropped out and deleted. To add RGB channels to the synthetic PCD, the elements
of real PCD are selected and aligned with the corresponding elements of the synthetic PCD. Next, the
RGB channels are interpolated from the real data to the synthetic data, as shown in Figure 1.
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Figure 1: Creating synthetic PCD: parametric modeling (left); laser scanning of the bridge model
(middle); resulting synthetic PCD (right).

5 Semantic segmentation

semantic segmentation of PCD can be defined as the labeling process of the data at a point level.
Through semantic segmentation, the entire PCD is summarized to segments that show the element of
interest in bridges. In this section, details of the deep learning model for processing points and the
dataset are mentioned.

5.1 Deep learning model

As a deep learning model capable of processing points, RandLA-Net [19] is utilized for semantic
segmentation. This model can process and learn features of large-scale point clouds. It applies
random sampling in subsequent layers of the network to reduce the number of points. Simultaneously,
to prevent the loss of key features through sampling, a local feature aggregation module is proposed to
progressively increase the receptive field for each point. This module contains a local spatial encoding
(LocSE) and an attentive pooling block, as shown in Figure 2. LocSE computes the neighboring points
of each point by K-nearest neighbors (KNN) and sends the relative Euclidean distance of the point to
its neighbors to a multi-layer perceptron (MLP). Next, the resulting features are concatenated with
the input features of the point. In the attentive pooling unit, these features are aggregated through a
weighted sum. The weights (scores) of the operation are obtained from a shared MLP to emphasize
the more important features. Finally, every two feature aggregation modules are stacked to expand
the receptive field of the point.

5.2 Dataset

The bridge PCD of Cambridge [8] is used for training and testing the deep learning model. This Real
dataset contains 10 samples of reinforced concrete bridges captured by laser scanning. Following
section 4, 10 samples of synthetic PCD is also created for bridges. Next, the synthetic data is added
to the dataset of real bridges to provide an Augmented dataset containing 20 bridges in total. Figure 3
depicts two typical samples of the real and synthetic PCD, respectively.
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5.3 Hyperparameters

The model is trained for semantic segmentation of four classes, namely: piers, deck, railings, and
background. The hyperparameters of RandLA-Net are tuned through a trial and error process, and
the parameters with the best validation accuracy are selected. The model is trained for 512 epochs
with a batch size of two. The input channel of the network is considered 6, representing X, Y, Z and R,
G, B. The number of 16 neighbors is selected for the KNN search block of the model. Also, 6 neurons
are used in the attentive pooling block of the network.

6 Results

To evaluate the impact of the synthetic data on the results, the model is trained on two datasets and
tested on the same samples of the real bridges. The first dataset is the PCD of the real bridges
containing 10 samples, and the next one is the PCD of the real bridges combined with 10 samples of
the synthetic PCD. The validation is performed on only the real samples of the bridges using leave
one out cross validation (LOOCV) method. In every iteration, a real PCD is left out for testing, and
the training process is conducted on the other remaining samples. The test results of the models
are reported by the mean intersection over union (MIoU) and mean accuracy (MAcc) over classes.
These statistical indices are calculated from the confusion matrix of the predicted labels in validation
or testing phases. Table 1 shows the results of the model on each test sample of the real PCD. As can
be seen, the results have improved for some of the test samples. Averaging the results over all the
test samples illustrates that augmentation has increased MIoU by 5.2% and MAcc by 3.1%.

Considering the prediction results over each test sample, a noticeable change is observed in the
accuracy of Bridge 02 and Bridge 08 where MIoU has increased more than 20% after synthetic data
augmentation. One reason for such improvement could be due to the slight horizontal curvature of
these bridges. Adding synthetic samples with horizontal curvature has resulted in a more generic
dataset for the model to learn the features of curve bridges. Figure 4 visually depicts the prediction

Figure 2: Architecture of RandLA-Net [19].
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Figure 3: Two typical point clouds of each dataset: real samples [8] (left); synthetic samples (right).

Figure 4: Prediction results of the model: ground truth (left), training on real PCD (middle), training on
augmented data (right). Class labels: railings (yellow), background (red), deck (green), piers (blue).

Table 1: The results of semantic segmentation of the real and augmented PCD (%)

Test Sample MAcc Real MAcc Aug ∆MAcc MIoU Real MIoU Aug ∆MIoU

Bridge 01 86.7 84.2 -2.9 81.2 79.6 -2.0
Bridge 02 82.2 90.4 10.0 71.1 88.0 23.8
Bridge 03 97.0 95.7 -1.3 92.7 91.5 -1.3
Bridge 04 93.2 95.9 2.9 89.9 92.2 2.6
Bridge 05 96.4 98.0 1.7 92.6 95.5 3.1
Bridge 06 95.6 98.2 2.7 87.3 89.0 2.0
Bridge 07 93.7 92.2 -1.6 76.0 72.5 -4.6
Bridge 08 78.1 93.8 20.1 70.6 90.5 28.2
Bridge 09 94.1 94.0 -0.1 89.8 89.2 -0.7
Bridge 10 85.0 84.8 -0.2 76.2 76.6 0.5
Average 90.2 92.7 3.1 82.7 86.5 5.2

results of the model on Bridge 08. As can be seen, data augmentation has improved the prediction
accuracy of the model especially in regions where the piers and railings are connected to the deck.

7 Conclusion

Semantic segmentation is an essential step in the 3D modeling of bridges and creating digital twins.
Despite the recent advances in technologies such as laser scanning and photogrammetry, the scanning
process of real bridges is still labor-intensive and costly. Deep learning models have recently shown
successful performance in automating the labeling process of PCD. These models, however, need a
large dataset for training which is hard to achieve for bridges. This paper proposed an approach to
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generate synthetic PCD of bridges for data augmentation. Parametric models of real bridges were
created, and their PCD was simulated. This synthetic dataset was combined with the dataset of real
bridges and used for training a deep learning model. Training on the real and augmented datasets
demonstrated that data augmentation by synthetic PCD improves the accuracy of the models. On
average, the MIoU of the deep model in predicting the labels of real PCD increased by 5.2%. This
improvement shows the feasibility of using synthetic PCD for augmentation. However, the factors
affecting the results are still unclear. To provide more accurate point clouds for data augmentation and
training deep learning models, these factors need to be investigated in the future.
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