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Abstract: Recent advances in capturing technologies have resulted in the fast capturing process
of existing assets with high measurement accuracy. The resulting point cloud data (PCD) can be
processed and used for the digital twinning of existing facilities. Point cloud segmentation is a critical
step, and it has been continuously improved by 3D deep learning approaches, which require point
features as input and predict labels as output. In this paper, apart from those features from raw data
such as spatial information (x-, y-, z-coordinates) and colour information (RGB values), we propose
a set of new point features which considers points’ local neighbouring information and the global
information in the entire point cloud. We compute new point features in two different facilities (building
and bridge) and evaluate the performance of two different networks with and without new features as
input. The results show that the proposed feature enrichment can improve point cloud segmentation
as well as digital twinning of assets.
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1 Introduction

In the architecture, engineering, and construction (AEC) industry, digital methods have revealed
tremendous applications in facilitating the operation and maintenance process of structures. In
this domain, building information modeling (BIM) has been able to provide descriptive models to
support structures through their life cycle. A building information model contains the geometry and
corresponding data to represent the design and construction activities. As one of the recent advances
in AEC, BIM has been used not only in the as-designed phase of the structure but also in as-built and
as-is phases. In recent decades, there have been concerted research efforts to create and optimize
BIM in the as-designed phase of structures. However, the lack of descriptive and digital methods in
the as-built and as-is phases is still tangible.
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As-built and as-is models correspond to the descriptive representation of existing assets from their
post-construction phases. These models are utilized for monitoring and evaluation of the structure
as well as its maintenance and operation. Recently, the concepts of as-built and as-is have been
extended to digital twin (DT). In the domain of BIM, a DT can be defined as a geometric-semantic
replica that represents the current status of the structure. DT of a structure inherits all the features
of an as-is model and also demonstrates the interaction of humans with the structure. A DT can be
updated in regular intervals depending on the type of the product. These intervals can be longer in the
case of structures, as the physical features of the asset change gradually. The modeling process of an
as-is or DT is generally started from the 3D model reconstruction of the existing structure. This model
is then enriched with the information collected from the construction site. These models are generally
created from the point cloud data (PCD) captured by laser scanning or photogrammetry. Semantic
segmentation is an essential step in processing PCD and creating as-built, as-is, or DT models.
Through semantic segmentation, the entire PCD is separated into the point clusters demonstrating
the desired elements (classes). The point cloud of elements can then be used to create the 3D
model of the structure. Semantic segmentation has two significant advantages: 1) the modeling
process is simplified from the entire PCD to the cloud of elements, and 2) the element type of the
segmented clouds is recognized. In the current practice, the semantic segmentation process of assets
is performed manually, which is labor-intensive and error-prone. Recently, there have been efforts to
automate the semantic segmentation process of PCD captured from buildings and bridges. Especially
with the help of deep learning, the results of point cloud segmentation have been improved a lot. Apart
from designing the new architecture of neural networks, point features also have a significant impact
on the result.

This paper is organised as follows. Section 2 discussed some related research in point cloud
segmentation by deep learning. The proposed feature design is introduced in Section 3. Results and
discussions are shown in Section 4. In Section 5, we summarise the output and discuss potential
future work.

2 Related research

Deep learning approaches have been widely applied to predict unknown information based on input
features in the dataset. In general, predicting unknown labels from input features is the classification
problem in deep learning [1]. When processing point cloud, we usually use the term segmentation.
But it can also be seen as a classification problem for each point in the point cloud. Many networks
are designed to adapt to both classification problems and segmentation problems in one architecture
framework.

As point clouds are usually unstructured data, some deep learning approaches requires a pre-
processing step. By voxelisation, the unstructured point cloud data are converted to voxel structure. In
[2], 3D Convolutional Neural networks (CNNs) are applied to solve a binary classification problem. A
more general network with 3D CNN architecture, VoxNet [3] is proposed to detect classes of objects
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for 3D point cloud data. A volumetric grid that can represent the spatial occupancy is calculated first
and then applied to 3D CNNs. However, some original information from the raw point cloud could be
lost in the voxelisation process.

Many networks try to work with points directly. One architecture named PointNet, proposed in [4],
is the pioneer in this field. It takes point clouds as input directly and outputs labels for the entire
input (classification task) or labels for each point (segmentation task). The novel design of PointNet
considers each point (x-, y-, z-coordinate) independently at the first stage. Apart from the three
spatial coordinates values (x,y,z), it can also use additional features like colours, normals, etc. An
improved network based on PointNet considering spatial information of point sets proposed by the
same author is called PointNet++ [5]. In PointNet++, points are grouped into overlapping local regions
by their distance. Then local features are extracted by extracting fine geometric structures from small
neighbour regions. These local features are then grouped together into larger units and processed
to make relative higher-level features. Many more advanced networks are proposed to improve the
prediction performance. In [6], a module that learns spatial contextual features from the point cloud
is implemented and embedded in an encoder-decoder architecture. In [7], the local information of
points is extracted, and the distinctness of the points from multiple resolutions is considered to achieve
semantic segmentation. In recent years, the transformer architecture [8], originated from natural
language processing (NLP), is applied in point cloud segmentation, such as [9], [10], and [11]. These
networks prove the transformer architecture is very powerful in 3D deep learning.

With regard to processing point cloud in built environment, [12] employed a heuristic top-down
approach to detect the bridge elements in the point cloud of concrete bridges. [13] elaborated a hybrid
image-based-geometric point cloud segmentation method to extract features from images and train a
multilayer perceptron (MLP). [14] applied a density-based heuristic algorithm to detect elements in the
point cloud of bridges. As a geometric approach, [15] added contextual features of points to improve
the accuracy of PointNet, and deep graph-convolutional neural network (DGCNN) [16]. [17] introduced
a heuristic algorithm based on the existing connection rules in the point cloud of steel bridges for
semantic segmentation. [18] defined a local descriptor to calculate the local features of points for
semantic segmentation of bridges through a geometric method. In [19], the authors design a network
for the Scan-to-BIM process to segment the structural, architectural, and mechanical components.

3 Proposed Method

Depending on device that used to collect point clouds, point features available in the point clouds can
be differentiated. The basic features that usually exist in most of the point clouds are 3D coordinates
(x,y,z) and colour values (r,g,b). In this section, seven more features are calculated from the point
clouds and the input feature vector is enriched from the 6 original features to 13 features.
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3.1 Features representing local information

The components of normal vectors in 3D are the first three values that are added to the feature vector.
Basically, the normal of a point can to be estimated from the surrounding neighbouring points by
estimating the normal of a plane tangent to the surface. normal vector of points can be a valuable
property that differentiates various points easily. For example, the normal of a point on the vertical wall
is horizontal while this normal vector is vertical on the horizontal floor points. Since estimated normals
can only represent the neighbouring geometric information of points, more features that include other
information are considered.

Figure 1: Original point cloud of
room

Figure 2: Colour field for number
of neighbouring points

Figure 3: Colour field for
mean shift

The number of neighbouring points within a given radius of a point can also differentiate some points.
For those point located in dense region (for example room corner), their value would be higher than
others. The colour-coded scalar field for the number of neighbouring points is shown in Figure 2, in
which the neighbouring number for red points is larger. Another local feature that we use is the mean
shift of a point. We compute the centroid of a point’s neighbouring points within a radius first and then
compute the distance between the centroid and the point. The colour-coded scalar field for the mean
shift value is shown in Figure 3. We can see the value for those points on edges is usually larger.

3.2 Features representing density after projection

Apart from the features incorporating the local information of points, two more features representing
the density of points after projection are added. The first one, called the 2D density, is the number
of neighboring points after projection. This feature is calculated after projection of all points onto
the XY plane and computing the number of neighbours within a circle with a predefined radius. The
colour-coded scalar field for this value is shown in Figure 4. As we can see, this value is larger for
those points on the vertical plane (yellow/red points) while smaller on the horizontal plane (blue points).
This value shows the distribution of all points in the point cloud on the XY plane.

Similarly, for the second density-based feature, all the points are projected onto the z-axis and the
number of neighbours within a range on the axis is computed. The colour-coded scalar field for this
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value is shown in Figure 5. As we can see, this value is larger for those points on the horizontal plane
(yellow/red points) while smaller on the vertical plane (blue points).

Figure 4: Colour field for number of neigh-
bours in XY plane

Figure 5: Colour field for number of neighbours
in vertical direction

4 Experiment and Result

The designed features are extracted for two datasets including the S3DIS dataset [20] which is the
point cloud dataset of large scale indoor environment, and a birdge dataset that contains 10 bridges
[12]. Also, the performance of enriching features are evaluated in two networks (Pointnet++ [5] and
RandLA-Net [21]).

Test results of RandLA-Net [21] on the bridge dataset are shown in Figure 6 to Figure 9. It can be
seen that the prediction with feature enrichment is closer to the ground truth. This can be also seen in
the Table 1, where Intersection over Union (IoU), as a statistical indicator, is higher for the dataset with
feature enrichment. It is obvious that the results of all classes are improved by enriching features of
points.

Figure 6: Original point cloud of bridge Figure 7: Semantic ground truth for bridge
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Figure 8: Prediction result without feature enrich-
ment

Figure 9: Prediction result with feature enrich-
ment

Table 1: Prediction result with/without feature enrichment in bridge dataset (IoU:%)

mIoU Deck Pier Railing Background

without 74.4 77.6 78.5 48.4 93.0
with 87.8 93.6 88.3 72.7 96.7

In the dataset of indoor environments, Pointnet++ [5] is trained and evaluated based on IoU as well.
The quantitative evaluation result is shown in Table 2. It can be seen that the results of most classes
of structural elements such as ceiling, floor, wall, and column are improved. However, the prediction
accuracy for some classes such as sofa (from 42.2% to 26.6%) and bookcase (from 59.8% to 56.2%)
decreases.

The potential reason is that most of the structural elements in buildings and bridges are either horizontal
or vertical. Horizontal elements such as slabs or decks generally provide the required surfaces for
sustaining and transferring the applying live loads to the structure. Vertical elements such as columns
or piers on the other side convey the dead and live loads of the structure to the ground. The newly
added features can represent the information of vertical and horizontal planes. However, they cannot
illustrate geometric information of furniture points which are not horizontal or vertical. Hence, the
newly added information makes the model more confused in distinguishing those points.

Table 2: Prediction result with/without feature enrichment in building dataset (IoU:%)

mIoU Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter
without 52.7 86.0 96.2 70.3 0 4.2 37.2 26.8 66.2 71.4 42.2 59.8 47.1 40.2

with 54.7 88.8 96.4 74.4 1.1 15.4 38.2 26.6 67.2 78.8 26.6 56.2 45.6 38.8

5 Conclusion

The paper presents a new feature enrichment design for semantic segmentation of point cloud data.
The results of testing two different network architectures on the dataset of two different facilities shows
that feature enrichment can improve the performance of the deep learning models. In addition, the
results show higher improvement in the prediction accuracy of the bridge dataset than that of the
building dataset. It seems that there are two potential reasons behind that. Firstly, the class number
in the bridge dataset is smaller, and this makes the segmentation relatively easier. Secondly, the
occlusion in the bridge point cloud is not as much as that in the building where lots of furniture exists.
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Despite improvements in the prediction accuracy of deep learning models, the impact of each feature
on the performance of the model is still unclear.

In the future, more features are added and tested separately for improving the performance of 3D
deep learning models. Also more hand-crafted features are explicitly designed for the models.
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