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Abstract: Partial Differential Equations (PDEs) arise in natural and engineering sciences to model
reality and allow for numerical assessment of these phenomena. Classical numerical solutions for
PDEs rely on discretisations such as e.g. the finite or spectral element method (FEM/SEM). Physics
Informed Neural Networks (PINN) leverage physical laws by including PDE together with a respective
set of boundary and initial conditions (BC / IC) as penalty terms into their loss function during training
without the need for discretisation. However, as the computational domain or the nonlinearity of
the PDE becomes more complex, finding PDE solutions via FEM/SEM as well as PINNs becomes
hard. Mixture of Experts (MoE) is a probabilistic model, consisting of local experts weighted by a
gating network. As in ensemble methods, MoE involves decomposing predictive modeling tasks
into sub-tasks, i.e. training an expert model on partitions of the input space, and devising a gating
model that learns to weight the experts’ predictions conditioned on the input. In this work, we
combine the two methods to form Physics Informed Mixture of Neural Network Experts (PIMNNE)
/ Mixture of Experts Physics Informed Neural Networks (MoE-PINNs) and investigate the learning
and predictive capabilities by the example of a 2-dimensional Poisson PDE over a L-shaped domain
with homogeneous Dirichlet BC. Our simulation studies show, that all MoE-PINNs setups approximate
the SEM reference solution to a satisfactory high degree. A hyperparameter study revealed that
an increase in the number of PINN experts reduces the approximation error significantly even if
regularised aggressively for sparsity. A second interesting finding is that a resolute regularisation -
effectively driving weak learners importance towards zero - is to be preferred over a uniform penalty.
We also found the most popularly used tanh activation function for PINNs being consistently discarded
by the gating network, while PINNs with sine activations provided an additional boost of performance.
Our proposed Moe-PINNs in the future serve as differentiable computational performance predictors
for computational mechanics or fluid dynamics applications in design and verification of structures.
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1 Introduction and Related Work

During the design and verification of engineering structures, PDEs are employed to describe and
model the mechanical or fluid behavior in order to allow for a computational assessment, design and
verification. Solving partial differential equations (PDEs), which arise from various first-order principles
in natural and engineering sciences, by using neural networks was first introduced by Lagaris et al.
[1] and revived in 2017 by Raissi et al. [2], who coined the term Physics-Informed Neural Networks
(PINNs). By leveraging physical laws and the power of automatic differentiation, readily implemented
in all major deep learning libraries, they require just a few lines of code to be implemented and trained.
Further boosted by industry scale software packages like "Modulus" by NVIDIA [3], PINNs have so far
been successfully applied to various linear and nonlinear PDEs from e.g. computational mechanics ,
fluid dynamics [2] and more. Often however, a number of pathologies have been observed at training
time, impeding proper training and ultimately leading to unsatisfactory solutions. Addressing these
pathologies in PINNs is an active area of research and a number of extensions have recently been
proposed, such as building specialised architectures that favor backpropagation [4], or improving the
network initialisation by resorting to meta learning [5].

Analogously to major established numerical solution methods such as the finite element method (FEM),
which split (i.e. discretise) the domain prior to optimisation, cPINNS or XPINNs [6] apply different
networks to slightly overlapping partitions of the domain in a divide and conquer fashion. While having
several advantages over vanilla PINNs, such as larger representation capabilities and the possibility of
distributed computing, selecting the optimal number of networks to distribute over the domain and
defining the boundaries between partitions are sensitive hyperparameters that require considerable
labour to tune. Instead, Stiller et al. proposed GatedPINNs [7], a framework leveraging multiple
networks as an ensemble and an additional learner acting as the gate, which appoints the various
models to partitions of the domain. Such frameworks have been successfully applied in different fields
of ML and are known as Mixtures of Experts (MoE) [8]. It allows the individual learners to specialise
on distinct subsets of the data, while also providing the possibility to average the results of several
experts in challenging areas of the input space [9]. MoE have been of particular interest in multitask
learning problems, as devising different portions of the model for different tasks while keeping some
shared layers constitutes an effective way of reducing the bias-variance trade-off. PINNs are similar
to multitask learning problems in that they have to optimise multiple different terms representing the
governing equation as well as one or more IC and/or BC.

2 Contribution and Methods

We introduce a number of extensions to the original formulation of GatedPINNs and demonstrate
their effectiveness on a new benchmark for ensembles of PINNs. We will hereafter be referring to
GatedPINNs including our extensions as MoE-PINNs.
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- We add a regularisation term to the loss function, which in a data-driven fashion incentives the
model to utilise as few PINNs as possible.

- We show that this regularisation can act as an automated and differentiable architecture search
by initialising a large bag of PINNs with varying depth, width and activation functions, and letting
the gating network select the most suitable subset of models at training time.

- We apply MoE-PINNs to a new benchmark for ensembles of PINNs, the Poisson equation on a
L-shaped domain (as investigated initially in [6], used as validation reference here).

2.1 Physics-Informed Neural Networks (PINNs)

Consider the following abstract parameterised and nonlinear PDE problem:

PDE : F
(︁
û, ∂tû, ∂xû, · · · ;µ

)︁
= 0, x ∈ Ω, t ∈ [0, T]

B.C. : B
(︂

û, ∂xû, ∂2
x û, · · ·

)︂
= 0, x ∈ Γ

I.C. : C
(︂

û, ∂tû, ∂2
t û, · · ·

)︂
= 0, t ∈ Υ

(1)

where x ∈ Rd is the spatial coordinate and t is the time; F denotes the residual of the PDE, containing
the differential operators (i.e. ∂xû, ∂tû, ...); µ = [µ1,µ2, ...] are the PDE parameters; û(x, t) is the
solution of the PDE with initial condition C and boundary condition B (which can be Dirichlet, Neumann
or mixed); Ω, Γ and Υ represent the spatial domain resp. boundaries. In order to find the unknown
function û(x, t), satisfying the residual F as well as the boundary- and initial conditions, B and C, Raissi
et al. [2] proposed to use a neural network U(x, t; θ) as solution to the nonlinear PDE problem of eq. 1,
and train it to optimally approximate the conditions F = 0, B = 0 and C = 0. This is achieved by taking
the necessary derivatives of U through automatic differentiation (AD), inserting these expressions into
F , B and C, applying the mean squared error and training the network as a scalarised multi-objective
optimisation, where the several terms are aggregated using weights [10].

2.2 Ensemble Learners and Mixture-of-Experts

Mixture of Experts (MoE) is an ensemble learning technique implementing a training of experts on
subtasks (e.g. a particular data region) of a predictive modeling problem [11]. The MoE model works
in a four-step fashion: (i) division of a task into subtasks, e.g. by decomposition of the input space,
(ii) develop an expert for each subtask, (iii) use a gating model to decide which expert to use, and
(iv) pool expert outputs and gating model output to make a prediction. The subtasks may or may not
overlap, and experts from similar or related subproblems may be able to contribute to the examples
that are technically outside of their expertise. The MoE regressor is defined as

g(x) =
m∑︂
i

P(i|x, θp)f(x, θi) (2)
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with a local expert regressor f(x, θi) and associated model parameters θi of expert i and a gating function
P conditioned on the input x as well as its parameters θp delivering the probability of association
P(i|x, θp) between input and expert i (i.e. the degree to which the expert contributes to the total output).

3 Mixture of Experts of Physics Informed Neural Networks (MoE-PINNs)

Figure 1: Mixture-of-Experts PINN.

Employing PINNs as expert models to assemble the
PDE solution and defining x~ = (x, t), with x and t be-
ing the spacial and / or time variables, it follows that
f(x~, θi) = U(x, t; θi) (cf. Fig. 1). As the gating network
represents the conditional probability P(i|x~, θi) of da-
tum x~ given by expert mi, a proper gate is formulated
via the softmax function:

λ(x~)i =
exp(P(i|x~, θi))∑︁m
j=1 exp(P(j|x~, θj))

(3)

where λ(x~)i is called "importance" of expert i.

As previously established, the number of experts in the ensemble m constitutes an additional, sensitive
hyperparameter. In order to reduce the laborious process of hyperparameter-tuning, we introduce a
sparsity inducing regularisation to act as data-driven selection of the amount of experts m.

Lsp =

⃓⃓⃓⃓
⃓⃓ 1
|B|

m∑︂
i

∑︂
x~∈B

λi(x~)

⃓⃓⃓⃓
⃓⃓
p

(4)

where B is a batch of collocation points (x, t) and p is a hyperparameter. We are particularly interested
in selecting 0 < p ≤ 1, as these values yield a regularisation term that penalises small values more
than larger ones, and which will thus lead to more sparsity in the importances across experts.

4 Results: Poisson’s Equation on L-shaped Domain

The Poisson equation is a second-order, elliptic partial differential equation and has many applications
in natural or engineering sciences, e.g. the elastostatic problem of a rod under a torsion load,
the Helmholtz equation in dynamically excited continua without bending stiffness or the equilibrium
displacement of a stretched membrane subjected to a distributed force. Given the brevity of this paper,
we investigate the solution efficiency and quality of the MoE-PINNs approach for solving the Poisson’s
problem, defined over a 2-dimensional L-shaped domain Ω with homogeneous Dirichlet boundary
conditions on Γ:

– ∆u(x, y) = 1, (x, y) ∈ Ω = [–1, 1]2 \ [0, 1]2

u(x, y) = 0, (x, y) ∈ Γ
(5)
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The training data for MoE-PINNs is sampled at the collocations points within the domain Ω as
{xi,F(xi)}

NΩ=683
i=1 and on the boundary {xΓ,i,B(xΓ,i)}

NΓ=341
i=1 .

Table 1: Performance of MoE-PINNs with different configurations and tanh activation function. MSE u
denotes the mean squared error between the prediction and the reference solution computed using
the spectral element method (SEM).

# of
experts m

Depth Width Parameters Order p MSE u
MSE u
GatedPINN

1 3 128 33’537 none 8.32·10–5

1 3 256 132’609 none 8.73·10–5

3 3 128 105’164 none 9.42·10–5 9.06·10–4

3 3 128 105’164 0.25 5.93·10–5

3 3 128 105’164 0.5 8.27·10–5

3 3 128 105’164 2 1.08·10–4

4 3 128 138’767 none 7.78·10–5 1.38·10–3

4 3 128 138’767 0.25 6.38·10–5

4 3 128 138’767 0.5 6.89·10–5

4 3 128 138’767 2 7.69·10–5

5 3 128 172’370 none 7.70·10–5 1.71·10–3

5 3 128 172’370 0.25 8.28·10–5

5 3 128 172’370 0.5 7.75·10–5

5 3 128 172’370 2 8.56·10–5

For ease of interpretation of the results, we manually varied the values of only a selection of the most
important hyperparameters. More specifically, we first compared ensembles containing m ∈ {1, 3, 4, 5}
experts, each with a depth of 3 layers, a width of 128 nodes each and the hyperbolic tangent as
activation function. In a second step, the experiments involving the automated architecture search
were conducted on a more diverse set of architectures. We initialised the PINN experts in the ensemble
with the activation functions tanh, sigmoid, sine, softplus or swish, varied the depth between 1 and 4
layers and selected the width from the set 32, 64, 128, 256. Since the experiments were all conducted
on the Poisson PDE with L-shaped domain, we kept the hyperparameters of the gating network fixed at
depth 2, width 64 and used the hyperbolic tangent as activation function. In addition to the losses from
the PINNs and the gating NN, a penalisation of the number of experts is added by setting a sparsity
order p. The contributions of the terms in the objective function are balanced using ReLoBRaLo
[10]. Furthermore, we initialised the learning rate of the Adam optimiser at 0.001 and decreased it
by a multiplicative factor of 0.1 whenever the optimisation stopped making progress for over 3’000
optimisation steps and finally used early stopping in the event of 9’000 steps without improvement,
followed by an additional 15’000 iterations of L-BFGS. The validation data (ground truth ū) are taken
from [12] and were obtained using the spectral element method (SEM). All computations in the scope
of this study were performed on a NVIDIA A5000 GPU. Table 1 summarises the performances of MoE-
PINNs with different configurations and compares them to GatedPINNs with similar configurations.
Note that the largest improvement over the baseline GatedPINNs stems from replacing the ReLU

33. Forum Bauinformatik, München, 2022 321



Bischof, R. and Kraus, M. A.

Figure 2: Results for a MoE-PINN containing 4 experts with depth 3, width 128, tanh activation function
and sparsity order p = 0.5. Top row: distribution and magnitude of the importances for each PINN in
the ensemble. Center row: output of each individual PINN. Bottom row: ground truth and prediction of
the entire ensemble.

activation function in the gate with the infinitely, continuously differentiable function tanh. Finally, the
results for the automated and differentiable architecture search with MoE-PINNs for different activation
functions and varying number of experts is presented in Fig. 3.

5 Discussion and Conclusions

In general, we can show that all MoE-PINNs setups approximate the reference solution to a satisfactory
degree. It can be observed that an ensemble of three learners noticeably improves the performance
over the baseline model with a comparable number of parameters. However, the accuracy deteriorates
when increasing the number of experts beyond 3. Thus, we conjecture that the sparsity regularisation
is not enough for the MoE-PINNs to automatically tend towards the optimal number of three experts
and dropping any additional networks in the ensemble. However, note that choosing the sparsity
regularisation p = 0.5 results in a lower error than the less aggressive p = 2 across all conducted
experiments. This indicates that a resolute regularisation, which effectively drives weak learners
towards zero importance, is to be preferred over a more uniform division of the domain. Future
research will therefore evolve around model pruning, where experts falling below a certain threshold of
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Figure 3: Evolution of the importances λi averaged over the entire batch of random collocation points
per expert PINN with different activation functions with a total number of experts equal to the number
of lines in each plot.

importance are removed from the ensemble and the model subsequently fine-tuned solely with the
remaining experts.

Fig. 2 illustrates the results of a MoE-PINN with four equivalent experts. It is noticeable that the gating
network opted for almost completely dropping one expert under the sparsity regularisation, and divided
the domain symmetrically amongst the remaining PINNs by assigning one dominant expert to each of
the three quadrants.

When inspecting the importances in ensembles of very diverse experts, i.e. consisting of a variable
number of layers and nodes, as well as different activation functions, it was surprising to observe that
the gating consistently discarded the networks with tanh activations (c.f. Fig. 3), as the tanh is one of
the most common choices in the literature of PINNs. On the other hand, MoE-PINNs containing the
sine activation performed exceedingly well compared to the case where a single PINN was initialised
with this same activation function. There have been several attempts at making use of the sine function
due to its well-behaved derivatives, but it has so far not been able to depose tanh or swish as the
most popular choices. The observations in Figure 3 suggest that an ensemble of networks with sine
activations may provide this function with an additional boost of performance. Finally, the notion of
a linear combination of sine waves ties in nicely with the popular signal decomposition as used for
example in the Fourier Transform.

Future research is concerned with inspection of performance, efficiency, robustness and scalability of
MoE-PINNs to other PDE families arising in civil engineering.
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