
TUM School of Computation, Information and Technology
Technische Universität München

6 DoF Pose Estimation of Known and Novel Objects With
Dense Correspondences

Ivan Shugurov

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Alin Albu-Schaeffer

Prüfer der Dissertation:

1. Priv.-Doz. Dr. Slobodan Ilic
2. Prof. Dr. Vincent Lepetit

Die Dissertation wurde am 28.09.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
25.02.2023 angenommen.

Abstract

Estimating 6 degrees of freedom (6 DoF) pose of the objects from visual data is a
long-standing problem in computer vision. The pose is conditioned on a known 3D
CAD model of the object of interest and describes its relative position in the camera
coordinate system and its orientation. Fast and precise pose estimation is essential for
practical application in various domains, such as augmented and virtual reality, robotics,
computer-aided medical procedures and autonomous driving, as it provides a more high-
level semantic and geometric understanding of the 3D world than the standard object
detection or semantic segmentation, allowing for interaction with the 3D world.

Due to its importance, the problem of 6 DoF pose estimation has been addressed
numerous times in the past. However, the results have no saturated yet, and the problem
still remains challenging. Examples of such challenges are a lack of real labeled data,
domain gap between synthetic and real data, handling of symmetric objects, dealing
with occlusions and lack of generalization to novel objects. While in the past many
methods relied on depth information to infer or refine object pose, modern methods
almost completely shifted to operating solely on monocular RGB images. In this way,
such methods can be directly used on mobile devices, that are typically equipped with
only RGB cameras. Additionally, we pay special attention to the problem of detection
and pose estimation of novel objects without training on them, which was typically
neglected in the past.

The main contribution of the thesis is development and analysis of 6 DoF pose estima-
tion methods that rely on dense 2D-3D correspondences including their generalazbility
to novel objects. The core idea of such methods is to train a neural network to pre-
dict correspondences between pixels of the input image and the known 3D CAD model
of the object of interest. This allows for 6 DoF pose estimation with the well-known
Perspective-n-Point (PnP) and RANSAC algorithms. The thesis consists of 4 main
parts. The first part introduces a novel method for 6 DoF pose estimation with dense
correspondences supplemented with a rendering-based object pose refiner. This efficient
light-weight method allows for very precise pose estimation in real time even on mo-
bile devices. It sets the baseline for all other methods presented in the thesis. In the
second part, we explore how to use dense correspondences for object pose refinement
from several frames with known relative camera transformations. The method utilizes
the advances in differentiable rendering and allows for effective handling of occlusions
and erroneous pose hypothesis. The explicit loss function, which is minimized using
non-linear optimization, provides an advantage over the refiner from the first part. The
third part focuses on in-depth analysis of correspondence estimation with deep learning.
The study empirically compares the choice of input data (monocular RGB versus depth
maps) and choice of training data (real versus synthetic). The thesis concludes with dis-

iii

Abstract

cussion of a one-shot method for detection and pose estimation of novel object without
prior training on them. To the best of our knowledge, it is the first deep-learning-based
method operating on monocular RGB images that fully generalizes to novel objects. In
spite of not having been trained on target objects, it still achieves good pose quality.

iv

Zusammenfassung

Das Abschätzen der 6 Freiheitsgrade (6 DoF) Pose der Objekte aus visuellen Daten
ist ein seit langem bestehendes Problem in der Computer Vision. Die Pose basiert auf
einem bekannten 3D-CAD-Modell des interessierenden Objekts und beschreibt seine rel-
ative Position im Kamerakoordinatensystem und seine Orientierung. Eine schnelle und
präzise Posenschätzung ist für die praktische Anwendung in verschiedenen Bereichen wie
Augmented und Virtual Reality, Robotik, computergestützten medizinischen Verfahren
und autonomem Fahren unerlässlich, da sie ein besseres semantisches und geometrisches
Verständnis der 3D-Welt bietet als die Standard-Objekterkennung oder semantische Seg-
mentierung, die eine Interaktion mit der 3D-Welt ermöglichen.

Aufgrund seiner Bedeutung wurde das Problem der 6-DoF-Pose-Schätzung in der Ver-
gangenheit mehrfach angesprochen. Die Ergebnisse sind jedoch noch nicht gesättigt,
und das Problem bleibt immer noch eine Herausforderung. Beispiele für solche Her-
ausforderungen sind ein Mangel an echten gekennzeichneten Daten, eine Domänenlücke
zwischen synthetischen und echten Daten, der Umgang mit symmetrischen Objekten,
der Umgang mit Okklusionen und die fehlende Verallgemeinerung auf neuartige Objekte.
Während sich in der Vergangenheit viele Methoden auf Tiefeninformationen stützten,
um die Objekthaltung abzuleiten oder zu verfeinern, haben sich moderne Methoden fast
vollständig darauf verlagert, nur mit monokularen RGB-Bildern zu arbeiten. Auf diese
Weise können solche Verfahren direkt auf Mobilgeräten verwendet werden, die typis-
cherweise nur mit RGB-Kameras ausgestattet sind. Darüber hinaus widmen wir dem
Problem der Erkennung und Posenschätzung neuartiger Objekte ohne Training beson-
dere Aufmerksamkeit, was in der Vergangenheit typischerweise vernachlässigt wurde.

Der Hauptbeitrag der Dissertation ist die Entwicklung und Analyse von 6-DoF-Pose-
Schätzmethoden, die auf dichten 2D-3D-Korrespondenzen beruhen, einschließlich ihrer
Verallgemeinerbarkeit auf neuartige Objekte. Die Kernidee solcher Verfahren besteht
darin, ein neuronales Netzwerk zu trainieren, Übereinstimmungen zwischen Pixeln des
Eingangsbildes und dem bekannten 3D-CAD-Modell des interessierenden Objekts vorherzusagen.
Dies ermöglicht eine 6-DoF-Posenschätzung mit den bekannten Perspective-n-Point (PnP)-
und RANSAC-Algorithmen. Die Diplomarbeit besteht aus 4 Hauptteilen. Der erste Teil
stellt eine neuartige Methode zur 6-DoF-Posenschätzung mit dichten Korrespondenzen
vor, ergänzt durch einen Rendering-basierten Objektpose-Refiner. Diese effiziente und
leichtgewichtige Methode ermöglicht eine sehr genaue Posenschätzung in Echtzeit auch
auf mobilen Geräten. Es bildet die Grundlage für alle anderen Methoden, die in der Ar-
beit vorgestellt werden. Im zweiten Teil untersuchen wir, wie dichte Korrespondenzen zur
Verfeinerung der Objekthaltung aus mehreren Frames mit bekannten relativen Kamera-
transformationen verwendet werden können. Das Verfahren nutzt die Fortschritte beim
differenzierbaren Rendering und ermöglicht eine effektive Behandlung von Okklusionen

v

Zusammenfassung

und fehlerhaften Posenhypothesen. Die explizite Verlustfunktion, die durch nichtlineare
Optimierung minimiert wird, bietet einen Vorteil gegenüber dem Refiner aus dem ersten
Teil. Der dritte Teil konzentriert sich auf die eingehende Analyse der Korresponden-
zschätzung mit Deep Learning. Die Studie vergleicht empirisch die Wahl der Eingabe-
daten (monokulares RGB versus Tiefenkarten) und die Wahl der Trainingsdaten (real
versus synthetisch). Die Arbeit schließt mit der Diskussion einer One-Shot-Methode
zur Erkennung und Posenschätzung neuartiger Objekte ohne vorheriges Training. Nach
unserem besten Wissen ist es die erste Deep-Learning-basierte Methode, die mit monoku-
laren RGB-Bildern arbeitet und sich vollständig auf neuartige Objekte verallgemeinern
lässt. Obwohl es nicht auf Zielobjekte trainiert wurde, erreicht es immer noch eine gute
Posenqualität.

vi

Contents

Abstract iii

Zusammenfassung v

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Motivation and Problem Definition . 1

1.2 Dense Correspondences . 2

1.3 Pose Estimation of Novel Objects . 5

1.4 Challenges . 6

1.5 Contributions . 7

1.6 Outline . 9

2 Theory and Fundamentals 11
2.1 Neural Networks . 11

2.1.1 Fully-Connected Neural Networks 11

2.1.2 Convolutional Neural Networks . 13

2.1.3 Essential Components of Neural Networks 14

2.2 Geometric Prerequisites . 16

2.2.1 Rigid Body Transformations . 16

2.2.2 Rotation Parameterization . 17

2.2.3 Pinhole Camera Model . 19

3 Pose Estimation 21
3.1 Main Challenges . 21

3.2 Related Work . 24

3.2.1 Template and Retrieval-Based Methods 24

3.2.2 Correspondence-Based Methods . 26

3.2.3 Direct Pose Regression . 28

3.2.4 Generazability of Pose Estimation Method to Novel Objects 28

3.2.5 Pose Refinement . 30

3.2.5.1 RGB Methods . 30

vii

CONTENTS

3.2.5.2 Depth Methods . 31

3.2.5.3 Multi-View Methods . 31

3.3 Pose Estimation From Correspondences 32

3.3.1 Perspective-n-Point (PnP) . 32

3.3.2 Kabsch Algorithm . 33

3.3.3 RANdom SAmple Consensus (RANSAC) 34

3.4 Evaluation . 36

3.4.1 Datasets . 36

3.4.2 Pose Quality Metrics . 37

4 Pose Estimation with Dense Correspondences 41

4.1 Introduction . 41

4.2 Methodology . 43

4.2.1 Data Preparation . 43

4.2.1.1 Correspondence Mapping 45

4.2.1.2 Online Data Generation and Augmentation 45

4.3 Dense Object Detection Pipeline . 46

4.4 Deep model-based pose refinement . 47

4.5 Training Details . 49

4.6 Implementation Details . 49

4.7 Evaluation . 50

4.7.1 Datasets . 50

4.7.2 Evaluation Metrics . 51

4.7.3 Single Object Pose Estimation . 51

4.7.4 Multiple Object Pose Estimation 53

4.8 Additional Experiments . 53

4.9 RANSAC Iterations . 53

4.9.1 Runtime analysis . 53

4.9.2 Refinement . 54

4.9.3 Correspondence Quality . 55

4.9.4 Multiple Instance Detection . 57

4.9.5 UVW Mapping . 57

4.10 Conclusion . 58

5 Multi-View Pose Refinement with Dense Correspondences 59

5.1 Introduction . 59

5.2 Proposed Method . 61

5.2.1 Object Detection and Pose Estimation 62

5.2.2 Pose refinement with differentiable renderer 63

5.2.3 Autolabeling . 65

5.3 Experiments . 65

5.4 Conclusions . 71

viii

CONTENTS

6 Analysis of Pose Estimation with Dense Correspondences 73
6.1 Introduction . 73
6.2 Methodology . 75

6.2.1 2D Object Detection . 76
6.2.2 Pose Parameterization With Dense Correspondences 76
6.2.3 CENet: Correspondence Estimation Network 77
6.2.4 Inference with The Correspondence Estimation Network 78
6.2.5 Multi-View Refinement With Differentiable Renderer 79
6.2.6 Implementation Details . 80

6.3 Data Preparation . 81
6.3.1 RGB Data Preparation . 81
6.3.2 Depth Data Preparation . 82
6.3.3 Handling Object Symmetries . 83

6.4 Experiments . 84
6.4.1 Datasets . 84
6.4.2 Results . 88
6.4.3 Ablation Studies . 94

6.5 Conclusions . 100

7 One-Shot Pose Estimation Without Re-Training 101
7.1 Introduction . 101
7.2 Methodology . 103

7.2.1 One-Shot Segmentation . 103
7.2.2 Template Matching . 105
7.2.3 One-Shot Dense Correspondence Estimation 106
7.2.4 Pose Hypothesis Verification . 107

7.3 Experiments . 108
7.3.1 2D Object Localization . 109
7.3.2 6 DoF Pose Results . 110
7.3.3 Ablation Studies . 113

7.4 Implementation Details . 116
7.5 Limitations . 118
7.6 Conclusion . 118

8 Conclusion & Outlook 121
8.1 Summary . 121
8.2 Limitations and Future Work . 122

Bibliography 125

A Authored and Co-Authored Publications 143

ix

List of Figures

1.1 Illustration of a rigid body transformation [R|t] and the pinhole
camera model. 2D point x corresponds to the location of the 3D point
X on the object surface in the object coordinate system. Such 2D-3D
correspondences can be used to estimate [R|t] using the PnP algorithm [1]. 3

2.1 Comparison of biological and artificial neurons. Figure from [2]. . 12

2.2 Fully connected neural networks. 13

2.3 Schematic depiction of a convolutional neural network. 14

2.4 Comparison of normalization methods. Figure from [3]. 15

2.5 Pinhole camera model. Figure from [4]. 19

3.1 Examples of pose ambiguity in RGB images. Green line shows the
outline of the object rendered on the image in its ground truth pose. The
red line shows the outline of the object rendered some distance away from
the ground truth along the viewing direction. 22

3.2 Examples of precise and imprecise ground truth pose labels.
Green line shows the outline of the object rendered on the image in its
ground truth pose. The top row illustrates perfect alignment between the
object in the image and the rendered object. The bottom row, on the
other hand, demonstrates imprecise alignment which indicates imprecise
ground truth poses. All poses are real ground truth annotations from
Linemod [5] . 23

3.3 Examples of the domain gap between real and synthetic data.
The top row illustrates patches with objects taken from the real test im-
ages. The bottom row illustrates rendered CAD models of the respective
objects. 24

3.4 Examples of various symmetry types. 25

3.5 Examples of scenes with severe occlusions. 25

3.6 Illustration of the PnP algorithm. 2D points (ui) from an RGB
images are first matched to the corresponding 3D points (pi) on the model.
Then, the reprojection loss is minimized to compute the object pose. . . 33

3.7 Illustration of the Kabsch algorithm. The goal is to estimate an
SE(3) transformation from the initial point cloud (points pi) to the target
point cloud (points qi) given known 3D-3D correspondences. 34

3.8 Sample images from publicly available datasets used for evalua-
tion of the methods proposed in this thesis. 36

xi

LIST OF FIGURES

4.1 Example output of the DPOD method: Given a single RGB image,
we regress its ID mask and its 2D-3D correspondences. PnP+RANSAC
is then applied to estimate the final pose. The green bounding box shows
the ground truth pose, while the blue one corresponds to the estimated
pose. The almost perfect overlap of the bounding boxes indicates that
estimations are very accurate. 42

4.2 Pipeline description: Given an input RGB image, the correspondence
block, featuring an encoder-decoder neural network, regresses the object
ID mask and the correspondence map. The latter one provides us with
explicit 2D-3D correspondences, whereas the ID mask estimates which
correspondences should be taken for each detected object. The respec-
tive 6D poses are then efficiently computed by the pose block based on
PnP+RANSAC. 43

4.3 Correspondence model: Given a 3D model of interest (1), we apply a
2 channel correspondence texture (2) to it. The resulting correspondence
model (3) is then used to generate GT maps and estimate poses. 45

4.4 Refinement architecture: The network predicts a refined pose given
an initial pose proposal. Crops of the real image and the rendering are
fed into two parallel branches. The difference of the computed feature
tensors is used to estimate the refined pose. 48

4.5 Qualitative results: Poses predicted with the proposed approach on (a)
the LineMOD dataset and (b) the OCCLUSION dataset. Green bounding
boxes correspond to ground truth poses, bounding boxes of other colors
to predicted poses. For both datasets predicted poses are very close to
correct poses. 50

4.6 Qualitative correspondence quality: Comparison of ground truth
(left), predicted (center) UV maps and heat maps (right) of absolute errors. 56

4.7 Contour regression: Additional contour regression head for multiple
instance detection. 57

4.8 UVW mapping: Visual comparison between UV and UVW mappings. . 58

5.1 Multi-view inference and pose optimization. 1) Inputs to the algo-
rithm are an unordered set of images and corresponding relative camera
transformations. 2) YOLO is applied to each image separately to detect
the object of interest in each of them. 3) Dense correspondences are pre-
dicted with the DPOD network. 4) Rough object pose in the reference
frame is estimated using PnP and RANSAC using the predicted 2D-3D
dense correspondences. 5) The final pose is iteratively refined using the
multi-view optimization based on differentiable rendering. 60

xii

LIST OF FIGURES

5.2 Example refinement results on the Homewbrewed dataset [6].
The top row shows initial per-frame poses produced by PnP before refine-
ment, while the bottom row shows them after refinement. The outline of
the object is visualized in green for the ground truth pose, and in blue for
the estimated pose. This illustrates that the proposed refiner is capable
of selecting a reference frame with a good initial pose and refining it even
in the presence of occlusions and imprecise correspondences or when some
of the initial pose hypotheses are completely incorrect, as in (b). 62

6.1 Synthetic toy example illustrating three-stage correspondence-
based 6 DoF pose estimation: A full RGB image is fed to a 2D object
detector for bounding box estimation. Resulting bounding boxes are then
used to generate crops on the available data, which are subsequently fed
into the correspondence network. If only RGB images are provided, then
the pose is estimated from correspondences using 2D-3D PnP. In case
registered depth data is also in place, we project the estimated correspon-
dences into 3D and use the 3D-3D Kabsch algorithm. 74

6.2 Multi-view pose optimization: The algorithm takes the output of
DPODv2 from several views with known relative camera transformations
as input. An initial pose hypothesis is iteratively refined until it converges
to a pose, which is consistent with predicted correspondences in all frames.
The proposed loss function penalizes pixel-wise distance between a pre-
dicted correspondence and a correspondence corresponding to the current
pose hypothesis. The loss function is implemented using a differentiable
renderer. 75

6.3 Visual comparison of predicted segmentation maps of the visible
object parts and color-coded NOCS for the same patch depend-
ing on whether RGB or Depth CENet is used. 77

6.4 Pose recalculation for symmetric objects during training. Poses
are disambiguated during training to produce consistent NOCS maps. In
case of a continuous symmetry around Z axis (Example a), a rotation
around Z is added to the initial pose to ensure that the camera is always
located on the same arch in the object coordinate system. In case of
discrete symmetries (Example b), all symmetric poses are mapped to the
one base pose by rotation around the symmetry axis. 83

6.5 Dependence of quality of pose estimation on object’s visibility.
Pose quality is reported in terms of the Average Recall [7] on objects 2
and 21 from the TLESS dataset. The plots show that correspondence
prediction works from RGB works considerably more reliably than from
depth in case of large occlusions. It also shows that synthetic training
data allows for more reliable pose estimation of occluded objects. 89

xiii

LIST OF FIGURES

6.6 Success cases and failure cases. Top row provides an example of suc-
cessfully estimated segmentation mask and NOCS correspondences even
in case of occlusions and similar objects present in the image patch. The
bottom row illustrates a failure case, where the CENet is confused by oc-
clusions and similar objects belonging to other object classes, which leads
to an incorrect estimated pose. The green cuboid represents the ground
truth pose (up to a symmetry transformation), whereas the blue cuboid
represents the estimated pose. 91

7.1 Pipeline of the proposed detector. 1) One-shot object localization
conditioned on the 3D model. 2) Initial viewpoint estimation by tem-
plate matching. 3) Dense 2D-2D matching between the image patch and
the matched template. 4) 6 DoF pose estimation with PnP+RANSAC
or Kabsch+RANSAC. The proposed pose estimation pipeline generalizes
well to new target objects not seen duing training. 102

7.2 Encoder of the stage 1 network. The network takes an input image
and an object model, represented by a sparse set of templates, and outputs
a binary segmentation of the target image. The full detailed architecture
is provided in the supplementary materials. 104

7.3 Feature computation for a target image and a 3D model. The
top row illustrates how an input target RGB image is converted to a 3D
feature tensor fk. The bottom row demonstrates how object templates
sampled along azimuth (axis X), elevation (Y) and in-plane rotation axis
Y are transformed to a corresponding dense 4D model descriptor ok. . . . 105

7.4 Encoder of the stage 3 network. The network takes an input image
with the detected object and a matched template. Its output is a pixel-
wise binary segmentation and dense 2D-2D correspondences. A detailed
architecture is provided in the supplementary materials. 106

7.5 Qualitative evaluation of the proposed method on an object from
the Homebrewed dataset [6]. a) an input image, cropped only for visu-
alization purposes, with a comparison of the ground truth (green cuboid)
and estimated (blue cuboid) poses; b) predicted one-shot segmentation;
c) a matched template; and d) predicted correspondences as color-coded
NOCS correspondences. 108

7.6 Impact of the number of templates (a) and the angular distance
between the ground truth and the matched template (b) on the
final ADD score on Linemod dataset [5]. 113

7.7 Ablation studies on pose hypothesis selection on Linemod dataset dataset [5].117
7.8 Ablation studies on pose hypothesis selection on Occlusion dataset

dataset [8] . 118

xiv

List of Tables

4.1 Pose estimation performance: Comparison of our approach to the
other RGB detectors on the LineMOD dataset. The table reports the
percentages of correctly estimated poses w.r.t. the ADD score. Among
the methods trained on synthetic data, our method shows the best results
significantly surpassing the former state-of-the-art. The variant of our
method trained on real data again demonstrates outstanding performance
outperforming most of the competitors. Moreover, our new refinement
pipeline improves the estimated poses even further and shows the best
overall results. 52

4.2 Detection performance for multiple objects: Comparison of the
state-of-the-art mean average precision (mAP) scores on the OCCLU-
SION dataset. 53

4.3 Pose estimation for multiple objects: Comparison of our approach
on real data to the other RGB detectors on the OCCLUSSION dataset.
The table reports percentages of correctly estimated poses w.r.t. the ADD
score. 53

4.4 RANSAC iterations test: The effect of the number of RANSAC iter-
ations on the overall ADD score. 54

4.5 Runtime comparison: Time-efficiency of our approach with respect to
the other state-of-the-art approaches. 54

4.6 Runtime analysis: Runtime of the proposed approach for all models of
the LineMOD dataset. 55

4.7 Comparison of deep learning-based refinement methods: Our
refinement approach shows the overall best ADD score with respect to
the latest state-of-the art method DeepIM [9]. 55

4.8 Quantative correspondence quality: Correspondence quality for real
and synthetic data estimated in terms of mean and median absolute errors,
and standard deviation. 56

5.1 Percentages of correctly estimated poses w.r.t. the ADD on the
LineMOD [5] dataset. DR1, DR2 and DR4 stand for the proposed
refinement with 1, 2 and 4 views respectively. Single-asterisked (*) meth-
ods use real training data. Double-asterisked (**) methods report only
refinement time instead of the time of the whole pipeline. 66

xv

LIST OF TABLES

5.2 Percentages of correctly estimated poses w.r.t. the ADD on the
Occlusion [8] dataset. DR1, DR2 and DR4 stand for the proposed
refinement with 1, 2 and 4 views respectively. 66

5.3 Results on the Homebrewed dataset [6] reported according to
the Average Recall (AR) metric of the BOP challenge [7] on the
BOP challenge subset of test images. 67

5.4 Results on the YCB-V dataset reported according to the Aver-
age Recall (AR) metric of the BOP challenge [7] on the BOP
challenge subset of test images. CosyPose [10] results labeled with *
were obtained by re-running the official implementation of the paper. . . 68

5.5 Percentages of correctly estimated poses w.r.t. the ADD score
on the Linemod [5] dataset with noisy relative camera transfor-
mations. 69

5.6 Percentages of correctly estimated poses w.r.t. the ADD score
when automatically annotated data is used to train the monoc-
ular detector. 70

6.1 Data modalities and types of train data used in the experiments. 84

6.2 Pose estimation performance on Linemod on RGB images of
methods trained on synthetic data: The table reports the percent-
ages of correctly estimated poses w.r.t. the ADD score. Our approach
sets the new state of the art both among the methods trained on real
data and the methods trained on synthetic data. Our refiner outperforms
other RGB refiners. Run times are provided as they are reported in the
original papers using non-identical hardware. 84

6.3 Pose estimation performance on Linemod on RGB images of
methods trained on real data: The table reports the percentages of
correctly estimated poses w.r.t. the ADD score. Our approach sets the
new state of the art both among the methods trained on real data and
the methods trained on synthetic data. Our refiner outperforms other
RGB refiners. Run times are provided as they are reported in the original
papers using non-identical hardware. 85

6.4 Pose estimation performance on Linemod on depth and RGBD
images: The table reports the percentages of correctly estimated poses
w.r.t. the ADD score. The proposed detector shows state of the art
results both if only real or only synthetic train data is used. Run times
are provided as they are reported in the original papers using non-identical
hardware. 86

6.5 Pose estimation performance on Linemod on depth and RGBD
images: The table reports the percentages of correctly estimated poses
w.r.t. the ADD score. The proposed detector shows state of the art
results both if only real or only synthetic train data is used. Run times
are provided as they are reported in the original papers using non-identical
hardware. 86

xvi

LIST OF TABLES

6.6 Pose estimation performance comparison on the Occlusion dataset:
Results are reported in terms of the Average Recall score. The results
prove the effectiveness of the proposed approach on all used data modali-
ties. Run times are provided as they are reported in the BOP challenge [7]
using non-identical hardware. PPF-based methods, labeled with ∗ in the
Time column, use only CPU. 87

6.7 Pose estimation performance comparison on the Homebrewed
dataset: Results are reported in terms of the Average Recall score [7].
The results prove the effectiveness of the proposed approach on all used
data modalities. Run times are provided as they are reported in the BOP
challenge [7] using non-identical hardware. PPF-based methods, labeled
with ∗ in the Time column, use only CPU. 88

6.8 Pose estimation performance comparison on the BOP images of
the TLESS dataset: Results are reported in terms of the Average Recall
score [7]. The results prove the effectiveness of the proposed approach on
all used data modalities. Run times are provided as they are reported in
the BOP challenge [7] using non-identical hardware. PPF-based methods,
labeled with ∗ in the Time column, use only CPU. 90

6.9 Pose estimation performance on Linemod on different data modal-
ities and types of train data: The table reports the percentages of
correctly estimated poses w.r.t. the ADD score. An ADD score for each
data modality and train data type is provided separately on ground truth
2D detections and on YOLO detections. Symmetry-aware median L2 cor-
respondence error demonstrates the quality of predicted correspondences. 92

6.10 Pose estimation performance on the Occlusion dataset on dif-
ferent data modalities and type of train data: The table reports
in terms of the AR score [7]. An AR score for each data modality and
train data type is provided separately on ground truth 2D detections and
on YOLO detections. Symmetry-aware median L2 correspondence error
demonstrates the quality of predicted correspondences. 93

6.11 Different view sampling strategies for the multi-view refiner on
the Linemod [5] dataset. 94

6.12 Different view sampling strategies for the multi-view refiner on
the Occlusion [11] dataset. 95

6.13 Different view sampling strategies for the multi-view refiner on
the Homebrewed [6] dataset. 96

6.14 Different view sampling strategies for the multi-view refiner on
the TLESS [12] dataset. 97

xvii

LIST OF TABLES

6.15 Pose estimation performance on the Homebrewed on different
data modalities and type of train data: The table reports the per-
centages of correctly estimated poses w.r.t. the Average Recall score [7].
An AR score for each data modality and train data type is provided sepa-
rately on ground truth 2D detections and on YOLO detections. Symmetry-
aware median L2 correspondence error demonstrates the quality of pre-
dicted correspondences. 98

6.16 Pose estimation performance on the TLESS on different data
modalities and type of train data: The table reports the percentages
of correctly estimated poses w.r.t. the Average Recall score [7]. An AR
score for each data modality and train data type is provided separately on
ground truth 2D detections and on YOLO detections. Symmetry-aware
median L2 correspondence error demonstrates the quality of predicted
correspondences. 99

7.1 2D detection results in comparison to YOLO [13], trained on
target objects, and one shot OS2D [14] detectors on the BOP
split of the test data [7]. Results on the Homebrewed dataset [6] are
reported on the publicly available validation split. 109

7.2 Percentages of correctly estimated poses w.r.t. the ADD on the
Linemod [5] dataset for methods trained on synthetic data. All
methods apart from ours, PPF and PfS require prior training on RGB
target objects. 110

7.3 Results on the Occlusion dataset [8] reported according to the
Average Recall (AR) metric of the BOP challenge [7] on the
BOP challenge subset of test images. All methods apart from ours
and PPF [15] require prior training on target objects. 111

7.4 Results on the Homebrewed dataset [6] reported according to
the Average Recall (AR) metric of the BOP challenge [7] on the
BOP challenge subset of test images. All methods apart from ours
and PPF [15] require prior training on target objects. 112

7.5 Results on the YCB-V dataset [16] reported according to the
Average Recall (AR) metric of the BOP challenge [7] on the
BOP challenge subset of test images. All methods apart from ours
and PPF [15] require prior training on target objects. 114

7.6 Results on the TLESS- dataset [12] reported according to the
Average Recall (AR) metric of the BOP challenge [7] on the
BOP challenge subset of test images. All methods apart from ours
and PPF [15] require prior training on RGB renderings of target objects. 115

7.7 Object localization and segmentation for various configurations
of the proposed localization network on Linemod [5]. 115

7.8 ADD10 score on the Linemod [5] for different pipeline compo-
nents. 116

xviii

LIST OF TABLES

xix

1 Introduction

1.1 Motivation and Problem Definition

Artificial Intelligence researchers from all over the world have been trying to teach com-
puters how to perceive and behave like humans for decades. The field of computer vision
plays a crucial role in these attempts due to a sheer amount of information about the
world and its state humans perceive through vision. The initial attempts of computer
vision were mostly limited to non-semantic understanding of the images. Examples of
such tasks include image filtering [17, 18, 19, 20], corner detection [21, 22, 23, 24], con-
tour and edge detection [25, 26, 27, 28], stereo matching [29, 30, 31, 32, 33, 34], image
stitching [35, 36, 37, 38], structure from motion and SLAM [39, 40, 41, 42, 43], 3D
reconstruction [44, 45] and many more. Even though these tasks are crucial for the
understanding of the 3D world around us, they lack the the knowledge of semantics.
While humans can instantly recognize all objects that they see, asses their size, asses
their location and, when possible and necessary, grab them, it is an extremely challeng-
ing tasks for computers. The rise of machine learning and, later, deep learning gave us
hope to find solutions to many of the aforementioned problems including semantics. The
increase in computational powers of computers, hand-held and wearable devices allowed
for deployment of computer vision systems based on machine learning for everyday ap-
plications. Thanks to advances in deep learning, we are now able to extract a lot of
semantic information even from monocular RGB images. Examples of the tasks, revo-
lutionized by deep learning, are image classification [46, 47, 48, 49, 50, 51, 52], object
detection [53, 54, 55, 56, 57, 13, 58], semantic segmentation [59, 60, 61, 62, 63], instance
segmentation [64] and panoptic segmentation [65].

The aforementioned subtasks of computer vision have been tackled in a wide range of
works before. However, they are focused either on geometric or semantic scene image
understanding, which is often insufficient for real-life applications requiring interaction
with the 3D world. We know what objects we see but we still have no idea how big
they are, how far they are, what their relative pose to the camera. Thus, for example, a
robot cannot grasp the objects that it sees, an autonomous car cannot avoid an obstacle,
an AR device cannot overlay any useful information atop of the real world, a surgical
robot is severely restricted in how it can assist the surgeon. This motivates the need for
a better joint geometry- and semantics-aware understanding of the world from a single
RGB image. The solution is fortunately available and is called 6 Degrees of Freedom (6
DoF) object pose estimation.

The task of 6 DoF pose estimation consists of estimating a position and orientation
of the object relative to the camera. Normally, a known 3D model of the object is
assumed to be known. Then, object pose estimation is formally posed as estimating

1

1 Introduction

rotation R ∈ SO(3) and translation t ∈ R3 which transform the object from the object
coordinate system to the coordinate system of the camera to form the input image. The
simplified process of applying a transformation to the object and of the image formation
is provided in Figure 1.1. Estimating objects’ poses brings much more semantic and
geometric understanding of the scene as compared to the tasks described above. Now a
computer is not only aware of what it sees but also knows where exactly the objects are
in the 3D space relative to the camera. This is crucial input information of various tasks,
such as robotic grasping, augmented reality, autonomous driving and medical robotics.
Additionally, knowing the 3D location of the object implicitly gives us its 2D location
and 2D segmentation mask of the object.

Thanks to its importance, 6 DoF object pose estimation belongs to the classical com-
puter vision problems. Initially, it was solved by detecting hand-crafted keypoints typ-
ical for the object, encoding them with hand-crafted features and matching them to a
database of pre-computed keypoints of the object. This allowed for establishing 2D-3D
correspondences and estimating the pose using the PnP algorithm [1]. This approach,
as was later shown in Linemod [66], did not scale well to objects with uniform textures
as it is impossible to extract reliable keypoitns from them. Linemod [66] proposed to
use multimodal templates for pose estimation. Another line of research explored pose
estimation by matching simple descriptors of local geometry, such as Point Pair Fea-
tures [15], of the scene to those of the object. This allowed for precise pose estimation
but required to have access to depth information and heavily relied on pose hypothesis
refinement with the ICP algorithm [67], resulting in slow runtimes.

The advent of deep learning has also transformed the field of pose estimation. Now,
it is possible to extract features no matter how pronounced the textures of the objects
are. Additionally, it is possible to train a neural network to detect any kind of pre-
defined keypoints, for example corners of the projected 3D bounding box as in BB8 [68]
and YOLO6D [69]. Starting with the simpler task of rotation estimation via manifold
matching [70, 71], the filed has evolved to end-to-end deep learning solutions [10, 72] that
beat the classical approaches, such as PPF, using only monocular RGB images as input.
These faster and more precise methods allowed for a wide adoption of pose estimation
methods.

1.2 Dense Correspondences

Pose estimation with dense correspondences is one of the leading paradigms in 6 DoF
object pose estimation, which was explored in numerous works [73, 74, 70, 75, 76]. First,
let us define what is meant by 2D-3D correspondences. Figure 1.1 provides a schematic
overview of the image formation with a pinhole camera model [4]. More details on
the pinhole camera model and projective geometry are provided in Section 2.2.3 and a
seminal book on multiple-view geometry by Hartley et.al. [4]. Given a point X ∈ R3

on the object surface in the object coordinate system, it is transformed to the camera
coordinate system as RX + t. Using the projection operator π of the pinhole camera
model, the 3D point RX + t is projected onto the image plane as a 2D point with

2

1.2 Dense Correspondences

Figure 1.1: Illustration of a rigid body transformation [R|t] and the pinhole camera
model. 2D point x corresponds to the location of the 3D point X on the object
surface in the object coordinate system. Such 2D-3D correspondences can be used
to estimate [R|t] using the PnP algorithm [1].

coordinates x ∈ R2. Projective transformation loses information about distance from
the point. In other words, given a point x, it is impossible to directly recover RX + t.
However, 2D coordinates of x is sufficient to compute a ray starting in the origin of the
camera and passing through RX + t in a closed form. Given a sufficient number of
correspondences between x1, ...xn ∈ R2 and their 3D correspondences X1, ...Xn ∈ R3 on
the object in the object coordinate system, it is possible to estimate the transformation
R, t from the object coordinate system to the camera coordinate system using a well-
known Perspective-n-Point (PnP) algorithm [1].

While having been used for pose estimation with hand-crafted descriptors in the 90s,
correspondence-based pose estimation experienced a renaissance. Deep learning allowed
for flexible extraction of features from RGB and prediction of arbitrary defined key-
points, rather than only the hand-crafted corners such as SIFT [77]. It even allowed
for feature extraction and correspondence estimation from low-textured objects, such as
models from the Linemod dataset [5], and texturelss industrial objects, as in the TLESS
dataset [12]. The previous works [69, 68] proposed to predict 2D locations of a sparse
set of pre-defined keypoints, such as corners of the 3d bounding box around the object.
Dense correspondences is the natural extension of these ideas. The key concept is to
establish 2D-3D correspondences for all object pixels in the image instead of only a
small fraction of them. Hence, the name ”dense correspondences”. Having more cor-
respondences contributes to increased robustness and accuracy of pose estimation since
imprecise correspondences can be filtered out using the RANSAC algorithm [78].

Advantages of pose estimation with dense correspondences can be summarized as
follows.

Interpretable geometric constraints. One of the main advantages of keypoint-
based methods is the naturally added geometric interprentibility of the results. The
underlying neural model is not responsible for directly predicting the object pose but

3

1 Introduction

rather responsible for an arguably simpler task of correspondence estimation, which is
done directly in the image plain. The PnP algorithm, which is used to estimate the
pose from correspondences, minimizes the reprojection loss between the predicted and
projected locations of the correspondences. Given correspondences of reasonable quality,
this ensures prediction of plausible poses.

Superior performance over other methods. Dense-correspondence-based meth-
ods tend to outperform other methods, including the sparse-correspondence-based meth-
ods. This is directly related to the number of correspondences. The larger the set of
predicted correspondences are, the smaller the influence of imprecision of each of the
correspondence. Low-quality correspondences, that do not fit the projection model de-
scribed above, are filtered out using the RANSAC algorithm.

Additional robustness to occlusions. Dense-correspondence-based methods are
less sensitive to occlusions than their sparse counterpart. When a part of the object is
visible, it is still possible to predict accurate correspondences for visible pixels, while the
invisible pixels can be completely ignored.

Ease of data augmentation during training. Given an image of the object and
its known 2D-3D correspondences, various 2D data augmentations, such as in-plane
rotations, scaling, in-painting in different backgrounds, adding extra occlusions, can be
easily performed directly in 2D together with straightforward recalculation of the ground
truth correspondences.

In spite of all the cons listed above, dense-correspondence-based methods are not free
of disadvantages. Disadvantages of pose estimation with dense correspondences can be
summarized as follows.

Need for rendering during data preparation. Ground truth poses alone are not
enough for training the dense correspondence detector. Each RGB image of the object
must be supplemented with a per-pixel segmentation mask and per-pixel information
about corresponding 3D points. It is typically achieved by rendering the object with the
texture replaced by vertex coordinates. This process introduces an additional, poten-
tially time and computationally consuming, step during data preparation. It is, how-
ever, of a less concern if synthetic data is used, since scene simulation and photo-realistic
rendering takes considerably more time than rendering of correspondences. During ren-
dering, a particular attention must be paid to the consistency of rendered coordinates
for symmetric objects.

No end-to-end differentiability. During training of a deep-learning-based model,
the loss function is defined over the correspondences rather than over the pose itself
because PnP and RANSAC algorithms are typically non-differentiable. During testing,
PnP and RANSAC add an extra step to the inference pipeline making it slower. It
is particularly true for larger number of correspondences or for noisier correspondences,
which require more iterations of RANSAC to converge to good pose estimates.

Last but not least, the underlying dense correspondence models are based on ar-
chitectures for semantic segmentation. This leads to a larger number of trainable
parameters.

4

1.3 Pose Estimation of Novel Objects

1.3 Pose Estimation of Novel Objects

Before learning-based feature extraction, generalization to novel objects was not an issue.
Methods, based on hand-crafted keypoints, generalized naturally to novel objects. Hand-
crafted keypoint detectors, such as SIFT [77] or ORB [24], are by construction local and
unaware of the concept of the object. Even until today, hand-crafted keypoint detectors
still prevail over the learning-based keypoints in the field of SLAM [79]. For each new
object, a typical keypoint-based method required pre-computation of object’s keypoint
and their descriptors from several sample images, which is a deterministic process and
is very different from training deep learning models. Alternatively, PPF-based methods
rely on extremely simple descriptors based on distances and angles between two points
and their normals. In spite of their simplicity, the descriptor is very generic, rotationally-
aware and allows to generate a pose hypothesis from a single point pair. However,
to achieve reasonable pose accuracy, PPF methods require a larger number of pose
hypotheses and ICP refinement.

In spite of the progress of deep-learning-driven pose estimation, the existing solutions
are far from perfect. Striving for high pose quality metrics, researchers typically train one
deep neural network for each object. This results in a huge overhead both during the data
preparation and training as well as during testing, when separate networks have to be
executed for each detected objects. This is infeasible for many real-life applications such
as warehouse robotics and autonomous driving, where the robot/vehicle is constantly
surrounded to a huge number of various objects. On the one hand, it was addressed by
category-level pose estimation pioneered by the NOCS paper [74]. The goal is to train a
single network capable of pose estimation of all objects belonging to one category. For
example, one network for cups, one network for chairs and so on. The effectiveness of
such methods, however, directly correlates to the degree of similarity between objects
within the category. The other research direction is dedicated to designing methods
which detect novel objects conditioned on the 3D object model. While the classical
methods, such as PPF, easily scaled to new objects without training on them, this
turned out to be a surprisingly difficult task for deep learning. In the past, Pitteri et
al. tried to solve it by training a detection model to detect corners of the objects [80] or
to predict per-pixel shape descriptors [81]. This required, however, train and test set to
contain similar looking objects. MultiPath AAE [82] proved that rotation estimation via
manifold learning can generalize well to novel objects. However, the method still relied
on a standard object detector trained on tha target objects. We explicitly address this
issue in Chapter 7 by introducing a novel deep learning architecture capable of end-to-end
detection and pose estimation of novel unseen objects. Our proposed method consists of
three stages: one-shot semantic segmentation, initial viewpoint estimation via template
matching and, finally, dense correspondence estimation between the matched template
and the image of the object.

5

1 Introduction

1.4 Challenges

6 DoF pose estimation is intrinsically a challenging and ill-defined tasks. Here, we briefly
summarize the main open challenges. More detailed discussion of the topic is provided
in Section 3.1.

Lack of real training data and its lack of quality. One of the most fundamental
limitations for learning-based pose estimation methods stems from the difficulty of an-
notating real training data with pose labels. While for the other classical deep learning
tasks, such as classification or semantic segmentation, it is possible to manually label
images, it is simply impossible for 6 DoF pose labels. Labeling images with object poses
is an intricate and tedious process, as was shown in [6, 12]. The quality of estimated
ground truth labels is still far from perfect, which is clearly visible in datasets such as
Linemod [5] and YCB-V [16]. To tackle this problem, we experiment with training all
methods presented in the thesis on synthetic data and test their performance on real
data.

Projective ambiguity. Pose estimation directly from monocular RGB images is ar-
guably the most important issue because of the ubiquitous possible applications. Judging
by the methods present in the BOP challenge [7], most of the modern deep-learning-
based methods focus exclusively on this scenario for initial pose estimation. Depth or
multi-view are used only for post-refienement. However, monocular pose estimation is
innately ill-defined, because projective transformation and discrete nature of the images
make it hard to accurately estimate distance to the object along the z axis of the cam-
era. To deal with this problem, we first introduce a multi-view object pose refiner in
Chapter 5. We then experiment with correspondence and pose prediction directly from
depth maps, which are free of projective ambiguity, in Chapter 6.

Occlusions. Occlusions pose a significant challenge for pose estimation methods
because they not only make detecting such object harder but also complicates corre-
spondence estimation because only a part of the object is visible. This is implicitly
handled in all methods proposed in this thesis by predicting dense correspondences.

Low textures. Even though deep learning allows for feature extraction from a picture
of any surface, objects without pronounced textures still offer a difficult challenge for
detection and correspondence and pose estimation. Examples of such objects are not
only industrial details, such as object in TLESS [12] and Homebrewed [6] datasets, but
also uniformly colored object from other datasets, such as Linemod [5]. This is partially
addressed in Chapter 6 by the correspondence estimation method operating directly on
depth maps instead of RGB.

Symmetries. Symmetric object make the pose estimation task less defined as sev-
eral, or infinitely many poses, may look indistinguishably in the image. Symmetric
object typically require additional care during ground truth preparation and in loss
function definition. In all methods presented in this thesis, the symmetries are handled
by rendering consistent and non-ambiguous 2D-3D correspondence maps before training.

Missing depth information. Depth information is typically used for pose refine-
ment with the ICP algorithm [67]. Effectiveness of such refinement is typically hindered
by noisy or missing depth information caused by occlusions and by object materials.

6

1.5 Contributions

This is especially noticeable on the BOP Challenge leaderboard[7] of the TLESS [12]
dataset, where multiple methods report worse results after the ICP refinement. Su-
perior performance of RGB method from Chapter 6 allows it to be used without any
additional refinement for various practical tasks. Moreover, the multi-view refiner from
Chapter 5 is free of this issue.

Need for real-time performance. For pose estimation to be useful, it has to be
real-time capable and very precise at the same time. This is, unfortunately, extremely
challenging to achieve. While there are direct pose regression methods that are extremely
fast, they typically lack the precision. Correspondence-based methods offer great pose
quality but tend to be much slower due to overhead caused by PnP and RANSAC
methods. The problem is exacerbated by the presence of many objects in the scene, each
of which is typically processed independently. On the publicly available leaderboard
of BOP Challenge [7], no method shows real-time performance on datasets such as
Homebrewed [6], TLESS [12] and YCB-V [16]. The method introduced in Chapter 4 is
real-time capable for single object pose estimation scenario and can even be run in real
time on iPad.

Separate training for each object. A typical deep-learning-based model for pose
estimation is trained only on one model at a time. This means, that for each object data
preparation (either labeling of real data or rendering synthetic data) and model training
have to be repeated from scratch. Moreover, current state-of-the-art models lack any
capabilities to generalize to novel objects. This problem is explicitly tackled in one
Chapter 7 of the thesis.

1.5 Contributions

In this thesis, we focus on developing novel state-of-the-arts methods for 6 DoF pose
estimation using dense correspondences. Four main publications, presented in here, cover
various aspects of the problem. The main contributions can be summarized as follows:

• Precise and fast 6 DoF pose estimation method based on dense cor-
respondences. Object pose estimation from pure RGB images, as opposed to
classical methods operating on depth or RGBD, have gained in popularity due to
the availability on high-quality RGB cameras on almost all every-day devices. The
progress in monocular pose estimation was made possible by the progress in deep
learning, which allowed for reliable feature extraction even from low-textured ob-
jects. Building on these advances, we propose a method, nicknamed DPOD, that
works by predicting multi-class object masks and dense 2D-3D correspondences
between image pixels and corresponding 3D models. Dense correspondences com-
puted by our method allow for more robust and accurate 6 DoF pose estimation.
We demonstrated that for both, real and synthetic training data, our detector out-
performs state-of-the-art methods of the time. While being precise, the presented
approach is still real-time capable even on mobile devices. The proposed pose re-
finement approach also performs very well and allows for achieving a pose accuracy
that surpasses all other related deep-learning-based pose refinement approaches.

7

1 Introduction

• Multi-view object pose refinement method based on differentiable ren-
dering. Pose estimation from monocular RGB images is innately imprecise due
to projective ambiguity, which does not allow for precise distance estimation, and
occlusions, which prevent the network from establishing accurate 2D-3D corre-
spondences. We propose a method that uses an initial pose estimate and aligns it
to 2D-3D correspondences estimated in several frames, with known relative cam-
era transformations. The process is fully differentiable and is implemented using
a differentiable renderer. The method is shown to work well even in case of sever
occlusions, erroneous initial pose estimates and small distance between cameras.
We additionally demonstrate that this method can be used for auto-labeling real
data. A DPOD-variant trained on images with automatically labeled poses reaches
similar performance to the DPOD trained on the same images with ground truth
labels.

• In-depth analysis of performance of dense-correspondences-based 6 DoF
pose estimation. We propose a three-stage method for object detection and
pose estimation, nicknamed DPODv2,that relies on dense correspondences. We
combine a 2D object detector with a dense correspondence estimation network and
a multi-view pose refinement method to estimate a full 6 DoF pose. We propose
a unified framework for dense correspondence estimation, whose architecture is
agnostic to the input modality type available (RGB or Depth). Ensuring that
the architecture is fixed, allows us to run careful ablation studies on the effects of
particular design choices: using RGB or depth as input, and using real, synthetic
or a mix of training data. We measure and report how these choices affect the
quality of correspondences and the overall quality of pose estimates. We perform
an extensive evaluation to analyze and validate the results on several publicly
available challenging datasets. DPODv2 achieves excellent results on all of them
while still remaining fast and scalable independent of the used data modality and
the type of training data.

• First end-to-end one-shot method for detection of novel objects without
prior training on them. One of the major bottlenecks for industrial adoption
of deep-learning-based pose estimation methods is their lack of generalization abil-
ities and time needed for data preparation and network training. A typical pose
estimation neural network is trained only on one object instance at a time. It
means that a new neural network has to be trained for each object, which is not
which is not scalable or even feasible. To remedy this issue, we present a novel
one-shot method for object detection and 6 DoF pose estimation, that does not
require training on target objects. The only assumption is that textured CAD
models of the target objects are available. The network takes an input object and
a 3D model of the object of interest and automatically detects the object in 3D
and then estimates its pose. Our proposed method consists of three stages: one-
shot semantic segmentation, initial viewpoint estimation via template matching
and, finally, one-shot dense correspondence estimation between the matched tem-

8

1.6 Outline

plate and the image of the object. Then, the pose is estimated using either PnP
or Kabsch algorithms. To the best of our knowledge, this is the first end-to-end
one-shot method for monocular RGB methods. We evaluate the method on five
different datasets and report very competitive performance in comparison to the
state-of-the-art methods trained on synthetic data, even though our method is not
trained on the object models used for testing.

1.6 Outline

This section summarizes the overall structure of the thesis. All methods proposed in
the thesis have undergone thorough peer-reviews by experts in the field and published
at the top-tier journals and conferences.

Chapter 2 - Theory and Fundamentals In this chapter, we briefly discuss the
generic theoretical background, this thesis is built upon on. First, the core principles
of artificial neural networks and deep learning as well as their training strategies are
discussed. Then, we discuss the formal mathematical definition of 6 DoF object pose
and how this pose can be practically parameterized.

Chapter 3 - Pose Estimation This chapter introduces core concepts of pose es-
timation in general and pose estimation with dense correspondences in particular. We
first discuss the typical challenges of pose estimation. Then, we provide a discussion of
related work that formed state of the art before this thesis. Then, geometric methods
for pose estimation with correspondences are discussed. At the end, we introduce the
main publicly available datasets, used for benchmarking pose estimation methods, and
the most commonly pose quality metrics.

Chapter 4 - Pose Estimation with Dense Correspondences This chapter in-
troduces the core idea of establishing dense 2D-3D correspondences with deep learning.
The method proposed in this chapter is fast and yet establishes precise correspondences,
which leads to very precise pose estimates. The experimental shows that dense corre-
spondences are also highly useful for pose estimation of symmetric and occluded objects.
The chapter additionally introduces a deep-learning-based pose refinement procedure,
that operates exclusively on monocular RGB images and allows us to improve poses even
further. Both networks can be trained on either real or synthetic data.

The findings of this chapter were published in the following peer-reviewed paper:

• S. Zakharov*, I. Shugurov*, S. Ilic. Dpod: 6d pose object detector and refiner.
IEEE International Conference on Computer Vision (ICCV), 2019 (* equal contri-
bution)

The method was additionally registered as the following US patent:

• I. Shugurov, A. Hutter, S. Zakharov, S. Ilic. Dense 6-dof pose object detector.
U.S. Patent Application No. 17/427,231. 2022

Chapter 5 - Multi-View Pose Refinement with Dense Correspondences In
this chapter, a novel method for object pose refinement from multiple RGB frames

9

1 Introduction

with known relative camera transformations. An explicit loss function is used to find
a pose that is consistent with correspondences in all frames. The loss is computed and
aggregated between views using a differentiable renderer and, thus, can be optimized
using the standard gradient-based techniques. Additionally, it is demonstrated how the
method can be used for auto-labeling of unlabled real data.

The findings of this chapter were published in the following peer-reviewed paper:

• I. Shugurov*, I. Pavlov*, S. Zakharov, S. Ilic. Multi-view object pose refinement
with differentiable renderer. IEEE Robotics and Automation Letters (RA-L), 2021
(* equal contribution)

Chapter 6 - Analysis of Pose Estimation with Dense Correspondences The
method proposed in this chapter extends the ideas of correspondence-based 6 DoF pose
estimation and provides its in-depth analysis. The study empirically compares the choice
of input data (monocular RGB versus depth maps) and choice of training data (real
versus synthetic) and evaluates how these choices affect the quality of estimated corre-
spondences and poses.

The findings of this chapter were published in the following peer-reviewed journal
paper:

• I. Shugurov, S. Zakharov, S. Ilic. Dpodv2: Dense correspondence-based 6 dof
pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021

Chapter 7 - One-Shot Pose Estimation Without Re-Training In this chap-
ter, a novel method for one-shot object detection and pose estimation is proposed. The
method takes an input image and a descriptor of a known 3D object and automatically
estimates its 2D location and 6 DoF pose. Taking two separate object as input allows
the method to automatically generalize to novel objects without training on them. The
method works by first segmenting the target object in the input image. Then, the initial
viewpoint estimate is generated by template matching. Finally, dense correspondences
are established between the matched template, with known object pose, and the input
image with the unknown object pose. This automatically gives us dense 2D-3D corre-
spondences between the input image and the object model. This allows for a significant
reduction of time needed for data preparation and training of the model as it has to be
done only once. In spite of not having been trained on the target objects, the method
still regresses poses, whose quality is comparable to the standard methods trained on
synthetic data.

The findings of this chapter were published in the following peer-reviewed paper:

• I. Shugurov, F. Li, B. Busam, S. Ilic. OSOP: A Multi-Stage One Shot Object
Pose Estimation Framework. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022

Chapter 8 - Conclusion & Outlook. This chapter concludes the thesis, summarizes
the results, proposed methods, and provides a brief discussion of possible future work.

10

2 Theory and Fundamentals

2.1 Neural Networks

Artificial neural networks have been around since the since the middle of the 20th cen-
tury, when seminal works on perceptron were published by Mcculloch et all. [83] and
Rosenblatt et all [84]. The perceptron model depicted in Figure 2.1a was inspired by a
biological neuron depicted in Figure 2.1b. Now, in the era of deep learning, perceptron
is usually referred to as a neuron. It forms a basic building block of neural networks.
In this chapter, we provide a brief overview of artificial neural networks and their core
components.

2.1.1 Fully-Connected Neural Networks

The most basic class of artificial neural networks is fully-connected networks. Each
neuron of a fully-connected neural network, depicted in Figure 2.1b, implements the
following function:

xji+1 = φ
(
xTi wi

j + bji

)
(2.1)

where xi ∈ RDi stand for an input vector to the neuron, wj
i ∈ RDi for the weights of the

neuron and bji ∈ R for a so-called bias and φ denotes a non-linear activation function.
Indices i and j stand for layer and neuron indices respectively.

To form a fully-fledged fully-connected neural network, several neurons are stacked
together to for a layer, as shown in Figure 2.2. Therefore, it is more convenient to think
of the fully-connected neural network in terms of layers rather than particular neurons:

xi+1 = φ (Wi · xi + bi) (2.2)

with xi ∈ RDi , xi+1 ∈ RDi+1 are input and output feature vectors respectively, Wi ∈
RDi+1×Di is matrix of weights, consisting of individual neuron weights stacked as rows,
and bi ∈ RDi+1 is a vector of biases.

For the clarity of notation, let us use the following shorthand notation:

fi+1 := Wi · xi + bi (2.3)

In general case, the neural network of arbitrary depth can be trained using gradient-
based optimizers such as a gradien descent. This requires computation of gradients of
the loss function with respect to the nerwork parameters. This is done using the so-called
backpropagation [85]. The idea stems from the basic calculus rule of chain derivatives.

11

2 Theory and Fundamentals

(a) Biological neuron

(b) Artificial Neuron

Figure 2.1: Comparison of biological and artificial neurons. Figure from [2].

Given the output of the neural network as xn+1, the derivatives of a differentiable loss
function L to the weights of the last layer Wn can simply be computed as following:

∂L (xn+1, ygt)

∂Wn
=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂Wn
·

=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂fn+1
· ∂fn+1

∂Wn

=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂fn+1
· ∂Wn · xn + bn

∂Wn

=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂fn+1
· xTn

(2.4)

Gradients of the loss function with respect to the weights of the penultimate layer
Wn−1 can be computer in s similar fashion:

∂L (xn+1, ygt)

∂Wn−1
=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂xn
· ∂xn
∂Wn−1

=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂fn+1
· ∂fn+1

∂xn
· ∂xn
∂fn
· ∂fn
∂Wn−1

=
∂L (xn+1, ygt)

∂xn+1
· ∂xn+1

∂fn+1
· ∂fn+1

∂xn
· ∂xn
∂fn
· xTn−1

(2.5)

It is clear from the Equation 2.4, that
∂L(xn+1,ygt)

∂xn+1
· ∂xn+1

∂fn+1
was already computed at the

previous step. It means that only ∂fn+1

∂xn
· ∂xn
∂fn
· xTn−1 has to be computed from scratch.

A general equation for a derivative with respect to parameters of an arbitrary layer
goes as follow:

∂L (xn+1, ygt)

∂Wi
=
∂L (xn+1, ygt)

∂xi+1
· ∂xi+1

∂Wi

=
∂L (xn+1, ygt)

∂xi+1
· ∂xi+1

∂fi+1
· ∂fi+1

∂Wi

=
∂L (xn+1, ygt)

∂xn+1
· ... · ∂xi+2

∂xi+1
· ∂xi+1

∂fi+1
· ∂fi+1

∂Wi

(2.6)

12

2.1 Neural Networks

(a) Shallow Fully-Connected Network

(b) Deep Fully-Connected Network

Figure 2.2: Fully connected neural networks.

For this general case, again
∂L(xn+1,ygt)

∂xn+1
· ... · ∂xi+2

∂xi+1
· ∂xi+1

∂fi+1
was already computed at

the previous step, and only the remaining ∂fi+1

∂Wi
has to be evaluated. It means that the

gradients are computer layer-wise from the last layer to the first. At step, only gradients
of the next layer are re-used without recomputing them.

2.1.2 Convolutional Neural Networks

When it comes to the tasks of computer vision, the field is dominated by convolutional
neural networks rather than by fully connected networks. First popularized by the
LeNet paper [86] and then proven to work exceptionally well by the AlexNet paper [46],
convolutions networks revolutionized the design of neural architectures for computer
vision. The standard fully-connected networks are a bad fit for image processing due to
the large dimensionality of the input data. For example, given an image of the standard
resolution 480 × 640, each neuron in the first hidden layer will have to have 307200
weights excluding bias, which quickly becomes intractable. Instead, each neuron in a
convolutional neural network is defined as a kernel k ∈ RHk×Wk×Dk with Hk,Wk and Dk

being height, width and the dimensionality of the kernel respectively and a bias b ∈ R.
Then, this kernel is applied to the input image using the standard convolutional operator
in a sliding window manner as depicted in Figure 2.3. Given an input xi ∈ RHi×Wi×Di

to the i-th layer, j-th neuron of the layer performs a convolution and a bias addition
followed by a non-linear activation function φ:

xji+1 = φ
(
xi ∗ kj

i + bji

)
(2.7)

This operation outputs a feature map xji+1 ∈ RHi+1×Wi+1 with width and height
depending on the size of the kernel and on a definition of boundary conditions. Each
convolutional layer is defined by Di+1 kernels k1, ...kDi+1 . As a result, the output of
each layer defined as;

13

2 Theory and Fundamentals

Figure 2.3: Schematic depiction of a convolutional neural network.

xi+1 =
[
φ
(
k1
i ∗ xi + b1

)
|...|φ

(
k
Di+1

i ∗ xi + b
Di+1

i

)]
(2.8)

Gradients of the loss function with respect to the kernel parameters are computed
analogously to the case of fully-connected networks.

2.1.3 Essential Components of Neural Networks

Activation Functions. Non-linear activation functions are a core building block of
any neural networks. While linear (or convolutional) layers are directly responsible for
feature extraction, they cannot be stacked directly. A combination of linear functions is
itself forms a linear function, which means that the expressive capabilities of the network
do not increase of the number of layers. Thus, non-linear activation functions must be
added atop of each linear layer. The two most popular activation functions are sigmoid
and ReLU:

sigmoid (x) =
1

1 + e−x
ReLU (x) = max (0, x)

Normalization. Normalization layers have been a norm in deep learning since the
very beginning. The original AlexNet paper relied on Local Response Normalization [87,
88]. The key moment of the development of normalization layers was the publication
that introduced Batch Normalization [89]. For a layer with d-dimensional input x =
(x1, ..., xd), Batch Normalization implements the following transformation:

x̂k = γk
xk − E

[
xk
]√

Var [xk]
+ βk (2.9)

During training, mean and variance are computed along the batch. Whereas during
testing, the statistics over the entire dataset is used. γk ∈ R and βk ∈ R stand for scaling
and shifting parameters. Essentially, Batch Normalization layer first normalizes the out-
put of the linear layer, but then re-scales and shifts it by learnable parameters in order
not to decrease the expressive power of the network. Batch normalization is empirically

14

2.1 Neural Networks

Figure 2.4: Comparison of normalization methods. Figure from [3].

proven to help faster and more reliable convergence by decreasing internal covariance
shift. Another explanation of why Batch Normalization helps was shown in [90]. The
claim is that Batch Normalization makes the the optimization landscape significantly
smoother, allowing for more stable behavior of the gradients and faster training. Later,
Instance Normalization [91] was proposed to normalize activations separately for each
instance in a batch. In Group Normalization [3] normalizes groups of channels sepa-
rately. An overview and comparison of various normalization techniques are provided in
Figure 2.4.

Regularization. Regularization allows us to enforce priors on model parameters.
This is especially useful for training very deep neural networks, when the number of
trainable parameters can exceed the number of training samples. The most popular
regularizers are called Weight Decays. The basic idea is to penalize the weights by
either L1 or L2 loss. A particular loss fucntion comes from the assumed distribution
of the weights. Another important technique is called Dropout [92], which works by
randomly setting to zero a proportion of activations during training. This techniques
help us fight against overfitting.

Pooling layers. An essential component of convolutional neural networks are so-
called pooling layers. In contract to convolutional layers, the purpose of pooling layers
is to reduce he spatial dimensionality of the feature tensor. The most commonly used
pooling layers are max pooling and average pooling, which decrease the dimensionality
by applying max or average operator over a local neighborhood in a sliding window
fashion.

Optimization. As we discussed above, given a forward run of a network, a differen-
tiable loss function can be minimized using gradient-based methods. The workhorse of
deep learning is Stochastic Gradient Descent, which optimizes the weights of a neural
network by taking a step in the negative gradient direction. Given a current estimate
of network parameters as Θt and a differentiable loss L, the update step is computed as
follows:

Θt+1 := Θt − αE

[
∂L
∂Θt

]
(2.10)

α ∈ R is called an update step and is used to scale the gradient to avoid instabilities
and oscillations. This parameter has to be sent by hand. In stochastic gradient descent,

15

2 Theory and Fundamentals

the expectation of the gradient (E
[

∂L
∂Θt

]
) is estimated only over samples in one batch.

It is impossible to prove the convergence to the optimal solution due to non-convexity
of the neural networks. However, it practice this procedure works well. Over the years,
a numerous variants of gradient descent were developed with the aim of improving
convergence and the speed of convergence. The most notable examples are gradient
descent with momentum, Nesterov Accelerated Gradien, Adagrad [93], Adadelta [94],
Adam [95].

2.2 Geometric Prerequisites

In this section, we briefly introduce geometric prerequisites needed for understanding
of the thesis, namely mathematical definition of rigid body transformation, rotation
parameterization and pinhole camera model. More details can be found in the standard
computer vision textbooks [4, 96, 97]

2.2.1 Rigid Body Transformations

Rigid body transformation in 3D Euclidean space is understood as a mapping that
preserves pair-wise point distances and normal vectors. Practically, it means rotation
and translation of the object without deforming it. Following the formalism of [4], a
rotation in 3D space can be mathematically represented as a matrix:

R ∈ SO(3) (2.11)

with SO(3) being a Special Orthogonal Group. It is defined by the following properties:

SO(3) :=
{
R ∈ R3×3 | det(R) = 1,RᵀR = RRᵀ = I

}
(2.12)

Being an algebraic group, this definition of SO(3) ensures that for any number of
rotations R1, ...,RN ∈ SO(3), their product is still a valid rotation matrix R1R2...RN ∈
SO(3). Moreover, the inverse rotation of any given rotation R ∈ SO(3) is simply its
transpose RT .

The translation component of the transformation is simply defined as t ∈ R3. Rotation
and translation together make up a member of the Special Euclidean Group (SE(3)),
which is formally defined as

SE(3) :=

{
T ∈ R4×4 | T =

{
R t

01×3 1

}
,R ∈ SO(3), t ∈ R3

}
(2.13)

For any transformation T =

{
R t

01×3 1

}
∈ SE(3), it has a unique closed-form inverse

transformation defined by T−1 =

{
Rᵀ −Rᵀt

01×3 1

}
∈ SE(3)

16

2.2 Geometric Prerequisites

2.2.2 Rotation Parameterization

While SO(3) group provides a clear mathematical definition of rotation, it is not always
practical to represent rotations with 3 × 3 matrices because in this form it is hard to
satisfy the constraints of the group. Overtime, several rotation parameterization have
been proposed which are more suitable for non-linear optimization or for prediction with
deep neural networks.

Euler Angles is one of the simplest rotation parametrization based on the group
property of SO(3) that a product of several rotation matrices is a valid rotation matrix.
For each axis, an angle of rotation around it is first converted to a matrix and then
applied to the point in 3D in turns.

A rotation around x-axis is defined as

Rx(ψ) =

1 0 0
0 cosψ −sinψ
1 sinψ cosψ

 (2.14)

A rotation around y-axis is defined as

Ry(θ) =

 cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

 (2.15)

A rotation around z-axis is defined as

Rz(φ) =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 (2.16)

The angles ψ, θ and φ form the Euler Angles. If we follow a convention that first a
rotation the x-axis, then the y-axis, and finally the z-axis are applied, the total trans-
formation will be defined as:

R = Rz(φ)Ry(θ)Rx(ψ)

=

cos θ cosφ sinψ sin θ cosφ− cosψ cosψ sin θ cosφ+ sinψ sinφ
cos θ sinφ sinψ sin θ sinφ+ cosψ cosφ cosψ sin θ sinφ− sinψ cosφ
−sin θ sinψ cos θ cosψ cos θ

 (2.17)

However, the order of applying the rotations might be chosen differently. One of the
disadvantages of Euler Angles is the fact that they are non-unique. It means that various
angles ψ, θ, φ can result in identical rotation matrix R. Another limitation is known as
Gimbal lock, which happens when two rotation axes coincide after 90 degree rotation
around a third axis. This basically removes one of the axes of rotation.

Axis-Angle representation uses Euler’s theorem to represent a 3D rotation as a rota-
tion θ around a unit vector k ∈ R3 passing through the origin of the coordinate system.

17

2 Theory and Fundamentals

Given an arbitrary vector v ∈ R3, Axis-Angle representation uses the Rodrigues’ rotation
formula to rotate v:

vrot = v cos θ + (k× v) sin θ + k (k · v) (1− cos θ) (2.18)

where × and · stand for a cross and a dot products respectively. This representation is
not susceptible to Gimbal lock.

Quaternions is a extension of complex numbers that allows for rotation of vectors.
A quaternion is defined by a scalar w ∈ R and a vector v = (vx, vy, vz) ∈ R3 and is
written as q = (w,v). Conceptually, quaternions are similar to Axis-Angle in a sense
that they also represent a 3D rotation as a rotation around an axis. Given a unit vector
k ∈ R3 representing an axis of rotation and a rotation angle θ, the corresponding unit
quaternion is defined

q = (cos
θ

2
, sin

θ

2
k) (2.19)

Given a quternion q = (w,v), it can be converted to a rotation matrix as:

R(q) =

 1− 2v2
y − 2v2

z 2vxvy − 2vzvw 2vxvz + 2vyvw
2vxvy + 2vzvw 1− 2v2

x − 2v2
z 2vyvz − 2vxvw

2vxvz − 2vyvw 2vyvz + 2vxvw 1− 2v2
x − 2v2

y

 (2.20)

A useful property of quaternions, in contrast to Euler angles and Axis-Angles, is the
fact that rotations can be combined directly in the space in quaternions without convert-
ing them to rotation matrices. Given two rotations R1,R2 ∈ SO(3) represented with
their corresponding quaternions q1 = (w1,v1) and q2 = (w2,v2), rotation corresponding
to R1R2 can be directly computed in quaternion space as:

q1q2 = (w1w2 − v1 · v2, w1v2 + w2v1 + v1 × v2) (2.21)

The downside of the quaternions is the non-minimal represenation of rotation (4 values
for 3 degrees of freedom) and the fact that for any quaternion q, quaternion−q represents
the same rotation.

Continuous 6D rotation parameterizaion [98] presented a novel way to represent
rotations with non-linear optimization in mind. This representation is shown to be more
suitable for optimization due to its continuity, which was proven both mathematically
and empirically. The core idea is to use two non-zero 3D vectors r1, r2 ∈ R3, that are
converted normalized and make orthogonal using Gram-Schmidt orthogonalization [99].
These 2 vectors form two columns of the rotation matrix. The third column is computed
as a cross product of them:

R = [R·,1 | R·,2 | R·,3] = [φ(r1) | φ(R·,1 × r2) | R·,3 ×R·,1] (2.22)

where φ stands for a normalization operator.

18

2.2 Geometric Prerequisites

Figure 2.5: Pinhole camera model. Figure from [4].

2.2.3 Pinhole Camera Model

In this thesis, we used the standard pinhole camera model [4], visualized in Figure 2.5.
It models the simplified process of 2D image formation from the 3D world, where the
camera is modeled by a infinitesimal point and assumes no usage of lenses to focus light.
This model is, however, well-researched, convenient and precises enough for the problems
studied in this thesis.

In the basic pinhole camera model, the camera is parameterized with the matrix of
intrinsics parameters:

K =

f 0 cx
0 f cy
0 0 1

 (2.23)

These parameters define how a 3D point is projected onto a 2D image plane. f ∈ R
stands for so-called focal length, that shows the distance from the camera center (C in
the Figure 2.5) to the image plane. cx, cy ∈ R denote a principal point of the image.
In other words, it shows where the ray from the camera orthogonal to the image place
intersects the plane. The exact projection transformation of any arbitrary 3D point
X = (X,Y, Z)T on a 2D point x = (x, y)T using a projection operator πK : R3 → R2:

x = πK(X) =

(
f X

Z + cx
f Y
Z + cy

)
(2.24)

This means, that transformation πK is not invertible, as the distance information z is
lost by projection. However, if the depth information (Z) is available, than 3D location
of a 2D pixel x can be recovered:

π−1
K (x) = ZK̇−1

xy
1

 = X (2.25)

19

3 Pose Estimation

In this chapter, we discuss the problem of 6 DoF pose estimation. We start off with
the discussion of the common challenges of pose estimation. Then, we proceed to an
overview of the related work. Then, we discuss the core methods and approaches needed
for pose estimation with correspondences. The chapter concludes with a discussion
of commonly used datasets and metrics for evaluation and benchmarking object pose
estimation methods.

3.1 Main Challenges

While a significant progress has been made in monocular pose estimation from RGB,
there are still issues to work on. The most critical are the following: 1) innate ambiguity
of distance estimation from RGB images; 2) train set bias; 3) lack of or difficulty to obtain
labeled real train data, 4) domain gap between real and synthetic data, 5) symmetric
objects, 6) missing depth and 7) occlusions.

Projective ambiguity. The most fundamental problem comes from the perspective
projection and the finitely discrete nature of RGB images. Given only a single RGB
image, it is hard to estimate precise distance to the object because even relatively large
translational errors might not be visible in the image. This is illustrated for various
degrees of translational erroneous in Figure 3.1. To illustrate the issue, the ground truth

pose of the object Tgt =

{
R t

01×3 1

}
was perturbed with the following transformation

Tpert =

{
R t

‖t‖2
∗ (‖t‖2 + ε)

01×3 1

}
. Basically, it means that the camera ray is still the

same, but the camera is shifted along it. Green line shows the outline of the object
rendered on the image in its ground truth pose. The red line shows the outline of the
object rendered some distance away from the ground truth along the viewing direction.
In the top row, ε is set to 1cm, to 2cm in the middle row and to 3cm in the bottom row.
It is clear, that with ε = 1cm both outlines look identical. With ε = 2cm, the difference
becomes more apparent on some objects but still stays indistinguishably small. Only
when ε = 3, the difference between the green and read outlines becomes clearly visible.
It visually proves, that even with perfect correspondences, there will always be certain
3D error in pose estimates if only monocular RGb images are used.

Train set bias. Then comes the issue of how to rigorously evaluate the pose estima-
tion performance and especially its generalizability. Many of the RGB detectors report
pose estimation accuracy on datasets such as Linemod [5] or Occlusion [8], which do not
have clear separation of train, validation and test splits. It leads to the situation when

21

3 Pose Estimation

Figure 3.1: Examples of pose ambiguity in RGB images. Green line shows the outline
of the object rendered on the image in its ground truth pose. The red line shows
the outline of the object rendered some distance away from the ground truth along
the viewing direction.

real train images are sampled exactly from the same images sequence as the test images,
for example as in [100, 101, 102, 103]. Depending on the sampling procedure, this can
lead to a significant bias to poses and occlusions seen in the train set and does not intro-
duce any domain gap between the train and the test splits. As a result, the comparison
between different methods and their generalization capabilities can be severely compro-
mised. It significantly improves the reported numbers, because this sampling strategy
does not introduce any domain gap between the train and the test images and because
poses in the train set closely resemble the poses in the test set. Therefore, it is impos-
sibly to judge how the methods generalize to new, unseen environments. As was shown
in [6], deep learning methods trained on real data tend to perform much worse when the
domain changes. This issue was to a large extend illiminated by the introduction of the
BOP Challenge [7] and its unified evaluation procedure.

Lack of real train data. While training on real labeled data is still predominant
in the computer vision community, its use is not practical for the task of 6 DoF pose
estimation. Real train data usually have to be manually annotated to produce labels
needed for a particular task. While it is relatively simple for classification and more
difficult for 2D detection and segmentation, manual annotation of 6 DoF pose is simply
impossible. To obtain 6 DoF pose labels, one needs to resort to complex and time-
consuming multi-stage pipelines, such as in [6]. Nevertheless, real labels might still be
imprecise as highlighted in Figure 3.2. This essentially limits quantity and diversity
of prepared train images. A possible solution is to avoid training on real data and
use synthetically generated images. However, such approaches typically must rely on

22

3.1 Main Challenges

Figure 3.2: Examples of precise and imprecise ground truth pose labels. Green line
shows the outline of the object rendered on the image in its ground truth pose.
The top row illustrates perfect alignment between the object in the image and
the rendered object. The bottom row, on the other hand, demonstrates imprecise
alignment which indicates imprecise ground truth poses. All poses are real ground
truth annotations from Linemod [5]

transfer learning [104, 100] or smart data pre-processing and prior geometric assumptions
instead [105]. Although it was shown in [6] that detectors trained on synthetic data
perform better on new unseen data, they still show worse performance than the detectors
trained on real data from the target domain. Poses obtained by detectors, which utilize
only synthetic data for training, still need further pose refinement to achieve precise
estimates.

Domain gap. While training neural networks on syntetic data might sound appeal-
ing, it has the downside of the discrepancy between real and synthetic data domains
leading to the worse quality of estimated poses. Even though there are numerous GAN-
based approaches for domain adaptation, most of such methods still require access to
labeled images from the target domain, which brings back all of the aforementioned
problems. The problem was partially remedied by introduction of higher quality syn-
thetic train data, as for example in the BOP challenge [7]. The problem of domain gap
is illustrated in Figure 3.3.

Symmetric objects. Symmetric object are fundamentally problematic no matter
what kind of input data (RGB or depth) is used. Figure 3.4 illustrates several types of
symmetric objects. Symmetric objects are problematic because pose is not well-defined
for them. Typically, infinitely many rotation matrices result in the non-distinguishable
scene configurations. Moreover, when training a deep neural network, special care must
be taken of ground truth poses to ensure that they are consistent and non-conflicting. It
practically means that either the network get the same rotation matrix R as ground truth
pose every time, when one of the ambiguous poses is presented to the network during
training, or that the loss function explicitly handles it. Otherwise, the training time will
increase significantly and training will potentially result in worse pose predictions.

Imprecise or missing depth information. In general, depth information obtained
with the commodity sensors, such as Primesense or Kinect, tend to be less dense and

23

3 Pose Estimation

Figure 3.3: Examples of the domain gap between real and synthetic data. The top
row illustrates patches with objects taken from the real test images. The bottom
row illustrates rendered CAD models of the respective objects.

precise than the standard RGB cameras. Additionally, they usually have limited resolu-
tion. For the task of pose estimation, however, the most problematic aspect is missing
depth. Depth is missed if the object is placed not in the effective range of the sensor,
i.e. too close or too far, if the angle between the surface and the viewing direction is
almost 0 or for objects of certain materials.

Occlusions. Occlusions pose a significant challenge for all stages of pose estimation
pipelines. First, it is harder to detect the objects due to its smaller size in the image
and potentially hidden key parts of the object. The same problems pose problems for
precise correspondence estimation. Several examples of scenes with extreme occlusions
are provided in Figure 3.5.

3.2 Related Work

As 6 DoF pose estimation is a crucial task needed for a wide range of downstream
applications, it has been extensively studied in the past. In this section, we refer the
existing deep learning-based approaches for pose estimation. Additionally, state of the
art of object pose refinement is discussed.

3.2.1 Template and Retrieval-Based Methods

The core idea of template-based methods is to represent the object with a set of images,
referred to as templates, capturing the object’s appearance from various viewpoints. A
set of such templates is extracted to approximately cover all possible object’s views. At
the test time, a representation of the input image is compared to the entire set using a
predefined matching score. The best matches are pruned to get the final result.

One of the leading pre-deep learning template-based methods for 6 DoF pose estima-
tion is LineMOD [66, 106]. It relies on a combination of the RGB gradients and surface

24

3.2 Related Work

(a) Symmetric around an axis (b) Discrete symmetries (c) Almost symmetric objects

Figure 3.4: Examples of various symmetry types.

Figure 3.5: Examples of scenes with severe occlusions.

normals computed from depth images. The method can use a set of templates covering
a large number of angle and scale combinations and still estimate the pose in real time
because of its highly-efficient implementation. A method was further extended in [5],
which allowed or usage of synthetically rendered templates. The further follow-up works
aimed to improve the scalability issue related to the used number of temples allowing
for significant speed-ups [107, 108, 109, 110].

With the advent of deep learning, the focus of the researchers shifted to CNNs, which
replaced the traditional hand-crafted descriptors with learnable descriptors. For exam-
ple, [111] mapped image data directly to the similarity-preserving descriptor space. The
authors utilized a Siamese network to learn the mapping. A cost function was defined
such that distance between descriptors of similar objects was minimized and maximized
otherwise. In [71], it was proposed to use a triplet loss to learn how to map image data
directly to the similarity-preserving descriptor space. The matching is then done by
nearest neighbor search on the descriptor space to retrieve the closest neighbors. The
follow-up works [70], [112] extend the method by improving the descriptor space by
introducing a modified loss function, and a multi-task extension combining manifold
learning with direct pose regression leveraging the advantages of both. Another line of

25

3 Pose Estimation

works [113, 114] strive to improve the domain generalization capabilities of the method
making it possible to train it from synthetic data while performing on par and better
than real methods by using the inverse domain adaptation technique.

Building on the success of the above methods, it was proposed in AAE [115, 116] to
implement a full 6 DoF pose estimation pipeline based on learned descriptors by using
already computed SSD [56] detections as input. The main idea is to split object detection
and pose estimation into two separate steps. First, a standard 2D detector is trained on
real data. The second step, an auto encoder was trained in a weakly supervised manner.
As input the auto encoder gets a patch with an object in arbitrary pose. Then, the
autoencoder was trained to reconstruct the given object in its canonical pose. This way,
a latent representation of the shape was learnt without any explicit constraints. In test
time, a patch was mapped to its latent code using the decoder part of the autoencoder.
The latent code was matched against a database of pre-computed codes. Rotation which
corresponds to the closest latent code is selected as the predicted rotation. Translational
component of the transformation is estimated based on the size of the bounding box.
Sundermeyer et al. [82] demonstrate that rotation estimation by template matching can
generalize to new objects that were not seen during training, even if the feature extractor
was trained on objects from a different dataset.

Alternatively, the SSD6D detector [104] proposed an end-to end deep learning solution
based on the template matching idea. The authors extended the standard out-of-the-
box SSD [56] detector to jointly detect the objects and estimate their poses. SSD6D
relies on a discrete viewpoint classification rather than direct regression of rotations. To
make it possible, all poses are divided into a large number of discrete ones, and each of
them is further divided into a smaller number of discrete in-plane rotations. As a result,
this significantly reduces the solution space allowing for simpler training of the network.
Translation is estimated based on the ratio of the predicted bounding box diagonal to
the diagonal of the object rendered from some pre-defined distance. However, rotation
discretization and approximation of translation lead only to rough pose estimates, which
inevitably need further refinement.

3.2.2 Correspondence-Based Methods

A popular alternative to template-based methods are methods utilizing 2D-3D corre-
spondences between the input image and the 3D object model. Their power lies in a re-
duced solution space and explicitly introduced geometric constraints. Predicting a larger
number of correspondence allows for outlier removal with the standard sampling tech-
niques such as RANSAC [4]. In contrast to template-based methods, correspondence-
based methods do not suffer from the discretization problem. It is also arguably easier
for a neural network to localize points in the 2D image plane rather than to work with
the actual 3D space. This results in more precise pose estimates and the increased ro-
bustness to occlusions and clutter. While the idea of established 2D-3D correspondences
between the image and the object of interest is not new, it has also benefited from
deep learning. Pre-deep-learning, researchers proposed a variety of hand-crafted key-
point detectors and keypoint descriptors, such as SIFT [77, 21], SURF [22], BRIEF [23],

26

3.2 Related Work

ORB [24], which could be robustly and repeatedly extracted from images. Deep learning
techniques, however, allowed to more flexible keypoint detection even for low-textured
objects.

BB8 [68] was arguably the first to utilize correspondences predicted with deep learning
to estimate object poses. The holistic method consists of three stages. In the first two
stages, a coarse-to-fine segmentation is performed, the result of which is then fed to
the third network trained to output projections of the object’s bounding box points.
Knowing 2D-3D correspondences, a 6 DoF pose is estimated using the PnP method.
The main drawback of this method is its multi-stage nature, resulting in slow run times,
and imprecise poses.

Building atop of advances in 2D object detection [57] and the BB8 ideas, YOLO6D [69]
proposed a single-shot deep learning architecture for efficient and precise object detection
and pose estimation. The key idea is to modify a standard 2D object detection netwrok to
also regress locations of the reprojected bounding box corners. Keypoints are predicted
separately for each candidate anchor box with respect to its 2D location and size. Once
correspondences are estimated, the pose can be estimated using a EPnP solver [1]. This
architecture ensures rapid keypoint estimation. Additionally, the small number of used
keypoints and their quality ensures that there is no need for RANSAC. Simple EPnP
predicts poses reliably even given imperfect keypoints.

PVNet [103] takes a different approach and designs a network which for every pixel
in the image regresses an offset to the predefined keypoints located on the object itself.
The ideas on PVNet were further developed in several works. PVNet3D [117] takes
both RGB and and depth images as input. After independent feature extraction from
each data modality, the features a merged and Hough voting is performed to estimate
locations of the pre-defined keypoints in 3D space. Then, a least-square algorithm is
used to estimate the pose. Alternatively, HybridPose [102] extends the initial PVNet
approach by also predicting edges and axes of symmetries. They are used together with
the predicted keypoints to estimate the pose with the modified PnP algorithm.

Another alternative is to use dense correspondences, when 2D-3D correspondences are
established for all object pixels visible in the image. The assumption is that a larger
number of correspondences will mitigate the problem of their inaccuracies and will result
in more precise poses. While establishing few correspondences is likely to result in an
inaccurate pose, dense correspondences can still lead to a good solution. Moreover, it
allows for a significantly better treatment of occlusions.

iPose [118] operates in 3 stages: segmentation, 3D coordinate regression and pose
estimation. In contrast, Pix2Pose [101] unify the first two stages into the end-to-end
network. CDPN [73] disentangles 6 DoF pose estimation by using 3D correspondences
for rotation estimation and regressing translation directly from the image. EPOS [119]
proposed a different dense corresponding parameterization. Instead of a simple predic-
tion of 3D locations of each 2D point, the network predicts two values. First, it classifies
a pixel according to which object segment it belongs to. Then, a precise coordinate
within the segment is regressed. This parameterization allows for easier handling of
object symmetries. Combined with a robust and efficient variant of the PnP-RANSAC
algorithm, the method achieves excellent results on the TLESS dataset.

27

3 Pose Estimation

3.2.3 Direct Pose Regression

It is also possible to directly predict a mapping from an input image to the object pose
with deep neural networks. One of the first works to ever do that was the PoseNet [120],
where a CNN is utilized to regress the position and orientation of a camera given an
RGB image. Subsequent works improved the localization results by combining a CNN
with LSTM units [121] and studied the effect of different loss functions on the final
performance [122].

PoseCNN [16] aims to disentangle the pose estimation into several sub-tasks, i.e.
regressing object masks, estimating the translation of the object centroids, and regressing
quaternions for rotation. More specifically, object masks are estimated using a standard
encoder-decoder network for semantic segmentation. Objects centers are estimated by
pixel-wise hough voting in the direction of the center. Additionally, a distance to the
object is predicted for each pixel. Then, a quaternion was estimated in the allocentric
coordinate system for each detected object.

DenseFusion [123] is trained to directly predict object pose from RGBD images. Pose
is predicted separately from each pixel. For each pixel, an additional pose confidence,
which is trained in an unsupervised manner, is predicted. The pose with the highest
confidence is chosen as the final prediction. The method performs better than the
aforementioned direct methods due to its usage of depth data.

CosyPose [10] re-visited the task of direct pose regression when better synthetic train
data and better understanding of pose estimation with deep learning was reached by the
community. CosyPose relied on 3-stage approach to estimate initial object poses. First, a
standard 2D detector detects object candidates from an RGB image. Then, an additional
networks predicts rotation and translation separately for each patch. These initial coarse
predictions are then refined with a DeepIM-like method [9]. Additionally, CosyPose
introduced a multi-view pose refinement which utilized independent predictions from
several frames.

Despite their seeming simplicity, the direct pose regression methods report signifi-
cantly lower accuracy when compared to template- and correspondence-based solutions.
Therefore, post-processing pose refinement, e.g. ICP, is usually performed to overcome
the issue.

3.2.4 Generazability of Pose Estimation Method to Novel Objects

The aforementioned deep learning methods are generally restricted to handling only one
object instance at a time. In other words, it means that a network is trained separately
for each object. When a need for pose estimation of a new object arises, training data
has to be generated and the network has to be re-trained from scratch. This is a crucial
shortcoming that needs to be addressed to make pose estimation ready for industrial
and commercial usage. There have been several attempts to deal with this problem and
to allow the methods to generalize to novel objects. They can roughly be divided into
two categories: category-level methods and one-shot methods.

28

3.2 Related Work

NOCS [74] proposed a novel concept of category-level pose estimation, as opposed to
instance-level pose estimation. The core idea is to train a single network for an entire
category of objects. For instance, a network is trained to estimate the pose of all cups
rather than of a particular cup instance. The NOCS method consists of predicting
dense per-pixel 2D-3D correspondences between a detected object and a category-level
Normalized Normalized Object Coordinate Space. Predicted 2D-3D correspondences are
projected into 3D using the available deth maps. The final shape and pose are estimated
with the Umeyama algorithm [124]. The also also released the first dataset for category-
level object pose estimation and an evaluation pipeline. This line of methods was further
developed in a number of works, fr example in [125, 126, 127], which allowed for more
precise pose and shape estimation, including their estimation from RGB images. In spite
of the progress of such methods, the performance is still highly dependent on inter-class
similarity between objects used for training and testing. Additionally, a large number
of category instances are required during training.

The next class of methods is referred to as one-shot methods in this thesis. In contrast
to the previous methods and the standard vision models, that accept only a single RGD
or RGBD image as input to the method, one-shot methods jointly take an image and a
descriptor of the object of interest. With two of them at hand, they aim at localizing
the object in the given RGB/RGBD image even if the object was not used for training
or does not belong to object categories used for training. This allows for more flexible
object detection and 6 DoF pose estimation of objects whose 3D CAD models are known.

The classical and, arguably, the only commercially available [128] application-ready
one-shot approach for object detection and pose estimation is Point Pair Features (PPF) [15].
The method works by representing local geometry of the input scene and of the object
model with simplistic descriptors made up of oriented point pairs. Scene and model
descriptors are then exhaustively matched to each other. The final pose hypothe-
ses, though, require ICP or image-based refinement to achieve reasonable quality of
poses. Over the years, the idea was further developed to improve the speed and robust-
ness [129, 130, 131] or to benefit from advances in deep learning [132, 133, 134, 135].
PPF-based methods led the BOP challenge [7] until very recently, when they were out-
performed by deep learning methods operating purely on RGB. The disadvantages of the
PPF methods is their dependence on depth information with reliable per-point normals
and a slow run time, which limits their potential applications.

Another line of research attempts to capitalize on similarities between objects in train-
ing and testing sequences. CorNet [80] used only corners to approximate object geometry.
Corners were detected in the image using a modified Faster-RCNN [136] and later ex-
haustively matched to the corners of the CAD models. In [81], a network was trained to
predict dense per-pixel local shape descriptors for each object pixel. These descriptors
are matched with the object model represeted with the same desriptors. In both meth-
ods, the final pose is computer with PnP and extensive inlier search with RANSAC.
These methods needed a high degree of similarity between training and testing objects
to work well. They were trained and evaluated on non-overlapping objects from the
TLESS dataset [12] containing highly-similar industrial objects.

29

3 Pose Estimation

Sundermeyer et al. [82] extended the idea of the original Augmented Autoencoders [116]
by adding a multi-path decoder on top of a shared encoder. This allowed for training
on multiple of objects at the same time. The shared encoder projects RGB images of
different objects onto the unified feature space, whereas object-specific decoders are used
to reconstruct the objects and define the loss function. The decoders are disregarded in
test time. It was empirically proven that the feature vectors, predicted with the encoder,
generalize well to new unseen objects. The method, however, trains a 2D object detec-
tor on the target object classes. Similarly, Nguyen et. al. [137] that rotation estimation
using template matching is robust to occlusions and generalizes to new unseen objects.

LatentFusion [138] proposes a fully differentiable end-to-end latent reconstruction and
rendering pipeline. In train time, a 2D U-Net and a 3D U-Net networks [61] are trained
to predict a latent object representation, that can be then rendered given an object pose.
During testing, pre-trained U-Net networks are used to predict a latent object represen-
tation of a novel object from several RGB images with known relative transformations,
The pose is then estimated by aligning rendered and observed depth in a render-and-
compare fashion. The method, however, only deals with rotation and translation esti-
mation of already detected objects, which is a very strong assumption. Additionally, a
course initialization of the initial pose is required.

FS6D [139] proposed to explicitly find 2D-2D correspondences between a new incoming
RGBD frame and a set of images (called support images) with the object of interest.
Given the predicted 3D-3D correspondences, a pose of the object in the new frame can
be computed as a relative transformation from one of the support views. The method
requires the objects to be already detected.

In the work of [140], features computed from the input image are stacked with the
object descriptor and passed to a network that directly predicts 3D rotation. Object de-
scriptors are computed either from a 3D CAD model of the object using a PointNet [141]
or by fusing features computed from multi-view RGB images similarly to [142]. However,
the method assumes that the object is already perfectly localized in 2D and estimates
only the rotational component of the pose rather than the full 6 DoF pose.

3.2.5 Pose Refinement

3.2.5.1 RGB Methods

In RGB images, the object pose has been traditionally refined using edge alignment [143,
143]. The idea is to align the edges of the object rendered in the pose hypothesis with the
edges observed in the image. This approach is very sensitive to the image quality, clutter,
occlusions and to the way in which the edge correspondences are computed. Kaskman
et.al. [6] presented a more robust version of edge-based alignment that benefited from
calibrated multi-view images.

With the advance of deep learning, researchers have attempted to utilize neural net-
works for the purpose of refinements [144, 9]. The idea here is to use an external pose
estimation algorithm to obtain the initial pose approximation. Then, the object is ren-
dered in the predicted pose. A rendered image and a given input RGB image are then

30

3.2 Related Work

put into another convolutional neural network, which directly regresses a pose offset.
The process is repeated until convergence. In [144], the refiner is trained to minimize
align 2D contours of the observed object and the rendered object, whereas DeepIM [9] is
trained to directly maximize the ADD score. In BB8 [68], on the other hand, the refiner
was trained to update predicted locations of keypoints. All of them use pose rectifica-
tion, similar to [125] to take into account the fact that the pose offset is regressed from
image patches, not full images, which introduces additional ambiguity.

Disadvantages of the aforementioned deep learning-based refiners are their dependence
on the correct pose error priors used during training and the need to retrain them for
each new object in order to obtain high-quality results.

3.2.5.2 Depth Methods

Object pose refinement has been studied thoroughly in the past. Iterative Closest
Point [67] (ICP) is one of the most classical and used approaches. In a nutshell, the
ICP algorithm takes a given pose hypothesis and aligns it to the point cloud. ICP re-
fines a given pose iteratively by establishing one-to-one correspondences between the
point cloud and object’s vertices based on their spatial proximity and then minimizing
distances between them. There are various variants of ICP and ICP-like algorithms, but
their common fundamental limitation is that they require reliable registered depth infor-
mation, which is not always readily available. Effectiveness of the ICP refinement is also
dependent on the quality of depth maps. It restricts their applicability in many scenarios,
for example, on images from mobile phones or from edge devices. The correspondences
are established based on their spatial proximity. In the next step, object’s pose is up-
dated to minimize the distances between correspondences. Particular ICP variants differ
in how correspondence distance is defined, how correspondences are established and how
the distance is minimized [145, 146, 147].

DenseFusion [123] replaces a standard depth-based ICP with a deep learning analogue.
At each iteration, we reuse the image feature embedding from the main network and
perform dense fusion with the geometric features computed for the new transformed
point cloud. The pose residual estimator uses as input a global feature from the set of
fused pixel features. As with the standard ICP, depth information is required.

3.2.5.3 Multi-View Methods

This topic has been studied in the past in several works, most notably in [148, 149, 150].
The papers display two main trends. First, they all rely on independent pose hypothesis
prediction from each monocular RGB image. Secondly, relative camera transformations
between frames are assumed to be known beforehand. Known camera transformations
are used to fuse pose predictions from several views in the global coordinate system.
Then, either the pose hypothesis that aligns the best with the other hypotheses is chosen
or poses are refined to align better in the 3D space.

In [148], pose hypotheses are simply clustered and then per-class average in the quater-
nion space is chosen as the final refined pose. Additionally, it uses active learning and

31

3 Pose Estimation

viewpoint entropy to dynamically choose the most informative next view. In [149], pose
predictions from several views are used to fit a Normal distribution in the 6D space.
Then, the peak of the distribution is chosen. [149] also uses depth images as an addi-
tional input. In [150], different hypotheses are not merged as in [148, 149]. Instead,
they proposed to choose the best hypothesis from the set of all of them. A hypothesis,
which aligns the best with all the other hypotheses in terms of the ADD measure [5], is
considered to be the most probable and picked as the final pose.

In contrast to the aforementioned methods, the approaches of in [105, 10] do no assume
known relative camera transformations. In [105], a set of uncalibrated RGB images is
used to create a scale-ambiguous 3D reconstruction, which was then approximated by
only strong line segments present in the reconstruction. Then, objects are detected in the
3D reconstruction that correspond to joint detection in all the frames. Despite its good
performance, the method had the downside that it comprised a number of complicated
and time-consuming steps and the need to use a large number (72) of frames to obtain
reliable reconstructions. CosyPose [10] also relies on independent pose hypotheses from
each frame. However, in contrast to [148, 149, 150], they are then used in a RANSAC
scheme to match pose hypotheses from several frames and produce a unified object-level
scene reconstruction and approximate relative camera poses. They are jointly optimized
by minimizing the multi-view reprojection error.

3.3 Pose Estimation From Correspondences

This section presents a quick overview of the tools and techniques that are necessary
for pose estimation of rigid objects using 2D-3D or 3D-3D correspondences. First, we
discuss how the pose is computed given a set of known correspondences. Then, an outlier
removal technique is discussed.

3.3.1 Perspective-n-Point (PnP)

The essential tool for pose estimation with correspondences from monocular RGB im-
ages is the Perspective-n-Point (PnP) algorithm [4]. Visualization of the PnP problem
statement and the notation used is provided in Figure 3.6.

The goal of PnP is to estimate a pose of the object in the given camera frame
T ∈ SE (3) given a camera with intrinsic parameters K and a set of 2D-3D corre-
spondences C :=

{(
ui, pi|ui ∈ R2, pi ∈ R3

)}
i
. In general form, the PnP problem is

typically formulated as follows:

T∗ = argmin
T∈SE(3)

∑
i∈C

dist (πK (T · pi) , ui)) (3.1)

where dist (·) is an arbitrary distance metric on the R2 space.

In theory, 3 points are enough to estimate the full 6D pose of the object, giving
rise to the P3P algorithm [151]. However, the pose quality of such methods is poor
and, therefore, methods tend to use more correspondences [152, 153, 154, 155, 1]. While

32

3.3 Pose Estimation From Correspondences

Figure 3.6: Illustration of the PnP algorithm. 2D points (ui) from an RGB images are first
matched to the corresponding 3D points (pi) on the model. Then, the reprojection
loss is minimized to compute the object pose.

many formulations of the PnP problem, including P3P and EPnP [1], have a closed form
solution, their initial predictions are still typically refined with additional non-linear
optimization using the gauss-Newton method. Differentiable and deep-learning-based
PnP algorithms were also proposed, for example in [156, 157, 158, 159, 160].

3.3.2 Kabsch Algorithm

Kabsch algorithm [124, 4] is one of the most fundamental algorithms in 3D computer
vision. Visualization of the problem statement and used notation is given in Figure 3.7.
Given two point clouds:

P :=
{
pi ∈ R3

}N
i=1

Q :=
{
qi ∈ R3

}N
i=1

(3.2)

such that qi = T·pi holds in the ideal scenario for all i ∈ [1, ..., N] with some T ∈ SE (3).
In reality, we correspondences will be noisy and, therefore, zero-centered Gaussian noise
is assumed in the model: qi = T · pi + e. The goal is to estimate T.

There is a closed-form solution [124, 4] to the problem which uses the Singular Value
Decomposition. First, both point clouds are zero-centered with p̄ = 1

N

∑N
i=1 pi and

q̄ = 1
N

∑N
i=1 qi

P̄ := {p̄i|p̄i = pi − p̄}Ni=1 Q̄ := {q̄i|q̄i = qi − q̄}Ni=1 (3.3)

.
With that notation in hand, the following least square optimization problem is solved:

argmin
R∈SO(3)

N∑
i=1

‖q̄i −T · p̄i‖22 = argmin
R∈SO(3)

N∑
i=1

‖q̄ᵀi q̄i + p̄ᵀi p̄i − 2q̄ᵀi Rp̄i‖
2
2 (3.4)

33

3 Pose Estimation

Figure 3.7: Illustration of the Kabsch algorithm. The goal is to estimate an SE(3) trans-
formation from the initial point cloud (points pi) to the target point cloud (points
qi) given known 3D-3D correspondences.

This minimization problem is solved in closed-form by defining the matrix

H :=

N∑
i=1

p̄iq̄
ᵀ
i (3.5)

Then, given an SVD decomposition of H as H = UΣV ᵀ, the optimal rotations is
computed as following:

R = UV ᵀ (3.6)

and the translational component t is computed as

t = q̄ −R · p̄ (3.7)

3.3.3 RANdom SAmple Consensus (RANSAC)

In general, the PnP (or Kabsch) algorithm cannot be directly applied to 2D-3D (or 3D-
3D) correspondences, as any incorrect correspondences present in them will undermine
the quality of pose estimation. The RANSAC [78] algorithm is a general approach
for robust model fitting, which is not limited to 6 DoF pose estimation and can be
applied to a vast number of other problems that are problematic due to the presence of
outliers. The overall idea is that a subset Cin of correspondences is sampled from the
full set C. Smaller cardinality of Cin increases the probability of the clean subset without
any outliers. Then, the pose is estimated using only subsampled correspondence pairs.

34

3.3 Pose Estimation From Correspondences

Algorithm 1 The PnP + RANSAC algorithm, adapted from [4].

Input: C — a set of 2D-3D correspondences with outliers
Output: Cin — a set of 2D-3D correspondences which are considered as inliers,

transformation matrix T ∈ SE (3).

1: Randomly select a sample of s data points from C and use them to estimate initial
rotation R ∈ SO (3) and translation t ∈ R3 with PnP, which make up a rigid body
transformation hypothesis T ∈ SE (3).

2: Determine the set of 2D-3D correspondences Cin that form inliers. To be considered
an inlier, the reprojection error if the correspondence should be less than a threshold
ε. Thus, Cin := {(ui, pi) ∈ C|dist (ui, π (T · pi)) < ε} such that it consists of all pairs
with reprojection error smaller then threshold ε.

3: If the cardinality of Cin (the number of inliers) is greater than threshold η, re-estimate
rotation R and translation t using all the points in Cin and terminate.

4: If the size of Cin is less than η, select a new subset and repeat the procedure.
5: After N trials the largest consensus set Cin is selected, and rotation R and translation

t are re-estimated using all the points in the subset Cin.

Having estimated a pose T ∈ SE (3), the quality of this pose estimate is evaluated. In
case of 2D-3D correspondences and the PnP algorithm, it is done by projecting all the
3D points in C onto the image plane and measuring reprojection error. In case of 3D-3D
correspondences, the correspondence-wise error is computed directly in the 3D space.
Inliers are the points for which reprojection error is less than a threshold ε, otherwise
a point is called an outlier. The procedure is repeated multiple times until a pose with
the given number η of inliers is found or the maximal number of iterations N is reached.
The final pose is estimated using all the inliers of the pose with the largest number of
inliers. A more formal pseudocode of the RANSAC algorithm for pose estimation with
the PnP algorithm is provided in Algorithm 1. RANSAC+Kabsch operates similarly
with the only difference of how the error is computed.

It is of crucial importance to choose parameters N and η. Similarly to other sampling
techniques, larger N might be beneficial as a bigger amount of poses is checked out.
However, increasing N inevitably slows down the process. As a result, it is necessary
to find such N which ensures the desired trade-off between speed and precision. Re-
projection error threshold is also application-specific and depends to a large extent on
the camera used and distances of objects from the camera. The threshold is specified in
pixels. Therefore for different camera matrices, an offset of one pixel will correspond to
different actual differences in the 3D space. The threshold ε for the Kabsch+RANSAC
algorithm is more universal and generic, as it is computed directly in 3D and, thus,
independent of camera intrinsic parameters.

Being one of the pillars of computer vision, the RANSAC algorithm was re-worked and
extended multiple times, for example by using local optimization in LO-RANSAC [161],
preventing degenerate solutions in DEGENSAC+[162], using Grap-Cuts for local opti-
mization [163], soft threshold in MAGSAC [164, 165] and USAC [166]. There were also

35

3 Pose Estimation

attempts to make the RANSAC pipeline differentiable in order to directly incorporate
it into deep learning pipelines [167, 168, 169]

3.4 Evaluation

Correct and fair comparison of various 6 DoF pose estimation methods is a long-standing
problem of the field. Various datasets and pose correctness measures were proposed over
the years. Because of that, it is often impossible to fairly asses relative performance of
competing methods. A huge leap forward was done with the introduction of BOP chal-
lenge [7], that unified both metrics and evaluation protocols for several most commonly
used datasets. Another important contribution of the BOP challenge was the intro-
duction of a common synthetic dataset for training of the deep learning models, which
allowed for fair comparison of methods data-wise. In this section, we briefly discuss the
datasets and pose quality metrics used to evaluate methods proposed in this thesis.

3.4.1 Datasets

A large number of datasets for evaluation and benchmarking of 6 DoF pose esimations
have been proposed in the past [15, 8, 6, 12, 170, 171, 172, 16]. These datasets vary
in the number of objects, scenes and images. In this thesis, we mostly experimented
on Linemod[5] (LM), Linemod-Occlusion (LMO) [8], HomebrewedDB (HBD) [6], YCB-
V [16] and TLESS [12]. Sample images from the used datasets are provided in Figure 3.8.
We will shortly discuss all of them.

(a) Linemod/Occlu-
sion

(b) Homebrewed (c) YCB-V (d) TLESS

Figure 3.8: Sample images from publicly available datasets used for evaluation of
the methods proposed in this thesis.

Linemod dataset [5], visualized in Figure 3.8a, is arguably the most classical and used
dataset for 6 DoF pose estimation. It consists of 15 objects, of which only 13 are usu-
ally used for experiments. Objects are mostly low-textured, which presented a challenge
for classical computer vision methods that replied on keypoints. Each object is supple-
mented with approximately 1200 images where its pose is labeled. Each image has pose
labels for only one object. The dataset does not have a well-defined train/test/validation
split. Customary, as was done for the first time by BB8 [68], 15% of all the images are
used for training and validation while the remaining images are used for evaluation. In

36

3.4 Evaluation

case synthetic data is used for training, evaluation is performed on all images. Object
of interest are never occluded in the images.

Linemod-Occlusion dataset [8] is the extension of the original Linemod dataset, where
all 8 objects of interest were labeled in one of the image sequences of Linemod. This
dataset presents a significantly more serious challenge than the standard Linemod due
to the presence of occlusions. When training is performed on real data, typically 15%
of the labeled images of the Linemod-Occlusion dataset are used together with all the
images of the objects of interest from the Linemod dataset, which are not included in
Linemod-Occlusion. The BOP challenge includes the dataset as one of its core datasets.
For BOP challenge evaluation, the networks are trained on the provided synthetic PBR
images and evaluated on a small subset of the entire dataset.

HomebrewedDB [6], visualized in Figure 3.8b, is a modern 6 DoF pose estimation
dataset. The dataset was created with emphasises training on synthetic data. It comes
with no real training data but with a clear separation of validation of train and test sets,
following the best examples of machine learning datasets [173, 174]. The complexity of
the scenes varies from relatively simple simple ones with only few objects per scene to
heavily-cluttered and occluded. The entire dataset consists of 33 objects, including both
toys and industrial parts, and 13 different scenes. Each test scene contains 1000 images
with several annotated objects, Each scene comes in two versions: one filmed with
PrimeSense Carmine and one filmed with Microsoft Kinect 2. Each validation scene
consists of 340 images. In practice, however, only 3 scenes are used for benchmarking of
pose estimation methods as a part of the BOP Challenge.

YCB-Video dataset [16], visualized in Figure 3.8c, focus on pose estimation of house-
hold object in video sequences. The dataset provides a very large (92) number of scenes
and 21 objects. In practice, only 12 scenes are included in the BOP Challenge. The
dataset provides a clear separation between the real training images and real testing
image. The problem of the dataset is low quality of ground truth poses and low quality
of images.

TLESS dataset [12], visualized in Figure 3.8d, is arguably the most challenging dataset
used in this thesis. The key feature of the dataset is its industrial objects which are all
symmetric, textureless and expose high inter-class similarity. Scenes typically contain
a large number of objects, which causes clutter and occlusions. The dataset consists of
30 objects and 20 scenes, all of which are used by the BOP challenge. Each scene is
captured by three different cameras: PrimeSense Carmine and Kinect 2 RGB-D cameras
and Canon RGB camera. A separate training real set images come with the dataset, con-
sisting of isolated objects on black backgrounds. Object models are provided as precise
3D CAD models without any texture information and as low-quality 3D reconstructions.

3.4.2 Pose Quality Metrics

This subsection discusses commonly used pose quality metrics, namely Average Distance
(ADD), Visible Surface Discrepancy (VSD), Maximum Symmetry-Aware Surface Dis-
tance (MSSD), Maximum Symmetry-Aware Projection Distance (MSPD). We will use
the following notation. P̂ ∈ SE(3) and P̄ ∈ SE (3) stand for the estimated pose and for

37

3 Pose Estimation

the ground truth pose respectively. The model, defined as a set of vertices, is denoted
as M :=

{
v ∈ R3

}
One of the most commonly used metrics, usually referred to as ADD, was first for-

mulated in [5]. The metric measures the average distance between model’s vertices in a
correct pose and model’s vertices in a predicted pose. The pose is considered correct if
the distance is smaller than some pre-defined threshold which is typically set to 10% of
model’s diameter. In the case of non-symmetric objects, ADD is formally defined as in
Equation 3.8.

eADD = avg
v∈M

∥∥∥P̂ · v − P̄ · v
∥∥∥

2
(3.8)

This formulation is unsuitable for symmetric objects since for them there exist trans-
formations that transform the object, but visually the object stays the same. Neverthe-
less, the ADD metric can be extended so that it is applicable to symmetric objects as
well, as it is demonstrated in Equation 3.9. Instead of tracking each particular model’s
vertex, it suggests looking for the closest vertices. Given sets Mpred and Mgt of model’s
vertices transformed with the predicted and ground truth transformations respectively,
for each vertex v in Mpred a distance to the closest vertex in Mgt is measured. It can be
efficiently implemented with KD-trees [175].

eADD = avg
v1∈M

min
v2∈M

∥∥∥P̂ · v1 − P̄ · v2

∥∥∥
2

(3.9)

Visual Surface Discrepancy (VSD)[7, 176] was a next step in developing quality
metrics for 6 DoF pose estimation with handling symmetric objects in mind. The core
idea that instead of measuring symmetric ADD in the 3D space, we should instead
compare depth maps of the object in the ground truth pose and of the same object in
the predicted pose. If poses are close, then pixel-wise difference between depth maps is
small. If enough pixels have small enough error, then the pose of the object is considered
to be correctly estimated. This definition of the error function is innately capable of
handling symmetric objects, since their symmetry transformations do not change the
rendered depth maps.

eV SD

(
V̂ , V̄ , τ

)
= avg

p∈V̂ ∪V̄

{
0 if p ∈ V̂ ∩ V̄ ∧ |D̂(p)− D̄(p)| < τ

1 otherwise
(3.10)

In this equation, D̂ and D̄ are distance maps obtained by rendering the object model
M in the estimated pose P̂ and the ground-truth pose P̄ respectively. The distance
maps are compared with the distance map DI of the test image I to obtain the visibility
masks V̂ and V̄ i.e. the sets of pixels where the model M is visible in image I.

The downsides of this error function is slow computation times, which are caused by
rendering the object. It has two thresholds: τ and a threshold on eV SD itself which
need to be adjusted manually using the expert knowledge. The error fully relies on
comparing shapes, which means that even if symmetries can be resolved using color

38

3.4 Evaluation

information, VSD is completely oblivious to that. Lastly, VSD is arguably more difficult
for interpretation and explanation than ADD.

Maximum Symmetry-Aware Surface Distance (MSSD)[170] is defined as fol-
lows:

eMSSD

(
P̂ , P̄ , SM ,M

)
= min

S∈SM

max
x∈M

∥∥∥P̂ · x− P̄ · S · x
∥∥∥

2
(3.11)

where SM denotes for a set of symmetry transformations. The definition of MSSD closely
resembles the definition of symmetric ADD. The metric is motivated by the fact that
the maximum distance is relevant for robotic manipulation, where the maximum surface
deviation strongly indicates the chance of a successful grasp. Moreover, compared to the
average distance used in the symmetric ADD which tend to be dominated by higher-
frequency surface parts, the maximum distance is less dependent on the sampling of
mesh vertices. Alternatively, it can be views as an example of the Hausdorff distance.

Maximum Symmetry-Aware Projection Distance (MSPD) is an extension of
the standard reprojection error first used for evaluation of pose estimation in [11]. The
error is defined as follows.

eMSPD = min
S∈SM

max
v∈M

∥∥∥π (P̂ · v)− π(P̄ · S · v
)∥∥∥

2
(3.12)

Operator π stands for the projection operator as defined in the pinhole camera model.
The error essentially measures how far away in the image plane the locations of where a
vertex is projected with the predicted pose P̂ and of the one projected with the ground
truth pose P̄.

39

4 Pose Estimation with Dense
Correspondences

In this chapter, we present a novel deep learning method for 3D object detection and
6D pose estimation from RGB images. Our method, named DPOD (Dense Pose Object
Detector), estimates dense multi-class 2D-3D correspondence maps between an input
image and available 3D models. Given the correspondences, a 6DoF pose is computed
via PnP and RANSAC. An additional RGB pose refinement of the initial pose esti-
mates is performed using a custom deep learning-based refinement scheme. Our results
and comparison to a vast number of related works demonstrate that a large number of
correspondences is beneficial for obtaining high-quality 6D poses both before and after
refinement. Unlike other methods that mainly use real data for training and do not train
on synthetic renderings, we perform evaluation on both synthetic and real training data
demonstrating superior results before and after refinement when compared to all recent
detectors. While being precise, the presented approach is still real-time capable.

4.1 Introduction

Object detection has always been an important problem in computer vision and a large
body of research has been dedicated to it in the past. This problem, like many other
vision problems, witnessed a complete renaissance with the advent of deep learning. De-
tectors like R-CNN [177], and its follow-ups Fast-RCNN [54], Faster-RCNN [55], Mask-
RCNN [64], then YOLO [57] and SSD [56] marked this research field with excellent
performance. All these works localize objects of interest in images in terms of tight
bounding boxes around them. However, in many applications, e.g., augmented reality,
robotics, machine vision, etc., this is not enough and a full 6D pose is necessary. While
this problem is easier to solve in depth images, in RGB images it is still quite challenging
due to perspective ambiguities and significant appearance changes of the object when
seen from different viewpoints.

Recent deep learning-based approaches, such as SSD6D [104], YOLO6D [69], AAE [115],
PoseCNN [16] and PVNet [103], are the current top performers for this task in RGB
images. Even though they all perform evaluation on LineMOD and OCCLUSION
datasets, each of them focuses on different aspects of the 6D pose estimation pipeline.
The majority is trained on real data [69, 16, 103, 118] while only SSD6D [104] and
AAE [115] are trained on synthetic renderings. Some are presented without refinement,
like YOLO6D [69] and PoseCNN [16], while the others perform refinement. The most
recent refiners are based on deep learning, e.g., DeepIM [9] that acts on poses from the
PoseCNN detector and the refiner of Manhardt et al. [144] that uses SSD6D poses.

41

4 Pose Estimation with Dense Correspondences

Figure 4.1: Example output of the DPOD method: Given a single RGB image, we regress
its ID mask and its 2D-3D correspondences. PnP+RANSAC is then applied to
estimate the final pose. The green bounding box shows the ground truth pose,
while the blue one corresponds to the estimated pose. The almost perfect overlap
of the bounding boxes indicates that estimations are very accurate.

Inspired by the methods of Gueler et al. [76] and Taylor et al. [75], which estimate
dense correspondences between the human body model and the humans in the image,
we propose a novel 3D object detector and pose estimator that also estimates dense
2D-3D correspondences. Unlike DensePose for humans, which requires a sophisticated
annotation tool and enormous annotation efforts, our method is annotation-free and only
requires creation of arbitrary UV texture maps of the objects, that we do automatically—
mainly by spherical projections. The two key elements of our approach are: the pixel-wise
prediction of the multi-class object ID masks and classification of correspondence maps
that directly provide a relation between image pixels and 3D model vertices. In this
way, we end up with a large number of pixel-wise correspondences, which allow for a
much better pose estimation than, for example, 9 regressed virtual points of the object’s
bounding box as in YOLO6D.

In addition to this, we introduce a deep learning-based pose refinement network that
takes initial poses estimated with our DPOD detector and enhances them. The proposed
refinement approach builds on the successes of [9, 144], but is shown to be faster, simpler
to train, able to be trained both on synthetic and real data, and it outperforms the
former solutions in terms of pose quality. We demonstrate that even our poses, which
are already of high quality, can be further improved with our refiner.

42

4.2 Methodology

Pose Block OutputCorrespondence block OutputInput

Cat

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

𝑇𝑥
𝑇𝑦
𝑇𝑧

Camera

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

𝑇𝑥
𝑇𝑦
𝑇𝑧

Eggbox

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

𝑇𝑥
𝑇𝑦
𝑇𝑧

Correspondences

ID Mask

RGB

3D Models

PnP + RANSAC

Figure 4.2: Pipeline description: Given an input RGB image, the correspondence block,
featuring an encoder-decoder neural network, regresses the object ID mask and the
correspondence map. The latter one provides us with explicit 2D-3D correspon-
dences, whereas the ID mask estimates which correspondences should be taken for
each detected object. The respective 6D poses are then efficiently computed by the
pose block based on PnP+RANSAC.

We experimented by training our detector with only synthetic and only real images.
In both cases, our unified method, named DPOD, composed of the dense pose detector
and the refiner outperforms other related works. Dense correspondences not only allow
for standard PnP and RANSAC to estimate accurate poses without refinement, but also
pave the way for a successful pose refinement. For the models trained on real data, one
iteration of refinement is enough to outperform all other reported results, even SSD6D
with the depth-based ICP refinement.

In the remainder of the chapter, we first review related approaches, then introduce
our approach, explaining data preparation, training, architectures and pose refinement.
Finally, we present an exhaustive experimental validation and comparison with recent
works, where we demonstrate the superiority of our approach.

4.2 Methodology

In this section we first discuss the training data preparation steps, followed by the neural
network architecture and loss functions used, as well as the pose estimation step from
dense correspondences. Finally, we describe our deep learning model-based pose refiner.

4.2.1 Data Preparation

Most recent RGB-based detectors can be divided in two groups based on the type of
data they use for training: synthetic-based and real-based. The first group of methods,
e.g., SSD6D [104] and AAE [115], makes use of textured 3D models, usually provided
with the public 6D pose detection datasets. The objects are rendered from different

43

4 Pose Estimation with Dense Correspondences

viewpoints, producing a synthetic training set. The methods of the second group on the
other hand, e.g., BB8 [68], YOLO6D [69], PVNet [103], use the training split of the real
dataset. They utilize ground truth poses provided with the dataset and compute object
masks to crop the objects from real images producing a training set.

Both types of data generation have their pros and cons. When real images sufficiently
covering the object are available, it is more advantageous to use them for training. The
reason is that their close resemblance to the actual objects allows for faster convergence
and better results. However, training on real images biases the detector to light con-
ditions, poses, scales and occlusions present in the training set, which might lead to
problems with generalization in new environments. When, however, no pose annota-
tions are available, which can often be the case since acquiring pose annotations is an
expensive process, we are left with 3D models of the objects. With synthetic renderings,
one can produce a virtually infinite number of images from different viewpoints. Despite
being advantageous in terms of the pose coverage, one has to deal with the domain
gap problem severely hindering the performance if no additional data augmentation is
applied. Potentially, one can benefit from the advantages of both data types by mixing
real and synthetic data in the training set. Therefore, approaches which can be trained
on both types of data are desirable. Since our pipeline is not data-specific, we show how
to generate the training data for both scenarios.

Synthetic Training Data Generation. Given 3D models of the objects of interest, the
first step is to render them from different poses sufficiently covering the object. The poses
are sampled from the half-sphere above the object. Additionally, in-plane rotations of
the camera around its viewing direction from -30 to 30 degrees are added. Then, for
each of the camera poses, an object is rendered on a black background and both RGB
and depth channels are stored.

Having the renderings at hand, we use a generated depth map as a mask to define a
tight bounding box for each generated rendering. Cropping the image with this bounding
box position, we store RGB patches, masks separating them from the background, and
the camera poses. At this point, we have everything ready for the online augmentation
stage, which is described in the later subsection. This step of data preparation is identical
for the detector and for the refinement pipelines.

Real Training Data Generation. In this case, an available dataset with pose annota-
tions is divided into non-overlapping train and test subsets. Here, we follow the protocol
defined by BB8 [68] and YOLO6D [69] and use 15% of data for training and the rest
85% for evaluation. Poses are selected such that the relative orientation between them
is larger than a certain threshold. This approach guarantees that selected poses cover
the object from all sides. For training the detector, objects are cut out from the original
image using the provided mask and then stored as patches for the online augmentation
stage. Additional in-plane rotations are added to artificially simulate new poses. For
training the refinement, objects are left as they are.

44

4.2 Methodology

Figure 4.3: Correspondence model: Given a 3D model of interest (1), we apply a 2 channel
correspondence texture (2) to it. The resulting correspondence model (3) is then
used to generate GT maps and estimate poses.

4.2.1.1 Correspondence Mapping

To be able to learn dense 2D-3D correspondences, each model of the dataset is textured
with a correspondence map (see Figure 4.3). A correspondence map is a 2-channel image
with values ranging from 0 to 255. Objects are textured using either simple spherical or
cylindrical projections. Once textured, we get a bijective mapping between the model’s
vertices and pixels on the correspondence map. This provides us with easy-to-read
2D-3D correspondences since given the pixel color, we can instantaneously estimate its
position on the model surface by selecting the vertex with the same color value. For con-
venience, we call the copies of the original models textured with the correspondence map
correspondence models. Given the predicted correspondence map, we estimate the ob-
ject pose with respect to the camera using the pose estimation block, which is described
later. Similar to the synthetic or real data generation steps, we render correspondence
models under the same poses as for training data and store correspondence patches for
each RGB patch.

4.2.1.2 Online Data Generation and Augmentation

Detection and Pose Estimation. The final stage of data preparation is the online data
generation pipeline, which is responsible for providing full-sized RGB images ready for
training. Generated patches (real or synthetic) are rendered on top of images from
MS COCO dataset [174] producing training images containing multiple objects. It is an
important step, which ensures that the detector generalizes to different backgrounds and
prevents it from overfitting to backgrounds seen during training. Moreover, it forces the
network to learn the model’s features needed for pose estimation rather than to learn
contextual features which might not be present in images when the scene changes. This
step is performed no matter whether the training is being done with synthetic or real
patches. We additionally augment the RGB image by random changes in brightness,
saturation, and contrast, and by adding Gaussian noise. Moreover, object ID masks

45

4 Pose Estimation with Dense Correspondences

and correspondence patches are also rendered on top of the black background in order
to generate ground truth correspondence maps. An object ID mask is constructed by
assigning a class ID number to each pixel that belongs to the object.

Pose Refinement. In the case of pose refinement, pairs of images containing the object
in the current (searched) pose and in the predicted pose are provided to the network.
The final stage of data preparation differs considerably depending on the type of data
used. In case of synthetic data, images are generated by in-painting objects on random
backgrounds in a current pose. A crucial part of the augmentation is to add random
light sources for every image. If real images are used for training, no in-painting is
performed. In any case, produced images are further augmented as discussed above.
Then a random pose is sampled around the current pose simulating the predicted pose
from the detector, which will be used as an original guess of the poses to be refined. It is
crucial to choose the proper prior distribution from which distorted poses are sampled.

4.3 Dense Object Detection Pipeline

Our inference pipeline is divided into two blocks: the correspondence block and the pose
block (see Figure 4.2). In this section, we provide their detailed description.

Correspondence Block. The correspondence block consists of an encoder-decoder con-
volutional neural network with three decoder heads which regress the ID mask and dense
2D-3D correspondence map from an RGB image of size 320×240×3. The encoder part
is based on a 12-layer ResNet-like [51] architecture featuring residual layers that allow
for faster convergence. The decoders upsample the feature up to its original size using
a stack of bilinear interpolations followed by convolutional layers. However, in principle
the proposed method is agnostic to a particular choice of encoder-decoder architecture.
Any other backbone architectures can be used without any need to change the concep-
tual principles of the method. For the ID mask head the output is a H×W×O tensor,
where H and W are the height and width of the original input image and O is the num-
ber of objects in the dataset plus one additional class for background. Similar to the
ID mask head, the two correspondence heads regress tensors with the following dimen-
sions H×W×C, where C stands for the number of unique colors of the correspondence
map, i.e., 256. Each channel of the output tensors stores the probability values for the
class corresponding to the channel number. Once tensors are regressed, we store them
as single channel images where each pixel stores the class with the maximal estimated
probability, forming the ID mask, U and V channels of the correspondence image.

Formulating color regression problem as discrete color class classification problem
proved to be useful for much faster convergence and for the superior quality of 2D-3D
matches. Initial experiments on direct coordinate regression showed very poor results in
terms of correspondence quality. The main reason for the problem was the infinite con-
tinuous solution space, i.e., [−1; 1]3, where 3 is the number of dimensions and [−1, 1] is

46

4.4 Deep model-based pose refinement

the normalized coordinate range of a 3D model. Classification of the discretized 2D cor-
respondences allowed for a huge boost of the output quality by dramatically decreasing
the output space (now 2562, where 256 is the size of a single UV map dimension). More-
over, this parametrization also ensures that 3D points of the predicted correspondences
always lie on the object surface.

The network parameters are optimized subject to the composite loss function:

L = αLm + βLu + γLv, (4.1)

where Lm is the mask loss, and Lu and Lv are the losses responsible for the quality of
the U and V channels of the correspondence image. α, β, and γ are weight factors set to
1 in our case. Both Lu and Lv losses are defined as multi-class cross-entropy functions,
whereas Lm uses the weighted version of it.

Pose Block. The pose block is responsible for the pose prediction. Given the estimated
ID mask, we can observe which objects were detected in the image and their 2D locations,
whereas the correspondence map maps each 2D point to a coordinate on an actual 3D
model. The 6D pose is then estimated using the Perspective-n-Point (PnP) [178] pose
estimation method that estimates the camera pose given correspondences and intrinsic
parameters of the camera. Since we get a large set of correspondences for each model,
RANSAC is used in conjunction with PnP to make camera pose prediction more robust
to possible outliers. For the results presented in the evaluation section, for each pose we
run 150 RANSAC iterations with the reprojection error threshold set to 1.

4.4 Deep model-based pose refinement

The proposed pose refiner is a natural extension of refiners presented in [144, 9] and relies
on the strengths of both approaches. Similar to [144, 104, 179] we exploit an idea of
using a network already pre-trained on ImageNet as a backbone architecture. Analogous
to the detector, we used a ResNet-based architecture. Similar to [9], our loss function
for pose estimation is the ADD measure with a more robust L1 norm:

m = avg
x∈Ms

∥∥∥(Rx + t)− (R̂x + t̂)
∥∥∥

1
, (4.2)

representing the vertex to vertex distance between the object in a ground truth pose and
predicted pose. R, t denote the ground truth pose rotation and translation, whereas
R̂ and t̂ denote the predicted transformation; Ms is a set of points sampled from the
CAD model. Points are resampled at every iteration. The number of sampled points
was limited to ten thousand in order to ensure the efficiency of training iterations and
reasonable memory consumption.

In Figure 4.4 we show a schematic representation of the refiner. In order to be able to
benefit from the network weights pretrained on ImageNet, the network has two parallel
input branches, each composed of the first five ResNet layers. These layers are initialized
from the pre-trained network. One branch receives an input image patch (E11), while

47

4 Pose Estimation with Dense Correspondences

Refinement headsFeature extractionInput

RGB

Rendered

Pose:

x

y

z’

R
R x y z

x’

y’

z’

R’

Figure 4.4: Refinement architecture: The network predicts a refined pose given an initial
pose proposal. Crops of the real image and the rendering are fed into two parallel
branches. The difference of the computed feature tensors is used to estimate the
refined pose.

the other (E12) one extracts features from the rendering of the object in the predicted
pose. Then features fr and fs from these two networks are subtracted and fed into the
next ResNet block (E2) producing the feature vector f . If the refinement is trained on
synthetic data, it is essential to keep the first five layers unchanged and use them as
the feature extractor as was shown in [56, 179, 144]. Freezing the branch that extracts
features from object renderings is unnecessary as it always operates on synthetic data.
The network ends with three separate output heads: one for regressing the rotation, one
for regressing the translation in X and Y directions, and one for regressing the translation
in Z direction. We opted for three separate heads as the scale of their outputs is different.
Each head is implemented as two fully connected layers.

Rotation is always represented in the object coordinate system, which ensures that
identically looking objects have the same rotation and that the network does not have to
learn a more complicated transformation which arises if the world coordinate system is
used. The first layer of the rotation regression head takes the feature vector f produced
by ResNet and adds four values, which are the quaternion representing an initial rotation.
The second layer takes the output of the previous one, stacks with the initial quaternion
and outputs the final rotation.

The head responsible for the regression of X and Y translations operates in the coor-
dinate system of the image rather than in the full 3D space, which significantly restricts
the space of possible solutions. Similar to the rotation head, the XY regression head
takes the initial 2D location of the object as input and refines it. Additionally, it takes
the refined prediction of Z translation.

48

4.5 Training Details

Weights of the fully connected layers are initialized in such a way that for the 0th
iteration the network just outputs the input pose, and then during training learns how
to refine those values. That significantly increases stability and speed of the training
procedure as the network produces meaningful results from the very start. When a patch
is cropped from the image, a padding of 5 pixels is used. This padding corresponds to
approximately 10mm error in X or Y direction if the camera is 1m away from the object,
which is a rather large error and very uncommon for our detector. Crops are resized
to be 255 × 255 pixels. Increasing image size did not result in increased pose quality
but slowed down the inference. As a result, of those changes we were able to train the
network on one GPU with a significantly larger batch size, which made additional loss
functions unnecessary.

4.5 Training Details

Our pipeline is implemented using the Pytorch deep learning framework. All the experi-
ments were conducted on an Intel Core i7-6900K CPU 3.20GHz with NVIDIA TITAN X
(Pascal) GPU. To train our method, we used the ADAM solver with a constant learning
rate of 3× 10−4 and weight decay of 3× 10−5.

When training on synthetic data, the problem of domain adaptation becomes one of
the main challenges. Training the network without any prior parameter initialization
makes it impossible to generalize to the real data. The easy solution to this problem
was proposed in several works, including [179, 144], where they freeze the first layers
of the network trained on a large dataset of real images, e.g., ImageNet [173] or MS
COCO [174], for the object classification task. The common observation that the authors
conclude is that these layers, learning low-level features, very quickly overfit to the perfect
object renderings. We follow this setup, and freeze the first five layers of our encoder
initialized with the weights of the same network pretrained on ImageNet. Last but not
least, we found it crucial for the performance of the detector to use various light sources
during the rendering of synthetic views to account for changing light conditions and
shadows in the real data.

4.6 Implementation Details

The refinement network utilizes the same backbone architecture. It is a standard ResNet-
like (ResNet18 in PyTorch) model with a reduced number of layers and pooling oper-
ations in comparison to the original ResNet first presented in [51]. Upsampling is im-
plemented as bilinear interpolation rather than deconvolution in order to decrease the
number of parameters and the required amount of computations. Each upsampling is
followed by the concatenatination of the output feature map with the feature map from
the previous level, and one convolutional layer. When the detector is trained on synthetic
data, the first five layers are frozen in order to prevent overfitting to peculiarities of the
rendered data. The architecture of the refinement network follows the same architectural
idea, except for the absence of upsampling and presence of fully-connected layers at the

49

4 Pose Estimation with Dense Correspondences

Figure 4.5: Qualitative results: Poses predicted with the proposed approach on (a) the
LineMOD dataset and (b) the OCCLUSION dataset. Green bounding boxes cor-
respond to ground truth poses, bounding boxes of other colors to predicted poses.
For both datasets predicted poses are very close to correct poses.

end. Again, the first five layers are used in siamese-like fashion for extracting features
from image crops and renderings.

4.7 Evaluation

In this section we evaluate our algorithm in terms of its pose and detection performance,
as well as its runtime, and compare it with the state of the art RGB detector solutions.

4.7.1 Datasets

All experiments were conducted on LineMOD [5] and OCCLUSION [8] datasets, as
they are the standard datasets for evaluation of object detection and pose estimation
methods. The LineMOD dataset consists of 13 sequences, each containing ground truth
poses for a single object of interest in a cluttered environment. CAD models for all the
objects are provided as well. The OCCLUSION dataset is an extension of LineMOD,
suitable for testing how well detectors can deal with occlusions. Although it comprises

50

4.7 Evaluation

only one sequence, all visible objects from the LineMOD dataset are supplied with their
poses.

4.7.2 Evaluation Metrics

We evaluate the quality of 6DoF pose estimation following the procedure suggested at
SSD6D [104] also used in other papers. Analogously to other related papers [69, 104,
103, 16], we measure the accuracy of pose estimation using the ADD score [5]. ADD is
defined as an average Euclidean distance between model vertices transformed with the
predicted and the ground truth pose. More formally it is defined as follows:

m = avg
x∈M

∥∥∥(Rx + t)− (R̂x + t̂)
∥∥∥

2
, (4.3)

where M is a set of vertices of a particular model, R and t are the rotation and trans-
lation of a ground truth transformation whereas R̂ and t̂ correspond to those of an
estimated transformation. The ADD metric can be extended in order to handle sym-
metric objects as in [5]:

m = avg
x2∈M

min
x1∈M

∥∥∥(Rx1 + t)− (R̂x2 + t̂)
∥∥∥

2
(4.4)

Instead of measuring distance from a predicted location of each particular model’s ver-
tex to its ground truth location, it suggests to take the closest vertex of the model
transformed with the ground truth transformation.

Conventionally, a pose is considered correct if ADD is smaller than the 10% of the
model’s diameter. The accuracy of pose estimation is reported as the percentage of
correctly estimated poses.

4.7.3 Single Object Pose Estimation

Results of the pose estimation experiments on the LineMOD dataset are reported in
Table 4.1. We separately compared our method trained either on real data or on synthetic
data. The table provides the comparison of deep learning-based refinement pipelines
as well. The left-hand side of the table reports the accuracy of pose estimation as
percentages of poses which are correct according to the ADD measure for the training
done on synthetic data. If no refinement is used, our approach outperforms all other
approaches by a significant margin on the majority of the objects. Moreover, the average
percentage of correctly estimated poses (50%) is significantly higher than 28.65% of the
second best approach. The accuracy gap is more prominent on small objects such as the
ape and duck. The availability of a large number of 2D-3D correspondences ensures that
the performance of our method is 5 times better than SSD6D’s and almost 2 times better
than AAE’s. If deep learning-based refinement is used, we significantly outperform [144]
with 66.43% of correct poses against 34.1%.

If trained on real data, our method is the second best after [103]. The right-hand side
of Table 4.1 compares the proposed approach to the previous deep learning-based ones.

51

4 Pose Estimation with Dense Correspondences

Table 4.1: Pose estimation performance: Comparison of our approach to the other RGB
detectors on the LineMOD dataset. The table reports the percentages of correctly
estimated poses w.r.t. the ADD score. Among the methods trained on synthetic
data, our method shows the best results significantly surpassing the former state-
of-the-art. The variant of our method trained on real data again demonstrates
outstanding performance outperforming most of the competitors. Moreover, our
new refinement pipeline improves the estimated poses even further and shows the
best overall results.

Train data Synthetic + Refinement Real + Refinement

Object SSD6D [104] AAE [115] Ours SSD6D [144] Ours YOLO6D [69] PoseCNN [16] PVNet [103] Ours DeepIM [9] Ours

Ape 2.6 3.96 37.22 - 55.23 21.62 - 43.62 53.28 77.0 87.73
Benchvise 15.1 20.92 66.76 - 72.69 81.80 - 99.90 95.34 97.5 98.45

Cam 6.1 30.47 24.22 - 34.76 36.57 - 86.86 90.36 93.5 96.07
Can 27.3 35.87 52.57 - 83.59 68.80 - 95.47 94.10 96.5 99.71
Cat 9.3 17.90 32.36 - 65.10 41.82 - 79.34 60.38 82.1 94.71

Driller 12.0 23.99 66.60 - 73.32 63.51 - 96.43 97.72 95.0 98.80
Duck 1.3 4.86 26.12 - 50.04 27.23 - 52.58 66.01 77.7 86.29

Eggbox 2.8 81.01 73.35 - 89.05 69.58 - 99.15 99.72 97.1 99.91
Glue 3.4 45.49 74.96 - 84.37 80.02 - 95.66 93.83 99.4 96.82

Holepuncher 3.1 17.60 24.50 - 35.35 42.63 - 81.92 65.83 52.8 86.87
Iron 14.6 32.03 85.02 - 98.78 74.97 - 98.88 99.80 98.3 100

Lamp 11.4 60.47 57.26 - 74.27 71.11 - 99.33 88.11 97.5 96.84
Phone 9.7 33.79 29.08 - 46.98 47.74 - 92.41 74.24 87.7 94.69

Mean 9.1 28.65 50 34.1 66.43 55.95 62.7 86.27 82.98 88.6 95.15

If no refinement is used, the proposed approach outperforms PoseCNN and YOLO6D
by a significant margin, while performing on par with PVNet on most of the objects.
On average, we are better than PoseCNN by 31%, YOLO6D by 23.57%. Again, our
approach uses RGB data exclusively and does not rely on depth data. Figure 4.5 provides
a visual comparison of ground truth poses versus predicted poses. Poses are visualized
as projections of 3D bounding boxes of models in given poses on top of a test image.
In comparison to deep learning-based refinement of [9], we perform on average better
by 6.55% reaching 95.15% of correct poses. When DeepIM was applied to the poses
predicted by the proposed approach, ADD improved to 91.8% which is better than the
original 88.6% reported in their paper, but still worse than the result of our refiner.

In conclusion, the proposed detector achieves state-of-the-art results surpassing other
detectors by a large margin on synthetic data and performs either much better or compa-
rable to the other detectors on real data. The proposed refinement clearly outperforms
all the competitors both on real and synthetic data. Pose quality varies from object
to object, but in general poses are significantly better for larger objects since there are
more 2D-3D correspondences available. On the other hand, simplicity of the proposed
approach also makes it quick. On average our detector performs at 33 FPS. The runtime
can be adjusted by changing the number of RANSAC iterations, as it is the bottleneck
of the pipeline. One iteration of the refinement takes 5ms, excluding the rendering
time, which heavily depends on the renderer used. Two refinement iterations suffice for
synthetic data, one iteration—for real data.

52

4.8 Additional Experiments

Table 4.2: Detection performance for multiple objects: Comparison of the state-of-the-
art mean average precision (mAP) scores on the OCCLUSION dataset.

Method SSD6D [104] YOLO6D [69] Brachmann [11] Ours

mAP 0.38 0.48 0.51 0.48

4.7.4 Multiple Object Pose Estimation

Performance evaluation of the proposed detector in cases when the number of objects
to detect increases and when severe occlusions are present was conducted on the OC-
CLUSION dataset [8]. Accuracy of object detection on the OCCLUSION dataset is
conventionally reported in terms of mean average precision (mAP). The confidence score
is computed based on the RANSAC inlier proportion as confidence, rendering the final
score of 0.48, which is comparable the best result on this dataset (see Table 4.2). Table
4.3 demonstrates ADD scores for various detectors on the OCCLUSION dataset. Before
the refinement, the proposed detector shows very competitive results in comparison to
other detectors. After the refinement, the proposed approach performs substantially
better and achieves the best results.

Table 4.3: Pose estimation for multiple objects: Comparison of our approach on real
data to the other RGB detectors on the OCCLUSSION dataset. The table reports
percentages of correctly estimated poses w.r.t. the ADD score.

Method YOLO6D [69] PoseCNN [16] SSD6D + Ref [104] HMap [180] PVNet [103] Ours Ours +Ref

Mean 6.42 24.9 27.5 30.4 40.77 32.79 47.25

4.8 Additional Experiments

4.9 RANSAC Iterations

The number of RANSAC iterations crucially influences the quality of predicted poses.
We ended up using 150 iterations as it yielded the best trade off between quality and
runtime. The larger amount of iterations generally did not improve the results signif-
icantly, but resulted in longer execution times (see Table 4.4). Additionally, the ADD
scores after one iteration of the proposed refinement are provided. They show that even
25 iterations of RANSAC are enough to beat the state-of-the-art results if the refinement
is used. More iterations of RANSAC do not result in the considerable increase of pose
quality.

4.9.1 Runtime analysis

In Table 4.6 we provide the runtimes of the proposed approach for all models of the
LineMOD dataset. The total runtime consists of the time needed for PnP and approxi-

53

4 Pose Estimation with Dense Correspondences

Table 4.4: RANSAC iterations test: The effect of the number of RANSAC iterations on
the overall ADD score.

RANSAC # 5 25 50 100 150 200 250 350 500

ADD w/o ref 59.15 76.95 80.15 82.12 82.98 83.44 83.79 84.33 84.66
ADD w/ ref 80.45 92.59 93.88 94.79 95.15 95.31 95.39 95.38 95.39

RANSAC ms 2 6 10 17 23 28 33 42 54

mately 13 ms for all the auxiliary tasks: the network’s forward pass, post-processing of
predicted segmentation, and computation of 2D-3D correspondences. Table 4.5 provides
comparison of the runtime of our detector with all the main competitors. All the exper-
iments were conducted on an Intel Core i7-6900K CPU 3.20GHz with NVIDIA TITAN
X (Pascal) GPU.

Table 4.5: Runtime comparison: Time-efficiency of our approach with respect to the other
state-of-the-art approaches.

Method Frames per second Refinement

AAE [115] 4 200 ms/object
SSD6D [104] 10 24 ms/object
PVNet [103] 25 -

Ours 33 5 ms/object
YOLO6D [69] 50 -

4.9.2 Refinement

DeepIM [9] presents an iterative refinement routine that takes an initial pose estimate
from any external detector and iteratively improves it. An additional per-model eval-
uation is provided (see Table 4.7) to have a fair comparison of DeepIM with our pose
refinement. It compares the following ADD scores: 1) ADD reported in the original
DeepIM paper [9], which used PoseCNN [16] to predict initial poses, 2) ADD if DeepIM
is applied to poses predicted by our detector, 3) ADD if poses predicted by the proposed
detector are refined with the proposed refinement. It is important to mention that two
iterations of DeepIM were made, as was suggested in the paper. The proposed refine-
ment was run only for one iteration. The table clearly shows that better initial pose
hypotheses allow for better results after refinement. It is also clear that our refinement
clearly outperforms DeepIM on most of the objects, while performing only insignificantly
worse on others.

54

4.9 RANSAC Iterations

Table 4.6: Runtime analysis: Runtime of the proposed approach for all models of the
LineMOD dataset.

Model PnP + RANSAC (ms) Total (ms) FPS

Ape 7 20 50
Benchvise 40 51 20

Cam 35 49 20
Can 30 44 23
Cat 20 33 30

Driller 26 40 25
Duck 4 16 63

Eggbox 9 23 43
Glue 5 17 59

Holepuncher 20 31 32
Iron 34 48 21

Lamp 40 54 19
Phone 31 45 22

Average 23 36 33

Table 4.7: Comparison of deep learning-based refinement methods: Our refinement
approach shows the overall best ADD score with respect to the latest state-of-the
art method DeepIM [9].

Method/Object Ape Bench. Cam Can Cat Dril. Duck Eggb. Gl. Hol. Iron Lamp Ph. Avg.

PoseCNN [16] + DeepIM [9] 77.0 97.5 93.5 96.5 82.1 95.0 77.7 97.1 99.4 52.8 98.3 97.5 87.7 88.6
Ours + DeepIM [9] 78.70 98.43 97.75 97.57 85.16 91.55 80.24 99.68 99.48 75.66 99.74 98.20 91.38 91.81

Ours + Our ref. 87.73 98.45 96.07 99.71 94.71 98.8 86.29 99.91 96.82 86.87 100 96.84 94.69 95.15

4.9.3 Correspondence Quality

In this section, we demonstrate the quality of the output correspondences. Namely, each
classified correspondence point is mapped to 3D and compared to the ground truth 3D
point. The ground truth 3D points are obtained in exactly the same way as predicted
points, i.e., by matching a UV map rendered in the ground truth pose to model’s vertices.

The results per object are shown in Table 4.8. The table reports the quality of cor-
respondences separately for real and synthetic data. For each model, mean absolute
error, median absolute error, and standard deviation of absolute errors are reported in
millimeters. Relatively large mean error is explained by outliers, some of which can be
quite significant. Therefore, median is a better measure due to its robustness to outliers.
The table shows that the median error is consistent across all the models. Additionally,
it demonstrates that the median error for the detector trained on real data is notice-
ably lower than for the detector trained on synthetic data. This explains the superior
performance of training on real data.

Figure 4.6 provides a visual comparison of predicted and ground truth UV maps and
heat maps, which demonstrate where imprecisions take place. One can see that most

55

4 Pose Estimation with Dense Correspondences

Table 4.8: Quantative correspondence quality: Correspondence quality for real and syn-
thetic data estimated in terms of mean and median absolute errors, and standard
deviation.

Real Data Synt Data

Model Mean Median Std Mean Median Std

Ape 10.05 4.58 14.60 11.46 5.74 15.26
Benc. 10.36 4.70 19.29 15.92 6.99 25.71
Cam 6.57 4.58 10.11 13.31 7.23 20.23
Can 8.19 4.03 13.46 11.97 5.10 18.72
Cat 8.60 4.77 12.22 9.87 5.42 13.99

Driller 8.52 4.78 17.78 18.14 6.80 36.06
Duck 5.93 3.98 8.72 7.63 4.99 10.41

Eggbox 6.00 4.26 10.23 42.39 9.40 48.07
Glue 7.82 4.26 13.73 17.12 8.11 23.19

Holep. 8.25 4.87 13.30 11.28 6.81 16.04
Iron 7.18 4.51 12.31 11.06 6.89 17.34

Lamp 11.64 4.31 24.80 18.60 8.58 30.85
Phone 6.09 2.84 12.94 9.52 4.38 18.31

G
ro

u
n

d
 T

ru
th

D
P

O
D

 o
u

tp
u

t

A
b

so
lu

te
 e

rr
o

rs

G
ro

u
n

d
 T

ru
th

D
P

O
D

O
u

tp
u

t

A
b

so
lu

te
 E

rr
o

rs

Figure 4.6: Qualitative correspondence quality: Comparison of ground truth (left), pre-
dicted (center) UV maps and heat maps (right) of absolute errors.

imprecisions are concentrated on the outer boundaries of the object and, for objects with
more complex geometry, on the edges of their structural elements, i.e. in places where
rapid correspondence value changes occur.

56

4.9 RANSAC Iterations

Correspondence block OutputInput

ContoursRGB

Figure 4.7: Contour regression: Additional contour regression head for multiple instance
detection.

4.9.4 Multiple Instance Detection

Our detector also works when multiple instances of the same object are presented, be-
cause we parse through the regions of the output mask when the network forward pass
is complete. The only limitation comes into play when several objects of the same class
overlap and form a single region. In this case, only one pose will be estimated instead
of two.

4.9.5 UVW Mapping

While being computationally efficient, the UV mapping has a number of drawbacks. In
the majority of cases, a simple spherical projection is sufficient to achieve a satisfactory
quality of the mapping. However, certain cases can require a different treatment to
minimize the stretching effect where one color can cover several model vertices due to
discretization. This is especially a big problem for more complicated geometries, which
in some cases might require a selection of another projection type or even a manual UV
mapping for reaching the best results.

A straightforward solution to this is the UVW mapping based on normalized 3D
coordinates of the model. Instead of 2-channel UV maps, we then have 3-channel UVW
maps that are again discretized to the range [0, 255]. The only algorithmic adjustment
that has to be done is an additional W-channel classification head. While decreasing the
memory efficiency and increasing a computational complexity of the network (due to a
higher-dimensional solution space, i.e., 2563 instead of 2562 in case of UV mapping), it
has an advantage of providing better quality correspondences (especially for objects with
complex geometries) and of being fully automatic (see Figure 4.8 for visual comparison).

Our additional experimental ablations have shown an almost identical performance
on the LineMOD and OCCLUSION datasets, but slightly higher execution times and
memory requirements. Nevertheless, despite the increased complexity, we believe that
this extension would prove itself useful in many real-world applications.

To overcome this, an additional contour regression head can be added to the correspon-
dence block (see Figure 4.7). Once regressed, the output contours are simply multiplied

57

4 Pose Estimation with Dense Correspondences

U
V

 M
ap

p
in

g

U
V

W
 M

ap
p

in
g

Figure 4.8: UVW mapping: Visual comparison between UV and UVW mappings.

with the ID mask forming different regions, which, as a result, allows to distinguish
between different regions of the same class.

4.10 Conclusion

In this chapter, we proposed the Dense Pose Object Detector (DPOD) method that re-
gresses multi-class object masks and dense 2D-3D correspondences between image pixels
and corresponding 3D models. Unlike the best performing methods that regress projec-
tions of the object’s bounding boxes [68, 69] or formulate pose estimation as a discrete
pose classification problem [104], dense correspondences computed by our method al-
low for more robust and accurate 6D pose estimation. We demonstrated that for both,
real and synthetic training data, our detector outperforms other related works, such as
[69, 16], by a large margin and performs similarly to [103]. The proposed pose refinement
approach also performs very well and allows for achieving a pose accuracy that surpasses
all other related deep learning-based pose refinement approaches, while having a simpler
and more lightweight backbone architecture.

58

5 Multi-View Pose Refinement with Dense
Correspondences

This chapter introduces a novel multi-view 6 DoF object pose refinement approach focus-
ing on improving methods trained on synthetic data. It is based on the DPOD detector,
which produces dense 2D-3D correspondences between the model vertices and the image
pixels in each frame. We have opted for the use of multiple frames with known relative
camera transformations, as it allows introduction of geometrical constraints via an inter-
pretable ICP-like loss function. The loss function is implemented with a differentiable
renderer and is optimized iteratively. We also demonstrate that a full detection and re-
finement pipeline, which is trained solely on synthetic data, can be used for auto-labeling
real data. We perform quantitative evaluation on LineMOD, Occlusion, Homebrewed
and YCB-V datasets and report excellent performance in comparison to the state-of-
the-art methods trained on the synthetic and real data. We demonstrate empirically
that our approach requires only a few frames and is robust to close camera locations
and noise in extrinsic camera calibration, making its practical usage easier and more
ubiquitous.

5.1 Introduction

Object detection and 6D pose estimation in RGB images are among the most fundamen-
tal problems in computer vision, with applications encompassing autonomous driving,
augmented reality and robotics. A large body of work has already been presented, but re-
cent advances in deep learning have opened up new horizons for RGB-based algorithms,
which have now started to dominate the field. However, precise 6 DoF pose estimation,
required, in autonomous robotic grasping systems, for example, still remains a challeng-
ing problem. This is mainly due to the perspective ambiguity, lightning changes, clutter
and occlusions. Current industrial implementations [15] are not based on deep learning
and rely on depth data for increased pose accuracy. Moreover, these approaches use 3D
models directly, while deep learning methods still struggle with the domain gap when
trained on synthetic data rendered from 3D CAD models. Recently, CosyPose [10], a
deep learning method that operates on RGB images, assumed the lead over traditional
methods in the BOP challenge[7], especially when multiple images are used for pose
refinement.

The task of pose refinement has also been addressed by deep learning approaches.
Methods like [100, 144, 9] trained CNN networks on pairs of images, the aim being
to learn to predict the pose offset between the predicted object pose and the observed
detected object. There, 3D models were rendered in the predicted pose and real images

59

5 Multi-View Pose Refinement with Dense Correspondences

Figure 5.1: Multi-view inference and pose optimization. 1) Inputs to the algorithm are
an unordered set of images and corresponding relative camera transformations. 2)
YOLO is applied to each image separately to detect the object of interest in each of
them. 3) Dense correspondences are predicted with the DPOD network. 4) Rough
object pose in the reference frame is estimated using PnP and RANSAC using the
predicted 2D-3D dense correspondences. 5) The final pose is iteratively refined
using the multi-view optimization based on differentiable rendering.

were given as patches with the detected object. The main disadvantage of these refiners
is that the are dependent on the correct pose error priors used during training coupled
with the necessity to re-train them for each new object in order to obtain high-quality
results.

We address the aforementioned problems in this paper by introducing a multi-view
refinement procedure. We first train the DPOD detector [100] on synthetic data to
overcome the dataset bias and the lack of real training data. We then exploit geomet-
ric multi-view constraints during refinement to cope with perspective ambiguities and
occlusions in monocular RGB images that cause their sub-par performance. Compared
to existing deep learning refiners [100, 144, 9], the proposed approach has the following
advantages: 1) it does not require training of the refiner itself; 2) it is not object-specific;
3) it can be applied to arbitrary many images without the need for any modification;
4) it has explicit geometric constraints and, thus, an explicit objective function which is
optimized during the refinement.

60

5.2 Proposed Method

The proposed pose refinement procedure is based on differentiable renderering. It
uses multiple views to add relative camera poses as constraints to the pose optimization
procedure. It is done by comparing predicted and rendered dense correspondences in
each frame and then transmitting the error back though the differentiable renderer to
update the pose. The proposed loss function allows varying numbers of frames to be
used without any changes to the optimization procedure. The loss formulation also
does not impose any restrictions on where in the 3D world the cameras are placed and
whether or not views from different cameras overlap as long as the object is visible in
the images. We assume the availability of relative camera poses. In practice, they can
be easily obtained by a number of various methods, such as placing the object on the
markerboard and either using an actual multi-camera system or using a single camera
but moving the markerboard. In the scenario of robotic grasping, a camera can be
mounted on the robotic arm to enable observation of the object from several viewpoints.

We evaluate this approach on LineMOD [5], Occlusion [8], Homebrewed [6] and YCB-
V [16] datasets and report performance that is superior to any related method trained
on synthetic data and similar to or better than methods which use real training data
and post-refinement. Our experiments show that our approach can robustly perform
multi-view pose refinement even when relative poses are imprecise. Our results also
demonstrate that the proposed refinement remains effective even in degenerate cases,
when cameras are in close proximity to each other.

Further, we show that our framework can be used for the task of auto-labeling real
data as in [181], thus removing the need for manual pose labeling. The networks are
first trained on synthetic data and then used to label the real images. This procedure
enables a considerable reduction in the time and effort needed to annotate the data.
Our multi-view refinement pipeline enables us to automatically produce high quality
pose annotations for these real images and re-train the detector on them.

5.2 Proposed Method

The complete inference pipeline is shown in Figure 5.1. The proposed method is di-
vided into the following steps. Step 1: takes a set of images together with their known
intrinsic parameters and relative transformations between cameras; Step 2: The ob-
jects of interest in each image are detected separately; Step 3: The per-object per-pixel
2D-3D correspondences are predicted independently for each detected object; Step 4:
The object 6 DoF pose is estimated with EPnP [1] and RANSAC using the predicted
2D-3D correspondences; Step 5: The initial rough pose is iteratively refined to find a
pose which better aligns with predicted dense correspondences in all the frames. This is
done by defining a loss function over the predicted correspondences and the ideal 2D-3D
correspondences which correspond to the object in the given pose. These ideal corre-
spondences are produced with a differentiable renderer so that the entire multi-view
alignment procedure is differentiable. We will now describe each step in more detail.
However, the main contribution of the paper comprises the multi-view refinement in
Step 5. In all experiments, we used the Soft Rasterizer renderer [182].

61

5 Multi-View Pose Refinement with Dense Correspondences

(a) Refinement with two
views.

(b) Refinement with four views.

Figure 5.2: Example refinement results on the Homewbrewed dataset [6]. The top row
shows initial per-frame poses produced by PnP before refinement, while the bottom
row shows them after refinement. The outline of the object is visualized in green for
the ground truth pose, and in blue for the estimated pose. This illustrates that the
proposed refiner is capable of selecting a reference frame with a good initial pose
and refining it even in the presence of occlusions and imprecise correspondences or
when some of the initial pose hypotheses are completely incorrect, as in (b).

5.2.1 Object Detection and Pose Estimation

As the focus of the paper is on refinement and not on the whole pipeline, we have opted
for one of the already available dense correspondence-based detectors. We slightly ex-
tended the DPOD [100] and trained it on synthetic training data (later referred to as
PBR data) provided by the BOP challenge [7]. We separated the original DPOD ar-
chitecture into two parts: 1) the YOLOv3 [13] detector trained to output tight object
bounding boxes with corresponding semantic labels, and 2) the DPOD-like architecture,
which predicts object masks and dense correspondences from these detections. The
proposed two-stage approach simplifies and accelerates the training procedure of each
component, slightly improves the quality of correspondences and leads to better per-
formance on more challenging Homebrewed [6] and YCB-V[16] datasets. In contrast to
DPOD [100], which relied on two-dimensional UV maps, we use the three-dimensional
Normalized Object Coordinates Space (NOCS) [74]. This parameterization permits triv-
ial conversion between the object coordinate system and the NOCS coordinate system.
Additionally, we switched from the ResNet18 backbone to the ResNet34 backbone. The
first block of layers is frozen to avoid overfitting when training on synthetic data. Data
augmentation and transfer learning allowed the reliable training of the networks. YOLO
was trained for 100 epochs, the augmented DPOD for 240. The last checkpoint was used
in all experiments.

Let us formally define a model as a set of its vertices: M := {v ∈ R3}. Operators
that compute minimum and maximum coordinates along the vertex dimension i of all

62

5.2 Proposed Method

v ∈M are defined as:

mini(M) := min
v∈M

vi, maxi(M) := max
v∈M

vi (5.1)

Then, for any point p, the NOCS projection operator is defined w.r.t. the model as

πM(p) :=

{
pd −mind(M)

maxd(M)−mind(M)

}
d∈{x,y,z}

(5.2)

and its inverse as π−1
M . The 6 DoF pose is defined as the standard rigid body trans-

formation, where T ∈ SE(3).

5.2.2 Pose refinement with differentiable renderer

Given a ground truth pose Tgt and a predicted pose Tpr, the aim of pose refinement
is to find a pose update T∆ that satisfies T∆ · Tpr = Tgt. It is, however, impossible
to estimate a perfect T∆, because the ground truth pose Tgt is not available. For this
reason, proxy loss functions have to be used, which results in a sub-optimal pose update
T∆. We propose refining Tpr by optimizing the discrepancy between the predicted noisy
NOCS maps from several frames and the perfect NOCS map rendered in the estimated
pose with a differentiable renderer.

Assuming that N frames are used for multi-view refinement, we define the corre-
sponding set of predicted segmentations S̃ := {S̃1, . . . , S̃N}, each of which is a binary
segmentation mask S̃ ∈ {0, 1}W×H . A set of predicted NOCS correspondences is defined
as C̃ := {C̃1, . . . , C̃N}, where each C̃ ∈ [0, 1]W×H×3. These are noisy estimates obtained
with the modified DPOD. They are computed once and remain unchanged during refine-
ment. The differentiable renderer is used for a differentiable definition of the following
functions: binary foreground/background rendering S : M× SE(3) → {0, 1}W×H and
NOCS rendering C :M×SE(3)→ [0, 1]W×H×3. We will omit their dependence on the
CAD modelM to keep the notation concise. For each set of images used for multi-view
refinement, one of the images is taken as the reference frame, and then for each f -th
image, its relative pose Ξref→f ∈ SE(3) is recomputed w.r.t. to the reference frame.
Initial pose hypotheses T := {T1, ...,TN} are estimated separately for each frame with
PnP+RANSAC. The pose of the object in the coordinate system of the reference frame
is later denoted by Tpr.

We use pre-computed NOCS maps in each frame and NOCS maps of the model in the
estimated pose in the reference frame transformed to the coordinate system of the f -th
frame by transformation Ξref→f ·Tpr to define a per-pixel loss function over predicted
and rendered correspondences. The per-pixel NOCS discrepancy relates directly to the
3D structure of the object and the error in 3D. The per-pixel loss for pixel p in the f -th
frame is defined as follows:

Lf,p := ρ
(
π−1

(
C̃f,p

)
, π−1

(
C (Ξref→f ·T∆ ·Tpr)p

))
(5.3)

In the above equation, ρ stands for the arbitrary distance function in 3D. Essentially,
for each frame, the object pose T∆ · Tpr is first transformed to the frame’s coordinate

63

5 Multi-View Pose Refinement with Dense Correspondences

system using Ξref→f and then rendered. For each pixel, the predicted and rendered
NOCS correspondences are projected into the 3D coordinate system of the model. Then,
the discrepancy between them is penalized. The overall loss function is fully differentiable
and dependent only on T∆, since the rendering of NOCS maps is performed using the
differentiable renderer.

On the level of the full set of images used for refinement, the objective of the refinement
is defined as:

T∗∆ = argmin
T∆∈SE(3)

N∑
f=1

∑
p∈I

[
S̃f,p · S (Ξref→f ·T∆ ·Tpr)p

]
· Lf,p (5.4)

Here,
[
S̃f,p · S (Ξref→f ·T∆ ·Tpr)p

]
serves as an indicator function regarding whether

or not the pixel is foreground in both the rendered and the predicted NOCS maps.

The minimization problem, however, cannot be solved optimally due to its non-
convexity. Therefore, the loss function is minimized iteratively by gradient descent
over the pose update T∆. This can be done using any gradient-based method. We nor-
mally observe convergence within 50 optimization steps. A trivial degenerate solution
to the optimization problem exists, which sets the loss to zero, namely non-overlapping
rendered and predicted S̃ segmentation maps. But in reality, this is not a problem,
because PnP+RANSAC provides reliable initial pose estimates. Moreover, degenerate
pose hypotheses are explicitly handled in the choice of the reference frame.

There are numerous ways of implementing the distance function ρ : R3 × R3 → R+

and parameterizing SO(3) rotations. We use the continuous rotation parameterization
from [98], which enables faster and more stable convergence during the optimization
procedure than quaternions and Euler angles. As the predicted correspondences and
matched correspondences might contain a potentially large number of outliers, a robust
ρ function must be used to mitigate this. We experimented with several options and
ended up with a particular case of the general robust function introduced in [183]. This
function is defined as follows:

ρ(e, c) := 1− exp

(
−1

2

(e
c

)2
)

(5.5)

c is a hyper-parameter that stands for the scale of the loss function. In our experi-
ments, we adjusted it dynamically according to the median absolute residuals: c :=
2 ·MEDIAN (|e|).

The choice of the reference frame can affect the effectiveness of pose refinement. The
goal is to automatically choose a pose which has a high overlap with predicted segmen-
tations when transformed and rendered in other views. Additionally, it should have the
smallest possible loss Lf . For each image batch, the reference frame is chosen as follows:

argmin
ref∈[1,..,N]

1

K

N∑
f=1

∑
p∈I

[
S̃f,p · S (Ξref→f ·Tref)p

]
· Lf,p

IOU
(
S̃f , S (Ξref→f ·Tref)

) (5.6)

64

5.3 Experiments

where K stands for the number of frames with non-zero loss. Additionally, argmin
ignores zero values, as they correspond to degenerate poses that are not re-projected
correctly onto other frames.

The proposed refinement procedure has a certain similarity to the point-to-point ICP
as well as to PnP. In terms of the ICP, point-to-point correspondences are established
by rendering NOCS maps and using the predicted NOCS maps with the same spatial
location in 2D, as opposed to the nearest neighbor search in the standard 3D ICP. The
backpropagation through the renderer corresponds directly to the distance minimization
step of the ICP. However, projective transformation is essential. This is because if only
RGB information is used, and therefore predicted NOCS maps in all frames are already in
the model’s coordinate system and do not impose any additional spatial 3D constraints.
On the other hand, rendering in order to establish correspondences and minimize the
discrepancy directly relates to PnP. The proposed refiner can be seen as a multi-view
PnP, where direct pixel-wise error, rather than the reprojection error, is minimized.

5.2.3 Autolabeling

We explore the usefulness of the proposed refiner for the self-annotation of weakly labeled
real data, similar to the work of [181]. We assume access to weakly labeled real images
with no pose labels. Again, relative transformations between cameras are needed, which
is a weaker assumption than having precises per-object pose annotations. For the sake
of simplicity, we use the weak 2D labels to filter out correct detections, although this is
not necessary, as the detections can be filtered out with the epipolar constraints.

The autolabeling pipeline operates as follows. First, the YOLO detector and the
DPOD network are trained in the usual way on synthetically generated data. They are
then applied to a partition of the real data and detections are filtered out. The poses
are computed using PnP+RANSAC and fed into our multi-view refinement pipeline.
Finally, we retrieve the newly estimated labels and use them to build a dataset with real
images. The DPOD part is trained as usual, but the predicted NOCS maps are used
instead of the ground truth NOCS. The procedure allows us to achieve the performance
at the level of DPOD trained on fully annotated real data. No filtering of pose predictions
is performed, as ground truth poses are not available in the given scenario. This results
in a few images with bad pose annotations being used for training, but they have no
significant negative effect on the final performance. The augmented DPOD trained in
the standard way for 240 epochs, and the last checkpoint is then used for evaluation.

5.3 Experiments

In this section, we evaluate our multi-view refinement pipeline on LineMOD [5], Occlu-
sion [8], Homebrewed [6] and YCB-V [16] datasets to assess its properties. We then
evaluate the proposed autolabeling pipeline. Lastly, we test the robustness of the pro-
posed refiner to the imprecision of relative camera transformations and the choice of
frames for refinement. We follow the standard evaluation procedure of [104, 144, 100]
and report the pose accuracy only for objects correctly detected in 2D on Linemod and

65

5 Multi-View Pose Refinement with Dense Correspondences

Table 5.1: Percentages of correctly estimated poses w.r.t. the ADD on the
LineMOD [5] dataset. DR1, DR2 and DR4 stand for the proposed refinement
with 1, 2 and 4 views respectively. Single-asterisked (*) methods use real training
data. Double-asterisked (**) methods report only refinement time instead of the
time of the whole pipeline.

RGB Single-View
RGB Multi-View

RGBD
Closest views Random views Farthest views

Method SSD6D[104] OURS BB8*[68] DPOD[100] OURS PoseCNN*[16] OURS OURS OURS AAE[115] SSD6D[104] DenFus*[123] DenFus.*[123]
Refinement DL[144] - DL[68] DL[100] DR1 DeepIM[9] DR2 DR4 DR2 DR4 DR2 DR4 ICP ICP - DL[123]

Ape - 28.04 40.40 55.23 38.351 76.95 55.28 85.38 97.89 100 97.7 100 24.35 - 80 92
Bvs. - 71.65 91.80 72.69 85.354 97.48 94.95 99.61 99.81 100 100 99.61 89.13 - 84 93
Cam - 58.62 55.70 34.76 76.399 93.53 87.57 98.18 99.7 100 99.7 100 82.1 - 77 94
Can - 62.8 64.10 83.59 87.316 96.46 89.57 96.06 95.47 96.06 95.87 96.85 70.82 - 87 93
Cat - 40.12 62.60 65.1 55.988 82.14 78.4 97.2 99.4 100 99.4 100 72.18 - 89 97

Driller - 61.46 74.40 73.32 79.801 94.95 86.5 96.02 97.13 97.79 98.23 97.79 44.87 - 78 87
Duck - 26.17 44.30 50.04 38.18 77.65 53.57 81.2 94.56 98.87 97.56 98.87 54.63 - 76 92

Eggbox - 87.65 57.80 89.05 93.003 97.09 95.53 98.83 97.27 99.22 98.83 99.61 96.62 - 100 100
Glue - 67.48 41.20 84.37 67.988 99.42 89.15 97.67 95.94 98.06 93.22 98.06 94.18 - 99 100

Holep. - 19.09 67.20 35.35 24.568 52.81 35.38 52.69 79.27 87.69 84.81 87.31 51.25 - 79 92
Iron - 83.85 84.70 98.78 94.28 98.26 98.36 100 100 100 100 100 77.86 - 92 97

Lamp - 43.52 76.50 74.27 65.664 97.5 80.38 91.05 94.37 97.28 95.92 96.5 86.31 - 92 95
Phone - 45.77 54.00 46.98 74.472 87.72 87.32 97.18 99.6 100 99.4 99.6 86.24 - 88 93

Mean 34.1 53.55 62.70 66.42 67.79 88.61 79.38 91.62 96.19 97.19 96.97 98.02 71.58 90.9 86 94

Time (ms) - 56 330 36 398 + 83** 233 159 232 162 227 163 224 100 - -

Occlusion. Pose quality is computed in accordance with the ADD metric [5]. On Home-
brewed and YCB-V, on the other hand, we submit the predicted poses to the BOP
challenge [7] for evaluation and report the Average Recall (AR) metric returned by it.

Single object pose estimation. Here, we compare the quality of poses predicted
with our method to different approaches on the LineMOD [5] dataset. The results are
summarized in Table 5.1. The table compares our refinement method to various top-
performing deep learning methods which reported an ADD score with different pose
refinement approaches. It is not our aim to make direct comparisons with monocular
methods, but rather to compare the quality of poses after various refinement methods.

Our augmented DPOD, labeled as OURS, achieves 53.55% of the average ADD pose
accuracy without any refinement, slightly outperforming the original DPOD, which
showed 50% pose accuracy. Next, we evaluate the performance of our differentiable
rendering refiner in the monocular scenario (OURS DR1) and compare it to previous
state-of-the-art methods based on deep learning (DL): [68, 100, 9, 144]. In this case,
the pose accuracy increases from 53.55% to 67.69%, even though only one frame is used
and no additional multi-view constraints. The refiner outperforms all the competitors

Table 5.2: Percentages of correctly estimated poses w.r.t. the ADD on the Occlu-
sion [8] dataset. DR1, DR2 and DR4 stand for the proposed refinement with 1, 2
and 4 views respectively.

Train data Synthetic Real - GT labels

Method OURS SSD6D[104] OURS
OURS

Pix2Pose[101] PVNet[103] DPOD[100] HybPose[102]
closest views random views farthest views

Refinement - DL [144] DR1 DR2 DR4 DR2 DR4 DR2 DR4 - - - -

Ape 26.1 - 15.9 21.59 31.45 57.85 79.81 61.74 79.81 22.0 15.8 18.8 53.3
Can 37.8 - 45.4 63.61 81.67 71.57 88.05 72.37 87.65 44.7 63.3 60.8 86.5
Cat 6.3 - 8.3 20.45 34.54 26.82 41.82 23.64 48.18 22.7 16.7 15.4 73.4

Driller 43.7 - 52.4 80.3 97.79 91.61 98.67 93.80 99.11 44.7 65.7 62.0 92.8
Duck 23.4 - 22.4 54.3 76.95 67.44 87.01 72.27 85.94 15.0 25.2 37.8 62.8

Eggbox 22.7 - 21.0 34.19 44.32 41.54 43.08 39.07 48.45 25.2 50.2 70.9 95.3
Glue 43.0 - 50.2 67.3 80.92 66.15 75.57 66.92 74.81 32.4 49.6 65.4 92.5

Holep. 12.9 - 15.4 45.62 74.08 60.27 84.51 63.30 83.50 49.5 39.7 46.9 76.7

Mean 27.0 27.5 28.9 48.42 65.22 60.41 74.82 61.64 75.93 32.0 40.8 47.3 79.2

66

5.3 Experiments

Table 5.3: Results on the Homebrewed dataset [6] reported according to the Average
Recall (AR) metric of the BOP challenge [7] on the BOP challenge subset
of test images.

Method Train data Refinement AR Time (s)

OURS PBR 4 furthest views 0.841 0.578
OURS PBR 4 random views 0.835 0.584
OURS PBR 4 closest views 0.83 0.600
OURS PBR 2 random views 0.818 0.926
OURS PBR 2 furthest views 0.817 0.926
OURS PBR 2 closest views 0.787 0.91

CosyPose[10] PBR 8 views 0.746 0.427
OURS PBR no 0.725 0.163

CDPNv2[73] PBR no 0.722 0.273
CosyPose[10] PBR ICP 0.712 5.326

CDPNv2 synt, PBR ICP 0.712 0.713
CosyPose[10] PBR 4 views 0.696 0.445
Pix2Pose[101] PBR ICP 0.695 3.248
CosyPose[10] PBR no 0.656 0.417

in that category apart from DeepIM, even though BB8 and DeepIM have the advantage
of using real train data.

The addition of multiple frames introduces spatial geometric constraints that result
in a significant performance boost w.r.t. the ADD score when two (OURS DR2) or four
(OURS DR4) frames are used. Even though, the ADD score depends on the choice of
the frames, i.e. the closest frames corresponding to weaker constraints, even the two-
view refiner can outperform or perform similarly to other approaches using depth-based
ICP ([115] and [104]) and DenseFusion, which uses real train data, RGBD inference and
iterative DL-based refinement. The table clearly shows that even a minimum multi-view
setup can bring a significant performance boost without any need for precise calibrated
depth information.

Robustness to occlusions. The robustness of our method to occlusions was eval-
uated on Occlusion [8], Homebrewed [6] and YCB-V [16] datasets. The results are
presented in Table 5.2, Table 5.3 and Table 5.4 respectively.

Unfortunately, detectors trained on synthetic data are seldom evaluated on Occlusion
(Table 5.2). To the best of our knowledge, there is only an ADD score from SSD6D with
the DL refinement [144]. Therefore, we instead compare to the approaches trained with
real data. The advantage of these approaches is that they use real data from the target
domain and also overfit to the particular occlusions present in the test images. This
enables comparison with the best detectors and assessment of how closely the refiner
is able to approach the performance of the algorithms trained on real data. As can be
seen in Table 5.2, our refiner is able to significantly improve the performance of the non-
refined baseline. If 4 views are used for refinement, the performance of our approach

67

5 Multi-View Pose Refinement with Dense Correspondences

Table 5.4: Results on the YCB-V dataset reported according to the Average Recall
(AR) metric of the BOP challenge [7] on the BOP challenge subset of
test images. CosyPose [10] results labeled with * were obtained by re-running the
official implementation of the paper.

Method Train data Refinement AR Time (s)

CosyPose[10] synt + real ICP 0.861 2.736
CosyPose[10] synt + real 8 views 0.853 0.285
CosyPose[10] synt + real 4 views 0.84 0.318
CosyPose[10] synt + real no 0.821 0.241
Pix2Pose[101] synt + real ICP 0.78 2.59

EPOS[119] synt no 0.696 0.572
OURS PBR 4 furthest views 0.674 0.555
OURS PBR 4 random views 0.645 0.557
OURS PBR 2 furthest views 0.621 848
OURS PBR 2 random views 0.61 0.855

CosyPose*[10] PBR 8 views 0.61 0.412
CosyPose*[10] PBR 4 views 0.592 0.415
CosyPose[10] PBR no 0.574 0.342

OURS PBR 4 closest views 0.564 0.564
OURS PBR 2 closest views 0.541 0.853

CDPNv2[73] synt + real no 0.532 0.143
CDPNv2[73] PBR ICP 0.532 1.034

OURS PBR no 0.525 0.187
EPOS[119] PBR no 0.499 0.764

CDPNv2[73] PBR no 0.39 0.448

is on-par with the state-of-the-art results, even though we do not use any real data
annotations.

With the Homebrewed dataset [6] (Table 5.3), all top-performing methods were trained
on the synthetic PBR images.Our main aim here is to compare our refiner to Cosy-
Pose [10], which also utilizes multi-view refinement. It is clear from the table that
correspondence-based pose estimation methods (ours and CDPN) confidently outper-
form the direct pose prediction of CosyPose if no refinement is used. With the multi-view
refinement, the proposed methods achieves top results even if only 2 closest views are
used for refinement. Additionally, the proposed approach outperforms CDPN, CosyPose
and Pix2Pose even if their predictions are refined with ICP.

Table 5.4 shows a comparison of various top-performing methods on the YCB-V [16]
dataset. The dataset comes with a real train set and a set of pre-rendered synthetic
images (marked as ’real’ and ’synt’ in the table). On the other hand, synthetic PBR
images are also available. When trained on PBR images, raw non-refined CosyPose
poses outperform ours. With refinement, our methods outperforms CosyPose, CDPN

68

5.3 Experiments

Table 5.5: Percentages of correctly estimated poses w.r.t. the ADD score on the
Linemod [5] dataset with noisy relative camera transformations.

2 views 4 views

Trans. (% diam.) Rot. (deg.) Trans. (% diam.) Rot. (deg.)

5 10 15 5 7.5 10 5 10 15 5 7.5 10

Ape 95 79 58 93 82 68 99 89 66 98 89 73
Bvise 97 85 63 97 91 78 100 91 70 99 93 80
Cam 97 86 65 95 78 65 100 93 56 99 86 66
Can 87 75 53 86 73 63 89 81 56 90 80 62
Cat 95 81 62 95 85 72 99 89 63 99 91 76

Driller 95 83 61 94 85 67 99 91 68 99 91 75
Duck 89 74 57 91 78 60 97 86 62 96 81 63

Eggbox 97 96 94 97 98 96 99 98 98 98 98 98
Glue 94 93 86 94 94 91 98 96 96 97 99 97

Holep. 79 65 44 73 63 51 89 76 52 85 73 62
Iron 96 79 60 97 87 75 99 87 62 99 93 78

Lamp 92 80 61 91 79 68 96 88 65 96 91 77
Phone 95 79 60 95 86 71 100 87 60 99 87 72

Mean 93 81 63 92 83 71 97 89 67 96 89 75

and EPOS trained on the same PBR data. However, training on real data still has a
huge advantage on this dataset.

Runtime. To allow faster refinement time, the camera intrinsics were re-computed
such that the rendered image always has the dimensions 128×128. Moreover, each model
was sub-sampled to contain only 1000 faces. After performing an ablation study on the
Linemod dataset, we set the number of refinement iterations to 50. As a result, if 2
views are used for refinement, the average per-image refinement time for one object
is 170 milliseconds; with 4 views - 100 milliseconds. Runtime scales linearly with the
number of objects in the scene. Tables 5.1,5.3, 5.4 indicate that the proposed refinement,
while not being real-time-capable, displays a performance that is similar in terms of time
to the multi-view matching and refinement of CosyPose and similar to or faster than
ICP-based methods, depending on the dataset. All experiments were conducted on an
Intel Core i9-9900K CPU 3.60GHz with NVIDIA Geforce RTX 2080 TI GPU.

Robustness to camera choices. For all datasets used for evaluation, we split each
sequence into sets of 2 or 4 images. Images in the different sets do not overlap. For
each set, we compute relative camera poses from individual ground truth camera poses.
The pose is optimized jointly for images in the set. We experiment with three differ-
ent view sampling strategies: closest views, random views and furthest views. Tables
5.1, 5.2, 5.3, 5.4show a quantitative comparison of these strategies. It is clear from the
tables that even though close camera locations essentially constitute a bad setup for
multi-view pose refinement, as the pose error in one frame is not necessarily visible in

69

5 Multi-View Pose Refinement with Dense Correspondences

Table 5.6: Percentages of correctly estimated poses w.r.t. the ADD score when
automatically annotated data is used to train the monocular detector.

Train data Synt
Real - Autolabels

Real - GT labels
DR2 DR4

Method OURS OURS OURS DPOD[100] PVNet[103] OURS CDPN[73] HybP.[102]

Ape 28.04 65.29 68.84 53.28 43.62 74.78 64.38 77.6
Bvise 71.65 98.84 99.81 95.34 99.90 99.71 97.77 99.6
Cam 58.62 93.19 94.25 90.36 86.86 96.52 91.67 95.9
Can 62.80 97.44 98.62 94.1 95.47 99.02 95.87 93.6
Cat 40.12 78.54 82.04 60.38 79.34 90.52 83.83 93.5

Driller 61.46 94.81 96.47 97.72 96.43 97.9 96.23 97.2
Duck 26.17 31.05 32.46 66.01 52.58 48.41 66.76 87

Eggbox 87.65 93.48 95.24 99.72 99.15 99.9 99.72 99.6
Glue 67.48 95.26 96.91 93.83 95.66 97.68 99.61 98.7

Holep. 19.09 25.43 43.47 65.83 81.92 49.62 85.82 92.5
Iron 83.85 99.26 99.59 99.8 98.88 99.39 97.85 98.1

Lamp 43.52 90.79 93.31 88.11 99.33 92.92 97.89 96.9
Phone 45.77 88.14 90.65 74.24 92.41 93.07 90.75 98.3

Mean 53.55 80.89 83.97 82.98 86.27 87.65 89.86 94.5

other frames, the refiner still improves the poses. Random and furthest view selections
tend to perform similarly on all the datasets.

Relative Pose Noise. The aim of this experiment is to demonstrate how noise in
relative poses affects the overall performance of the multi-view optimization pipeline.
To do this, we add noise separately to translation and rotation. For rotation transfor-
mation, we sample the perturbation angle for each axis from a normal distribution with
zero mean and a standard deviation of 5, 7.5 or 10 degrees. For translation transfor-
mation, perturbations are sampled from the normal distribution with zero mean and a
standard deviation computed on the basis of an object diameter: σ = 1

3 · (0.1 · diamobj).
Larger deviations render the problem innately ill-posed due to the definition of the ADD
measure. If the camera is at a distance of more than 10% of the model’s diameter, the
pose will always be classified as incorrect according to the ADD metric. The results can
be seen in Table 5.5. Even with the noisy poses, the refiner still ensures a reasonable
pose quality. This table also shows that having more views is beneficial in the noisy
scenario.

Autolabeling. In this experiment, we retrieve the estimated OURS+DR2 and OURS+DR4
labels and use them to replace the synthetic training set by the automatically generated
real labels as discussed above. The extended training set is then used to fine-tune the
synthetically trained baseline. The results can be seen in Table 5.6. It can be clearly seen
that the fine-tuned network trained on autolabels significantly outperforms the synthetic
DPOD and is very competitive when compared to the state-of-the-art methods trained
on full ground truth labels.

70

5.4 Conclusions

5.4 Conclusions

In this paper, we propose a novel object pose refinement pipeline. We adopt the idea
of using multiple frames to produce a single joint object pose estimate. The use of
multiple frames enables effective use of geometric constraints. The proposed refiner
is based on the external object detector, which outputs deep 2D-3D correspondences in
the form of Normalized Object Coordinate space. Predicted dense correspondences from
calibrated multiple frames can be brought together to obtain a better pose estimate using
a differentiable renderer. The proposed approach imposes no constraints on the number
of frames used and the exact positions of the cameras in the 3D world, and it remains
robust even when the cameras are in close proximity to one another. We experimentally
show that the refiner works excellently on Linemod, Occlusion, Homebrewed and YCB-
V datasets. As an alternative use case, we demonstrate how the proposed approach
can be applied to automatically annotate real train data, which has no object pose
annotations. The approach even remains effective if the relative transformations in-
between frames are imprecise. Moreover, even a multi-view setup with only two frames
already produces excellent results. This demonstrates that the approach can be used
successfully in practical applications.

71

6 Analysis of Pose Estimation with Dense
Correspondences

This chapter introduces a three-stage 6 DoF object detection method called DPODv2
(Dense Pose Object Detector) that relies on dense correspondences. We combine a
2D object detector with a dense correspondence estimation network and a multi-view
pose refinement method to estimate a full 6 DoF pose. Unlike other deep learning
methods that are typically restricted to monocular RGB images, we propose a unified
deep learning network allowing different imaging modalities to be used (RGB or Depth).
Moreover, we propose a novel pose refinement method, that is based on differentiable
rendering. The main concept is to compare predicted and rendered correspondences
in multiple views to obtain a pose which is consistent with predicted correspondences
in all views. Our proposed method is evaluated rigorously on different data modalities
and types of training data in a controlled setup. The main conclusions is that RGB
excels in correspondence estimation, while depth contributes to the pose accuracy if
good 3D-3D correspondences are available. Naturally, their combination achieves the
overall best performance. We perform an extensive evaluation and an ablation study
to analyze and validate the results on several challenging datasets. DPODv2 achieves
excellent results on all of them while still remaining fast and scalable independent of the
used data modality and the type of training data.

6.1 Introduction

Object detection and 6 DoF pose estimation are not new fields in computer vision. In
fact, they are among the major driving forces, being crucial for various application fields,
such as augmented reality, robotics and autonomous driving. Therefore, there is a vast
number of methods trying to tackle this problem.

In the pre-deep learning era, pose estimation was typically performed either completely
using depth or using a combination of depth and RGB data. However, recent trends in
6 DoF pose estimation move towards disregarding depth data as a modality and using
only RGB data. The reasons for that are manifold, but the most important are the
omnipresent availability of RGB cameras in the modern devices and the success of deep
learning methods. The progress in RGB deep learning allows the researchers to choose
from a vast number of ready to use network architectures and focus their attention on
extending them to predict the pose. The state of the art RGB solutions are solely based
on convolutional neural networks (CNNs), demonstrating impressive results that could
barely be imaginable a couple of years ago. Even though recent RGB methods, such as
CosyPose [10] perform better than depth-based point pair feature approaches [15], they

73

6 Analysis of Pose Estimation with Dense Correspondences

RGB input

RGB input CENet Output2D detector

Encoder

ID Mask

NOCS

U
V

W

Pose Block Output
PnP

Di
ffe

re
nt

ia
bl

e
Re

nd
er

er

Kabsch

RG
B

RG
B

RG
B-
D

RGB

RGB

RGB

RGB

Depth

Depth

Depth

NOCS

NOCS

NOCS

De
pt
h

Renderings
2D

 d
et

ec
to

r

CENet

Di
ffe

re
nt

ia
bl

e
Re

nd
er

er

Correspondences Refinement

Po
se

 B
lo

ck

Pose

2D Detections Class

Robust
Point2Point Loss

!!"#

[" | $]

Figure 6.1: Synthetic toy example illustrating three-stage correspondence-based 6
DoF pose estimation: A full RGB image is fed to a 2D object detector for
bounding box estimation. Resulting bounding boxes are then used to generate crops
on the available data, which are subsequently fed into the correspondence network.
If only RGB images are provided, then the pose is estimated from correspondences
using 2D-3D PnP. In case registered depth data is also in place, we project the
estimated correspondences into 3D and use the 3D-3D Kabsch algorithm.

still suffer from perspective ambiguities and appearance changes. This can be remedied
with the additional use of depth data or an extra step with multi-view refinement.

Inspired by the works of Taylor et al. [75] and Gueler et al. [76], Brachmann et al [8]
and Jafari et al. [118], we developed and compared several variations of deep dense
correspondence-based 6 DoF object detectors using either RGB or depth as input. We
ran a thorough analysis and ablation studies to evaluate the strengths and weaknesses
of the presented modalities and compared them to the state of the art. Moreover, each
correspondence estimation networks is trained on two types of data: synthetic and real.
While real labeled data are most commonly used to achieve the best possible results, the
acquisition of such data is often infeasible in real applications due to the high costs and
significant time efforts. Synthetic data, on the other hand, is free of these drawbacks
and can be easily rendered in a variety of scenes and under an unlimited number of
poses. Unfortunately, the methods trained on synthetic data are subject to the domain
gap problem, due to the dissimilarity between real and synthetic images. This might
causes them to perform worse than the methods trained on real data. However, as was
shown in HomebrewedDB [6], networks trained only synthetic data are less prone to
overfitting due to a larger data variability, which allows them to perform similarly to the
methods trained on real data when train and test images do not come from the same
image sequence. Therefore, detectors trained on synthetic data are desirable, because
the required data is easier to obtain and because such detectors tend to generalize better,
thus being of higher practical significance.

Even though there is a larger number of pose estimation methods for all kinds of data
modalities, they are typically designed for a specific one and have completely different
architectures from methods operating on other data modalities. This makes it impos-
sible to measure which advances come from better methods and which come from a
different data modality or from better training data. In this chapter, we propose a uni-
fied deep neural network architecture capable of predicting dense correspondences either
from depth maps or from RGB images. The pose estimation part enables direct com-
parison of the data modalities on various datasets. Additionally, in contrast to the other

74

6.2 Methodology

Figure 6.2: Multi-view pose optimization: The algorithm takes the output of DPODv2
from several views with known relative camera transformations as input. An initial
pose hypothesis is iteratively refined until it converges to a pose, which is consistent
with predicted correspondences in all frames. The proposed loss function penalizes
pixel-wise distance between a predicted correspondence and a correspondence cor-
responding to the current pose hypothesis. The loss function is implemented using
a differentiable renderer.

dense correspondence methods, we report per-pixel correspondence error to deepen the
understanding of where pose imprecision comes from. From the results obtained we con-
clude that RGB images excel in object localization and correspondence estimation, while
3D-3D correspondences between the depth images and the model result in more accu-
rate pose estimates. Naturally, their combination brings the best performance. We also
introduce a correspondence-based refinement method based on differentable rendering.
Moreover, if relative camera transformations between frames are known, the predicted
poses can be additionally refined by aligning per-image dense correspondences between
the object correspondences rendered in the predicted pose and the correspondences pre-
dicted by the network. The proposed loss function is implemented using a differentible
renderer, which allows for its minimization with the standard gradient-based methods.

The main contributions of this work can be summarized as follows:

• A unified framework for dense correspondence estimation, whose architecture is
agnostic to the input modality type available (RGB or Depth);

• A thorough analysis and ablation study of the presented methods and estimation
of their strengths and weaknesses;

• An analysis of the quality of predicted correspondences;

• A correspondence-based 6 DoF pose refinement extensible to multiple views.

6.2 Methodology

In this chapter, we propose a three-stage object detection and pose estimation pipeline
with a potential fourth refinement stage. It builds atop of the existing state of the art
results with training on both real and synthetic data of potentially different modalities.
The pipeline is visualized in Figure 6.1. The first stage is responsible for 2D object

75

6 Analysis of Pose Estimation with Dense Correspondences

detection from RGB images, which is a standard and well-studied research area. In
the second stage, a convolutional neural network, specifically designed for semantic seg-
mentation, takes a detected patch with an object and regresses dense correspondences
between input pixels and the 3D object model. Object poses is computed using the
predicted correspondences in the third stage. The optional fourth stage, visualized in
Figure 6.2, is responsible for pose refinement, as discussed later. Such a setup, allows
for flexible mixing of data modalities and types of training data. Additionally, it sim-
plifies the training procedure, as it breaks the task into smaller independent subtasks.
In this section, we provide detailed explanations of each part. Then, we introduce and
explain the multi-view refiner which operates atop of dense correspondences predicted
by DPODv2.

6.2.1 2D Object Detection

The first step of the pipeline consists of an off-the-shelf 2D object detector. As shown
in previous work of [104, 115, 116], it is easier to achieve good 2D detection recall if it
is done by conventional object detection approaches. SSD6D, which was trained purelly
on synthetic data, relied on fine-tuning a separate confidence threshold per each object
class to achieve near-perfect recall. AAE[115, 116], on the other hand, trained their
2D detector completely on real data. We used YOLOv3[13] in all our experiments,
although the pipeline is agnostic to a particular choice of the detector. YOLO was
trained either completely on real or completely on synthetic RGB data. Another crucial
reason for splitting object detection and correspondence estimation into two disjoint
steps is scalability. Most of the approaches, mentioned in the related work, train a
separate detector per each object to improve the results. While it is achievable on
smaller datasets, such as Linemod [5], it is more challenging on more sophisticated
datasets [6, 12] and close to impossible in real life.

6.2.2 Pose Parameterization With Dense Correspondences

Instead of direct pose regression, which is still challenging and ill-posed for deep learn-
ing, we advocate the use of dense per-pixel correspondences between the image and the
object model. With the correspondences at hand, the pose can be estimated with a num-
ber of well-studied methods depending on the data modality of choice [4]. While in the
original DPOD paper, the authors relied on well-known 2-dimensional UV maps from
computer graphics, we opted for the three-dimensional Normalized Object Coordinates
Space (NOCS) [74] maps. The main reason is its simplicity and the lack of need for
manual adjustment of the UV maps. Each dimension of NOCS corresponds to a dimen-
sion of the object scaled uniformly to fit in [0, 1] range. This parameterization allows
for trivial conversion between the object coordinate system and the NOCS coordinate
system, which is more suitable for regression with deep learning due to its constrained
nature.

76

6.2 Methodology

(a) Input patch (b) GT NOCS (c) Prediction from
Depth

(d) Prediction from
RGB

Figure 6.3: Visual comparison of predicted segmentation maps of the visible object
parts and color-coded NOCS for the same patch depending on whether
RGB or Depth CENet is used.

Let us formally define a model as a set of its vertices: M := {v ∈ R3}. Operators that
compute minimal and maximal coordinate along the vertex dimension i of all v ∈ M
are defined as

mini(M) := min
v∈M

vi, maxi(M) := max
v∈M

vi (6.1)

Then, for any model’s vertex v, the NOCS projection operator is defined w.r.t. the
model as

πM(v) :=

{
vd −mind(M)

maxd(M)−mind(M)

}
d∈{x,y,z}

(6.2)

The inverse of the transformation is denoted by π−1
M . We use the standard SE(3) def-

inition of 6 DoF object pose [4]. A model with the given parameterization can easily
be rendered to produce pixel-wise ground truth 2D-3D correspondences. Thus, it allows
for instant establishment of 2D-3D and 3D-3D correspondence if RGB or depth data is
used respectively.

6.2.3 CENet: Correspondence Estimation Network

The architecture of the Correspondence Estimation Network builds on the architecture of
DPOD [100]. The network is an encoder-decoder convolutional neural network with skip
connections resembling UNet [61]. The network accepts the input of size I ∈ R128×128×D,
where D stands for the number of input channels and depends on the data modality.
The network has a common encoder and four separate decoder heads. One head is

77

6 Analysis of Pose Estimation with Dense Correspondences

responsible for predicting binary per-pixel segmentation mask S̃ ∈ R128×128×2, while the
other three output tensors, each of which C̃d ∈ R128×128×256 after softmax corresponds
to pixel-wise probabilities of discretized NOCS coordinates. The encoder is based on
the 34-layer ResNet [51] architecture, which proved to be both sufficiently effective and
fast. The decoders upsample the computed features up to its original size using a stack
of bilinear interpolations followed by convolutional layers. We used biliinear upsampling
instead of upconvolutions to make inference more rapid and memory-efficient. However,
in principle any other architecture for semantic segmentation could be used.

Formulating NOCS coordinate regression problem as discrete classification problem
proved to be useful for much faster convergence and for the superior quality of cor-
respondences as was also confirmed in previous work [100, 74]. Initial experiments on
direct coordinate regression showed very poor results in terms of correspondence quality.
The main reason for the problem was the infinite continuous solution space, i.e., [0; 1]3,
where 3 is the number of dimensions and [0, 1] is the normalized coordinate range of a
3D model. Classification of the discretized 2D correspondences allowed for a large boost
of the output quality by dramatically decreasing the output space, which is now 2563

with 256 being the size of a discretized NOCS dimension.

As a result, the network is trained by optimizing two classification losses. Segmenta-
tion loss is defined as a per-pixel binary Dice loss [184] LDICE , which helps overcome
the imbalanced number of foreground and background pixels and NOCS classification
cross entropy loss defined only for foreground pixels (pixels occupied with non-occluded
objects of interest) separately per each NOCS dimension d:

LdNOCS =

128∑
i=1

128∑
j=1

1[Ii,j is foreground]Lcls(C̃d,i,j , Cgtd,i,j) (6.3)

Which results in the total per-image loss:

L = αLDICE +
3∑

d=1

LdNOCS (6.4)

where α is a weight factors set to 5 in all our experiments.

6.2.4 Inference with The Correspondence Estimation Network

Given YOLO predictions, we explored three different ways to first get the dense corre-
spondences and then utilize them for pose estimation. The first approach follows the
conventional DPOD paradigm of running an RGB correspondence network followed by
the PnP with RANSAC. Alternatively, if depth maps are available, it is possible to
project the predicted correspondences from 2D into 3D and then use the Kabsch algo-
rithm with RANSAC to predict the pose from 3D-3D correspondences. Depth maps
can also directly be used instead of RGB for inferring segmentation masks and 3D-3D
correspondences. In this case, Kabsch+RANSAC is again used for pose estimation.

78

6.2 Methodology

6.2.5 Multi-View Refinement With Differentiable Renderer

The overall pipeline of the proposed refiner is provided in Figure 6.2. The key idea of
the refiner is to predict NOCS correspondences and poses separately for each frame with
DPODv2 as described above. Then, if several views with known relative camera positions
are available, the predicted poses can be refined to produce a pose which is plausible
given correspondences in all frames and the geometric constraints imposed by the relative
camera poses. This is achieved by defining a loss function which penalizes pixel-wise
difference between predicted NOCS coordinates with CENet, and NOCS coordinates
corresponding to the object rendered in the predicted camera poses. The loss function is
implemented using the differentiable renderer and minimized iteratively by computing
a pose update T∆ ∈ SE(3) using gradient descent at each step.

We rely on the assumption of the availability of relative camera transformations.
There are multiple ways how they can be estimated. Camera transformations can be
obtained by placing the object on the markerboard and either using an actual multi-
camera system or using a single camera but moving the markerboard. In the scenario
of robotic grasping, a camera can be mounted on the robotic arm to enable observation
of the object from several viewpoints. Alternatively, SLAM methods could be used to
estimate the transformations. While relative transformations are assumed to be known,
the object poses still remain unknown and cannot be inferred directly from the relative
camera transformations.

The differentiable renderer is used for a differentiable definition of the following func-
tions: binary foreground/background rendering S :M×SE(3)→ {0, 1}W×H and NOCS
rendering C :M× SE(3) → [0, 1]W×H×3. We will omit their dependence on the CAD
model M to keep the notation concise. For each set of images used for multi-view
refinement, one of the images is taken as the reference frame, and then for each f -th
image, its relative pose Ξref→f ∈ SE(3) is recomputed w.r.t. to the reference frame.
Initial pose hypotheses T := {T1, ...,TN} are estimated separately for each frame with
PnP+RANSAC. The pose of the object in the coordinate system of the reference frame
is later denoted by Tpr. Ts ∈ SE(3) is a symmetry transformation associated with
each object, which must be adjusted to produce consistent NOCS maps for symmetric
objects. Computation of Ts, described in the data preparation section, is closed-form
and quick but has to be performed for each object in each frame after each iteration.

For a pixel p in the f -th frame, the loss function is defined as follows:

Lf,p := ρ
(
π−1

(
C̃f,p

)
, π−1

(
C (Ξref→f ·T∆ ·Tpr ·Ts)p

))
(6.5)

where ρ is an arbitrary distance function. In a nutshell, C̃f,p is a predicted NOCS
correspondence, while C (Ξref→f ·T∆ ·Tpr ·Ts)p projects the model in the pose T∆·Tpr

onto the corresponding frame and computes a NOCS coordinate for that pose. The
inverse transformation allows us to relate the pixel-wise discrepancy to the actual error
in the 3D coordinate system of the model.

79

6 Analysis of Pose Estimation with Dense Correspondences

On the level of the full set of images used for refinement, the objective of the refinement
is defined as:

T∗∆ = argmin
T∆∈SE(3)

∑N
f=1

∑
p∈I

[
S̃f,p · S (Ξref→f ·T∆ ·Tpr ·Ts)p

]
· Lf,p

(6.6)

Here,
[
S̃f,p · S (Ξref→f ·T∆ ·Tpr)p

]
serves as an indicator function which shows whether

or not the pixel is foreground in both the rendered and the predicted NOCS maps.

Choice of the reference frame might have a significant effect on the effectiveness of
pose refinement, especially in case of occlusions which cause bad initial poses. We aim
at choosing a reference frame in such a way that its pose has the lowest error when re-
projected to other frames. To deal with degenerate cases when there is no overlap or very
small overlap between the projected model and the predicted foreground segmentations,
the loss is scaled by their intersection over union as follows:

argmin
ref∈[1,..,N]

1

K

N∑
f=1

∑
p∈I

[
S̃f,p · S (Ξref→f ·Tref ·Ts)p

]
· Lf,p

IOU
(
S̃f , S (Ξref→f ·Tref ·Ts)

) (6.7)

where K stands for the number of frames with non-zero loss. Additionally, argmin
ignores zero values, as they correspond to degenerate poses that are not re-projected
correctly onto other frames.

6.2.6 Implementation Details

Our pipeline is implemented using the Pytorch [185] deep learning framework. All the
experiments were conducted on an Intel Core i9-9900K CPU 3.60GHz with NVIDIA
Geforce RTX 2080 TI GPU. YOLO was trained with the ADAM optimizer with a con-
stant learning rate of 1× 10−3 and weight decay of 3× 10−5 for 100 epochs. Correspon-
dence estimation network was trained for 240 epochs with the learning rate of 5× 10−5

which was decreased after 40th, 120th and 200th epochs. We used EPnP [1]+RANSAC
implementation from OpenCV [186] and point-to-plane ICP from Open3D [187]. For
Kabsch+RANSAC we used our own minimalistic implementation.

The correspondence inference network uses 128×128 images for training and for test-
ing, while YOLO is trained to predict tight bounding boxes around the objects. There-
fore, the shortest side of each bounding box predicted by YOLO is padded to match
the longest side, after which the corresponding image patch is resized preserving the
aspect ratio. During training, small random imprecisions are added to each side of the
ground truth bounding box to ensure that CENet is robust to noisy YOLO predictions.
The ablation studies show the effectiveness of this approach, as the quality of predicted
correspondences does not deteriorate much when the predicted bounding boxes are used
instead of the ground truth boxes.

When training on synthetic data, the problem of domain adaptation becomes one of
the main challenges. Training the network without any prior parameter initialization

80

6.3 Data Preparation

makes generalization to the real data difficult if possible at all. A simple solution to this
problem was proposed in several works, including [179, 144], where they freeze the first
layers of the network trained on a large dataset of real images, e.g., ImageNet [173] or MS
COCO [174], for the object classification task. The common observation of the authors
is that these layers, learning low-level features, very quickly overfit to the perfect object
renderings. We found out that this setup is only partially needed for our networks. We
froze first 20 layers when we trained YOLO. The weights were initialized from the YOLO
trained on the MS COCO dataset [174]. In the correspondence estimation network, the
weights were initialized from the Resnet pretrained on ImageNet [173] and then were all
modified during training. When the correspondence network was trained on depth maps,
the first layer was instead initialized randomly and then all layers were modified during
training. We have found out that replacing BatchNorm [89] with InstanceNorm[91] helps
overcome overfitting and allows for reliable and stable training in this case.

We used the Soft Rasterizer renderer [182] in all experiments with the multi-view
refiner. The general robust function [183] was used as a distance measure ρ in the
loss function to effectively deal with outliers. Continuous rotation parameterization
from [98] was used to achieve faster and more stable convergence during the optimization
procedure in comparison to quaternions and Euler angles.

6.3 Data Preparation

When it comes to data preparation for the tasks of object detection and pose estimation,
two distinctive paradigms are observed. The most popular and conventional one follows
the standard way of machine learning of collecting a large database of labeled data.
Unfortunately, pose estimation requires more involved labels, which cannot be produced
manually, in contrast to the standard classification or segmentation labels. Pose labeling
requires sophisticated multi-step procedures, such as in [6, 12]. In spite of those chal-
lenges, real label train data remain the predominant choice of data especially because it
allows to achieve excellent performance on academic benchmarks. In the deep learning
on point clouds, real train data are also predominant.

On the other hand, it is possible to leverage advances in computer graphics and to
rely solely on synthetically rendered train data if object CAD models are available.
The advantages of this include virtually unlimited number of images and poses with no
labeling effort. However, the domain gap between the real and the rendered images comes
into play to hinder the detection rate and pose accuracy. In the past, the predominant
way to train a deep neural network on synthetic data was to render the object on random
backgrounds, as was done in DPOD [100], SSD6D [104] and in [179]. On the other hand,
complete photo-realistic scene rendering is becoming more popular [188].

6.3.1 RGB Data Preparation

Real Data Preparation. Preparation of real train data is rather straightforward.
Given an image, CAD models, and associated ground truth poses, it is enough to render
present objects in ground truth poses. Binary segmentation masks and per-pixel NOCS

81

6 Analysis of Pose Estimation with Dense Correspondences

coordinates are obtained by rendering the models in the ground truth poses. Following
the paradigm of the previous works[69, 100] object patches corresponding to the vis-
ible object parts were extracted and inpainted in random backgrounds sampled from
MSCOCO [174]. This ensures that the network learns object-specific features rather
than overfits to backgrounds, leading to better generalization to new unseen scenes. For
training the detector, a random number of objects were added to each background. For
the correspondence estimation network, only one object is in-painted. The object patch
is resized randomly to simulate different distances from camera. Additionally, a random
in-plane rotation is performed. Then, we use standard color augmentations used by the
backbone networks. When training the correspondence network, random occlusions also
have to be added to make the network more robust. Realistically looking occlusions are
approximated by sampling a random patch, corresponding to a different object, which is
then in-painted randomly atop of the object of interest. Occlusions are added at random,
but it is made sure of that the target object is still visible in the patch.

Synthetic Data Preparation. We relied on the PBR images provided by the BOP
challenge organizers for the preparation of syntetic training data. Those images were
produced by simulation using BlenderProc [188]. No additional transformations were
performed on those images apart from random photometric augmentations, such as
brightness augmentation. Usage of the provided PBR images also ensured more fairer
comparison of our methods to the other methods on the BOP challenge datasets by
making sure that the competing methods were trained on exactly the same data.

6.3.2 Depth Data Preparation

In general, training deep learning networks on depth is harder than on RGB images
due to holes in the depth and a much larger range of values. To get rid of empty
depth values, we fill them in using nearest neighbor interpolation. To alleviate the range
problem, depth maps are parameterized similar to PointNet++[141] by replacing a depth
value in each pixel with a distance ti to the mean depth in the neighborhood of size T :

Ii,j = Irawi,j −
1

T 2

T∑
x=−T

T∑
y=−T

Irawi−x,j−y (6.8)

for i, j ∈ R128 and Iraw being the original depth image with already interpolated missing
values. This depth parameterization ensured simpler and more stable training. We set
the neighborhood radius T to 5 in our experiments.

In train time, depth maps undergo several random augmentations. First, random
holes of random size are added to the depth map and then interpolated accordingly.
Then, random Perlin noise [189] is added to the background, that results in smooth
random backgrounds, which is especially important for synthetically generated data.
Foreground depth values are augmented with random Gaussian noise. Synthetic train
data was again taken from the synthetic PBR images.

82

6.3 Data Preparation

(a) A continuous symmetry around the Z axis (b) A discrete symmetry around the X axis

Figure 6.4: Pose recalculation for symmetric objects during training. Poses are disam-
biguated during training to produce consistent NOCS maps. In case of a continuous
symmetry around Z axis (Example a), a rotation around Z is added to the initial
pose to ensure that the camera is always located on the same arch in the object
coordinate system. In case of discrete symmetries (Example b), all symmetric poses
are mapped to the one base pose by rotation around the symmetry axis.

6.3.3 Handling Object Symmetries

While there is a large body of theoretical work on dealing with ambiguities induced
by object symmetries, for instance [80, 190, 191], we followed a more conventional and
hands-on approach. Similarly to the DPOD and SSD6D papers, we relied on training
on consistent and unambiguous ground truth NOCS, rather than inferring multiple pose
hypotheses as in [80, 191]. While DPOD and SSD6D were trained only on images of
objects taken from non-ambiguous poses, we used all the images and then disambiguated
the poses in order to render consistent NOCS coordinates as visualized in Figure 6.4.
There are two main symmetry types in the used datasets: a continuous rotation symme-
try around an axis, when every rotation around the axis results in an identically looking
object, and discrete symmetry around an axis.

For objects, which are fully symmetric around an axis, NOCS maps are rendered from
a consistent camera location in the object coordinate system as visualized in Figure 6.4a.
Typically, the object is symmetric around its Z axis. Given an object pose R ∈ SO(3), t ∈
R3, which transforms from the model coordinate system into the camera coordinate
system, the camera location in the model coordinate system is given by −R>t. To
produce consistent NOCS maps, we rotate the object around Z axis axis in such a way,
that a camera location always lies in the YZ plane of the model system, i.e. Rz ∈ SO(3)
such that the X coordinate of −RzR

>t is 0. This makes the object always visible from
the same position. Rz can easily be computed in a closed form by computing an angle

between vectors
−−−−−−−−−−−−−−−−−−→((
−R>t

)
x
,
(
−R>t

)
y
, 0
)

and
−−−−−−→
(0, 1, 0)>. The final disambiguated object

pose is defined by RR>z and t.

83

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.1: Data modalities and types of train data used in the experiments.
YOLO CENet

Dataset/Modality Real RGB Synt. RGB Real RGB Synt. RGB Real depth Synt. depth

Linemod Yes Yes Yes Yes Yes Yes
Occlusion Yes Yes Yes Yes Yes Yes
TLESS Yes Yes Yes Yes No Yes
HomebrewdDB No Yes No Yes No Yes

Handling objects with discrete symmetries in respect to the plane is rather straightfor-
ward. Assuming for the illustration purposes that rotating the object around Z axis by
180 degrees (denoted by R180

z) produces an identically looking object as in Figure 6.4b.
One of the symmetry sides is taken as the base region of the symmetry, denoted by blue
in the figure. Then, a camera location is computed and if the camera lies on the opposite
side of the object, the rotation is updated as RR180

z . Basically, it ensures that the object
is always visible from the same side. Even though [80] noted that this transformation
might be unfavourable for neural networks due to its non-continuity, it works reliably in
practice.

6.4 Experiments

6.4.1 Datasets

Over the past decade, numerous datasets for object detection and 6 DoF pose estimation
have been proposed [5, 8, 12, 16, 170, 6, 171, 192, 172]. However, in this work we

Table 6.2: Pose estimation performance on Linemod on RGB images of methods
trained on synthetic data: The table reports the percentages of correctly esti-
mated poses w.r.t. the ADD score. Our approach sets the new state of the art both
among the methods trained on real data and the methods trained on synthetic data.
Our refiner outperforms other RGB refiners. Run times are provided as they are
reported in the original papers using non-identical hardware.

Train Data Synthetic
Method SSD6D [104] AAE [116] DPOD [100] Ours SSD6D [104] DPOD [100] Ours Ours

Refinement - DL [144] DL [100] 2 calib. views 4 calib. views

Ape 2.60 3.96 37.22 62.14 - 55.23 98.54 100.00
Bvise 15.10 20.92 66.76 88.39 - 72.69 100.00 100.00
Cam 6.10 30.47 24.22 92.51 - 34.76 99.67 100.00
Can 27.30 35.87 52.57 96.66 - 83.59 100.00 100.00
Cat 9.30 17.90 32.36 86.17 - 65.1 99.66 100.00

Driller 12.00 23.99 66.60 90.15 - 73.32 99.83 100.00
Duck 1.30 4.86 26.12 54.86 - 50.04 99.68 100.00

Eggbox 2.80 81.01 73.35 98.64 - 89.05 97.70 99.04
Glue 3.40 45.49 74.96 95.41 - 84.37 97.70 98.03

Holep. 3.10 17.60 24.50 27.08 - 35.35 94.01 99.03
Iron 14.60 32.03 85.02 98.26 - 98.78 100.00 100.00

Lamp 11.40 60.47 57.26 91.04 - 74.27 99.51 100.00
Phone 9.70 33.79 29.08 74.34 - 46.98 100.00 100.00

Mean 9.10 28.65 50.00 81.20 34.1 66.42 98.95 99.70

Time (ms) - 24 - 32 - - 202.00 132.00

84

6.4 Experiments

Table 6.3: Pose estimation performance on Linemod on RGB images of methods
trained on real data: The table reports the percentages of correctly estimated
poses w.r.t. the ADD score. Our approach sets the new state of the art both among
the methods trained on real data and the methods trained on synthetic data. Our
refiner outperforms other RGB refiners. Run times are provided as they are reported
in the original papers using non-identical hardware.

Train Data Real
Method Pix2Pose [101] DPOD [100] PVNet [103] CDPN [73] HybridPose [102] Ours BB8 [68] PoseCNN [16] DPOD [100] Ours Ours

Refinement - DL [68] DeepIM [9] DL [100] 2 calib. views 4 calib. views

Ape 58.10 53.28 43.62 64.38 63.1 80.09 40.40 76.95 87.73 98.66 100.00
Bvise 91.00 95.34 99.90 97.77 99.9 99.71 91.80 97.48 98.45 100.00 100.00
Cam 60.90 90.36 86.86 91.67 90.4 99.21 55.70 93.53 96.07 100.00 100.00
Can 84.40 94.10 95.47 95.87 98.5 99.60 64.10 96.46 99.71 100.00 100.00
Cat 65.00 60.38 79.34 83.83 89.4 95.11 62.60 82.14 94.71 100.00 100.00

Driller 76.30 97.72 96.43 96.23 98.5 98.91 74.40 94.95 98.80 100.00 100.00
Duck 43.80 66.01 52.58 66.76 65.0 79.54 44.30 77.65 86.29 98.12 100.00

Eggbox 96.80 99.72 99.15 99.72 100.0 99.63 57.80 97.09 99.91 99.68 100.00
Glue 79.40 93.83 95.66 99.61 98.8 99.81 41.20 99.42 96.82 97.46 98.84

Holep. 74.80 65.83 81.92 85.82 89.7 72.30 67.20 52.81 86.87 99.81 100.00
Iron 83.40 99.80 98.88 97.85 100.0 99.49 84.70 98.26 100.00 100.00 100.00

Lamp 82.00 88.11 99.33 97.89 99.5 96.35 76.50 97.5 96.84 100.00 100.00
Phone 45.00 74.24 92.41 90.75 94.9 96.88 54.00 87.72 94.69 100.00 100.00

Mean 72.40 82.98 86.27 89.86 91.3 93.59 62.70 88.61 95.15 99.52 99.91
Time (ms) 100-167 36 40 30 1000 31 330 - - 201.00 131.00

focus on the following datasets: Linemod [5], Occlusion [8] (LMO), TLESS [12] and
Homebrewed [6] (HBD).

Linemod [5] is a classical dataset for object pose estimation. It is still an actively used
benchmark even though it dates back to the pre-deep learning era. The datasets provides
researchers with 13 3D object models. Each object comes with approximately 1200 an-
notated images. The images exhibit strong background clutter but almost no occlusions.
In experiments with real training data, we used exactly the same training/testing split
as in BB8 [68]. In the experiments with synthetic data, we used the entire datasets as
test set, analogously to SSD6D [104] and DPOD [100]. We report the standard ADD
recall [5] in all experiments, as it is the most widely reported metric for this dataset.

Occlusion [8] is an extension of the Linemod dataset, which consists of one Linemod
sequence with 8 annotated objects. This dataset is a step forward to more complex
datasets with occlusions of various degrees and a varying number of objects. We use the
BOP subsequence of the dataset and report the Average Recall (AR) score of the BOP
challenge. This allows us to fairly compare our method to all other methods participating
in the challenge.

In spite of their popularity, Linemod and Occlusion do not have clearly separated
train, validation and test splits. It leads to the situation when the images from the
same sequence of frames are used for all the splits. It means that performance on
the benchmarks might be significantly influenced by overfitting to the backgrounds,
particular object poses, particular illumination setups and etc.

The authors of the Homebrewed [6] advocated the importance of training on synthetic
data. Therefore, the datasets provides no train images, but has labeled validation set
and a test set with hidden labels, as in other major machine learning datasets. Here, we
also report the AR score from the BOP challenge. All ablation studies were conducted
on the publicly available validation set.

The TLESS dataset [12] provides researchers with 30 objects and 20 scenes comprising
of various number of objects. The dataset includes two kind of object models: precise

85

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.4: Pose estimation performance on Linemod on depth and RGBD images:
The table reports the percentages of correctly estimated poses w.r.t. the ADD score.
The proposed detector shows state of the art results both if only real or only synthetic
train data is used. Run times are provided as they are reported in the original papers
using non-identical hardware.

Train Data Synthetic
Modality RGBD Depth Depth RGBD RGBD RGBD RGBD RGB + D-Kabsch RGB + D-Kabsch

Method AAE [116] PPF [15] PPF++ [131] Ours Ours SSD6D [104] Brachmann [8] Ours Ours

Refinement ICP ICP ICP - ICP ICP iterative ICP -

Ape 20.55 86.50 98.50 87.54 91.91 - - 98.38 98.79
Bvise 64.25 70.70 99.80 99.92 99.92 - - 99.92 99.92
Cam 63.20 78.60 99.30 96.42 97.84 - - 99.75 99.75
Can 76.09 80.20 98.70 98.16 98.66 - - 99.75 99.58
Cat 72.01 85.40 99.90 99.41 99.83 - - 100.00 100.00

Driller 41.58 87.30 93.40 97.55 97.64 - - 98.82 98.82
Duck 32.38 46.00 98.20 90.82 94.26 - - 98.41 98.96

Eggbox 98.64 97.00 98.80 98.48 98.80 - - 99.52 99.52
Glue 96.39 57.20 75.40 99.26 99.34 - - 99.84 99.75

Holep. 49.88 77.40 98.10 93.45 96.12 - - 97.81 97.17
Iron 63.11 84.90 98.30 48.35 49.21 - - 100.00 99.91

Lamp 91.69 93.30 96.00 50.12 50.20 - - 99.02 99.59
Phone 70.96 80.70 98.60 96.70 97.02 - - 98.15 98.07

Mean 64.67 78.86 96.38 88.94 90.06 90.90 98.3 99.18 99.22

Time (ms) 224 - - 49 58 100 545 55 49

untextured CAD models and reconstructions of relatively low quality. There is a clear
separation between train and test images, with train images not coming from the test
domain. The dataset exhibits three main challenges: 1) texture-less objects, which are
also similar to each other, 2) heavy occlusions and 3) various object symmetries.

As the proposed approach can be trained both on real and synthetic data and on data
of different modalities, we experimented with each option given the availability of this
data type. Table 6.1 summarizes which data types were used and whether synthetic
or real data was used in each experiment. YOLO was trained only on RGB data as
it was proven that in previous works that object detection networks can be relatively
easy trained both on real and synthetic data thanks to transfer learning [179, 104]. The
correspondence estimation network was trained either on RGB images or on depth maps.

Table 6.5: Pose estimation performance on Linemod on depth and RGBD images:
The table reports the percentages of correctly estimated poses w.r.t. the ADD score.
The proposed detector shows state of the art results both if only real or only synthetic
train data is used. Run times are provided as they are reported in the original papers
using non-identical hardware.

Train Data Real

Modality RGBD RGBD RGBD RGBD RGBD RGBD RGBD RGBD RGB + D-Kabsch RGB + D-Kabsch
Method PointFusion [193] DF [123] DF [123] Brachmann [8] Ours Brachmann [11] Ours PVN3D [117] Ours Ours

Refinement - - DL [123] - - iterative ICP - ICP -

Ape 70.40 79.50 92.30 - 97.34 - 97.62 97.30 97.72 98.56
Bvise 80.70 84.20 93.20 - 99.90 - 100.00 99.70 100.00 99.90
Cam 60.80 76.50 94.40 - 99.41 - 99.70 99.60 99.90 99.90
Can 61.10 86.60 93.10 - 99.41 - 99.51 99.50 100.00 99.80
Cat 79.10 88.80 96.50 - 99.90 - 99.90 99.80 100.00 100.00

Driller 47.30 77.70 87.00 - 97.52 - 98.02 99.30 99.90 99.90
Duck 63.00 76.30 92.30 - 94.74 - 97.09 98.20 98.31 99.25

Eggbox 99.90 99.90 99.80 - 99.63 - 99.72 99.80 99.72 99.72
Glue 99.30 99.40 100.00 - 99.71 - 99.71 100.00 100.00 100.00

Holep. 71.80 79.00 92.10 - 99.53 - 99.71 99.90 99.71 99.61
Iron 83.20 92.10 97.00 - 98.88 - 99.18 99.70 100.00 99.90

Lamp 62.30 92.30 95.30 - 99.14 - 99.04 99.80 100.00 99.90
Phone 78.80 88.00 92.80 - 99.43 - 99.43 99.50 100.00 100.00

Mean 73.70 86.20 94.30 98.10 98.81 99.00 99.13 99.40 99.64 99.73

Time (ms) - - - 545 49 - 57 - 55 49

86

6.4 Experiments

Table 6.6: Pose estimation performance comparison on the Occlusion dataset: Results
are reported in terms of the Average Recall score. The results prove the effectiveness
of the proposed approach on all used data modalities. Run times are provided as
they are reported in the BOP challenge [7] using non-identical hardware. PPF-based
methods, labeled with ∗ in the Time column, use only CPU.

Train data Data modality Method Refinement VSD MSSD MSPD AR Time (s)

PBR

RGBD

CosyPose [10] ICP 0.567 0.748 0.826 0.714 8.289
Ours + Kabsch - 0.565 0.748 0.788 0.700 0.334
Ours + Kabsch ICP 0.557 0.749 0.787 0.698 0.387

PVNet [103] ICP 0.502 0.683 0.73 0.638 -
CDPN [73] ICP 0.469 0.689 0.731 0.630 0.506

Pix2Pose [101] ICP 0.473 0.631 0.659 0.588 5.191
Ours ICP 0.472 0.621 0.654 0.582 0.398
Ours - 0.422 0.58 0.621 0.541 0.325

RGB

Ours 4 calibrated views 0.572 0.735 0.777 0.695 2.479
Ours 2 calibrated views 0.520 0.690 0.771 0.660 1.353

CosyPose [10] - 0.480 0.606 0.812 0.633 0.550
Ours - 0.432 0.560 0.761 0.584 0.274

PVNet [103] - 0.428 0.543 0.754 0.575 -
CDPN [73] - 0.393 0.537 0.779 0.569 0.279
EPOS [119] - 0.389 0.501 0.750 0.547 0.468

Pix2Pose [101] - 0.233 0.307 0.550 0.363 1.310

synt RGB
EPOS [119] - 0.29 0.38 0.659 0.443 0.487
DPOD [100] - 0.101 0.126 0.278 0.169 0.172

mix

RGBD AAE [115] ICP 0.208 0.218 0.285 0.237 1.197

RGB
Multi-Path AAE - 0.15 0.153 0.346 0.217 0.200

AAE [115] - 0.09 0.095 0.254 0.146 0.201

- depth
Drost, PPF [15] ICP 0.437 0.563 0.581 0.527 15.947∗

Drost, PPF [15] ICP, 3D edges 0.409 0.525 0.542 0.492 3.389∗

real

RGBD

Ours + Kabsch ICP 0.557 0.739 0.773 0.69 0.393
Ours + Kabsch - 0.557 0.721 0.759 0.679 0.329

Ours ICP 0.478 0.62 0.66 0.586 0.453
Ours - 0.403 0.553 0.595 0.517 0.343

RGB

Ours 4 calibrated views 0.598 0.751 0.793 0.714 1.326
Ours 2 calibrated views 0.528 0.692 0.764 0.661 2.201
Ours - 0.427 0.55 0.728 0.568 0.278

In our experiments with the Homebrewed dataset, we completely relied on synthetically
simulated train data as the dataset does not provide real train data. Real train depth
data from the TLESS dataset was also not used as it is too simplistic and has no back-
ground depth to train the correspondence estimation network. We also experimented
with ICP refinement to see how it compares to the proposed multi-view refiner. Exactly
the same parameters of ICP were used on all datasets.

In the remaining of the section a following naming convention for out approach is
used:

• RGB - both YOLO and CENet operate on RGB images, the final pose is computed
using PnP+RANSAC;

• RGBD - YOLO operates on RGB images, while CENet takes a depth map as its
input. The final pose is computed with Kabsch+RANSAC;

87

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.7: Pose estimation performance comparison on the Homebrewed dataset:
Results are reported in terms of the Average Recall score [7]. The results prove the
effectiveness of the proposed approach on all used data modalities. Run times are
provided as they are reported in the BOP challenge [7] using non-identical hardware.
PPF-based methods, labeled with ∗ in the Time column, use only CPU.

Train data Data modality Method Refinement VSD MSSD MSPD AR Time (s)

PBR

RGBD

Ours + Kabsch ICP 0.784 0.872 0.879 0.845 0.329
Ours + Kabsch - 0.796 0.856 0.867 0.84 0.238
CosyPose [10] ICP 0.679 0.719 0.737 0.712 5.326
CDPNv2 [73] ICP 0.629 0.757 0.749 0.712 0.713
Pix2Pose [101] ICP 0.64 0.721 0.724 0.695 3.248

Ours ICP 0.462 0.468 0.473 0.468 0.47
Ours - 0.344 0.398 0.403 0.382 0.245

RGB

Ours 4 calibrated views 0.79 0.857 0.86 0.835 0.584
Ours 2 calibrated views 0.754 0.84 0.858 0.818 0.926

CosyPose [10] 8 uncalibrated views 0.691 0.744 0.804 0.746 0.427
Ours - 0.642 0.704 0.828 0.725 0.163

CDPNv2 [73] - 0.614 0.708 0.845 0.722 0.273
CosyPose [10] 4 uncalibrated views 0.646 0.685 0.756 0.696 0.445
CosyPose [10] - 0.613 0.634 0.721 0.656 0.417
EPOS [119] - 0.484 0.527 0.729 0.58 0.657

synt

RGBD Sundermeyer-IJCV19 [115] ICP 0.479 0.506 0.533 0.506 1.352

RGB
Sundermeyer-IJCV19 [116] - 0.273 0.306 0.461 0.346 0.19

DPOD [100] - 0.218 0.262 0.379 0.286 0.18

-
Depth

Vidal-Sensors18 [194] ICP 0.707 0.704 0.708 0.706 2.608∗

Drost-CVPR10-3D-Edges [15] ICP, 3D edges 0.618 0.624 0.626 0.623 127.372∗

Drost-CVPR10-3D-Only [15] ICP 0.593 0.627 0.627 0.615 16.136∗

RGBD Drost-CVPR10-Edges [15] ICP,3D edges, images 0.677 0.665 0.67 0.671 144.029∗

• RGB + D-Kabsch - YOLO and CENet use RGB as input, but then the pre-
dicted correspondences are projected into 3D, and the pose is computed with Kab-
sch+RANSAC.

6.4.2 Results

Linemod. We start this section by discussing the quantitative results of single object
pose estimation on the Linemod dataset. Table 6.2 and Table 6.3 present the accuracy
of pose estimation on monocular RGB images of methods trained on syhtetic and real
data respectively. We report run times of each algorithm if the corresponding papers
clearly state them. Run times are taken from the original papers, meaning that they are
obtained using non-identical hardware. The table reports the percentages of correctly
estimated poses w.r.t. the ADD score. The tables compare separately methods trained
on synthetic data and methods trained on real data and methods with or without re-
finement. On synthetic data, the original DPOD reached the state of the art results
beating the second best method almost by a factor of 2. The proposed approach further
improved the results, surpassing DPOD by over 30%, making the ADD score comparable
even to ADD scores of some of the methods trained on real data. If real training data
is used, the proposed approach reaches the best results among other methods trained
on real data. The proposed multi-view refiner clearly outperforms all other RGB-based
refiners on the dataset even if only 2 views are used for refinement. It also proves that
the refinement method handles symmetric object, such as Glue and Eggbox, well.

88

6.4 Experiments

20 30 40 50 60 70 80 90 100
Visibility %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AR

Object 2
RGB real
RGB + D-KABSCH real
RGB synt
RGB + D-KABSCH synt
RGBD synt

20 30 40 50 60 70 80 90 100
Visibility %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AR

Object 21
RGB real
RGB + D-KABSCH real
RGB synt
RGB + D-KABSCH synt
RGBD synt

Figure 6.5: Dependence of quality of pose estimation on object’s visibility. Pose
quality is reported in terms of the Average Recall [7] on objects 2 and 21 from the
TLESS dataset. The plots show that correspondence prediction works from RGB
works considerably more reliably than from depth in case of large occlusions. It
also shows that synthetic training data allows for more reliable pose estimation of
occluded objects.

Table 6.4 and Table 6.5 present quantitative results on Linemod datasets in case depth
data is available for methods trained on synthetic and real data respectively. Only PPF,
PointFusion, DenseFusion and our method use depth as input, all other methods use
it only for pose refinement. Our detector easily performs on par or outperforms other
methods even if no refinement is applied. It also beats the PPF-based solutions. Another
important conclusion from these tables is relative independence of pose accuracy on
whether synthetic or real data or which data modality was used for training. Due to the
simplicity of the dataset and to the lack of occlusions, correspondences predicted from
depth maps prove to be good enough for excellent pose accuracy if the Kabsch algorithm
is used. In comparison do deep learning methods which utilize real train data [123, 193],
we did not explicitly rely on sensor fusion and used purely RGB or purely depth for
correspondence estimation. This experiment also demonstrates the effectiveness of our
proposed refiner, which easily reaches the performance scores of the best RGBD methods.

Occlusion. Moving to a more difficult scenario, where a varying number of objects is
present in each image, we start evaluation with experiments on the Occlusion dataset. In
this case, the ability to predict accurate segmentation masks and precise correspondences
becomes of critical importance. The results for all types of detectors and training data
types are summarized in Table 6.6. The table clearly shows that our method outperforms
all other dense correspondence methods, e.g. CDPN, EPOS and Pix2Pose, while being
only worse than CosyPose if PBR training data and no refinement were used. With
the multi-view refinement our methods easily outperform all other RGBD methods and
shows similar or slightly worse results than the top performing RGBD methods with
ICP refinement. It also always improves the poses and the final score in contrast to ICP
which worsened the AR score for some of the experiments.

Adding depth information and predicting segmentations and correspondences from
depth rather than from RGB actually hurts the performance, as can be seen in the

89

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.8: Pose estimation performance comparison on the BOP images of the
TLESS dataset: Results are reported in terms of the Average Recall score [7].
The results prove the effectiveness of the proposed approach on all used data modal-
ities. Run times are provided as they are reported in the BOP challenge [7] using
non-identical hardware. PPF-based methods, labeled with ∗ in the Time column,
use only CPU.

Train data Data modality Method Refinement VSD MSSD MSPD AR Time (s)

PBR

RGBD

Ours + Kabsch - 0.646 0.716 0.736 0.699 0.320
Ours + Kabsch ICP 0.485 0.632 0.652 0.590 0.523
CDPNv2 [73] ICP 0.368 0.449 0.488 0.435 2.486

Ours ICP 0.277 0.320 0.339 0.312 0.688
Ours - 0.251 0.303 0.312 0.289 0.330

RGB

Ours 2 calibrated views 0.634 0.707 0.728 0.690 1.293
Ours 4 calibrated views 0.645 0.710 0.712 0.689 0.886

CosyPose [10] - 0.571 0.589 0.761 0.64 0.493
Ours - 0.561 0.602 0.744 0.636 0.328

EPOS [119] - 0.38 0.403 0.619 0.467 1.992
CDPNv2 [73] - 0.303 0.338 0.579 0.407 1.849

synt RGB
EPOS [119] - 0.369 0.423 0.635 0.476 1.177
DPOD [100] - 0.048 0.055 0.139 0.081 0.206

-
Depth

Vidal-Sensors18 [194] ICP 0.464 0.575 0.574 0.538 7.063∗

Drost-CVPR10-3D-Only [15] ICP 0.375 0.478 0.480 0.444 9.204∗

Drost-CVPR10-3D-Edges [15] ICP, 3D edges 0.370 0.422 0.420 0.404 62.507∗

RGBD

Drost-CVPR10-Edges [15] ICP, 3D edges, images 0.469 0.512 0.518 0.500 70.914∗

real

Ours + Kabsch - 0.537 0.557 0.586 0.56 0.315
Pix2Pose [101] ICP 0.438 0.548 0.549 0.512 4.180
Ours + Kabsch ICP 0.416 0.516 0.537 0.490 0.578

RGB

Ours 4 calibrated views 0.467 0.541 0.563 0.524 0.727
Ours 2 calibrated views 0.461 0.530 0.578 0.523 0.973
Ours - 0.469 0.491 0.595 0.518 0.367

Pix2Pose [101] - 0.261 0.296 0.476 0.344 1.084
Pix2Pose-Original-ICCV19 [101] - 0.214 0.238 0.432 0.295 1.522

mix

RGB

CosyPose [10] 8 uncalibrated views 0.773 0.836 0.907 0.839 0.969
CosyPose [10] 4 uncalibrated views 0.742 0.795 0.864 0.801 0.792
CosyPose [10] - 0.669 0.695 0.821 0.728 0.451

Ours 4 calibrated views 0.679 0.742 0.740 0.72 0.909
Ours 2 calibrated views 0.665 0.739 0.753 0.719 1.306
Ours - 0.579 0.621 0.764 0.655 0.306

CDPN [73] - 0.377 0.418 0.674 0.49 0.708
CDPNv2 [73] - 0.386 0.426 0.62 0.478 1.852

Sundermeyer-IJCV19 [116] - 0.196 0.211 0.504 0.304 0.194

RGBD

Ours + Kabsch - 0.665 0.738 0.756 0.720 0.7367
CosyPose [10] ICP 0.587 0.749 0.767 0.701 0.274

Ours + Kabsch ICP 0.503 0.656 0.672 0.610 0.455
Sundermeyer-IJCV19 [116] ICP 0.459 0.489 0.514 0.487 0.531

CDPNv2 [73] ICP 0.385 0.489 0.516 0.464 2.645

RGBD block of the table. It indicates inferior quality of the predicted segmentations
and correspondences, that are not sufficient for reliable and precise pose estimation.
Additionaly, due to imprecise segmentations, Kabsch and ICP can potentially align the
object to nearby objects. On the other hand, if depth is only used for the Kabsch
algorithm with the correspondences predicted by the RGB correspondence network, a
larger performance boost is observed. In this configuration, the proposed method sets
the state-of-the-art results on the HBD dataset even without the ICP refinement. ICP
boosts the results even further. This experiment and later the experiments on TLESS
show that correspondence and segmentaton prediction from pure depth maps works well
only on very simple datasets such as Linemod, where the object is not occluded and
clearly stands out from the scene. With the more challenging datasets, RGB-based

90

6.4 Experiments

(a) Input patch (b) GT NOCS (c) Predicted NOCS (d) Predicted pose

Figure 6.6: Success cases and failure cases. Top row provides an example of successfully
estimated segmentation mask and NOCS correspondences even in case of occlusions
and similar objects present in the image patch. The bottom row illustrates a failure
case, where the CENet is confused by occlusions and similar objects belonging to
other object classes, which leads to an incorrect estimated pose. The green cuboid
represents the ground truth pose (up to a symmetry transformation), whereas the
blue cuboid represents the estimated pose.

correspondence estimation starts to dominate due to richer RGB information available
for the network.

Homebrewed. This dataset is the next step towards more complicated pose estima-
tion benchmarks, as it consists of a larger number of more diverse objects and a varying
degree of occlusions. The comparison is provided in Table 6.7. Pose accuracy is reported
in terms of Average Recall as defined in [7]. As indicated before in Table 6.1, we used
exclusively synthetic PBR train data data. Our method easily outperforms all other
RGB methods. With the multi-view refinement, it performs on par with the best RGBD
methods.

TLESS. Table 6.8 compares Average Recall of various configurations of the proposed
detector to other participants of the BOP challenge 2020. Since TLESS dataset comes
with a separate train set, we were able to test various combinations of YOLO and CENet.
Our approach consistently outperforms all competing methods apart from CosyPose. It
is interesting that usage of depth does improve the average recall as much as on other
datasets. The lack of performance boost can be partially explained by the fact that
approximately 16% of images are taken by a camera looking almost parallel to the table
with the objects. In this case, Primesense produces mostly empty depth maps for flat
surfaces and empty on edges of objects, making pose prediction from occluded objects
close to impossible. This also explains why in some cases AR score is lower if ICP

91

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.9: Pose estimation performance on Linemod on different data modalities
and types of train data: The table reports the percentages of correctly estimated
poses w.r.t. the ADD score. An ADD score for each data modality and train data
type is provided separately on ground truth 2D detections and on YOLO detec-
tions. Symmetry-aware median L2 correspondence error demonstrates the quality of
predicted correspondences.

Dataset Data modality Data type Bboxes Refinement ADD Corr. Err.

Linemod

RGB

real

GT

- 93.99

2.482 views 97.42
4 views 99.79

YOLO

- 93.59

2.522 views 97.68
4 views 99.91

synt

GT

- 81.20

4.612 views 96.47
4 views 99.63

YOLO

- 80.39

4.672 views 96.33
4 views 99.70

RGBD

real

GT
- 99.85

5.31ICP 99.85

YOLO
- 98.81

5.38ICP 99.13

synt

GT
- 97.99

15.81ICP 98.19

YOLO
- 88.94

17.32ICP 90.06

RGB + D-Kabsch

real

GT
- 99.99

2.48ICP 99.99

YOLO
- 99.73

2.52ICP 99.64

synt

GT
- 99.94

4.61ICP 99.97

YOLO
- 99.22

4.67ICP 99.18

refinement is applied. Again, the proposed multi-view refinement consistently improves
the poses even in the presence of large occlusions and imperfect initial poses.

Another important insight from Table 6.8 and from Table 6.16 is that the correspon-
dence estimation network trained on synthetic data actually outperforms the one trained
on real data provided they are tested on exactly the same patches. There are several

92

6.4 Experiments

Table 6.10: Pose estimation performance on the Occlusion dataset on different data
modalities and type of train data: The table reports in terms of the AR
score [7]. An AR score for each data modality and train data type is provided sep-
arately on ground truth 2D detections and on YOLO detections. Symmetry-aware
median L2 correspondence error demonstrates the quality of predicted correspon-
dences.

Dataset Data modality Data type Bboxes Refinement AR Corr. Err.

LMO

RGB

real

GT

- 0.601

13.8302 views 0.690
4 views 0.751

YOLO

- 0.568

16.1502 views 0.661
4 views 0.714

synt

GT

- 0.649

12.2752 views 0.741
4 views 0.773

YOLO

- 0.584

12.9872 views 0.660
4 views 0.695

RGBD

real

GT
- 0.534

26.482ICP 0.609

YOLO
- 0.517

26.611ICP 0.586

synt

GT
- 0.606

21.267ICP 0.657

YOLO
- 0.582

22.356ICP 0.541

RGB + D-Kabsch

real

GT
- 0.738

13.830ICP 0.757

YOLO
- 0.679

16.150ICP 0.690

synt

GT
- 0.796

12.987ICP 0.793

YOLO
- 0.582

22.356ICP 0.698

explanations to that. The real train data is very limited in the number of images and
requires a lot of data augmentation to work on the real test set, while the synthetic data
has considerably more images. Additionally, simulated synthetic train data naturally ex-
hibits realistically looking occlusions, which helps generalize to the test images. It is also
confirmed by the plot in Figure 6.5, where CENet trained on synthetic data consistently
outperforms the one trained on real data. If ground truth patches are used, the synthetic

93

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.11: Different view sampling strategies for the multi-view refiner on the
Linemod [5] dataset.

Dataset Data type N views Views sampling ADD

Linemod

real

- - 93.59

2 views

Closest 86.43
Random 99.52
Furthest 99.71

4 views

Closest 96.53
Random 99.91
Furthest 99.97

synt

- - 81.20

2 views

Closest 87.45
Random 98.95
Furthest 99.02

4 views

Closest 94.65
Random 99.70
Furthest 99.80

network achieves AR of 0.729, whereas the real network only 0.535. On the other hand,
YOLO trained on real data outperforms YOLO train on synthetic data, which can be
seen in much lower AR drop if the full real pipeline is used. As a result, we achieve
the best result on TLESS if we combine a real YOLO and a synthetic correspondence
estimation network, analogously to how it is done in AAE [115].

6.4.3 Ablation Studies

In the ablation studies, we measure what influences pose estimation the most, how im-
precise YOLO detections affect the quality of correspondences and which data modality
is better. Tables 6.9, 6.10, 6.15 and 6.16 report how pose estimation performance drops
if YOLO detections are used instead of ground truth bounding boxes on Linemod and
Occlusion, Homebrewed and TLESS datasets respectively. Those tables essentially re-
port the upper bound of what the proposed approach can achieve, assuming perfect
2D detections, and how far from them the results actually are. They also additionally
report quality of correspondences. In each object in the image, a correspondence quality
is computed as median per-correspondence L2 error between a predicted correspondence
and its correct ground truth location. Then, it is averaged across all objects. The metric
takes into account object symmetries by choosing an equivalent symmetric pose.

RGB vs Depth vs RGB + D-Kabsch. With the advent of deep learning, much
of pose estimation research has moved to monocular RGB [104, 115, 100, 102, 10]. Even
if depth information was used, it was used in a separate post-processing step for pose

94

6.4 Experiments

Table 6.12: Different view sampling strategies for the multi-view refiner on the Oc-
clusion [11] dataset.

Dataset Data type N views Views sampling AR

LMO

real

- - 0.568

2 views

Closest 0.627
Random 0.661
Furthest 0.648

4 views

Closest 0.693
Random 0.714
Furthest 0.706

synt

- - 0.584

2 views

Closest 0.627
Random 0.660
Furthest 0.664

4 views

Closest 0.693
Random 0.695
Furthest 0.687

refinement and not for inference. In this chapter, we introduced a pose estimation
network capable of pose estimation from either modality, which leads to the question of
which one is better. On the Linemod dataset (Table 6.9), RGB-only detectors still lag
behind the depth-based counterparts especially if only synthetic data is used for their
training. It is also visible from the table that correspondences predicted from RGB
tend to be better than those predicted from depth even for such a simplistic dataset.
Table 6.9 clearly shows the superior quality of correspondences estimated from RGB,
Nevertheless, depth-based approaches still better than purely RGB approaches because
of the simplicity of the dataset and the lack of occlusions.

On the other hand, the situation is different on more complicated datasets with oc-
clusions and background clutter. On the Occlusion dataset, the RGB version of CENet
works better than the depth version. Depth brings improvement only if the correspon-
dences are computed from RGB images and then projected onto the point cloud for
the Kabsch algorithm. This is also confirmed by the correspondence error analysis in
Table 6.10, where correspondences computed from RGB are almost two times more pre-
cise than the once computed from depth maps. This trend is also noticeable on the
more complicated Occlusion dataset (Table 6.10). It is clear from the table that the
correspondence error is much larger due to occlusions. As seen from Table 6.7, on the
Homebrewed dataset the proposed approach trained on RGB only significantly outper-
forms its counterpart trained on depth, while the RGB variant with the Kabsch algorithm
shows outstanding AR. That is explained by less accurate predictions of segmentation
masks and correspondences for occluded objects when only depth information is used for

95

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.13: Different view sampling strategies for the multi-view refiner on the
Homebrewed [6] dataset.

Dataset Data type N views Views sampling AR

HBD synt

- - 0.668

2 views

Closest 0.693
Random 0.808
Furthest 0.762

4 views

Closest 0.724
Random 0.783
Furthest 0.775

that. Table 6.15 clearly shows that correspondences predicted from RGB are almost five
times better then their depth-based counterparts, which explains the difference in pose
estimation performance. On TLESS dataset, as seen from Table 6.8 and Table 6.16,
using depth again does not help at all as the quality of correspondences deteriorate.
Depth CENet also produced visually worse segmentations. This phenomenon can be
explained by larger degrees of occlusion and camera angles resulting in missing or very
noisy depth values. Figure 6.5, additionally proves strong dependence of pose estimation
quality from depth maps on the visibility of objects. It show that RGB-based CENet is
much better capable of handling occlusions that the depth-based CENet.

To sum up, semantic segmentation and correspondence estimation is considerably
more precise when done completely from RGB. If depth information is present, it is
more beneficial to still predict them from RGB and then project into the 3D space and
than use the Kabsch algorithm. Such an approach potentially also allows for alternating
between PnP and Kabsch based on the quality of depth maps.

Real vs Synthetic Data. As an experiment from [6] showed, training pose estima-
tion networks on real RGB data tends to outperformed the one on synthetic if images
and poses come from exactly the same domain. That is still clearly visible on Linemod
dataset in Table 6.2. Detectors trained on synthetic data are still behind their real coun-
terparts even in spite of the progress in synthetic data generation. It is also visible from
the worse quality of correspondences as seen in Table 6.9. The same holds for CENet
train on synthetic depth data. On the other hand, as can be seen from TLESS Tables 6.8
and 6.16 YOLO benefits a lot from training on real data even if the train data is out of
test set domain. At the same time, CENet trained on synthetic data clearly outperforms
the CENet trained on real data both in terms of AR and the quality of correspondences
due to better pose space coverage.

To sum up, real train data is better for training 2D detectors. For training correspon-
dence estimation network, synthetic data is beneficial unless train and test data come
from the same domain and contain objects in very similar poses.

Choice of PnP and RANSAC. In all the reported RGB results we relied on the
standard implementation of EPnP [1] and of RANSAC from OpenCV, although un-

96

6.4 Experiments

Table 6.14: Different view sampling strategies for the multi-view refiner on the
TLESS [12] dataset.

Dataset Data type N views Views sampling AR

TLESS

real

- - 0.518

2 views

Closest 0.524
Random 0.523
Furthest 0.534

4 views

Closest 0.544
Random 0.524
Furthest 0.540

synt

- - 0.636

2 views

Closest 0.693
Random 0.690
Furthest 0.694

4 views

Closest 0.712
Random 0.689
Furthest 0.707

mix

- - 0.655

2 views

Closest 0.715
Random 0.719
Furthest 0.725

4 views

Closest 0.738
Random 0.720
Furthest 0.742

countable number of improved versions of PnP and RANSAC have been published in
the past [166, 163, 161]. Additionally, EPOS [119] reported, that a large improve-
ment can be achieved by simple switching from OpenCV PnP+RANSAC to Graph Cut
RANSAC [163] with DLS-PnP [152]. We have tried this combination on scene 3 of
TLESS. It resulted in increase of AR from 21.45 to, at most, 24.02. However, we faced
two complications. First, due to a large number of correspondences, RANSAC takes
over a second per each object, making the entire pipeline slow and not applicable in
practice. Secondly, the algorithm seemed to be very sensitive to hyper-parameters, and
optimal hyper-parameters are not shared among the objects. As a result, OpenCV im-
plementation proved to be more rapid and robust, even tough potentially resulting in
sub-optimal AR scores.

Limitations of CENet. There are two main limiting factors of the CENet. The
first comes from the fact that the reliable pose estimation with correspondences requires
their good quality and the right number of them to deal with outliers. Therefore, large

97

6 Analysis of Pose Estimation with Dense Correspondences

Table 6.15: Pose estimation performance on the Homebrewed on different data
modalities and type of train data: The table reports the percentages of cor-
rectly estimated poses w.r.t. the Average Recall score [7]. An AR score for each
data modality and train data type is provided separately on ground truth 2D detec-
tions and on YOLO detections. Symmetry-aware median L2 correspondence error
demonstrates the quality of predicted correspondences.

Dataset Data modality Data type Bboxes Refinement AR Corr. Err.

HBD

RGB synt

GT

- 0.723

9.522 views 0.808
4 views 0.807

YOLO

- 0.668

13.782 views 0.766
4 views 0.783

RGBD synt

GT
- 0.375

52.69ICP 0.453

YOLO
- 0.362

54.10ICP 0.438

RGB + D-Kabsch synt

GT
- 0.843

9.52ICP 0.853

YOLO
- 0.793

13.78ICP 0.801

occlusions might be problematic, as indicated in Figure 6.5 and Figure 6.6. However,
pose estimation of occluded object is a common problem for all methods. Another issue,
illustrated in Figure 6.5 , arises when CENet receives a patch containing similarly looking
objects or object of the same class.

Multi-View Refinement We have experimented with the multi-view refinement on
all datasets, and on all datasets it proved to be effective, as opposed to ICP which did
not always improve the poses. It can be explained by its independence from the quality
of depth data and potentially better handling of objects which are occluded in only some
of the frames used for refinement. We split each sequence into non-overlapping sets of
2 or 4 images used for refinement. The pose is optimized jointly and then transformed
into the coordinate system of each frame. Even though the number of frames is lower
than in CosyPose [10], the proposed refiner anyway produces better or similar relative
improvement. This is also explained by the fact that CosyPose optimized camera and
object poses jointly while we assume the availability of relative camera poses. The
CosyPose refiner performs noticeably better on TLESS, but this can be explained by
a much better initial poses produced by CosyPose. For each set, we compute relative
camera poses from individual ground truth camera poses. In these experiments, the
images were split into batches absolutely at random.

Frame selection strategy In this experiment, we tested how selection of the frames
for joint refinement affects the overall performence of the refiner. Tables 6.11,6.12,6.13,6.14
summarize these experiments. We experimented with three different strategies: closest

98

6.4 Experiments

Table 6.16: Pose estimation performance on the TLESS on different data modalities
and type of train data: The table reports the percentages of correctly estimated
poses w.r.t. the Average Recall score [7]. An AR score for each data modality
and train data type is provided separately on ground truth 2D detections and on
YOLO detections. Symmetry-aware median L2 correspondence error demonstrates
the quality of predicted correspondences.

Dataset Data modality Data type Bboxes Refinement AR Corr. Err.

TLESS

RGB

real

GT

- 0.535

26.9462 views 0.542
4 views 0.548

YOLO

- 0.518

27.5162 views 0.523
4 views 0.524

synt

GT

- 0.729

10.4002 views 0.798
4 views 0.795

YOLO

- 0.636

20.6162 views 0.689
4 views 0.690

mix YOLO

- 0.655

18.3732 views 0.719
4 views 0.720

RGBD synt

GT
- 0.322

34.396ICP 0.354

YOLO
- 0.289

41.087ICP 0.312

RGB + D-Kabsch

real

GT
- 0.583

26.946ICP 0.513

YOLO
- 0.560

27.516ICP 0.490

synt

GT
- 0.812

10.400ICP 0.678

YOLO
- 0.699

20.616ICP 0.590

mix YOLO
- 0.720

18.373ICP 0.610

view sampling, random sampling and furthest view sampling. Closest view sampling
corresponds to the worst case scenario because it does not provide strong enough geo-
metric constraints. In other words, an error in pose estimation from the reference frame

99

6 Analysis of Pose Estimation with Dense Correspondences

might not be necessarily be visible in the other frames used for refinement. Occlusions
will cause further problems.

As expected, the closest view sampling performs the worst among these strategies,
but poses still improve in most of the cases. Random and furthest sampling tend to
perform similarly to each other. This is explained that furthest views do not necessarily
correspond to the best possible configuration, as the error might not be visible in them.
Additionally, furthest view sampling might result in selecting views which are too far
from the reference frame, introducing new occlusions.

6.5 Conclusions

In this chapter, we extend the Dense Pose Object Detector (DPOD) method, by splitting
its inference into three stages with a optional fourth refinement stage. In the first
stage, YOLO outputs 2D bounding boxes of the objects of interest. In the second
stage, our unified CENet network predicts foreground object masks and dense 2D-3D
correspondences between image pixels and corresponding 3D models either from RGB
or depth input modalities with the same architecture. Object’s 6 DoF is then reliably
estimated with PnP+RANSAC or with Kabsch+RANSAC depending on the available
data modality in the third stage. In the optional fourth stage, predicted poses are refined
either with ICP or with the proposed novel multi-view refiner. The second stage network
can be trained both on RGB images and on depth masks. We additionally proposed a
new multi-view pose refiner based on differentiable rendering, which is used to produce
a pose which is globally consistent with dense NOCS correspondences predicted in all
frames. The proposed approaches have been tested on four popular datasets, each of
which is challenging in its own way: Linemod, Occlusion, Homebrewed and TLESS.
The detector shows excellent results on all the datasets and data modalities while still
staying fast and scalable. The refiner improves the poses even further while still being
reasonably fast. We provide an extensive evaluation and measured effects of the choice
of data modality, and of the choice of the training data: synthetic or real. The overall
results indicated that RGB is good for correspondence prediction, while depth is good
for pose prediction. The more occlusions we have in the data the more benefits we get
from the dense correspondences estimated from RGB. In that case, noisy depth still
improves the pose with respect to the pose estimated from RGB only.

100

7 One-Shot Pose Estimation Without
Re-Training

In this chapter, we present a novel one-shot method for object detection and 6 DoF
pose estimation, that does not require training on target objects. At test time, it takes
as input a target image and a textured 3D query model. The core idea is to represent
a 3D model with a number of 2D templates rendered from different viewpoints. This
enables CNN-based direct dense feature extraction and matching. The object is first
localized in 2D, then its approximate viewpoint is estimated, followed by dense 2D-
3D correspondence prediction. The final pose is computed with PnP. We evaluate the
method on LineMOD, Occlusion, Homebrewed, YCB-V and TLESS datasets and report
very competitive performance in comparison to the state-of-the-art methods trained on
synthetic data, even though our method is not trained on the object models used for
testing.

7.1 Introduction

The rapid development of high quality 6 DoF pose estimation methods is underway.
According to the BOP challenge [7], which combines publicly available 6 DoF pose esti-
mation datasets and offers standardized evaluation and comparison procedures, the field
is dominated by deep learning methods [100, 10, 73, 101, 102, 119, 103, 105, 195, 115,
82, 104, 118, 8, 72, 10, 127, 196, 197]. The methods’ performance is, however, limited by
the availability of labeled training data. Accurate 6 DoF pose annotation of real data
is a complicated and time-consuming process [6], that must be repeated manually for
each new object. This severely limits the practical applicability of 6 DoF pose estimation
methods. Additionally, labels can exhibit imperfection [198]. As synthetic data prepara-
tion tools improved, more methods shifted to training on synthetically rendered images.
This greatly simplifies the preparation of data for new objects. These time-consuming
and computationally-intensive data rendering and model training steps, on the other
hand, must be repeated for each new target object of interest.

While one-shot object detection, i.e., detection of novel objects not seen during train-
ing, appears to yield promising results for conventional 2D detection, its extensions
to pose estimation were very limited. There are very few related works that attempt
to generalize to new objects. They primarily focus on objects from the same cate-
gory [74, 125, 126], objects with very similar geometry [80, 81], rely on partially training
on target objects [115], or limit the task to viewpoint estimation [140]. We extend the
one-shot object detection ideas to estimate the full 6 DoF pose. Our method is trained

101

7 One-Shot Pose Estimation Without Re-Training

Target image

Sparse
segmentation

query templates

Localized object

Segmentation and 2D-3D
correspondences

Dense matching
query templates

Detected
object

Matched
template

Detected object

6DoF pose

Stage 1: One shot segmentation Stage 2: Template matching Stage 3: Dense 2D-2D matching Stage 4: Pose estimation (Pnp/Kabsch)

Figure 7.1: Pipeline of the proposed detector. 1) One-shot object localization conditioned
on the 3D model. 2) Initial viewpoint estimation by template matching. 3) Dense
2D-2D matching between the image patch and the matched template. 4) 6 DoF
pose estimation with PnP+RANSAC or Kabsch+RANSAC. The proposed pose
estimation pipeline generalizes well to new target objects not seen duing training.

only once and then automatically generalizes to new objects without training on them,
obviating the need for synthetic or real data preparation and training for new objects.

The 4-stage pipeline of the proposed approach is visualized in Figure 7.1. The input
to the method is a test image and a textured 3D model of the target object of inter-
est. Inspired by OS2D [14], the method relies on dense sliding window-based feature
correlation between the object, represented with a sparse set of 2D templates obtained
by rendering the object from various viewpoints, and the input test image. In the first
stage, one-shot object segmentation is performed. The detected object is matched to a
database of object renderings in the second stage to perform initial viewpoint estimation.
In the third stage, a network estimates dense 2D-2D correspondences between pixels of
the input image patch and the matched template, whose pose is known. This provides
us with 2D-3D correspondences between the pixels of the input image and the 3D model.
This enables 6 DoF pose estimation using PnP[1] or Kabsch[199] with RANSAC [78] in
the last stage.

The evaluation of our approach on five datasets (LineMOD, Occlusion, HomebrewDB,
YCB-V and TLESS) proves that it fully generalizes to new objects and scenes not
seen during training. Our key contributions include: 1) The first RGB-based one-shot
pose estimation pipeline that truly scales to new objects without training on them.
This results in a considerable time reduction required for synthetic data generation
and retraining. 2) A novel architecture and a novel attention mechanism for one-shot
semantic segmentation; 3) An architecture for dense 2D-2D matching that enables 2D-
3D correspondence transfer from a template with known 6 DoF pose to a target image
with unknown pose.

102

7.2 Methodology

7.2 Methodology

One-shot methods for 2D object detection use a target RGB image and a query template
of the object of interest as input during inference, neither of which was seen during
training. The inputs in our method are a target RGB image and a 3D model of the
object. The 3D model is represented by a set of 2D query templates rendered from
various virtual camera viewpoints placed on a sphere around the object. Our pipeline
consists of four stages as summarized in Figure 7.1 with stages object segmentation (1),
template matching (2), 2D-2D matching (3), and pose estimation (4). Stages 3 and 4
can potentially be executed several times to produce multiple pose hypotheses.

In the following, we use I of sizeH×W to denote an image, which implicitly depends on
the object modelM and its pose T ∈ SE(3). A feature extractor F k

FE(I) ∈ RHk×Wk×Dk

uses a pre-trained network to extract feature maps of depth dimension Dk from the input
image. We use pre-computed feature maps from several depth levels of the network,
which are indexed by {k ∈ N | 1 ≤ k ≤ N}. F̄ k

FE(I) ∈ RDk
stands for a feature

extractor which extends F k
FE by spatial averaging along height and width for each depth

dimension of the feature map to produce a single vector of length Dk.

7.2.1 One-Shot Segmentation

The first stage network takes an image and a descriptor of the 3D model and predicts a
binary segmentation mask indicating the location of the object’ visible part. The core
idea is to describe a textured CAD model using a set of viewpoint-based templates gen-
erated by rendering the object in various rotations. This brings the problem closer to
the standard 2D one-shot methods. The key difference is that we compute a single de-
scriptor based on pre-rendered templates, allowing the image to be matched to all of the
templates in a single shot, as opposed to the standard one-shot object detection, which
treats each query template independently. Figure 7.2 depicts the overall architecture of
the network.

We build on the concept of dense feature matching first, which was first proposed
in [200] and later extended for the task of object detection in [14]. The basic idea is
to compute per-pixel correlations between feature maps of the target image and the
features from the object descriptor. Feature precomputation is visualized in Figure 7.3.
Pre-computed image features fk = Fk

FE (I) ∈ RHk×Wk×Dk
and a 4D descriptor tensor

ok = FFE (M) ∈ RXk×Y k×Zk×Dk
for the object M are compared. The 4D descriptor

tensor ok collects all templates rendered from the virtual viewpoints on the sphere around
the object, where the first two dimensions (X,Y) stand for a camera position w.r.t. the
object coordinate system using polar coordinates, while the third dimension Z stands
for in-plane rotations. The 4th dimension Dk refers to feature maps extracted from each
template at multiple depth levels of the neural network indexed by k. Each element of the
tensor is one viewpoint template represented with the corresponding feature vector. It
is defined as ok

x,y,z = F̄ k
FE (I (R (x, y, z) · M)), where R is a rotation matrix representing

a virtual viewpoint on the sphere. Each pixel in the feature map fk is matched to the
entire object descriptor ok, resulting in a correlation tensor ck ∈ RHk×Wk×Xk×Y k×Zk

.

103

7 One-Shot Pose Estimation Without Re-Training

Figure 7.2: Encoder of the stage 1 network. The network takes an input image and an
object model, represented by a sparse set of templates, and outputs a binary seg-
mentation of the target image. The full detailed architecture is provided in the
supplementary materials.

For a particular pixel (h,w), the correlation tensor value is defined as

ckh,w,x,y,z = corr
(
fkh,w,o

k
x,y,z

)
, (7.1)

where corr denotes Pearson correlation. The correlation tensor is then flattened to a 3D
tensor ck ∈ RHk×Wk×(XkY kZk). This way, each pixel of the target image feature map
gets the list of all correlations of its feature vector with all the feature vectors of the
descriptor.

The flattened correlation tensor is used in two ways. First, pre-computed correlations
are used directly as the input to the decoder, as in [14, 200, 201, 202]. For that, the
tensor ck is processed by a 1× 1 convolutional layer to reduce the number of dimensions
from

(
XkY kZk

)
to Lk. The correlations are also used to compute pixel-wise attention.

Pixel-wise attention allows us to effectively incorporate the original image features into
the feature tensor and use them for more precise segmentation.

Raw pixel-wise attention at the feature map level k is defined simply as a sum of all(
XkY kZk

)
correlations for a given pixel as

Ak
h,w = max

0,

(XkY kZk)∑
j=1

ckh,w,j

 . (7.2)

Since simple attention can be very noisy in the early layers compared to later layers,
we propose to condition per-pixel attention of each particular level k on the attention
from the last level kl, which tend to be more precise but have low resolution, as

Âk
h,w = Ak

h,w 5
(
Akl
)
h′,w′

(7.3)

104

7.2 Methodology

Target image

Query templates

Image features

Model descriptor

Figure 7.3: Feature computation for a target image and a 3D model. The top row
illustrates how an input target RGB image is converted to a 3D feature tensor fk.
The bottom row demonstrates how object templates sampled along azimuth (axis
X), elevation (Y) and in-plane rotation axis Y are transformed to a corresponding
dense 4D model descriptor ok.

5 denotes a bilinear upsampling of the attention Akl to the size of Ak. The values
are then filtered by zeroing out attention values below the average value, resulting in
cleaner and more precise attention maps, as illustrated in the supplementary material:

Âk
h,w =

{
Âk

h,w, if Âk
h,w > avgh′,w′Âk

h′,w′

0, otherwise
(7.4)

Akl itself is thresholded but not conditioned on anything. All of the values are scaled
to fall between 0 and 1. Image features are transformed using the attention maps as
follows:

f̂kh,w = Âk
h,w · fkh,w − (1− Âk

h,w) · fkh,w. (7.5)

The attended features are then processed by a 1 × 1 convolutional layer to reduce
dimensionality. Stacked f̂k and ck are used jointly by the subsequent layers. Overall,
the decoder resembles the UNet [61] approach of feature maps upsampling followed by
convolutional layers until the initial image size is reached. The main distinction is that
the network employs stacked f̂k and ck at each level rather than skip connections. The
network is trained to predict per-pixel probability that a pixel contains a visible part of
the object. We used the Dice loss LDice [184] to handle imbalanced class data.

7.2.2 Template Matching

For the initial viewpoint estimation, we rely on template matching via deep manifold
learning , which has been shown to scale well to a large number of objects [70, 112] and

105

7 One-Shot Pose Estimation Without Re-Training

Figure 7.4: Encoder of the stage 3 network. The network takes an input image with
the detected object and a matched template. Its output is a pixel-wise binary
segmentation and dense 2D-2D correspondences. A detailed architecture is provided
in the supplementary materials.

to generalize to new objects [82] not seen during training. We rely on the same feature
extraction network FFE but use only the features from the last layer. We also add one
1× 1 convolutional layer to decrease the dimensions from H ×W ×D to H ×W ×D′.
Template features t ∈ RH×W×D′

and image features f ∈ RH×W×D′
are pre-computed

from the foregrounds of the query templates and from the foreground of the detected
object in the target image denoted with using the segmentation predicted in the previous
step respectively. Analogously to the first stage, similarity of two patches is estimated
by computing per-pixel correlations between f and t using

sim (f, t) =
∑
h,w

corr (fh,w, th,w) . (7.6)

We train the network to increase similarity for patches which depict objects with very
close rotations and at the same time penalize similarity for distant rotations. A modified
triplet loss with dynamic margin is leveraged by optimizing

Ltriplets = max

{
0, 1− sim(fanchor, f+)

sim(fanchor, f−) + m

}
, (7.7)

where m is set to the angle between rotations of the object in the anchor and the puller
patches. Using the terminology from [70], fanchor is a descriptor of a randomly chosen
object patch. f+ corresponds to a puller - a template in the pose very similar to the
pose in the anchor, while f− corresponds to the pusher with a dissimilar pose. A query
template with the highest similarity to the detected object in the target image is chosen
as a match at test time.

7.2.3 One-Shot Dense Correspondence Estimation

The goal of this stage is to establish 2D-3D correspondences between the image pixels
and the object model. After the previous step, we have a patch with the detected object

106

7.2 Methodology

in unknown pose and a matched template in known pose. Establishing dense 2D-2D
correspondences between the object patch and the template explicitly provides 2D-3D
matches between the object pixels and the 3D object model. The correspondences can
then be used to estimate the pose with PnP+RANSAC or Kabsch+RANSAC.

Similarly to the previous stages, the architecture of the 2D-2D matching follows the
general idea of dense feature matching. Each pixel of the feature map fk, representing
the input image patch of the detected object, is matched with all pixels of the template
feature map tk to form the correlation tensor ck. The network then predicts three values
for each pixel: a binary foreground/background segmentation mask and a coordinate of
the corresponding pixel on the template. Figure 7.4 depicts the architecture.

During training, a random object crop Iobj with its associated pose Tobj ∈ SE(3) is
sampled from a synthetic dataset. Then, a random template Itmp is picked together with
its pose Ttmp ∈ SE(3), so that Tobj and Ttmp are relatively close. Availability of object
poses allows us to compute per-pixel 2D-3D correspondence maps in both patches. Let
us denote 2D-3D correspondences for the object rendered in the given pose as follows:

C :M× SE(3)→ [0, 1]W×H×3 (7.8)

Correspondences are computed as Normalized Object Coordinates (NOCS) [74]. Its
inverse C−1 recomputes correspondences with respect to the unnormalized object coor-
dinates, corresponding to the actual 3D object coordinates. It allows us to define a 2D
correspondence pair distance in the model’s 3D coordinate space:

d(p, p′) =
∥∥∥C−1 (Iobj)p − C−1 (Itmp)p′

∥∥∥
2

(7.9)

where p and p′ are pixel coordinates in the image and template patches respectively.
Ground truth dense 2D-2D correspondences are established by matching pixel pairs
corresponding to the closest points in the 3D coordinate system of the model. For a point
p ∈ Iobj its corresponding template point is computed as argmin

p′∈Itmp

d (p, p′). We employ an

outlier-aware rejection for 2D-2D correspondences with large 3D spatial discrepancy.

The segmentation loss is defined as a per-pixel Dice loss (LDice). In addition, the
network predicts a discrete 2D coordinate using a standard per-pixel cross-entropy clas-
sification loss denoted as L2D2D.

7.2.4 Pose Hypothesis Verification

We propose an optional step for generating and verifying pose hypotheses. Its goal is to
reduce the imprecision caused by incorrect initial viewpoint estimation. Pose hypotheses
are generated by independently estimating 2D-2D correspondences from each of the top
N matched templates and estimating poses from them. We greedily remove matched
templates that are too close to each other to reduce run times and ensure more diverse
poses. In practice, we filtered matches using a 15-degree threshold and picked top 25
templates from them. If depth is available, hypotheses are ranked based on the quality

107

7 One-Shot Pose Estimation Without Re-Training

(a) (b) (c) (d)

Figure 7.5: Qualitative evaluation of the proposed method on an object from the
Homebrewed dataset [6]. a) an input image, cropped only for visualization
purposes, with a comparison of the ground truth (green cuboid) and estimated
(blue cuboid) poses; b) predicted one-shot segmentation; c) a matched template;
and d) predicted correspondences as color-coded NOCS correspondences.

of fit of observed and rendered depth. In the RGB case, per-pixel correspondence error
between the predicted correspondences and the rendered object is measured.

Pose hypothesis selection is done by rendering the object in the predicted pose and
measuring a VSD-like pose consistency score [7]. If only RGB data is available, the
score is defined over per-pixel correspondence error. If depth is available, per-pixel depth
discrepancy is measured. For consistency, depth values and object sizes are expressed
in millimeters. Let Ŝ be a predicted binary segmentation with Ŝp indicating whether a
pixel p belongs to the object or not. Function S : M× SE(3) → [0, 1]W×H renders a
segmentation mask for a given object pose. Function D :M× SE(3)→ RW×H renders
per-pixel depth for a given object pose, whereas D̂ represents the observed depth map.
T ∈ SE(3) is object pose.

Then, in case of RGB, pose consistency is defined as

cons(τ) = avg
p∈Ŝ∩S(T)

1, if
∥∥∥Ĉp − C−1

(
C (T)p

)∥∥∥
2
< τ

0, otherwise
(7.10)

In case of depth, pose consistency is defined as

cons(τ) = avg
p∈Ŝ∩S(T)

1, if
∥∥∥D̂p −D(T)p

∥∥∥
2
< τ

0, otherwise
(7.11)

Consistency is averaged over thresholds τ from 1 to 5mm, and the pose hypothesis
with the highest average consistency is selected as the final pose.

7.3 Experiments

We evaluate the proposed method on Linemod [5] (LM), Occlusion [8] (LMO), Home-
brewed [6] (HBD), YCB-V [16] and TLESS [12] datasets. Each detector stage is trained

108

7.3 Experiments

Table 7.1: 2D detection results in comparison to YOLO [13], trained on target ob-
jects, and one shot OS2D [14] detectors on the BOP split of the test
data [7]. Results on the Homebrewed dataset [6] are reported on the publicly avail-
able validation split.

Dataset Method Precision Recall F1 Best Recall

LM

YOLO 0.99 0.97 0.98 0.99
Ours 0.47 0.86 0.61 0.86
OS2D 0.28 0.2 0.23 0.57

LMO

YOLO 0.69 0.67 0.68 0.85
Ours 0.31 0.61 0.41 0.61
OS2D 0.16 0.31 0.21 0.53

HBD

YOLO 0.76 0.74 0.75 0.91
Ours 0.43 0.73 0.54 0.73
OS2D 0.24 0.29 0.26 0.44

YCB

YOLO 0.72 0.84 0.78 0.98
Ours 0.41 0.8 0.54 0.8
OS2D 0.12 0.18 0.14 0.26

separately for each target dataset, so that train and test objects differ. For example, we
use train the networks used for experiments on the Linemod dataset using all objects
from the Homebrewed and YCB-V datasets. Linemod’s and Homebrewed’s common
objects are skipped during training. We used the synthetic PBR images provided by the
organizers of the BOP challenge [7] in all experiments. We denote methods, that used
only PBR [7] synthetic images, with ”PBR”, methods with custom synthetic images
as ”synt” and methods, which used a mix of real and synthetic data, as ”mix”. The
standard ADD score [15] with the 10% diameter threshold is reported for the Linemod
dataset. The BOP Average Recall (AR) score [7] is reported for the other datasets.

7.3.1 2D Object Localization

We compare our approach’s 2D detection capabilities to two baselines. First, we com-
pare it to OS2D [14], a state of the art one-shot object detection method. For fairness,
we ran OS2D with exactly the same templates as our method. Second, we compare
to YOLOv3 [13], which was trained separately for each scene using the synthetic PBR
image [7]. It establishes the upper bound for the object detection performance and
demonstrates the recall achievable by a fully supervised 2D object detector trained on
target objects. we cannot compute Mean Average Precision (mAP), because our lo-
calization network follows the semantic segmentation rather than the object detection
paradigm. As an alternative, we chose a confidence threshold for each method on each
dataset separately, maximizing the F1 score. We then report precision and recall that
correspond to the optimal threshold as well as the highest possible recall achieved by

109

7 One-Shot Pose Estimation Without Re-Training

Table 7.2: Percentages of correctly estimated poses w.r.t. the ADD on the
Linemod [5] dataset for methods trained on synthetic data. All methods
apart from ours, PPF and PfS require prior training on RGB target objects.

Modality Method Refinement ADD Time (ms)

RGB

DPOD [100] DL [100] 54.2 -
Ours Mult. Hyp. 43.6 1343

DPOD [100] - 40.5 36
OURS - 39.3 96

SSD6D [104] DL [144] 34.1 -
AAE [115] - 31.4 24
PfS [140] - 22.5 -

SSD6D [104] - 9.1 -

RGBD

SSD6D [104] ICP 90.9 100
Ours Mult. Hyp. + ICP 81.9 749
Ours Mult. Hyp. 80.1 722

PPF [15] ICP 78.8 -
Ours ICP 76.8 68
Ours - 73.3 60

AAE [115] ICP 71.5 224

the detector. Table 7.1 summarizes the findings. As expected, YOLO performs bet-
ter than the proposed method and OS2D, both in terms of precision and recall. Our
method - not trained on the test objects - is outperformed by YOLO by 10%-20% in
terms of best recall. At the same time, its recall is very close to the recall of YOLO
with the confidence threshold corresponding to the best F1 score. Performance of OS2D
is considerably worse, especially on more challenging datasets with more occlusion, e.g.
LMO, HBD and YCB-V. Additionally, our method is ca. 800× faster with a runtime of
only 25 milliseconds per object compared to 20 seconds per object for OS2D. This shows
the advantages of the proposed method compared to state of the art in 2D one-shot
detection.

7.3.2 6 DoF Pose Results

In this section, we assess the accuracy of poses estimated using our one-shot method.
However, due to a lack of relevant work, it is not a straightforward task. Geometry-based
deep learning methods [80, 81] are evaluated on a single dataset using an old pose metric
that the new state of the art methods do not report. Although Multi-Path AAE [82]
claims to be one-shot, it employs a 2D object detector trained on target objects. We,
however, still compare to Multi-Path AAE, as it serves as a state of the art upper bound
of what pose accuracy is achievable with deep learning methods capable of estimating
the pose of novel objects not seen during training. when depth data is available, PPF
results are reported, because it is another truly one-shot method that does not require

110

7.3 Experiments

Table 7.3: Results on the Occlusion dataset [8] reported according to the Average
Recall (AR) metric of the BOP challenge [7] on the BOP challenge subset
of test images. All methods apart from ours and PPF [15] require prior training
on target objects.

Method Train data Refinement AR Time (s)

CosyPose [10]

PBR

- 0.633 0.550
CDPN [73] - 0.569 0.279
EPOS [119] - 0.547 0.468

Pix2Pose [119] - 0.363 1.310
Pix2Pose [119] - 0.281 1.157
SSD6D [104] - 0.139 -

EPOS [119]
synt

- 0.443 0.487
DPOD [100] - 0.169 0.172

AAE [115]

mix

ICP 0.237 1.197
Multi-Path AAE [82] - 0.217 0.200

AAE [115] - 0.146 0.201

Drost, PPF [15]

-

ICP 0.527 15.947
Drost, PPF [15] ICP, 3D edges 0.492 3.389
Ours + Kabsch Mult. Hyp. + ICP 0.482 5.440
Ours + Kabsch Mult. Hyp. 0.462 5.355
Ours + Kabsch ICP 0.432 0.560
Ours + Kabsch - 0.393 0.475

Ours + PnP Mult. Hyp. 0.312 12.180
Ours + PnP - 0.274 0.766

training on target objects. Other methods listed in the tables are explicitly trained
on synthetic renderings of target objects, giving them an advantage over our method
in terms of pose scores. Therefore, the results of our methods should not be directly
compared to them; instead they should be used as a reference for what the standard 6
DoF pose estimation methods achieve. To summarize, we mainly compare our method
to Multi-Path AAE on RGB images and to PPF on RGBD images.

In Table 7.2, the quality of pose estimation is reported using the ADD score for the
Linemod dataset. We compare our approach to other methods that use only synthetic
training data because they represent what can be accomplished without access to the
training data from the target domain. Our method predicts very good poses despite not
having been trained on Linemod objects. It significantly outperforms SSD6D [104], and
outperforms AAE [115] and SSD6D with deep learning-based refinement [144], while
falling short of DPOD [100] by around 1%. Our method considerably outperform Pose
from Shape [140] (PfS), which is another one-shot pose estimation method, even though
PfS uses ground truth 2D detections and ground truth translations while estimating
only rotation. Pose hypothesis verification raises the results by relative 10% from 39.3

111

7 One-Shot Pose Estimation Without Re-Training

Table 7.4: Results on the Homebrewed dataset [6] reported according to the Average
Recall (AR) metric of the BOP challenge [7] on the BOP challenge subset
of test images. All methods apart from ours and PPF [15] require prior training
on target objects.

Method Train data Refinement AR Time (s)

CDPNv2 [73]

PBR

- 0.722 0.273
CosyPose [10] ICP 0.712 5.326
CDPNv2 [73] ICP 0.712 0.713
Pix2Pose [101] ICP 0.695 3.248
CosyPose [10] - 0.656 0.417
EPOS [119] - 0.58 0.657

Pix2Pose [101] - 0.446 0.982

AAE [115]

synt

ICP 0.506 1.352
CDPN [73] - 0.47 0.311
AAE [115] - 0.346 0.19

Multi-Path AAE [82] - 0.293 0.191
DPOD [100] - 0.286 0.18

Drost, PPF [15]

-

ICP 0.671 144.029
Ours + Kabsch Mult. Hyp. + ICP 0.605 4.508
Drost, PPF [15] ICP 0.603 1.659
Ours + Kabsch ICP 0.581 0.438
Ours + Kabsch Mult. Hyp. 0.579 4.384
Ours + Kabsch - 0.56 0.314

Ours + PnP Mult. Hyp. 0.492 8.183
Ours + PnP - 0.464 0.503

to 43.6. If depth data is available, the pose can be estimated directly using 3D-3D
correspondences and the Kabsch algorithm. This nearly doubles our method’s ADD
score, putting it above AAE with ICP refinement. Further pose hypothesis verification
improves the results by around relative 10% putting it just above PPF. Segmentation
of a single object takes 25 milliseconds, initial rotation approximation 10 milliseconds,
2D-2D matching 11 milliseconds. PnP takes 50 milliseconds on average, which makes
the RGB-only pose estimation pipeline perform at approximately 10 FPS. If the Kabsch
algorithm is used, the detector achieves 16 FPS. Additional ICP refinement on top of
Kabsch slows down the detector to 14 FPS, which is still faster than other methods with
ICP refinement. Pose hypothesis generation and verification in RGB takes around 1300
milliseconds and 550 milliseconds in depth images.

The results of our proposed method on the Occlusion (Table 7.3) and Homebrewed
(Table 7.4) datasets show that it performs similarly to some of the methods that are
trained on target objects with full supervision and trained separately for each object
and scene. Even without refinement, our method outperforms Multi-Path AAE on both

112

7.3 Experiments

0 200 400 600 800 1000
N templates

10

20

30

40

%
 c
or
re
ct
 p
os
es

(a)

10 20 30 40 50
Angular distance

20

40

60

%
 c
or
re
ct
 p
os
es

(b)

Figure 7.6: Impact of the number of templates (a) and the angular distance between
the ground truth and the matched template (b) on the final ADD score
on Linemod dataset [5].

datasets. If depth data is available, our method falls short behind PPF only by a narrow
margin while being an faster than the best performing PPF variant. On the YCB (Table
7.5) dataset, Multi-Path AAE outperforms the proposed method (Our+PnP), but it is
important to note that methods trained on real or mixed data perform considerably
better than methods trained solely on synthetic data on this dataset. On the other hand,
our method outperforms PPF by a large margin. The results on all datasets clearly show
the competitive quality of object detection and pose estimation in the proposed one-shot
method and demonstrate that it generalizes well to objects, which were not seen during
training. Moreover, its performance matches the performance of some of the previous
state of the art methods even though they were trained on the target objects.

Table 7.6 shows evaluation of our method on the TLESS dataset [12]. We followed the
Multi-Path AAE [82] evaluation pipeline and ran the 2nd and the 3rd stages of OSOP on
detections from Multi-Path AAE. OSOP convincingly outperforms Multi-Path AAE and
PPF on RGB and RGBD data respectively. This proves that the matching strategy does
not suffer from object symmetries and heavy occlusions. We used the same networks as
in the Linemod experiments.

7.3.3 Ablation Studies

We conducted three main ablation studies to determine what factors contribute to the
performance of our pipeline. Table 7.7 examines the architecture choices for the local-
ization network, Table 7.8 analyses the pose estimation, while Figure 7.6 demonstrates
the robustness of the method to a smaller number of templates and to larger angular
errors between the ground truth and the matched templates.

Table 7.7 shows that if we only use the feature correlation as in OS2D [14, 200],
the network performs the worst achieving only 54% recall and 51% IoU. Only pixel-
wise attention, on the other hand, yields comparable results. When both correlation
and attention are used, network performance significantly increases which proves the
effectiveness of the proposed architectural changes.

113

7 One-Shot Pose Estimation Without Re-Training

Table 7.5: Results on the YCB-V dataset [16] reported according to the Average
Recall (AR) metric of the BOP challenge [7] on the BOP challenge subset
of test images. All methods apart from ours and PPF [15] require prior training
on target objects.

Method Train data Refinement AR Time (s)

CDPNv2 [73]

PBR

ICP 0.532 1.034
EPOS [119] - 0.499 0.764

CDPNv2 [73] - 0.39 0.448
CosyPose [10] - 0.574 0.342

EPOS [119]

synt

- 0.696 0.572
CDPN [73] - 0.422 0.295

DPOD [100] - 0.222 0.341

CosyPose [10]

mix

ICP 0.861 2.736
CosyPose [10] - 0.821 0.241
Pix2Pose [101] ICP 0.78 2.59
CDPNv2 [73] - 0.532 0.143

AAE [115] ICP 0.505 1.581
AAE [115] - 0.377 0.179

Multi-Path AAE [82] - 0.289 0.181

Ours + Kabsch Mult. Hyp. + ICP 0.572 2.606
Ours + Kabsch ICP 0.565 0.302
Ours + Kabsch - Mult. Hyp. 0.542 2.571
Ours + Kabsch - 0.529 0.267
Drost, PPF [15] ICP, 3D edges 0.344 6.27

Ours + PnP Mult. Hyp. 0.332 5.389
Drost, PPF [15] ICP, 3D edges 0.33 1.282

Ours + PnP - 0.296 0.41

Table 7.8 snows an analysis of the impact of various stages on pose estimation. We
start by replacing the first two stages of the pipeline with ground truth and then grad-
ually replace it with actual predictions form our networks. ADD10 score is computed
w.r.t. the number of correctly detected objects unless specified otherwise in ”Recall”,
which multiplies the ADD score by the recall. The first line sets the upper bound for
the pose estimation performance by effectively replacing the first two stages with ground
truth and only using predictions from the 2D-2D matching network and PnP. The second
line introduces the template matching. The overall score decreases by only 2% indicat-
ing that the second stage network performs precise template matching given the GT
segmentation masks and that the 2D-2D matching network is robust to larger angular
differences between poses in the object patch and in the template. A large performance
drop is observed in the third line, when GT segmentation is replaced with the predicted
segmentation. This is further emphasized in the last row, where the ADD10 score is

114

7.3 Experiments

Table 7.6: Results on the TLESS- dataset [12] reported according to the Average
Recall (AR) metric of the BOP challenge [7] on the BOP challenge subset
of test images. All methods apart from ours and PPF [15] require prior training
on RGB renderings of target objects.

Method Train data Refinement AR

CosyPose [10] ICP 0.640
EPOS [119] - 0.467

AAE [115]

synt

ICP 0.487
Multi-Path AAE [82] - 0.310

DPOD [100] - 0.081

Ours + Kabsch

-

- 0.532
Drost, PPF [15] ICP 0.444
Ours + Kabsch ICP 0.435
Drost, PPF [15] ICP 0.404

Ours + PnP - 0.403

corrected by detector’s recall. These results indicate that the main error comes from
erroneous initial viewpoint estimation. Furthermore, improving the predicted segmenta-
tion can further improve the overall performance of the one-shot pipeline by improving
2D recall and template matching. The table also shows that pose hypothesis verifica-
tion helps filter out some of the erroneous poses and push the ADD score closer to the
theoretical maximum of the method.

We followed the example of Multi-Path AAE and used 90K templates for all exper-
iments. Figure 7.6a shows the ADD score on Linemod if 5 to 1K templates randomly
sampled from the full set are used. The red line corresponds to the ADD score of 39.3
with all 90K templates. OSOP reaches ADD of 35.3 with only 1K templates and 38.6
with 5K templates. Figure 7.6b shows how the angular distance between the gt rotation
and the matched template affects the ADD score. OSOP requires a smaller number of
templates and can estimate poses even from more distant template matches because of
dense correspondence estimation.

Ablation studies presented in Figures 7.7 and 7.8 illustrate how the ADD score changes
depending on the minimal distance between templates in the set of pose hypotheses and

Table 7.7: Object localization and segmentation for various configurations of the
proposed localization network on Linemod [5].

Configuration
Precision Recall IoU

Correlations Attention

X 0.28 0.54 0.51
X 0.34 0.61 0.55

X X 0.47 0.86 0.72

115

7 One-Shot Pose Estimation Without Re-Training

Table 7.8: ADD10 score on the Linemod [5] for different pipeline components.

Configuration
ADD10

GT segm. Pred. Segm. Closest tmpl. Matched tmpl. Recall Mult. Hyp.

+ + 60.9
+ + 58.9

+ + 45.7
+ + + 39.3

+ + + 51.0
+ + + + 43.6

the number of hypotheses. The experiments were conducted on a small random subset
of the data. ”First template ADD” denotes the ADD reached on the subset of data using
the standard OSOP pipeline without multiple hypothesis. ”Best possible ADD” denotes
the average ADD among all images in the subset, where for each image the best ADD
among the predicted poses was picked. This sets the upper bound on what ADD the
method can reach with the given number of pose hypothesis. ”Selected ADD” denotes
the ADD of the poses chosen with the proposed pose selection method. Experiments
on Linemod and Occlusion demonstrate that the 15 degrees threshold on the distance
between templates works the best, as it eliminates duplicate templates, that have a low
angular distance from each other, and ensures more diverse hypothesis set. The plots
also show that the ADD of chosen poses stops improving after approximately 25 pose
hypotheses. Therefore, we used the threshold of 15 degrees and 25 templates in the
experiments.

7.4 Implementation Details

The detector was implemented using Pytorch [203]. A pre-trained ResNet50 [51] served
as feature extractor FFE in all three stages. The feature extractor was unchanged for
the segmentation and 2D-2D correspondence networks to overcome the domain gap
problem. Only the last block of the ResNet was fine-tuned for the second stage in the
proposed pipeline. We used the MAGSAC [164] implementation from OpenCV [186] and
point-to-plane ICP from Open3D [187]. All our experiments were conducted on an Intel
Core i9-9900K CPU 3.60GHz with NVIDIA Geforce RTX 2080 TI GPU. We trained
the networks with the Adam optimizer [95]. The localization network and the 2D-2D
matching network were trained for 50 epochs which took approximately one day on a
single GPU. The second and third stage networks were trained for 10 epochs, which took
approximately 2 hours. We render templates at 25 FPS with 128x128 resolution and
models down-sampled to 5K faces. It takes around one hour to render 90K templates,
40 seconds to render 1K templates and 200 seconds to render 5K templates.

In all experiments, we used ResNet50 as the feature extractor. For the first and the
third stages, we use feature maps after layers number 10, 22 and 40. The network

116

7.4 Implementation Details

(a) 10 degrees template threshold.

(b) 20 degrees template threshold.

(c) 15 degrees template threshold.

(d) Comparison of ADD with different
template thresholds.

Figure 7.7: Ablation studies on pose hypothesis selection on Linemod dataset dataset [5].

is trained and tested on the full resolution images of size 480 × 640. For the image
descriptor, this corresponds to fk of sizes 120×160×256, 60×80×512 and 30×40×1024.
We used 2880 templates for the localization network, which corresponds to 576 camera
locations with 5 in-plane rotations. The object descriptors ok thus has the dimensions
16× 36× 5× 256, 16× 36× 5× 512 and 16× 36× 5× 1024.

For the second stage, we used approximately 90K templates as suggested in AAE [115,
82], and map each of them to the latent space of size 8×8×256. Even though the resulting
descriptor is of higher dimension than in [70, 115], all descriptors for all templates still
fit on a single GPU, which enables fast inference. During training, we convert the
rotation matrix from the egocentric to allocentric coordinate system following [125]. This
conversion ensures that the visual appearance of the object is dependent exclusively on
the rotational component of the SE(3) pose. The angle between rotations is computed
as an arcos of quaternions representing them. Symmetric objects are ignored during
training. The third stage operates on images of sizes 128× 128.

117

7 One-Shot Pose Estimation Without Re-Training

(a) 10 degrees template threshold.

(b) 20 degrees template threshold.

(c) 15 degrees template threshold.

(d) Comparison of ADD with different
template thresholds.

Figure 7.8: Ablation studies on pose hypothesis selection on Occlusion dataset
dataset [8]

7.5 Limitations

The method is predicated on the assumption that a pre-trained feature extractor com-
putes distinctive features from the synthetic rendering of the object and the input image,
and that the features have higher correlations for templates and images that represent
the object in similar poses. This assumption is influenced by the domain gap between
real and synthetic images. This problem could potentially be remedied by unsupervised
domain adaptation techniques.

7.6 Conclusion

We proposed a novel object detection and 6 DoF pose estimation method that generalizes
well to the objects unseen during training. To the best of our knowledge, it is the
first one shot object detection and pose estimation method that does not impose any
specific requirements for the objects. Our novel neural network architecture for one shot
object localization performs significantly better and faster than an alternative 2D one

118

7.6 Conclusion

shot detector. Our evaluation on Linemod, Occlusion, Homebrewed, YCB and TLESS
datasets for pose estimation demonstrates the effectiveness of our method, which achieves
similar results to methods trained on synthetic data. The proposed pipeline allows for a
considerable reduction of time needed to prepare training data and to train the model, as
these steps are not needed for new unseen objects. We believe it provides an interesting
direction for further development of one shot 6 DoF pose detectors.

119

8 Conclusion & Outlook

In this final chapter, we summarize the presented methods, analyze their strengths and
weaknesses, and suggest possible directions for future research.

8.1 Summary

In this thesis, we tackle the problem of 6 DoF object pose estimation. The main emphasis
is devoted to development and analysis of pose estimation methods that rely on dense
correspondences and to development of a method capable of detecting handling novel
objects without prior training on them.

First, we introduced a deep-learning-based method for pose estimation with dense
correspondences. The core idea is to establish per-pixel 2D-3D correspondences between
the image and the object model. With the correspondences at hand, the final 6 DoF ob-
ject pose is computed using the PnP and RANSAC methods. The method was evaluated
on two challenging datasets (Linemod [5] and Occlusion [8]) and reached state-of-the-art
results. An important feature of the method was the ability to be trained on either real
or synthetic data. Additionally, a novel object pose refiner, that operates on monocular
RGB images, was proposed. The refiner takes a tight crop around the detected object
and a rendering of the object in its initial pose hypothesis. A convolutional neural net-
work compares these two images to directly predict the pose offset. The refiner allowed
us to boost the quality of pose predictions even further.

Second, we proposed a novel method for multi-view object pose refinement. The
input to the method is a set of images with known relative camera transformations
between them. We first estimate dense 2D-3D correspondences between the frames and
the object model and estimate object pose hypothesis in each frame separately. The
core principle of the refiner is to update the object pose in such a way, that the pose
aligns the best with dense correspondences in all frames. The loss function is defined
as a per-pixel difference of predicted 3D correspondences. The loss is implemented
using a differentiable renderer, which allows for optimization with the standard gradient-
based techniques. The proposed refiner achieves excellent pose accuracy on Linemod [5],
Occlusion [8], Homebrewed [6] and YCB-V [16]. Additionally, we demonstrated that the
proposed refiner can be used for automatic labeling of real images.

Then, we extended the ideas of dense correspondence and proposed a unified archi-
tecture capable of handling both RGB and depth input. This was used as a basis for an
in-depth study of the influence of the type of input data (RGB versus Depth) and influ-
ence of the training data (real versus synthetic versus mixed) on the quality of estimated
correspondences and on the quality of poses. The method was tested on four datasets

121

8 Conclusion & Outlook

(Linemod [5], Occlusion [8], Homebrewed [6] and TLESS [12]) showing state-of-the-art
results.

Finally, we tackled a challenging and relatively unexplored problem of object detection
and 6 DoF pose estimation of novel object without prior training on them. Building
on the ideas of one-shot object detection, we design a 4-stage pipeline to solve the
task. In the first stage, a network takes an image and a descriptor of the object and
outputs a binary segmentation mask. In the second stage, initial viewpoint estimation
is performed using template matching. In the third stage, dense 2D-2D correspondences
are established between the object in the unknown pose and the matched template in
the known pose. In the final stage, the pose is computed using the standard PnP and
RANSAC algorithms. The proposed method was evaluated on four different datasets
(Linemod [5], Occlusion [8], Homebrewed [6], YCB-V [16] and TLESS [12]) and achieved
good results on all of them in spite of not having been trained on the target objects. This
method is arguably the first monocular RGB deep learning method to solve detection and
pose estimation of novel objects without any constraints on the used objects, similarity
between train and test objects or training parts of the pipeline on target objects.

8.2 Limitations and Future Work

In spite of the new advanced methods introduced in this thesis, the task of 6 DoF
object pose estimation remains challenging. In general, the thesis focused on fully-
supervised training of dense-correspondence-based models on either real or synthetic
data and on generalization to novel objects. The thesis does not deal with the areas of
weakly, unsupervised or few-shot learning, which have a tremendous potential for the
pose estimation methods.

The dense correspondence method presented in Chapter 4 is based on semantic seg-
mentation backbone model rather than on instance segmentation and, thus, struggles
to deal with multiple object of the same type in the image. Detection via segmentation
does not allow for setting a threshold on the detection confidence, as it is typically done
in the object detection community. Also, one network is always trained on only one ob-
ject to boost the performance of the method, which limits the scalability of the method.
Runtime of the method heavily depends on the size of the object in the image, as larger
objects will result in more correspondences.

The multi-view refiner method introduced in Chapter 5 offers a flexible and effective
way to find globally-consistent object pose in multiples frames. One of its downsides
is the assumption of known relative camera poses, which does not always hold true
in practice. A joint object pose and camera pose optimization is a promising future
direction, which will make the method more generic and usable in practice. Another
disadvantage is slower runtimes of the method caused by differentiably rendering of the
object in each refinement iteration.

The dense correspondence method presented in Chapter 6 solves some of the issues
of the original method from Chapter 4 but is still not free of the disadvantages. While
the first stage network, responsible for object detection, is trained to detect all objects

122

8.2 Limitations and Future Work

in the scene, the correspondence estimation network is still trained separately for each
object. Since each detection is processed separately, the runtime of the method scales
linearly with the number of objects detected in the image.

The one-shot method introduced in Chapter 7, in spite of good results, is also not
free of limitations. The semantic segmentation network of the first stage of the method
performs the standard semantic segmentation rather than instance segmentation. This
limits the applicability of the network if several objects of the same class are present
in the image, as the network cannot distinguish between them. Then, the network
depends on the templates rendered always in the same order, not allowing for usage
of real labeled images or for varying the number of templates. More importantly, the
overall performance of the method is based on the assumption that a backbone network
pre-trained on Imagenet [173] will generalize to novel objects and will produce expressive
and distinctive features. Solving the aforementioned issues might be a possible direction
for future research. Another promising direction is mixing features computed from RGB
and Depth for improved performance and robustness. Decreasing the number of stages
of the method might results in faster runtimes.

123

Bibliography

[1] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o (n) solution to the
pnp problem. International Journal of Computer Vision (IJCV), 81(2):155–166,
2009.

[2] S. University. Cs231n: Convolutional neural networks for visual recognition:
https://cs231n.github.io/neural-networks-1/, 2022.

[3] Y. Wu and K. He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[4] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-
bridge university press, 2003.

[5] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and
N. Navab. Model based training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes. In Asian Conference on Computer Vision
(ACCV), pages 548–562. Springer, 2012.

[6] R. Kaskman, S. Zakharov, I. Shugurov, and S. Ilic. Homebreweddb: Rgb-d dataset
for 6d pose estimation of 3d objects. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops, pages 0–0, 2019.

[7] T. Hodan and A. Melenovsky. Bop: Benchmark for 6d object pose estimation:
https://bop.felk.cvut.cz/home/, 2019.

[8] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother.
Learning 6d object pose estimation using 3d object coordinates. In European
Conference on Computer Vision (ECCV), pages 536–551. Springer, 2014.

[9] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching
for 6d pose estimation. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 683–698, 2018.

[10] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-view
multi-object 6d pose estimation. In European Conference on Computer Vision
(ECCV), pages 574–591. Springer, 2020.

[11] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, et al. Uncertainty-
driven 6d pose estimation of objects and scenes from a single rgb image. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3364–3372, 2016.

125

https://cs231n.github.io/neural-networks-1/
https://bop.felk.cvut.cz/home/

BIBLIOGRAPHY

[12] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis. T-
less: An rgb-d dataset for 6d pose estimation of texture-less objects. In 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 880–888.
IEEE, 2017.

[13] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

[14] A. Osokin, D. Sumin, and V. Lomakin. Os2d: One-stage one-shot object detec-
tion by matching anchor features. In European Conference on Computer Vision
(ECCV), pages 635–652. Springer, 2020.

[15] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match locally: Effi-
cient and robust 3d object recognition. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 998–1005. IEEE, 2010.

[16] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural
network for 6d object pose estimation in cluttered scenes. 2018.

[17] A. P. Witkin. Scale-space filtering. In Readings in Computer Vision, pages 329–
332. Elsevier, 1987.

[18] R. A. Haddad, A. N. Akansu, et al. A class of fast gaussian binomial filters for
speech and image processing. IEEE Transactions on Signal Processing, 39(3):723–
727, 1991.

[19] W. T. Freeman, E. H. Adelson, et al. The design and use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 13(9):891–
906, 1991.

[20] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In
Sixth International Conference on Computer Vision (ICCV), pages 839–846. IEEE,
1998.

[21] D. G. Lowe. Local feature view clustering for 3d object recognition. In Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages I–I. IEEE, 2001.

[22] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In
European Conference on Computer Vision, pages 404–417. Springer, 2006.

[23] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua. Brief:
Computing a local binary descriptor very fast. IEEE transactions on pattern anal-
ysis and machine intelligence, 34(7):1281–1298, 2011.

[24] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. In International Conference on Computer Vision (ICCV), pages
2564–2571. IEEE, 2011.

126

BIBLIOGRAPHY

[25] J. Canny. A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, (6):679–698, 1986.

[26] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 26(5):530–549, 2004.

[27] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierar-
chical image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 33(5):898–916, 2010.

[28] J. Pont-Tuset, P. Arbelaez, J. T. Barron, F. Marques, and J. Malik. Multi-
scale combinatorial grouping for image segmentation and object proposal genera-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
39(1):128–140, 2016.

[29] D. Marr and T. Poggio. Cooperative computation of stereo disparity: A cooper-
ative algorithm is derived for extracting disparity information from stereo image
pairs. Science, 194(4262):283–287, 1976.

[30] S. T. Barnard and M. A. Fischler. Computational stereo. ACM Computing Surveys
(CSUR), 14(4):553–572, 1982.

[31] U. R. Dhond and J. K. Aggarwal. Structure from stereo-a review. IEEE transac-
tions on systems, man, and cybernetics, 19(6):1489–1510, 1989.

[32] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision (IJCV),
47(1):7–42, 2002.

[33] M. Z. Brown, D. Burschka, and G. D. Hager. Advances in computational stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
25(8):993–1008, 2003.

[34] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison
and evaluation of multi-view stereo reconstruction algorithms. In 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 519–528. IEEE, 2006.

[35] D. L. Milgram. Computer methods for creating photomosaics. IEEE Transactions
on Computers, 100(11):1113–1119, 1975.

[36] S. Peleg. Elimination of seams from photomosaics. Computer Graphics and Image
Processing, 16(1):90–94, 1981.

[37] S. Mann and R. W. Picard. Virtual bellows: Constructing high quality stills
from video. In Proceedings of 1st International Conference on Image Processing,
volume 1, pages 363–367. IEEE, 1994.

127

BIBLIOGRAPHY

[38] R. Szeliski. Video mosaics for virtual environments. IEEE computer Graphics and
Applications, 16(2):22–30, 1996.

[39] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016.

[40] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view se-
lection for unstructured multi-view stereo. In European Conference on Computer
Vision (ECCV), 2016.

[41] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam.
In European Conference on Computer Vision (ECCV), pages 834–849. Springer,
2014.

[42] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 40(3):611–625, 2017.

[43] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2100–2106. IEEE, 2013.

[44] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense
surface mapping and tracking. In 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, pages 127–136. Ieee, 2011.

[45] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. Bundlefusion: Real-
time globally consistent 3d reconstruction using on-the-fly surface reintegration.
ACM Transactions on Graphics (ToG), 36(4):1, 2017.

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[47] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1–9, 2015.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[50] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-first AAAI
conference on artificial intelligence, 2017.

128

BIBLIOGRAPHY

[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[52] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[53] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 580–587,
2014.

[54] R. Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1440–1448, 2015.

[55] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Advances in neural information
processing systems (NeurIPS), pages 91–99, 2015.

[56] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
Ssd: Single shot multibox detector. In European Conference on Computer Vision
(ECCV), pages 21–37. Springer, 2016.

[57] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[58] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7263–7271, 2017.

[59] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, 2015.

[60] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI), 39(12):2481–2495, 2017.

[61] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical im-
age computing and computer-assisted intervention (MICCAI), pages 234–241.
Springer, 2015.

[62] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In
Proceedings of the IEEE Conference on Computer vision and Pattern Recognition,
pages 2881–2890, 2017.

129

BIBLIOGRAPHY

[63] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):834–848, 2017.

[64] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), pages 2961–2969,
2017.

[65] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. Panoptic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9404–9413, 2019.

[66] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and
V. Lepetit. Multimodal templates for real-time detection of texture-less objects in
heavily cluttered scenes. In International Conference on Computer Vision (ICCV),
pages 858–865. IEEE, 2011.

[67] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In Sensor
fusion IV: control paradigms and data structures, volume 1611, pages 586–606.
Spie, 1992.

[68] M. Rad and V. Lepetit. Bb8: A scalable, accurate, robust to partial occlusion
method for predicting the 3d poses of challenging objects without using depth. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 3828–3836, 2017.

[69] B. Tekin, S. N. Sinha, and P. Fua. Real-time seamless single shot 6d object
pose prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 292–301, 2018.

[70] S. Zakharov, W. Kehl, B. Planche, A. Hutter, and S. Ilic. 3d object instance recog-
nition and pose estimation using triplet loss with dynamic margin. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 552–
559. IEEE, 2017.

[71] P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d
pose estimation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3109–3118, 2015.

[72] I. Shugurov, S. Zakharov, and S. Ilic. Dpodv2: Dense correspondence-based 6 dof
pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021.

[73] Z. Li, G. Wang, and X. Ji. Cdpn: Coordinates-based disentangled pose network for
real-time rgb-based 6-dof object pose estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 7678–7687, 2019.

130

BIBLIOGRAPHY

[74] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas. Normal-
ized object coordinate space for category-level 6d object pose and size estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2642–2651, 2019.

[75] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian manifold:
Inferring dense correspondences for one-shot human pose estimation. In 2012
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
103–110. IEEE, 2012.

[76] R. A. Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human pose esti-
mation in the wild. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7297–7306, 2018.

[77] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[78] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

[79] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163,
2015.

[80] G. Pitteri, A. Bugeau, S. Ilic, and V. Lepetit. 3d object detection and pose
estimation of unseen objects in color images with local surface embeddings. In
Proceedings of the Asian Conference on Computer Vision (ACCV), 2020.

[81] G. Pitteri, A. Bugeau, S. Ilic, and V. Lepetit. 3d object detection and pose
estimation of unseen objects in color images with local surface embeddings. In
ACCV, 2020.

[82] M. Sundermeyer, M. Durner, E. Y. Puang, Z.-C. Marton, N. Vaskevicius, K. O.
Arras, and R. Triebel. Multi-path learning for object pose estimation across do-
mains. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 13916–13925, 2020.

[83] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[84] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[85] J. Heaton. Ian goodfellow, yoshua bengio, and aaron courville: Deep learning,
2018.

[86] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

131

BIBLIOGRAPHY

[87] S. Lyu and E. P. Simoncelli. Nonlinear image representation using divisive normal-
ization. In 2008 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–8. IEEE, 2008.

[88] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In 2009 IEEE 12th International Con-
ference on Computer Vision (ICCV), pages 2146–2153. IEEE, 2009.

[89] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine
learning (ICML), pages 448–456. PMLR, 2015.

[90] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization
help optimization? Advances in neural information processing systems (Neurips),
31, 2018.

[91] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[92] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[93] A. Lydia and S. Francis. Adagrad—an optimizer for stochastic gradient descent.
Int. J. Inf. Comput. Sci, 6(5):566–568, 2019.

[94] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[95] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[96] Y. Ma, S. Soatto, J. Košecká, and S. Sastry. An invitation to 3-d vision: from
images to geometric models, volume 26. Springer, 2004.

[97] R. Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[98] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation
representations in neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5745–5753, 2019.

[99] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

[100] S. Zakharov, I. Shugurov, and S. Ilic. Dpod: 6d pose object detector and refiner.
In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1941–1950, 2019.

132

BIBLIOGRAPHY

[101] K. Park, T. Patten, and M. Vincze. Pix2pose: Pixel-wise coordinate regression
of objects for 6d pose estimation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7668–7677, 2019.

[102] C. Song, J. Song, and Q. Huang. Hybridpose: 6d object pose estimation under
hybrid representations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 431–440, 2020.

[103] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. Pvnet: Pixel-wise voting
network for 6dof pose estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4561–4570, 2019.

[104] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d: Making rgb-
based 3d detection and 6d pose estimation great again. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 1521–1529, 2017.

[105] R. Kaskman, I. Shugurov, S. Zakharov, and S. Ilic. 6 dof pose estimation of
textureless objects from multiple rgb frames. In European Conference on Computer
Vision (ECCV) Workshops, pages 612–630. Springer, 2020.

[106] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lep-
etit. Gradient response maps for real-time detection of textureless objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 34(5), 2012.

[107] Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto. Fast 6d pose estimation
from a monocular image using hierarchical pose trees. In European Conference on
Computer Vision (ECCV). Springer, 2016.

[108] R. Rios-Cabrera and T. Tuytelaars. Discriminatively trained templates for 3d
object detection: A real time scalable approach. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages 2048–2055, 2013.

[109] W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit. Hashmod: A hashing
method for scalable 3d object detection. In BMVC, volume 1, page 2, 2015.

[110] T. Hodaň, X. Zabulis, M. Lourakis, Š. Obdržálek, and J. Matas. Detection and
fine 3d pose estimation of texture-less objects in rgb-d images. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4421–
4428. IEEE, 2015.

[111] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), volume 2. IEEE, 2006.

[112] M. Bui, S. Zakharov, S. Albarqouni, S. Ilic, and N. Navab. When regression
meets manifold learning for object recognition and pose estimation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6140–6146.
IEEE, 2018.

133

BIBLIOGRAPHY

[113] S. Zakharov, B. Planche, Z. Wu, A. Hutter, H. Kosch, and S. Ilic. Keep it unreal:
Bridging the realism gap for 2.5 d recognition with geometry priors only. In 2018
International Conference on 3D Vision (3DV), pages 1–11. IEEE, 2018.

[114] B. Planche, S. Zakharov, Z. Wu, A. Hutter, H. Kosch, and S. Ilic. Seeing beyond
appearance-mapping real images into geometrical domains for unsupervised cad-
based recognition. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2579–2586. IEEE, 2019.

[115] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel. Implicit
3d orientation learning for 6d object detection from rgb images. In Proceedings of
the european conference on computer vision (ECCV), pages 699–715, 2018.

[116] M. Sundermeyer, Z.-C. Marton, M. Durner, and R. Triebel. Augmented autoen-
coders: Implicit 3d orientation learning for 6d object detection. International
Journal of Computer Vision (IJCV), 128(3):714–729, 2020.

[117] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. Pvn3d: A deep point-
wise 3d keypoints voting network for 6dof pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 11632–11641, 2020.

[118] O. Hosseini Jafari, S. K. Mustikovela, K. Pertsch, E. Brachmann, and C. Rother.
ipose: instance-aware 6d pose estimation of partly occluded objects. In Asian
Conference on Computer Vision (ACCV), pages 477–492. Springer, 2018.

[119] T. Hodan, D. Barath, and J. Matas. Epos: Estimating 6d pose of objects with
symmetries. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11703–11712, 2020.

[120] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-
time 6-dof camera relocalization. In IEEE International Conference on Computer
Vision (ICCV), 2015.

[121] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers.
Image-based localization using lstms for structured feature correlation. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[122] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression
with deep learning. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[123] C. Wang, D. Xu, Y. Zhu, R. Mart́ın-Mart́ın, C. Lu, L. Fei-Fei, and S. Savarese.
Densefusion: 6d object pose estimation by iterative dense fusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3343–3352, 2019.

134

BIBLIOGRAPHY

[124] S. Umeyama. Least-squares estimation of transformation parameters between two
point patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence
(TPAMI), (4):376–380, 1991.

[125] F. Manhardt, G. Wang, B. Busam, M. Nickel, S. Meier, L. Minciullo, X. Ji, and
N. Navab. Cps++: Improving class-level 6d pose and shape estimationfrom monoc-
ular images with self-supervised learning. arXiv preprint arXiv:2003.05848v3,
2020.

[126] X. Chen, Z. Dong, J. Song, A. Geiger, and O. Hilliges. Category level object pose
estimation via neural analysis-by-synthesis. In European Conference on Computer
Vision (ECCV), pages 139–156. Springer, 2020.

[127] F. Li, I. Shugurov, B. Busam, M. Li, S. Yang, and S. Ilic. Polarmesh: A star-
convex 3d shape approximation for object pose estimation. IEEE Robotics and
Automation Letters (RA-L), 7(2):4416–4423, 2022.

[128] MVTec. Bop: Benchmark for 6d object pose estimation: https://www.mvtec.

com/products/halcon/, 2019.

[129] B. Drost and S. Ilic. 3d object detection and localization using multimodal point
pair features. In 2012 Second International Conference on 3D Imaging, Modeling,
Processing, Visualization & Transmission, pages 9–16. IEEE, 2012.

[130] T. Birdal and S. Ilic. Point pair features based object detection and pose estimation
revisited. In 2015 International Conference on 3D Vision (3DV), pages 527–535.
IEEE, 2015.

[131] S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige. Going further with
point pair features. In European Conference on Computer Vision (ECCV), pages
834–848. Springer, 2016.

[132] H. Deng, T. Birdal, and S. Ilic. Ppfnet: Global context aware local features for
robust 3d point matching. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pages 195–205, 2018.

[133] H. Deng, T. Birdal, and S. Ilic. Ppf-foldnet: Unsupervised learning of rotation
invariant 3d local descriptors. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 602–618, 2018.

[134] H. Deng, T. Birdal, and S. Ilic. 3d local features for direct pairwise registration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3244–3253, 2019.

[135] H. Yu, F. Li, M. Saleh, B. Busam, and S. Ilic. Cofinet: Reliable coarse-to-fine cor-
respondences for robust pointcloud registration. Advances in Neural Information
Processing Systems (NeurIPS), 34:23872–23884, 2021.

135

https://www.mvtec.com/products/halcon/
https://www.mvtec.com/products/halcon/

BIBLIOGRAPHY

[136] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in Neural Information Processing
Systems (NeurIPS), 28, 2015.

[137] V. N. Nguyen, Y. Hu, Y. Xiao, M. Salzmann, and V. Lepetit. Templates for 3d
object pose estimation revisited: Generalization to new objects and robustness to
occlusions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6771–6780, 2022.

[138] K. Park, A. Mousavian, Y. Xiang, and D. Fox. Latentfusion: End-to-end differen-
tiable reconstruction and rendering for unseen object pose estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10710–10719, 2020.

[139] Y. He, Y. Wang, H. Fan, J. Sun, and Q. Chen. Fs6d: Few-shot 6d pose estimation
of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6814–6824, 2022.

[140] Y. Xiao, X. Qiu, P.-A. Langlois, M. Aubry, and R. Marlet. Pose from shape: Deep
pose estimation for arbitrary 3d objects. arXiv preprint arXiv:1906.05105, 2019.

[141] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing
systems (NeurIPS), 30, 2017.

[142] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 945–953, 2015.

[143] C. Harris and C. Stennett. Rapid-a video rate object tracker. In British Machine
Vision Conference (BMVC), pages 1–6, 1990.

[144] F. Manhardt, W. Kehl, N. Navab, and F. Tombari. Deep model-based 6d pose
refinement in rgb. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 800–815, 2018.

[145] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In Pro-
ceedings third international conference on 3-D digital imaging and modeling, pages
145–152. IEEE, 2001.

[146] S. Rusinkiewicz. A symmetric objective function for icp. ACM Transactions on
Graphics (TOG), 38(4):1–7, 2019.

[147] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat. Comparing icp variants
on real-world data sets. Autonomous Robots, 34(3):133–148, 2013.

[148] J. Sock, S. Hamidreza Kasaei, L. Seabra Lopes, and T.-K. Kim. Multi-view 6d ob-
ject pose estimation and camera motion planning using rgbd images. In Proceedings

136

BIBLIOGRAPHY

of the IEEE International Conference on Computer Vision (ICCV) Workshops,
pages 2228–2235, 2017.

[149] Ö. Erkent, D. Shukla, and J. Piater. Integration of probabilistic pose estimates
from multiple views. In European Conference on Computer Vision (ECCV), pages
154–170. Springer, 2016.

[150] C. Li, J. Bai, and G. D. Hager. A unified framework for multi-view multi-class
object pose estimation. In Proceedings of the european conference on computer
vision (ECCV), pages 254–269, 2018.

[151] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution classification
for the perspective-three-point problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(8):930–943, 2003.

[152] J. A. Hesch and S. I. Roumeliotis. A direct least-squares (dls) method for pnp.
In 2011 International Conference on Computer Vision (ICCV), pages 383–390.
IEEE, 2011.

[153] A. Penate-Sanchez, J. Andrade-Cetto, and F. Moreno-Noguer. Exhaustive lin-
earization for robust camera pose and focal length estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 35(10):2387–2400, 2013.

[154] T. Collins and A. Bartoli. Infinitesimal plane-based pose estimation. International
Journal of Computer Vision (IJCV), 109(3):252–286, 2014.

[155] G. Terzakis and M. Lourakis. A consistently fast and globally optimal solution
to the perspective-n-point problem. In European Conference on Computer Vision
(ECCV), pages 478–494. Springer, 2020.

[156] E. Brachmann and C. Rother. Learning less is more-6d camera localization via
3d surface regression. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4654–4662, 2018.

[157] D. Campbell, L. Liu, and S. Gould. Solving the blind perspective-n-point prob-
lem end-to-end with robust differentiable geometric optimization. In European
Conference on Computer Vision (ECCV), pages 244–261. Springer, 2020.

[158] G. Wang, F. Manhardt, F. Tombari, and X. Ji. Gdr-net: Geometry-guided direct
regression network for monocular 6d object pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 16611–16621, 2021.

[159] B. Chen, A. Parra, J. Cao, N. Li, and T.-J. Chin. End-to-end learnable geometric
vision by backpropagating pnp optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8100–
8109, 2020.

137

BIBLIOGRAPHY

[160] Y. Hu, P. Fua, W. Wang, and M. Salzmann. Single-stage 6d object pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2930–2939, 2020.

[161] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac. In Joint Pattern
Recognition Symposium, pages 236–243. Springer, 2003.

[162] O. Chum, T. Werner, and J. Matas. Two-view geometry estimation unaffected
by a dominant plane. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), volume 1, pages 772–779. IEEE, 2005.

[163] D. Barath and J. Matas. Graph-cut ransac. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6733–6741, 2018.

[164] D. Barath, J. Matas, and J. Noskova. Magsac: marginalizing sample consensus.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10197–10205, 2019.

[165] D. Barath, J. Noskova, M. Ivashechkin, and J. Matas. Magsac++, a fast, reliable
and accurate robust estimator. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1304–1312, 2020.

[166] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm. Usac: A universal
framework for random sample consensus. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 35(8):2022–2038, 2012.

[167] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and
C. Rother. Dsac-differentiable ransac for camera localization. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
6684–6692, 2017.

[168] E. Brachmann and C. Rother. Neural-guided ransac: Learning where to sample
model hypotheses. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 4322–4331, 2019.

[169] E. Brachmann and C. Rother. Visual camera re-localization from rgb and rgb-d
images using dsac. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2021.

[170] B. Drost, M. Ulrich, P. Bergmann, P. Hartinger, and C. Steger. Introducing mvtec
itodd-a dataset for 3d object recognition in industry. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV) Workshops, pages 2200–
2208, 2017.

[171] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza. A dataset for improved
rgbd-based object detection and pose estimation for warehouse pick-and-place.
IEEE Robotics and Automation Letters (RA-L), 1(2):1179–1185, 2016.

138

BIBLIOGRAPHY

[172] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim. Latent-class hough forests
for 3d object detection and pose estimation. In European Conference on Computer
Vision (ECCV), pages 462–477. Springer, 2014.

[173] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 248–255. Ieee, 2009.

[174] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In European Conference
on Computer Vision (ECCV), pages 740–755. Springer, 2014.

[175] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[176] T. Hodan, J. Matas, and S. Obdrzalek. On evaluation of 6d object pose estimation.
In European Conference on Computer Vision (ECCV), pages 606–619. Springer,
2016.

[177] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 580–587,
2014.

[178] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 22(11):1330–1334, 2000.

[179] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige. On pre-trained image
features and synthetic images for deep learning. In Proceedings of the European
Conference on Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[180] M. Oberweger, M. Rad, and V. Lepetit. Making deep heatmaps robust to partial
occlusions for 3d object pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 119–134, 2018.

[181] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon. Autolabeling 3d objects
with differentiable rendering of sdf shape priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 12224–
12233, 2020.

[182] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A differentiable renderer
for image-based 3d reasoning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7708–7717, 2019.

[183] J. T. Barron. A general and adaptive robust loss function. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4331–4339, 2019.

139

BIBLIOGRAPHY

[184] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In Fourth International Con-
ference on 3D Vision (3DV), pages 565–571. IEEE, 2016.

[185] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[186] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[187] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018.

[188] M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan, Y. Zidan,
M. Elbadrawy, M. Knauer, H. Katam, and A. Lodhi. Blenderproc: Reducing the
reality gap with photorealistic rendering.

[189] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 1985.

[190] M. Bui, T. Birdal, H. Deng, S. Albarqouni, L. Guibas, S. Ilic, and N. Navab. 6d
camera relocalization in ambiguous scenes via continuous multimodal inference.
In European Conference on Computer Vision (ECCV), pages 139–157. Springer,
2020.

[191] F. Manhardt, D. M. Arroyo, C. Rupprecht, B. Busam, T. Birdal, N. Navab, and
F. Tombari. Explaining the ambiguity of object detection and 6d pose from visual
data. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 6841–6850, 2019.

[192] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim. Recovering
6d object pose and predicting next-best-view in the crowd. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3583–3592, 2016.

[193] D. Xu, D. Anguelov, and A. Jain. Pointfusion: Deep sensor fusion for 3d bounding
box estimation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 244–253, 2018.

[194] J. Vidal, C.-Y. Lin, X. Lladó, and R. Mart́ı. A method for 6d pose estimation of
free-form rigid objects using point pair features on range data. Sensors, 18(8):2678,
2018.

[195] I. Shugurov, I. Pavlov, S. Zakharov, and S. Ilic. Multi-view object pose refine-
ment with differentiable renderer. IEEE Robotics and Automation Letters (RA-L),
6(2):2579–2586, 2021.

[196] F. Li, I. Shugurov, B. Busam, S. Yang, and S. Ilic. Ws-ope: Weakly supervised 6-d
object pose regression using relative multi-camera pose constraints. IEEE Robotics
and Automation Letters (RA-L), 7(2):3703–3710, 2022.

140

BIBLIOGRAPHY

[197] F. Li, H. Yu, I. Shugurov, B. Busam, S. Yang, and S. Ilic. Nerf-pose: A first-
reconstruct-then-regress approach for weakly-supervised 6d object pose estimation.
arXiv preprint arXiv:2203.04802, 2022.

[198] B. Busam, H. J. Jung, and N. Navab. I like to move it: 6d pose estimation as an
action decision process. arXiv preprint arXiv:2009.12678, 2020.

[199] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In Sensor
fusion IV: control paradigms and data structures, volume 1611, pages 586–606.
Spie, 1992.

[200] I. Rocco, R. Arandjelovic, and J. Sivic. Convolutional neural network architecture
for geometric matching. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6148–6157, 2017.

[201] I. Rocco, R. Arandjelović, and J. Sivic. Convolutional neural network architecture
for geometric matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), pages 1–14, 2018.

[202] I. Rocco, R. Arandjelović, and J. Sivic. End-to-end weakly-supervised seman-
tic alignment. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6917–6925, 2018.

[203] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing
Systems (NeurIPS), 32, 2019.

141

A Authored and Co-Authored Publications

Authored

1. S. Zakharov*, I. Shugurov*, S. Ilic. Dpod: 6d pose object detector and refiner.
IEEE International Conference on Computer Vision (ICCV), 2019 (* equal contri-
bution)

2. I. Shugurov*, I. Pavlov*, S. Zakharov, S. Ilic. Multi-view object pose refinement
with differentiable renderer. IEEE Robotics and Automation Letters (RA-L), 2021
(* equal contribution)

3. I. Shugurov, S. Zakharov, S. Ilic. Dpodv2: Dense correspondence-based 6 dof
pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021

4. I. Shugurov, F. Li, B. Busam, S. Ilic. OSOP: A Multi-Stage One Shot Object
Pose Estimation Framework. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022

Co-Authored

1. R. Kaskman, S. Zakharov, I. Shugurov, S. Ilic. Homebreweddb: Rgb-d dataset for
6d pose estimation of 3d objects. EEE/CVF International Conference on Computer
Vision (ICCV) Workshops, 2019

2. R. Kaskman, I. Shugurov, S. Zakharov, S. Ilic. 6 dof pose estimation of texture-
less objects from multiple rgb frames. European Conference on Computer Vision
(ECCV) Workshops, 2020

3. F. Li, I. Shugurov, B. Busam, S. Yang, S. Ilic. Ws-ope: Weakly supervised 6-d
object pose regression using relative multi-camera pose constraints. IEEE Robotics
and Automation Letters (RA-L), 2022

4. F. Li, I. Shugurov, B. Busam, M. Li, S. Yang, S. Ilic. Polarmesh: A star-convex
3d shape approximation for object pose estimation. IEEE Robotics and Automation
Letters (RA-L), 2022

5. F. Li, H. Yu, I. Shugurov, B. Busam, S. Yang, S. Ilic. NeRF-Pose: First-
Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Esti-
mation. arXiv preprint, 2022

143

A Authored and Co-Authored Publications

6. H. Yu, J. Hou, Z. Qin, M. Saleh, I. Shugurov, Kai Wang, B. Busam, S. Ilic. CoFi-
RIGA: Coarse-to-Fine Correspondences from Rotation-Invariant and Globally-Aware
Descriptors for Point Cloud Registration. Under Review, 2022

7. S. Reddy Vutukur, I. Shugurov, B. Busam, A. Hutter, S. Ilic. WeLSA: Learning
To Predict 6D Pose From Weakly Labeled Data Using Shape Alignment. European
Conference on Computer Vision (ECCV), 2022

Patents

1. I. Shugurov, A. Hutter, S. Zakharov, S. Ilic. Dense 6-dof pose object detector.
U.S. Patent Application No. 17/427,231. 2022

144

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Problem Definition
	1.2 Dense Correspondences
	1.3 Pose Estimation of Novel Objects
	1.4 Challenges
	1.5 Contributions
	1.6 Outline

	2 Theory and Fundamentals
	2.1 Neural Networks
	2.1.1 Fully-Connected Neural Networks
	2.1.2 Convolutional Neural Networks
	2.1.3 Essential Components of Neural Networks

	2.2 Geometric Prerequisites
	2.2.1 Rigid Body Transformations
	2.2.2 Rotation Parameterization
	2.2.3 Pinhole Camera Model

	3 Pose Estimation
	3.1 Main Challenges
	3.2 Related Work
	3.2.1 Template and Retrieval-Based Methods
	3.2.2 Correspondence-Based Methods
	3.2.3 Direct Pose Regression
	3.2.4 Generazability of Pose Estimation Method to Novel Objects
	3.2.5 Pose Refinement
	3.2.5.1 RGB Methods
	3.2.5.2 Depth Methods
	3.2.5.3 Multi-View Methods

	3.3 Pose Estimation From Correspondences
	3.3.1 Perspective-n-Point (PnP)
	3.3.2 Kabsch Algorithm
	3.3.3 RANdom SAmple Consensus (RANSAC)

	3.4 Evaluation
	3.4.1 Datasets
	3.4.2 Pose Quality Metrics

	4 Pose Estimation with Dense Correspondences
	4.1 Introduction
	4.2 Methodology
	4.2.1 Data Preparation
	4.2.1.1 Correspondence Mapping
	4.2.1.2 Online Data Generation and Augmentation

	4.3 Dense Object Detection Pipeline
	4.4 Deep model-based pose refinement
	4.5 Training Details
	4.6 Implementation Details
	4.7 Evaluation
	4.7.1 Datasets
	4.7.2 Evaluation Metrics
	4.7.3 Single Object Pose Estimation
	4.7.4 Multiple Object Pose Estimation

	4.8 Additional Experiments
	4.9 RANSAC Iterations
	4.9.1 Runtime analysis
	4.9.2 Refinement
	4.9.3 Correspondence Quality
	4.9.4 Multiple Instance Detection
	4.9.5 UVW Mapping

	4.10 Conclusion

	5 Multi-View Pose Refinement with Dense Correspondences
	5.1 Introduction
	5.2 Proposed Method
	5.2.1 Object Detection and Pose Estimation
	5.2.2 Pose refinement with differentiable renderer
	5.2.3 Autolabeling

	5.3 Experiments
	5.4 Conclusions

	6 Analysis of Pose Estimation with Dense Correspondences
	6.1 Introduction
	6.2 Methodology
	6.2.1 2D Object Detection
	6.2.2 Pose Parameterization With Dense Correspondences
	6.2.3 CENet: Correspondence Estimation Network
	6.2.4 Inference with The Correspondence Estimation Network
	6.2.5 Multi-View Refinement With Differentiable Renderer
	6.2.6 Implementation Details

	6.3 Data Preparation
	6.3.1 RGB Data Preparation
	6.3.2 Depth Data Preparation
	6.3.3 Handling Object Symmetries

	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Results
	6.4.3 Ablation Studies

	6.5 Conclusions

	7 One-Shot Pose Estimation Without Re-Training
	7.1 Introduction
	7.2 Methodology
	7.2.1 One-Shot Segmentation
	7.2.2 Template Matching
	7.2.3 One-Shot Dense Correspondence Estimation
	7.2.4 Pose Hypothesis Verification

	7.3 Experiments
	7.3.1 2D Object Localization
	7.3.2 6 DoF Pose Results
	7.3.3 Ablation Studies

	7.4 Implementation Details
	7.5 Limitations
	7.6 Conclusion

	8 Conclusion & Outlook
	8.1 Summary
	8.2 Limitations and Future Work

	Bibliography
	A Authored and Co-Authored Publications

