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Zusammenfassung
Wir streben nach neuen Berechnungsverfahren für symmetrischen multi-marginalen
Optimalen Transport (MMOT) mit Wenig-Körper Interaktionskosten. Bei wach-
sender Anzahl an Marginalen wird MMOT prohibitiv hochdimensional. Wir un-
tersuchen die Suffizienz des klassischen dünnbesetzten Ansatzes. Außerdem stellen
wir eine effiziente Methode vor, die Näherungslösungen im Fall von 2-Körper In-
teraktionen berechnet. Zuletzt zeigen wir, wie die Methode auf k-Körper Interak-
tionen für k > 2 angewendet werden kann.

Summary
We work towards new computational schemes for symmetric multi-marginal op-
timal transport (MMOT) with few-body interaction costs. MMOT becomes pro-
hibitively high-dimensional for a growing number of marginals. We investigate
the validity of the classic sparse ansatz (Monge’s ansatz). Further, we introduce
an efficient method that computes approximate solutions in the case of 2-body
interactions. Finally, we provide an ingredient that allows us to apply the method
to k-body interactions for k > 2.
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Success is not final, failure is not fatal: it is the courage to continue that counts.

- Winston S. Churchill
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1 Introduction
Since its conception in 1781, the theory of optimal transport has gone from the
problem of shovelling a pile of sand into a hole with the minimum effort possi-
ble to a well-developed and active field of research with connections to numerous
branches in mathematics and a variety of applications. In more recent history,
efforts have been made to understand an extension to multiple marginals. While
the original problem aims at optimally coupling two marginals, the multi-marginal
problem aims at optimally coupling multiple marginals. Such multi-marginal op-
timal transport (MMOT) problems arise for example in fluid dynamics, electronic
structure, and data science.

The high-dimensional nature of MMOT problems affects the computation of their
solutions. MMOT problems suffer from the curse of dimension: if we want to
couple N marginals each of which lives on ` discretization points the admissible
couplings consist of `N components. The ensuing exponential growth of the stor-
age complexity renders standard methods infeasible for growing N .

In fluid dynamics, electronic structure, and data science the number of marginals
N corresponds to the number of timesteps, electrons, and datasets, respectively.
Consequently, these applications call for large N . With the standard being infea-
sible, new computational methods (possibly ones tailored to specific applications)
are required. In this dissertation, we work towards such a new computational
method for the problems arising in electronic structure. We use methods from
convex analysis, optimization, discrete mathematics, and measure as well as prob-
ability theory.

Outline. In Chapter 2, we successively introduce the theories of two- and multi-
marginal optimal transport.
In Chapter 3, we explain what motivates this dissertation. We shine a light
on the role of MMOT in electronic structure: continuous symmetric MMOT
problems arise as strong-interaction limit. Applying a structure-preserving dis-
cretization leads to discrete symmetric MMOT problems. We provide a measure-
theoretic and linear-programming formulation of these discrete problems. Despite
the dimension-reduction due to the symmetry, these problems still suffer from the
curse of dimension.
We dedicated Chapter 4, Chapter 5, and 6 to Core Publication A.1, Core Publi-
cation A.2, and Further Publication B.1, respectively. In each of these chapters,
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we highlight the main contributions of the article at hand and sketch the literary
landscape surrounding them.
In Core Publication A.1, we numerically study the insufficiency of Monge’s ansatz
(the classic sparse ansatz in optimal transport) for symmetric MMOT on finite
state spaces with a uniform marginal constraint. This study is limited to small
numbers of marginals N and states `. Despite its limitation, the study bore fruit:
it inspired a necessary support-condition on optimizers that applies to general
N, ` � 2 and symmetric two-body interactions whose diagonal entries exceed a
specified problem-dependent threshold. If N and ` display specified relationships,
the necessary support-condition proved to be strong enough to guarantee the ex-
istence of a unique optimizer and not only imply its compliance with Monge’s
ansatz but also explicitly provide this optimizer. In Section 4.1, we recall relevant
notions of convexity. In Section 4.2, we discuss the insufficiency of the classic
sparse ansatz, Monge’s ansatz. In Section 4.3, we relay a new sparse ansatz for
symmetric MMOT on finite state spaces which is referred to as quasi-Monge. It
was recently introduced in [44], where it was proven to be sufficient.
In Core Publication A.2, we introduce a simple and extremely efficient compu-
tational method, called Genetic Column Generation, that provides approximate
solutions for symmetric MMOT problems on finite state spaces with two-body in-
teraction costs. In Section 5.1, we describe the standard computational method in
two marginals, Sinkhorn’s algorithm, and explain, why its multi-marginal adap-
tation suffers from the curse of dimension. In Section 5.2, we present Genetic
Column Generation in the context of the simplex method. In Section 5.3, we elab-
orate on recent complexity-theoretic work on MMOT. Finally, in Section 5.4, we
draw a conclusion on Genetic Column Generation.
In Further Publication B.1, we shine a light on the convex geometry of the set
of k-point marginals of certain high-dimensional objects. The key advancement
consists in an explicit polynomial formula that expresses the extreme points of the
set in terms of their one-point marginal. In Section 6.1, we relate the findings in
Further Publication B.1 to Genetic Column Generation. In Section 6.2, we present
the findings and preceding literature in their bare form. In Section 6.3, we trans-
late our findings into probabilistic nomenclature. This leads to a finite form of de
Finetti’s theorem, which we compare and contrast with the original, infinite, form
and an alternative finite form.
In the appendix, we included the contributed articles: Core Publication A.1, Core
Publication A.2, and Further Publication B.1. Each article is preceded by a sum-
mary, a declaration of the present authors contribution, as well as the publisher’s
permission to include.

Notation. We tried to keep the notation as intuitive and simple as possible



5 1. Introduction

and explained each piece of notation at first appearance with the exception of
P (X) and Cb (X) whose definitions we pre-empt. With P (X), we denote the set
of (Borel) probability measures on X. For most parts, X will be a finite state
space consisting of a finite number of pairwise distinct elements. In Chapter 6, for
example, we go as far as allowing X to be a Polish space, a much more general
notion of state space. Finally, Cb (X) consists of all bounded continuous functions
on X.
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2 The theory of optimal transport
The goal of this chapter is to briefly introduce the theory of optimal transport
(OT). We pay tribute to the origins of this very active field of research while fo-
cussing on the aspects of the theory relevant to this dissertation. The question
stearing this introduction lies at the heart of the field and discusses if we can trans-
port efficiently or even optimally without splitting mass. While this question has
always been of theory-driven interest, the potential use of OT in high-dimensional
computations has prompted a data-driven interest [40]. Transports that do not
split mass move all the mass located at a source point x to a uniquely determined
sink point y = T (x). Storing ’no-mass-split transports’ is much cheaper than stor-
ing ’mass-split transports’: for a given source point x one only has to remember
the unique sink point y instead of remembering multiple sink points y1, . . . , ym
and how much mass is transported to each one of them. The central task of the
present dissertation is to use the data-reduction implied by sparse optimizers to
design an efficient computational method for high-dimensional OT problems. This
makes the question whether sparse optimizers do exist of central importance.

Our presentation of the topic leans on the excellent textbook by Santambrogio
[77] titled "Optimal Transport for Applied Mathematicians". We drew further in-
spiration from the lecture notes [40] on OT by Gero Friesecke which are perfectly
suited to guide novices. As indicated by its name, the book by Santambrogio
tells the OT-story from an application-driven point of view. For complementary
reading, we refer the reader to the classic textbooks by Villani [82, 83] and the
probability-flavoured accounts by Rachev and Rüschendorf [74, 75].

2.1 Two-marginal optimal transport

In 1781 Gaspard Monge [68] initialized the study of a transport problem:
Move a pile of sand from a grass-area into a sandbox in
such a manner that no sand is left on the grass and the
sandbox is filled up evenly. Minimize your effort.

In modern mathematical language, densities

f1, f2 : Rd
! R with f1, f2 � 0 and

Z
f1 =

Z
f2 = 1

7



2.1. Two-marginal optimal transport 8

Figure 2.1: Visualization of the motivating problem inspired by a similar illustra-
tion in [82].

embodied the pile of sand on the grass and the hole in the sandbox. The natural
choice for d is 2 or 3. Note that the mass of sand that we have to move equals the
mass of sand that the sandbox requires. To represent the transport itself, Monge
used measurable maps

T : Rd
! Rd, x1 7! T (x1) .

For any x1, T transports all the mass located at x1 to T (x1). The covered distance

|T (x1)� x1|

measures the effort it takes to move one unit of mass from x1 to T (x1). Here | · |

denotes the Euclidean norm. Monge wanted to minimize the effort of the transport
Z

Rd

|T (x1)� x1|f1 (x1) dx1.

So far we have not subjected the maps T to any constraints. Therefore, T (x) = x
would be a valid choice with transport cost 0: without any constraints the identity
would describe an optimal transport, independent of the choice of f2 (the hole).
This is hardly what Monge wanted! How did he incorporate the target density f2
in his mathematical model of the problem? We delay answering this question until
we have introduced a more general version of Monge’s problem.

In our general problem version, X1 and X2 denote the source respectively sink
space. Textbook accounts often present (at least part of) the subject in the
general framework of Polish spaces (which are complete and separable metric
spaces). Here, the reader can still think of the underlying spaces X1 and X2

to be compact subsets of the Euclidean space Rd. For our intents and pur-
poses - bringing the reader in touch with the roots of the later presented re-
search - we believe the simplification to be appropriate. Given X1 and X2, prob-
ability measures µ1 2 P (X1) , µ2 2 P (X2) and a more general cost function
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c : X1 ⇥ X2 ! R [ {+1} replace the densities f1, f2 and the ’covered distance’
|x1 � x2|. The notion of transport - a map T transports µ1 onto µ2 - stays the
same. Figure 2.2 shows what roles the problem-inputs X1, X2, µ1, µ2, and c play
in the ’sandbox-example’.

Figure 2.2: The present figure visualizes all components of Monge’s OT. We take
X1 and X2 to be the surface area beneath the pile of sand and above the hole in the
sandbox, respectively; µ1 and µ2 then are probability measures on X1, respectively,
X2 and form the pile of sand, respectively, the hole in the sandbox. The arrows
represent a transport T : for any given source point x1, the arrow originating at
x1 points to the uniquely determined sink point T (x1). The numbers above the
arrows show how much it costs to transport one unit of mass from the source
point of the arrow to its sink point. The given example highlights the fact that we
deal with a general cost function c, which does not necessarily increase with the
distance from source point to sink point.

We are now ready to formalize Monge’s OT problem. For a given input-tuple
(X1, X2, µ1, µ2, c), it reads as follows. (Check below for a definition of the push-
forward T#µ1 of µ1 along a measurable map T .)

Monge’s OT problem aims to

Minimize I[T ] :=

Z

X1

c (x1, T (x1)) dµ1(x1)

subject to T 2 {T : X1 ! X2 : T is measurable and fulfills T#µ1 = µ2| {z }
in words: T

transports µ1
onto µ2

}.
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Now, how did Monge incorporate the target µ2? Take a measurable map
T : X1 ! X2 that is admissible regarding an instance (X1, X2, µ1, µ2, c) of Monge
OT - a so-called transport map. The notion of transport - T pushes µ1 onto µ2

- takes on the form ’T#µ1 = µ2’. For a measurable map T : X1 ! X2 and a
probability measure µ1 2 P (X1), the measure T#µ1 2 P (X2) is defined by

T#µ1(A) = µ1

�
T�1(A)

�
for all measurable A ⇢ X2, (2.1)

or
Z

X2

'd (T#µ1) =

Z

X1

' � Tdµ1 for all measurable functions ' on X2. (2.2)

We refer to T#µ1 as the push-forward of µ1 along T . In Figure 2.3 the reader can
see that the push-forward constraint, T#µ1 = µ2, ensures that the mass of sand
moved to a part of the hole A ⇢ X2 - µ1 (T�1(A)) - corresponds to the mass of
sand required to fill the part A evenly - µ2(A).

 

 

Figure 2.3: The present figure visualizes the meaning of the constraint T#µ1 =
µ2. The probability measures µ1 and µ2 are fixed inputs for any given instance
of Monge’s OT. Any such instance then only admits a measurable map T as
admissible transport if it fulfills T#µ1 = µ2, that is: for any subset A of X2, the
mass of sand that is moved to A - (T#µ1) (A) = µ1 (T�1(A)) (mass with wavy
lines) - has to equal the mass of sand required at A - µ2(A) (mass with spots).

Many questions surrounding Monge’s OT problem - as for instance the fundamen-
tal issue whether minimizers do exist - remained open for more than 150 years. In
came Leonid Kantorovich [56] in 1942 with a change of perspective that led to a
different OT problem formulation.
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Kantorovich’s OT problem aims to

Minimize C[�] :=

Z

X1⇥X2

c (x1, x2) d� (x1, x2)

subject to � 2 {� 2 P (X1 ⇥X2) : MX1� = µ1 and MX2� = µ2| {z }
in words: � couples µ1 and µ2

}.

The one-point marginal maps MX1 : P (X1 ⇥X2)! P (X1) and
MX2 : P (X1 ⇥X2)! P (X2) are defined as follows.

MX1� (A1) = � (A1 ⇥X2) for all measurable A1 ⇢ X1

MX2� (A2) = � (X1 ⇥ A2) for all measurable A2 ⇢ X2.

They extract the one-point marginals regarding the first (MX1) and the second
(MX2) coordinate. Paralleling the term ’transport maps’, transport plans refer
to probability measures on X1 ⇥ X2 that are admissible regarding an instance
(X1, X2, µ1, µ2, c) of Kantorovich OT.

Where is the transport in Kantorovich’s OT problem formulation? Just
as in Monge OT, any admissible ’point’ represents a possible transport. Here,
the admissible ’points’ are probability measures on X1 ⇥X2 that fulfill the given
marginal constraints. Any such probability measure � captures a transport in a
’bookkeeping’ manner: for A1 ⇢ X1 and A2 ⇢ X2 measurable, the amount of mass
moving from A1 to A2 is given by � (A1 ⇥ A2). The first marginal constraint

� (A1 ⇥X2) = µ1 (A1) for all A1 ⇢ X1 measurable

ensures that it is exactly the pile of sand that we transport. The second marginal
constraint

� (X1 ⇥ A2) = µ2 (A2) for all A2 ⇢ X2 measurable

ensures that we fill up the hole evenly. As � (X1 ⇥ A2) equals all the mass that
we transport to A2, the second marginal constraint parallels the push-forward
constraint. For an illustration of the differences between Kantorovich and Monge
transports see Figure 2.4.

How do both problems relate to one another? Any transport map T gives
rise to a transport plan, denoted by �T , with the same transport cost. Assume
we face a transport problem and take both formulations - Kantorovich’s as well
as Monge’s - into account. Any given transport map T fulfills - by definition -



2.1. Two-marginal optimal transport 12

Figure 2.4: The present figure points out the difference between Kantorovich
(green) and Monge (red) OT. The role of the spaces X1 and X2, the measures
µ1 and µ2, and the cost function c is the same in both formulations. The differ-
ence consists in the manner in which they model the transport. Regarding Monge’s
OT, any given source point x1 2 X1 only chooses its sink point T (x1) = x2 2 X2.
This choice then allocates all the mass at x1 to the sink T (x1). The appearance of
each individual transport arrow carries meaning: the smaller the distance between
two dashes, the more mass is moved. Accordingly, we show all the red arrows in
their entirety. Regarding Kantorovich’s OT, any given source point may choose
multiple sink points and distribute its mass among them. The illustration shows
that the source point y1 partners with at least three sink points - y2, y0

2, and y00
2 -

and moves most of its mass to y2; the source point x1, however, only partners with
x0
2 and moves all its mass there, no mass goes to x2. While maps from X1 to X2

embody transports in Monge OT, probability measures on X1 ⇥ X2 take on this
role in Kantorovich OT. The reader can think of them as a plan laying out how
much mass is moved from any source point x1 2 X1 to any sink point x2 2 X2.

T#µ1 = µ2. Let (id, T ) : X1 ! X1 ⇥ X2 be defined by x1 7! (x1, T (x1)). Then
the probability measure �T = (id, T )# µ1 on X1 ⇥X2 fulfills both marginal condi-
tions and therefore is a transport plan. Plugging in �T in the objective function
of Kantorovich’s OT problem C[·] and using (2.2) shows that C[�T ] = I[T ] does
indeed hold. Kantorovich adapted Monge’s OT problem by relaxing the idea of
what transport is. In his textbook, Santambrogio presents a relaxation result,
which - in his own words - "means, roughly speaking, that (KP) is somehow the
minimal extension of (MP) which has some chances to admit a minimizer" [77, p.
3]. Here (KP) and (MP) refer to Kantorovich’s respectively Monge’s OT problem.
The result also implies that the infima of both formulations coincide (under the
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given - rather general - assumptions).
Further, if a transport plan � is of the form (id, T )#µ1 for a measurable map
T : X1 ! X2 then T is a transport map. Transport plans that split mass as shown
in Figure 2.4 have no corresponding transport map. Accordingly, a transport map
can push a source measure µ1 that is given by �a1 for some a1 2 X1 only onto
another Dirac measure µ2 = �a2 for some a2 2 X2 (with a2 = T (a1)).
Before coming to a conclusion on the relation between both formulations, we draw
the attention of the reader again to Figure 2.4. It already indicates "Monge ⇢
Kantorovich": transport maps induce exactly those transport plans that consist of
complete arrows only. Readers with a background in discrete mathematics might
see the similarity to integer points in a polytope - like permutation matrices in
the set of biostochastic matrices. In Chapter 4, we will take a deeper look at this
similarity.
Let us finally summarize the relationship between Kantorovich and Monge OT.
Kantorovich introduced a new OT framework that elegantly enclosed Monge’s
notion of transport: Monge’s transport maps directly yield admissible transport
plans of the same cost and nicer (linear) constraints replace the disconcerting one
governing the set of Monge transports.

Next, we present two of the most important results within the theory of two-
marginal OT.

Kantorovich applies a linear objective function to probability measures that fulfill
linear equality constraints. This description raises an array of questions: Does a
dual problem exist? What does it look like? How do primal and dual relate? The
following theorem answers all of these questions.

Theorem 2.1 (Kantorovich duality). For compact subsets X1, X2 of Rd, we con-
sider the probability measures µ1 2 P (X1), µ2 2 P (X2) and a continuous cost
function c : X1 ⇥X2 ! R. The following duality relation holds.

min
�2P(X1⇥X2)
MX1�=µ1

MX2�=µ2

Z

X1⇥X2

cd� = max
'12Cb(X1),'22Cb(X2)

subject to '1�'2c

Z

X1

'1dµ1 +

Z

X2

'2dµ2.

For '1 2 Cb (X1) and '2 2 Cb (X2), the function '1 � '2 on X1 ⇥ X2 is defined
as ('1 � '2) (x1, x2) := '1 (x1) + '2 (x2).

A few remarks on this duality. Both optimal values are attained. The term
’optimal transport plan’ refers to a minimizer of the primal problem, while the
term ’Kantorovich potential’ refers to a maximizer of the dual problem. The
primal problem admits a solution under fairly general assumptions: we only re-
quire X1 and X2 to be Polish spaces and c : X1 ⇥ X2 ! [0,+1] to be lower
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semi-continuous. By loosening the assumptions on the problem-specifying objects
X1, X2, µ1, µ2, and c to that degree, we lose dual attainment.

Kantorovich’s duality often plays an important role in proofs of the upcoming
’Monge result’. Before we present it, let us briefly and nonrigorously elaborate on
how to conceive it. Kantorovich’s duality, as stated above, not only provides us
with a primal minimizer � and a dual maximizing pair ('1,'2) but also relates
these optimizers via complementary slackness:

'1 (x1) + '2 (x2) = c (x1, x2) on the support of �. (2.3)

As '1 (x1) + '2 (x2)  c (x1, x2) holds everywhere, (2.3) yields: for any supported
pair (x1, x2), x1 minimizes x 7! c (x, x2)�'1(x)�'2 (x2). Neglecting the boundary
and assuming differentiability leads us to

r'1 (x1) = rx1c (x1, x2) on the support of �. (2.4)

Now take the quadratic cost function c (x1, x2) =
1
2 |x1�x2|

2, plug it into (2.4) and
solve for x2:

x2 = x1 �r'1 (x1) on the support of �. (2.5)

Exactly one x2 for every x1. The following result points out that the optimal
transport plan for the quadratic cost is induced by a transport map (T (x1) = x1�

r'1 (x1)) and unique. We present a version that we can immediately generalize
to strictly convex costs.

Theorem 2.2 (Existence of optimal transport plans that are induced by transport
maps). Let the compact set X = X1 = X2 ⇢ Rd be connected and with negligible
boundary. As usual, µ1 and µ2 denote probability measures on X; let µ1 be abso-
lutely continuous. We consider the quadratic cost function c : X ⇥X ! R defined
through c (x1, x2) :=

1
2 |x1 � x2|

2 (where | · | denotes the Euclidean norm). Recall
that the phrase ’� is induced by T ’ means � = (id, T )# µ1.
Then the optimal transport plan � is unique and induced by the transport map T
given by

T (x1) = x1 �r'1 (x1) ,

where '1 is a Kantorovich potential.

A few remarks on this sparsity result. If we replace the quadratic cost with
any cost c of the form

c (x1, x2) = h (x1 � x2) for h strictly convex,
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the statement of the theorem remains true. These cost functions, again, allow us
to solve (2.4) for x2 and maintain the status ’exactly one x2 for every x1’ on the
support of an optimal �. A generalization of equation (2.5),

x2 = x1 � (rh)�1 (r'1 (x1)) ,

embodies the dependence of x2 on x1. Accordingly, the expression for the trans-
port map T needs to be updated.
Observe that it is crucial that we can solve equation (2.4) uniquely for x2. The
so-called twist condition on cost functions c requires the maps x2 7! rx1c (x1, x2)
to be injective for every x1: one x2 for every possible function value. Chapters 9
and 10 in [83] present results of the same flavour as the above theorem for cost
functions governed by a variety of assumptions including the twist condition. The
presentation starts off with the quadratic cost and moves along in a very detailed
manner. The bibliographical notes in these chapters provide a very nuanced view
on the origins of these results. Here we want to keep it simple and refer the reader
to Brenier’s work on the quadratic cost [16, 17] and Gangbo’s and McCann’s work
on strictly convex costs [45].

In this section we introduced the theory of two-marginal OT. The question - can
we transport optimally when using maps only - was centre stage. But as Santam-
brogio already wrote: "the theory of optimal transport cannot be reduced to the
existence and the properties of optimal maps. The success of this theory can be as-
sociated to the many connections it has with many other branches of mathematics"
[77, p. xvii]. OT appears for example in research on partial differential equations,
gradient flows, machine learning and density functional theory. Particularly the
last mention leads generally to more than two marginals.

2.2 Multi-marginal optimal transport

When shifting our focus from two-marginal to multi-marginal OT, we move from
coupling two marginals to coupling three or more marginals. How does this shift
alter the transport models of the last section? For N > 2 - with N 2 N denoting
the number of marginals - the new problem-specifying objects are simple to deduce:
instead of two, we consider N underlying spaces X1, X2, . . . , XN (the reader can,
again, think of them as compact subsets of the Euclidean space Rd); instead of two,
we consider N marginals µ1 2 P (X1) , . . . , µN 2 P (XN); instead of cost functions
on the two-fold product X1 ⇥X2, we consider cost functions c : X1 ⇥ . . .⇥XN !

R[{+1} on the N -fold product. The adaptions of both OT problem formulations
are equally straight-forward:
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Monge’s MMOT problem aims to

Minimize I[T ] :=

Z

X1

c (x1, T2 (x1) , . . . , TN (x1)) dµ1(x1)

subject to T 2 {T : X1 ! X2 ⇥ . . .⇥XN : T is measurable
and fulfills Ti#µ1 = µi| {z }

in words: Ti
transports µ1

onto µi

for i = 2, . . . , N}.

Kantorovich’s MMOT problem aims to

Minimize C[�] :=

Z

X1⇥...⇥XN

c (x1, . . . , xN) d� (x1, . . . , xN)

subject to � 2 {� 2 P (X1 ⇥ . . .⇥XN) : MXi� = µi for i = 1, . . . , N| {z }
in words: � couples µ1,µ2,...,µN

}.

The shift from two to multiple marginals preserves key characteristics of Kan-
torovich’s OT formulation: linear objective function, linear constraints. Again,
dual problems arise. They take on the form

Maximize
NX

i=1

Z

Xi

'i (xi) dµi (xi)

subject to '1 � '2 � . . .� 'N  c.

For an account of strong duality (that is equality of primal and dual optimal value)
as well as primal and dual attainment we refer the reader to Kellerer [58].

The shift from two to multiple marginals loosens our grip on Monge solutions
(which refer to optimal transport plans that are induced by transport maps).
What prompts us to lose our grip? Why is Monge’s ansatz ’less sufficient’ than
in the two-marginal setting? We do not answer these questions fully but rather
give a formal indication, a pointer if you will. Take a look back at our nonrigorous
derivation of Theorem 2.2 and try to generalize it to the multi-marginal setting:
formulate complementary slackness for MMOT and use the minimizer-property of
x1, specified above, to derive

rx1c (x1, x2, . . . , xN) = r'1 (x1) .

For x1, . . . , xN 2 Rd, we deal with a system of d individual equations that we
want to solve for (N � 1)d variables. In the two-marginal case, we have to solve d
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equations for d variables. It is much harder to express (x2, . . . , xN) as a function
of x1 than it is to express x2 as a function of x1.
The literature pertaining the existence (and uniqueness) of Monge solutions in
MMOT consists of individual puzzle pieces each of which discusses a specific cost
function or a class of cost functions. In a review on MMOT [72], Pass provides
"a more unified view of what is known" [72, p. 1772]. This includes a sufficient
condition on cost functions that locally guarantees a d-dimensional support set of
optimal transport plans as well as a sufficient condition on cost functions (for an
absolutely continuous first marginal µ1) that (globally) guarantees the existence
and uniqueness of a Monge solution. Even though some patterns have emerged, we
do not fully understand the whole picture yet. In Section 4.2, we shine a light on
the insufficiency of Monge’s ansatz in the multi-marginal setting, the focus being
on (symmetric) MMOT on finite state spaces. We will explain why Core Publi-
cation A.1 works towards a better understanding of the insufficiency of Monge’s
ansatz in said setting.

MMOT problems appear, for example, in fluid dynamics, economics, electronic
structure, and data science. In fluid dynamics, MMOT arises through time dis-
cretization from a minimal-action problem for incompressible fluids; see Brenier
[18] and Benamou, Carlier, and Nenna [10], respectively, for a high- and low-level
account. The marginal constraints enforce incompressibility after each time step
0, 1/(N�1), 2/(N�1), . . . , 1. In economics, MMOT arises in the effort to configure
teams; see Carlier and Ekeland [20]. Consider for example the housing market. For
construction and sale of a house, a team consisting of a plumber, carpenter, painter,
et cetera, and a buyer need to be matched. The marginal constraints incorporate
the distributions of the individual team members; µ1 would be the distribution of
plumbers, µ2 the distribution of carpenters, µ3 the distribution of painters, . . . ,
and µN the distribution of buyers. In electronic structure, MMOT arises as the
strong-interaction limit of the Hohenberg-Kohn functional; two working groups -
Cotar, Friesecke, Klüppelberg [25] and Buttazzo, De Pascale, Gori-Giorgi [19] -
independently initiated the use of MMOT in this context. Simply put, the goal
is to find the spatial distribution of an N -electron-molecule that minimizes the
energy in the system. The marginal constraints incorporate the spatial distri-
butions of the individual electrons. In data science, MMOT arises in the effort
to compute the barycenter of datasets; see Agueh and Carlier [1]. The marginal
constraints incorporate the individual datasets in the database. A trend becomes
apparent: throughout these MMOT applications, the concept of physical transport
is set aside. The transport plan � couples incompressibility constraints, distribu-
tions of individual team members, spatial distributions of individual electrons, and
datasets in a database instead of source and sink distribution. Accordingly, we use
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the term ’coupling’ interchangeably with the term ’transport plan’ for �. In the
next chapter, we go into the details of the motivating application in electronic
structure.



3 Motivation
In this chapter, we introduce the reader to the curse of dimension tackled in this
dissertation. After the brief optimal transport (OT) overview in the previous
chapter and before going into the details of the contributed articles, we present
the key application of multi-marginal optimal transport (MMOT): modelling the
spatial distribution in many-particle systems. We derive the OT problems arising
in this application, first in their continuous and then their discrete form. Finally,
we explain the curse of dimension looming over the discrete problems.

In Section 3.1, we explain how OT arises in many-electron physics in an easy-
to-digest manner: we rid the path from physics to OT of distractions such as
the underlying function spaces and some explicit formulas for the separate energy
functionals. The reader can find these details in the references [25, 72, 26] on
which we also based our presentation. Before going into the details of this pre-
sentation, let us refer the reader to a recent excellent review on the topic titled
"The strong-interaction limit of density functional theory" by Friesecke, Gerolin,
and Gori-Giorgi [42]. It provides an extensive overview in comprehensive writing.

3.1 Electronic structure in optimal transport

A system of N electrons forms a so-called ground state if it minimizes the energy
it contains. This physics-snippet might resonate with some of the readers that
took advanced physics courses in their school days and it already points to the
motivating question of this section: How can we find these ground states?

We start off by capturing the ground state of an N -electron-system in math-
ematical language. Wave functions  represent the possible states of the N -
electron-system. They are functions of the positions (x1, x2, . . . , xN) and spins
(s1, s2, . . . , sN) of the N electrons. They are complex-valued but - when taken
to the absolute value squared - they have a probabilistic interpretation: for any
wave function  , | (x1, s1, x2, s2, . . . , xN , sN) |

2 captures - in the role of a den-
sity function - the probability that the N electrons are located at the positions
(x1, x2, . . . , xN) with spins (s1, s2, . . . , sN). The density | |

2 integrates to 1. In this
probabilistic sense the wave functions describe the state of the N -electron-system.
Any such state implies a certain amount of energy. We capture the relationship

19



3.1. Electronic structure in optimal transport 20

between wave function and energy in the energy functional E with

E[ ] = T [ ] + Vne[ ] + Vee[ ].

Here, T represents the kinetic energy, Vne the nuclei-electron interaction energy,
and Vee the electron-electron interaction energy. We can realize our goal of de-
termining the ground state by minimizing the energy E[ ] among all valid wave
functions and extracting a minimizer. This minimizer corresponds to a ground
state.

When attempting to find the ground state computationally, we face admissible
objects that become increasingly intractable with an increasing number of elec-
trons. Wave functions map N -tuples of space-spin coordinates onto the complex
plane, i.e.,

(x1, s1, x2, s2, . . . , xN , sN) 7!  (x1, s1, x2, s2, . . . , xN , sN) 2 C.

Let us ignore, for a second, the spin and assume that a cube in R3 contains all
possible positions of the electrons. In order to minimize the energy functional E
computationally, we need to store wave functions. Let’s say we discretize the cube
by 1000 gridpoints (10 gridpoints for each space dimension). Then the system
of the N electrons can form 1000N configurations: each electron can choose from
1000 different positions. A wave function then assigns a complex value to each of
the 1000N configurations. Already for moderately sized N , storing these 1000N

complex numbers - and by that the wave function - becomes infeasible. We simply
cannot handle wave functions as admissible objects because of their storage com-
plexity.

Do we really need all the information contained in a wave function  to com-
pute its energy E[ ]? Take the energy component Vne, for example. How does
it depend on  ? In order to answer this question, we introduce a ’projection’ of
wave functions to functions of one variable. A single particle density ⇢ arises from
a wave function  in the following manner: take the absolute value squared of  ,
integrate out first the spins

⇢N (x1, x2, . . . , xN) =
X

all possible

spin combinations

(s1,s2,...,sN )

| (x1, s1, x2, s2, . . . , xN , sN) |
2

and then all but the position of electron 1

⇢ (x1) = N

Z

R3(N�1)

⇢N (x1, x2, . . . , xN) dx2 . . . dxN .
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We inserted the normalization factor N to comply with a convention in physics:
the single particle density should integrate to the number of electrons. In an inter-
mediate step - by integrating out the spins - we produce the density ⇢N . It captures
the probability that the N electrons are located at the positions (x1, x2, . . . , xN) in
its role as a density function. As an immediate consequence of an anti-symmetry
constraint on wave functions, | |

2 and therefore ⇢N are symmetric, that is invariant
under argument-permutation:

⇢N (x1, x2, . . . , xN) = ⇢N
�
x�(1), x�(2), . . . , x�(N)

�
for all permutations
� of {1, 2, . . . , N}.

The symmetry allows us to see the N electrons as indistinguishable (the probabil-
ity of a configuration does only depend on the N chosen positions not on how the
numbered electrons are assigned to these positions); the symmetry implies that
the single particle density ⇢ will not change if we give the role of electron 1 to any
of the other electrons. It does not matter which (N � 1) of the electron-positions
are integrated out. Hence,

R
A
⇢ for any A ⇢ R3 measures the probability that

electron j is in A, independent of the choice of j. Vne quantifies the interaction
energy between nuclei and electrons; it does not depend on what specific configu-
rations the N electrons form, it only depends on the position of the electron as an
individual; so Vne[ ] depends on  only through its single particle density ⇢.

The reduced  -dependence of Vne motivates a partition of the original energy-
minimization-problem inf E[ ] into a double minimization:

inf
 

E[ ] = inf
⇢

{Vne[⇢] + FHK[⇢]} (3.1)

with
FHK[⇢] := inf

 

subject to  7!⇢

{T [ ] + Vee[ ]} . (3.2)

Instead of minimizing over all wave functions  (left-hand side of (3.1)), we mini-
mize over all wave functions  that have a specified single particle density ⇢ and
then over all single particle densities (right-hand side of (3.1)). This partition goes
back to the work of Lieb(1983) [64], Levy(1979) [63], as well as Hohenberg and
Kohn(1964) [52]. Simply put, one can attribute (3.1) to Hohenberg and Kohn, and
the direct variational understanding (3.2) of FHK to Levy and Lieb. With their
direct variational understanding Levy and Lieb replaced an earlier, more indirect,
and non-variational one by Hohenberg and Kohn.
A few remarks regarding the notation: inf E[ ] denotes the original task to min-
imize E[ ] among all valid wave functions; we chose the inf-notation to cover the
case when the minimal value is not attained. We write  7! ⇢ if  has single
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particle density ⇢. FHK is called Hohenberg-Kohn functional.

So far the problem has remained intractable: on the right-hand side of (3.1) the
 -dependence is hidden yet still present. The first instance of  -dependence was
cleared by Lieb himself early on. So far we understand the admissible objects
regarding the outer minimization only as single particle densities that arise from
wave functions. This description still relies on the high-dimensional objects - the
wave functions; the single particle densities are only implicitly understood as pro-
jection of them. In his contribution [64], Lieb provided an explicit description of
admissible ⇢s that no longer relied on wave functions. The second instance of  -
dependence creates a challenge that we face to this day. Even though at a glance
everything on the right-hand side of (3.1) seems to be nicely low-dimensional now,
wave functions are still present as admissible objects in the inner minimization
making up the Hohenberg-Kohn functional (3.2). At this point we knock on the
door of a very active field of research in physics and chemistry: density functional
theory. At its heart lies the Hohenberg-Kohn functional and the goal to make
the double minimization work. To that end researchers have traded in exact-
ness for low-dimensionality: they are mostly concerned with approximating the
Hohenberg-Kohn functional as good as possible while keeping the  -dependence
low-dimensional. We refer readers that are interested in entering this field to [70].

How do we approximate a system consisting of N interacting electrons using lower-
dimensional sub-systems? The most naive ansatz goes as follows. Let us assume,
for a second, that the N electrons position themselves independently of each other.
Then the probability that they form the configuration (x1, x2, . . . , xN) disintegrates
into a product of individual position probabilities, i.e.,

⇢N (x1, x2, . . . , xN) =
1

NN
⇢ (x1) · ⇢ (x2) · . . . · ⇢ (xN) .

The factor 1/NN corrects the normalization discrepancy: ⇢N integrates to 1 while
⇢ integrates to N . The independence assumption allows us to replace an N -
variable-function by a product of (N) one-variable-functions. In the discretized
example from above, we replace 1000N input arguments by 1000 (note that the
one-variable-functions are identical). We disrupted the exponential growth by
treating the N -electron-system as if it consisted of N independent one-electron-
systems. The independence ansatz is one of the bedrocks, approximation schemes
in density functional theory are built upon. Further building blocks include cor-
rections that account for interactions between the electrons.

There is an argument to be made for going down a different - if not the oppo-
site - path, one that starts off with a strong interaction assumption [78, 80]. It is
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common knowledge that electrons repel each other. The resulting energy influences
the ground state through the component Vee - the electron-electron interaction en-
ergy. It introduces a certain amount of correlation between the electrons. In order
to understand these correlations we follow a common approach and put an em-
phasis on the interaction: we ’assume’ strong interaction. The gained insights are
relevant and interesting in their own right but also complement weak-interaction
approaches like the independence ansatz.

To incorporate the strong interaction assumption mathematically, we introduce
a parameter ↵ > 0 into the Hohenberg-Kohn functional

F ↵

HK
[⇢] := inf

 

subject to  7!⇢

{↵T [ ] + Vee[ ]}

and consider the limit ↵ ! 0. By decreasing ↵, we increase the influence of
the electron-electron interaction energy and thereby the prominence of the inter-
action. In this strong-interaction limit, the minimization problem making up the
parameter-dependent Hohenberg-Kohn functional F ↵

HK
takes on the form of an OT

problem. (For the due references, see below.)

Theorem 3.1 (OT-form of strong-interaction limit of Hohenberg-Kohn func-
tional). For any single particle density ⇢

lim
↵!0

F ↵

HK
[⇢] = inf

�2Psym(R3N)
� 7!⇢/N

Z

R3N

X

1i<jN

1

|xi � xj|
d� (x1, x2 . . . , xN) . (3.3)

The attentive reader might notice some discrepancies with the general MMOT
problem formulation from Section 2.2. Psym

�
R3N

�
denotes the set of symmetric

probability measures on R3N . Symmetry refers to an invariance under argument-
permutation, i.e.,

� is symmetric ! � (A1 ⇥ A2 ⇥ . . .⇥ AN) = �
�
A�(1) ⇥ A�(2) ⇥ . . .⇥ A�(N)

�

for all measurable A1, A2, . . . , AN ⇢ R3 and
all permutations � of {1, 2, . . . , N} .

Note that symmetric probability measures cannot have different one-point marginals:
for any two coordinates i, j 2 {1, 2, . . . , N} the respective one-point marginals
MXi� and MXj� coincide. For � 2 Psym

�
R3N

�
and µ 2 P (R3), we write � 7! µ if

one and thereby all one-point marginals of � are equal to µ. Here we slightly abuse
this notation. The single particle density ⇢ itself is not a probability measure on
R3, however, it induces a probability measure µ⇢ on R3 in its role as a density
function:

µ⇢(A) =

Z

A

⇢(x)

N
dx for A ⇢ R3 measurable.
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The constraint � 7! ⇢/N then means � 7! µ⇢. This abuse of notation - writing
⇢/N instead of µ⇢ - will follow us throughout the rest of this section.

How can we interpret the OT problem in (3.3)? The reader might feel like the cost
function c (x1, x2, . . . , xN) =

P
1i<jN

1
|xi�xj | dropped from the sky, even though

it was implicitly present in the electron-electron interaction energy Vee throughout
this section:

Vee[ ] =

Z

R3N

X

all possible

spin combinations

(s1,s2,...,sN )

X

1i<jN

1

|xi � xj|

| (x1, s1, x2, s2, . . . , xN , sN) |
2dx1dx2 . . . dxN .

Compare the formula for Vee and the OT problem in (3.3), and you will see that
d� (x1, x2, . . . , xN) takes on the role of

P
| (x1, s1, x2, s2, . . . , xN , sN) |

2dx1dx2 . . . dxN .
Recall the definition of ⇢N ,

⇢N (x1, x2, . . . , xN) :=
X

| (x1, s1, x2, s2, . . . , xN , sN) |
2,

as well as its interpretation as position density, and you will understand that � em-
bodies the spatial distribution of the N -electron-system: � (A1 ⇥ A2 ⇥ . . .⇥ AN)
(for A1, A2, . . . , AN ⇢ R3 measurable) gives the probability that the N -electron-
system forms a configuration in A1 ⇥ A2 ⇥ . . . ⇥ AN . The marginal condition
ensures that each individual electron is distributed according to ⇢/N . Symmetric
probability measures � 2 Psym

�
R3N

�
can be the independent measure but also

model intricate correlations. The connection between independent and symmetric
measures is discussed in Chapter 6. Overall, we seek a spatial distribution � of
the N electrons that respects the single particle density ⇢ and minimizes the in-
teraction energy between the electrons.

There is a line of references that worked towards a general statement on the OT-
form of the Hohenberg-Kohn functional in the strong-interaction limit. In [25, 19],
the two working groups (Cotar, Friesecke, Klüppelberg and Buttazzo, De Pascale,
Gori-Giorgi) independently introduced the interpretation/formulation of the limit
problem as OT problem. Theorem 3.1, in the presented general N form, is owed
to Cotar, Friesecke, and Klüppelberg [26]. Their work succeeds previous results
for N = 2 [25] and N = 3 [13]. Allowing physics literature, we may draw this
line even further back to include Seidl [78] as well as Seidl, Gori-Giorgi, and Savin
[79]. Therein the limit problem was already indicated as well as the lack of a
rigorous proof. Together with [80] these authors also coined the term ’strictly
correlated electrons’ which describes a predicted state of the N -electron-system
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in the strong-interaction limit. In this state the position of the first electron -
x1 - uniquely determines the positions - x2, x3, . . . , xN - of the remaining N � 1
electrons. As a result we can write the positions of the remaining electrons as
functions of the position of the first electron

x2 = T2 (x1) x3 = T3 (x1) . . . xN = TN (x1) .

Of course the numbering of the electrons here is arbitrary as they are indistin-
guishable. Such ’strictly correlated electron’-states yield a sparse structure of the
transport plan �; it would be of Monge-form with T2, T3, . . . , TN being the corre-
sponding transport maps:

� = (id, T2, T3, . . . , TN)#
⇢

N
.

So far the advantage of the independence ansatz over the strong-interaction limit
was a dramatic reduction of the storage complexity. In the strong-interaction
limit, we still had to deal with admissible objects of exponential-in-N -size, the
�s. Having a sparse structure of the �s guaranteed would level the playing field.
Investigating whether Monge’s ansatz (or other sparse approaches) are sufficient
is a ’must’ if we want to perform error-controlled strong-interaction computations.

3.2 Discretization

To perform computations regarding the continuous MMOT problems

Minimize
Z

R3N

X

1i<jN

1

|xi � xj|
d� (x1, x2 . . . , xN)

subject to � 2 {� 2 Psym

�
R3N

�
: � 7! ⇢/N},

which arise in the application of MMOT to electronic structure problems, we
chose a discretization that preserves the OT-structure. We landed on the following
discrete MMOT problems.

Minimize
Z

XN

c (x1, . . . , xN) d� (x1, . . . , xN) (3.4)

subject to � 2 {� 2 Psym

�
XN

�
: � 7! �⇤

}. (3.5)

We discretized R3 or more generally Rd by a finite selection

X = {a1, a2, . . . , a`} ⇢ Rd
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of pairwise distinct points and replaced the Coulomb cost
P

1
|xi�xj | by a general

symmetric cost function c : XN
! R. A cost function c : XN

! R is called
symmetric if

c (x1, x2, . . . , xN) = c
�
x�(1), x�(2), . . . , x�(N)

�
for all x1, x2, . . . , xN 2 XN and
all permutations � of {1, 2, . . . , N}.

We denote by Psym

�
XN

�
the set of symmetric probability measures on XN where

a measure � 2 P
�
XN

�
is called symmetric if

� (A1 ⇥ . . .⇥ AN) = �
�
A�(1) ⇥ . . .⇥ A�(N)

�
for all A1, . . . , AN ⇢ X and
all permutations � of {1, . . . , N} .

The symmetry of the cost functions allows us to hold on to the symmetry of the
admissible objects: let us consider, for a second, the ’unsymmetrized’ MMOT
problem we create by replacing Psym

�
XN

�
with P

�
XN

�
; for these problems, sym-

metric cost functions c always give rise to a symmetric optimizer � 2 Psym

�
XN

�
.

For � 2 Psym

�
XN

�
and �⇤

2 P (X), we write � 7! �⇤ if one and thereby all one-
point marginals of � are equal to �⇤. Hereby, we compute the one-point marginal
of � with respect to the first coordinate as follows.

MX� (A1) = �
�
A1 ⇥XN�1

�
for all A1 ⇢ X.

Of course, we tailor the choice of discretization points X and their weights �⇤ to
approximate their continuous counterparts. For an example of how to do this, we
refer the reader to Section 2 in Core Publication A.2. Therein, we also justify the
chosen discretization by means of a convergence result.

We can express the discrete MMOT problem (3.4)-(3.5) in formalism adherent
to discrete optimization. Identify an admissible object � 2 Psym

�
XN

�
and the

marginal constraint �⇤
2 P (X) with a tensor of order N , (�i1i2···iN )

`

i1,i2,...,iN=1 2

R`
N , and a vector, (�⇤

i
)`
i=1 2 R`, via

�i1i2···iN := � ({(ai1 , ai2 , . . . , aiN )}) �⇤
i
:= �⇤ ({ai}) .

Then, we can write the discrete MMOT problem (3.4)-(3.5) as follows.
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Minimize
`X

i1,i2,...,iN=1

c (ai1 , ai2 , . . . , aiN ) �i1i2···iN (3.6)

subject to � 2 {� 2 R`
N
: � is symmetric, (3.7)

� � 0, (3.8)
`X

i2,...,iN=1

�ji2···iN = �⇤
j

for j 2 {1, . . . , `}}.

(3.9)

The nonnegativity constraint ’� � 0’ means that every entry �i1i2···iN is nonnegativ.

Monge’s ansatz is best discussed in the context of a uniform marginal constraint

� :=
`X

i=1

1

`
�ai .

In Section 2.1 we saw that maps can transport Dirac measures only onto other
Dirac measures. The present problems enforce finite sums of Dirac measures as
marginals and require every marginal to be the same. For transport maps (other
than the identity) to exist, we need the weights that scale the individual Dirac
measures to be quantized. This requirement makes the uniform measure � the
clear choice of marginal. The relevance of the uniform marginal goes beyond the
theoretical aspect that it gives rise to transport maps. It approximates absolutely
continuous probability measures through equi-mass discretization (see [22] for fur-
ther reading).

3.3 The curse of dimension

The storage complexity of the discrete MMOT problems (3.4)- (3.5)/ (3.6)-(3.9)
grows exponentially with the number of marginals N . The natural number N
regulates the dimension of the problem: for N = 2 the admissible objects are
` ⇥ `-matrices (tensors of order 2), for N = 3 they are ` ⇥ ` ⇥ `-’cubes’ (tensors
of order 3), and for a general N > 1 they are tensors of order N . These tensors
consist of `N individual entries. As any admissible object is symmetric, we can
partition these `N entries into ’symmetry classes’. For any symmetric tensor �, all
the entries in the same class carry the same value; for example

�12···2 = �21···2 = · · · = �22···1.
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By only storing the value carried within a class once, we can reduce the number of
unknowns from `N to

�
N+`�1

N

�
[44]. How bad is

�
N+`�1

N

�
? We answer this question

with the help of an example on electronic structure. We want to distribute N
electrons over ` = 5 · N sites. Then

�
N+`�1

N

�
still grows exponentially with the

number of marginals N .
✓
N + `� 1

N

◆
=

✓
N + 5N � 1

N

◆
=

✓
6N � 1

N

◆

=
(6N � 1) · (6N � 2) · . . . · (5N + 1) · 5N

N · (N � 1) · . . . · 2 · 1

� 5N .

As long as `/N > 1 holds, this exponential growth persists - even if the number of
sites ` is not a multiple of the number of marginals N . The reader can check this
by generalizing the above computations. The curse of dimension consists in the
exponential growth of the number of unknowns with the number of marginals.

To break the curse, we seek an ansatz for the discrete MMOT problems (3.4)-
(3.5)/ (3.6)-(3.9) that

(i) is low-dimensional,

(ii) is sufficient in the sense that any instance of the discrete MMOT problems
admits a solution that takes on the form prescribed by the ansatz, and

(iii) gives rise to an efficient computational method to solve the discrete MMOT
problems.



4 Convex geometry of transport polytopes
A transport polytope encloses the set of probability measures that are admissi-
ble to an optimal transport (OT) problem. These OT problems can be either of
Kantorovich- or Monge-type. While the word ’transport’ describes what the ad-
missible objects represent, the word ’polytope’ describes what set the admissible
objects form. In the first part of this chapter we recall basic notions of convex-
ity - such as the term ’polytope’ - and briefly explain how to test whether a given
ansatz space is sufficient. In the second part we discuss the insufficiency of Monge’s
ansatz in multi-marginal optimal transport (MMOT) and draw a comparison with
the two-marginal setting. In the third and final part we introduce the reader to a
sufficient ansatz space for MMOT problems - the Quasi-Monge ansatz.

In Section 4.1 we focus on the notions of convexity relevant to this dissertation;
for a textbook account of these notions and further reading material on convexity,
we refer the reader to [53, 76].

4.1 Notions of convexity

A set K ⇢ Rd is convex if for two of its elements x, y 2 K the line segment
{(1� t)x+ ty : 0  t  1} lies in K, i.e.,

x, y 2 K and t 2 [0, 1] ! (1� t)x+ ty 2 K.

The line segment connecting x and y consists of convex combinations of the end-
points. A convex combination of x1, x2, . . . , xm 2 Rd is a linear combination

t1x1 + t2x2 + . . .+ tmxm

that satisfies the convexity constraint

t1, t2, . . . , tm � 0 and
mX

i=1

ti = 1.

As is easily seen using induction, a convex set K ⇢ R is closed under taking convex
combinations of its elements:

x1, x2, . . . , xm 2 K, t1, t2, . . . , tm � 0 and
mX

i=1

ti = 1 !

mX

i=1

tixi 2 K.

29
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For an arbitrary set V ⇢ Rd, we refer to the smallest convex set enclosing V as
the convex hull of V and denote it as conv(V ). To produce the convex hull of a set
V ⇢ Rd, take the set V itself and include all convex combinations of its elements.
A set V ⇢ Rd is convex if and only if it equals its convex hull.

The line segment {(1�t)x+ty : 0  t  1} connecting x with y is itself convex and
therefore contains all convex combinations of its elements. As is apparent from its
definition, it exactly consists of the convex combinations of its endpoints x and
y. This description shaves off all convex combinations of non-endpoints. Does a
similar minimal description exist for general convex sets? What is the role of x
and y? An element e of a convex set K is an extreme point of K if

x, y 2 K, t 2 (0, 1) and (1� t)x+ ty = e implies x = y = e.

By Minkowski’s theorem, any compact convex set in Rd equals the convex hull of
its extreme points.

The discrete MMOT problems (3.4)-(3.5)/(3.6)-(3.9) always admit extremal so-
lutions (which are extreme points of the set of admissible objects that solve the
problem). By Minkowski’s theorem, the set of admissible objects equals the convex
hull of its extreme points. Given an instance of the considered MMOT problems,
take an arbitrary optimal transport plan (these always exist as we minimize a
continuous objective function on a compact set in R`

N ); write it as convex com-
bination of extreme points; now any extreme point ei with positive weight factor
ti > 0 yields the same objective value as the original solution and therefore is an
extremal solution. We can use the existence of extremal solutions to give a simple
criterion that indicates whether a given ansatz is sufficient: if all extreme points
took on the prescribed form, the considered ansatz would be sufficient.

Conversely, a single incompatible extreme point yields the insufficiency of an
ansatz. Let us fix the set of admissible objects. Then the choice of cost tensor
(c (ai1 , ai2 , . . . , aiN ))

`

i1,i2,...,iN=1 completely determines an instance of the discrete
MMOT problems (3.4)-(3.5)/(3.6)-(3.9). An ansatz is insufficient if a problem in-
stance - which means a cost - exists that fails to admit a solution of the prescribed
form. An element e of a convex set K ⇢ Rd is an exposed point of K if there
exists a linear function b 2 Rd that attains its minimum on K exactly at e, i.e.,

bTx > bT e for all x 2 K \ {e}.

A single incompatible extreme point only renders an ansatz insufficient if it is also
an exposed point. In the present setting all extreme points are exposed points.
Why?
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Our set of admissible objects consists of all nonnegative tensors of order N that
satisfy a symmetry and marginal constraint. We deal with a set in R`

N that arises
as the intersection of finitely many closed halfspaces. Rockafellar calls such sets
polyhedral and shows that any bounded such set is the convex hull of finitely
many points - a polytope. As our set of admissible objects is bounded, it forms
a polytope. Hinting at the nature of the considered problems, we refer to these
polytopes as transport polytopes.
By definition, every exposed point of these polytopes is an extreme point. By
Straszewicz’s theorem (see, for example, [76, p.167]) any extreme point of a closed
convex set can be approximated arbitrarily well with exposed points. As the
convex hull of finitely many points, the transport polytopes only have finitely many
extreme points each of which - by Straszewicz’s theorem - must be an exposed
point.
Finally, let us summarize the sufficiency criterion: a chosen ansatz will be sufficient
if and only if all extreme points take on the prescribed form.

4.2 Insufficiency of Monge’s ansatz in multi-marginal
optimal transport

Monge’s ansatz goes back to the origin of OT. As the OT-equivalent of the phys-
ical term ’strictly correlated electrons’, it has a foundation in physics. Last but
not least it is sparse. For N electrons on ` discretization points, general trans-
port plans assign probabilities to `N electron configurations. In Monge’s ansatz
the electrons are strictly correlated: the position of the first electron uniquely de-
termines the positions of the remaining (N � 1) electrons. We can describe the
strict correlation using maps T2, T3, . . . , TN : if x1 is the position of the first elec-
tron T2 (x1) , T3 (x1) , . . . , TN (x1) are the position of the remaining electrons. Each
map consists of ` values and we deal with (N � 1) maps. The result is a storage
complexity of `·(N�1); it grows only linear in N . Monge’s ansatz significantly dis-
rupts the exponential growth of the storage complexity, but is the ansatz sufficient?

Let us concentrate on the MMOT problems that lie at the heart of this disserta-
tion: symmetric MMOT problems on finite state spaces. See (3.4)-(3.5)/(3.6)-(3.9)
for an explicit account of these problems. An admissible object � is of Monge-type
if there exist transport maps T2, T3, . . . , TN such that

� = SN

⇣
(id, T2, T3, . . . , TN)# �

⇤
⌘
. (4.1)

Recall that T : X ! X is a transport map if it pushes �⇤ onto itself, i.e., T#�⇤ =
�⇤. In (4.1), we adapted the ’standard’ Monge approach to the symmetric setting
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using the symmetrization operator in N variables SN . It maps P
�
XN

�
onto

Psym

�
XN

�
: given any probability measure � on XN , its symmetrization SN� is

defined by

SN� (A1 ⇥ . . .⇥ AN) =
1

N !

X

�

�
�
A�(1) ⇥ . . .⇥ A�(N)

�
for all A1, . . . , AN ⇢ X.

The sum runs over all permutations � of {1, 2, . . . , N}. Applying the symmetriza-
tion operator to the originally sparse state (id, T2, T3, . . . , TN)# �

⇤, distributes its
mass among more configurations in XN . The state becomes ’less sparse’. Nev-
ertheless, the storage complexity of the symmetrized Monge states (4.1) remains
unchanged; the (N �1) transport maps still contain all the necessary information.
For finite state spaces, Monge’s ansatz is best discussed in the context of a uniform
marginal constraint

� :=
`X

i=1

1

`
�ai .

Why? For any �⇤
2 P (X), we can compute the push-forward of �⇤ along T : X !

X via

T#�
⇤ =

`X

i=1

�⇤ ({ai}) �T (ai).

A nonuniform marginal immediately opens up the question whether transport
maps - other than the identity - exist. A uniform marginal yields a clearly defined
set of transport maps: T transports � onto itself if and only if it is a permutation
of X = {a1, a2, . . . , a`}. The corresponding Monge states take on the form

SN

⇣
(id, T2, T3, . . . , TN)# �

⌘
with T2, T3, . . . , TN being permutations of X.

In the following we will focus our attention on the case of a uniform marginal.

For N = 2 marginals and any number of discretization points ` � 2, Monge’s
ansatz is sufficient. In the general (unsymmetrized) case, this sufficiency is an im-
mediate consequence of the well-known Birkhoff-von Neumann theorem [14, 84].
In OT-jargon, it states that any general transport plan is extremal if and only if it
is of Monge-type. Applying the symmetrization operator S2 to the set of general
transport plans gives rise to the set of symmetric transport plans - our set of ad-
missible objects. By linearity of S2, any extreme point in the symmetric case is the
symmetrization of an extreme point in the general case. Seeing as Monge states
in the symmetric case correspond to symmetrized general Monge states, Monge’s
ansatz is also sufficient in the symmetric case.
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Already for N = 3 marginals and ` = 3 discretization points, Monge’s ansatz
becomes insufficient. The key to sufficiency in the two-marginal setting was the
Birkhoff-von Neumann theorem. Can we lift it to a higher-dimensional setting? In
its original form, the theorem states that a bistochastic matrix is extremal if and
only if it is a permutation matrix. Bistochastic matrices have nonnegative entries
and every one of their rows and columns sums to 1. A bistochastic matrix is a
permutation matrix if every one of its rows and columns contains a single positive
entry. Due to the summation constraints, this entry has to carry the value 1.
Consequently, permutation matrices are exactly those bistochastic matrices that
only contain integer values. The (in OT relevant) higher-dimensional analogue of
bistochastic matrices are certain tensors of order N . Their entries are nonnegative
and every one of their coordinate hyperplanes sums to 1. Such a ’N -stochastic ten-
sor’ is a ’permutation tensor’ if every one of its coordinate hyperplanes contains
a single positive entry. Due to the summation constraints, this entry has to carry
the value 1. Consequently, ’permutation tensors’ are exactly those ’N -stochastic
tensors’ that only contain integer values. In OT-jargon, bistochastic matrices and
’N -stochastic tensors’ correspond to general transport plans, permutation matri-
ces and ’permutation tensors’ correspond to Monge states. While for N = 2 all
extremal bistochastic matrices are integer, for N � 3 noninteger states appear
among the extremal ’N -stochastic tensors’. So while for N = 2 Monge’s ansatz is
sufficient for unsymmetrized OT, for N = 3 it is not. The references [27, 62, 65]
provide and study noninteger extreme points for the case of N = 3 marginals.
Do all these extreme points vanish after symmetrization? Sadly, the answer is no.
In [41], Friesecke focuses on the case of N = 3 marginals on ` = 3 discretization
points. He thoroughly investigates the polytope formed by the symmetric trans-
port plans. His explicit list of all 22 extreme points shows that only 7 of them are
of Monge-type. Pairwise costs

c (x1, x2, . . . , xN) =
X

1i<jN

v (xi, xj)

expose only 8 of the original 22 extreme points, 3 out of these 8 are not of Monge-
type. By putting the set of admissible objects centre stage, Friesecke is able to
quantify the insufficiency of Monge’s ansatz.

Core Publication A.1 seamlessly continues the efforts of [41] to gain insight into
the insufficiency of Monge’s ansatz through a proper convex-geometric analysis of
the set of admissible objects. For small problem-parameters N and `, we com-
puted all extreme points of the transport polytope formed by our set of admissible
objects (3.5) (with �⇤ = �) and checked whether they take on the form prescribed
by Monge’s ansatz. Further, we answered the questions: Which of the extreme
points can we expose with pairwise costs? What is the (Monge:non-Monge)-ratio
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among them? Let us turn to explicit examples of extreme points. One of the
’N = ` = 3-examples’ of a non-Monge extreme point given in [41] looks as follows.

1

2
S3�a1,a2,a2 +

1

2
S3�a1,a3,a3 . (4.2)

Here, �a1,a2,a2 and �a1,a3,a3 denote �a1 ⌦ �a2 ⌦ �a2 and �a1 ⌦ �a3 ⌦ �a3 , respectively.
A higher-dimensional version for N = ` > 3 looks as follows.

1

`� 1
SN�a1,a2,a2,...,a2 +

1

`� 1
SN�a1,a3,a3,...,a3 + . . .+

1

`� 1
SN�a1,a`,a`,...,a` . (4.3)

This symmetric transport plan is a non-Monge extreme point. Why? It is extreme
due to the one-to-one relation between the sites a2, a3, . . . , a` and the ` � 1 sym-
metrized Dirac measures. It is non-Monge due to a 1/`- quantization of Monge
states, which will be explained in the upcoming section. Being a Monge state is
a global task, local non-Monge structures are enough to disrupt its fulfillment.
In Core Publication A.1, we show how to create a non-Monge extreme point for
fixed N = 3 and arbitrary ` > 3 on the basis of (4.2): take (4.2) rescale it and
add measures of the form 1

`
S3�ai,ai,ai . We can take the same approach to generate

non-Monge extreme points for fixed N > 3 and arbitrary `0 > ` = N on the basis
of (4.3). Overall, we face non-Monge extreme points for any 3  N  `.

For the sake of completeness, we include here one more example of a non-Monge
extreme point that qualifies for any ` � 2 and any N � 3:

N

(N � 1)`
SN�a1,a1,...,a1,a2+

N � 2

(N � 1)`
SN�a2,a2,...,a2+

1

`
SN�a3,a3,...,a3+. . .+

1

`
SN�a`,a`,...,a` .

To see that it is indeed a non-Monge extreme point, lean on the arguments re-
garding (4.3). We will see in the upcoming section that being a Monge state is
equivalent to being 1/`-quantized. This characterization makes it clear why we
had to exclude the two-marginal case: for N = 2, the example becomes a Monge
extreme point.

For the discrete MMOT problems (3.4)-(3.5)/(3.6)-(3.9) with N � 3 marginals,
` � 2 discretization points, and with �⇤ = � a uniform marginal constraint,
Monge’s ansatz is insufficient. We saw that the relevant transport polytopes ex-
hibit non-Monge extreme points. We can expose these extreme points with general
cost functions. As any such cost function behaves identically to its symmetrization,
we can assume the exposing cost functions to be symmetric. So, for symmetric cost
functions Monge’s ansatz is insufficient, but what happens if we restrict the class of
cost functions further? Can we find a class that only sees Monge extreme points?
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It is a common trade in continuous OT research to pick a specific cost function
or class of cost functions and study the behaviour of the solutions they admit. In
[46], Gangbo and Święch picked a multi-marginal version of the quadratic cost

X

1i<jN

|xi � xj|
2

and showed that Kantorovich’s MMOT problem admits a unique solution and this
solution is of Monge-type. This result was the first of its kind and lit the path
for what was to come: a line of literature discussing the existence and uniqueness
of Monge-type solutions for Kantorovich’s MMOT problem. We briefly want to
mention two line segments that concern the Coulomb cost

X

1i<jN

1

|xi � xj|
.

Colombo, De Pascale, and Di Marino showed in [23] that Kantorovich’s MMOT
problem admits a unique symmetric solution and this solution is of Monge-type.
Their result only holds in the (d = 1)-case, i.e., for marginal probabilities on R. In
[71], Pass showed that for d � 3 Kantorovich’s MMOT problems admit solutions
that exceed the restriction on support-dimension set by Monge’s ansatz.

In Core Publication A.1, we showed that - for certain constellations of the pa-
rameters N , ` and for a far-reaching class of repulsive pairwise costs - the dis-
crete MMOT problems (3.4)-(3.5)/(3.6)-(3.9) (with �⇤ = �) admit a unique so-
lution and this solution is of Monge-type. In contrast to [23] and [46], we con-
sider finite instead of continuous state spaces. A pairwise and symmetric cost
c (x1, x2, . . . , xN) =

P
v (xi, xj) belongs to the said class if and only if its diagonal

entries v(x, x) lie above a problem-dependent threshold. We designed this class as
a capsule surrounding discretizations of the Coulomb cost. The Monge-result was
an immediate consequence of a necessary support-condition on optimizers, which
holds for any N, ` � 2. We introduced this condition in Core Publication A.1; it
states that an optimal transport plan assigns nonzero probabilities only to those
configurations that distribute the N electrons as uniformly as possible among the
` discretization points. Figure 4.1 considers 5 electrons on 3 discretization points
and depicts all attainable configurations on the left and some unattainable config-
urations on the right. For certain constellations of N and ` - for example N = 5
and ` = 3 - there exists a single possibility to achieve a uniform marginal by
overlaying the attainable configurations and the corresponding transport plan is
of Monge-type.
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Figure 4.1: With the present figure, we illustrate the necessary support-condition
on optimizers established in Core Publication A.1. We consider multi-marginal
optimal transport problems on a finite state space X with a uniform marginal
constraint and a restriction to symmetric transport plans only. Recall that we can
interpret the mass a transport plan assigns to (x1, x2, . . . , xN) 2 XN as probability
of the electron configuration that puts electron 1 on x1, electron 2 on x2, and so on.
The necessary support-condition tells us that, for certain repulsive pairwise costs,
any optimizer can assign positive probabilities only to those electron configurations
that distribute the N electrons as uniformly as possible among the given sites in
X. On the left the reader can see all attainable and on the right some unattainable
configurations for the case of N = 5 electrons on |X| = 3 sites.

Even for repulsive pairwise cost functions, we cannot guarantee the existence of
a Monge-type solution to our Kantorovich MMOT problem. Any computational
method moving within the low-dimensional Monge class is in danger of never reach-
ing an optimizer - no matter how many updates it performs. Further, Monge states
have a quantized character. Optimizing over Monge states means optimizing over
the integer elements of a certain polytope and integer optimization is truly not
something to long for. In the upcoming section, we will explain why Monge means
integer and how to cure the rigidity and insufficiency of Monge’s ansatz.

4.3 Quasi-Monge ansatz

We cut to the chase and immediately define quasi-Monge states. For the mo-
ment, we assume a uniform marginal to ensure comparability with Monge’s ansatz.
A probability measure � on XN is a quasi-Monge state if there exist N maps
T1, T2, . . . , TN : X ! X and a probability measure ↵ on X that fulfill the con-
straint

1

N

NX

k=1

Tk#↵ = �
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and give rise to � via the formula

� = SN

⇣
(T1, T2, T3, . . . , TN)# ↵

⌘
=

`X

r=1

↵ ({ar})SN�T1(ar),T2(ar),...,TN (ar).

Recall that a probability measure � on XN is a Monge state if there exist N � 1
maps T2, . . . , TN : X ! X that fulfill the constraints

Tk#� = � for all k = 2, . . . , N

and give rise to � via the formula

� = SN

⇣
(id, T2, T3, . . . , TN)# �

⌘
=

`X

r=1

1

`
SN�ar,T2(ar),...,TN (ar).

The quasi-Monge ansatz was introduced by myself and Friesecke in [44] where we
also show that a probability measure on XN is a Monge state if and only if it is a
quasi-Monge state with ↵ = �.

Quasi-Monge states correspond to the sparse elements of a certain coefficient
polytope. We can identify any symmetrized Dirac measure SN�ai1 ,ai2 ,...,aiN (for
1  i1  i2  . . .  iN  `) by its one-point marginal

MXSN�ai1 ,ai2 ,...,aiN =
1

N

NX

k=1

�aik ,

as MX projects the set of symmetrized Dirac measures bijectively onto the set of
1/N -quantized probability measures

P 1
N
(X) :=

⇢
� 2 P (X) : � ({ai}) 2

⇢
0,

1

N
,
2

N
, . . . ,

N

N

�
for all i 2 {1, . . . , `}

�
,

see [44]. We capture the inverse relation with the notation ��, i.e., for

� =
1

N

NX

k=1

�aik 2 P 1
N
(X) ,

�� is defined as
�� := SN�ai1 ,ai2 ,...,aiN .

The ��s are exactly the extreme points of the set of symmetric probability measures
Psym

�
XN

�
. By Minkowski’s theorem, we can write any admissible object �, that

is any element of �
� 2 Psym

�
XN

�
: � 7! �

 
, (4.4)
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as convex combinations of said extreme points

� =
X

�2P 1
N

(X)

↵��� for some coefficients ↵ = (↵�)� that fulfill

↵� � 0 for all � and
X

�2P 1
N

(X)

↵� = 1.

To impose the marginal constraint on the coefficients, proceed as follows: interpret
the elements of P 1

N
(X) as column vectors, glue these column vectors together to

form a `⇥
�
N+`�1

N

�
-matrix A (

�
N+`�1

N

�
is the cardinality of P 1

N
(X)), match the order

of the coefficients (↵�)� to the order of the matrix A, and subject the coefficients
to the constraint

A↵

0

B@=
X

�2P 1
N

(X)

↵��

1

CA = �.

A symmetric probability measure � on XN then fulfills � 7! � if and only if its
coefficients ↵ fulfill A↵ = �. As the columns of A sum to 1, we already enforce
the normalization of the coefficients by imposing the marginal constraint which is
why we drop it when formulating our coefficient polytope

n
↵ 2 R(N+`�1

N ) : ↵ � 0 and A↵ = �
o
. (4.5)

In Core Publication A.1, we show that the transport polytope (4.4) is in a linear
and bijective relation with the coefficient polytope (4.5). The pairing between co-
efficients and admissible objects is one-to-one: exactly one collection of coefficients
for one admissible object. The transition from (4.4) to (4.5) makes it clear and
tractable what it means to be sparse in the symmetric setting. Monge states ex-
actly correspond to the 1/`-quantized coefficients and quasi-Monge states exactly
correspond to the coefficients that have at most ` nonzero entries.

Monge’s ansatz turns the MMOT problems under consideration into integer op-
timization problems. Yes, coefficients of Monge-type are sparse but due to their
1/`-quantization they are also predominantly of combinatorial nature. The quasi-
Monge ansatz is just sparse - no quantization attached.

The quantization and the thereby implied rigidity of Monge’s ansatz stems from
its origin in unsymmetrized OT. There, Monge’s ansatz consists of probability
measures on XN that distribute all their mass along the graph of a function of the
first component:

(id, T2, T3, . . . , TN)# �. (4.6)
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The ansatz requires every component Tk to do exactly what is necessary for (4.6)
to fulfill the marginal constraint: every component Tk has to preserve the uniform
measure. In the symmetrized case, Monge’s ansatz consists of the symmetrizations
of measures of the form (4.6):

SN

⇣
(id, T2, T3, . . . , TN)# �

⌘
.

Still, every component Tk has to preserve the uniform measure. Here, however it
is unnecessary to constrain component wise. Take a probability measure ↵ on X
and N maps T1, T2, . . . , TN : X ! X that fulfill

1

N

NX

k=1

Tk#↵ = � (4.7)

and with
SN

⇣
(T1, T2, . . . , TN)# ↵

⌘
(4.8)

you have a probability measure on XN that (i) for T1 = id is the symmetrization
of a measure that distributes all its mass along the graph of a function of the
first component and (ii) fulfills the marginal constraint [44]. In the symmetrized
case, the components have to preserve the uniform measure only on average for
(4.8) to fulfill the marginal constraint: If you push ↵ forward along the individual
components Tk and overlay the push-forwards, the result has to be uniform. The
quasi-Monge ansatz consists of probability measures on XN that take on the form
(4.8) subject to the constraint (4.7). This new ansatz takes advantage of the sym-
metry in two ways: it abolishes the special role of T1 as identity and requires its
components to preserve the uniform measure only on average.

As the quasi-Monge ansatz is more flexible than Monge’s ansatz, we can apply
it to an arbitrary marginal constraint �⇤

2 P (X). The result is probability mea-
sures on XN that take on the form

SN

⇣
(T1, T2, . . . , TN)# ↵

⌘
subject to the constraint

1

N

NX

k=1

Tk#↵ = �⇤,

where, as before, ↵ is a probability measure on X and T1, T2, . . . , TN are maps
from X to X. The quasi-Monge ansatz has a storage complexity of ` · (N + 1)
- an increase when compared to Monge’s ansatz by ` · 2. The ` values of the
map T1 and the probabilities ↵ assigns to the ` singletons make up the additional
unknowns. Note that both storage complexities, Monge’s and quasi-Monge’s, grow
linearly with the number of marginals N . In [44], we show that the quasi-Monge
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ansatz is - in contrast to Monge’s ansatz - sufficient for the MMOT problems
under consideration (3.4)-(3.5)/(3.6)-(3.9). Sufficient means that any instance of
the said MMOT problems admits a solution that takes on the form prescribed
by the ansatz. Overall, the quasi-Monge ansatz is flexible, sparse, and sufficient.
Through these qualities, the ansatz gives rise to an efficient computational method
to solve the discrete MMOT problems (3.4)-(3.5)/(3.6)-(3.9). For further reading,
have a look at the next chapter.



5 Numerical approaches to multi-marginal
optimal transport

The curse of dimension is the biggest challenge on the quest for an efficient nu-
merical method for optimal transport (OT) problems with many marginals. The
curse consists in the exponential growth of the storage complexity (see Section
3.3). OT problems with N = 20 marginals and ` = 1000 discretization points -
which correspond to 20 electrons distributed over 1000 sites in the electronic struc-
ture application of multi-marginal optimal transport (MMOT) - yield trail states
that consist of 1060 real numbers. This exponential growth of the problem size
hinders us to even store trial or optimal states for problems with a large number
of marginals. How can we then solve these problems?

A good place to start looking for an answer is the two-marginal setting. What
is it that works there? Can we adapt the method to multiple marginals? Is the
adaptation still scalable? In Section 5.1, we introduce the reader to the stan-
dard computational method in two marginals, Sinkhorn’s algorithm, and explain,
why its multi-marginal adaptation suffers from the curse of dimension. Our pre-
sentation mostly follows the excellent textbook [73] by Peyré and Cuturi titled
"Computational Optimal Transport". As the MMOT adaptation of Sinkhorn’s al-
gorithm did not break the curse, we next shine a light on the linear programming
aspect of OT. Two- as well as multi-marginal OT problems are linear programs. To
solve these well-understood optimization problems, a variety of methods is readily
available. Here, we will focus on the simplex method. In contrast to Sinkhorn’s
algorithm, it operates on sparse states. In Section 5.2, we explain why - even
though it operates on sparse states - the simplex method itself still suffers from
the curse of dimension and how to adapt the method to break the curse for elec-
tronic structure MMOT. This breaking of the curse is the key achievement of Core
Publication A.2. We call said adaptation of the simplex method Genetic Column
Generation. It is a simple and extremely efficient heuristic that provides approxi-
mate solutions for the problems at hand. Here, ’approximate’ simply refers to the
fact that we cannot certify optimality in general; in the test cases where the opti-
mal solution is known our method proved to be exact. Our letting go of exactness
or predetermined approximation quality is justified in light of the recent complex-
ity results by ourselves (Core Publication A.2) and by Altschuler and Boix-Adserà
[4, 5]. In Section 5.3, we elaborate on the complexity-theoretic work of the latter
authors and its implications. Simply put, their work helps us to identify for which
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problems the curse can be broken with exact, approximate, or heuristical methods.
Finally, in Section 5.4, we draw an overall conclusion.

Before going into details, let us refer the reader to a recent excellent review ti-
tled "Optimal transportation, modelling and numerical simulation" by Benamou
[7]. It provides a bird’s eye view on the topic which not only reveals the relevant
concepts but also connections between them. For further reading on numerical
approaches to the MMOT problems arising in electronic structure, we refer the
reader to [42].

5.1 The standard in two marginals: Sinkhorn

Why make a fuss about the case of two marginals? The curse of dimension man-
ifests with a growing number of marginals. For two marginals, the number of
unknowns is `2 (with ` being the number of discretization points). So, why not
simply apply the simplex method and be done with it? The answer lies in the
applications of two-marginal OT, as for example statistical machine learning. We
can use OT problems to measure the difference of two probability densities or his-
tograms. Consider the two-marginal Kantorvich OT problem, let µ and ⌫ denote
the marginals and assume the cost function c to be a distance. Then, the optimal
transport cost, that is the optimal value of the problem, defines a distance between
the marginals µ and ⌫ [83]. A key task in statistical machine learning consists in
finding the right measuring tape - that is notion of distance - to compare prob-
ability densities or histograms. While the OT notion of distance makes for an
intuitive and powerful candidate from a theoretical perspective, its computational
cost based on standard linear programming methods prohibits its use when µ and
⌫ have a high number of support points. With fine discretization and high reso-
lution histograms dominating the field of machine learning, the relevance of OT
distances entirely depends on whether we can find creative ways to efficiently solve
or approximate the underlying problems.

In 2013, Marco Cuturi [28] proposed to regularize the classic OT distances by
adding an entropic term to the original objective function. The resulting regu-
larized problems provide approximate solutions for the original problem and can
be solved by a powerful alternating optimization process. This process goes by
the names of Sinkhorn’s algorithm [81], iterative proportional fitting procedure
[33], and Bregman iterative projections [15]. Simplex-like methods move from
one sparse state to the next until they have reached the optimum. In contrast,
Sinkhorn’s algorithm has the subgoal to achieve maximal entropy and as a con-
sequence mollifies or regularizes the previously sparse states. Computationally
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speaking, the regularization has a stabilizing effect.

Let us now complement our words with formulas. The above-mentioned entropi-
cally regularized OT problems take on the form

Minimize
X

i,j

cij�ij + "
X

i,j

�ij (log (�ij)� 1)

subject to � has marginals µ and ⌫.

The new objective function is strictly convex. Consequently, the regularized prob-
lem admits a unique solution �⇤

"
. While solutions to the original, ’unregularized’,

problem sit on the boundary of the set of admissible trail states, the solution �⇤
"

of the regularized problems sits in the ’interior’. The regularization moves the
solutions away from sparse towards more densely occupied states. For decreasing
regularization ("! 0), the solutions (�⇤

"
)
"

converge to the solution of the original,
’unregularized’, problem that has maximal entropy.

To understand the alternating strategy of Sinkhorn’s algorithm, we shine a light
on the regularized solutions �⇤

"
from a different vantage point. Let us firstly note

that �⇤
"

also solves the problem

Minimize KL (�|)

subject to � has marginals µ and ⌫.

Here, KL denotes the Kullback-Leibler divergence, which is defined as

KL (�|�̂) :=
X

i,j

�ij

✓
log

✓
�ij
�̂ij

◆
� 1

◆
+ �̂ij

for componentwise positive �̂, and  denotes the Gibbs kernel associated to the
cost c, which is defined as ij := e�

cij
" . Simply put, �⇤

"
being a solution of the

above divergence minimization means that �⇤
"

is a projection of the Gibbs kernel
 onto the given transport polytope. We can connect the Gibbs kernel  and the
regularized solution �⇤

"
also in algebraic terms:

(�⇤
"
)
ij
= uiijvj

for two (unknown) vectors u and v. While this algebraic connection does not have
the visual appeal of its geometric predecessor, it does yield important computa-
tional advantages. It allows us to consider #i+#j (u and v) instead of #i·#j (�")
unknowns. Now, Sinkhorn’s algorithm indeed works with these #i+#j unknowns
in form of the vectors u and v: it consists of alternating updates

u(n+1) :=
µ

v(n)
and v(n+1) :=

⌫

Tu(n+1)
, (5.1)
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where we apply the division operator componentwise. The reader can think of
the process as follows: after starting at a random positive vector v(0), Sinkhorn’s
algorithm alternatingly updates u and v in such a way that the measures �(m)

"

defined by
�
�2n+1
"

�
ij
:= u(n+1)

i
ijv

n

j

�
�2n+2
"

�
ij
:= u(n+1)

i
ijv

(n+1)
j

fulfill the first marginal constraints for odd m = 2n + 1 and the second for even
m = 2n + 2. Sinkhorn’s algorithm is particularly successful at computing OT
distances at large scale, that is pairwise distances of a large number of histograms.
While already the matrix-vector-products in (5.1) invite parallelism, the matrix-
matrix-products that appear in large scale computations do even more so.

Now to the case of N � 3 marginals. For further reading, we refer to our
primary sources [8, 9, 69]. The appealing updating steps (5.1) become unwieldy
for multiple marginals. The once innocent matrix-vector-product becomes a mul-
tilinear map with N � 1 input vectors, whose evaluation requires the summation
of `N�1 terms (with ` being the number of discretization points). As it is the
problem size that yields the scale of the summation, it is once again the curse of
dimension that throws a wrench into our plans by hindering us to successfully lift
the standard in two to multiple marginals. The new updating steps only allow
for a fairly low number of discretization points and marginals. Benamou, Carlier,
and Nenna [9] proposed a heuristic mesh refinement strategy that moved the lit-
tle number of available discretization points to the ’right’ areas. They determine
these ’right’ areas based on the expectation that the support of regularized solu-
tions is a mollified version of the sparse support of the original solutions. Even in
the case of entropically regularized OT the sparsity of optimizers is used (at least
heuristically) to circumvent the curse.

5.2 Genetic Column Generation
In this section, we present the scientific contribution of Core Publication A.2. As in
the article itself, the focus lies on introducing a new computational method called
Genetic Column Generation. While in principle the method can be adapted to all
kinds of MMOT problems, the article targets the discrete MMOT problems that
arise in the electronic structure application of OT (see Section 3.1). These prob-
lems aim to find the minimum of a linear objective function on a high-dimensional
symmetric transport polytope. In contrast to Sinkhorn’s algorithm, our method
targets the original, ’unregularized’, problem. In contrast to Sinkhorn, we embrace
sparsity.
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The problems at hand. In Core Publication A.2, we apply the Genetic Column
Generation method to the following problems.

Minimize
X

�2P 1
N

(X)

c�↵�

subject to
X

�2P 1
N

(X)

�↵� = �⇤ (5.2)

↵ � 0

Here, we face a so-called extremal formulation of the symmetric MMOT problems
(3.4)-(3.5)/(3.6)-(3.9). To reach this formulation, write the previously admissible
objects � as convex combination of the extreme points {��} of the set of sym-
metric probability measures Psym

�
XN

�
with X denoting the finite state space

{a1, a2, . . . , a`}. So, just as Dantzig and Wolfe did in their pioneering articles
[29, 30] on the concept of column generation, we express the admissible objects
as convex combinations of the extreme points of a suitably chosen superset. The
coefficient of �� is denoted by ↵�. The corresponding cost coefficient c� accounts
for the transport cost of ��, i.e.,

c� :=

Z

XN

cd��. (5.3)

For answers to the questions - what do the extreme points �� look like, why can we
index the extreme points {��}� via their one-point marginal � 2 P 1

N
(X), and why

does (5.2) embody the marginal and normalization constraint - we refer the reader
to Section 4.3. While the extremal formulation reduces the number of variables to
the actual number of unknowns -

�
N+`�1

N

�
, this reduction does not suffice to break

the curse of dimension (see Section 3.3).

How does Genetic Column Generation relate to the simplex method?
As the set of admissible objects of the problems at hand is bounded, they admit
an optimal solution. A fundamental truth in linear programming theory tells us
that we can choose this solution to be an extreme point. The simplex method is
built on this fundamental truth. It moves from one extreme point (= vertex) to
the next along cost reducing edges. It looks for these edges through exhaustive
search. See [12] for an excellent introduction to the simplex method. Our method
also moves from one extreme point to the next along cost reducing edges. We,
however, look for these edges through genetic sampling, not exhaustive search and
by that circumvent the curse of dimension. Generally speaking, column genera-
tion is an adaptation of the simplex method towards flat linear programs which are
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linear programs with a high number of variables and comparatively low number
of equality constraints. If the number of variables become too high, the linear
program in its entirety becomes intractable or even unstorable. But, the simplex
method operates on extreme points which for these flat linear programs are sparse,
i.e., have few nonzero entries (see, for example, [11]). Column generation makes
use of this fact and only stores the sparse data. To move from one sparse data
point to a better one, we need to find a cost reducing edge. More concretely, we
have to find a new variable that if we switch it on, i.e., allow it to be nonzero,
improves our cost. (Switching on a variable means activating a column in the
constraint matrix: hence, the name column generation.) The simplex method uses
exhaustive search for this task. As there are as many places to look as there are
variables, exhaustive search is out of the question for the said flat linear programs.
This is why in column generation one casts this search as an optimization problem
that looks for the variable that would improve our current cost the most. This
problem is referred to as pricing problem. Whether we can apply column gen-
eration successfully to a given flat linear program, depends entirely on whether
we can treat the pricing problem efficiently. In the classic example of the cutting
stock problem the pricing problem turns out to be a knapsack problem that can in
practice often be solved efficiently via dynamic programming (see [48] for the origi-
nal reference and [66] for an excellent review on the concept of column generation).

Our pricing problem takes on the form

Maximize �Ty⇤
�

N

2
�TC�+

N

2
diag (C)T � (5.4)

subject to
|X|X

i=1

�i = N (5.5)

� 2 N|X|
0 (5.6)

or equivalently

Maximize �Ty⇤
�

N2

2
�TC�+

N

2
diag (C)T � (5.7)

subject to � 2 P 1
N
(X) . (5.8)

Here, we slightly abuse the notion and identify a probability measure � 2 P 1
N
(X)

with its vector counterpart � 2 R|X| defined by �i := � ({ai}). The vector y⇤

denotes the dual to our current sparse data point (more concretely: our sparse data
point gives rise to a small primal linear program, y⇤ is a solution to its dual). The
matrix C = (Cij)ij 2 R|X|⇥|X| arises from the transport cost c (x1, x2, . . . , xN) =P

1i<jN
v (xi, xj) via

Cij = v (ai, aj)
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and diag(C) denotes the vector
�
C11 C22 . . . C|X||X|

�T consisting of the diagonal
entries of C. Note that we consider pairwise interactions only. It is this restriction
that allows us to compute the high-dimensional integrals (5.3) with the quadratic
form N

2

2 �
TC�� N

2 diag (C)T �. See Section 6.1 for the simplification. As in general
the objective of the pricing problem takes on the form �Ty⇤

� c�, the restriction to
pairwise interactions simplifies our pricing objective to a quadratic function. Even
though we now ’only’ face a quadratic objective, the overall integer optimization
problem with a quadratic objective and linear equality constraints is NP-complete,
as we prove in Core Publication A.2. We postpone the question on what exactly
NP-completeness means to the next section. Now, let us just say, we face a prob-
lem that becomes too intractable to be solved with a growing number of marginals
and discretization points. Solving the problem means finding the best edge to
move forward. But, an improving edge suffices. Accordingly, we are content with
finding a column � with positive objective value. Note: best edge means best �,
improving edge means � with positive objective value. To find such an improving
�, we employ a genetic sampling method: we admit only ’successful’ �s as par-
ents, randomly select one of the parents, then randomly select one of the nearest
neighbours of said parent as child, and finally test the child for a positive objective
value. Now, how exactly does it work? Our variables ↵ embody the positional
distribution of the N electrons in a molecule. This distribution is a stochastic su-
perposition of electron configurations. Our N electrons form configuration j with
probability ↵j. At any iteration in the Genetic Column Generation optimization
process, we sit at a sparse data point. This means our current distribution is a
superposition of few configurations. Any admissible � in our pricing problem rep-
resents such a configuration: each quantized mass unit in a component �j means
that an electron is sitting on the corresponding discretization point aj. Now, when
faced with the task to guess good �s, we choose to learn from our current sparse
data points. We randomly choose one of the few configurations that appears with
nonzero probability. Then, we randomly choose one of the N electrons. Let’s
say in the chosen configuration � it sits on discretization point aj. And, finally
we randomly choose one of the neighbours of aj and move the electron there. In
this manner, we have produced a genetic sample �̂ which we now can test for ac-
ceptance using our low-complexity acceptance criterion (that is positive objective
value regarding the pricing problem).

The sparse states we assume in each iteration belong to the class of quasi-Monge
states introduced in Section 4.3. With our Genetic Column Generation method
we move from one quasi-Monge state to the next through genetic sampling and
subsequent low-complexity testing. So, the quasi-Monge ansatz is not only low-
dimensional and sufficient (as discussed in Section 4.3) but also gives rise to an
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efficient computational method for the discrete MMOT problems (3.4)-(3.5)/(3.6)-
(3.9) for pairwise interacting cost functions.

5.3 How ’hard’ are the problems?

In this section, we will shine a light on recent complexity results in MMOT theory
by Altschuler and Boix-Adserà. Before we start off with a reminder on what "NP-
complete" means, let us note that in general hardness results concern so-called
decision problems while we here deal with optimization problems. As the hard-
ness of the decision version of a problem implies the hardness of the corresponding
optimization problem, we will not go into the details of decision problems and
restrict our attention to optimization problems accepting a slight misuse of terms.

What does it mean to be an NP-complete problem? Let’s take our pricing
problem (5.4)-(5.8). We have shown that it is NP-complete which means that it
belongs to the class NP and it is at least as hard to solve as any other problem
in the class NP (see, for example, [57, 24]). It is the latter of the two conditions
that concerns the difficulty of solving the problem. Due to the central unanswered
question in complexity theory - does P equal NP - it is of comparative instead of
explicit nature. Garey and Johnson give the following, more concrete, description
in their seminal book [47] on the theory of NP-completeness: If a problem is NP-
complete then finding a polynomial time algorithm that solves it - if at all possible
- corresponds to a major breakthrough in theoretical computer science.

Hardness of MMOT. In Section 5.1 and 5.2, we took a closer look at Sinkhorn’s
algorithm and the simplex method. With an increase of the problem size, the
curse of dimension tightens the noose around their bottleneck more and more un-
til it becomes unpassable. But, there is still hope. Both, the simplex method and
Sinkhorn’s algorithm, were discussed in a general, off-the-shelf form. If we focussed
on specific classes of cost functions, we might be able to use the implied structure
to simplify the problem and derive a computational method for this simplification.
In [21], for example, they focussed on matching for teams problems (in particular
the special case of Wasserstein barycenter) and presented two efficient computa-
tional methods. But, for which classes of cost functions do there exist efficient or
to be more concrete polynomial time methods? In their complexity-theoretic work
[4, 5], Altschuler and Boix-Adserà show us how to find answers: if there exists a
polynomial time method that exactly / approximately solves a class of MMOT
problems then the Ellipsoid / Multiplicative Weights Update (MWU) algorithm
runs in polynomial time. Here, the time is polynomial in the number of marginals
N and the number of discretization points ` for exactness and in the number of
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marginals N , the number of discretization points `, and Cmax/" (with Cmax denot-
ing the maximal entry in the cost tensor and " denoting the approximation error)
for approximation. The Ellipsoid and the MWU algorithm then run in polynomial
time if and only if their bottleneck is solvable in polynomial time, exactly for the El-
lipsoid and approximately for MWU. Interestingly, solving their bottlenecks means
solving the pricing problem of the column generation routine exactly (Ellipsoid) or
approximately (MWU). Overall, Altschuler and Boix-Adserà provide us with the
tools we need to show polynomial run time in the tractable cases or NP-hardness
in the intractable cases. They use these tools themselves on an array of problems.
On the one hand, they establish polynomial time solvability for costs of graph-
ical structure, set-optimization structure, and low-rank plus sparse structure, as
they call it. On the other hand, they establish the NP-hardness of low-rank costs,
pairwise-interaction costs, and certain repulsive costs. In particular, they estab-
lish the NP-hardness of MMOT for the Coulomb-Buckingham potential regarding
exact as well as approximate solvability. For the classic Coulomb potential, they
conjecture as much (for exactness).

Even if we face an NP-hard problem, there are steps we can take. First of all,
NP-hardness concerns the worst case. So, we advise checking whether you can
slim down your problem class. If this is not possible, as described in [47], you have
a choice to make: hold on to exactness or let go. If you hold on, you can work on
cleverly arranging your exhaustive search using for example branch-and-bound or
dynamic programming techniques. While these may lead to speed-ups, they will
(in general) not allow you to break the curse. If you let go, you can work on finding
a clever heuristic that produces not optimal but ’good’ solutions ’fast’. While this
allows you to break the curse, you lack (in general) a certificate of your solution
being ’good’ or optimal. With the Genetic Column Generation method, we let
go of exactness and designed a heuristic that produces ’good’ solutions ’fast’. In
the test cases where the optimal solution is known our method even proved to be
exact.

5.4 Conclusion and outlook

Genetic Column Generation is a simple and extremely efficient method that pro-
vides approximate solutions for the discrete MMOT problems arising in electronic
structure physics. Here, the term ’approximate’ simply refers to the fact that we
cannot certify optimality or we choose not to in light of recent hardness results
(see Section 5.2 and 5.3). In the test cases where the optimal solution is known
the method proved to be exact. These test cases climaxed in a problem consisting
of 2.58 · 1031 unknowns (N = 30 elections on ` = 120 discretization points in one
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dimension). The overall number of genetic samples needed in the optimization
process seems to grow only polynomially with the number of marginals - which
constitutes computational evidence of us breaking the curse and makes the seem-
ingly undoable problem size doable.

In our opinion, Genetic Column Generation is a very promising computational
method worthy of further study. As next steps, we will develop more sophisti-
cated sampling routines and investigate the possibility of performance guarantees.

As always, there is also something to learn from alternative methods, not only
what to improve, but also what to cherish. Sinkhorn’s algorithm profits from the
stabilizing effect of the entropic regularization. In the context of Column Gen-
eration, various stabilization approaches exist (see [66, 34] for further reading),
including a sophisticated dynamic boxstep method [51, 67, 37, 6] that proved to
accelerate computations significantly. Recently, two further computational meth-
ods for the MMOT problems that arise in electronic structure physics appeared on
the literary landscape. In [61, 60], the authors build upon the polynomial formula
for extremal N -representable 2-point measures (6.7) to compute approximations
using a semi-definite relaxation approach. In [3, 2], the authors chose a discretiza-
tion different to ours: they kept the state space continuous and ’just’ discretized the
marginal constraint by a finite number of moment constraints. The corresponding
Moment Constrained Optimal Transport problems admit sparse optimizers. Re-
stricting the optimization to admit sparse states only yields a lower-dimensional
yet nonlinearly constrained optimization problem. They used a stochastic particle
method to solve these problems. The scaling of accuracy and computational cost
with system size (in particular the number of moment constraints, limited to 52
for 100 electrons in what we believe to be the key simulation example in [2]) poses
an important open question to investigate. We believe a key advantage of the Ge-
netic Column Generation method to be its simplicity: we alternatingly solve small
linear programs and perform effective sampling with a low-complexity acceptance
criterion.



6 Convex geometry of N-representable mea-
sures

In the present chapter, we embed Further Publication B.1 in this dissertation.
The key result is of convex-geometric nature. It gives us an explicit expression
for the extreme points of a certain polytope that arises through projection of
high-dimensional measures. In more detail, the key result gives us an explicit
polynomial formula that expresses extremal N -representable k-point probability
measures (for N � k) in terms of their one-point marginal. We state this result,
in its bare form, in Section 6.2. In Section 6.1 and 6.3, we investigate the result
and possible applications from a computational and probabilistic vantage point.
We first bridge the gap to previous chapters and finally embark on an excursion
into de Finetti-style representations for finitely extendible random vectors.

As in the previous chapters, we abbreviate optimal transport and multi-marginal
optimal transport with OT and MMOT, respectively.

6.1 Application in the column-generation-context
and definition of N-representability

The formula

M2SN�ai1 ,ai2 ,...,aiN =
N

N � 1
�⌦��

1

N � 1
(id, id)# � with � :=

1

N

NX

k=1

�aik (6.1)

goes back to [44] and enabled us to swiftly decide whether to reject or accept
a genetic sample in our column generation process. It expresses the two-point
marginal of a symmetrized Dirac measure (= an extreme point of the set of sym-
metric probability measures on XN) in terms of a one-point probability measure
� on X. Here, the finite state space X consists of ` distinct points:

X := {a1, a2, . . . , a`} .

The two-point marginal map M2 or, more generally, the k-point marginal map
Mk : P

�
XN

�
! P

�
Xk

�
for 1  k  N � 1 is defined by

Mk�(A) = �(A⇥XN�k) for all A ⇢ Xk and all � 2 P
�
XN

�
,

51
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MN shall equal the identity. In the genetic-column-generation-process, we ran-
domly pick a candidate column from a genetic sampling pool and then test whether
this candidate has the potential to improve our current approximate solution. Let
� denote our current candidate. Recall that any column and therefore also our
candidate � is a 1

N
-quantized probability measure, i.e.,

� 2 P 1
N
(X) := {� 2 P (X) : � ({ai}) 2 {0, 1/N, 2/N, . . . , N/N} for all i} .

Consequently, we can write � as follows.

� =
1

N

NX

k=1

�aik for some ai1 , ai2 , . . . , aiN 2 X.

The aforementioned test requires us to compute the transport cost of the extremal
symmetric probability measure SN�ai1 ,ai2 ,...,aiN :

Z

XN

c (x1, x2, . . . , xN) dSN�ai1 ,ai2 ,...,aiN (x1, x2, . . . , xN) . (6.2)

With a growing problem size, this computation becomes an infeasible task. The
integration domain consists of `N elements and is - already for moderately sized
N and ` - too big to allow an efficient evaluation of the integral expression (6.2).
How can we avoid this infeasibility? For symmetric cost functions with pairwise
structure c (x1, x2, . . . , xN) =

P
1i<jN

v (xi, xj), (6.2) becomes:

Z

XN

X

1i<jN

v (xi, xj) dSN�ai1 ,ai2 ,...,aiN (x1, x2, . . . , xN)

=

✓
N

2

◆Z

X2

v (x1, x2) dM2SN�ai1 ,ai2 ,...,aiN (x1, x2)

=

✓
N

2

◆Z

X2

v (x1, x2) d

✓
N

N � 1
�⌦ ��

1

N � 1
(id, id)# �

◆
(x1, x2) . (6.3)

The first equality is easy to understand and goes back to [43]; the second equality
is due to formula (6.1) and goes back to [44]. In the first step, we reduce the size
of the integration domain from `N to `2; in the second step, we replace the implicit
description of the measure as two-point marginal of a high-dimensional object -
M2SN�ai1 ,ai2 ,...,aiN - with an explicit one that no longer relies on high-dimensional
objects - N/(N � 1)�⌦ �� 1/(N � 1) (id, id)# �. Overall, (6.3) allows us to com-
pute the transport cost of the high-dimensional object SN�ai1 ,ai2 ,...,aiN through no
more than O(`2) arithmetic operations.
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In Further Publication B.1, we generalized the success factor

M2SN�ai1 ,ai2 ,...,aiN =
N

N � 1
�⌦ ��

1

N � 1
(id, id)# � with � :=

1

N

NX

k=1

�aik

to k-point marginals for k = 2, 3, . . . , N . This means, we explicitly expressed the
k-point marginal of a symmetrized Dirac measure - MkSN�ai1 ,ai2 ,...,aiN - in terms
of a one-point probability measure �:

MkSN�ai1 ,ai2 ,...,aiN = FN,k(�) with � :=
1

N

NX

k=1

�aik . (6.4)

The expression FN,k(�) mimics the key traits of N/(N � 1)� ⌦ � � 1/(N �
1) (id, id)# �: it is a polynomial of degree k with leading term Nk/

Q
k�1
j=0(N �

j)� ⌦ � ⌦ . . . ⌦ � (prefactor times k-fold tensor product of � with itself) and a
series of k � 1 corrections, with correction j being of order 1/N j. For k = 2,
FN,k(�) equals its predecessor N/(N � 1)�⌦�� 1/(N � 1) (id, id)# �. For further
examples, we refer the reader to Section 6.2.

Just as we used the original formula (6.1) in the genetic column generation method
for two-point interactions, we can use the new formula (6.4) for k-point interactions

c (x1, x2, . . . , xN) =
X

1i1<i2<...<ikN

v (xi1 , xi2 , . . . , xik
) .

These range from two-point (k = 2) to N -point (k = N) interactions. For k = 2,
k-point interactions revert to two-point interactions and the new formula reverts to
the original one. An increase in k allows us to cover more complicated interactions.
This comes at a price: the size of the integration domain increases exponentially
with k. For ks close to N , we cover almost all cost functions, yet, are again unable
to handle the integrals. For small ks, we still can handle the integrals and the new
formula (6.4) can continue the success story of its predecessor.

Can we use the k-point interaction structure of cost functions to reduce the num-
ber of variables in our discrete MMOT problems? Recall the extremal formulation
introduced in Section 5.2:

Minimize cT↵

subject to ↵ 2 {↵ 2 R
����P 1

N
(X)

���� : A↵ = �⇤

↵ � 0}.
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To form the matrix A, proceed as follows. Interpret the elements of P 1
N
(X) as

column vectors by setting the i-th column entry �i to the probability of the i-th
singleton � ({ai}). Then, put these column vectors next to each other, one after
the other. The result is a |X| ⇥

���P 1
N
(X)

���-matrix - our matrix A. Any column
� 2 P 1

N
(X) has a corresponding variable ↵�. Accepting a new column � means al-

lowing the variable ↵� to be nonzero. So far, we have explained, how to streamline
the evaluation process of a candidate column using the formulas (6.1) and (6.4).
So, we have only discussed, how to efficiently decide whether to turn a variable ↵�
on. But, can we use the k-point interaction structure of cost functions to reduce
the number of variables, the ↵�s, altogether?

To answer this question, we have to understand, how the ↵�s arise. The ex-
treme points of the set of symmetric probability measures on XN , Psym

�
XN

�
, are

exactly the symmetrized Dirac measures

SN�ai1 ,ai2 ,...,aiN for 1  i1  i2  . . .  iN  ` = |X|.

See, for example, [44]. The transport plans of our discrete MMOT problems
(3.4)-(3.5)/ (3.6)-(3.9) were exactly the elements � of Psym

�
XN

�
that fulfilled

the marginal constraint � 7! �⇤. The variables ↵� arose as coefficients when writ-
ing a transport plan � as convex combination of the symmetrized Dirac measures.
The one-point marginal map M1 connects a coefficient with its symmetrized Dirac
measure: ↵� is the coefficient of SN�ai1 ,ai2 ,...,aiN if and only if SN�ai1 ,ai2 ,...,aiN has
one-point marginal � , i.e., M1SN�ai1 ,ai2 ,...,aiN = �. We showed in [44] that for any
1/N -quantized probability measure � on X exists exactly one symmetrized Dirac
measure on XN that has one-point marginal �. We denote the symmetrized Dirac
measure with one-point marginal � by ��. To summarize: the variable ↵� is the
coefficient of the extremal symmetric probability measure ��.

Now, we answer the question, whether we can use the k-point interaction structure
of cost functions to reduce the number of the variables ↵�. For k-point interac-
tions, a transport plan � can influence its transport cost only through its k-point
marginal Mk�:

Z

XN

X

1i1<i2<...<ikN

v (xi1 , xi2 , . . . , xik
) d� (x1, x2, . . . , xN) =

=

✓
N

k

◆Z

Xk

v (x1, x2, . . . , xk) dMk� (x1, x2, . . . , xk) .

Accordingly, we can replace the original set of transport plans with their k-point
marginals and optimize over these instead. The new set of admissible objects then
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consists of the elements µk of MkPsym

�
XN

�
that have one-point marginal �⇤, i.e.,

µk 7! �⇤. By linearity of the k-point marginal map Mk, the following holds: if
↵ = (↵�)� are the coefficients of a transport plan �,

� =
X

�2P 1
N

(X)

↵���,

then, ↵ are also the coefficients of Mk�,

Mk� =
X

�2P 1
N

(X)

↵�Mk��.

We have written the lower-dimensional admissible objects, the Mk�s, as convex
combinations of the k-point marginals of extremal high-dimensional probability
measures, the Mk��s. But, do we really need all these k-point marginals? In other
words: Are all measures of the form

Mk�� � 2 P 1
N
(X) (6.5)

extremal with respect to MkPsym

�
XN

�
? If this was not the case, we could shave

off any coefficient ↵� that is associated with a non-extremal Mk��. Unfortunately,
the answer is yes. In [44] (k = 2) and Further Publication B.1 (2 < k < N), we
showed that all measures of the form (6.5) are pairwise distinct and extremal with
respect to MkPsym

�
XN

�
. Consequently, we need all the Mk��s and cannot shave

off any coefficients. The number of variables (=coefficients) of our discrete MMOT
problems remains unchanged.

In Further Publication B.1, we refer to the elements of MkPsym

�
XN

�
(k-point

marginals of symmetric probability measures on XN) as N -representable prob-
ability measures on Xk. In doing so, we follow the example set by Friesecke,
Mendl, Pass, Cotar, and Klüppelberg in [43]; they introduced the concept of N -
representability. A proper definition goes as follows.

Definition 6.1 (N -representability). A k-point probability measure µk 2 P
�
Xk

�

is called N-representable, if there exists a symmetric N-point probability measure
� 2 Psym

�
XN

�
that has µk as its k-point marginal, i.e., Mk� = µk. The N-point

measure � is then called a representing measure of µk. We will denote the set of
N-representable k-point probability measures on Xk as PN-rep

�
Xk

�
, i.e.,

PN-rep

�
Xk

�
= MkPsym

�
XN

�
.
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6.2 Extremal N-representable measures

The set PN -rep

�
Xk

�
of N -representable probability measures on Xk consists of all

probability measures µk on Xk that are the k-point marginal of some symmetric
probability measure on XN (see definition at the end of Section 6.1). Here, `
distinct points make up the finite state space X:

X := {a1, a2, . . . , a`} .

The definition of N -representability says that we can ’extend’ an N -representable
probability measure on Xk to a symmetric probability measure on XN . The lat-
ter form a convex subset of P

�
XN

�
. To be more concise, the set of symmetric

probability measures on XN , Psym

�
XN

�
, arises as the intersection of finitely many

closed halfspaces. As Psym

�
XN

�
is also bounded we can generate it by forming the

convex hull of finitely many points (see, e.g., [76]). By definition, PN -rep

�
Xk

�
is

the image of Psym

�
XN

�
under the linear marginal map Mk. As such, PN -rep

�
Xk

�

is itself the convex hull of finitely many points. Any selection of finitely many
points that generates PN -rep

�
Xk

�
contains its extreme points with the minimal

selection consisting exactly of said extreme points. In what follows, we will give
an abstract and explicit description of these extreme points.

Let us start with the abstract description of the extreme points of PN -rep

�
Xk

�
. We

reiterate: PN -rep

�
Xk

�
is the image of Psym

�
XN

�
under the linear map Mk. Con-

sequently, if Psym

�
XN

�
equals the convex hull of a finite selection of points then

PN -rep

�
Xk

�
equals the convex hull of the k-point marginals of this finite selection

of points. The extreme points of Psym

�
XN

�
are the symmetrized Dirac measures

SN�ai1 ,ai2 ,...,aiN for some 1  i1  i2  . . .  iN  `.

See, for example, [44]. By Minkowski’s theorem (see Section 4.1), Psym

�
XN

�

equals the convex hull of its extreme points. Then, PN -rep

�
Xk

�
equals the convex

hull of points of the form

MkSN�ai1 ,ai2 ,...,aiN for some 1  i1  i2  . . .  iN  `. (6.6)

Now, any extreme point of PN -rep

�
Xk

�
must be of the form (6.6). But, are the mea-

sures of the form (6.6) pairwise distinct? And, which of them are extreme points?
As for different ordered indices (i1, i2, . . . , iN) 6= (j1, j2, . . . , jN) the extremal mea-
sures SN�ai1 ,ai2 ,...,aiN and SN�aj1 ,aj2 ,...,ajN have different one-point marginals [44],
the measures (6.6) are pairwise distinct. Further, all of them are extreme points.
For any 2  k  N � 1. This was shown in [44] (k = 2) and Further Publication
B.1 (3  k  N � 1). For the lift to ks greater than 2, we used the k = 2-result
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as a starting point. Let us summarize the abstract description. For fixed N � 2
and |X| = ` � 2, all sets PN -rep (X2), PN -rep (X3), ..., and PN -rep

�
XN

�
have the

same number of extreme points. The marginal maps Mk connect these extreme
points: for any 2  k  N , Mk maps the set of extreme points of Psym

�
XN

�

bijectively onto the set of extreme points of PN -rep

�
Xk

�
. So, even tough the sets

PN -rep (X2), PN -rep (X3), ..., and PN -rep

�
XN

�
live in completely different spaces,

dimension-wise, they all share part of their convex structure.

Let us move on to the explicit description of the extreme points of PN -rep

�
Xk

�
.

Before we will provide formulas that explicitly express extreme points of PN -rep

�
Xk

�
,

i.e., measures of the form

MkSN�ai1 ,ai2 ,...,aiN for some 1  i1  i2  . . .  iN  `,

in terms of their one-point marginal, we will take a closer look at these one-point
marginals. The one-point marginal of a symmetrized Dirac measure SN�ai1 ,ai2 ,...,aiN
is given by

M1SN�ai1 ,ai2 ,...,aiN =
1

N

NX

k=1

�aik

(see [44]). Different ordered indices i1  i2  . . .  iN yield different one-point
marginals. Overall, M1 maps the set of symmetrized Dirac measures bijectively
onto its range, the set P 1

N
(X) of 1/N -quantized probability measures on X [44].

From a convex geometric point of view, P 1
N
(X) = M1

n
SN�ai1 ,ai2 ,...,aiN

o
plays a

less fundamental role in M1Psym

�
XN

�
= PN -rep (X) than, say, M2

n
SN�ai1 ,ai2 ,...,aiN

o

in M2Psym

�
XN

�
= PN -rep (X2). For k � 2, PN -rep

�
Xk

�
is a true subset of

P
�
Xk

�
and the set Mk

n
SN�ai1 ,ai2 ,...,aiN

o
exactly consists of the extreme points

of PN -rep

�
Xk

�
. For k = 1, PN -rep (X) equals P (X) and M1

n
SN�ai1 ,ai2 ,...,aiN

o

contains far more elements than the extreme points of PN -rep (X). The latter
exactly correspond to the Dirac measures �a for a 2 X. The set P 1

N
(X) =

M1

n
SN�ai1 ,ai2 ,...,aiN

o
plays an important role when it comes to the convex geom-

etry of its extensions. It will serve as a parameter space for the upcoming explicit
description of extremal N -representable measures on Xk.

We will provide the explicit formulas in order of increasing k. For k = 2, a
probability measure µ2 on X2 is an extreme point of PN -rep (X2) if and only if

µ2 =
N

N � 1


�⌦ ��

1

N
(id, id)# �

�
for a � 2 P 1

N
(X) . (6.7)
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This characterization is due to [44]; some preliminary results were proven in [39,
43]. For k = 3, a probability measure µ3 on X3 is an extreme point of PN -rep (X3)
if and only if

µ3 =
N2

(N � 1)(N � 2)


�⌦ �⌦ ��

3

N
S3

⇣
(id, id)# �⌦ �

⌘
+

2

N2
(id, id, id)# �

�

for a � 2 P 1
N
(X) . (6.8)

This characterization is due to [61] and Further Publication B.1. In [61],the poly-
nomial expression (6.8) appeared for the first time; in Further Publication B.1, we
show that measures of the form (6.8) are exactly the extreme points of PN -rep (X3).
For k = 4, a probability measure µ4 on X4 is an extreme point of PN -rep (X4) if
and only if

µ4 =
N

3

(N � 1)(N � 2)(N � 3)


�⌦ �⌦ �⌦ ��

6

N
S4

⇣
(id, id)# �⌦ �⌦ �

⌘

+
8S4

⇣
(id, id, id)# �⌦ �

⌘
+ 3S4

⇣
(id, id)# �⌦ (id, id)# �

⌘

N2

�
6

N3
(id, id, id, id)# �

�
for a � 2 P 1

N
(X) . (6.9)

This characterization can now be attributed fully to Further Publication B.1.
Therein, we also provide an analogous characterization for k � 5: A probabil-
ity measure µk on Xk is an extreme point of PN -rep

�
Xk

�
if and only if

µk = FN,k(�) for a � 2 P 1
N
(X) .

Here, FN,k is a polynomial of degree k with leading term Nk�1/
Q

k�1
j=1(N � j)�⌦k

(prefactor times k-fold tensor product of � with itself) and a series of (k � 1)
corrections, with correction j being of order 1/N j. For k = 2, 3, and 4, FN,k(�)
equals the polynomial expression in (6.7), (6.8), and (6.9), respectively. For the
explicit formulas for general k, we refer the reader to Further Publication B.1.

The polynomials FN,k also characterize the extreme points of PN -rep

�
Xk

�
for more

general state spaces X. Let X be a Polish space, i.e., a complete and separable
metric space. Note, that Polish spaces include the continuous state spaces Rd.
Then, we show in Further Publication B.1 that for any N � k � 2, a probability
measure µk on Xk is an extreme point of PN -rep

�
Xk

�
if and only if

µk = FN,k(�) for a � 2 P 1
N
(X) .

We further show that each of these extreme points is also an exposed point. For
finite state spaces, it is needless to show that we can expose the extreme points due
to their finite number (see the end of Section 4.1). Overall, Further Publication
B.1 fully (abstractly and explicitly) describes the extreme and exposed points of
PN -rep

�
Xk

�
for finite as well as continuous state spaces.
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6.3 Application in the context of finitely extendible
random vectors

The polynomial formula µk = FN,k(�), which expresses extremal N -representable
measures in terms of their one-point marginal, led us to a finite form of de Finetti’s
theorem. Here, we present this finite form and highlight its place in the literary
landscape of de Finetti-style representations. We start off with a transition to
probabilistic nomenclature, where we explain, for example, the terms ’random
vector’ and ’exchangeability’. By means of an illustrative example, we clarify that
the notion of exchangeability covers more than independent and identically dis-
tributed random variables (iids). Next, we state a version of de Finetti’s theorem
whose generality is due to Hewitt and Savage [50]. In the theorem, de Finetti
considers random vectors that can be extended to an ’infinitely long exchange-
able random vector’ (=infinitely extendible random vectors) and expresses them
as convex mixture of iids. What happens if a random vector can only be extended
by a finite amount? We illustrate - using a well-known example - that finitely
extendible random vectors need not be a convex mixture of iids. However, they
can be represented as signed mixtures of iids [32, 55, 59, 54] or as convex mixtures
of certain correlated random variables, which are iids at the highest order but
show lower order correlations (Further Publication B.1). We state both represen-
tations as well as de Finetti’s theorem itself for random vectors of length 4. This
restriction makes it easier to compare the three statements. Let us stress that it
is unnecessary for their validity. In Further Publication B.1, we present further
insights that go beyond what we discuss in the present chapter. Among others, we
recover the de Finetti theorem in the presented Hewitt-Savage version, extend the
Diaconis-Freedman error bounds, and present a connection to the Ewens sampling
formula from genetics. For the details, see Further Publication B.1.

Transition to probabilistic nomenclature. Given k random variables Z1,
Z2, . . . , Zk, we consider the vector Z = (Z1, Z2, . . . , Zk) whose i-th component is
given by the random variable Zi. We call such a vector Z random vector of length
k. A random vector Z = (Z1, Z2, . . . , Zk) is called exchangeable if its law remains
unchanged after its components have been permuted, i.e., for any permutation � of
{1, 2, . . . , k} the random vector Z� =

�
Z�(1), Z�(2), . . . , Z�(k)

�
has the same law as

Z itself. Using the terms predating this section: A random vector is exchangeable
if its law is symmetric. Now, we come to the issue of extendibility. A random vec-
tor Z = (Z1, Z2, . . . , Zk) is called N -extendible (for N � k) if it equals (in law) the
first k components of some exchangeable random vector of length N . Analogously,
the random vector Z = (Z1, Z2, . . . , Zk) is called infinitely-extendible if it equals
(in law) the first k components of some exchangeable sequence (Zi)i2N of random
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variables. Here, a sequence (Zi)i2N of random variables is called exchangeable if
its law remains unchanged after a finite number of its components have been per-
muted, i.e., for any permutation � of N that leaves all but finitely many natural
numbers unchanged the sequence

�
Z�(i)

�
i2N has the same law as (Zi)i2N itself. Us-

ing the terms predating this section: A random vector is N -extendible if its law is
N -representable.

Example [49]. What follows is an example of a random vector that is exchange-
able but whose components are not iids. Imagine yourself in front of an urn. It
is filled with N balls; each ball has a certain colour; a single colour may appear
multiple times. Now, you randomly draw a ball and place it in front of you in-
stead of putting it back in the urn. You performed a draw without replacement.
Keep going until you have k (for some 2  k  N) balls in front you. Let Zi, for
1  i  k, be the colour of the i-th drawn ball. Then, Z1, Z2, . . . , Zk are no iids,
but they form an exchangeable random vector. Why are the colours of the drawn
balls not independent? Suppose one of the colours - say, purple - appears only once
in the urn, and we get the corresponding ball with our first draw. Then, the colour
purple cannot appear in any of the following draws. So, Z1, Z2, . . . , Zk cannot be
independent. Why is the random vector Z = (Z1, Z2, . . . , Zk) exchangeable? In
the present experiment the probability of a given colour combination only depends
on the overall number of balls N , the number of draws k, the colour-make up of
the urn, and the colour-make of the draw; it does not depend on the order of the
drawn colours. (We advise readers who want more insight into the dependencies
to work out the details of a small example.) Consequently, any fixed colour com-
bination (for example, (red, red, green, blue)) appears with the same probability
as any of its permuted versions (for example, (blue, red, green, red)). This proves
the random vector Z = (Z1, Z2, . . . , Zk) to be exchangeable.

de Finetti-Hewitt-Savage theorem. Even though the terms ’exchangeable
random vector’ and ’iids’ are not equivalent, they are of similar nature. Both con-
cern joint distributions of identically distributed random variables. The present
theorem puts the notions of exchangeability and extendibility in relation with iids:
it identifies infinitely-extendible random vectors with convex mixtures of iids. We
can trace back the origin of this representation to de Finetti [31]. In its original
form it concerns random variables taking values in {0, 1}. A probability measure
on {0, 1} only depends on the probability p 2 [0, 1] of the singleton {1}. This is
why the de Finetti representation for 01-random variables consists of an integral
over the interval [0, 1]. After several intermediate steps, the generalization pro-
cess of de Finetti’s theorem climaxed in the celebrated manuscript by Hewitt and
Savage [50]. Their work gave rise to the following version of de Finetti’s theorem.
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Theorem 6.2 (de Finetti-Hewitt-Savage theorem). Let Z1, Z2, Z3, and Z4 be ran-
dom variables that take values in some Polish space X. Then, the random vector
Z = (Z1, Z2, Z3, Z4) is infinitely-extendible if and only if there exists a probability
measure ↵ 2 P (P (X)) such that

P (Z 2 · ) =

Z

P(X)

�⌦ �⌦ �⌦ � d↵(�).

The analogous statement holds for any k � 2, not only k = 4. For an exchange-
able sequence (Zi)i2N, there exists a unique choice of mixing measure ↵. Note
that Dubins and Freedman [38] showed that for the representation to hold not
any measurable space will do, i.e., the random variables cannot take values in an
arbitrary space.

Example [49, 35, 36]. What follows is a textbook example for an exchange-
able random vector that cannot be written as convex mixture of iids. Let us
consider two random variables Z1 and Z2 taking values in {0, 1}. The random
vector Z = (Z1, Z2) takes the values (0, 1) and (1, 0) each with probability 1/2,
and the values (0, 0) and (1, 1) each with probability 0; i.e.,

P (Z = (1, 0)) = P (Z = (0, 1)) =
1

2
,

P (Z = (0, 0)) = P (Z = (1, 1)) = 0.

Clearly, Z is exchangeable. Now, assume we can write Z as a convex mixture of
iids. Then,

P (Z = (a, b)) =

Z

P({0,1})
�({a}) · �({b}) d↵(�).

Recall that we may identify any � 2 P ({0, 1}) with the probability p it assigns
the singleton {1}. This allows us to simplify the integration domain as well as the
integrand:

P (Z = (a, b)) =

Z 1

0

pa+b
· (1� p)2�(a+b) d↵(p).

Using P (Z = (0, 0)) = P (Z = (1, 1)) = 0, leads us to a contradiction:

0 = P (Z = (0, 0)) =

Z 1

0

(1� p)2 d↵(p) ! ↵ = �1

0 = P (Z = (1, 1)) =

Z 1

0

p2 d↵(p) ! ↵ = �0.

The example illustrates that finite extendibility (here 2-extendibility) is insufficient
to guarantee a convex-mixture-of-iids-representation. Note that the random vector
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Z is an exchangeable pair of random variables that we cannot extend. (To show
the latter, assume we can extend Z to a random vector of length 3 and deduce
a contradiction.) Consequently, Z and the random vectors that are admissible
in the de Finetti-Hewitt-Savage theorem are on opposite ends of the extendibility
scale. Our intuition tells us that the further a random vector can be extended the
closer it should be to a convex mixture of iids. While this insight is important
and its pursuit proved fruitful for Diaconis and Freedman, it still leaves us short of
an explicit representation. In other words: An N -extendible random vector may
very well be close to a convex mixture of iids but how do we write it out? In the
following, we will present the reader with two finite forms of de Finetti’s theorem
that write out N -extendible random vectors explicitly.

First finite form of de Finetti’s theorem: signed mixtures of iids. The
beauty and significance of de Finetti’s theorem lies (partly) in its simplicity. It
expresses infinitely-extendible random vectors as convex mixtures of iids; iids are
fundamental objects in probability theory and statistics, well-understood, and use-
ful tools. The first finite form [32, 55, 59, 54] of de Finetti’s theorem holds on to
the integrand - iids - and its simplicity. In return, they have to make concessions
regarding ’everything around the integrand’: they relax the notion of mixture by
considering signed instead of convex mixing measures; (as a consequence) their
representation result only provides a necessary condition on N -extendibility. As
demonstrated in [54], the signed mixing measure for exchangeable random vec-
tors need not be unique. In contrast to de Finetti’s theorem, we can apply the
upcoming finite form to arbitrary measurable spaces.

Theorem 6.3 (First finite form of de Finetti’s theorem: signed mixtures of iids).
Let Z1, Z2, Z3, and Z4 be random variables that take values in an arbitrary space
X. If the random vector Z = (Z1, Z2, Z3, Z4) is N-extendible for some N � 4 then
there exists a signed measure ↵ on P (X) such that

P (Z 2 · ) =

Z

P(X)

�⌦ �⌦ �⌦ � d↵(�).

The analogous statement holds for any (N �)k � 2, not only k = 4. For an
exchangeable random vector Z = (Z1, Z2, . . . , ZN), the choice of mixing measure
is not necessarily unique. Note that even if P (Z 2 · ) =

R
�⌦4d↵(�),

R
�⌦5d↵(�)

need not be a nonnegative measure.

Second finite form of de Finetti’s theorem: convex mixtures of urn
distributions. A look behind the scenes of the de Finetti-Hewitt-Savage theorem
reveals a convex geometric side of the result. Hewitt and Savage actually show
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that the extreme points of the set of symmetric probability measures on infinitely
but countably many coordinates are exactly the measures of the form

�⌦ �⌦ . . . =: �⌦1 for � 2 P (X) .

The integral representation in the de Finetti-Hewitt-Savage theorem then repre-
sents a ’continuous convex combination’ of these extreme points.
Naturally, some researchers working on finite exchangeability and extendibility
took note and pursued a convex geometric approach. The key terms popping up
in this context are ’hypergeometric distributions’ and ’urn distributions’. They
refer to the distribution of ball-colours when drawing k balls out of an urn con-
taining N balls. We considered these distributions already in the first example of
the present section, but will reiterate the important details to ensure readability.
You stand in front of an urn. This urn contains N balls. Each ball has a certain
colour. A single colour may appear multiple times. You successively draw k balls
without replacement. The key terms ’hypergeometric distribution’ and ’urn dis-
tribution’ refer to the distribution of the k colours you drew. These distributions
appear for example in a simple proof [49] of de Finetti’s theorem for 01-random
variables, as an intermediate step in the derivation of the signed measure represen-
tation in [59], and in the celebrated work by Diaconis and Freedman [35, 36] where
they estimated the error between the law of a finitely extendible random vector
and the closest convex mixture of iids. The lack of an explicit general closed form
for the ’urn distributions’ is present throughout these references. The ’urn dis-
tributions’ are understood abstractly. Explicit probabilities are limited to special
cases. Except in [36]. Therein, the probability of k-colour-combinations is given
after the urn, the number of draws, and other variables were fixed as experiment
parameters. With our polynomials FN,k(�), we give an explicit general closed form
for the ’hypergeometric’ and ’urn distributions’. Hereby, N is the number of balls
in the urn, k the number of draws and the 1/N -quantized one-point probability
measure � on the colour space X (a Polish space) represents the composition of the
urn. The closed form allowed us to write N -extendible random vectors as convex
mixtures of FN,k(�)s in an explicit(!) manner just as Hewitt and Savage wrote
infinitely-extendible random vectors as convex mixtures of iids.

Theorem 6.4 (Second finite form of de Finetti’s theorem: convex mixtures of ’urn
distributions’). Let Z1, Z2, Z3, and Z4 be random variables that take values in some
Polish space X. Then, the random vector Z = (Z1, Z2, Z3, Z4) is N-extendible for
some N � 4 if and only if there exists a probability measure ↵ 2 P (P (X)) such
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that ↵
⇣
P 1

N
(X)

⌘
= 1 and

P (Z 2 · ) =

Z

P 1

N
(X)

N
3

(N � 1)(N � 2)(N � 3)
[�⌦ �⌦ �⌦ �

�
6

N
S4

⇣
(id, id)# �⌦ �⌦ �

⌘

+
8S4

⇣
(id, id, id)# �⌦ �

⌘
+ 3S4

⇣
(id, id)# �⌦ (id, id)# �

⌘

N2

�
6

N3
(id, id, id, id)# �

�
d↵(�).

In Core Publication B.1, we provided an analogous statement for any (N �)k � 2,
not only k = 4. Then, the integrand, which corresponds to the polynomial
FN,4(�), needs to be replaced with FN,k(�). For an exchangeable random vec-
tor Z = (Z1, Z2, . . . , ZN), there exists a unique choice of mixing measure ↵.

To put it in a nutshell: an N -extendible random vector may not be repre-
sentable as a convex mixture of iids; the signed-mixture-of-iids-approach holds
on to the iids and pays for it by allowing signed mixing measures; the convex-
mixture-of-urn-distributions-approach replaces iids with their finite analogue - urn
distributions - and can so keep the mixing convex.
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A Core publications

A.1 Geometry of Kantorovich polytopes and sup-
port of optimizers for repulsive multi-marginal
optimal transport on finite state spaces

Author: Daniela Vögler

Summary. In the present article, we shine a light on the convex geometry of the
polytopes

P
sym,�

�
XN

�
:=

�
� 2 Psym

�
XN

�
: � 7! �

 

and
P

N -rep,�

�
X2

�
:=

�
µ 2M2Psym

�
XN

�
: µ 7! �

 
.

Here, X is a finite state space consisting of ` pairwise distinct elements a1, a2, . . . , a`;
� denotes the uniform probability measure on X; Psym

�
XN

�
consists of all sym-

metric probability measures on the product space XN ; M2 : Psym

�
XN

�
! Psym (X2)

denotes the two-point marginal map defined by

M2� (A) = �
�
A⇥XN�2

�
for A ⇢ X2.

Finally, · 7! � means that · has equal one-point marginals �. These sets arise as
optimization domain for multi-marginal optimal transport problems on the finite
state space X that enforce a uniform marginal in every component: P

sym,�

�
XN

�

arises for the restriction to symmetric cost functions, P
N -rep,�

(X2) arises for the
restriction to symmetric two-body interactions. Our work is a natural extension
of the previous consideration of the N = ` = 3-case by Friesecke in [41].

Overall, we work towards a better understanding of the insufficiency exhibited
by Monge’s ansatz, the classic sparse ansatz in optimal transport. First, we focus
on small problem-parameters N and `, compute all extreme points of P

sym,�

�
XN

�

and P
N -rep,�

(X2), and determine how many of the computed extreme points are of
the form prescribed by Monge’s ansatz. We complement this computational study
with bite-sized theoretical results. Next, we only admit ` = 3 discretization points
as elements of the finite state space X. This makes P

N -rep,�
(X2) three-dimensional

and allows us to visualize the role Monge’s ansatz takes on. Despite its severe re-
strictions, this model problem bore fruit: it inspired a necessary support-condition
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on optimizers that applies to general N, ` � 2 and symmetric two-body interac-
tions whose diagonal entries exceed a specified threshold. This threshold varies
from problem to problem, from cost function to cost function. For

N = k · ` for some k 2 N or
✓
N �

�
N

`

⌫
· `

◆
2 {`� 1, 1} ,

the necessary support-condition proved to be strong enough to guarantee the exis-
tence of a unique optimizer and not only imply its compliance with Monge’s ansatz
but also explicitly provide this optimizer.
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We consider symmetric multi-marginal Kantorovich optimal transport problems on 
finite state spaces with uniform-marginal constraint. Hereby the symmetry of the 
problem refers to an assumption on the cost function as well as a corresponding 
restriction of the set of admissible trial states where the former enables the latter. 
Note that the symmetry of this setting forces us to pick for each of the considered 
marginals one and the same probability measure. The said problems consist of 
minimizing a linear objective function over a high-dimensional polytope, here 
referred to as Kantorovich polytope. The presented results are of split nature, 
computational and theoretical. Within the computational part only small numbers 
of marginals N and marginal sites ¸ are considered. This restriction allows us to 
computationally determine all extreme points of the Kantorovich polytope and 
investigate how many of them are in compliance with the in optimal transport 
typical Monge ansatz. Singling out the results for ¸ = 3 discretization points and 
pairwise symmetric cost functions enables us to visually compare Kantorovich’s 
to Monge’s ansatz space for a varying number of marginals. Finally we present a 
necessary support-condition for optimizers which is inspired by the insights the said 
model problem on three sites provided. This result is not limited to the case of 
¸ = 3 sites and applies to symmetric pair-costs whose diagonal entries lie above a 
cost-specific threshold. In case N and ¸ display certain relationships the discussed 
condition provides an optimizer in Monge-form and implies its uniqueness as a 
solution of the considered Kantorovich optimal transport problem.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

In general multi-marginal Kantorovich optimal transport (OT) problems aim at coupling N probability 
measures ⁄(1), . . . , ⁄(N) optimally with respect to a given cost function c (see (1.1) for a discrete symmetric 
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OT problem). These problems arise in various fields of research, ranging from economics [8,11] through 
mathematical finance [2,21] and image processing [1,36] to electronic structure [14,6].

Here we consider a symmetric multi-marginal Kantorovich OT problem on finite state spaces given by

Minimize
⁄

XN

c(x1, . . . , xN )d“(x1, . . . , xN ) over “ œ Psym
!
XN

"
subject to “ ‘æ ⁄. (1.1)

X denotes a finite state space as defined in (1.2), c : XN æ R fi{+Œ} an arbitrary symmetric cost function, 
⁄ the uniform marginal as defined in (1.3) and Psym

!
XN

"
the set of symmetric probability measures on 

XN , where a probability measure “ on XN is symmetric if

“ (A1 ◊ · · ·◊AN ) = “
!
A‡(1) ◊ · · ·◊A‡(N)

"
for all subsets A1, . . . , AN of X and all permutations ‡.

Any “ œ Psym
!
XN

"
fulfills “ ‘æ ⁄ if and only if “ has equal one-point marginals ⁄, i.e.,

“
!
Xk≠1 ◊Ak ◊XN≠k" = ⁄(Ak) for all subsets Ak of X and all k œ {1, . . . , N}.

Multi-marginal OT problems of form (1.1) were already considered in [20] and [18]. While [18] discusses the 
validity of Monge’s approach in the setting of 3 marginals and 3 sites, [20] introduces a su�cient ansatz space 
for problem (1.1) (see Section 2 as well as Remark 3.5 for information about the content of these papers). 
The present paper accompanies these previous considerations. In particular, some of the used nomenclature 
and notation is already introduced there.

Readers that are interested in computational methods regarding multi-marginal optimal transport are 
advised to have a look at [28,27]: Therein semidefinite relaxation approaches that are based on results in 
[20] are discussed.

For finite state spaces

X = {a1, . . . , a¸} (1.2)

consisting of ¸ distinct points a1, . . . , a¸, the uniform probability measure

⁄ =
ÿ̧

i=1

1
¸
”ai (1.3)

on X is the prototypical marginal. The corresponding multi-marginal Kantorovich OT problems, i.e., prob-
lems of form (1.1) with P

!
XN

"
replacing Psym

!
XN

"
, appear directly as assignment problems (see [39,5]

for reviews) and arise from continuous problems via equi-mass discretization [10].
Note that the restriction to symmetric probability measures in problem (1.1) is motivated by a physical 

application. Modeling the electronic structure of a molecule with N electrons in a discretized setting, is a 
prototypical application of multi-marginal OT on finite state spaces. In this context, X corresponds to a set 
of ¸ discretization points in R3 and any coupling “ of the N marginals ⁄, . . . , ⁄ describes a joint probability 
distribution regarding the electron positions in an N -electron molecule. Then the marginal condition ensures 
that each discretization point is occupied equally often and the cost function c : XN æ R fi{+Œ} embodies 
the electron interaction energy. As electrons are indistinguishable the considered cost functions are usually 
symmetric, i.e., invariant under argument permutation. These symmetric cost functions are ‘dual’ to the 
set of symmetric probability measures on the product space XN in the following sense: There always exists 
an optimal coupling of ⁄, . . . , ⁄ that is symmetric.

The interaction energy between electrons displays a pairwise structure, i.e., c(x1, . . . , xN ) =q
1Æi<jÆN v(xi, xj), with the Coulomb cost 

q
1Æi<jÆN

1
|xi≠xj | being the prototypical example. Here | · | is 
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the Euclidean norm in Rd. As discussed in Section 3, this pairwise structure allows us to reformulate the 
multi-marginal OT problem (1.1) as

Minimize
⁄

X2

v(x, y)dµ(x, y) over µ œ PN-rep
!
X2" subject to µ ‘æ ⁄. (1.4)

This reformulated problem was initially introduced in [19]. In (1.4), PN-rep
!
X2" ™ P

!
X2" can be inter-

preted as a ‘reduced version’ of Psym
!
XN

"
.

The goal of this paper is to present new insights into problem (1.1) which arose out of a careful consider-
ation of the polytope formed by the admissible trial states. Within this consideration the role Monge states 
take on in the said polytope is investigated.

One of the central questions in the theory of optimal transportation is: Under which assumptions ex-
ists an optimal coupling that is supported on a graph (over the first variable)? Such optimizers are then 
called Monge-solutions (see (1.6) - (1.8)). In the case of two marginals this question is well understood; 
the existence of Monge-solutions is always respectively under very general conditions guaranteed (see the 
renowned Birkho�-von Neumann theorem [4,41] regarding finite state spaces respectively, e.g., [40] regarding 
continuous state spaces). For multiple marginals the understanding of this question does not reach the same 
generality. However, there are isolated examples for Monge- and non-Monge-solutions. For the former, see 
[24,7,32,14,6,12] as well as the fundamental paper by Gangbo and åwiÍch [22] for an interesting selection. 
For the latter, we refer the interested reader to [9,33,19,34,15,17,13,38,31,23,18] regarding continuous state 
spaces as well as to [16,29,30,18] regarding finite state spaces.

In order to understand Monge’s approach in the present setting, we first take a quick glance at the 
‘unsymmetrized’ OT problem, i.e., problems of form (1.1) with P

!
XN

"
replacing Psym

!
XN

"
. Then, an 

optimal coupling “ œ P
!
XN

"
of the N marginals ⁄, . . . , ⁄ is a Monge-solution if

“ =
ÿ̧

‹=1

1
¸
”T1(a‹) ¢ · · ·¢ ”TN (a‹) for N permutations T1, . . . , TN : X æ X, (1.5)

where T : X æ X is a permutation if there exists a permutation of indices · : {1, . . . , ̧ } æ {1, . . . , ̧ } such 
that T (a‹) = a·(‹) for all ‹ œ {1, . . . , ̧ }. Demanding that the Tks are permutations ensures that “ is indeed 
a coupling of ⁄, . . . , ⁄: T : X æ X is a permutation if and only if it pushes the uniform measure forward 
to itself, i.e., T#⁄ = ⁄. Here for any probability measure ⁄ =

q¸
‹=1 ⁄‹”a‹ on X and any map T : X æ X

the push-forward T#⁄ of ⁄ under T is defined by T#⁄ =
q¸

‹=1 ⁄‹”T (a‹). One may choose T1 = id, i.e., 
T1(a) = a for all a œ X, by re-ordering the sum in (1.5).

Regarding (1.1) an admissible trial state “̂ is referred to as a (symmetrized) Monge state if it is the 
symmetrization of a probability measure “ of form (1.5), i.e.,

“̂ =
ÿ̧

‹=1

1
¸
S”T1(a‹) ¢ · · ·¢ ”TN (a‹) (1.6)

such that

Tk#⁄ = ⁄ for all k œ {1, . . . , N}, (1.7)

or equivalently,

T1, . . . , TN : X æ X are permutations. (1.8)



4 D. Vögler / J. Math. Anal. Appl. 502 (2021) 125147

Here S denotes the linear symmetrization operator in N variables as defined in (2.4). Probability measures on 
XN of form (1.6)-(1.8) are also said to be of Monge-type or in Monge-form and restricting the minimization 
problem (1.1) to such measures yields the corresponding Monge problem.

In Section 2 the ‘Kantorovich-coupling-polytope’, Psym,⁄
!
XN

"
, as defined in (2.2), will be identified with 

the ‘coe�cient-polytope’ Pcoef, as introduced in (2.9). Monge states then correspond to integer elements of 
the latter of the two polytopes. Both, the reformulation as well as the identification of Monge states with 
integer coe�cients are based on results in [20].

This di�erent view on the set of admissible trial states of problem (1.1) makes Monge’s approach more 
accessible, in the sense of, it is easier to decide whether a given coe�cient vector in Pcoef embodies a Monge 
state or not. This grasp of the Monge concept allows us to numerically quantify the insu�ciency of Monge’s 
ansatz which in the present setting is established in [18]. In more detail, for small problem-parameters we 
determine all extremal coe�cients and partition them into a Monge and a non-Monge class. The mere 
results of this classification are interpreted and complemented by ‘small’ theoretical results building upon 
the numerical ones.

In Section 3 the same numerical analysis is performed under the additional assumption of the cost function 
c in (1.1) displaying pairwise structure.

In Section 4, we will consider a model problem of optimally coupling the N marginals ⁄, . . . , ⁄ with 
respect to a cost function of pairwise symmetric structure, where the finite state space X consists only of 
three states, i.e., X = {a1, a2, a3}. In particular ⁄ is the uniform probability measure on {a1, a2, a3} and 
the domain of the cost function is given by {a1, a2, a3}N . The present setting allows us to draw a visual 
comparison between Kantorovich’s and Monge’s ansatz as depicted in Fig. 1. We further compare both OT 
approaches by volume of (the convex hull of) the respective set of admissible trial states and establish a 
computationally simple upper bound on the optimal value in (1.4).

Taking a look at Fig. 1 the reader may notice that in each of the illustrations one of the extreme points 
creates a ‘peak’ in the front of the polytope. As indicated by the coloring each of these extreme points is of 
Monge-type. In Section 4, more specifically Theorem 4.1, these ‘peaks’ are identified as the unique solutions 
of OT problems with respect to very rudimentary repulsive cost functions based on the discrete metric. 
The results of Section 5 originated from the idea ‘peaks solve repulsive OT problems’. For any number of 
marginals N Ø 2 and any number of states ¸ Ø 2 we consider a large class of repulsive pair-costs with the 
underlying assumption on these cost functions being that their diagonal entries are constant and ‘big enough’ 
when compared to their o�-diagonal entries. We show that in the given setting any optimizer of problem 
(1.1) only gives mass to tupels (x1, . . . , xN ) œ XN for which the ‘appearance-frequency’ of elements of the 
finite state space X is as uniform as possible (see Theorem 5.2). So for N = 5 and ¸ = 3 (a1, a2, a1, a3, a2)
is a valid support-tupel whereas (a1, a2, a1, a3, a1) is not. This support-condition is more explicit than the 
notion of c-cyclical monotonicity, which appears frequently in the context of OT, and for certain parameter 
constellations it paints a very thorough picture of what optimizers look like. In case

N = k · ¸ for some k œ N or
3
N ≠

7
N

¸

8
· ¸
4
œ {¸≠ 1, 1} (1.9)

the discussed condition provides an optimizer in Monge-form and implies its uniqueness. This optimizer 
represents the depicted ‘peak’ for ¸ = 3 and a higher-dimensional analogue for ¸ > 3. Note that for ¸ = 3
states (1.9) is fulfilled for any N Ø 2. So to put it in a nutshell, for any pair of parameters N, ̧  Ø 2
fulfilling (1.9) we provide a large class of repulsive pair-costs which yield the idea ‘peaks solve repulsive OT 
problems’ to be true. As for why this identification of ‘peaks’ as optimizers is limited to parameter choices 
N, ̧ fulfilling (1.9) note the following. When keeping the number of states ¸ > 3 fixed and letting N tend to 
+Œ starting at N = ¸ the geometric behavior can be described as follows: While the ‘peak’ remains intact 
for N = ¸ as well as N = ¸ + 1, for N = ¸ + 2 its representing measure (see Definition 3.1) on the product 
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Fig. 1. The reduced Kantorovich (see (3.4)) respectively Monge (see (3.8)) polytope for N marginals and 3 states is visualized for 
N = 3 (top-left), 4 (top-right), 6 (bottom-left) and 10 (bottom-right) in green respectively red. The elements (µij)3i,j=1 of the 
polytopes are parametrized by their o�-diagonal entries µ12, µ13 and µ23. The present figure recovers the illustration of the reduced 
polytopes in the case of three marginals in [18]. If a two-dimensional face of the reduced Monge polytope belongs to the boundary 
of the reduced Kantorovich polytope the occupied area is depicted in red. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

space XN blossoms into multiple extreme points; for N = 2¸ ≠ 1 the blossom retracts into a closed state 
recreating the ‘peak’.

In order to prove Theorem 5.2, we establish a lower bound on the nonzero entries of extreme points of 
the ‘coe�cient-polytope’ Pcoef, which - we believe - is in itself an interesting result.

2. Classification of the extreme points of a Kantorovich polytope

Throughout the paper we will consider the finite state space X given by (1.2). We will denote the 
set of probability measures on X as P(X). Each such probability measure ⁄ œ P(X) can be canonically 
identified with a vector in R¸ via ⁄i := ⁄(ai). The vector (⁄1, . . . , ⁄¸) fulfills 

q¸
i=1 ⁄i = 1 and ⁄i Ø 0 for 

i œ {1, . . . , ̧ } and is therefore an element of the unit simplex. The probability measure ⁄ can then be written 
as ⁄ =

q¸
i=1 ⁄i”i, where here and below we use the shorthand notations

”i := ”ai , ”i1...iN := ”ai1 ¢ . . .¢ ”aiN (2.1)

for ai œ X being a single point in the finite state space and (ai1 , . . . , aiN ) being an element of the product 
space XN .

As announced in the Introduction, we will now take a closer look at the set of admissible trial states of 
problem (1.1), i.e., the polytope

Psym,⁄
!
XN

"
:=
)
“ œ Psym

!
XN

"
: “ ‘æ ⁄

*
. (2.2)



6 D. Vögler / J. Math. Anal. Appl. 502 (2021) 125147

From this point on, we will refer to the elements of this set as symmetric Kantorovich couplings. The set 
Psym,⁄

!
XN

"
itself will be called (symmetric) Kantorovich polytope for N marginals and ¸ states. As within 

this paper we focus our attention on the symmetric case, the term symmetric will be dropped from time 
to time. It is easy to see that, as a result of the linearity of the marginal constraint and the finiteness of 
the state space X, Psym,⁄

!
XN

"
is a compact and convex set in R¸N and therefore by Minkowski’s theorem 

(see, e.g., [25]) the convex hull of its extreme points.
Recall the following basic definitions and notions of convexity (see, e.g., [25,37]). For y1, . . . , yn œ Rm and 

⁄1, . . . , ⁄n Ø 0 such that 
qn

i=1 ⁄i = 1

⁄1y1 + · · · + ⁄nyn =
nÿ

i=1
⁄iyi

is called a convex combination of the points y1, . . . , yn. A subset K ™ Rm is called convex if for each finite 
selection of points in K each possible convex combination of these points is again contained in K. For a 
subset V ™ Rm the convex hull of V , denoted as conv(V ), corresponds to the set of all possible convex 
combinations of a finite selection of points in V . Obviously a set K ™ Rm is convex if and only if it is equal to 
its convex hull. Finally an element k of the convex set K ™ Rm is called an extreme point if k = ⁄1y1 +⁄2y2
for some y1, y2 œ K and ⁄1, ⁄2 > 0 such that ⁄1 + ⁄2 = 1 implies y1 = k = y2. For a considered convex set 
K the set of extreme points will from now on be denoted as ext(K).

As Psym,⁄
!
XN

"
is equal to the convex hull of its extreme points, we can use the extreme points to 

describe the convex structure of the set of symmetric Kantorovich couplings. Now it follows by a simple 
contradiction argument that for any given linear objective function there is always an optimizer that is an 
extreme point. Moreover, in our setting of finite states spaces, for any extreme point “ú there is a function 
c : XN æ R such that

⁄

XN

c(x1, . . . , xN )d“(x1, . . . , xN ) >
⁄

XN

c(x1, . . . , xN )d“ú(x1, . . . , xN ) for any “ œ Psym,⁄
!
XN

"
, (2.3)

i.e., there is a cost function such that “ú is the unique optimizer of the corresponding OT problem. This 
is a result of the fact that Psym,⁄

!
XN

"
is a bounded polyhedron, i.e., a polytope, of finite dimension and 

therefore only possesses finitely many extreme points each of whom is itself an exposed point (see, e.g., 
[37]), i.e., a point in the set Psym,⁄

!
XN

"
that fulfills (2.3) for some cost function c : XN æ R. As for 

any cost function c : XN æ R there is always an optimizer that is an extreme point of Psym,⁄
!
XN

"
and 

vice versa for any extreme point “ú of Psym,⁄
!
XN

"
there is a cost function c : XN æ R such that “ú is 

the unique optimizer, analyzing, how many of the extreme points of Psym,⁄
!
XN

"
are of Monge-type, is a 

good approach to investigate the validity of Monge’s ansatz. Recall that in the given setting a probability 
measure “ œ Psym,⁄

!
XN

"
is said to be of Monge-type or in Monge-form if there are N permutations 

·1, . . . , ·N : {1, . . . , ̧ } æ {1, . . . , ̧ } such that

“ =
ÿ̧

i=1

1
¸
S”·1(i)·2(i)...·N (i),

where the symmetrization operator S : P
!
XN

"
æ Psym

!
XN

"
is defined by

(S“) (A1 ◊ · · ·◊AN ) = 1
N !

ÿ

‡œSN

“
!
A‡(1) ◊ · · ·◊A‡(N)

"
for all A1, . . . , AN ™ X (2.4)

with SN being the group of all permutations on the set {1, . . . , N}.
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As in the given setting it is rather inconvenient and long-winded to check whether a given symmetric 
Kantorovich coupling is of Monge-type or not, we will derive in the following an alternative LP-formulation of 
problem (1.1), where Monge-states will correspond exactly to (rescaled) integer points in the corresponding 
polytope of admissible trial states. We start by taking a closer look at the convex geometry of the set of 
symmetric probability measures on the product space XN .

Note that a probability measure “ œ Psym
!
XN

"
is an extreme point of Psym

!
XN

"
if and only if it is of 

the form

S”i1...iN for some 1 Æ i1 Æ · · · Æ iN Æ ¸ (2.5)

(see [20]). Therefore symmetric Kantorovich couplings, which are of Monge-type, are an average of ¸ not 
necessarily distinct extremal symmetric probability measures on the product space XN with respect to 
the uniform measure. Below we will elaborate further on this characterization of couplings in Monge-form, 
which will be the basis for identifying Monge-states with the (rescaled) integer points in a certain polytope.

From now on, we will denote the set of extremal symmetric probability measures, i.e., measures of the 
form (2.5), as EN

sym. It was shown in [20] that EN
sym contains 

!N+¸≠1
N

"
elements.

As for each pair of these extreme points their support is disjoint, one can immediately deduce the following 
result.

Proposition 2.1. Psym
!
XN

"
is a simplex, i.e., the extremal symmetric probability measures on XN are 

a�nely independent.

Hence, for every “ œ Psym
!
XN

"
there is a unique way to represent “ as a convex combination of extremal 

symmetric probability measures on XN , i.e., there is a unique non-negative coe�cient vector – œ R|EN
sym|

fulfilling 
q

–i1...iN = 1 such that

“ =
ÿ

1Æi1Æ···ÆiNÆ¸
–i1...iNS”i1...iN . (2.6)

As the extreme points of Psym
!
XN

"
can be parametrized using their one-point marginal, – can be inter-

preted as a probability measure on the set of these one-point marginals.
Given the k-point marginal map Mk : P

!
XN

"
æ P

!
Xk
"

for 1 Æ k Æ N ≠ 1 with

(Mk“) (A) := “
!
A◊XN≠k" for all A ™ Xk (2.7)

for “ œ P
!
XN

"
, with the convention MN = id, note that M1 is a bijection from the set of extremal 

symmetric probability measures on XN , i.e., measures of the form (2.5), to the set of 1
N -quantized probability 

measures

P 1
N

(X) :=
;
⁄ œ P (X) : ⁄({i}) œ

;
0, 1
N
, . . . , 1

<<
(2.8)

(see [20]). Hereby the one-point marginal of a measure of form (2.5) is an empirical measure of the indices 
(i1, . . . , iN ), it holds

M1S”i1...iN = 1
N

Nÿ

j=1
”ij .

In the following ÂN : P 1
N

(X) æ EN
sym will denote the corresponding inverse function.
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This parametrization gives rise to the coe�cients-to-coupling map R : P
1
P 1

N
(X)

2
æ Psym

!
XN

"
. It 

maps an arbitrary probability measure – on P 1
N

(X), which, via the underlying parametrization, corresponds 
to the coe�cients in the representation (2.6), to the corresponding coupling “, i.e., in pedestrian notation

R– =
ÿ

⁄œP 1
N

(X)

–⁄ÂN (⁄),

or more elegantly

R– =
⁄

P 1
N

(X)

ÂN (⁄)d–(⁄).

As Psym
!
XN

"
is a simplex, R is bijective. This enables us to establish the following isomorphic relationship 

between two alternative formulations of the set of symmetric Kantorovich couplings.

Lemma 2.2 (isomorphic relationship between couplings and coe�cients). The coe�cients-to-coupling map R
maps the polytope

Pcoef :=
Ó
– œ R|EN

sym| : A– = ⁄,– Ø 0
Ô

(2.9)

linearly and bijectively to the set of symmetric Kantorovich couplings, i.e., Psym,⁄
!
XN

"
defined in (2.2). 

Here EN
sym is the set of extremal symmetric probability measures on XN and A is the matrix in R¸◊|EN

sym|, 
whose columns are given by the elements of P 1

N
(X), i.e.,

A :=

Q

cca

⁄(1)
1 ⁄(2)

1 . . . ⁄
(|EN

sym|)
1

...
...

...
⁄(1)
¸ ⁄(2)

¸ . . . ⁄
(|EN

sym|)
¸

R

ddb . (2.10)

The corresponding inverse map is also linear.

Proof. Linearity and injectivity of R as a map from Pcoef to Psym,⁄
!
XN

"
are an immediate consequence of 

the linearity and injective of R : P
1
P 1

N
(X)

2
æ Psym

!
XN

"
as introduced above. We further know that any 

“ œ Psym,⁄
!
XN

"
is an element of Psym

!
XN

"
. Hence, applying the parametrization of extremal symmetric 

probability measures on XN via their one-point marginals, there exist coe�cients – œ P
1
P 1

N
(X)

2
, which 

are non-negative and whose entries sum to 1 such that

“ =
ÿ

⁄œP 1
N

(X)

–⁄ÂN (⁄) (2.11)

and therefore “ = R– holds. Applying the linear marginal map M1 to (2.11) yields the following.

⁄ =
ÿ

⁄œP 1
N

(X)

–⁄⁄

Therefore – corresponds to an element of Pcoef. This implies surjectivity of the considered map R. Linearity 
of the corresponding inverse map is an immediate consequence of the fact that the extremal symmetric 
probability measures on XN of the form (2.5) interpreted as vectors are linearly independent. 2
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Now it is easy to see that the extreme points of Pcoef correspond exactly to the extremal symmetric 
Kantorovich couplings, in the sense that R maps the corresponding sets of extreme points bijectively to 
each other. By standard arguments of polyhedral optimization the extreme points of Pcoef have a sparse 
structure, i.e., any extreme point of Pcoef can have at most ¸, that is the number of states in the finite 
state space X, non-zero entries (see, e.g., [3]). In [20] it was shown that this implies that any extremal 
Kantorovich coupling is a so called Quasi-Monge state, i.e., of the form 

q¸
‹=1 –‹S”T1(a‹)¢ · · ·¢ ”TN (a‹) for 

N maps T1, . . . , TN : X æ X such that 1
N

qN
k=1 Tk#– = ⁄. Here we renounce from using the shorthand 

notations (2.1) in order to make it easier to draw a comparison with Monge’s approach (1.6)-(1.8). The 
ansatz space of Quasi-Monge states increases the number of unknowns only by 2 · ¸ compared to the class of 
symmetrized Monge states and as every extremal Kantorovich coupling is a Quasi-Monge state, this ansatz 
space always contains an optimal coupling, in contrast to Monge’s approach. Note further that obviously 
every symmetrized Monge state is a Quasi-Monge state. For further reading on this su�cient low-dimensional 
enlargement of the class of symmetrized Monge states we refer the interested reader to [20]. There also a 
characterization of Monge states in the given setting was established. A probability measure on the product 
space XN is a symmetrized Monge state if and only if it is a Quasi-Monge state all of whose site weights 
–1, . . . , –¸ are equal to 1

¸ . In summary, we get the following corollary.

Corollary 2.3. Extremal symmetric Kantorovich couplings correspond exactly, via the coe�cients-to-coupling 
map R, to the extreme points of Pcoef. Any of these extreme points of Pcoef is the coe�cient vector of a 
coupling in Monge-form if and only if it is an integer vector scaled by the factor 1

¸ .

This corollary gives us a numerically-convenient way to compute the set of extremal Kantorovich couplings 
and check whether they are of Monge-form or not. In addition we also want to consider Monge’s approach 
by itself. For this purpose we introduce the sets

Psym,Monge
!
XN

"
:=
Ó
“ œ Psym,⁄

!
XN

"
: “ is of Monge-form (1.6)≠ (1.8)

Ô
(2.12)

and

Pconv
sym,Monge

!
XN

"
:= conv

!
Psym,Monge

!
XN

""
. (2.13)

Psym,Monge
!
XN

"
is the set of all symmetrized Monge states. In the following we will refer to Pconv

sym,Monge
!
XN

"

as the (symmetric) Monge polytope for N marginals and ¸ states. For simplicity we will once again drop 
the term symmetric from time to time. Note that if there exists an optimizer of problem (1.1) which is an 
element of Pconv

sym,Monge
!
XN

"
then there exists a Monge-type minimizer.

Having the explanations leading up to Corollary 2.3 in mind, it is easy to see that Psym,Monge
!
XN

"

corresponds to the (scaled by 1¸ ) integer elements of Pcoef. These can be for example determined by a simple 
enumeration of all the ordered choices of N ≠ 1 permutations interpreted as coe�cient vectors in Pcoef. 
Checking which of these scaled integer coe�cient vectors are extremal with respect to the convex hull of 
them as a whole, gives us the extremal elements of Pconv

sym,Monge
!
XN

"
.

The data in Fig. 2 was computed using MATLAB [26] and polymake [35].
It was already mentioned above, that the extreme points of the polytope Pcoef have a sparse structure. 

In more detail, a coe�cient vector – œ Pcoef is extremal with respect to the polytope Pcoef if and only if 
its nonzero entries correspond to a selection of columns of A which are linearly independent (see, e.g., [3]). 
That is why, the complexity of computing the extreme points of Pcoef, and their number, increases faster 
with the number of states than with the number of marginals. Suppose you are looking at a setting where 
the number of marginals is equal to the number of states. Then, on the one hand, increasing the number of 
marginals by 1 yields 

! 2N
N+1

"
≠
!2N≠1

N

"
more columns in A. On the other hand, an increase in the number of 
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Fig. 2. The number of extreme points of the symmetric Kantorovich polytope Psym,⁄
!
XN

"
respectively of the symmetric Monge 

polytope Pconv
sym,Monge

!
XN

"
is given in green respectively red. The number of extreme points of Psym,⁄

!
XN

"
that are of Monge-type 

(see (1.6)-(1.8)) is depicted in black. Here, as usual, N denotes the number of marginals and ¸ the number of states.

states by 1 enlarges the number of columns of A by 
!2N
N

"
≠
!2N≠1

N

"
. Elementary computations show that in 

the second case A has 1
N+1

!2N
N

"
more columns than in the first case. Moreover, in contrast to an increase in 

the number of marginals, an increase in the number of states also increases the number of rows of A by 1. 
Therefore then up to ¸ + 1 columns of A can be linearly independent. Hence, an increase in the number of 
states leads to a faster increasing (compared to an increase in the number of marginals) number of subsets 
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of linearly independent columns of the constraint matrix A by yielding a steeper increase in the number of 
columns of A as well as by enlarging the dimension of the column space. Each of these subsets corresponds 
to an extreme point of Pcoef.

Remark 2.4. This remark lists interpretations and observations regarding Fig. 2.

1) In the case N = 2, Fig. 2 shows that in the considered cases every extremal symmetric Kantorovich 
coupling is of Monge-type. In the given setting this means that every extreme point of Psym,⁄

!
XN

"
is a 

symmetrized permutation matrix. It is easy to see, using the celebrated Birkho�-von Neumann theorem 
[4,41] as well as the linearity of the symmetrization operator S (2.4), that this holds true for an arbitrary 
number ¸ of states. Note, however, that not every symmetrized permutation matrix is an extreme point 
of Psym,⁄

!
XN

"
, but only those symmetrized Monge-states whose corresponding coe�cient vectors select 

linearly independent columns of A.
2) In the case ¸ = 2, the number of extremal symmetric Kantorovich couplings which are of Monge-

type increases by 1 each time the marginal number is even. It is easy to prove that this pattern will 
continue. Firstly, note that, in the case ¸ = 2, every symmetric Kantorovich coupling of Monge-type 
is an extreme point of Psym,⁄

!
XN

"
. This follows by a support-argument regarding the corresponding 

coe�cient vectors. Secondly, we take a look at the symmetrized Monge-states in this setting. We assume 
the marginal vectors ⁄(1), . . . , ⁄(N+1) are sorted in the columns of A by the first component in decreasing 
order, i.e.,

A =
3

1 N≠1
N . . . 1

N 0
0 1

N . . . N≠1
N 1

4
.

Then the symmetric Kantorovich couplings of Monge-type are exactly those couplings with coe�cient 
vectors

–(j) = 1
2e

(j) + 1
2e

(N+1≠j+1)

for j = 1, 2, . . . , 
'
N+1

2
(
, where e(i) is the i-th unit vector.

3) The setting of 3 marginals and 3 sites, i.e., N = ¸ = 3 is the main focus in [18]. There interested 
readers can find the 22 extreme points of the symmetric Kantorovich polytope explicitly listed including 
the information which extremal elements are of Monge-type and which are not. This list also shows 
which pairs of permutations (identifying T1 with the identity) correspond to an extremal symmetric 
Kantorovich coupling. [18] also visualizes these 22 extremal states as molecular packings, where one can 
identify irreducible packings with extreme points.

4) Note that for each grid-point in Fig. 2 dividing the number depicted in black by the number depicted 
in green, i.e., ‘ black

green ’, gives the ratio of extreme points of the symmetric Kantorovich polytope that 
are of Monge-type. For a fixed three element state space, i.e., ¸ = 3, this ratio consistently decreases 
with growing N from 1 for 2 marginals to 0.035 for 10 marginals. Reversing the roles of N and ¸, i.e., 
fixing the number of marginals N to three and letting the number of marginal states grow, also yields a 
consistently decreasing behavior of the considered ratio; starting from 0.5 for ¸ = 2 and ending at 0.099
for ¸ = 5.
The considered ratio has the following interesting probabilistic interpretation. Given a non-degenerate 
cost function, i.e., a cost function that yields a unique optimizer of problem (1.1), the probability of 
the corresponding optimizer being of Monge-type is given by the considered ratio. Here we obviously 
draw uniformly from the set of extremal symmetric Kantorovich couplings. Specific cost functions might 
always yield Monge-type optimizers, see Section 4.
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5) For each grid-point in Fig. 2 the ratio ‘black
red ’ is an indicator of how much unnecessary information is 

contained in Monge’s ansatz. For the considered cases this ratio is always above 0.8 except for one 
outlier at N = ¸ = 3 where the ratio is given by 0.7. Hence, even though the Monge ansatz does not 
contain the ‘entire information of the Kantorovich polytope’, see 4), at least it does not entail ‘a lot’ of 
unnecessary information.

6) Finally, we want to give computationally determined examples of non-Monge extreme points in the case 
of N = 3 marginals.

¸ = 3 : 1
2ÂN

A2/3
1/3
0

B
+ 1

2ÂN

A 0
1/3
2/3

B
¸ = 4 : 3

8ÂN

Q

ca

2/3
1/3
0
0

R

db+ 3
8ÂN

Q

ca

0
1/3
2/3
0

R

db+ 1
4ÂN

Q

ca

0
0
0
1

R

db

¸ = 5 : 3
10ÂN

Q

ccca

2/3
1/3
0
0
0

R

dddb
+ 3

10ÂN

Q

ccca

0
1/3
2/3
0
0

R

dddb
+ 1

5ÂN

Q

ccca

0
0
0

2/3
1/3

R

dddb
+ 1

5ÂN

Q

ccca

0
0
0

1/3
2/3

R

dddb

The (¸ = 3)-example was already given in [18]. The two remaining extreme points both consist of two 
components. One that is compatible with Monge’s approach; it is given by the last (¸ = 4) respectively 
the two last (¸ = 5) terms of the corresponding sum. The remaining component arises from the (¸ = 3)-
example and yields the non-Monge property of the considered extreme points. These considerations 
indicate how to construct non-Monge extreme points for growing ¸: Assume the number of states ¸ to 
be no less than 6. Firstly, choose an increasing triple {i1, i2, i3} of pairwise distinct indices from the set 
{1, 2, . . . , ̧ }. These indices mark the elements of the finite state space X that will be ‘covered’ by the 
(¸ = 3)-example of a non-Monge extreme point from above. In order to simplify notation we assume 
these ‘covered’ states to be a1, a2 and a3, i.e., {i1, i2, i3} = {1, 2, 3}. Moreover, let ⁄(1), . . . , ⁄(¸≠3) œ
P 1

3
({a4, . . . , a¸}) be 1

3 -quantized probability measures on X\{a1, a2, a3} which form an extreme point 
of the symmetric Kantorovich polytope for 3 marginals and ¸ ≠ 3 states in Monge-form. Then

3
2 · ¸ÂN

Q

cccccca

2/3
1/3
0
0
...
0

R

ddddddb
+ 3

2 · ¸ÂN

Q

cccccca

0
1/3
2/3
0
...
0

R

ddddddb
+

¸≠3ÿ

i=1

1
¸
ÂN

Q

ccccca

0
0
0

⁄(i)

R

dddddb

is a non-Monge extreme point for 3 marginals and ¸ states. The described construction reveals that from 
the single non-Monge extreme point for ¸ = 3 states arise

3
¸

3

4
· Monge¸≠3

non-Monge extreme points for ¸ states. Hereby Monge¸≠3 is the number of extreme points of the sym-
metric Kantorovich polytope for 3 marginals and ¸ ≠ 3 states in Monge-form.

The computational restriction regarding our extreme point investigation is visualized in Fig. 3 and 4: 
Fig. 3 depicts a super-exponential growth of the number of extremal symmetric Kantorovich couplings in 
the case of N = 2 marginals. Moreover, Fig. 4 indicates that the portion of permutation matrices which 
correspond to extremal symmetric Kantorovich couplings (in the case of N = 2 marginals) tends to a value 
close to 0.2.
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Fig. 3. The number of extremal symmetric Kantorovich couplings for N = 2 marginals is depicted in dependency of the number of 
marginal states ¸.

Fig. 4. The ratio of the number of extremal symmetrized permutation matrices to the number of permutation matrices is depicted 
in dependency of the number of marginal states ¸.

3. Classification of the extreme points of a reduced Kantorovich polytope

In Section 2, we achieved a better understanding of the OT problem (1.1) by numerically analyzing 
the convex geometry of the set of admissible trial states, i.e., the set of symmetric Kantorovich couplings 
Psym,⁄

!
XN

"
. Motivated by applications in physics we assume from this point on that the given cost function 

has pairwise symmetric structure. Then the set of admissible trial states can be reduced by the linear map 
M2 to a lower-dimensional polytope thereby decreasing the number of extremal states.

In more detail, we consider the OT problem (1.1) with c : XN æ R being a cost function with pairwise 
symmetric structure, i.e.,

c(x1, . . . , xN ) =
ÿ

1Æi<jÆN
v(xi, xj) for all (x1, . . . , xN ) œ XN , (3.1)
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where v : X2 æ R is a symmetric pair-potential, i.e., v(x, y) = v(y, x) for all (x, y) œ X2. Then the objective 
function of (1.1) can be rewritten as

⁄

XN

c(x1, . . . , xN )d“(x1, . . . , xN ) =
3
N

2

4 ⁄

X2

v(x, y)d (M2“) (x, y), (3.2)

where “ œ Psym,⁄
!
XN

"
is an arbitrary symmetric Kantorovich coupling. This elementary reformulation was 

established in [19]. There also the concept of N -representability (see Definition 3.1) was introduced which 
we will use in the following to write the reduced set of admissible trial states in a compact manner.

Definition 3.1 (N -representability). A probability measure µ œ P
!
Xk
"

is called N -representable if there 
exists a symmetric probability measure “ on the product space XN , i.e., “ œ Psym

!
XN

"
, such that µ is its 

k-point marginal, i.e.,

µ = Mk“. (3.3)

Any such symmetric probability measure on XN that fulfills (3.3) is then called a representing measure of 
µ. In the following the set of N -representable k-plans will be denoted by PN-rep

!
Xk
"
.

As we consider pairwise interactions, we will focus our attention on the set of N -representable 2-point 
measures, i.e., PN-rep

!
X2". Note, however, that cost functions c embodying k-particle interactions would 

give rise to a problem reformulation reducing the set of admissible trial states to a subset of PN-rep
!
Xk
"
. 

In the case k = N , c would be a symmetric cost which are, as mentioned in the introduction, ‘dual’ to the 
set of symmetric probability measures on the product space XN . In the same manner, cost functions with 
symmetric pairwise structure have a dual relationship with the set of N -representable 2-plans.

By definition, the set of N -representable 2-point measures is the image of the set of symmetric probability 
measures on XN under the map M2, defined in (2.7), i.e., M2

!
Psym

!
XN

""
= PN-rep

!
X2". Combining this 

equality with (3.2) yields that (1.4) is an equivalent reformulation of the multi-marginal OT problem (1.1)
for a cost function with pairwise symmetric structure (3.1). Here (1.4) can also be written as

min
µœPN-rep,⁄(X2)

⁄

X2

v(x, y)dµ(x, y),

where PN-rep,⁄
!
X2" is the set of N -representable 2-plans having uniform marginal, i.e.,

PN-rep,⁄
!
X2" :=

)
µ œ PN-rep

!
X2" : M1(µ) = ⁄

*
. (3.4)

We will refer to the set PN-rep,⁄
!
X2" as reduced Kantorovich polytope for N marginals and ¸ states. The 

convex geometry of this set will be numerically analyzed in the following. Thereby the validity of Monge’s 
approach in the given setting will be tested.

We have seen above that under the assumption of pairwise symmetric cost functions the OT problem 
(1.1), where the set of admissible trial states is given by the high-dimensional set Psym,⁄

!
XN

"
, can be 

equivalently formulated as a minimization problem over the lower-dimensional set PN-rep,⁄
!
X2" (see (1.4)). 

The pairwise symmetric structure implies that any symmetric Kantorovich coupling influences the value of 
the objective function of problem (1.1) only through their respective two-point marginal (see (3.2)). The 
nature of this reformulation, applying the two-point marginal map M2 on the set of symmetric Kantorovich 
couplings, however, entails that the new set of admissible trial states, i.e., the reduced Kantorovich polytope 
is only implicitly known. Only in the two-marginal (N=2) case the reduced Kantorovich polytope can be 
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understood in a straightforward manner: It corresponds to the set of symmetric bistochastic matrices scaled 
by the factor 1

¸ (see Remark 3.5 1) below for further consideration of the two-marginal case). Hence, in the 
case N = 2, PN-rep,⁄

!
X2" = Psym,⁄

!
XN

"
holds. For a better understanding of the multi-marginal (N > 2) 

case, we will in the following, as motivated, view the reduced Kantorovich polytope as the image of the set 
of symmetric Kantorovich couplings on XN under the two-point marginal map, i.e.,

M2(Psym,⁄
!
XN

"
) = PN-rep,⁄

!
X2" . (3.5)

As described in Section 2, Psym,⁄
!
XN

"
corresponds to the convex hull of its extreme points. Combining 

this fact with (3.5) and the linearity of M2 yields that the reduced Kantorovich polytope PN-rep,⁄
!
X2" is 

equal to the convex hull of the two-point marginals of extremal symmetric Kantorovich couplings, i.e.,

PN-rep,⁄
!
X2" = conv

1Ó
M2“ : “ is an extreme point of Psym,⁄

!
XN

"Ô2
. (3.6)

The following proposition is an immediate consequence.

Proposition 3.2. Any extreme point of the reduced Kantorovich polytope for N marginals and ¸ states is the 
two-point marginal of an extremal symmetric Kantorovich coupling.

Now the question is whether or not M2 represents a bijective relationship between the sets of extreme 
points of Psym,⁄

!
XN

"
and PN-rep,⁄

!
X2". The following remark sheds light on this issue applying the bijec-

tive relationship between Psym,⁄
!
XN

"
and the polytope Pcoef established in Lemma 2.2 and Corollary 2.3.

Remark 3.3. In Section 2 the extreme points of Psym,⁄
!
XN

"
, i.e., the set of admissible trial states of problem 

(1.1), are determined using the set’s bijective relationship, captured in the coe�cients-to-coupling map R
introduced in Section 2, to the polytope Pcoef. As explained above in more detail, the map R identifies 
any symmetric probability measure on XN “ with a coe�cient vector –, such that “ can be written as the 
respective convex combination of the extreme points of Psym

!
XN

"
, i.e., (2.6) holds. These coe�cients are 

unique due to the disjoint support of the extremal symmetric probability measures on XN . It was proven 
in [20] that the two-point marginal map M2 is a bijection between the sets of extreme points of Psym

!
XN

"

and PN-rep
!
X2", respectively. Due to the linearity of M2, given a coe�cient vector – and a symmetric 

probability measure “ on XN , such that “ = R–, i.e., (2.6) holds true, then

M2“ =
ÿ

1Æi1Æ···ÆiNÆ¸
–i1,...,iNM2S”i1,...,iN .

Only now, these coe�cients – representing M2“ as a convex combination of the extreme points of the set of 
N -representable two-point measures may not be unique, rendering us unable to identify the extreme points 
of the reduced Kantorovich polytope with those of the coe�cient-polytope Pcoef.

The remark above illuminates why the extreme points of the set of symmetric Kantorovich couplings 
Psym,⁄

!
XN

"
can not be identified with the extremal elements of the reduced Kantorovich polytope 

PN-rep,⁄
!
X2" via M2. The two-point marginal map may for example map multiple extreme points of 

the set Psym,⁄
!
XN

"
on a single point of PN-rep,⁄

!
X2"; this point may lie on a face or in the interior of 

PN-rep,⁄
!
X2" (see [18] for an well-illustrated example).

Nevertheless, it was established in Proposition 3.2 that every extremal element of PN-rep,⁄
!
X2" has a 

representing measure that is itself extremal with respect to Psym,⁄
!
XN

"
. The extreme points of this set 

of symmetric Kantorovich couplings were in Corollary 2.3 identified with the extreme points of Pcoef. In 
combination with the in Remark 3.3 established connection between Pcoef and PN-rep,⁄

!
X2" this leads us 

to the following approach to determine the extremal elements of PN-rep,⁄
!
X2":
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1. We start by determining the extremal elements of Pcoef. This was already done within the considerations 
of Section 2.

2. Every such extreme point is multiplied by the matrix T œ R¸2◊|EN
sym| which is constructed as follows. 

The matrix A as defined in (2.10) lists all the elements of P 1
N

(X) as columns. It was proven in [20]
that for any element ⁄ of P 1

N
(X) the following holds:

M2ÂN (⁄) = N

N ≠ 1⁄¢ ⁄≠ 1
N ≠ 1 (id,id) #⁄, (3.7)

where the map ÂN was introduced in Section 2. Note that it was further established in [20] that measures 
of form (3.7) for ⁄ œ P 1

N
(X) are exactly the extreme points of PN-rep

!
X2". Now we construct T by 

replacing any column ⁄ of A with M2ÂN (⁄) as given in (3.7) where we canonically identify matrices 
with vectors by gluing columns together.

3. Finally we check which points of the form

T– for – œ ext (Pcoef)

are extremal with respect to conv ({T– : – œ ext (Pcoef)}) and therefore by (3.6) with respect to 
PN-rep,⁄

!
X2".

Note that it is computationally more complex to determine the extremal elements of PN-rep,⁄
!
X2" than 

those of Psym,⁄
!
XN

"
.

Now, we will incorporate Monge’s approach in the reduced setting.

Definition 3.4. An element of the reduced Kantorovich polytope for N marginals and ¸ states is said so be 
of Monge-type or in Monge-form if it has a representing measure that is of Monge-form (see (1.6)-(1.8)).

This definition is consistent with our goal to check the validity of Monge’s approach as any optimizer in 
Monge-form for problem (1.4) guarantees the existence of an optimizer in Monge-form for problem (1.1). 
The set of all elements of PN-rep,⁄

!
X2" which are in Monge-form will be denoted as PN-rep,Monge

!
X2", i.e.,

PN-rep,Monge
!
X2" := {M2“ : “ is of Monge-type (1.6)≠ (1.8)} .

Analogously to (2.13) we introduce the reduced Monge polytope for N marginals and ¸ states
Pconv
N-rep,Monge

!
X2" as follows.

Pconv
N-rep,Monge

!
X2" := conv

!
PN-rep,Monge

!
X2"" (3.8)

The extremal elements of the reduced Monge polytope can be determined in the same manner as those 
of the reduced Kantorovich polytope (see the description of the procedure above). Starting point are now 
the extremal elements of the Monge polytope Psym,Monge

!
XN

"
interpreted as coe�cient vectors.

Checking which of the extreme points of the reduced Kantorovich polytope PN-rep,⁄
!
X2" correspond to 

an extremal element of the reduced Monge polytope Pconv
N-rep,Monge

!
X2" tells us which of the extreme points 

of PN-rep,⁄
!
X2" are of Monge-type.

The data in Fig. 5 was computed using MATLAB [26] and polymake [35].

Remark 3.5. What follows are interpretations and observations regarding Fig. 5.

1) Combining the convention MN = id with (3.5), it is obvious that the symmetric Kantorovich polytope 
for 2 marginals and ̧ states Psym,⁄

!
X2" coincides with the reduced Kantorovich polytope for 2 marginals 
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Fig. 5. The number of extreme points of the reduced Kantorovich polytope PN-rep,⁄
!
X2" respectively of the reduced Monge polytope 

Pconv
N-rep,Monge

!
X2" is given in green respectively red. The number of extreme points of PN-rep,⁄

!
X2" that are of Monge-type (see 

Definition 3.4) is depicted in black. Here, as usual, N denotes the number of marginals and ¸ the number of states.

and ¸ states P2-rep,⁄
!
X2". This fact was already mentioned above. It was established in Remark 2.4

that every extreme point of Psym,⁄
!
X2" is a symmetrized permutation matrix, i.e., the image of a 

permutation matrix under the symmetrization operator (2.4). In the setting of 2 marginals, symmetrized 
permutation matrices exactly correspond to symmetrized Monge states. See Remark 2.4 for further 
considerations of the case N = 2.
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2) In the case ¸ = 2, Fig. 5 depicts that in the considered cases, the reduced Kantorovich polytope 
PN-rep,⁄

!
X2" has two extreme points both of which are in Monge-form. Hence, in any considered case 

the line segment PN-rep,⁄
!
X2" coincides with the respective reduced Monge polytope Pconv

N-rep,Monge
!
X2".

One can prove by elementary arguments that this holds true for an arbitrary number of marginals N in 
the case of 2 sites. In a little more detail, considering the dimension of PN-rep,⁄

!
X2" in the given case 

and parametrising the elements of PN-rep,⁄
!
X2" by their o�-diagonal element allows us to deduce that 

the two extreme points of PN-rep,⁄
!
X2" are given by

µ(1) = M2

3
1
2ÂN (”1) + 1

2ÂN (”2)
4

(3.9)

µ(2) =
I
M2

!
ÂN

! 1
2”1 + 1

2”2
""

if N is even
M2

! 1
2ÂN

!
N≠1
2N ”1 + N+1

2N ”2
"

+ 1
2ÂN

!
N+1
2N ”1 + N≠1

2N ”2
""

if N is odd
(3.10)

or in pedestrian notation,

µ(1) =
3 1

2 0
0 1

2

4

µ(2) =

Y
__]

__[

1
4(N≠1)

3
N ≠ 2 N
N N ≠ 2

4
if N is even

1
4N

3
N ≠ 1 N + 1
N + 1 N ≠ 1

4
if N is odd.

As the coe�cients in (3.9) and (3.10) are integer multiples of 1¸ both extreme points are 2-point marginals 
of symmetric Kantorovich couplings in Monge-form and therefore they are themselves elements of the 
reduced Kantorovich polytope PN-rep,⁄

!
X2" which are of Monge-type (see Definition 3.4). Note that 

µ(2), which is of Monge-type and therefore describes a correlated or in other words deterministic state, 
converges for N æŒ to the independent measure ⁄ ¢ ⁄ for ⁄ =

! 1
2”1 + 1

2”2
"
.

These findings coincide with the results in [19], where a model problem of N particles on 2 sites was 
considered. There also the set of N -representable 2-plans PN-rep

!
X2" for X consisting of 2 distinct 

elements is illustrated. Imposing the here given marginal condition on these sets leads to the respective 
line segment PN-rep,⁄

!
X2".

3) The case of 3 marginals and 3 sites, i.e., N = ¸ = 3, is a minimal example of a point in the grid, both 
with respect to the sum of both parameters N + ¸ and with respect to the minimum of both parameters 
min{N, ̧ }, such that not every extremal element of the reduced Kantorovich polytope PN-rep,⁄

!
X2" is 

of Monge-type. In the considered case PN-rep,⁄
!
X2" has 8 extreme points 5 of which are in Monge-form. 

By extension 3 of them are not. They are given by

1
2M2 (S”112) + 1

2M2 (S”233) (3.11)

and the two states one generates by imposing the role of the second site on the first and third site 
respectively. (3.11) is the unique optimizer of an OT problem stated in [18]. This problem corresponds 
to a molecular packing problem. See [18] for further reading.

4. A model problem: optimal couplings of N marginals on 3 sites for pairwise costs

In the following, we focus our attention on symmetric multi-marginal OT problems (1.1) on 3 sites, i.e., 
X = {a1, a2, a3}. As in Section 3, we only consider pairwise symmetric costs and therefore are able to 
reformulate (1.1) as the lower-dimensional problem (1.4). In particular, the reduced Kantorovich polytope 
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Fig. 6. The reduced Kantorovich respectively Monge polytope for N marginals and 3 states is visualized for N = 2, 3, 4, 6 and 10
in green respectively red. The plots are arranged in ascending order with respect to N . The elements (µij)3i,j=1 of the polytopes 
are parametrized by their o�-diagonal entries µ12, µ13 and µ23. In the case of three marginals the reduced polytopes were initially 
depicted in [18]. V indicates the volume of the corresponding polytope. The volumetric ratio, reduced Monge polytope to reduced 
Kantorovich polytope, is depicted in Fig. 8.

for N marginals and 3 states corresponds to the respective set of admissible trial states. It is easy to see that 
in the given setting these polytopes are three-dimensional. As by extension the reduced Monge polytope is 
at most three-dimensional, we are able to visually compare both approaches.

The visualizations in Fig. 6 were generated by extending the above explained calculations and routines 
in MATLAB [26] and polymake [35].

Note that by definition the reduced Monge polytope is always contained in the reduced Kantorovich 
polytope independently of the number of marginals N and the number of sites ¸. Some of the extreme 
points of the reduced Monge polytope are also extremal with respect to the reduced Kantorovich polytope 
and some lie on faces or in the interior of the latter (see Fig. 5 for specific numbers).
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Fig. 6. (continued)

In the setting of ¸ = 3 sites, the numerical analysis of the reduced setting discussed in Section 3 yields 
that in the case of N = 2, 3, . . . , 9 and 10 marginals there are always 5 prominent extreme points of the 
reduced Kantorovich polytope that are of Monge-type. This is also indicated by Fig. 1 as well as Fig. 6. In 
the illustrations they can be identified with the four extreme points on the co-ordinate axes, including the 
origin, as well as the ‘peak’ in the front of the polytopes. In formulas these extreme points can be written 
as depicted in Table 1. In Fig. 6, EA(N) corresponds to the origin, ER(N) to the ‘peak’ and E12(N) to the 
non-origin extreme point on the µ12-axis. E12(N) assumes an exemplary role in Table 1. The corresponding 
extreme points on the µ13- respectively µ23-axis can be expressed analogously in abstract as well as matrix 
notation and will be denoted by E13(N) respectively E23(N).

So far we know by numerical analysis that EA(N), ER(N), E12(N), E13(N) and E23(N) are extreme 
points of the reduced Kantorovich polytope PN-rep,⁄

!
X2" in the cases of N = 2, 3, . . . , 9 and 10 marginals. 

One can prove that this holds true for a general number N Ø 2 of marginals. For E12(N), E13(N) and 
E23(N) one can show this by following the same approach that was taken in Remark 3.5 2). In case of 
EA(N) and ER(N) it is an immediate consequence of Theorem 4.1. In the following d : X ◊ X æ R will 
denote the discrete metric defined by

d(x, y) :=
I

1 if x ”= y

0 if x = y.

Theorem 4.1. We consider the reduced multi-marginal OT problem (1.4) for N Ø 2 marginals and ¸ = 3
sites.

a) For the attractive cost function d : X ◊X æ R the unique minimizer is given by EA(N).
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Table 1
The prominent extreme points EA(N), ER(N) and E12(N) of the reduced Kantorovich polytope are depicted in abstract and matrix 
notation. Hereby N corresponds to the number of marginals and m œ N0 is a non-negative integer, allowing us to distinguish between 
the various cases regarding N . As all the coe�cients in the ‘Abstract Notation’-column are integer multiples of 1

3 , these extreme 
points are of Monge-type.

Nomenclature Abstract Notation Matrix Notation

EA(N) EA(N)

1
3M2ÂN (”1)
+ 1

3M2ÂN (”2)
+ 1

3M2ÂN (”3)

Q

a
1
3 0 0
0 1

3 0
0 0 1

3

R

b

ER(N) ER(3m) M2ÂN
! 1
3 ”1 + 1

3 ”2 + 1
3 ”3

"
Q

ca

N≠3
9(N≠1)

N
9(N≠1)

N
9(N≠1)

N
9(N≠1)

N≠3
9(N≠1)

N
9(N≠1)

N
9(N≠1)

N
9(N≠1)

N≠3
9(N≠1)

R

db

ER(3m+1)

1
3M2ÂN

!
m
N ”1 + m

N ”2 + m+1
N ”3

"

+ 1
3M2ÂN

!
m
N ”1 + m+1

N ”2 + m
N ”3

"

+ 1
3M2ÂN

!
m+1
N ”1 + m

N ”2 + m
N ”3

"

Q

a
N≠2
9N

N+1
9N

N+1
9N

N+1
9N

N≠2
9N

N+1
9N

N+1
9N

N+1
9N

N≠2
9N

R

b

ER(3m+2)

1
3M2ÂN

!
m
N ”1 + m+1

N ”2 + m+1
N ”3

"

+ 1
3M2ÂN

!
m+1
N ”1 + m

N ”2 + m+1
N ”3

"

+ 1
3M2ÂN

!
m+1
N ”1 + m+1

N ”2 + m
N ”3

"

Q

a
N≠2
9N

N+1
9N

N+1
9N

N+1
9N

N≠2
9N

N+1
9N

N+1
9N

N+1
9N

N≠2
9N

R

b

E12(N) E12(2m) 2
3M2ÂN

! 1
2 ”1 + 1

2 ”2
"
+ 1

3M2ÂN”3

Q

ca

N≠2
6(N≠1)

N
6(N≠1) 0

N
6(N≠1)

N≠2
6(N≠1) 0

0 0 1
3

R

db

E12(2m+1)

1
3M2ÂN

!
N≠1
2N ”1 + N+1

2N ”2
"

+ 1
3M2ÂN

!
N+1
2N ”1 + N≠1

2N ”2
"

+ 1
3M2ÂN (”3)

Q

a
N≠1
6N

N+1
6N 0

N+1
6N

N≠1
6N 0

0 0 1
3

R

b

b) For the repulsive cost function cR : X ◊X æ R given by

cR(x, y) :=
I

1
d(x,y) if x ”= y

B if x = y
(4.1)

for some constant B > 1, the unique minimizer is given by ER(N).

Proof. In the following the elements of the reduced Kantorovich polytope will always be interpreted as 
matrices. Along those lines D respectively CR corresponds to the matrix notation of d respectively cR, i.e., 
Dij := d(ai, aj) respectively CRij := cR(ai, aj) for i, j œ {1, 2, . . . , ̧ }, and È·, ·Í denotes the standard matrix 
scalar product.

a) Note that by non-negativity of the cost function d the objective value of an arbitrary admissible state 
µ œ PN-rep,⁄

!
X2" is non-negative, i.e., ÈD, µÍ Ø 0. As EA(N) is admissible and yields an objective value 

of 0, i.e., ÈD, EA(N)Í = 0, it is an optimizer of the corresponding problem (1.4). Positivity of D in its 
o�-diagonal entries and the marginal constraint ensure that EA(N) is the unique optimizer.

b) To prove the second assertion, we drop the marginal constraint in a reformulated version of the considered 
problem (1.4) and calculate the extremal elements of PN-rep

!
X2", which solve the new optimization 

problem. There will be a unique convex combination of the optimal extreme points of PN-rep
!
X2", 

namely ER(N), that lies in PN-rep,⁄
!
X2". This state then corresponds to the unique minimizer of 

problem (1.4).
We consider the problem

min
µœPN-rep,⁄(X2)

ÈCR, µÍ. (4.2)
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Subsequently changing the objective function to ÈCR≠ 1, ·Í, where all the entries of 1 œ R3◊3 are given 
by 1, and plugging in the marginal constraint allows us to reformulate (4.2) as follows

max
µœPN-rep,⁄(X2)

µ12 + µ13 + µ23. (4.3)

By dropping the marginal constraint, further restricting the admissible set to the extreme points (3.7)
of PN-rep

!
X2" and rescaling the new admissible set by N2 leads to the new optimization problem

max
⁄œNP 1

N
(X)

⁄1⁄2 + ⁄1⁄3 + ⁄2⁄3 = ⁄1⁄2 + (N ≠ ⁄3)⁄3. (4.4)

Assuming (⁄ú1,⁄ú2,⁄ú3) is an optimizer of problem (4.4), then elementary calculations show that (⁄ú1,⁄ú2)
fulfills

(⁄ú1,⁄ú2) œ
I)!

r
2 ,

r
2
"*

if r is even
)!

r≠1
2 , r+1

2
"
,
!
r+1
2 , r≠1

2
"*

if r is odd,
(4.5)

where r := N ≠ ⁄ú3. Otherwise (⁄ú1,⁄ú2,⁄ú3) would not be optimal. Note that (4.4) always admits a 
maximizer as P 1

N
(X) is finite.

This allows us to identify problem (4.4) with the one-parameter optimization problem

max
;

max
rœ2N0,rÆN

≠3
4r

2 +Nr, max
rœ2N0+1,rÆN

≠3
4r

2 +Nr ≠ 1
4

<
. (4.6)

Elementary calculations reveal that r œ {0, 1, . . . , N} is optimal regarding (4.6) if and only if

r œ

Y
__]

__[

{2m} if N = 3m for m œ N0

{2m, 2m+ 1} if N = 3m+ 1 for m œ N0

{2m+ 1, 2m+ 2} if N = 3m+ 2 for m œ N0.

It immediately follows that ⁄ œ NP 1
N

(X) is optimal with respect to problem (4.4) if and only if

⁄ œ

Y
__]

__[

N
)!

m
N ,

m
N ,

m
N

"*
if N = 3m for m œ N0

N
)!

m
N ,

m
N ,

m+1
N

"
,
!
m
N ,

m+1
N , mN

"
,
!
m+1
N , mN ,

m
N

"*
if N = 3m+ 1 for m œ N0

N
)!

m
N ,

m+1
N , m+1

N

"
,
!
m+1
N , mN ,

m+1
N

"
,
!
m+1
N , m+1

N , mN
"*

if N = 3m+ 2 for m œ N0.

(4.7)

Recall that (3.7) allows us (after dropping the factor N in (4.7)) to identify the given maximizers with 
exactly those extremal elements of PN-rep

!
X2" that maximize the sum of their o�-diagonal entries. 

As by Minkowski’s theorem any element of PN-rep,⁄
!
X2" can be written as convex combination of the 

extreme points of PN-rep
!
X2" and in any of the considered cases in (4.7) there are unique coe�cients 

given by

–1 = 1 if N = 3m for m œ N0

–1 = –2 = –3 = 1
3 else

that allow us to write ⁄ as a convex combination of the respective optimizers in (4.7), it is easy to see 
that ER(N) as defined in Table 1 is the unique optimizer of (4.3) and thereby (4.2) for any N Ø 2. 2
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Remark 4.2. It is an immediate consequence of Theorem 4.1 that

“GS := 1
3S”11...1 + 1

3S”22...2 + 1
3S”33...3

respectively

“C := 1
3S”1·(1)...· (N≠1)(1) + 1

3S”2·(2)...· (N≠1)(2) + 1
3S”3·(3)...· (N≠1)(3),

where · : {1, 2, 3} æ {1, 2, 3} is the cyclic permutation defined by ·(1) = 2, ·(2) = 3, ·(3) = 1 and · (i)

denotes the i-th composition of · with itself, is a solution to the OT problem (1.1) for the Gangbo-åwiÍch 
cost function cGS : XN æ R defined by

cGS (x1, . . . , xN ) :=
ÿ

1Æi<jÆN
d(xi, xj) (4.8)

respectively the Coulomb cost function cC : XN æ R defined by

cC (x1, . . . , xN ) :=
ÿ

1Æi<jÆN
cR(xi, xj).

Here (4.8) is a discretization of the pair-cost considered in [22]. Note that one could replace d(·, ·) in (4.8)
with d(·, ·)p for any p > 1 without changing cGS .

Next, we examine the behavior of the sequences 
!
EA(N)"

NØ2, 
!
ER(N)"

NØ2, 
!
E12(N)"

NØ2, 
!
E13(N)"

NØ2
and 

!
E23(N)"

NØ2 for N tending to Œ. Taking a look at the right column in Table 1, it is easy to see that 
the following holds true.

EA(N) NæŒ≠≠≠≠æ

Q

a
1
3 0 0
0 1

3 0
0 0 1

3

R

b =: EA(Œ), ER(N) NæŒ≠≠≠≠æ

Q

a
1
9

1
9

1
91

9
1
9

1
91

9
1
9

1
9

R

b =: ER(Œ),

E12(N) NæŒ≠≠≠≠æ

Q

a
1
6

1
6 0

1
6

1
6 0

0 0 1
3

R

b =: E12(Œ)

Here E12(Œ) assumes again an exemplary role and E13(Œ) as well as E23(Œ) are defined in an analogous 
manner. One can express these ‘limit extreme points’ in a more probabilistic manner EA(Œ) = 1

3”11+ 1
3”22+

1
3”33, ER

(Œ) =
! 1

3”1 + 1
3”2 + 1

3”3
"
¢
! 1

3”1 + 1
3”2 + 1

3”3
"

as well as E12(Œ) = 2
3
! 1

2”1 + 1
2”2
"
¢
! 1

2”1 + 1
2”2
"
+

1
3”3 corresponding to the ‘Abstract Notation’-column in Table 1 via (3.7).

In the following, DŒ-rep,⁄ will denote the convex hull of these ‘limit extreme points’, i.e.,

DŒ-rep,⁄ = conv
1Ó

EA(Œ), ER(Œ), E12(Œ), E13(Œ), E23(Œ)
Ô2

. (4.9)

For an illustration of DŒ-rep,⁄ see Fig. 7.
It was proven in [19] that N -representability becomes an increasingly stringent condition as N grows, 

in more detail, PN-rep
!
X2" ™ PN̂-rep

!
X2" for any N Ø N̂ Ø 2. It follows immediately that the reduced 

Kantorovich polytope for N marginals and 3 states PN-rep,⁄
!
X2" is contained in the reduced Kantorovich 

polytope PN̂-rep,⁄
!
X2" for N̂ marginals and 3 states. As PN-rep,⁄

!
X2" is closed and convex, DŒ-rep,⁄ is a 

subset of the reduced Kantorovich polytope PN-rep,⁄
!
X2" for any number N Ø 2 of marginals and 3 sites. 

In summary we get the following chain of inequalities
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Fig. 7. The diamond-shaped polytope DŒ-rep,⁄, as defined in (4.9), is depicted in blue. The elements (µij)3i,j=1 of the polytope are 
parametrized by their o�-diagonal entries µ12, µ13 and µ23. The volume of DŒ-rep,⁄ is indicated in the upper-right corner.

Fig. 8. The volumetric ratio, reduced Monge polytope to reduced Kantorovich polytope for N marginals and 3 states, is depicted 
in dependency of the number of marginals N .

min
µœPN-rep,⁄(X2)

V [µ] Æ min
µœP(N+1)-rep,⁄(X2)

V [µ] Æ · · · Æ min
µœDŒ-rep,⁄

V [µ] Æ V [ER(Œ)], (4.10)

where V [µ] :=
s
X2 v(x, y)dµ(x, y). The inequalities (4.10) show that for any number of marginals N Ø 2 we 

can find an upper bound of the optimal value in (1.4) by computing the objective value of the ‘attractive 
limit extreme point’ EA(Œ), the ‘repulsive limit extreme point’ ER(Œ) and the ‘axis limit extreme points’ 
E12(Œ), E13(Œ) as well as E23(Œ) and choosing the smallest one. Note that this improves the mean field 
approximation V [ER(Œ)], which is commonly used in physics. Here one usually considers repulsive pair-costs 
v : X ◊X æ R.

Finally, we note that the volume portion of the reduced Kantorovich polytope that is occupied by the 
reduced Monge polytope exhibits oscillatory behavior with decreasing amplitude when interpreted as a 
function of the number of marginals N , see Fig. 8. The considered volumetric ratio oscillates around a value 
above 0.9 where even marginals when directly compared to the odd marginals produce a higher ratio. In the 
sense that an optimizer in the occupied volume yields the existence of a Monge-solution, the Monge ansatz 
seems to be ‘better’ for an even number of marginals.
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5. Lower bound on extremal coe�cients

The results of this section were achieved in the pursuit of a generalization of Theorem 4.1. When re-
placing cR in (4.1) with a general repulsive interaction, the optimization process no longer boils down to a 
maximization of the sum of o�-diagonal entries. Even subtle di�erences in the o�-diagonal cost coe�cients 
could influence the optimization. Still, our intuition tells us, that - if the repulsion is strong enough - it 
is still best to distribute the 1

N -quantized entries as uniformly as possible among the given ¸ sites. But 
what is the reason behind the non-existence of cases for which it is best to attain an unevenly distributed 
configuration with a very small probability? The answer is given in the following theorem.

Theorem 5.1 (lower bound on extremal coe�cients). Assume – to be an extreme point of the polytope 
Pcoef, as defined in (2.9). Then each nonzero entry of – is bigger than or equal to 1

¸N¸≠1 , i.e., for all 
‹ œ

Ó
1, . . . ,

!N+¸≠1
N

"Ô

–‹ ”= 0 æ –‹ Ø
1

¸N ¸≠1 .

Proof. Let – be an arbitrary extreme point of the polytope Pcoef. Then - as discussed in Section 2 - the 
nonzero entries of – indicate a selection of columns of A that are linearly independent.

In case the cardinality of this selection is strictly less than ¸, we add a suitable choice of elements of 
P 1

N
(X) in order to form a basis B of R¸. Otherwise the present selection already constitutes such a basis 

B. In the following AB will denoted the ¸ ◊ ¸-submatrix of A that consists of exactly those columns that 
are contained in B, accordingly –B is the subvector of – that is reduced to those entries that correspond 
to elements of B. By construction of B,

AB–B = ⁄ (5.1)

holds. As AB is invertible, (5.1) is equivalent to

–B = A≠1
B ⁄ = 1

det(AB)C
T⁄ (5.2)

with C denoting the cofactor matrix of AB . Each entry of C is the product of a sign factor and the 
determinant of an (¸ ≠1) ◊(¸ ≠1)-submatrix of AB. As the columns of AB represent 1

N -quantized probability 
measures, the entries of AB are integer multiples of 1

N and therefore the entries of C are integer multiples 
of 1

N¸≠1 . Utilizing Hadamard’s inequality, one easily sees that |det(AB)| Æ 1 holds. Finally we recall that 
each of the entries of ⁄ is given by 1

¸ . Consequently, for the i-th entry (–B)i of –B (with i œ {1, . . . , ̧ }) the 
following holds

(–B)i = |(–B)i| = 1
|det(AB)| |(C

T⁄)i| Ø |(CT⁄)i| = ki
¸N ¸≠1

with ki being some non-negative integer. As ki is zero if and only if (–B)i is zero the proof of Theorem 5.1
is complete. 2

We do not expect the lower bound established in Theorem 5.1 to be sharp. The key to unlocking an 
improvement and even potentially a quantization of the extremal coe�cients lies in a deeper analysis of 
(5.2), particularly the entries of the cofactor matrix C and how they relate to one another as well as the 
determinant of AB itself. This analysis, however, lies beyond the scope of this paper and we consider it to 
be subject to future research.

We consider Theorem 5.1 to be the bedrock the upcoming theorem is built upon.
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Theorem 5.2 (support of optimal couplings regarding ‘repulsive OT problems’). Let N Ø 2 be the number of 
marginals and ¸ Ø 2 the number of states. Consider the OT problem

Minimize
⁄

XN

ÿ

1Æi<jÆN
v(xi, xj)d“(x1, . . . , xN ) over “ œ Psym

!
XN

"
subject to “ ‘æ ⁄, (5.3)

with v : X2 æ R being a symmetric pair-potential that fulfills v(x, x) = B for all x œ X and some constant

B >

3
max
xi ”=xj

v(xi, xj)
4

+N ¸+1¸

33
max
xi ”=xj

v(xi, xj)
4
≠
3

min
xi ”=xj

v(xi, xj)
44

.

Let “ be an optimizer of the considered problem. If “ gives mass to a point (x1, . . . , xN ) œ XN then each 
state a œ X appears either 

%
N
¸

&
or 
'
N
¸

(
times in the given tupel, i.e., |{i : xi = a}| œ

)%
N
¸

&
,
'
N
¸

(*
for all 

a œ X = {a1, . . . , a¸}.
(Note that in case N¸ = k for some k œ N each state appears exactly k times.)

Proof. Based on the proof of Theorem 4.1 assertion b) we start o� by rewriting the objective function, 
i.e., the function that is to be minimized. Successively using the pairwise symmetric structure of the cost 
function, identifying the function v : X2 æ R as well as the measure M2“ on X2 with their respective 
matrix counterparts (vij)¸i,j=1, ((M2“)ij)¸i,j=1 with vij := v(ai, aj), (M2“)ij := M2“({(ai, aj)}) and finally 
utilizing the marginal constraint allows us to write the objective value of any admissible “ independent of 
its diagonal-entries.

⁄

XN

ÿ

1Æi<jÆN
v(xi, xj)d“(x1, . . . , xN ) =

3
N

2

4 ⁄

X2

v(x, y)d(M2“)(x, y)

=
3
N

2

4 ÿ̧

i,j=1
vij(M2“)ij

=
3
N

2

4A
B +

ÿ̧

i,j=1
i”=j

(vij ≠B)(M2“)ij

B

=
3
N

2

4
B +

3
N

2

4 ÿ̧

i,j=1
i”=j

(vij ≠B)(M2“)ij

Now one easily sees that

Maximize Cv[“] :=
ÿ̧

i,j=1
i”=j

(B ≠ vij)(M2“)ij over “ œ Psym
!
XN

"
subject to “ ‘æ ⁄, (5.4)

is an equivalent problem formulation, in the sense that any admissible “ is optimal with respect to (5.3) if 
and only if it is optimal with respect to the problem at hand.

Now let “ be such an optimizer solving the problem stated in the considered theorem (5.3) as well as 
the problem given by (5.4). Firstly, we assume “ to be an extreme point of the symmetric Kantorovich 
polytope for N marginals and ¸ states, i.e., the set of admissible trial states. Then by Corollary 2.3 the to 
“ corresponding coe�cient vector – = R≠1“ is itself an extreme point of the polytope Pcoef. – then fulfills
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“ = R– =
ÿ

⁄œP 1
N

(X)

–⁄ÂN (⁄). (5.5)

Recall that ÂN (⁄) denotes the (uniquely determined) symmetrized Dirac-measure (2.5) with one-point 
marginal ⁄. Readers feeling lost regarding the present notation are advised to take a look back at Section 2, 
particularly pages 7-8. By linearity of Cv[·] it holds

Cv[“] =
ÿ

⁄œP 1
N

(X)

–⁄Cv[ÂN (⁄)].

As already stated in (3.7), M2ÂN (⁄) = N
N≠1⁄ ¢ ⁄ ≠ 1

N≠1 (id, id)#⁄ holds yielding

Cv[ÂN (⁄)] = N

N ≠ 1
ÿ̧

i,j=1
i”=j

(B ≠ vij)⁄i⁄j .

In the following we will take a closer look at the objective value Cv[·] of the extremal symmetric probability 
measures ÂN (⁄) by investigating the behavior of the function f : P 1

N
(X) æ R given by

f(⁄) = Cv[ÂN (⁄)].

We split f into a dominant and a submissive term, denoted by d and s, respectively.

f(⁄) = d(⁄) + s(⁄)

with d(⁄) := N

N ≠ 1
ÿ̧

i,j=1
i”=j

(B ≠ viújú)⁄i⁄j and s(⁄) := N

N ≠ 1
ÿ̧

i,j=1
i”=j

(viújú ≠ vij)⁄i⁄j ,

where iú, jú are indices fulfilling viújú = max
i,j
i”=j

vij .

Hereby, a more compact manner to write d is given by

d(⁄) = ⁄TD⁄ for D = (Dij) œ R¸◊¸ defined by Dij =
I

0 for i = j

BÕ for i ”= j

with BÕ := N

N ≠ 1(B ≠ viújú). (5.6)

By Taylor-expanding d at the uniform probability measure ⁄ and utilizing the geometry of the matrix D
embodied by its eigenspaces one easily sees that

d(⁄) = d(⁄)≠BÕ|⁄≠ ⁄|2

with | ·| denoting the Euclidean norm in R¸. Now elementary arguments and calculations reveal the following. 
⁄̂ maximizes d(·) among the 1

N -quantized probability measures P 1
N

(X) if and only if r entries of ⁄̂ are given 
by m+1

N and the remaining (¸ ≠ r) entries correspond to mN with m :=
%
N
¸

&
and r := N ≠m¸. Any deviating 

⁄ œ P 1
N

(X), i.e., any ⁄ not obeying these restrictions regarding its entries, decreases the value of d(·) by at 
least B

Õ

N2 . That is, for a rule-abiding ⁄̂ and a deviating ⁄ it holds, d(⁄̂) ≠ d(⁄) Ø BÕ

N2 .
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Now we return to the consideration of “ which is assumed to be a solution of the problems (5.3) and (5.4)
as well as (for now) an extreme point of both sets of admissible trial states. – denotes the coe�cient vector 
underlying the representation of “ as a convex combination of extremal symmetric probability measures as 
given in (5.5). As already mentioned above, – is itself an extreme point of Pcoef.

The next step is to derive a contradiction starting from the assumption –⁄ > 0 for a ⁄ œ P 1
N

(X) that 
deviates from the ‘entry laws’ described above. In the following this deviating 1

N -quantized probability 
measure will be denoted by ⁄̃. Let further “̂ =

q
⁄œP 1

N
(X) –̂⁄ÂN (⁄) be an admissible trial state whose 

coe�cient vector –̂ only gives mass to law-abiding ⁄s œ P 1
N

(X). It is easy to see that such a state always 
exists. Then - with iú, jú denoting indices that fulfill viújú = min i,j

i”=j
vij and ⁄̂ denoting an arbitrary law-

abiding ⁄ œ P 1
N

(X) - it holds

Cv[“̂]≠ Cv[“] =
ÿ

⁄œP 1
N

(X)

–̂⁄(d(⁄) + s(⁄))≠
ÿ

⁄œP 1
N

(X)

–⁄(d(⁄) + s(⁄))

=
ÿ

⁄œP 1
N

(X)

(–̂⁄ ≠ –⁄)s(⁄) +
ÿ

⁄œP 1
N

(X)

–̂⁄d(⁄)≠
ÿ

⁄œP 1
N

(X)

–⁄d(⁄)

Ø ≠ N

N ≠ 1(viújú ≠ viújú) + d(⁄̂)≠ 1
¸N ¸≠1 d(⁄̃)≠

3
1≠ 1

¸N ¸≠1

4
d(⁄̂)

= ≠ N

N ≠ 1(viújú ≠ viújú) + 1
¸N ¸≠1 (d(⁄̂)≠ d(⁄̃))

Ø ≠ N

N ≠ 1(viújú ≠ viújú) + BÕ

¸N ¸+1 .

Hereby, elementary estimates gave us a lower bound on how much “̂ might loose to “ regarding the submissive 
function s. We further took advantage of the fact that all law-abiding ⁄s produce the same dominant value 
d(⁄̂). The key step, however, is to establish an upper-bound on the portion of the objective value of “
which corresponds to the dominant function d. This bound is based on Theorem 5.1 as well as the priorly 
established fact that the law-abiding elements of P 1

N
(X) are exactly those that maximize d(·) and ⁄̃ falls 

short by at least B
Õ

N2 in comparison.
Combining the definition of BÕ in (5.6) with the assumption on B now yields C[“̂] > C[“]. This finalizes 

the contradiction. Hence, positivity of a coe�cient –⁄ implies that ⁄ fulfills the ‘entry laws’. Recalling the 
representation (5.5) of “ as well as the definition of ÂN now reveals that the statement of Theorem 5.2 is 
true for the extremal “.

As any non-extremal optimizer may be written as a convex combination of extremal ones the proof of 
Theorem 5.2 is complete. 2

Remark 5.3. A question that naturally pops up in the given context is: What happens in the non-symmetric 
case? Hereby the non-symmetric case refers to optimal transport problems of the form

Minimize
⁄

XN

c(x1, . . . , xN )d“(x1, . . . , xN )

over all probability measures “ on XN whose i-th marginal is given by ⁄(i). Note that the N marginals 
⁄(1), . . . , ⁄(N) are now allowed to di�er from one another. In order to gain some understanding of this setting, 
we retrace some of the steps taken in this paper.

When formulating the corresponding coe�cient polytope, one has to bare in mind, that now one works 
with Dirac measures instead of symmetrized Dirac measures. This results in an increase of entries in a 
coe�cient vector – as well as an increase of the number of constraints.
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We believe that in this unsymmetrized setting it is still possible to establish a lower bound on extremal 
coe�cients - at least if the given marginals are quantized. Hereby a choice of N marginals is understood as 
quantized if there exists a positive real number q such that each one of the N · ¸ marginal probabilities is 
an integer multiple of q. The lower bound then not only depends on the number of marginals N and the 
number of states ¸ but also on the quantization of the marginals q.

The proof of Theorem 5.2 heavily relies on the symmetry of the considered setting for example in terms 
of the polynomial formula regarding extremal N -representable two-point measures. As we do not see a 
straightforward manner to generalize the corresponding result we classify this task as subject to future 
research; a good question to initialize this research would be: What kind of cost functions does one want to 
consider?

The following consequence of Theorem 5.2 is a generalization of Theorem 4.1 assertion b).

Corollary 5.4. We consider the reduced multi-marginal OT problem (1.4) for N Ø 2 marginals and ¸ = 3
sites.

For any symmetric cost function v : X◊X æ R that fulfills v(x, x) = B for all x œ X and some constant

B >

3
max
xi ”=xj

v(xi, xj)
4

+N ¸+1¸

33
max
xi ”=xj

v(xi, xj)
4
≠
3

min
xi ”=xj

v(xi, xj)
44

the unique minimizer is given by ER(N).

Proof. We start o� with a change of venue and consider the ‘unreduced’ problem version (5.3). With the 
number of states ¸ being equal to three, Theorem 5.2 reduces the points an optimizer might give mass to 
already to such an extent that the optimizer’s uniqueness follows. The two-point marginal of said optimizer 
is given by ER(N) which inherits the status of a unique optimizer from its representing measure. 2

Recall that ER(N) is of Monge-type. Consequently, Corollary 5.4 provides a class of repulsive costs 
yielding a unique Monge optimizer. All of these examples, however, are set in a finite state space X consisting 
only of three elements.

The following discussion concerns a lift of Corollary 5.4 to a given ¸Õ > 3. So now the focus lies on the 
question whether or not the suitably adapted statement of Corollary 5.4 holds for any number of marginals 
N Ø 2 when paired with ¸Õ. Note that in the introduction specific ‘pairable’ N ’s for any ¸Õ > 3 are given.

Already when increasing the number of states to ¸ = 4 and keeping the number of marginals at N = 2 the 
representing measure of the ‘peak’ that is ER(N) blossoms into multiple extreme points of the symmetric 
Kantorovich polytope for 2 marginals and 4 states. That is, there exist multiple extreme points of the 
symmetric Kantorovich polytope for 2 marginals and 4 states that are in line with the support-restrictions 
provided by Theorem 5.2. Hence, the proof of Corollary 5.4 can not be lifted to the case of ¸ = 4 states. 
However, we suspect that each one of the ‘in line’-extreme points of the symmetric Kantorovich polytope 
is of Monge-type for ¸ = 4 as well as ¸ = 5 states and any number of marginals N Ø 2. So even though one 
is not able to identify a specific extreme point as unique optimizer we believe that the support-restriction 
su�ces to at least classify the optimizer(s) as Monge. When increasing the number of states to ¸ = 6 this 
door closes as

1
4S”123 + 1

4S”145 + 1
4S”246 + 1

4S”356 (5.7)

is an ‘in-line’ extreme point of the symmetric Kantorovich polytope for N = 3 marginals and ¸ = 6 states 
that is not of Monge-type.
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An interesting question to pose is now whether or not non-Monge states of form (5.7) remain extremal 
when moving from N -point to two-point costs. A more general question - we believe - this section accumulates 
to is the following. Given a symmetric pair-cost v that fulfills the condition on its diagonal stated in 
Theorem 5.2, what geometric attributes of the o�-diagonal part of v decide whether the optimizer is of 
Monge-type or not - provided it exists a unique optimizer.
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A.2 Genetic Column Generation: Fast Computa-
tion of High-Dimensional Multimarginal Op-
timal Transport Problems

Authors: Gero Friesecke, Andreas S. Schulz, and Daniela Vögler

Summary. In the present article, we introduce a simple and efficient compu-
tational method that provides approximate solutions for the discrete symmetric
multi-marginal optimal transport (MMOT) problems of the following form.

Minimize
Z

XN

X

1i<jN

v (xi, xj) d� (x1, . . . , xN)

subject to � 2 {� 2 Psym

�
XN

�
: � 7! �⇤

}.

Here, X denotes a finite state space consisting of ` pairwise distinct elements;
v : X ⇥X ! R denotes a symmetric pair-cost; Psym

�
XN

�
denotes the set of sym-

metric probability measures on the product space XN ; for �⇤
2 P (X), � 7! �⇤

means that � has equal one-point marginals �⇤. We call the presented method
Genetic Column Generation.

The difficulty of solving these problems lies not in the type of optimization problem
but in the size of the problem. We face linear programs whose storage complexity
grows exponentially with the number of marginals N . With our motivating ap-
plication being electronic structure, we are interested in the large N regime. In
this regime, storing the problems at hand is infeasible. Genetic Column Genera-
tion operates within a sparse ansatz space referred to as quasi-Monge. This sparse
ansatz was recently introduced by Friesecke and I in [44]. Column generation itself
is a pragmatic approach towards linear programs with an extremely high number
of variables and few equality constraints. It is rooted in discrete optimization and
allows us to practically implement the intended evolution within the sparse ansatz
space. Moving from one sparse state to the best possible successor requires solving
an intermediate (often combinatorial) optimization problem. In our setting, this
intermediate problem turns out to be NP-complete (see the present article for the
proof) which is why we opted for moving from one sparse state to a better, but
not necessarily the best possible, successor. We do this by producing a ‘good’, but
not necessarily optimal, solution for the intermediate problem through a genetic
sampling process.

Overall, Genetic Column Generation alternatingly solves small linear programs
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and performs a genetic sampling step. This simple construction allowed us to solve
the above-mentioned discrete symmetric MMOT problems with up to 2.58 · 1031

variables. In the test cases where the optimal solution is known (which included
the problem with 2.58 · 1031 variables), our method proved to be exact.

Own contribution. I, Daniela Vögler, am principal author of the present ar-
ticle. Being principal author entails (i) taking the lead in writing the article and
(ii) contributing the most to the research conducted and insights gained. In more
detail, I initiated to project; I acted as liaison between operations research person-
ified by Prof. Andreas S. Schulz and analysis personified by Prof. Gero Friesecke;
I applied the method column generation from discrete optimization to the sym-
metric multi-marginal optimal transport problems at hand and was significantly
involved in implementing the algorithm; I also worked out the proof establishing
the NP-completeness of our pricing problem. I would be remiss to leave out the
significant impact on the project my co-authors had. Prof. Andreas S. Schulz, for
example, initially came up with the idea to apply column generation and proposed
to use the clique problem to establish the NP-completeness of our pricing problem.
Prof. Gero Friesecke, for example, came up with the genetic sampling method in-
cluding the interpretation of children as nearest-neighbours in Wasserstein space
and supplied the justification of the used discretization. This article would not
have come into existence without their openness to venture out of their respective
fields of expertise. I want to take this opportunity to thank them!
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GENETIC COLUMN GENERATION: FAST COMPUTATION OF
HIGH-DIMENSIONAL MULTIMARGINAL OPTIMAL TRANSPORT

PROBLEMS⇤

GERO FRIESECKE† , ANDREAS S. SCHULZ‡ , AND DANIELA VÖGLER†

Abstract. We introduce a simple, accurate, and extremely e�cient method for numerically
solving multimarginal optimal transport (MMOT) problems arising in density functional theory.
The method relies on (i) the sparsity of optimal plans (for N marginals discretized by ` gridpoints
each, general Kantorovich plans require `N gridpoints, but the support of optimizers is of size O(`·N)
[G. Friesecke and D. Vögler, SIAM J. Math. Anal., 50 (2018), pp. 3996–4019], (ii) the method of
column generation (CG) from discrete optimization which is novel in the optimal transport context,
and (iii) ideas from machine learning. The well-known bottleneck in CG consists in generating
new candidate columns e�ciently; we prove that in our context, finding the best new column is an
NP-complete problem. To overcome this bottleneck we use a genetic learning method tailor-made
for MMOT in which the dual state within CG plays the role of an “adversary” in loose similarity
to Wasserstein generative adversarial networks (GANs). On a sequence of benchmark problems
with up to 120 gridpoints and up to 30 marginals, our method always finds the exact optimizers.
Moreover, empirically the number of computational steps needed to find them appears to scale only
polynomially when both N and ` are simultaneously increased (while keeping their ratio fixed to
mimic a thermodynamic limit of the particle system).

Key words. optimal transport, column generation, high dimension, genetic algorithm

AMS subject classifications. 65K, 90C06, 68Q17

DOI. 10.1137/21M140732X

1. Introduction. Multimarginal optimal transport (MMOT) su↵ers from the
curse of dimension. If the marginals are discretized by ` gridpoints, optimal (or
candidate) Kantorovich plans for the N -marginal problem require `N gridpoint values.
While powerful and successful computational schemes centered around the Sinkhorn
algorithm have been developed for two-marginal problems (N = 2) [Cut13, Sch16,
Sch19, PC19, BS20], with recent extensions to a small number of marginals [BCN16,
Nen17, BCN19], the high-dimensionality of multimarginal plans forbids the use of
these schemes in practice beyond a handful of marginals.

On the other hand, in recent applications of MMOT to many-electron physics
[CFK13, BDPGG12], data science [AC11], and fluid dynamics [Bre89, Nen17], N cor-
responds, respectively, to the number of electrons in a molecule, datasets in a data-
base, or timesteps. This makes it highly desirable to develop computational schemes
for MMOT with large N . Some recent advances were made in the context of the
MMOT problem arising in many-electron physics [CFK13, BDPGG12], which is our
key motivating application and the focus of this paper. In [FV18] two of the current
authors obtained the following rigorous sparsity result (whose ancestor is the cele-
brated Brenier’s theorem [Bre91]): after discretization, for any marginals and costs
there exist optimizers which are superpositions of at most ` symmetrized Dirac mea-
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sures. Moreover, the structure of optimizers was shown to be closely related to the
Monge ansatz of optimal transport theory, and a two-marginal formulation of the
N -marginal problem was given. In [KY19], Khoo and Ying introduced and studied a
semidefinite relaxation of the two-marginal formulation and presented an algorithm
for the relaxed problem. In [ACEL21, ACE21], Alfonsi et al. established existence
of sparse optimizers even in the situation when the state space is kept continuous
and only the marginal constraints are discretized; moreover, they proposed a con-
strained Lagrangian particle method for the ensuing problem. Also, let us mention a
recent advance not related to MMOT, namely that smooth two-marginal problems in
high dimension are soluble with dimension-free computational rates, with potentially
exponentially dimension-dependent constants [VMR+21].

Here we present a simple and extremely e�cient algorithm for MMOT which
combines MMOT sparsity, methods from high-dimensional discrete optimization, and
recent advances in machine learning. Numerical results show that it allows the ac-
curate computation of optimal plans with, say, N = 30 marginals and ` = 100 grid-
points or basis functions per dimension (i.e., `N = 1060) with MATLAB on a laptop.
In benchmark examples of this size where the exact solution is known, the algorithm
always finds the exact optimizers (see section 7). Moreover, empirically (see Figure
5) the number of computational steps needed to find them scales only polynomially
instead of exponentially in the thermodynamic limit when both N and ` get large,
with their ratio N/` remaining constant, although we cannot o↵er a rigorous proof of
this fact. Instead, in section 6 we show that the pricing problem which our genetic
learning method addresses is NP-complete. For a related result recently posted on
arXiv see [ABA20a].

Our algorithm, which we call Genetic Column Generation (GenCol), is presented
in this paper in detail in the context of the multimarginal optimal transport problems
arising in many-electron physics. It is based on three ideas:

• the existence of extremely sparse optimizers as first pointed out and inves-
tigated in the present context by two of the authors in [FV18]. This breaks
the curse of dimension with respect to storage complexity (but at the time
we could not o↵er any algorithm).

• the method of column generation (CG), which is well established in discrete
optimization but novel in MMOT. CG is a pragmatic approach to tackling
certain extremely high-dimensional problems which originated in integer pro-
gramming. The latter arises when looking for Monge plans for ` = 2 and N

large, in which case the unknown is a pair of vectors in {0, 1}N . We note
that this is exactly the opposite regime to N = 2, ` large where the Sinkhorn
algorithm works most successfully.

• a simple genetic method tailor-made for MMOT to overcome the well-known
bottleneck in CG of generating new candidate columns e�ciently. In our con-
text new columns represent intricate spatial many-body correlation patterns
of the system which are not known a priori; these are learned with the help of
an “adversary” represented by the dual state within CG, in loose similarity
to Wasserstein generative adversarial networks (GANs) [ACB17].

The underlying theory is described in sections 2–5. The algorithm, which in the
end is rather simple, is presented in section 5.4. Numerical results for test problems up
to sizes of `N ⇡ 1060 are given in section 7. Applications to more complex electronic
structure problems will be given elsewhere.D
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2. MMOT, motivation, and discretization.

Multimarginal optimal transport. Many di↵erent problems in mathematics,
science, and engineering can be cast in the form of the following general MMOT
problem:

Minimize a cost functional

(2.1) C[�] =

Z

X1⇥···⇥XN

c(x1, . . . , xN ) d�(x1, . . . , xN )

over N -point probability measures

(2.2) � 2 P(X1 ⇥ · · · ⇥ XN )

subject to the marginal constraints

(2.3) MXi� = µi (i = 1, . . . , N).

Here the Xi are metric spaces (in practice, subsets of Rd for continuous problems
and finite sets for discrete problems), the µi are given Borel probability measures on
Xi, P(X1⇥ · · ·⇥XN ) denotes the set of Borel probability measures on X1⇥ · · ·⇥XN ,
c : X1 ⇥ · · ·⇥XN ! R[ {+1} is a cost function, and the marginal of � with respect
to the ith space Xi is the probability measure on Xi defined by

MXi�(A) = �(X1 ⇥ · · · ⇥ Xi�1 ⇥ A ⇥ Xi+1 ⇥ · · · ⇥ XN ) for all measurable A ✓ Xi.

Optimizers are known as optimal plans or Kantorovich plans. Both the analysis and
the numerical treatment of optimal transport problems have been the subject of inten-
sive and fruitful research, with the focus overwhelmingly on two-marginal problems
(N = 2); see [Vil09, San15, PC19] for wide-ranging surveys.

Multimarginal problems (N > 2), about which much less is known, have been
considered for quite some time in operations research, probability theory, analysis,
and mathematical economics [Pie68, Poo94, RR98, GS98, Spi00, CMN10, BDM12].
Recently, important examples of multimarginal problems with large N have emerged
independently in many-electron physics [CFK13, BDPGG12], fluid dynamics [Bre89,
Nen17], and data science [AC11]. The number N of marginals corresponds, respec-
tively, to the number of particles, timesteps, or datasets in a database, motivating the
interest in large N .

Physical motivation. A central example which we want to attack in this paper
is MMOT with Coulomb cost, which arises as the strongly correlated limit of density
functional theory (DFT). DFT is the most widely used method for numerical electronic
structure computations in physics, chemistry, and materials science; see [Bec14] for a
review. The strongly correlated limit was introduced by Seidl [Sei99]. As first noted
and exploited in [CFK13, BDPGG12], the limit problem is an optimal transport
problem, with

(2.4) Xi = X̄ ✓ Rd
8i, µi = µ 8i, c(x1, . . . , xN ) =

X

1i<jN

1

|xi � xj |
,

where µ : Rd
! R is the single-particle density of the system, normalized so that it

integrates to 1. See [CFK18] for a rigorous derivation from the underlying quantum

D
ow

nl
oa

de
d 

07
/2

4/
22

 to
 8

4.
13

4.
10

4.
11

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENETIC COLUMN GENERATION FOR OPTIMAL TRANSPORT A1635

many-body system. In physics one is only interested in Kantorovich plans which
are symmetric with respect to the xi (as these model N -point position densities of
electrons, which are symmetric by the laws of quantum theory). This means that for
all permutations �,

�(A1 ⇥ · · · ⇥ AN ) = �(A�(1) ⇥ · · · ⇥ A�(N)) for any Borel subsets A1, . . . , AN of X̄.

Mathematically, this restriction does not alter the optimal cost because for equal
marginals and a symmetric cost c (as in (2.4)), each nonsymmetric plan gives rise to
a symmetric one with the same cost, by symmetrization. Also, for a symmetric plan,
any one marginal condition implies the others. Thus in the situation (2.4), denoting
the set of symmetric probability measures on X̄

N by Psym(X̄N ) and abbreviating
MX1

� = M1�, the MMOT problem (2.1)–(2.3) reduces to

Minimize C[�] =

Z

X̄N

c(x1, . . . , xN ) d�(x1, . . . , xN )(2.5)

over � 2 Psym(X̄N )(2.6)

subject to M1� = µ(2.7)

(symmetric MMOT). Here c can be any symmetric function on X̄
N .

Corrections from the strongly correlated (MMOT) limit have been demonstrated
to improve the accuracy of electronic structure simulations based on DFT [FGGSDS16];
but as yet no numerical method is available which can handle this limit reliably for
anything other than small test systems with a few electrons.

Discretization. A simple, in the N = 2 case standard, structure-preserving dis-
cretization of (2.1)–(2.3) which preserves the favorable sparsity and duality properties
of optimal transport is as follows. Suppose the Xi are compact subsets of Rd, and
c : X1 ⇥ · · · ⇥ XN ! R is continuous. Let

(2.8) µ
(⌫)
i

=

`i(⌫)X

↵=1

m
(⌫)
i,↵

�
a
(⌫)

i,↵
, m

(⌫)
i,↵

� 0, a(⌫)
i,↵

2 Xi,

be any sequence of finite sums of Dirac measures converging weak* in M(Xi) =
(C(Xi))⇤ to µi. (Such approximations always exist. For instance, if Xi is the closure
of an open bounded set with smooth boundary, one may partition Xi into distinct

small cells V
(⌫)
i,↵

= Xi \ Q
(⌫)
i,↵

where the Q
(⌫)
i,↵

are disjoint cubes in Rd of sidelength

1/⌫. One now picks any representative point a(⌫)
i,↵

in V
(⌫)
i,↵

and places all the mass from

V
(⌫)
i,↵

there, i.e., one sets m
(⌫)
i,↵

= µi(V
(⌫)
i,↵

).) Then any plan � 2 P(X1 ⇥ · · · ⇥ XN )
satisfying the marginal conditions (2.3) must be of the following form, where we omit
the superscript ⌫:

(2.9) � =
`1X

i1=1

. . .

`NX

iN=1

�i1...iN �a1,i1
⌦ · · · ⌦ �aN,iN

,

so such a plan can be viewed as a tensor (�i1...iN ) of order N , and (2.1)–(2.3) reduces
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to the discrete problem

Minimize C[�] =
`1X

i1=1

. . .

`NX

iN=1

�i1...iN c(a1,i1 , . . . , aN,iN )(2.10)

subject to
X

ij : j 6=k

�i1...ik...iN = mk,ik 8ik 2 {1, . . . , `k}(2.11)

subject to � � 0(2.12)

(with the last inequality understood componentwise). For symmetric MMOT, we may
assume that the `i, ai,↵, and mi,↵ are independent of i, and the discrete problem reads
as follows: Given a set of ` distinct discretization points,

(2.13) X = {a1, . . . , a`} ⇢ Rd
,

and a marginal �⇤
2 P(X) which we may view as a vector in R` whose ith component

is given by �
⇤({ai}),

Minimize C[�] =
`X

i1,...,iN=1

�i1...iN c(ai1 , . . . , aiN ) over � 2 Psym(XN )(2.14)

subject to
`X

i2,...,iN=1

�i1i2...iN = �
⇤
i1

8 i1 2 {1, . . . , `}(2.15)

subject to � � 0.(2.16)

The associated dual problem is

Maximize
`X

i=1

yi�
⇤
i
over y 2 R`(2.17)

subject to 1
N

�
yi1 + · · · + yiN

�
 c(ai1 , . . . , aiN ) 8i1, . . . , iN 2 {1, . . . , `};(2.18)

it discretizes the continuous dual problem [BDPGG12] to maximize
R
X̄
y dµ over mea-

surable functions y : X̄ ! R satisfying 1
N
(y(x1) + · · · + y(xN ))  c(x1, . . . , xN )

8x1, . . . , xN 2 X̄, whose solutions are called Kantorovich potentials. By linear pro-
gramming duality, the value of (2.14)–(2.16) equals that of (2.17)–(2.18).

Application of a well-known stability result in optimal transport theory (see The-
orems 1.50 and 1.51 of [San15] in the context of two-marginal problems; the extension
to N marginals is straightforward) immediately yields the following convergence result
as ⌫ ! 1.

Theorem 2.1 (justification of discretization). For any compact sets X1, . . . , XN

in Rd, any continuous cost c : X1 ⇥ · · ·⇥XN ! R, and any discretization (2.8) of the
marginals which converges weak* to these, the optimal cost of the discretized problem
(2.9)–(2.11) converges to that of the continuous problem (2.1)–(2.3). Moreover, any
sequence of optimizers �

(⌫) of the discretized problem converges—after passing to a
subsequence—weak* to a minimizer of the continuous problem.

More sophisticated discretizations can be considered. For instance, one can repre-
sent integrable marginals µk by piecewise linear finite elements and use e↵ective cost
coe�cients obtained by integrating the continuous cost function against the tensor
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products of these elements, as in [CFM14] where the Coulomb problem was simu-
lated for the dihydrogen molecule. For smooth marginals and costs, this is expected
to improve the discretization error from O(1/⌫) to O(1/⌫2). Moreover, to alleviate
the computational cost the elements could be chosen adaptively so that each element
carries approximately the same marginal mass [CFM14]. In this paper we do not
investigate such refinements and instead confine ourselves to the basic qualitative
justification of the discretization (2.9)–(2.11) given in Theorem 2.1.

The discrete problems (2.10)–(2.12) and (2.14)–(2.16) are high-dimensional linear
programs. For some costs with very special interaction structure (such as the Wasser-
stein barycenter problem) a transformation to low-dimensional linear programs is pos-
sible [COO15] (see also [ABA20b]), making standard methods from linear program-
ming applicable. For general costs, including (2.4), such schemes become unfeasible
beyond a handful of marginals, due to the curse of dimension.

3. Extremal formulation of symmetric MMOT. The starting point of the
algorithm presented here is the following equivalent formulation of symmetric MMOT
introduced in [FV18], in which (candidate and optimal) Kantorovich plans are ex-
pressed as convex combinations of extreme points of Psym(XN ). This eliminates any
redundancy in the parametrization of plans and thus reduces the problem dimension,
while at the same time it keeps the problem in the form used in two of the pioneering
articles on column generation [DW60, DW61].

It is not di�cult to show (see [FV18]) that when X is a finite state space, (2.13),
the extreme points of Psym(XN ) can be uniquely recovered from their marginals,
which are given by the 1

N
-quantized probability measures on X,

(3.1) P 1

N
(X) :=

⇢
� 2 P(X)

���({ai}) 2

⇢
0,

1

N
,
2

N
, . . . ,

N

N

�
8 i 2 {1, . . . , `}

�
.

To recover the corresponding extreme point, write an element � from the above set
in the form

P
N

k=1
1
N
�aik

for some (not necessarily distinct) points ai1 , . . . , aiN 2 X,
and set

(3.2) �� = SN�ai1
⌦ · · · ⌦ �aiN

.

Here SN is the symmetrizer defined by (SN�)(A1 ⇥ · · · ⇥ AN ) = 1
N !

P
�
�(A�(1) ⇥

· · · ⇥ A�(N)), with the sum running over all permutations of {1, . . . , N}. Of course
any element of the set Psym(XN ) is a convex combination of extreme points, but here
something better is true.

Lemma 3.1 ([FV18]). Any element � 2 Psym(XN ) can be represented uniquely
as a convex combination of the above extreme points, that is,

(3.3) � =
X

�2P 1

N
(X)

↵���, ↵� � 0 8� 2 P 1

N
(X),

X

�2P 1

N
(X)

↵� = 1.

Here the uniqueness is obvious from the fact that the �� have mutually disjoint
support.

Since �� has marginal �, the marginal condition becomes

(3.4) �
⇤ =

X

�2P 1

N
(X)

↵��.
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Thus the MMOT problem (2.9)–(2.12) can be written as the following optimization
problem over the coe�cient vectors ↵. Here and below we identify probability mea-
sures � 2 P1/N (X) with vectors in R` whose ith component is given by �({ai}).

Minimize c
T
↵ =

X

�2P 1

N
(X)

c�↵�(3.5)

subject to A↵ = �
⇤(3.6)

↵ � 0,(3.7)

with cost coe�cients

(3.8) c� =
`X

i1,...,iN=1

(��)i1,...,iN c(ai1 , . . . , aiN )

and A being the ` ⇥
�
N+`�1

N

�
matrix defined by

(3.9) A↵ =
X

�2P 1

N
(X)

↵��,

that is, the columns of A are given—say, in alphabetical order—by the vectors in
P1/N (X). For instance, for ` = 5 and N = 3,

A =
1

3

0

BBBB@

3 0 0 0 0 2 2 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 3 0 0 0 1 0 0 0 2 0 0 0 2 2 2 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0
0 0 3 0 0 0 1 0 0 0 2 0 0 1 0 0 2 0 0 2 2 1 1 0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 3 0 0 0 1 0 0 0 2 0 0 1 0 0 2 0 1 0 2 0 2 1 0 1 0 1 0 1 1 0 1 1
0 0 0 0 3 0 0 0 1 0 0 0 2 0 0 1 0 0 2 0 1 0 2 1 2 0 0 1 0 1 1 0 1 1 1

1

CCCCA
.

Note that the normalization condition that the ↵� must sum to 1 is automatically
enforced by the marginal constraints A↵ = �

⇤.
In what follows, we refer to the linear program (3.5)–(3.7) as the master problem

(MP). This is the problem we seek to tackle in this paper. Note that the curse of
dimension is still present, as the number of unknowns still grows combinatorially
in N ; just that by exploiting symmetry we have reduced it from `

N in (2.9)–(2.11)
to

�
N+`�1

N

�
. For instance, for 25 particles and 100 gridpoints for discretizing the

marginal, this reduces the number of unknowns from 1050 to about 1026—still out of
reach of conventional methods.

4. Sparsity of optimizers; sparse manifolds. A fundamental feature of the
above MP which our algorithm exploits is the extreme sparsity of optimizers. As is
well known in polyhedral optimization, the number of nonzero entries of extremal op-
timizers is governed by the number of equality constraints. In the context of MMOT,
this number is much smaller than the number of unknowns, and the ensuing exact
sparse ansatz was first introduced and investigated by two of the authors in [FV18],
where the following result was proved.

Theorem 4.1 ([FV18]). For any ` and N , any symmetric cost function c :
X

N
! R, and any marginal �⇤ 2 P(X), there exists an optimizer ↵⇤ of (3.5)–(3.9)

belonging to the manifold

M` := {↵ 2 R(
N+`�1

N ) ��↵� � 0 8�, A↵ = �
⇤
, ↵ has at most ` nonzero entries}.
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Thus, in our case the number of required nonzero entries is just `, independently
of N . (Strictly speaking, M` is not a manifold but only an algebraic variety.)

In [FV18] we proposed the name quasi-Monge states for the elements in this sparse
manifold because of a close connection with the Monge ansatz in optimal transport.
More precisely, one can show [FV18] that each plan � corresponding to a coe�cient
vector in M` can be written in the form

� = SN

`X

⌫=1

µ⌫�T1(a⌫) ⌦ · · · ⌦ �TN (a⌫)

or, in optimal transport notation (with ( )] denoting the push-forward of a measure)

� = SN (T1, . . . , TN )]µ

forN maps T1, . . . , TN : X ! X and ` coe�cients µ⌫ � 0 which sum to 1. Restricting
µ to be equal to the prescribed marginal �⇤ is the classical Monge ansatz from optimal
transport theory. But the latter is too restrictive for the validity of Theorem 4.1 when
N � 3, even in the case of the uniform marginal �⇤ = 1

`

P
`

⌫=1 �a⌫ (see [Fri19] for
simple counterexamples and [Vög19] for a systematic numerical study).

From a computational perspective it will be useful to work on a slightly larger
ansatz manifold,
(4.1)

M`0 := {↵ 2 R(
N+`�1

N ) ��↵� � 0 8�, A↵ = �
⇤
, ↵ has at most `0 nonzero entries},

where

(4.2) ` < `
0 = `+O(`).

In practice we will use

(4.3) `
0 = �`,

where � is a hyperparameter in the GenCol algorithm (chosen to be 5 in all our
simulations). The intuition behind the enlargement of M` to M`0 is that it keeps the
sparsity at an extremely low level but makes the problem less nonlinear. (In the—in
practice unfeasible—limit `

0 =
�
N+`�1

N

�
, one would obtain back the original linear

program.)

5. Genetic column generation.

5.1. Column generation. In light of Theorem 4.1 it is—in principle—possible
to solve the MP exactly via an algorithm that runs only on the data-sparse manifolds
M` or M`+O(`) without ever touching the MP in its entirety. But what should one
do in practice? CG is a pragmatic approach from discrete optimization, of primal-
dual type, in which the primal state evolves precisely on such a sparse manifold. Its
development originated in integer programming, but it has been especially useful in
0/1-integer programming, where the unknown is a vector in {0, 1}N (corresponding
to the domain of Kantorovich plans for ` = 2 and N marginals) and where CG can
be used in association with branch-and-bound techniques. Successful applications
include traveling salesman problems, airline scheduling, and vehicle routing (see, e.g.,
[LD05]). Concurrent to our work, in [ABA20b] the authors use CG in connection with
optimal transport to numerically support interesting theoretical results based on the
ellipsoid method.
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Consider any linear program of the form of our MP (3.5)–(3.7), and suppose we
are in the general situation (satisfied in our case) that the matrix A has far fewer
rows than columns and the number of columns is far too large to use standard linear
programming solvers (such as Gurobi [GO19]). In CG one starts o↵ by reducing the
MP to a problem with far fewer variables by admitting only a small sized subset of
the columns of A as a new constraint matrix. As only those admissible coe�cient
vectors ↵ of the MP that are supported on the chosen columns are admissible for the
new problem, the MP can be viewed as a “relaxation” of this new problem. Now the
idea is to suitably generate additional candidate columns for the reduced problem and
use a duality based criterion to accept or reject them in order to decrease its optimal
value and thereby the gap to the optimal value of the MP.

Let us now explain the method in detail. The first step in CG consists of choosing

a small sized subset I ⇢ Ī =
n
1, 2, . . . ,

�
N+`�1

N

�o
of the columns of the constraint

matrix A of the MP (3.5)–(3.7). For any such I, AI and cI denote the submatrix of
A (respectively, the subvector of c) that contains exactly the corresponding columns
(respectively, entries). Replacing the original constraint matrix A of the MP (3.5)–
(3.7) by AI and the cost vector c by cI yields the problem

Minimize c
T

I
↵(5.1)

subject to AI↵ = �
⇤(5.2)

↵ � 0.(5.3)

Problem (5.1)–(5.3) will be referred to as the restricted master problem (RMP). As
long as ]I  `

0, candidate or optimal primal states of the RMP, extended by zero to
Ī, stay in the sparse manifold M`0 defined in (4.1).

Given an RMP (5.1)–(5.3) induced by a reduced constraint matrix AI , one would
like to add “better” columns to AI , i.e., columns that improve the optimal value of
the RMP. These “better” columns are best understood from a dual point of view.
The dual of the RMP (DRMP) is given by

Maximize y
T
�
⇤(5.4)

subject to A
T

I
y  cI .(5.5)

Replacing AI by A and cI by c in this problem yields the dual of the master problem
(DMP). The DRMP di↵ers from the DMP by imposing far fewer constraints (]I
instead of ]Ī) on the dual variables y 2 R`.

Theoretical discussions of CG now continue with the following—for high-
dimensional problems unfeasible—step, in which the dual problem is used to find
the “best” additional column: Given a dual optimal solution y

⇤ of the DRMP, solve
the so-called pricing problem (PP)

Maximize �
T
y
⇤

� c�(5.6)

subject to � 2 P 1

N
(X).(5.7)

This problem looks for the constraint of the DMP that is violated the most by the
given optimal solution y

⇤ of the DRMP.
But the PP su↵ers from the fundamental problem we seek to circumvent, namely

the curse of dimension. In fact, we will show in section 6 that even for pairwise
costs, in which case the evaluation of c� is simple (see section 5.2), this problem is
NP-complete.
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In practice, for high-dimensional problems one needs to replace (5.6)–(5.7) by the
following:

(5.8) E�ciently find a new column � such that �T
y
⇤

� c� > 0.

Any such column can be added to the restricted constraint matrix AI . The new
column represents a constraint of the full dual (DMP) which the solution y

⇤ to the
current DRMP violates. Adding this column to the matrix AI “cuts o↵” y

⇤ from the
optimization domain of the DRMP, yielding a new dual optimal solution ỹ

⇤. Except
in degenerate cases, this also leads to a new primal solution and a decrease in cost.
For the convenience of the reader we include the well-known theoretical justification
of the acceptance criterion in (5.8).

Lemma 5.1 (justification of acceptance criterion). If �T
y
⇤
�c�  0 for all columns

� of the full constraint matrix A, then the current dual solution y
⇤ of the DRMP solves

the full dual problem DMP, and the current primal solution ↵I of the RMP, extended
by zeros, solves the full primal problem MP.

Proof. Denote the current primal solution extended by zeros by ↵I . By assump-
tion, AT

y
⇤

 c, that is, y⇤ is admissible for the full dual problem. Using, in order of
appearance, the definition of ↵I , duality for the RMP, admissibility of y⇤, and duality
for the full MP gives

c
T
↵I = c

T

I
↵I = �

⇤
y
⇤

 max
y :AT yc

�
⇤
y = min

↵ :A↵=�
⇤

↵�0

c
T
↵.

Since ↵I is admissible for the full primal problem, the assertion follows.

5.2. Fast cost evaluation for candidate columns. A possible bottleneck in
CG in addition to the large number of columns can be the cost evaluation of a new
column, required by the acceptance criterion in (5.8). In the case of MMOT with
large N , a priori this requires evaluation of a high-dimensional sum; see (2.14). We
now show that, due to the special structure of the extreme points �� of Psym(XN )
and the fact that the costs of interest are of pairwise form, this cost evaluation can, in
fact, be done extremely fast, requiring only an N -independent number of arithmetic
operations.

First, it is elementary that whenever c : X
N

! R is of pairwise and symmetric
form,

(5.9) c(x1, . . . , xN ) =
X

1i<jN

w(xi, xj) for some symmetric w : X ⇥ X ! R,

then for any � 2 Psym(XN ),

C[�] =

✓
N

2

◆ `X

i,j=1

(M2�)ijw(ai, aj),

where M2� is the two-point marginal of �, defined by M2�(A) = �(A ⇥ X
N�2) for

all subsets A of X2. For further discussion of this representation and its usefulness in
electronic structure, see [FMP+13]. In the case of the extreme points ��, the following
explicit formula for the two-point marginal in terms of the one-point marginal � was
derived in [FV18]; it shows that on these points the highly noninvertible projection
map from M2� to M1� can be inverted.
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Lemma 5.2 ([FV18]). For any � 2 P 1

N
(X),

M2�� =
N

N � 1
� ⌦ � �

1

N � 1

`X

i=1

�({ai})�ai ⌦ �ai .

Moreover, �� is the unique element of Psym(XN ) with this two-point marginal.

(In optimal transport notation, the second term on the right-hand side equals
�

1
N�1 (id, id)# �.) This immediately yields the following simple expression for the

cost c� of a column � 2 P1/N (X). Any such � is now again regarded as a vector in
R`.

Corollary 5.3. If c has the pairwise form (5.9), and � is any element of P1/N (X),
then

(5.10) c� =
N

2

2
�
T
C� �

N

2
diag(C)T�,

with C = (Cij)
`

i,j=1 2 R`⇥` defined by

(5.11) Cij = w(ai, aj).

This reduces cost evaluation to just matrix-vector multiplication with a precom-
puted matrix of N -independent size `, and shows that the acceptance criterion in the
PP (5.8) is extremely cheap computationally.

5.3. Genetic method for generating new columns. To tackle (5.8), let us
recall the physical meaning of columns in MMOT in the key example of electronic
structure. Transport plans � with N marginals correspond to the joint probability
density of N electron positions in a continuous d-dimensional domain ⌦ ✓ Rd, or
on the ` discretization points of an `-point discretization X = {a1, . . . , a`} ⇢ ⌦ (see
section 2). The columns � 2 P1/N (X) describe all the possible “pure” N -particle
configurations, obtained by dropping the N electrons on the ` discretization points
(while allowing to multiply occupy sites). The MP (3.5)–(3.9) seeks to determine a
stochastic superposition of these electron configurations that minimizes the interaction
energy—prototypically, the mutual Coulomb repulsion—while fulfilling the marginal
constraint. The latter describes the single-electron density, that is, the total occu-
pancy of each site. Finding promising new columns corresponds to guessing good new
N -particle configurations for the given density and interaction.

We take the view that guessing such—intricately correlated—configurations from
the vast number of possiblities must be learned. The best available information given
a current RMP matrix AI and a solution ↵I to the RMP is which columns are suc-
cessful, i.e., which ones correspond to a nonzero component of the vector ↵I . But this
is already very valuable many-body information. For instance, in the case of Coulomb
repulsion, successful many-particle configurations will already keep the electrons spa-
tially apart from each other and avoid unfavorable clustering. This suggests a genetic
approach which performs random small mutations of currently successful many-body
configurations. More precisely, we propose the following.

Genetic search rule. Given an instance of a reduced constraint matrix AI and
a corresponding RMP solution ↵I ,

1. allow only columns � of AI with (↵I)� > 0 to be parents,
2. pick a parent column at random,
3. create a child by moving one randomly chosen particle in the parent configu-

ration from its location a 2 X to a randomly chosen neighboring site a
0
2 X.
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The last step is crucially based on the physical/geometric meaning of columns as
N -particle configurations in a region of d-dimensional Euclidean space.

Our rule for creation of children has an interestingmetricmeaning in column space
which has nothing to do with viewing columns as vectors in R` and using neighbors
with respect to standard distances on R`. Instead, children are obtained from parents
by moving a minimum amount of mass by a minimum nonzero Euclidean distance.
To formalize this, let d : X ⇥ X ! R be the Euclidean metric d(x, y) = |x � y|

on X = {a1, . . . , a`} ✓ Rd inherited from the ambient Rd. Columns are probability
measures on X, and for any two columns �, �

0
2 P1/N (X) let us introduce their

Wasserstein-1 distance (also called the earth mover’s distance) inherited from the
ground metric d,

W1(�,�
0) = min

⇢Z

X⇥X

d(x, y)d�(x, y) | � 2 P(X⇥X), � has marginals � and �
0
�
.

Then rule 3 can be reformulated as follows:
30. Pick a random nearest neighbor of the parent in the column space P1/N (X)

with respect to the Wasserstein-1 distance induced by the Euclidean metric
on X ✓ Rd.

We remark that, due to the mass quantization in P1/N (X), any of the Wasserstein-p
distances with p 2 [1,1) could be used here instead.

We emphasize that this abstract description of our genetic search rule does not
mean that in practice there would be any need to compute Wasserstein distances. In
our numerical examples the discretization points are chosen as the intersection of some
region ⌦ ⇢ Rd with a uniform lattice hZd of mesh size h > 0. One then just needs
to pick a random occupied lattice point and update a random component by ±h. In
more sophisticated discretizations, such as the adaptive one in 3D in [CFM14], one
simply needs to keep a nearest-neighbor list for each discretization point and make a
random choice from this list.

A less stochastic, but slower, variant of step 3 would be to generate the best
child (in terms of (5.6)) among all neighboring sites a0 of the location a, or among all
children (Wasserstein-1-neighbors) of the parent configuration.

5.4. The GenCol algorithm. Based on the results and considerations in the
previous sections, we propose the following simple algorithm. By an active column
we mean a column � for which (↵I)� > 0.

The inner while loop generates new columns according to the genetic rule de-
scribed in section 5.3 until the acceptance criterion from the PP (5.8) is satisfied.

The outer loop is a standard CG iteration in which new columns are added to
the current matrix AI of the RMP and the primal and dual solutions are updated.

To prevent the size of AI from growing too large, the “oldest” inactive columns
are cleared whenever a maximum allowed size has been reached. The maximum size
is defined with the help of the hyperparameter �; we do not allow it to exceed the
minimum size for exactness of the method (namely `; see Theorem 4.1) by more than
a factor �. The meaning of “oldest” is oldest with respect to having been found;
the empirical rationale here is that older columns were found with the help of a less
accurate dual solution.
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Algorithm 1 Genetic column generation (GenCol).

Input: N (the no. of marginals), ` (the no. of sites), � (hyperparameter, chosen to
be 5 in our simulations), w (pair potential), Euclidean coordinates of sites in
Rd, marginal �⇤

Output: Solution to the MMOT problem (3.5)–(3.7), (5.10), (3.9)
initialize AI , compute cI , samples = 0, iter = 0, gain = �1 while iter  maxiter
do

↵I = solution to RMP (5.1)–(5.3) y
⇤ = solution to dual problem DRMP (5.4)–

(5.5) while gain  0 and samples  maxsamples do
parent = random active column of AI child = new column obtained from parent
by randomly moving one particle to a neighboring site compute cchild (cost of
child) using (5.10) gain = childT y⇤ � cchild samples = samples + 1

end
AI = [AI ,child], cI = [cI ,cchild] if number of columns of AI � � · ` then

clear oldest ` inactive columns
end
iter = iter + 1

end

6. NP-completeness of the pricing problem. The formula for fast cost eval-
uation derived in Corollary 5.3 means that the PP (5.6)–(5.7) for MMOT is a linearly
constrained integer-optimization problem with quadratic objective:

Maximize �
T
y
⇤

�
N

2
�
T
C�+

N

2
diag(C)T�(6.1)

subject to
`X

i=1

�i = N,(6.2)

� 2 N`

0.(6.3)

To derive this form, we have rescaled the objective function and the computational
domain by a factor N .

As the theory of NP-completeness evolves around decision problems, we start by
formulating a “decision version” of the PP (6.1)–(6.3).

The objective function of the PP consists of a quadratic term and a linear term.
The linear term depends on the cost matrix for the quadratic objective. Neverthe-
less, we formulate the Pricing Decision Problem (PDP) by treating both terms as
independent.

PDP: Given natural numbers N, ` 2 N, a cost matrix V 2 R`⇥`, a
cost vector a 2 R`, and a threshold K 2 R, does there exist a vector
� 2 {0, 1, . . . , N}

` such that

`X

i=1

�i = N

and

�
T
V �+ a

T
� � K?

Even if we restricted our attention to the choices of input parameters covered by
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our PP (6.1)–(6.3), we still would be able to establish the NP-completeness of the
PDP; see Remark 6.3 below.

The remainder of this section is devoted to proving NP-completeness of the PDP.
This result strongly calls into question the possibility of a polynomial time algorithm
for the PDP. In fact, it also calls into question the possibility of a polynomial time
algorithm that solves the PP (6.1)–(6.3), by the following argument. Suppose that
such an algorithm exists. Given an instance of the PDP, one is now able to compute
the optimal value of the corresponding PP and simply compare it to the threshold of
the given instance. Thus, the PDP also would be solvable in polynomial time.

To prove NP-completeness of the PDP we will use the following elementary
lemma, whose proof is included for completeness.

Lemma 6.1. Given a natural number q, let E
q

2 Rq⇥q be the matrix whose di-
agonal entries are equal to zero, whereas all o↵-diagonal entries are equal to one.
Then

(6.4) �̃ with �̃i = 1 8 i 2 {1, . . . , q}

is the unique maximizer of the problem

Maximize �
T
E

q
�

subject to
qX

i=1

�i = q,

� 2 Rq
,

whose optimal value is therefore given by q(q � 1).

Proof. The matrix E
q has the two eigenvalues q � 1 and �1. Corresponding

eigenvectors are given by v1 = �̃ as well as v2 = e2 � e1, v3 = e3 � e1, . . . , vq =
eq � e1. Here ei denotes the ith standard unit vector in Rd. Geometrically, the
eigenvector v1 takes us onto the hyperplane our optimization problem is “living” on.
Any further movement corresponds to an addition of a linear combination of the
eigenvectors v2, . . . , vq with the negative eigenvalue �1, and thereby a decrease of the
objective value. In formulas, let us write any admissible trial state � 2 Rq as a linear
combination of eigenvectors, � =

P
q

i=1 ↵ivi with ↵1, . . . ,↵q 2 R. Multiplication with
(1, . . . , 1) immediately shows that, by admissibility of �, we have ↵1 = 1, and therefore

� = v1 +
qX

i=2

↵ivi.

As v1 is perpendicular to v2, . . . , vq,

�
T
E

q
� = v

T

1 E
q
v1 �

�����

qX

i=2

↵ivi

�����

2 (
= q(q � 1) if ↵2 = · · · = ↵q = 0,

< q(q � 1) else.

This establishes the optimality of v1 = �.

The main result of this section is the following.

Theorem 6.2. The PDP is NP-complete.

Before we come to the proof, let us recall what it is that needs to be proven. As
discussed, for example, in [KPP04, CLRS09], a decision problem Q is classified as
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NP-complete if it is (i) contained in the class NP and (ii) “at least as hard” as any
other problem in NP. This class consists of those decision problems for which “yes”
instances can be verified in polynomial time. Regarding (ii), we will use the concept
of polynomial reducibility. A decision problem S is said to reduce (or transform)
to another decision problem T in polynomial time if there exists a polynomial time
function f that maps any instance I of S to an instances f(I) of T in such a manner
that I is a “yes” instance of S if and only if f(I) is a “yes” instance of T. Then
as polynomial solvability of T implies polynomial solvability of S, T is considered
“harder” as S. Consequently, in order to prove that Q is NP-complete one needs
to show that any problem in NP can be polynomially reduced to Q. As a result of
the transitivity of polynomial reducibility, one can show this by picking a known
NP-complete problem and proving that it reduces to Q. In the following we will
establish the NP-completeness of the PDP, i.e., prove Theorem 6.2, using this common
approach. We will show that the following Clique Decision Problem (CDP) reduces
to the PDP in polynomial time:

CDP: Let G := (V,E) be an undirected graph, and let K 0
2 N be a

natural number that fulfills K
0

 |V |. Does there exist a clique of
size at least K 0?

Recall that given an undirected graph G := (V,E), a clique C corresponds to a subset
of the vertices of G, i.e., C ✓ V , such that every distinct pair of vertices c1, c2 2 C is
connected by an edge, i.e., {c1, c2} 2 E. We refer the interested reader to [CLRS09]
for a more detailed discussion of the CDP including a proof of its NP-completeness.

Proof. First, it is easy to see that the PDP is contained in the class NP. Assume
that we are given a capacity N , a size parameter `, a threshold K, a cost matrix V ,
and a cost vector a that yield the answer “yes” if used as input arguments of the
PDP. Now let � be one of those vectors about whose existence the PDP asks. Then
� corresponds to a certificate, whose size is polynomial in the size of the input, for
which the capacity as well as the threshold constraint can be checked in polynomial
time. Thus, overall the “yes” instance can be verified in polynomial time.

Next we prove that the CDP can be reduced to the PDP in polynomial time.
A given instance I = (G,K

0) of the CDP is hereby mapped to an instance f(I) =
(N, `,K, a, V ) of the PDP where N is set to K

0, ` corresponds to the cardinality |V |

of the vertex set of G, the threshold K is given by K
0(K 0

� 1), the cost vector a

equals the zero vector, and finally, the cost matrix V is set to be the adjacency matrix
AG = (aij)`i,j=1 of the graph G which fulfills

aij =

(
1 if {i, j} 2 E,

0 else.

Thereby the adjacency matrix is, as usual, based on a given order of the vertices. It is
easy to see that for a given instance I, the matching instance f(I) can be computed
in polynomial time. What remains to be shown is that for the described mapping,
I is a “yes” instance regarding the CDP if and only if f(I) is a “yes” instance with
respect to the PDP.

Let I = (G,K
0) be such a “yes” instance regarding the CDP. Then G = (V,E)

contains a clique C ✓ V of size K
0. Assume further that � is the vector indicating
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which vertices are contained in C, i.e., � 2 {0, 1}` with

�i =

(
1 if i 2 C,

0 else.

Then it is elementary to check that the entries of � sum to K
0 and that �

T
AG� =

K
0(K 0

�1). Consequently, the given � triggers a “yes” answer of the PDP with respect
to the instance f(I).

Now assume f(I) is a “yes” instance with respect to the PDP. Then there exists
a vector � 2 {0, 1, . . . ,K 0

}
` such that its entries sum to K

0 and it satisfies �T
AG� �

K
0(K 0

� 1). We will show that this vector � only consists of zero- and one-entries,
where the latter indicate a set of vertices that forms a clique in the graph G of size
K

0. This immediately determines that I is a “yes” instance regarding the CDP.
In the following, I ✓ {1, 2, . . . , `} will denote a set of indices that satisfies

�i > 0 implies i 2 I

as well as
|I| = K

0
.

One can generate I by filling up the set of “support-indices” of � with an arbitrary
choice of the remaining indices in {1, 2, . . . , `}. This is possible because by assump-
tion K

0
 `. The K

0-dimensional vector consisting only of those entries of � that
correspond to indices in I will, in the following, be denoted by �I . Accordingly,
A

I

G
= (aij)i,j2I denotes the matrix that is built from only those rows and columns of

AG with indices in I.
By the assumption on � and the construction of I we have

(6.5) K
0(K 0

� 1)  �
T
AG� = �

T

I
A

I

G
�I .

Since replacing A
I

G
with E

K
0
as defined in Lemma 6.1 does not decrease the value of

the quadratic function for nonnegative input arguments, we have

(6.6) �
T

I
A

I

G
�I  �

T

I
E

K
0
�I .

Combining (6.5) and (6.6) and applying Lemma 6.1 for q = K
0 yields

(6.7) K
0(K 0

� 1)  �
T
AG� = �

T

I
A

I

G
�I  �

T

I
E

K
0
�I  K

0(K 0
� 1).

Every inequality in (6.7) is now actually an equality; consequently �I equals the
vector �̃ from (6.4) with q = K

0, and therefore we also have A
I

G
= E

K
0
. Since A

I

G

corresponds to the adjacency matrix of the subgraph of G induced by I, G indeed
contains a clique of size K

0, namely I. This concludes the proof of Theorem 6.2.

Remark 6.3. We claim that the PDP is still NP-complete if the cost matrix V

and the cost vector a are restricted to be of the special form in (6.1)–(6.3). In order
for the PDP to remain NP-complete, there need to exist reduced problems—RMP,
DRMP—that underlie the choices of AG and the zero vector as cost matrix V and
cost vector a. Define I in such a manner that AI corresponds to the ` ⇥ ` identity
matrix, and let C = �

2
N
AG. Then the objective of the PP (6.1)–(6.3) takes on the

required form. Consequently Theorem 6.2 remains valid if one restricts the choices of
cost matrix and cost vector to the ones arising in (6.1).
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Fig. 1. Prescribed single-particle density.

7. Numerical results. All our tests were performed for our key motivating
application, the Coulomb problem (2.1)–(2.4). For simplicity we used the regularized
Coulomb interaction w(x, y) = 1/

p
"2 + |x � y|2 with " = 0.1. The tests were run

with MATLAB on a MacBook Pro with a 2.4 GHz Intel Core i7 processor.

7.1. Ten electrons in one dimension with inhomogeneous density. As a
first test we ran the GenCol algorithm on problem (2.1)–(2.4) with 10 electrons in a 1D
interval discretized by ` = 100 uniformly spaced gridpoints for the marginal density
shown in Figure 1. We normalized the spacing to 1 and took the density as a function
of the gridpoints ai = i 2 {1, . . . , `} ⇢ R to be �⇤({ai}) = c0 · (0.2+sin2

�
i

`+1

�
), where

c0 is a normalization constant so that
P

i
�
⇤({ai}) = 1.

We initialized the matrix AI with the ` columns of the ` ⇥ ` identity matrix (to
ensure that the optimization in the RMP (5.1)–(5.3) is feasible) as well as (� � 1)⇥ `

random columns, each of them obtained by dropping N particles randomly with
respect to the uniform measure onto the grid. The results are given in Figure 2.
After less than 7000 iterations the algorithm found what we believe to be the exact
solution (within machine precision). Due to the problem size of 4.26 ⇥ 1013 possible
columns, rigorous certification of the solution is out of the question, but we tested it
both by a long (and, as it turned out, futile) biased search for better columns and by
re-running the simulation many times, always ending up with the same state. Also,
this behavior did not depend on any special choice of the hyperparameter � (the
increase factor of the size of the column space beyond what is needed theoretically to
capture optimizers). Increasing our choice � = 5 to 7 just led to a reduction of the
number of iterations by a few percent, whereas decreasing it to 3 led to an increase
by about 30 percent.

The multimarginal Kantorovich plan (or N -point density), visualized via its two-
point marginal (or pair density), is seen to concentrate on the graphs of N � 1 = 9
maps, thereby accurately reproducing the known behavior of the continuous problem
as predicted by Seidl [Sei99] and rigorously proved in [CDPDM15]. Overall only about
33000 columns out of the 4.26 ⇥ 1013 possible columns were sampled in order to find
the ground state solution. The cost decreased steadily at an exponential rate (see
Figure 3).

From an unsupervised learning perspective, the Kantorovich potential plays the
same role in the GenCol algorithm for MMOT as it does in the Wasserstein-GAN
algorithm [ACB17] for learning unknown distributions from data, namely that of an
“adversary.” In the initial stages the adversary is not much help (it looks to be close
to a random potential) and the primal state has di�culty learning anything other
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Fig. 2. Solution to MMOT with Coulomb cost for 10 electrons in one dimension with the GenCol
algorithm. The prescribed one-point marginal (single-electron density) is depicted in Figure 1, and
was discretized by 100 gridpoints, resulting in 4.26⇥1013 unknowns (or “columns”) in the full linear
program. Left column: Evolution of the multimarginal plan, visualized via its two-point marginal
(pair density). All gridpoints with nonzero values are shown, with larger markers indicating higher
values. Right column: Evolution of the dual solution (Kantorovich potential). The final plan—
believed to be the exact ground state within machine precision—was found using 6789 iterations
(accepted columns) and 33,283 samples (genetically generated columns).
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Fig. 3. Evolution of the cost of the RMP solution for the 10-electron simulation from Figure 2.

than the—physically obvious—fact that two electrons being extremely close is costly.
As the number of iterations increases, the primal and dual state steadily acquire finer
and finer characteristics until reaching optimality. We attribute the success of the
GenCol algorithm in overcoming the vastness of the space of possible Kantorovich
plans to the ability of the primal and dual state to “learn from each other.”

7.2. Large N-electron systems in one dimension; cost scaling. We now
empirically investigate the important issue of how the computational cost of the
GenCol algorithm scales with system size. As a suite of test systems we choose
MMOT with Coulomb cost in one dimension and homogeneous marginal �⇤, with
an increasing number N of electrons and an increasing number ` of gridpoints. In
fact, it is physically natural to increase both parameters simultaneously and consider
a sequence of systems with

(7.1) increasing N, increasing `,
N

`
⌘ const.

In the limit N ! 1, ` ! 1, N

`
⌘ const (the so-called thermodynamic limit) the sys-

tem approaches the 1D homogeneous electron gas. At fixed mesh size (normalized to
1 in our simulations), the condition N

`
⌘ const means physically that we increase the

available volume proportionally to the number of particles, thereby allowing typical
interparticle distances to stay unaltered, as happens in large molecules and solids in
nature.

The above family of systems has the advantage that for integer values of N

`
the

exact solution to (2.14)–(2.16) is known even after discretization (or, more precisely, it
can be deduced via the same methods with which the exact solution for the continuous
theory was derived in [CDPDM15]). It consists of the symmetrized Monge state

(7.2) �i1,...,iN = SN

`X

i1=1

�
⇤
i1

NY

k=2

�
ik,i1+(k�1)

`

N

,

which represents a superposition of uniformly spaced N -particle configurations. Here
�i,j denotes the Kronecker delta function.
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Fig. 4. Solution to MMOT with Coulomb cost for 25 electrons in one dimension with the
GenCol algorithm, with prescribed homogeneous marginal (single-electron density). The marginal
was discretized by 100 gridpoints, resulting in 1.0404 ⇥ 1026 unknowns (or “columns”) in the full
linear program. Multimarginal plans are visualized via their two-point marginal (pair density) as
described in Figure 2. Top row and bottom left: 1000, 8000, and 9000 iterations. Bottom right: exact
solution, reached after 9322 iterations (accepted columns) and 38,860 samples (genetically generated
columns).

We ran the GenCol algorithm on the sequence of systems

(7.3)

⇢
N = 5
` = 20

,

⇢
N = 10
` = 40

,

⇢
N = 15
` = 60

,

⇢
N = 20
` = 80

,

⇢
N = 25
` = 100

,

⇢
N = 30
` = 120

,

with five di↵erent runs for each system. We initialized the matrix AI with the `

columns of the identity matrix (for feasibility), augmented by N · ` random columns.
In every single case GenCol found the exact solution. See Figure 4 for the evolution
of the Kantorovich plan for N = 25, ` = 100. The number of iterations and genetic
samples needed to find the exact solution are given in Table 1. The average runtime
in MATLAB on a MacBook Pro was 48 seconds for 15 electrons on 60 gridpoints (i.e.,
1.8⇥1015 unknowns) and 13 minutes for 30 electrons on 120 gridpoints (i.e., 2.6⇥1031

unknowns). All but a negligible amount of this CPU time decomposed as the number
of iterations (= calls of the linear programming solver used, in our case the MATLAB
function linprog) times the CPU time for solving an instance of the linear program.

Since each iteration only involves solving a linear program for at most � · ` un-
knowns and ` constraints (where � = 5 in our case), and we limited the number of
iterations in the linear programming solver used to O(`2), from a theoretical point of
view the key limiting factor is the number of genetic samples needed. Figure 5 shows
a log-log-plot of the average number of genetic samples needed for each system. While
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Table 1
Number of iterations (accepted columns) and samples (genetically generated columns) needed by

GenCol to find the exact ground state for MMOT with Coulomb cost and homogeneous marginal in
one dimension. The number ` of gridpoints was increased proportionally to the number N of electrons
in line with (7.3) (see first column), and five di↵erent runs were performed for each system.

System Total number
of columns

Accepted columns Sampled columns Sampled
columns
(average)

N = 5, 4.2504 ⇥ 104 101, 121, 116, 467, 592, 485, 511.6
` = 20 146, 117 559, 455

N = 10, 8.2178 ⇥ 109 913, 757, 735, 3853, 2768, 2872, 3233.4
` = 40 915, 664 3912, 2762

N = 15, 1.8240 ⇥ 1015 2575, 2401, 2342, 9901, 9301, 9141, 10024.4
` = 60 2540, 2658 9967, 11812

N = 20, 4.2879 ⇥ 1020 5649, 5633, 4839, 24856, 24227, 20272, 22898.4
` = 80 5557, 5256 22872, 22265

N = 25, 1.0404 ⇥ 1026 10611, 9436, 8334, 48188, 40939, 31371, 40017.4
` = 100 10186, 9322 40724, 38860

N = 30, 2.5759 ⇥ 1031 15539, 14262, 15484, 65566, 58283, 75729, 65068.2
` = 120 15190, 14714 63004, 62759

Fig. 5. Double logarithmic plot of the total number of genetic samples needed by GenCol to find
the exact ground state versus the number of electrons, for the systems described in Table 1. The
plot gives the average number of samples over five runs (last column of the table), and the number
of gridpoints was increased proportionally to the number of electrons (see the first column of the
table).

the system size (i.e., the number of unknowns) grows exponentially, the number of
genetic samples needed for finding the exact solution appears to lie on a straight line,
suggesting polynomial growth only. This is particularly remarkable in light of our
result in section 6 that the PP—which our genetic sampling method addresses—is
NP-complete.
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8. Discussion and conclusions. The main advantage of our algorithm making
it much faster than previous methods appears to be its simplicity: one just needs
to solve low-dimensional linear programs. Moreover, after discretization no further
approximations are made and the marginal constraints are automatically maintained,
making the solution very accurate. Finally, we note that the method also gives the
Kantorovich potential, which is needed in applications to electronic structure.
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[COO15] G. Carlier, A. Oberman, and E. Oudet, Numerical methods for matching for
teams and Wasserstein barycenters, ESAIM Math. Model. Numer. Anal., 49
(2015), pp. 1621–1642.

[Cut13] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in
Advances in Neural Information Processing Systems 26, Curran Associates, Inc.,
2013, pp. 2292–2300.

[DW60] G. B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Oper.
Res., 8 (1960), pp. 101–111.

[DW61] G. B. Dantzig and P. Wolfe, The decomposition algorithm for linear programs,
Econometrica, 29 (1961), pp. 767–778.

[FGGSDS16] E. Fabiano, P. Gori-Giorgi, M. Seidl, and F. Della Sala, Interaction-strength
interpolation method for main-group chemistry: Benchmarking, limitations,
and perspectives, J. Chem. Theory Comput., 12 (2016), pp. 4885–4896.

[FMP+13] G. Friesecke, C. B. Mendl, B. Pass, C. Cotar, and C. Klüppelberg, N-density
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[LD05] M. E. Lübbecke and J. Desrosiers, Selected topics in column generation, Oper.
Res., 53 (2005), pp. 1007–1023.

[Nen17] L. Nenna, Numerical Methods for Multi-marginal Optimal Transportation, Ph.D.
thesis, https://tel.archives-ouvertes.fr/tel-01471589/, 2017.
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[Sch16] B. Schmitzer, A sparse multiscale algorithm for dense optimal transport, J. Math.
Imaging Vis., 56 (2016), pp. 238–259.

[Sch19] B. Schmitzer, Stabilized sparse scaling algorithms for entropy regularized transport
problems, SIAM J. Sci. Comput., 41 (2019), pp. A1443–A1481, https://doi.org/
10.1137/16M1106018.

[Sei99] M. Seidl, Strong-interaction limit of density-functional theory, Phys. Rev. A, 60
(1999), pp. 4387–4395.

[Spi00] F. C. R. Spieksma, Multi index assignment problems: Complexity, approximation,
applications, in Nonlinear Assignment Problems, Comb. Optim. 7, Springer,
2000, pp. 1–12.

[Vil09] C. Villani, Optimal Transport: Old and New, Springer-Verlag, 2009.
[VMR+21] A. Vacher, B. Muzellec, A. Rudi, F. Bach, and F.-X. Vialard, A Dimension-

free Computational Upper-Bound for Smooth Optimal Transport Estimation,
preprint, https://arxiv.org/abs/2101.05380, 2021.
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B Further publication

B.1 Convex geometry of finite exchangeable laws
and de Finetti style representation with uni-
versal correlated corrections

Authors: Guillaume Carlier, Gero Friesecke, and Daniela Vögler

Summary. We shine a light on the convex geometry of the set PN -rep

�
Xk

�
of N -

representable k-point probability measures regarding a given state space X. Here,
N and k denote natural numbers that fulfil N � k. The set PN -rep

�
Xk

�
arises as

the image of the set Psym

�
XN

�
of symmetric N -point probability measures under

the linear k-point marginal map Mk, i.e.,

PN -rep

�
Xk

�
:=

�
Mk� : � 2 Psym

�
XN

� 
.

In symmetric multi-marginal optimal transport, a k-body interaction structure
of cost functions allows us to reduce the optimization domain from a subset of
Psym

�
XN

�
to a subset of PN -rep

�
Xk

�
. Here, we speak of a reduction with regards

to the dimension of the product space: from XN to Xk. Even though the elements
of PN -rep

�
Xk

�
‘live’ on a lower-dimensional product space, they were initially only

understood implicitly as marginals of higher-dimensional measures.

In the present article, we explicitly provide universal polynomials FN,k that al-
low us to express any extreme point µk of PN -rep

�
Xk

�
in terms of its one-point

marginal:
µk = FN,k (�) for � = M1µk.

Non-extremal elements of PN -rep

�
Xk

�
can be written as ‘combinations’ of these,

now explicitly known, extreme points (FN,k (�))�. Here, FN,k is a polynomial of
degree k with leading term Nk�1/

Q
k�1
j=1(N � j)�⌦k (prefactor times k-fold ten-

sor product of � with itself) and a series of (k � 1) corrections, with correction
j being of order 1/N j. The one-point marginal map M1 maps the set of ex-
tremal N -representable k-point probability measures bijectively onto the set of
1/N -quantized probability measures P 1

N
(X), FN,k actually acts as a polynomial

inverse in this relation. We first establish this full description of extreme points in
the case of a finite state space X, before moving on to the case of a general state
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space X, that is a Polish space. For k = 2 and 3, we recover previous results for
finite state spaces from [44] and [61], respectively.
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Abstract
We present a novel analogue for finite exchangeable sequences of the de Finetti,
Hewitt and Savage theorem and investigate its implications for multi-marginal optimal
transport (MMOT) and Bayesian statistics. If (Z1, . . . , ZN ) is a finitely exchangeable
sequence of N random variables taking values in some Polish space X , we show that
the law µk of the first k components has a representation of the form

µk =
∫

P 1
N
(X)

FN ,k(λ) dα(λ)

for some probability measure α on the set of 1
N -quantized probability measures

on X and certain universal polynomials FN ,k . The latter consist of a leading term
Nk−1/

∏k−1
j=1(N−j)λ⊗k and afinite, exponentially decaying series of correlated correc-

tions of order N− j ( j = 1, . . . , k). The FN ,k(λ) are precisely the extremal such laws,
expressed via an explicit polynomial formula in terms of their one-point marginals
λ. Applications include novel approximations of MMOT via polynomial convexifica-
tion and the identification of the remainder which is estimated in the celebrated error
bound of Diaconis and Freedman (Ann Probab 8(4):745–764, 1980) between finite
and infinite exchangeable laws.
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1 Introduction

Multi-marginal optimal transport (MMOT) has attracted a great deal of attention in
recent years. The relevance of MMOT to tackle challenging problems arising from
electronic density functional theory was established in [6, 8]. In this context, one has
to find the joint density of N electrons with fixed one-point marginal so as to minimize
a total repulsive Coulombian cost. Even though the problem is difficult for large N , it
is symmetric (invariant under permutations of the electrons) and only depends on the
two-point marginal of the joint law of the N electrons (2-body interaction). Whether
symmetries and few-body interactions are helpful to analyze suchMMOT problems is
a natural question. An interesting result from [9] relying on the fact that the Coulomb
potential has a positiveFourier transformand the deFinetti,Hewitt andSavage theorem
is that when one lets N go to +∞, the optimal plan is the independent (infinite
product) measure. This is in striking contrast with the more standard two-marginal
optimal transport where, for typical costs including the Coulomb cost, optimal plans
are sparse and concentrate on low-dimensional subsets of the product space [5, 8,
18]. The present paper is motivated by MMOT for a possibly large but finite number
of marginals N and symmetric k-body (with k ≤ N ) interaction cost. We present a
novel explicit analogue of the de Finetti, Hewitt and Savage theorem and investigate
its implications for such problems. We also briefly indicate implications for Bayesian
statistics.

The main technical novelty in our work is the construction of an explicit polyno-
mial inverse of the marginal map from extremal N -representable k-point probability
measures (see below for terminology) to 1-point probability measures. This extends
previous results for 2-point [17] and 3-point [29] measures on finite state spaces to
arbitrary k and general Polish spaces.

Our ensuing finite version of de Finetti yields a complete, finite, exponentially
decaying series of correlated corrections which need to be added to the independent
measure in the case of finite N . This explicitly identifies the remainder estimated in
the celebrated error bound of Diaconis and Freedman [12] between finite and infinite
exchangeable laws.

In the remainder of this introductionwefirst recall the celebrated de Finetti–Hewitt–
Savage theorem, then describe in more detail what changes in the finite exchangeable
case.

De Finetti–Hewitt–Savage Recall that a sequence (Zi )i∈N of random variables tak-
ing values in a Polish space X is called exchangeable if the law of (Z1, Z2, . . .) equals
that of (Zσ (1), Zσ (2), . . .) for each finite permutation σ of N, that is each permutation
which leaves all but finitely many elements unchanged. The de Finetti–Hewitt–Savage
theorem says that any such sequence is a convex mixture of i.i.d. sequences. In other
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words, the law of (Z1, Z2, . . .) is a convex combination of independent measures,

µ =
∫

P(X)
λ⊗∞dα(λ) (1.1)

for some probability measure (or prior) α on the set P(X) of probability measures
on X . In Bayesian language, this says that the general infinite exchangeable sequence
(Zi ) is obtained by first picking some distribution λ on X at random from some
prior, then taking (Zi ) to be i.i.d. with distribution λ. For comprehensive reviews of
exchangeability we refer the reader to Aldous [2] and Kallenberg [26].

Finite exchangeability; finite extendibility A sequence (Z1, . . . , ZN ) is called
finitely exchangeable if its law equals that of (Zσ (1), . . . , Zσ (N )) for any permuta-
tion σ of {1, . . . , N }. For k ≤ N , a sequence (Z1, . . . , Zk) is called finitely extendible
if its law equals that of the first k elements of some finitely exchangeable sequence
(Z̃1, . . . , Z̃N ).1

For finite exchangeable sequences (Z1, . . . , ZN ) it is well-known that the analo-
gous representation to (1.1) with λ⊗∞ replaced by λ⊗N does not hold, see Diaconis
[13],Diaconis and Freedman [12], Jaynes [25]; the error is known to be of order 1

N in
total variation [4, 12].

The main approach for describing finite exchangeable sequences which has been
introduced in the probability literature is to write such a sequence as a superposition of
i.i.d. sequences but drop the requirement that the superposition of the laws be convex,
i.e. allows signed measures α in (1.1), see Dellacherie and Meyer [11], Jaynes [25],
Kerns and Székely [28], Janson, Konstantopoulos andYuan [24]. For applications, this
approach has limited appeal, for two reasons. First, the signed measure representation
is not unique. Second, the superposition does not yield a probability measure for
an arbitrary signed α, but remaining within probability measures is mandatory for
recovering an exchangeable law by sampling (see below) and for our application to
MMOT.

A very interesting second picture of finite exchangeability which appears not to
have received the attention it deserves can be found in Kerns and Székely [28] and
Kallenberg [26]. Namely, finite exchangeable sequences are convex mixtures of “urn
sequences”, or equivalently, finitely exchangeable laws are convex superpositions of
symmetrized Dirac measures, the latter being the laws of urn sequences (as described
further below). See Kerns and Székely ([28], top of p. 600), where such a representa-
tion appears as an intermediate step in the proof of the signed-measure representation.
The laws of urn sequences are known to be the extreme points of the convex set of
finitely exchangeable laws, see [28] for an elementary proof for finite state spaces
and Kallenberg ([26] Proposition 1.8) for a general proof using advanced probabil-
ity methods. Although not given in [26], the Kerns–Székely representation could be
deduced from the statement of Proposition 1.8 via disintegration of measures.

The present work builds upon this picture, which turns out to be very useful for
the applications we have in mind. Thus we view finite exchangeable laws as con-
vex mixtures of urns. But we re-instate the idea from original de Finetti, kept in

1 Analogously, (Z1, . . . , Zk ) is called infinitely extendible if its law equals that of the first k elements of
an infinite exchangeable sequence (Z̃1, Z̃2, . . .).
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the signed-measure approach, that the parameter space of the superposition should
consist of probability measures on the original Polish space X , not its N -fold product.
In principle, this is possible by parametrizing urn laws by their one-point marginals,
which are easily seen to be in 1–1 correspondence with these laws. In practice, to
arrive at an explicit representation one needs an explicit formula for the inverse of
this marginal map. By deriving such a formula, we obtain a unique representation
of finitely exchangeable laws which sheds some light on their universal correlation
structure and is useful for applications.

Main results In terms of laws, N -extendibility turns into what has been called N -
representability [16]: for k ≤ N , a k-point probability measure µk on Xk , or k-plan
for short, is called N -representable if it is the k-point marginal of a symmetric N -point
probability measure µN on XN (see Definition 2.1).

As a first main result, we explicitly determine the extremal N -representable k-
plans, that is, those that cannot be written as strict convex combinations of any other
N -representable k-plans, and give a polynomial parametrization in terms of their one-
point marginals. Focusing in this introduction for simplicity on the case k = 4, these
are the probability measures

FN ,4(λ) =
N 3

(N−1)(N−2)(N−3)

[
λ⊗4 − 6

N
S4 id⊗2

# λ ⊗ λ⊗2

+ 8 S4 id⊗3
# λ ⊗ λ + 3 S4 id⊗2

# λ ⊗ id⊗2
# λ

N 2 − 6
N 3 id

⊗4
# λ

]

where λ is a 1
N -quantized probability measure on X , i.e. an empirical measure of the

form 1
N

∑N
i=1 δxi for some—not necessarily distinct—points xi ∈ X . It is not obvious,

but part of our result, that these measures are nonnegative, and different for different λ.
The above expression can be viewed as a degree-4 symmetric polynomial in λ.

Besides an overall positive prefactor, the polynomial has leading term λ⊗4 which is
homogeneous of degree 4 and uncorrelated, and alternating corrections of order 1

N j

which are homogeneous of degree 4− j and more and more strongly correlated. As N
tends to infinity FN ,4(λ) approaches the independentmeasureλ⊗4, recovering the basis
in the deFinetti representation for infinitely representable 4-plans implied by (1.1). The
correlated corrections are of significant size even when N is quite large; see Fig. 1. All
these findings persist for general k; see Theorem4.5 for the general expression FN ,k(λ)

for extremal N -representable k-plans. Qualitatively, the corrections to independence
form a finite exponentially decaying series; quantitatively the (rational) coefficients
which appear can be related to the analytic continuation of the Ewens function from
genetics, which we introduce for this purpose.

Our second contribution is to cast the abstract insight [26, 28] that finite exchange-
ables are convex mixtures of urn sequences into a quantitative polynomial formula.
We show that any N -representable k-plan is a convex mixture of the FN ,k(λ). More
precisely, a k-plan is N -representable if and only if it is of the form

µk =
∫

P 1
N
(X)

FN ,k(λ) dα(λ) (1.2)
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Fig. 1 Coefficients of the universal polynomial FN ,4 for different N . For N = 5 and 6, the second
(correlated) term is bigger respectively equal in absolute value to the first (independent) term; for N = 20
its size is about 30% that of the first term. For large N , FN ,4 converges to the independent measure λ⊗4,
but even for N = 100 the deviation from the latter is still visible

for someprobabilitymeasureα on the setP 1
N
(X) of 1

N -quantized probabilitymeasures
on X . Moreover if N = k the measure α is unique, giving a one-to-one parametriza-
tion of the laws of finitely exchangeable sequences. By contrast, the signed measure
representation of such laws is not unique [24], and not all signed measures give rise
to such a law.

Formula (1.2) generalizes de Finetti–Hewitt–Savage, (1.1), from infinitely to
finitely representable measures, or from infinite to finite exchangeable sequences of
random variables. Formally, in the limit N → ∞ the domain of integration in (1.2)
tends to all of P(X), and the integrand tends to the independent measure λ⊗k , recov-
ering de Finetti (see Sect. 6 for a rigorous account). In Bayesian language, formula
(1.2) says that the general N -extendible sequence (Z1, . . . , Zk) of X -valued random
variables is obtained by first picking some 1

N -quantized distribution λ on X at ran-
dom from some prior, then sampling (Z1, . . . , Zk) from the correlated distribution
FN ,k(λ). In particular, by setting k=N we conclude that the general finite exchange-
able sequence (Z1, . . . , ZN ) is obtained by picking λ at random from its – in the case
k=N unique – prior α in (1.2), then sampling (Z1, . . . , ZN ) from FN ,N (λ).

Sampling from FN ,k(λ) has a transparent probabilistic meaning which we now
explain in the language of urns. Write a given 1

N -quantized probability measure λ

as 1
N

∑N
i=1 δxi for N not necessarily distinct points x1, . . . , xN ∈ X . Now pick, in

turn, k of these points at random without replacement, and denote the so-obtained
sequence by (Z1, . . . , Zk). By construction, the law of this sequence is the k-point
marginal µk of the symmetrization of the Dirac measure δ(x1,...,xN ) on XN . But the
polynomial FN ,k is precisely constructed as the inverse of the marginal map µk '→ λ

(see eq. (4.6), eq. (4.8), and Theorem 4.5 below). Hence FN ,k(λ) = µk , and so
(Z1, . . . , Zk) is the sought-after finite N -extendible sequence.We find it quite remark-
able that the extremal N -representable k-plans FN ,k(λ)—which emerge purely from
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convex geometric considerations—have such a simple probabilistic meaning, being
the laws of classical examples [2] of finite exchangeable sequences which are not
infinitely extendible.

Recovering the prior from sampling A nice aspect of our representation of the law
of a general finitely exchangeable sequence (Z1, . . . , ZN ) (eq. (1.2) with k = N ) is
that the prior α, which is unique when k = N , can be determined by sampling, as
follows. Let

(
Z (ν)
1 , . . . , Z (ν)

N

)n
ν=1

be a sequence of n independent samples in XN . Form the P 1
N
(X)-valued sequence

λ(ν) = 1
N

N∑

i=1

δZ (ν)
i
.

Then the empirical measure

1
n

n∑

ν=1

δλ(ν)

converges almost surely to α. See Corollary 5.2.
The paper is organized as follows. After introducing some notations and prelimi-

naries in Sects. 2 and 3 deals with 1
N -quantized measures. In Sect. 4, we focus on the

finite case; we first recall the results of [17] and then identify the universal correlated
polynomials FN ,k(λ). Section 5 extends these findings to the case of a Polish state
space X , and show in addition that the FN ,k(λ) are in fact exposed N -representable
k-plans. Section 6 discusses connections with the Hewitt and Savage theorem and the
Diaconis–Freedman error bounds. Section 7 gives an unexpected connection with the
Ewens sampling formula from genetics. Finally, Sect. 8 is devoted to applications to
MMOT emphasizing the connection with convexification of polynomials.

2 Preliminaries and notations

In the sequel X will denote a Polish (i.e., complete and separable metric) space. The
principal example we have in mind is X = Rd , in which case all of our results are
already new and interesting. In this case the metric is the usual Euclidean metric
d(x, y) = |x − y| = (

∑d
i=1(xi − yi )2))1/2. We denote by P(X) the set of Borel

probability measures on X . Probability measures on Xk will be called k-plans. From
now on, we fix two integers k and N with 1 ≤ k ≤ N . Given γ ∈ P(XN ) we denote
by Mkγ the k-point-marginal of γ , i.e.,

(Mkγ )(A) := γ (A × XN−k) for every Borel subset A of Xk (2.1)

(with the convention MNγ = γ ).

123



Convex geometry of finite exchangeable laws and…

We denote by Cb(XN ) the space of bounded and continuous functions on XN , and
by SN the group of permutations of {1, . . . , N }. For γ ∈ P(XN ) and σ ∈ SN , the
measure γ σ ∈ P(XN ) is defined by

∫

XN
ϕdγ σ =

∫

XN
ϕ(xσ (1), . . . , xσ (N ))dγ (x1, . . . , xN )

for every test-function ϕ ∈ Cb(XN ). A measure γ ∈ P(XN ) is called symmetric if
γ = γ σ for every σ ∈ SN . If γ ∈ P(XN ) is arbitrary, its symmetrization SNγ is
given by

SNγ := 1
N !

∑

σ∈SN
γ σ . (2.2)

The symmetrization operator SN : γ '→ SNγ is a linear projection operator on
P(XN ), i.e. it maps P(XN ) linearly into itself and satisfies (SN )2 = SN ; and γ is
symmetric if and only if SNγ = γ . The set of symmetric N -plans is denoted by
Psym(XN ):

Psym(XN ) := {γ ∈ P(XN ) : γ = SNγ }. (2.3)

We shall use the notation # to denote the push-forward measure, that is, given two
Polish spaces Y and Z , a Borel map T from Y to Z and a Borel probability measure
µ on Y , then T#µ is the probability measure on Z defined by T#µ(B) = µ(T−1(B))
for every Borel subset B of Z ; equivalently, for every real-valued, continuous and
bounded function ϕ on Z :

∫

Z
ϕ dT#µ =

∫

Y
ϕ ◦ T dµ.

We recall the following definition from [16].

Definition 2.1 For N ∈ N and k ∈ {1, . . . , N }, a k-plan µk ∈ P(Xk) is said to be
N -representable if it is the k-point marginal of a symmetric N -plan, that is to say if
there exists γ ∈ Psym(XN ) such that µk = Mkγ . We denote by PN−rep(Xk) the set
of N -representable k-plans, i.e.:

PN−rep(Xk) = {MkSN γ̃ : γ̃ ∈ P(XN )} = {Mkγ : γ ∈ Psym(XN )}.

In probabilistic terms, a symmetric N -plan γ ∈ Psym(XN ) is the law of a finite
exchangeable random sequence (Z1, . . . , ZN ) with values in XN , whereas µk =
Mkγ ∈ PN−rep(Xk) is the law of its first k-components (Z1, . . . , Zk).

We will work with the following standard notion of convergence in P(X) (as well
as P(Xk), P(XN ), …). Recall that Cb(X) denotes the space of bounded continuous
functions on X .

Definition 2.2 A sequence (µν)ν∈N of probability measures in P(X) is said to con-
verge narrowly to µ ∈ P(X) if

lim
ν→∞

∫

X
ϕdµν =

∫

X
ϕdµ for all ϕ ∈ Cb(X).
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Thus, in applications to statistical physics where the probability measures live on a
space of particle configurations, narrow convergence corresponds to convergence of
bounded continuous observables.

We note the following basic topological property of the set of N -representable
k-plans.

Lemma 2.3 The set PN−rep(Xk) is closed under narrow convergence.

Proof Let {µν}ν∈N be a narrowly convergent sequence in PN−rep(Xk). Write µν as
Mkγν for γν ∈ Psym(XN ). Since µν = Mkγν is narrowly convergent, it is tight and
hence so is γν . By Prokhorov’s theorem, γν has a narrowly convergent subsequence
which converges to some γ ∈ Psym(XN ). Since Mk is narrowly continuous, µν

converges to Mkγ ∈ PN−rep(Xk).
We recall that narrow convergence on P(X) is metrizable. For instance one may start
from the metric d on X , truncate it to the (topologically equivalent) bounded metric
d̃(x, y) := min{d(x, y), 1}, and use the associated 1-Wasserstein metric on P(X)

W1(λ1, λ2) := inf
θ∈)(λ1,λ2)

{ ∫

X×X
d̃(x, y) dθ(x, y)

}
for all (λ1, λ2) ∈ P(X)2, (2.4)

where )(λ1, λ2) is the set of transport plans between λ1 and λ2, i.e., the set of Borel
probability measures on X × X having λ1 and λ2 as marginals. Then the (bounded)
metric W1 metrizes narrow convergence on P(X) (that is, µν converges narrowly to
µ if and only if W1(µν, µ) tends to zero) and (P(X),W1) is itself a Polish space.

Also we recall the definition of the total variation distance between two signed
measures µ and ν on X :

∥µ − ν∥TV := sup
{
|µ(A) − ν(A)| : A Borel subset of X

}
. (2.5)

⊓,

3 1
N-quantized probability measures

An important role will be played by the set of 1
N -quantized probability measures on

the Polish space X ,

P 1
N
(X) :=

{
1
N

N∑

i=1

δxi : x1, . . . , xN ∈ XN (not necessarily distinct)

}

. (3.1)

It is easy to see that this set can also be written as

P 1
N
(X) =

{
λ ∈ P(X) : λ(A) ∈

{
0,

1
N
, . . . , 1

}
for every Borel subset A of X

}
.

(3.2)
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In the special case of finite state spaces X , this set was introduced—and utilized to
parametrize extremal N -representable measures—in [17]. Let us collect two basic
properties of this set which hold for general state spaces.

Lemma 3.1 (Quadratic constraint characterization and closedness of 1
N -quantized

probability measures)

(a) λ ∈ P(X) belongs to P 1
N
(X) if and only if

λ ⊗ λ − 2k + 1
N

id⊗2
# λ ≥ −k(k + 1)

N 2 , for k = 0, . . . , N − 1. (3.3)

(b) P 1
N
(X) is closed under narrow convergence.

In formula (3.3) and in the sequel, λ⊗ℓ denotes the ℓ-fold tensor product of λ with
itself and id⊗ℓ

# λ is defined by

∫

Xℓ
ϕ d id⊗ℓ

# λ :=
∫

X
ϕ(x, . . . , x)dλ(x), for all ϕ ∈ Cb(Xℓ).

Proof

(a) The nontrivial implication is that (3.3) implies that λ ∈ P 1
N
(X). Let A be any

Borel subset of X . Applying the measure on the left hand side of (3.3) to A × A
gives f (λ(A)) ≥ 0, where f is the scalar function f (t) = t2 − 2k+1

N t + k(k+1)
N2 =

(t− k
N )(t− k+1

N ). But f is negative precisely in the open interval ( k
N ,

k+1
N ), whence

λ(A) does not lie in this interval. Since this holds for all k = 0, . . . , N − 1, it
follows that λ belongs to the set (3.2).

(b) The maps λ ∈ P(X) '→ λ⊗2 ∈ P(X2) and λ ∈ P(X) '→ id⊗2
# λ ∈ P(X2) are

continuous with respect to narrow convergence, hence so is the left hand side of
(3.3). The assertion now follows from a). ⊓,

4 Extremal N-representable k-plans on finite state spaces

Throughout this section, we assume N ≥ 2 and restrict our attention to a finite state
space X consisting of ℓ distinct points,

X = {a1, . . . , aℓ}. (4.1)

4.1 Extreme points

Our goal is to describe the geometry of the convex set of N -representable k-plans on
the finite state space X , i.e., PN−rep(Xk). This set is a compact polyhedron in a finite-
dimensional vector space and therefore coincides, by Minkowski’s theorem (see e.g.
[23]), with the convex hull of its extreme points. Therefore, classifying the extreme
points is one way to characterize the geometry of the object. We recall that a point x
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in a convex set K is an extreme point if, whenever x = αx1 + (1− α)x2 for some x1,
x2 ∈ K and some α ∈ (0, 1), we have that x1 = x2 = x . The set of extreme points of
K will be denoted ext K .

In [17] the extremal N -representable k-plans are determined in the case k = 2 and
k = N . They correspond exactly to the symmetrized Dirac measures respectively their
two-point marginals:

Theorem 4.1 [17]

(a) A measure µ on XN is an extreme point of Psym(XN ) if and only if it is of the
form

SN δai1 ,...,aiN for some 1 ≤ i1 ≤ . . . ≤ iN ≤ ℓ. (4.2)

Moreover different index vectors (i1, . . . , iN ) with 1 ≤ i1 ≤ . . . ≤ iN ≤ ℓ yield
different extreme points.

(b) A measure µ on X2 is an extreme point of PN−rep(X2) if and only if it is of the
form

M2SN δai1 ,...,aiN for some 1 ≤ i1 ≤ . . . ≤ iN ≤ ℓ. (4.3)

(c) Moreover the marginal maps M2 : ext (Psym(XN )) → ext (PN−rep(X2)) and
M1 : ext (Psym(XN )) → P 1

N
(X) are bijections.

Here (a) and the fact that the set of measures in (4.3) contains the set ext (PN−rep(X2))

of extremal N -representable two-plans is easy to see, but the reverse inclusion and the
bijectivity of M2 between extremal symmetric N -plans and extremal N -representable
two-plans is nontrivial; geometrically it says that none of the corners of the high-
dimensional polytope Psym(XN ) is mapped into the interior (or face interior or edge
interior) of the low-dimensional polytope PN−rep(X2) by the highly non-injective
marginal map M2. Using this nontrivial fact it is easy to extend Theorem 4.1 to an
arbitrary choice of k ∈ {2, . . . , N }.

Theorem 4.2 A measure µ on Xk is an extreme point of PN−rep(Xk) if and only if it
is of the form

MkSN δai1 ,...,aiN for some 1 ≤ i1 ≤ . . . ≤ iN ≤ ℓ. (4.4)

Moreover the marginal map Mk : ext (Psym(XN )) → ext (PN−rep(Xk)) is a
bijection.

Proof We will abbreviate Psym(XN ) = Psym, (i1, . . . , iN ) = i , {(i1, . . . , iN ) : 1 ≤
i1 ≤ . . . ≤ iN ≤ ℓ} = I. By the definition of N -representability, PN−rep(Xk) =
MkPsym. Using, in order of appearance, this fact, the linearity of Mk , and Theorem
4.1 (a), we have

ext (PN−rep(Xk)) = ext (MkPsym) ⊆ Mkext (Psym) = {MkSN δai1 ,...,aiN : i ∈ I}.
(4.5)

To establish the reverse inclusion it suffices to show that the number of elements of the
set on the left is bigger or equal that of the set on the right. By the fact thatM2 = M2Mk
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and the linearity of M2,

ext (M2Psym) = ext (M2MkPsym) ⊆ M2ext (MkPsym) = M2ext (PN−rep(Xk))

and consequently |ext (M2Psym)| ≤ |ext (PN−rep(Xk))|, where |·| denotes the number
of elements of a set. Combining this inequality with the bijectivity property of M2 in
Theorem 4.1 (b) and Theorem 4.1 (a) yields

|ext (PN−rep(Xk))| ≥ |ext (M2Psym)| = |ext (Psym)| = |{SN δai1 ,...,aiN : i ∈ I}|
≥ |{MkSN δai1 ,...,aiN : i ∈ I}|.

⊓,

Note that if k = 1 (which is the case where N -representability does not impose
geometric restrictions), the statement in Theorem 4.2 is false: PN−rep(X1) = P(X)
whose extreme points are the Dirac masses. In [17] it was established that for the
set (4.1) consisting of ℓ distinct points, the cardinality of P 1

N
(X)—and hence, by

Theorem 4.1 (b), the number of extreme points of Psym(XN )—equals
(N+ℓ−1

ℓ−1

)
. Now

the following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.3 For any k ∈ {2, . . . , N }, PN−rep(Xk) has
(N+ℓ−1

ℓ−1

)
extreme points.

Combining the isomorphisms Mk and M1 from Theorems 4.2 respectively 4.1
shows that the extreme points of PN−rep(Xk), i.e. the k-plans of form (4.4), can be
uniquely recovered from their one-point marginals 1

N (δai1 +· · ·+δaiN ) ∈ P 1
N
(X). But

the above abstract reasoning does not provide a convenient formula for the recovery
map. This issue is dealt with in the next section.

4.2 A universal polynomial formula for extreme points in terms of their one-point
marginals

Our aim now is to derive an explicit polynomial formula for the extremal measures
(4.4) in terms of their one-point marginals. In order to do so we consider any extremal
N -representable k-plan

µk := MkSN δx1,...,xN (4.6)

for (x1, . . . , xN ) ∈ XN .
In [17] it was shown that, in the case of k = 2, µ2 can be expressed explicitly as

µ2 =
N

N − 1
λ⊗2 − 1

N − 1
id⊗2

# λ, (4.7)

where

λ := M1µk =
1
N

N∑

i=1

δxi ∈ P 1
N
(X) (4.8)
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is the one-point marginal of µk . (Recall the notation λ⊗ℓ and id⊗ℓ
# λ for the ℓ-fold

tensor product of λ with itself respectively the push-forward of λ under the ℓ-fold
cartesian product of the identity; see the end of Sect. 2.) A similar computation for
k = 3 gives

µ3 =
N 2

(N − 1)(N − 2)

[
λ⊗3 − 3

N
S3
(
(id⊗2

# λ) ⊗ λ
)
+ 2

N 2 id⊗3
# λ

]
. (4.9)

(For a justification of (4.9) using our general results see the examples below Theorem
4.5.) In view of (4.7) and (4.9), it is natural to look for a similar polynomial of degree k
in λ expression ofµk , consisting of a mean field term λ⊗k and corrections of order 1

N j

for j = 1, . . . , k−1. As turns out, the j th order correction is related to the partitions
of the number j .

Definition 4.4 Let N = {1, 2, 3, . . .} denote the set of positive integers. A partition of
j ∈ N of length n ∈ N is a vector p = (p1, . . . , pn) ∈ Nn such that

∑n
i=1 pi = j ,

p1 ≥ · · · ≥ pn . For any partition p we denote its length by n(p).

For example, the partitions of 4 are

1+ 1+ 1+ 1

2+ 1+ 1

2+ 2

3+ 1

4.

This corresponds in the above notation to p = (1, 1, 1, 1) ∈ N4, p = (2, 1, 1) ∈ N3,
p = (2, 2) ∈ N2, p = (3, 1) ∈ N2, and p = 4 ∈ N.

Theorem 4.5 Let N ≥ 2, k ∈ {2, . . . , N }. Any extremal N-representable k-plan µk
(see (4.6)) can be written in terms of its one-point marginal λ (see (4.8)) as

µk =
Nk−1

∏k−1
i=1 (N − i)

⎡

⎣λ⊗k +
k−1∑

j=1

(−1) j

N j Sk P
(k)
j (λ)

⎤

⎦ =: FN ,k(λ) (4.10)

where for j = 1, . . . , k − 1

P(k)
j (λ) =

∑

p=(p1,...pn(p)) partition
of j with j+n(p)≤k

d(k)p id⊗(p1+1)
# λ ⊗ . . . ⊗ id

⊗(pn(p)+1)
# λ ⊗ λ⊗(k− j−n(p))

(4.11)
with positive coefficients d(k)p given by

d(k)p = k!
(k − j − n(p))!

n(p)∏

i=1

1
pi + 1

∏

q∈ Ran p

1
(|p−1(q)|)! . (4.12)
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Moreover the coefficients satisfy the sum rule

∑

p partition of j
with j+n(p)≤k

d(k)p =
∑

1≤i1<...<i j≤k−1

i1 ·. . .·i j =: c(k)j ( j = 1, . . . , k − 1). (4.13)

In particular, ||P(k)
j (λ)||T V =

∫
Xk d P

(k)
j (λ) = c(k)j .

In the last term in Eq. (4.12), a partition p is viewed as a map from the set of its
component indices to N; the range Ran p of this map is the set of values taken by
the components, and |p−1(q)| denotes the number of components with value q. For
example, for p = (3, 1, 1) and q = 1, |p−1(q)| = 2. The factor (|p−1(q)|)! in the
denominator says that a partition with many repeat components contributes much less
than a partition with few repeat components.

Some remarks are in order.

(1) The first term in expression (4.10) for the extreme points is a mean field term
and the remaining terms are correlation corrections. We emphasize that the P(k)

j
are independent of N and hence the correlation corrections form a finite series in
inverse powers of N .

(2) The P(k)
j are polynomials of degree k − j in λ.

(3) Due to the presence of the signs (−1) j , it is far from trivial that FN ,k(λ) is a
nonnegativemeasure; but itmust be, e.g. because the left hand side of (4.10) equals
(4.6). Nonnegativity relies on a subtle interplay between the explicit coefficients
in Theorem 4.5 and the quantization condition λ ∈ P 1

N
(X), and does not hold for

arbitrary λ ∈ P(X).
(4) The coefficients c(k)j =∑ i1 · . . . · i j introduced in (4.13) which measure the total

mass of the j th-order correction to independence are related to the well-known
Stirling numbers, particularly the (absolute) Stirling numbers of the first kind. For
given natural numbers q, r ∈ N ∪ {0} with r ≤ q the corresponding absolute
Stirling number of the first kind s(q, r) gives the number of permutations of
{1, . . . , q} that decompose into r cycles, with the convention that s(q, r) is zero
when exactly one of q and r is zero and that s(0, 0) = 1. From well-known
expressions for Stirling numbers one can see that the following holds

c(k)j = s(k, k − j),

that is to say the present coefficients c(k)j equal the number of permutations of
{1, . . . , k} that decompose into k − j cycles. For more information about Stirling
numbers we refer the interested reader to [7].

(5) By combining Theorems 4.5 and 4.2, and the isomorphism property of M1 from
Theorem 4.1, we immediately obtain:

Corollary 4.6 A measure µk on Xk is an extreme point of PN−rep(Xk) if and only
if it is of the form µk = FN ,k(λ) for some λ ∈ P 1

N
(X), with FN ,k given by
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(4.10)–(4.12). Moreover FN ,k(λ) has one-point marginal λ, and j-point marginal
FN , j (λ) for 2 ≤ j ≤ k − 1.

We now write out the universal polynomials FN ,k explicitly for small k.
Example: k = 2 The finite sum over j in (4.10) reduces to a single term for j = 1,

− 1
N S2P

(2)
1 (λ), and P(2)

1 (λ) consists of a single term associated with the only partition
p = 1 of 1, id⊗2

# λ. Consequently

FN ,2(λ) =
N

N − 1

[
λ⊗2 − 1

N
id⊗2

# λ

]
.

This expression agrees with (4.7), and so Theorem 4.5 recovers [17] Theorem 2.1.
Example: k = 3 The finite series in (4.10) runs from j = 1 to j = 2, and for these

two values of j , the partitions contributing to the sum in (4.11) are the partitions p of
j satisfying j + n(p) ≤ 3. These partitions and the associated coefficient dp given by
(4.12) are

j Partitions of j with j + n(p) ≤ 3 Our notation: p = Coefficient dp =

1 1 1 3
2 2 2 2

and consequently

FN ,3(λ) =
N 2

(N − 1)(N − 2)

[
λ⊗3 − 3

N
S3
(
(id⊗2

# λ) ⊗ λ
)
+ 2

N 2 id⊗3
# λ

]
.

Example: k = 4 By formulae (4.10)–(4.12), the partitions p of j contributing to the
j th order correction are:

j Partitions of j with j + n(p) ≤ 4 Our notation: p = Coefficient dp =

1 1 1 6
2 2 2 8

1+1 (1,1) 3
3 3 3 6

and consequently

FN ,4(λ) =
N 3

(N − 1)(N − 2)(N − 3)

[
λ⊗4 − 6

N
S4 id⊗2

# λ ⊗ λ⊗2

+8 S4 id⊗3
# λ ⊗ λ + 3 S4 id⊗2

# λ ⊗ id⊗2
# λ

N 2 − 6
N 3 id

⊗4
# λ

]

.
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Example: k = 5 The contributing partitions are

j Partitions of j with j + n(p) ≤ 5 Our notation: p = Coefficient dp =

1 1 1 10
2 2 2 20

1+1 (1,1) 15
3 3 3 30

2+1 (2,1) 20
4 4 4 24

and so

FN ,5(λ) =
N 4

(N − 1)(N − 2)(N − 3)(N − 4)

[

λ⊗5 − 10
N

S5 id⊗2
# λ ⊗ λ⊗3

+20 S5 id⊗3
# λ ⊗ λ⊗2 + 15 S5 id⊗2

# λ ⊗ id⊗2
# λ ⊗ λ

N 2

− 30 S5 id⊗4
# λ ⊗ λ + 20 S5 id⊗3

# λ ⊗ id⊗2
# λ

N 3 + 24
N 4 id

⊗5
# λ

]

.

Example: j = 1 and j= k−1 In these cases only one partition of j satisfies j+n(p) ≤
k and formula (4.12) for the coefficient dp becomes particularly simple:

j Partitions of j with j + n(p) ≤ k Our notation: p = Coefficient dp =

1 1 1 k(k−1)
2

k-1 k-1 k-1 (k-1)!

It follows that the polynomials describing the first-order respectively order-(k − 1)
contribution to FN ,k(λ) are

P(k)
1 (λ) = k(k − 1)

2
id⊗2

# λ ⊗ λ⊗(k−2), P(k)
k−1(λ) = (k − 1)! id⊗k

# λ.

We now discuss the error when truncating the finite series in (4.10). Retaining only
the mean-field term gives

FN ,k(λ) =
Nk−1

∏k−1
j=1(N − j)

(
λ⊗k + εN ,k(λ)

)
with ∥εN ,k(λ)∥TV ≤ Ck

N
(4.14)

123



G. Carlier et al.

and keeping the first p correction terms (p ∈ {1, . . . , k − 2}) we have

FN ,k(λ) =
Nk−1

∏k−1
j=1(N − j)

⎡

⎣λ⊗k +
p∑

j=1

(−1) j

N j Sk P
(k)
j (λ)+ εN ,k,p(λ)

⎤

⎦

with ∥εN ,k,p(λ)∥TV ≤ Ck

N p+1 , (4.15)

with constants Ck independent of N and p. For example, to give explicit values,

Ck =
k−1∑

j=1

c(k)j (4.16)

will do. Moreover the coefficients d(k)p and hence the Ck are independent of the size
ℓ of the finite state space. Thus, for k fixed and any N ≥ 2, retaining only the first p
correlation terms captures the extreme points up to an error which decreases exponen-
tially in p, the rate being uniform in the size of the finite state space and improving
logarithmically with N .
Before proving Theorem 4.5 let us give a quick heuristic derivation of the formulae
for the coefficients c(k)j =

∫
dP(k)

j (λ) which give the total mass of the j th order
correction to independence for extremal N -representable k-plans. Expressions (4.7)
and (4.9) suggest to try the ansatz

µk =
Nk−1

∏k−1
j=1(N − j)

⎡

⎣λ⊗k +
k−1∑

j=1

(−1) j

N j c(k)j ν j

⎤

⎦ (4.17)

with normalizedmeasures ν j (i.e.
∫
dν j = 1) and a priori unknownbut N -independent

coefficients c j . Consider for example k = 4. Integrating over Xk , using that µk and
the ν j are normalized, and multiplying both sides by the product

∏k−1
j=1(N − j) gives

N 3
(
1 − c1

N
+ c2

N 2 − c3
N 3

)
= (N − 1)(N − 2)(N − 3). (4.18)

Expanding the right hand side into powers of N gives

(N − 1)(N − 2)(N − 3) = N 3 − (1+ 2+ 3)N 2

+(1 · 2+ 1 · 3+ 2 · 3)N − (1 · 2 · 3)

so equating coefficients yields c1 = ∑
1≤i≤3 i (= 6), c2 = ∑

1≤i< j≤3 i j (= 11),
c3 = ∑

1≤i< j<k≤3 i jk (= 6), i.e. the asserted formulae for the c j . Extending this
heuristic argument to general k is straightforward.

Of course this argument is not a proof because it rests on the (as yet unjustified)
ansatz (4.17) with N -independent coefficients. This ansatz is a corollary of the more
detailed result (4.10)–(4.13) to whose proof we now turn.
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We begin by eliminating the high-dimensional space Psym(XN ) which appears in
(4.6).

Lemma 4.7 Any extremal N-representable k-plan µk given by (4.6) can be written as

µk =
(N − k)!

N !
∑

(m1,...,mk )∈{1,...,N }k ,
pairwise distinct

δxm1 ...xmk
. (4.19)

Proof Proceeding as in [17], more specifically the proof of Lemma 2.1, we rewrite µk
by plugging in the definition of the symmetrization operator SN and conditioning the
sum over all permutations σ : {1, . . . , N } → {1, . . . , N } on the values on the first k
integers:

N !µk = Mk
∑

σ∈SN
δxσ (1)...xσ (N )

= Mk
∑

(m1,...,mk )∈{1,...,N }k
pairwise distinct

∑

σ∈SN
σ (1)=m1,...,σ (k)=mk

δxm1 ...xmk xσ (k+1)...xσ (N )

= (N − k)!
∑

(m1,...,mk )∈{1,...,N }k
pairwise distinct

δxm1 ...xmk
.

⊓,
To establish Theorem 4.5 we will proceed by induction over k. The next lemma

gives a deceptively simple recursion formula for extremal N -representable k-plans.
Just like (4.19), it hides the inverse power series structure (4.10) and the combina-
torial complexity of the coefficients (4.12) by expanding the symmetric plan µk in
a non-symmetric basis of delta functions, leading to many terms with identical sym-
metrization.

Lemma 4.8 Let N ≥ 2, and consider the k-plans µk (k = 2, . . . , N) defined by (4.6)
for fixed (x1, . . . , xN ) ∈ XN . Then for k = 1, . . . , N − 1 and λ = M1µk ,

µk+1 =
N

N − k
µk ⊗ λ − 1

N − k

k∑

j=1

R j #µk (4.20)

where R j : Xk → Xk+1 is given by R j (z1, . . . , zk) := (z1, . . . , zk, z j ).

Proof We observe that (m1, . . . ,mk,mk+1) ∈ {1, . . . , N }k+1 has pairwise distinct
components if and only if (m1, . . . ,mk) has pairwise distinct components andmk+1 ∈
{1, . . . , N } \ {m1, . . . ,mk}. So by inclusion-exclusion we get, using (N − (k+1))! =
(N − k)!/(N − k),
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µk+1 =
(N − (k + 1))!

N !
∑

(m1,...,mk )∈{1,...,N }k
pairwise distinct

∑

mk+1∈{1,...,N }\{m1,...,mk }
δxm1 ...xmk+1

= (N − k)!
N ! (N − k)

( N∑

i=1

∑

(m1,...,mk )∈{1,...,N }k
pairwise distinct

δxm1 ...xmk xi

−
∑

(m1,...,mk )∈{1,...,N }k
pairwise distinct

k∑

j=1

δxm1 ...xmk xm j

)

= N
N − k

µk ⊗ λ − 1
N − k

k∑

j=1

R j #µk .

⊓,

Next we derive a non-recursive formula in terms of set partitions of {1, . . . , k}. To
state it we need to introduce some notation. Recall that a set partition of {1, . . . , k} is a
setP of pairwise disjoint nonempty subsets of {1, . . . , k} (called blocks) whose union
equals {1, . . . , k}. The set of all such partitions will be denoted Partk . For a partition
P ∈ Partk , we denote by n(P) the cardinality of P , so that P = {P1, . . . , Pn(P)} for
some Pi ⊆ {1, . . . , k}, and introduce the combinatorial factor

βP :=
n(P)∏

i=1

(|Pi | − 1)! =
∏

P∈P
(|P| − 1)! . (4.21)

Next, each partition P induces a certain natural mapping GP : P(X) → P(Xk).
Informally, this mapping pushes, for each block P of the partition P , a tensor factor
λ ∈ P(X) forward onto the diagonal of those cartesian factors Xi1 , . . . , Xi|P| of the
product space Xk whose indices belong to P . More precisely, if P = {P1, . . . , Pn},
define GP (λ) by

GP (λ)(A1×· · ·×Ak) =
∏

P∈P

(
id⊗|P|

# λ
)(∏

i∈P

Ai

)
for any A1, . . . , Ak ⊆ X . (4.22)

For instance if k = 4 andP = {{1, 2}, {3, 4}}, GP (λ) = (id⊗2
# λ)⊗ (id⊗2

# λ), whereas
if k = 5 and P = {{1, 3}, {2, 4, 5}} then GP (λ) is defined by

∫

X5
ϕ dGP (λ) =

∫

X2
ϕ(x, y, x, y, y) dλ(x) dλ(y), for all ϕ ∈ Cb(X5).

We then have the following representation formula.
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Proposition 4.9 Let µk be defined by (4.6), and let λ be its one-point marginal (4.8).
Then

µk =
(N − k)!

N !
∑

P∈Partk
(−1)k−n(P)Nn(P)βPGP (λ). (4.23)

Proof For k = 1 the assertion is obvious, and for k = 2 it easily follows from (4.7).
Let us assume that (4.23) holds for k ≤ N − 1. By (4.20)

µk+1 = (N−(k+1))!
N ! (A + B), with A :=

∑

P∈Partk
(−1)k−n(P)Nn(P)+1βPGP (λ) ⊗ λ

and B :=
k∑

j=1

∑

P∈Partk
(−1)k+1−n(P)Nn(P)βP R j #GP (λ).

Now let us partition Partk+1 into the two subsets Partak+1 and its complement Partbk+1
where Partak+1 consists of all partitions P

′ of {1, . . . , k + 1} for which the singleton
{k+1} belongs toP

′. ThusP
′ ∈ Partak+1 if and only if it can be written asP∪{{k+1}}

with P ∈ Partk . Note then that n(P ′) = n(P) + 1, βP = βP ′ and GP ′(λ) =
GP (λ) ⊗ λ. Therefore we have

∑

P ′∈Partak+1

(−1)k+1−n(P ′)Nn(P ′)βP ′GP ′(λ)

=
∑

P∈Partk
(−1)k−n(P)Nn(P)+1βPGP (λ) ⊗ λ

= A.

PartitionsP
′ in Partbk+1 are those for which k+1 does not form a singleton inP

′. This
is the same as saying that the following map a+k+1 from {(P, P) : P ∈ Partk, P ∈
P} to Partbk+1 is a bijection: a+k+1({P1, . . . , Pn}, Pi ) := P

′ := {P1, . . . , Pi ∪ {k +
1}, . . . , Pn} (i = 1, . . . , n), or—in label-free notation

a+k+1(P, P) := {P ∪ {k + 1}} ∪ {Q ∈ P : Q ̸= P}.

We chose the notation a+k+1 to emphasize the analogy with creation operators in
quantum theory: the map a+k+1 “creates” an extra entry k + 1 in some block of the
partition. Note that if P

′ = a+k+1(P, P), then n(P) = n(P ′), βP ′ = βP · |P|, and
GP ′(λ) = R j #GP (λ) for every j ∈ P , so that

βP ′GP ′(λ) = βP
∑

j∈P

R j #GP (λ).
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We thus have

∑

P ′∈Partbk+1

(−1)k+1−n(P ′)Nn(P ′)βP ′GP ′(λ)

=
∑

P∈Partk

∑

P∈P
(−1)k+1−n(P)Nn(P)βP

∑

j∈P

R j #GP (λ)

=
k∑

j=1

∑

P∈Partk
(−1)k+1−n(P)Nn(P)βP

( ∑

P∈P : j∈P

1
)
R j #GP (λ)

=
k∑

j=1

∑

P∈Partk
(−1)k+1−n(P)Nn(P)βP R j #GP (λ)

= B,

which gives the desired expression for µk+1 = (N−(k+1))!
N ! (A + B). ⊓,

It remains to match the unwieldy-to-evaluate expression (4.23) with the more
explicit expansion (4.10), (4.11), (4.12).

We begin by dealing with the fact that expression (4.23) contains many terms
with identical symmetrization. Since µk is symmetric, applying the symmetrization
operator Sk to both sides gives

µk =
∑

P∈Partk
(−1)k−n(P) Nn(P)

N · (N − 1) · . . . · (N − k + 1)
βP Sk GP (λ). (4.24)

IfP ∈ Partk , then according to (4.22)GP (λ) pushes n(P) factorsλ onto the k cartesian
factors of the product space Xk . The different SkGP (λ)’s which can arise from such
a set partition are in bijective correspondence to the partitions p′ of the number k, via

p′ = (p′
1, . . . , p

′
m) '−→ Sk id

⊗p′
1

# λ ⊗ · · · ⊗ id⊗p′
m

# λ. (4.25)

The set partitions P ∈ Partk satisfying SkGP (λ) = r.h.s. of (4.25) for some given
partition p′ = (p′

1, . . . , p
′
m) of k are precisely those consisting of m sets P1, . . . , Pm

with cardinalities |Pi | = p′
i for all i . Let us denote their totality by Partk(p′). A

canonical set partition in Partk(p′) is

P(p′) =
{
P1, . . . , Pm

}
with

P1 = {1, . . . , p′
1}, P2 = {p′

1 + 1, . . . , p′
1 + p′

2}, . . . ,
Pm = {p′

1 + · · · + p′
m−1, . . . , p

′
1 + · · · + p′

m︸ ︷︷ ︸
=k

}.
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For this set partition, as well as any other P ∈ Partk(p′),

n(P) = m, βP = (p′
1 − 1)! · . . . · (p′

m − 1)!. (4.26)

To reduce (4.23) to a sum over partitions p′ of the number k, it remains to determine
the number N (p′) of set partitions belonging to Partk(p′). Let us fix any partition
p′ = (p′

1, . . . , p
′
m) of k. First of all we note that

N (p′) = 1∏

q∈ Ran p′
(|p′−1(q)|)! N

′ (4.27)

whereN
′ is the number of set partitions corresponding to p′ endowedwith an ordering

of the blocks such that larger blocks come before smaller ones,N ′ = |{(P ′
1, . . . , P

′
m) :

|P ′
i | = p′

i for all i}|. Here the combinatorial factor in the denominator accounts for
the fact that any group of b equal-sized blocks in a set partition admits b! orderings.
But the number N

′ is straightforward to compute: choosing P ′
1 means choosing p′

1
numbers out of k, so there are

( k
p′
1

)
choices; given P ′

1, choosing P ′
2 means choosing

p′
2 numbers out of the remaining k − p′

1 numbers, yielding
(k−p′

1
p′
2

)
choices; and so on.

It follows that

N
′ =

(
k
p′
1

)
·
(
k − p′

1
p′
2

)
· . . . ·

(
k − (p′

1 + · · · + p′
m−1)

p′
m

)
= k!

p′
1! · . . . · p′

m !
. (4.28)

Combining (4.24), the bijectivity of the map (4.25), (4.26), (4.27), and (4.28) yields:

Proposition 4.10 Let µk be any extremal N-representable k-plan (see (4.6)), and let
λ be its one-point marginal (4.8). Then

µk =
∑

p′ partition of k
cp′ Sk id

⊗p′
1

# λ ⊗ . . . ⊗ id
⊗p′

n(p′)
# λ with

cp′ = (−1)k−n(p′) k!
N (N − 1) . . . (N − k + 1)

Nn(p′) 1
p′
1 · . . . · p′

n(p′)

· 1∏

q∈ Ran p′
(|p′−1(q)|)! . (4.29)

The expression for µk in (4.29) may be taken as an alternative definition of the
polynomial FN ,k(λ) introduced in Theorem 4.5.

4.3 End of the proof of Theorem 4.5

The last step in the proof of Theorem 4.5 is to match the above expression with the
series given in the theorem. We would like to decompose (4.29) into terms of order
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1
N j (times the overall order 1 prefactor in (4.10)). To this end, we re-write the N -
dependent factors in (4.29) as

1
N · (N − 1) · . . . · (N − k + 1)

Nn(p′) = Nk−1

(N − 1) · . . . · (N − k + 1)
1

Nk−n(p′) .

This together with the fact that the only partition p′ of k with k − n(p′) = 0 is
p′ = (1, . . . , 1), in which case the r.h.s. of (4.25) is λ⊗k and 1

p′
1·...·p′

m
= 1, shows that

µk =
Nk−1

(N − 1) . . . (N − k + 1)

(
λ⊗k +

k−1∑

j=1

(−1) j

N j

∑

p′ partition of k
with n(p′)=k− j

k!
p′
1 · . . . · p′

n(p′)

· 1∏

q∈ Ran p′
(|p′−1(q)|)! Sk id

⊗p′
1

# λ ⊗ . . . ⊗ id
⊗p′

n(p′)
# λ

)
.

(4.30)
The partitions p′ of k of length n(p′) = k − j are in bijective correspondence to the
partitions p of the number j with length n(p) ≤ k − j , via

p = (p1, . . . , pn) partition of j of length n ≤ k − j

'−→ p′ = (p′
1, . . . , p

′
k− j ) =

⎧
⎪⎨

⎪⎩

(p1 + 1, . . . , pn + 1) if n = k − j
(p1 + 1, . . . , pn + 1, 1, . . . , 1︸ ︷︷ ︸

k− j−n times

) if n < k − j .

(4.31)

Moreover, for any two partitions p, p′ related by (4.31), we have

Sk id
⊗p′

1
# λ ⊗ · · · ⊗ id⊗p′

m
# λ = Sk id

⊗p1+1
# λ ⊗ · · · ⊗ id⊗pn+1

# λ ⊗ λ⊗k−( j+n) (4.32)

and

p′
1 · . . . · p′

n(p′) = (p1 + 1) · . . . · (pn + 1), (4.33)
∏

q∈ Ran p′
(|p′−1(q)|)! =

∏

q∈ Ran p

(|p−1(q)|)! · (k − ( j + n))!, (4.34)

with the last factor above accounting for the k − ( j + n) components with value 1
occurring in p′. Combining eq. (4.30), the bijectivity of (4.31), and identities (4.32)–
(4.34) yields the desired expression for µk in (4.10)-(4.11)-(4.12). Let us finally prove
formula (4.13). Observe that the detailed representation (4.10) implies (4.17), where
each ν j is a probability measure and the coefficients c(k)j do not depend on N . Taking
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the total mass of each side of (4.17) we get that for every N ≥ k, one has

k−1∏

j=1

(N − j) = Nk−1 +
k−1∑

j=1

(−1) j c(k)j Nk− j−1

so that (−1) j c(k)j is the coefficient of Xk− j−1 in the polynomial
∏k−1

j=1(X − j) which
proves (4.13) thanks to Vieta’s formulas.

5 Extreme points and integral representation ofN-representable
k-plans on continuous state spaces

Now we return to the case of a general state space, i.e. we just assume that X is a
Polish space. Importantly, the results in this section cover the prototypical continuous
state space X = Rd .

Recall the set P 1
N
(X) of 1

N -quantized probability measures on X introduced in
(3.1), (3.2).

Given λ ∈ P(X) we define FN ,k(λ) ∈ P(Xk) by formulae (4.10), (4.11), (4.12);
we note that the expressions in these formulae make sense for general Polish spaces
X and general (not necessarily 1

N -quantized) λ ∈ P(X).

5.1 De Finetti style representation

We now state a de Finetti style representation result for N -representable k-plans.

Theorem 5.1 Let N ≥ k ≥ 2. A measure µk ∈ P(Xk) is N-representable if and only
if there exists α ∈ P(P(X)) such that α(P 1

N
(X)) = 1 and

µk =
∫

P 1
N
(X)

FN ,k(λ) dα(λ) (5.1)

where FN ,k is defined by (4.10)–(4.12). Moreover, if k = N, the measure α in (5.1) is
unique.

The meaning of (5.1) is that for every test function ϕ ∈ Cb(Xk),

∫

Xk
ϕ dµk =

∫

P 1
N
(X)

-(λ)dα(λ),

where

-(λ) :=
∫

Xk
ϕ(x1, . . . , xk)d

(
FN ,k(λ)

)
(x1, . . . , xk).
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Note that - : λ '→ -(λ) is a continuous function on P(X) endowed with the
narrow topology, by the narrow-to-narrow continuity of FN ,k . Moreover the sup norm
of - is bounded by the sup norm of ϕ times the TV norm of FN ,k(λ), the finiteness
of the latter being clear from the definition. It follows that - ∈ Cb(P(X)), whence∫
P 1

N
(X) -(λ)dα(λ) is well defined for any α ∈ P(P(X)).

Theorem 5.1 generalizes the celebrated de Finetti–Hewitt–Savage theorem from
infinitely representable tofinitely representablemeasures, or - in probabilistic language
- from infinitely to finitely extendible sequences of random variables. Formally, in the
limit N → ∞, the domain of integration P 1

N
(X) in (5.1) approaches all of P(X)

and the integrand tends to the independent measure λ⊗k , recovering de Finetti (see
Sect. 6 for a rigorous account). Thus in the finitely representable case, the role of the
independent measures λ⊗k in de Finetti is taken by the universally correlatedmeasures
FN ,k(λ), which contain corrections of order N− j for j = 1, . . . , k.

The additional assumption k = N for uniqueness cannot be omitted, see the next
section for a simple counterexample.

Proof Recall that in a Polish space, finitely supported probability measures are
dense with respect to narrow convergence. We know from Theorem 4.5 that when
λ := N−1∑N

i=1 δxi ∈ P 1
N
(X) then FN ,k(λ) = MkSN δx1...xN and so FN ,k(λ) ∈

PN−rep(Xk). By convexity of PN−rep(Xk), any measure of the form (5.1) with a
finitely supported probability measure α on P 1

N
(X) also belongs to PN−rep(Xk).

Now if α ∈ P(P 1
N
(X)) is arbitrary and µk is given by (5.1), we approximate α by a

sequence of finitely supported measures αn . We now use that the map λ '→ FN ,k(λ)

is continuous under narrow convergence. This follows immediately from the defini-
tion (4.10)–(4.12) and the continuity of the maps λ '→ λ⊗ j and λ '→ id⊗ j

# λ. Hence
µn
k :=

∫
P 1

N
(X) FN ,k(λ)dαn(λ) converges narrowly to µk which therefore belongs to

PN−rep(Xk), since the latter is closed under narrow convergence (see Lemma 2.3).
Conversely, given γ ∈ P(XN ) and µk := MkSNγ ∈ PN−rep(Xk), let γ n be a

sequence of finitely supported probability measures which narrowly converges to γ ,
so that µn

k := MkSNγ n converges to µk . Let us write γ n := ∑ j∈Jn γ n
j δxnj where Jn

is finite and xnj = (xn1, j , . . . x
n
N , j ) ∈ XN . Using Theorem 4.5 again, we know that µn

k
can be written as

µn
k :=

∫

P 1
N
(X)

FN ,k(λ) dαn(λ) (5.2)

with
αn :=

∑

j∈Jn

γ n
j δ.(xnj ) = .#γ

n (5.3)
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where the map . : XN '→ P 1
N
(X) is defined for all x := (x1, . . . , xN ) ∈ XN by

.(x) := 1
N

N∑

i=1

δxi .

Note that . is Lipschitz with respect to W1; in particular it is continuous from XN

to P(X) endowed with the narrow topology. Since γ n converges narrowly to γ , αn

converges narrowly to α := .#γ . Since P 1
N
(X) is closed (see Lemma 3.1), it fol-

lows from the Portmanteau theorem (see, e.g., [3]) and the fact that αn(P 1
N
(X)) = 1

for every n that α(P 1
N
(X)) = 1. (Here we use the following part of the Portman-

teau theorem: if C ⊆ P(X) is closed and αn ∈ P(P(X)) converges narrowly to α,
then α(C) ≥ lim supn→∞ αn(C).) Finally, thanks to the narrow continuity of FN ,k
we deduce the desired representation by integrating (5.2) against a test function and
passing to the limit n → ∞:

µk =
∫

P 1
N
(X)

FN ,k(λ)dα(λ).

Finally, assume k = N and that µ ∈ Psym(XN ) can be written as

µ =
∫

P 1
N
(X)

FN ,N (λ)dα(λ). (5.4)

Let ψ : P(X) → R be bounded and continuous for the narrow topology so that
ψ ◦ . ∈ Cb(XN ). Let us now observe that if λ = .(x) ∈ P 1

N
(X) for some x =

(x1, . . . , xN ) ∈ XN , then SN δx = FN ,N (λ) and since.(x) = .(xσ (1), . . . , xσ (N )) =
λ, for every σ ∈ SN , we have

∫

XN
ψ ◦ . dFN ,N (λ) = ψ(λ).

Taking ψ ◦ . as a test function in (5.4) (recall that . and hence ψ ◦ . is continuous)
yields

∫

XN
ψ ◦ . dµ =

∫

P 1
N
(X)

ψ(λ) dα(λ)

i.e. α = .#µ, showing in particular the uniqueness of α. ⊓,

From Theorem 5.1 and the law of large numbers, we easily deduce how to recover
the prior α from sampling, as emphasized in our introduction.
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Corollary 5.2 Let Z = (Z1, . . . , ZN ) be a finitely exchangeable sequence of random
variables with values in X, let µ ∈ Psym(XN ) be the law of Z and let α ∈ P(P(X))
be such that α(P 1

N
(X)) = 1 and

µ =
∫

P 1
N
(X)

FN ,N (λ) dα(λ). (5.5)

Let (Z (ν))ν∈N be i.i.d drawn according toµ, and consider theP(X)-valued sequence

.(Z (ν)) := 1
N

N∑

i=1

δZ (ν)
i
.

Then, almost surely, the empirical measure 1
n

∑n
ν=1 δ.(Z (ν)) converges narrowly to α

as n → ∞.

Proof We have seen in the proof of Theorem 5.1 that α = .#µ so that .(Z) has
law α. Hence (.(Z (ν)))ν are i.i.d P(X)-valued drawn according to α. Since P(X)
endowed with the topology of narrow convergence is a Polish space, the claim follows
from the strong law of large numbers for empirical measures on Polish spaces. ⊓,

5.2 Independent sequences as a convexmixture of extremal exchangeable
sequences

Let us compare, in a simple example, the traditional “basis” for representing exchange-
able sequences, independent sequences, with the new one advocated in this paper,
extremal exchangeable sequences. This example illustrates that extremal exchange-
ables may not be a convex mixture of independents, but that independents are always
a unique convex mixture of extremal exchangeables (Theorem 5.1).

Example Let X be the finite state space consisting of the three colors red, green, and
blue, that is to say

X = {r, g, b},

and let N = k = 3. Consider the probability measure

λ∗ = 2
3δr + 1

3δg,

which corresponds to an rrg urn (i.e. an urn containing two red balls and one green
ball). Now consider a sequence of three independent random variables with law λ∗,
that is to say

(Z1, Z2, Z3) ∼ λ⊗3
∗ .
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This sequence corresponds to three independent draws with replacement from an rrg
urn. Our goal is to find the unique representation of this joint law as a convex mixture
of extreme exchangeables.

Denote the above λ∗ by rrg, and similiarly δr by rrr etc. By Theorem 5.1 and the
fact that λ∗ contains only red and green balls, the joint law λ⊗3

∗ must be representable
as a convex combination of those FN ,3(λ) where λ contains only red and green balls,
that is, λ=rrr, rrg, rgg, ggg. To determine the convex combination we need to
compute the FN ,3(λ), which is a straightforward task given our explicit formula from
Sect. 4.2,

FN ,3(λ) =
N 2

(N − 1)(N − 2)

[
λ⊗3 − 3

N
S3
(
(id⊗2

# λ) ⊗ λ
)
+ 2

N 2 id⊗3
# λ

]
.

The result is given in the following table, where we identify probability measures λ =
λ1δr+λ2δg+λ3δb inP(X)with their coefficient vectors in R3, and—analogously—
probability measures in P(X3) with their coefficient tensors in R3×3×3.

(
FN ,3(λ)

)
· · 1

(
FN ,3(λ)

)
· · 2

(
FN ,3(λ)

)
· · 3

λ = rrr

⎛

⎝
1
0
0

⎞

⎠

⎛

⎝
0
0
0

⎞

⎠

⎛

⎝
0
0
0

⎞

⎠

λ = rrg

⎛

⎝
0 1

3
1
3 0

0

⎞

⎠

⎛

⎝
1
3
0
0

⎞

⎠

⎛

⎝
0
0
0

⎞

⎠

λ = rgg

⎛

⎝
0

1
3
0

⎞

⎠

⎛

⎝
0 1

3
1
3 0

0

⎞

⎠

⎛

⎝
0
0
0

⎞

⎠

λ = ggg

⎛

⎝
0
0
0

⎞

⎠

⎛

⎝
0
1
0

⎞

⎠

⎛

⎝
0
0
0

⎞

⎠

On the other hand, the joint measure we seek to represent is

(
λ⊗3

∗
)
· · 1=

⎛

⎜⎝

8
27

4
27

4
27

2
27

0

⎞

⎟⎠,
(
λ⊗3

∗
)
· · 2=

⎛

⎜⎝

4
27

2
27

2
27

1
27

0

⎞

⎟⎠,
(
λ⊗3

∗
)
· · 3=

⎛

⎝
0
0
0

⎞

⎠.

From the above explicit expressions one sees that

λ⊗3
∗ = 8

27 FN ,3(rrr)+ 4
9 FN ,3(rrg)+ 2

9 FN ,3(rgg)+ 1
27 FN ,3(ggg). (5.6)

Thus the probability measure α in P(P(X)) in (5.1) is in our case given by α =
8
27δrrr + 4

9δrrg + 2
9δrgg + 1

27δggg.
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The representation (5.6) has the following probabilistic meaning.One can simulate
drawing three balls with replacement from an rrg urn by

• first picking one of the four urns rrr, rrg, rgg, ggg with probabilities 8
27 ,

4
9 ,

2
9 ,

1
27 (i.e. probability ratios 8 : 12 : 6 : 1),

• then drawing three balls without replacement from the picked urn.

Moreover thanks to the uniqueness result in Theorem 5.1, the above choice of urns and
probabilities provides the unique way of simulating the given draws with replacement
by draws without replacement.

We emphasize that the converse (simulating draws without replacement by draws
with replacement) is not possible, due to the well known fact that finite exchangeable
laws may not be representable as convex mixtures of independents. For instance,
FN ,3(rrg) (the joint law for three draws without replacement from an rrg urn),
being extremal thanks to Theorem 4.5, is not a convex combination of any other joint
laws, and in particular not of any independent joint laws.
Let us also provide a simple example which shows that uniqueness of the measure α

in (5.1) can fail when k < N .

Example Let X , N , and λ∗ be as above, but k = 2. The measure λ⊗2
∗ (corresponding

to two independent draws from a rrg urn) cannot just be represented by the right
hand side of (5.6) with FN ,3 replaced by FN ,2, but alternatively by 2

9 FN ,2(rrr) +
2
3 FN ,2(rrg)+ 1

9 FN ,2(ggg), as the reader can easily check.

5.3 Extremal N-representable k-plans

The integral representation given by (5.1) in Theorem 5.1 will allow us to identify the
set of extreme points of PN−rep(Xk) as

EN ,k := {FN ,k(λ) : λ ∈ P 1
N
(X)}

= {MkSN δx1,...,xN : (x1, . . . , xN ) ∈ XN }
(5.7)

and to show in addition that all these points are exposed. Recall that if C is a convex
subset of P(Xk) then µ ∈ C is an exposed point of C if there exists ϕ ∈ Cb(Xk)

such that
∫
Xk ϕ dµ <

∫
Xk ϕ dν for every ν ∈ C \ {µ}. It is obvious that exposed

points are extreme points but the converse need not be true in general. For the set of
N -representable k-plans, we have the following

Theorem 5.3 Let N ≥ k ≥ 2.

(a) The set of extreme points of PN−rep(Xk) is given by the set EN ,k defined in (5.7).
(b) Every such extreme point is also exposed.

Proof

(a) Letµ be an extreme point ofPN−rep(Xk). Let us writeµ as in (5.1) and prove that
α is a Diracmass. If this was not the case, we could findϕ ∈ Cb(X) and t ∈ R such
that A1 := {λ ∈ P(X) :

∫
X ϕ dλ > t} and A2 := {λ ∈ P(X) :

∫
X ϕ dλ ≤ t}
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satisfy α(A1) > 0 and α(A2) > 0. Then decomposing α as α(A1)α1 + α(A2)α2
with αi a probability measure giving full mass to P 1

N
(X)∩ Ai , the extremality of

µ would imply

∫

P 1
N
(X)

FN ,k(λ) dα1(λ) =
∫

P 1
N
(X)

FN ,k(λ) dα2(λ).

But recalling that for λ ∈ P 1
N
(X) we have M1FN ,k(λ) = λ, this would also give

∫

P 1
N
(X)

λ dα1(λ) =
∫

P 1
N
(X)

λ dα2(λ),

and integrating ϕ against this identity would lead to a contradiction. Extreme
points of PN−rep(Xk) therefore belong to EN ,k
The reverse inclusion follows from (b). Alternatively, it follows fromTheorem4.2,
for if µ = FN ,k(λ) for some λ ∈ P 1

N
(X), and µ is a strict convex combination

of two measures µ1 ̸= µ2 in PN−rep(Xk), then the support of the µi must be
contained the support of µ and thus—a fortiori—in (supp ˘)k, contradicting the
extremality of FN ,k(λ) among N -representable k-point measures supported on
the finite state space (supp λ)k .

(b) We need to show that if λ := 1
N

∑N
i=1 δxi ∈ P 1

N
(X), then µ := FN ,k(λ) is an

exposed point of PN−rep(Xk). Again thanks to the integral representation (5.1),
this amounts to finding ϕ ∈ Cb(Xk) such that

∫
Xk ϕdµ <

∫
Xk ϕdν for every

ν ∈ EN ,k \ {µ}.

First, let us rewrite λ :=∑ℓ
j=1 λ jδy j with λ j > 0 and y1, . . . , yℓ pairwise distinct.

Next, we define

ϕ0(z1, . . . , zk) :=
k∑

i=1

min
j=1,...,ℓ

d(zi , y j ), ∀(z1, . . . , zk) ∈ Xk .

Let u be a function in Cb(X ,Rℓ) such that u(y1), . . . , u(yℓ) are linearly independent.
For every θ ∈ P(X), let us now define

J (θ) := 1
2

∫

X×X
|u(x) − u(y)|2dθ(x)dθ(y)

=
∫

X
|u(x)|2dθ(x) −

∣∣∣
∫

X
u(x)dθ(x)

∣∣∣
2

Obviously J is a concave quadratic functional and more precisely, defining

fλ(x) := |u(x)|2 − 2
( ∫

X
u(y)dλ(y)

)
· u(x), ∀x ∈ X , (5.8)
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for every θ ∈ P(X) we have

J (θ) = J (λ)+
∫

X
fλ(x)d(θ − λ)(x) −

∣∣∣
∫

X
u(x)d(θ − λ)(x)

∣∣∣
2
.

In particular, this implies that

J (θ) ≤ J (λ)+
∫

X
fλ(x)d(θ − λ)(x) (5.9)

and this inequality is strict unless

∫

X
udθ =

∫

X
udλ =

l∑

j=1

λ j u(y j ). (5.10)

Now if θ ∈ P 1
N
(X) and ν := FN ,k(θ), we know (see (4.7)) that

M2ν = N
N − 1

θ ⊗ θ − 1
N − 1

id⊗2
# θ, M1ν = θ

since (x, y) ∈ X2 '→ |u(x)− u(y)|2 vanishes on the diagonal and thanks to (5.9), we
thus get

N
N − 1

J (θ) = 1
2

∫

Xk
|u(z1) − u(z2)|2dν(z1, . . . , zk)

≤ 1
2

∫

Xk
|u(z1) − u(z2)|2dµ(z1, . . . , zk)

+ N
N − 1

∫

Xk
fλ(z1)d(ν − µ)(z1, . . . , zk)

and the last inequality is strict unless (5.10) holds. Defining

ϕ1(z1, . . . , zk) := −1
2
|u(z1) − u(z2)|2 +

N
N − 1

fλ(z1), ∀(z1, . . . , zk) ∈ Xk

we deduce that
∫
Xk ϕ1dµ ≤

∫
Xk ϕ1dν, ∀ν ∈ EN ,k . Since

∫
Xk ϕ0dµ = 0 and ϕ0 ≥ 0,

setting ϕ := ϕ0 + ϕ1 we also have

∫

Xk
ϕdµ ≤

∫

Xk
ϕdν, ∀ν ∈ EN ,k . (5.11)

It remains to show that if θ ∈ P 1
N
(X) is such that (5.11) is an equality at ν =

FN ,k(θ) then necessarily θ = λ. But in this equality case we must have
∫
Xk ϕ0dν = 0

so that θ = M1ν is supported by the finite set {y1, . . . yℓ} (i.e. θ = ∑ℓ
j=1 θ jδy j ),

but we must also have an equality in (5.9). The latter implies that
∑ℓ

j=1 θ j u(y j ) =
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∑ℓ
j=1 λ j u(y j ), i.e. λ j = θ j for j = 1, . . . , ℓ, since we have chosen u(y1), . . . , u(yℓ)

linearly independent. ⊓,
Let us point out the following consequence of Theorem 5.3 (a).

Corollary 5.4 The set of extreme points of PN−rep(Xk) is closed under narrow
convergence.

Proof Wehave to show that EN ,k is closed under narrow convergence. Take a sequence
µn = FN ,k(λ

n) ∈ EN ,k converging narrowly to some µ ∈ P(Xk). Since the one-
point marginals M1µ

n = λn belong toP 1
N
(X) and themarginal mapM1 is continuous

under narrow convergence, λn → λ for some λ ∈ P(X). By the closedness ofP 1
N
(X)

(see Lemma 3.1) we have λ ∈ P 1
N
(X) and the continuity of FN ,k yields FN ,k(λ

n) →
FN ,k(λ), so µ = FN ,k(λ) ∈ EN ,k . ⊓,

In some applications, one is interested in the following subset of PN−rep(Xk)

consisting of measures with no mass on the diagonal:

P
offdiag
N−rep(X

k) := {µ ∈ PN−rep(Xk) : µ(diagk(X)) = 0} (5.12)

where
diagk(X) := {(x, . . . , x) ∈ Xk : x ∈ X}. (5.13)

Themotivation for considering this set comes from singular k-body interactions. These
interactions lead to costs of the form

c(x1, . . . , xN ) =
∑

1≤i1<···<ik≤N

-(xi1 , . . . , xik )

for some measurable nonnegative - with - = +∞ on diagk(X), then the total cost
C[γ ] =

∫
XN c dγ is infinite if Mkγ /∈ P

offdiag
N−rep(X

k). A prototypical example is the
Coulomb cost, see Sect. 8, which led Khoo and Ying [29] to introduce the set (5.12)–
(5.13) in the case k = 2 and X a finite state space. Recall the quantization constraint
for measures λ ∈ P 1

N
(X) that λ({x}) ∈ {0, 1/N , . . . , 1}.

Theorem 5.5

(a) The set of extreme points of Poffdiag
N−rep(X

k) is given by

Eoffdiag
N ,k :=

{
FN ,k(λ) : λ ∈ P 1

N
(X) : λ({x}) ∈ {0, 1

N , . . . ,
k−1
N }
}
. (5.14)

(b) Every such extreme point is also exposed.

Geometrically this means that intersecting the set of N -representable k-plans with the
subspace of measures which vanish on the diagonal does not generate new extreme
points.

Theorem 5.5 generalizes a recent result of [29] from k = 2 and finite state spaces
X to general k and X .
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Proof First we show that any extreme point µ is contained in the set (5.14). By
the representation (5.1), µ =

∫
A FN ,k(λ) dα(λ) where A = {λ ∈ P 1

N
(X) :

FN ,k(λ)(diagk(X)) = 0}. The key point is that the polynomial FN ,k(λ) factorizes
on the diagonal:

FN ,k(λ)({(x, . . . , x)}) =
Nk−1

∏k−1
j=1(N − j)

[
λ({x})k +

k−1∑

j=1

(−1) j

N j λ({x})k− j c(k)j
]

= Nk−1

∏k−1
j=1(N − j)

λ({x})
(
λ({x}) − 1

N

)
· · ·
(
λ({x}) − k−1

N

)
.

(5.15)

The second equality follows because the coefficients c(k)j are N -independent and
satisfy

Nk
(
1 − c(k)1

N
+ c(k)2

N 2 − + · · · + (−1)k−1 c(k)k−1

Nk−1

)
=

k−1∏

j=0

(N − j)

for all nonnegative integers N , see Eq. (4.18). Since λ is 1
N -quantized, λ(x)N is a

nonnegative integer and can be substituted for N , yielding the asserted expression. The
factorization identity (5.15) shows that A = {λ ∈ P 1

N
(X) : λ(x) ∈ {0, 1

N , . . . ,
k−1
N }}.

The rest of the proof of (a) is analogous to that of Theorem 5.3 (a) and the exposedness
of the elements in Eoffdiag

N ,k is immediate from Theorem 5.3 (b). ⊓,

5.4 Exponentially convergent approximation of extreme points

The error estimates (4.14), (4.15) when approximating FN ,k(λ) by a truncated series
can be extended in a straightforward manner to Polish spaces.

Theorem 5.6 For any extreme point µk of PN−rep(Xk), denoting its one-point
marginal M1µk ∈ P 1

N
(X) by λ we have

µk =
Nk−1

∏k−1
j=1(N − j)

[
λ⊗k + εN ,k(λ)

]
with ∥εN ,k(λ)∥TV ≤ Ck

N
(5.16)

and

µk =
Nk−1

∏k−1
j=1(N − j)

⎡

⎣λ⊗k +
p∑

j=1

(−1) j

N j Sk P
(k)
j (λ)+ εN ,k,p(λ)

⎤

⎦

with ∥εN ,k,p(λ)∥TV ≤ Ck

N p+1 , (5.17)
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with constants Ck independent of N and p. The explicit constants (4.16) will do.
Conversely, for every λ ∈ P 1

N
(X) there exists an extreme point µk of PN−rep(Xk)

such that (5.16), (5.17) hold.

Proof By Theorem 5.3, an extreme point µk equals FN ,k(λ), and in particular is
supported on the finite set (supp λ)k . Estimates (5.16), (5.17) now follow from (4.14)–
(4.15) and the fact that

||εN ,k(λ)||T V (Xk ) = ||εN ,k(λ)||T V (( supp λ)k )

(and the analogous identity for εN ,k,p). ⊓,
Of course, via the integral representation (5.1) this translates into an analo-

gous exponentially convergent approximation result for arbitrary (non-extremal)
N -representable measures, see the next section.

6 Recovering the de Finetti–Hewitt–Savage theorem

The celebrated Hewitt–Savage theorem [22] (going back to de Finetti in the special
case of the state space X = {0, 1}) says the following.
Theorem 6.1 (Hewitt–Savage [22]) If (Zn)n is an infinite exchangeable sequence of
random variables with values in the Polish space X, then there exists α ∈ P(P(X))
such that for every k, the law µk of (Z1, . . . , Zk) is given by

µk =
∫

P(X)
λ⊗k dα(λ). (6.1)

Let us show how this theorem follows from Theorem 5.1 which therefore may be
viewed as a non-asymptotic form of the Hewitt–Savage theorem. If µk is the law of
the first k components of an infinite exchangeable sequence, it is N -representable for
every N , so that there exists αN ,k ∈ P(P 1

N
(X)) such that

µk =
∫

P 1
N
(X)

FN ,k(λ)dαN ,k(λ).

In particular, for the law µ1 of Z1 we have

µ1 :=
∫

P(X)
λ dαN ,k(λ).

Since X is Polish, µ1 is tight so there exists 0 : X → [0,+∞] which is lower
semicontinuous and coercive (i.e. with compact sublevel sets) such that

+∞ >

∫

X
0(x)dµ1(x) =

∫

P(X)

( ∫

X
0(x)dλ(x)

)
dαN ,k(λ).
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But since 0 is coercive, λ ∈ P(X) '→
∫
X 0(x)dλ(x) is coercive on P(X). It thus

follows from Prokhorov’s theorem that αN ,k is tight. Hence, taking a subsequence
if necessary, αN ,k converges narrowly to some αk as N → ∞, and since FN ,k(λ)

converges uniformly to λ⊗k , thanks to (4.14) we get letting N → ∞:

µk =
∫

P(X)
λ⊗k dαk(λ).

It remains to show that αk may be chosen independently of k. For this we simply
observe that for ℓ ≥ k, µk = Mk(µℓ). Since Mk(λ

⊗ℓ) = λ⊗k , thanks to the linearity
and narrow continuity of Mk we thus get

µk =
∫

P(X)
λ⊗k dαℓ(λ), for all ℓ ≥ k.

We then use the same tightness argument as above to see that for some sequence
ℓn → ∞, αℓn converges narrowly to some α as n → +∞ and the Hewitt–Savage
representation (6.1) holds for this measure α.

Diaconis and Freedman (in [12]) obtained TV bounds between elements of
PN−rep(Xk) andmixtures of independent measures λ⊗k . More precisely, Diaconis and
Freedman showed that if µk ∈ PN−rep(Xk) and k ≤ N , there exists α ∈ P(P(X))
such that, for some constant Bk (for results on their k-dependence see [12])

∥µk −
∫

P(X)
λ⊗kdα∥TV ≤ Bk

N
. (6.2)

These O( 1
N ) bounds are recovered by using the integral representation of µk ∈

PN−rep(Xk) of Theorem 5.1 and applying (5.16).
A better approximation of µk is obtained by adding the universally correlated

correction terms from (5.17) to the independent measures λ⊗k in (6.2) and applying
(5.17). This yields:

Corollary 6.2 For any measure µk in PN−rep(Xk), and with α as in Theorem 5.1, we
have for p = 1, . . . , k − 2 and some constant Bk

∥µk −
∫

P(X)

Nk−1
∏k−1

j=1(N− j)

[
λ⊗k +

p∑

j=1

(−1) j

N j Sk P
(k)
j (λ)

]
dα∥TV ≤ Bk

N p+1 . (6.3)

7 Connection with the Ewens sampling formula

When looking at the coefficients arising in the classification (4.10)–(4.12) of extremal
N -representable measures, we noticed some resemblance to those in the celebrated
Ewens distribution orEwens sampling formula fromgenetics,which—mathematically
speaking—is a probability distribution on integer partitions.On the other hand, the sign
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factor (−1) j in (4.10), or (−1)k−n(p′) in the alternative expression (4.29), means that
some coefficients are negative, so the coefficients cannot be a probability distribution
on integer partitions.What is happening here?

There is a precise connection which seems to us quite remarkable and which we
now describe.

The Ewens distribution is usually stated in terms of the following parametrization
of partitions. If p′ = (p′

1, . . . , p
′
m) is a partition of the integer k, that is to say p′

1+· · ·+
p′
m = k and p′

1 ≥ . . . ≥ p′
m ≥ 1, one denotes bymq the number of components equal

to q (i.e., the number of times the term q appears in the sum), mq := |p′−1(q)|, and
introduces the vector (m1, . . . ,mk) (called allelic partition). For instance, the partition
p′ = (2, 1, 1, 1) of 5 corresponds to the allelic partition (3, 1, 0, 0, 0), because 1
appears 3 times, 2 appears once, and 3, 4, 5 appear zero times. The Ewens distribution
on the allelic partitions of the integer k ∈ N is now given by

P(m1, . . . ,mk; θ) =
k!

θ(θ + 1) . . . (θ + k − 1)

k∏

q=1

θmq

qmqmq !
, (7.1)

where θ > 0 is a parameter. In genetics, this distribution models the genetic diversity
of a population (at statistical equilibrium and under neutral selection), and θ is the
mutation rate. More precisely, for a random sample of k genes taken from a population
at a particular locus, Eq. (7.1) gives the probability that m1 alleles (variant forms
of the gene) appear exactly once, m2 alleles appear exactly twice, and so on. The
Ewens distribution has found widespread use in biology, statistics, probability, and
even number theory [14], see [15, 27] for original papers and [10] for a recent review.

In terms of the standard representation of the partitions of k, expression (7.1)
becomes

k!
θ(θ + 1) . . . (θ + k − 1)

θn(p
′)
n(p′)∏

i=1

1
p′
i

1∏

q∈ Ran p′
(|p′−1(q)|)! =: ew(p′; θ). (7.2)

Definition 7.1 Given any partition p′ of the integer k, we define the complex Ewens
function θ '→ ew(p′; θ) by (7.2), where θ ∈ C is a complex parameter and the
arithmetic operations are the usual ones in C.

For a picture when k = 3 see Fig. 2.
The complex Ewens function has the following properties:

1. ew(p′; ·) has poles exactly at the negative integers θ = −1, . . . ,−(k−1), and
is holomorphic on C\{−1, . . . ,−(k−1)}. In particular, ew(p′; ·) is meromorphic
on C.

2. ew(p′; ·) is nonzero for the trivial partition p′ = k, and zero only at θ = 0 for all
other partitions of k.

3.
∑

p′ partition of k
ew(p′; ·) is identically equal to 1.
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Fig. 2 The complex Ewens distribution (p′, θ) '→ ew(p′; θ) for k = 3. Since there are three partitions
p′ of 3, it is a collection of three meromorphic functions of the complex variable θ . The poles of each
function are located at θ = −1 and θ = −2. Restricting θ to the positive real axis yields the classical Ewens
distribution, which is a probability measure for each θ , and has long been known to be relevant in genetics.
Its analytic continuation to the negative real axis, which to our knowledge has not been introduced before,
is a signed measure for each θ , and turns out to describe extremal N -representable measures

4. {ew(p′; θ)}p′ partition of k is a probability measure (i.e., in addition real and non-
negative) when θ belongs to the nonnegative real axis, and a signed measure (i.e.,
in addition real but not nonnegative) when θ belongs to the negative real axis
excluding the poles.

The first two properties are immediate from the definition. The third follows from
the fact that the sum is identically equal to 1 for positive real θ and the identity theorem
from complex analysis. Property 4 is an obvious consequence of Property 3 and the
definition.

The connection to extremal N -representable measures is the following.

Theorem 7.2 The coefficients cp′ in the expansion (4.29) of extremal N-representable
k-point measures are given by ew(p′; θ)|θ=−N ; that is, they are given by the Ewens
distribution evaluated at a probabilistically meaningless but by analytic continuation
admissible negative parameter value.

Properties 3 and 4 of the complex Ewens distribution thus recover the phenomenon
discussed at the beginning of the section that the coefficients cp′ in (4.29) are only a
signed measure of total mass 1 but not a probability measure. (As already noted below
Theorem 4.5, due to this phenomenon it is highly nontrivial that the induced measures
(4.23), λ ∈ P 1

N
(X), are nevertheless probability measures.)

Some sort of correspondence between N -representable k-point measures and the
Ewens distribution at θ = −N also exists at the poles. By Property 1, the complex
Ewens distribution stops making mathematical sense at the points −N when N ∈ N,
N < k; but these are precisely the N ’s for which the notion of N -representability
(see Definition (2.1)) stops making sense as a k-plan cannot be N -representable when
N < k. Thus the two poles seen in Fig. 2 at −1 and −2 reflect the fact that it makes
no sense for a 3-point probability measure to be 1- or 2-representable.
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8 Applications to optimal transport

Our interest in the structure of the set PN−rep(Xk) is motivated by symmetric multi-
marginal optimal transport problems (MMOT). We briefly recall below the general
form of MMOT problems and then consider a special class which leads to linear
minimization problems over PN−rep(Xk).

MMOT Given a cost function c ∈ Cb(XN ) and (ρ1, . . . , ρN ) ∈ P(X)N , the multi-
marginal optimal transport with cost c and marginals (ρ1, . . . , ρN ) consists in finding
a transport plan between (ρ1, . . . , ρN ), i.e. a joint probability γ ∈ P(XN ) having
marginals (ρ1, . . . , ρN ) and minimizing the total cost

∫

XN
c(x1, . . . , xN )dγ ((x1, . . . , xN ).

This generalization of the more standard two-marginals Monge-Kantorovich optimal
transport problem arises in different settings such as polar factorization of vector
fields [20], Wasserstein barycenters [1, 19] and many-electron physics [6–8], just to
name a few. Note that these problems in general dramatically suffer from the curse of
dimensionality.

Symmetric MMOT with k-body interactions We now consider the special class of
MMOT problems for which: (i) all marginals are equal, (ii) the cost c is symmetric
(so that one can look for symmetric optimal plans) and (iii) the cost involves only
k-body interactions with 2 ≤ k ≤ N . More precisely, given integers 2 ≤ k ≤ N
and - ∈ Cb(Xk) symmetric (i.e., -(xσ (1), . . . , xσ (k)) = -(x1, . . . , xk) for every
(x1, . . . , xk) ∈ Xk and every permutation σ ∈ Sk), we consider the symmetric cost
c- defined on XN by

c-(x1, · · · , xN ) :=
1
(N
k

)
∑

1≤i1<i2...<ik≤N

-(xi1 , . . . , xik ). (8.1)

In this setting, N is the total number of particles in the system, XN is the space of
all N -particle configurations, and - is a k-body interaction potential. In practice N is
much larger than k. Given ρ ∈ P(X) we are interested in the multi-marginal optimal
transport problem

CN ,k(ρ)

:= inf
{ ∫

XN
c-(x1, . . . , xN )dγ (x1, . . . , xN ) : γ ∈ Psym(XN ), M1γ = ρ

}
.

(8.2)

An important example which has received much recent interest is k = 2, X = R3,
-(x1, x2) = |x1 − x2|−1 (optimal transport with Coulomb cost [6, 8]), in which case
(8.2) arises as the strictly correlated limit ofHohenberg-Kohn density functional theory
[8]. Thanks to (8.1), the minimization can be reformulated in terms of the k-marginal
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µk = Mk(γ ) ∈ PN−rep(Xk):

CN ,k(ρ) := inf
{ ∫

Xk
-dµk : µk ∈ PN−rep(Xk), M1(µk) = ρ

}
. (8.3)

8.1 A 1
N -quantized polynomial convexification problem

The de Finetti style representation from Theorem 5.1, together with the fact that
M1(FN ,k(λ)) = λ for every λ ∈ P 1

N
(X), enables us to write CN ,k(ρ) as follows.

Theorem 8.1 (Reformulation of symmetric multi-marginal optimal transport) The
functional CN ,k can be rewritten as

CN ,k(ρ) = inf
{ ∫

P 1
N
(X)

( ∫

Xk
- dFN ,k(λ)

)
dα(λ) : α ∈ P(P 1

N
(X))

}
, (8.4)

subject to the prescribed marginal constraint

∫

P 1
N
(X)

λ dα(λ) = ρ . (8.5)

In view of formulae (4.10)–(4.12), one can observe that λ ∈ P 1
N (X) '→

∫
Xk - dFN ,k(λ) is a polynomial of degree k expression in the weights of the dis-

crete measure λ, for instance

∫

X2
- dFN ,2(λ) =

N
N − 1

∫

X2
-(x, y)dλ(x)dλ(y) − 1

N − 1

∫

X
-(x, x)dλ(x)

and

∫

X3
- dFN ,3(λ) =

N 2

(N − 1)(N − 2)

∫

X3
-(x, y, z)dλ(x)dλ(y)dλ(z)

− 3N
(N − 1)(N − 2)

∫

X2
-(x, x, y)dλ(x)dλ(y)

+ 2
(N − 1)(N − 2)

∫

X
-(x, x, x)dλ(x).

Defining the polynomial PN ,k for every single marginal (not necessarily 1
N -quantized)

λ ∈ P(X) by

PN ,k(λ) :=
∫

Xk
- dFN ,k(λ), for all λ ∈ P(X), (8.6)

we see that minimization problem (8.4)–(8.5) is a 1
N -quantized constrained version

of the convexification of the polynomial PN ,k . More precisely, the convexification (or
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convex envelope) of PN ,k , denoted P∗∗
N ,k , is the largest convex function bounding PN ,k

from below on the whole of P(X), it is given by the formula:

P∗∗
N ,k(ρ) := inf

α∈P(P(X))

{ ∫

P(X)
PN ,k(λ)dα(λ) :

∫

P(X)
λdα(λ) = ρ

}
. (8.7)

We thus deduce from (8.4)–(8.5), the lower bound

CN ,k(ρ) ≥ P∗∗
N ,k(ρ), ∀ρ ∈ P(X). (8.8)

To understand the advantage of the formulation (8.4)–(8.5) compared to the initial
multi-marginal problem (8.2), it is worth considering in detail the finite case where
X = Xℓ is finite with ℓ elements. In this case both (8.2) and (8.4)–(8.5) are linear
programs which have

(N+ℓ−1
ℓ−1

)
variables and ℓ constraints. But the special structure of

(8.4)–(8.5) makes it much more appealing from a computational viewpoint. Indeed,
the computation of the value function CN ,k given by (8.4)–(8.5) amounts to finding
the convex envelope of the restriction of the polynomial PN ,k to the finite set P 1

N
(X).

In the simplest case where ℓ = 2, this amounts to computing the convex hull of N +1
points in the plane located in the graph of PN ,k . This convex envelope can be computed
exactly in linear in N time thanks to the Graham scan algorithm [21] for instance.

8.2 Convergence as N → ∞

Now we consider the asymptotic behavior of CN ,k as N → ∞. As first emphasized
in [9] in the case of the Coulomb cost (or more general pairwise interactions with
a potential having a positive Fourier transform), the Hewitt–Savage theorem enables
one to drastically simplify the analysis of problems like (8.2) as N → ∞. Since ρ⊗k

is admissible in the optimal transport problem (8.3) we have

CN ,k(ρ) ≤ Pk(ρ), ∀ρ ∈ P(X)

where
Pk(ρ) :=

∫

Xk
-dρ⊗k, ∀ρ ∈ P(X) (8.9)

but sinceCN ,k is obviously convex, denoting by P∗∗
k the convexification of Pk defined

in (8.9), this also gives

CN ,k(ρ) ≤ P∗∗
k (ρ), for all ρ ∈ P(X). (8.10)

Recalling (5.16), we observe that for some constant Ck we have for every λ ∈ P(X)

PN ,k(λ) ≥ (N − k)!Nk

N !
(
Pk(λ) − Ck∥-∥∞

N
.
)
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Taking convex envelopes and using (8.8) we thus get, for every ρ ∈ P(X):

(N − k)!Nk

N !
(
P∗∗
k (ρ) − Ck∥-∥∞

N

)
≤ CN ,k(ρ) ≤ P∗∗

k (ρ). (8.11)

So CN ,k converges uniformly on P(X) to P∗∗
k as N → +∞. We also have a 2-

convergence result:

Theorem 8.2 As N → ∞, the sequence of functionals CN ,k defined in (8.2) 2-
converges with respect to the narrow topology of P(X) to P∗∗

k .

Proof The 2-limsup inequality obviously follows from (8.10). As for the 2-liminf
inequality, it follows directly from (8.11) and the lower semicontinuity of P∗∗

k with
respect to the narrow topology. ⊓,

To conclude, we see that the asymptotic problem obtained by letting N → ∞
in (8.3) amounts to computing the convex envelope of the polynomial of degree k
interaction functional Pk . This might be a challenging computational task in general
but we believe that the theory developed by Lasserre for polynomial optimization (see
in particular [30]) might be useful in certain situations.
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